Linux 3.10.103
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include "ubi.h"
45
46 /* Maximum length of the 'mtd=' parameter */
47 #define MTD_PARAM_LEN_MAX 64
48
49 /* Maximum number of comma-separated items in the 'mtd=' parameter */
50 #define MTD_PARAM_MAX_COUNT 3
51
52 /* Maximum value for the number of bad PEBs per 1024 PEBs */
53 #define MAX_MTD_UBI_BEB_LIMIT 768
54
55 #ifdef CONFIG_MTD_UBI_MODULE
56 #define ubi_is_module() 1
57 #else
58 #define ubi_is_module() 0
59 #endif
60
61 /**
62 * struct mtd_dev_param - MTD device parameter description data structure.
63 * @name: MTD character device node path, MTD device name, or MTD device number
64 * string
65 * @vid_hdr_offs: VID header offset
66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67 */
68 struct mtd_dev_param {
69 char name[MTD_PARAM_LEN_MAX];
70 int vid_hdr_offs;
71 int max_beb_per1024;
72 };
73
74 /* Numbers of elements set in the @mtd_dev_param array */
75 static int __initdata mtd_devs;
76
77 /* MTD devices specification parameters */
78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
79 #ifdef CONFIG_MTD_UBI_FASTMAP
80 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
81 static bool fm_autoconvert;
82 #endif
83 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
84 struct class *ubi_class;
85
86 /* Slab cache for wear-leveling entries */
87 struct kmem_cache *ubi_wl_entry_slab;
88
89 /* UBI control character device */
90 static struct miscdevice ubi_ctrl_cdev = {
91 .minor = MISC_DYNAMIC_MINOR,
92 .name = "ubi_ctrl",
93 .fops = &ubi_ctrl_cdev_operations,
94 };
95
96 /* All UBI devices in system */
97 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
98
99 /* Serializes UBI devices creations and removals */
100 DEFINE_MUTEX(ubi_devices_mutex);
101
102 /* Protects @ubi_devices and @ubi->ref_count */
103 static DEFINE_SPINLOCK(ubi_devices_lock);
104
105 /* "Show" method for files in '/<sysfs>/class/ubi/' */
106 static ssize_t ubi_version_show(struct class *class,
107 struct class_attribute *attr, char *buf)
108 {
109 return sprintf(buf, "%d\n", UBI_VERSION);
110 }
111
112 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
113 static struct class_attribute ubi_version =
114 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
115
116 static ssize_t dev_attribute_show(struct device *dev,
117 struct device_attribute *attr, char *buf);
118
119 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
120 static struct device_attribute dev_eraseblock_size =
121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_avail_eraseblocks =
123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_total_eraseblocks =
125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_volumes_count =
127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_max_ec =
129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_reserved_for_bad =
131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_bad_peb_count =
133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_max_vol_count =
135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_min_io_size =
137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_bgt_enabled =
139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_mtd_num =
141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
142
143 /**
144 * ubi_volume_notify - send a volume change notification.
145 * @ubi: UBI device description object
146 * @vol: volume description object of the changed volume
147 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
148 *
149 * This is a helper function which notifies all subscribers about a volume
150 * change event (creation, removal, re-sizing, re-naming, updating). Returns
151 * zero in case of success and a negative error code in case of failure.
152 */
153 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
154 {
155 struct ubi_notification nt;
156
157 ubi_do_get_device_info(ubi, &nt.di);
158 ubi_do_get_volume_info(ubi, vol, &nt.vi);
159
160 #ifdef CONFIG_MTD_UBI_FASTMAP
161 switch (ntype) {
162 case UBI_VOLUME_ADDED:
163 case UBI_VOLUME_REMOVED:
164 case UBI_VOLUME_RESIZED:
165 case UBI_VOLUME_RENAMED:
166 if (ubi_update_fastmap(ubi)) {
167 ubi_err("Unable to update fastmap!");
168 ubi_ro_mode(ubi);
169 }
170 }
171 #endif
172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
173 }
174
175 /**
176 * ubi_notify_all - send a notification to all volumes.
177 * @ubi: UBI device description object
178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
179 * @nb: the notifier to call
180 *
181 * This function walks all volumes of UBI device @ubi and sends the @ntype
182 * notification for each volume. If @nb is %NULL, then all registered notifiers
183 * are called, otherwise only the @nb notifier is called. Returns the number of
184 * sent notifications.
185 */
186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
187 {
188 struct ubi_notification nt;
189 int i, count = 0;
190
191 ubi_do_get_device_info(ubi, &nt.di);
192
193 mutex_lock(&ubi->device_mutex);
194 for (i = 0; i < ubi->vtbl_slots; i++) {
195 /*
196 * Since the @ubi->device is locked, and we are not going to
197 * change @ubi->volumes, we do not have to lock
198 * @ubi->volumes_lock.
199 */
200 if (!ubi->volumes[i])
201 continue;
202
203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
204 if (nb)
205 nb->notifier_call(nb, ntype, &nt);
206 else
207 blocking_notifier_call_chain(&ubi_notifiers, ntype,
208 &nt);
209 count += 1;
210 }
211 mutex_unlock(&ubi->device_mutex);
212
213 return count;
214 }
215
216 /**
217 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
218 * @nb: the notifier to call
219 *
220 * This function walks all UBI devices and volumes and sends the
221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
222 * registered notifiers are called, otherwise only the @nb notifier is called.
223 * Returns the number of sent notifications.
224 */
225 int ubi_enumerate_volumes(struct notifier_block *nb)
226 {
227 int i, count = 0;
228
229 /*
230 * Since the @ubi_devices_mutex is locked, and we are not going to
231 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
232 */
233 for (i = 0; i < UBI_MAX_DEVICES; i++) {
234 struct ubi_device *ubi = ubi_devices[i];
235
236 if (!ubi)
237 continue;
238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
239 }
240
241 return count;
242 }
243
244 /**
245 * ubi_get_device - get UBI device.
246 * @ubi_num: UBI device number
247 *
248 * This function returns UBI device description object for UBI device number
249 * @ubi_num, or %NULL if the device does not exist. This function increases the
250 * device reference count to prevent removal of the device. In other words, the
251 * device cannot be removed if its reference count is not zero.
252 */
253 struct ubi_device *ubi_get_device(int ubi_num)
254 {
255 struct ubi_device *ubi;
256
257 spin_lock(&ubi_devices_lock);
258 ubi = ubi_devices[ubi_num];
259 if (ubi) {
260 ubi_assert(ubi->ref_count >= 0);
261 ubi->ref_count += 1;
262 get_device(&ubi->dev);
263 }
264 spin_unlock(&ubi_devices_lock);
265
266 return ubi;
267 }
268
269 /**
270 * ubi_put_device - drop an UBI device reference.
271 * @ubi: UBI device description object
272 */
273 void ubi_put_device(struct ubi_device *ubi)
274 {
275 spin_lock(&ubi_devices_lock);
276 ubi->ref_count -= 1;
277 put_device(&ubi->dev);
278 spin_unlock(&ubi_devices_lock);
279 }
280
281 /**
282 * ubi_get_by_major - get UBI device by character device major number.
283 * @major: major number
284 *
285 * This function is similar to 'ubi_get_device()', but it searches the device
286 * by its major number.
287 */
288 struct ubi_device *ubi_get_by_major(int major)
289 {
290 int i;
291 struct ubi_device *ubi;
292
293 spin_lock(&ubi_devices_lock);
294 for (i = 0; i < UBI_MAX_DEVICES; i++) {
295 ubi = ubi_devices[i];
296 if (ubi && MAJOR(ubi->cdev.dev) == major) {
297 ubi_assert(ubi->ref_count >= 0);
298 ubi->ref_count += 1;
299 get_device(&ubi->dev);
300 spin_unlock(&ubi_devices_lock);
301 return ubi;
302 }
303 }
304 spin_unlock(&ubi_devices_lock);
305
306 return NULL;
307 }
308
309 /**
310 * ubi_major2num - get UBI device number by character device major number.
311 * @major: major number
312 *
313 * This function searches UBI device number object by its major number. If UBI
314 * device was not found, this function returns -ENODEV, otherwise the UBI device
315 * number is returned.
316 */
317 int ubi_major2num(int major)
318 {
319 int i, ubi_num = -ENODEV;
320
321 spin_lock(&ubi_devices_lock);
322 for (i = 0; i < UBI_MAX_DEVICES; i++) {
323 struct ubi_device *ubi = ubi_devices[i];
324
325 if (ubi && MAJOR(ubi->cdev.dev) == major) {
326 ubi_num = ubi->ubi_num;
327 break;
328 }
329 }
330 spin_unlock(&ubi_devices_lock);
331
332 return ubi_num;
333 }
334
335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
336 static ssize_t dev_attribute_show(struct device *dev,
337 struct device_attribute *attr, char *buf)
338 {
339 ssize_t ret;
340 struct ubi_device *ubi;
341
342 /*
343 * The below code looks weird, but it actually makes sense. We get the
344 * UBI device reference from the contained 'struct ubi_device'. But it
345 * is unclear if the device was removed or not yet. Indeed, if the
346 * device was removed before we increased its reference count,
347 * 'ubi_get_device()' will return -ENODEV and we fail.
348 *
349 * Remember, 'struct ubi_device' is freed in the release function, so
350 * we still can use 'ubi->ubi_num'.
351 */
352 ubi = container_of(dev, struct ubi_device, dev);
353 ubi = ubi_get_device(ubi->ubi_num);
354 if (!ubi)
355 return -ENODEV;
356
357 if (attr == &dev_eraseblock_size)
358 ret = sprintf(buf, "%d\n", ubi->leb_size);
359 else if (attr == &dev_avail_eraseblocks)
360 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
361 else if (attr == &dev_total_eraseblocks)
362 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
363 else if (attr == &dev_volumes_count)
364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
365 else if (attr == &dev_max_ec)
366 ret = sprintf(buf, "%d\n", ubi->max_ec);
367 else if (attr == &dev_reserved_for_bad)
368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
369 else if (attr == &dev_bad_peb_count)
370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
371 else if (attr == &dev_max_vol_count)
372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
373 else if (attr == &dev_min_io_size)
374 ret = sprintf(buf, "%d\n", ubi->min_io_size);
375 else if (attr == &dev_bgt_enabled)
376 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
377 else if (attr == &dev_mtd_num)
378 ret = sprintf(buf, "%d\n", ubi->mtd->index);
379 else
380 ret = -EINVAL;
381
382 ubi_put_device(ubi);
383 return ret;
384 }
385
386 static void dev_release(struct device *dev)
387 {
388 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
389
390 kfree(ubi);
391 }
392
393 /**
394 * ubi_sysfs_init - initialize sysfs for an UBI device.
395 * @ubi: UBI device description object
396 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
397 * taken
398 *
399 * This function returns zero in case of success and a negative error code in
400 * case of failure.
401 */
402 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
403 {
404 int err;
405
406 ubi->dev.release = dev_release;
407 ubi->dev.devt = ubi->cdev.dev;
408 ubi->dev.class = ubi_class;
409 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
410 err = device_register(&ubi->dev);
411 if (err)
412 return err;
413
414 *ref = 1;
415 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
416 if (err)
417 return err;
418 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
419 if (err)
420 return err;
421 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
422 if (err)
423 return err;
424 err = device_create_file(&ubi->dev, &dev_volumes_count);
425 if (err)
426 return err;
427 err = device_create_file(&ubi->dev, &dev_max_ec);
428 if (err)
429 return err;
430 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
431 if (err)
432 return err;
433 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
434 if (err)
435 return err;
436 err = device_create_file(&ubi->dev, &dev_max_vol_count);
437 if (err)
438 return err;
439 err = device_create_file(&ubi->dev, &dev_min_io_size);
440 if (err)
441 return err;
442 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
443 if (err)
444 return err;
445 err = device_create_file(&ubi->dev, &dev_mtd_num);
446 return err;
447 }
448
449 /**
450 * ubi_sysfs_close - close sysfs for an UBI device.
451 * @ubi: UBI device description object
452 */
453 static void ubi_sysfs_close(struct ubi_device *ubi)
454 {
455 device_remove_file(&ubi->dev, &dev_mtd_num);
456 device_remove_file(&ubi->dev, &dev_bgt_enabled);
457 device_remove_file(&ubi->dev, &dev_min_io_size);
458 device_remove_file(&ubi->dev, &dev_max_vol_count);
459 device_remove_file(&ubi->dev, &dev_bad_peb_count);
460 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
461 device_remove_file(&ubi->dev, &dev_max_ec);
462 device_remove_file(&ubi->dev, &dev_volumes_count);
463 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
464 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
465 device_remove_file(&ubi->dev, &dev_eraseblock_size);
466 device_unregister(&ubi->dev);
467 }
468
469 /**
470 * kill_volumes - destroy all user volumes.
471 * @ubi: UBI device description object
472 */
473 static void kill_volumes(struct ubi_device *ubi)
474 {
475 int i;
476
477 for (i = 0; i < ubi->vtbl_slots; i++)
478 if (ubi->volumes[i])
479 ubi_free_volume(ubi, ubi->volumes[i]);
480 }
481
482 /**
483 * uif_init - initialize user interfaces for an UBI device.
484 * @ubi: UBI device description object
485 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
486 * taken, otherwise set to %0
487 *
488 * This function initializes various user interfaces for an UBI device. If the
489 * initialization fails at an early stage, this function frees all the
490 * resources it allocated, returns an error, and @ref is set to %0. However,
491 * if the initialization fails after the UBI device was registered in the
492 * driver core subsystem, this function takes a reference to @ubi->dev, because
493 * otherwise the release function ('dev_release()') would free whole @ubi
494 * object. The @ref argument is set to %1 in this case. The caller has to put
495 * this reference.
496 *
497 * This function returns zero in case of success and a negative error code in
498 * case of failure.
499 */
500 static int uif_init(struct ubi_device *ubi, int *ref)
501 {
502 int i, err;
503 dev_t dev;
504
505 *ref = 0;
506 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
507
508 /*
509 * Major numbers for the UBI character devices are allocated
510 * dynamically. Major numbers of volume character devices are
511 * equivalent to ones of the corresponding UBI character device. Minor
512 * numbers of UBI character devices are 0, while minor numbers of
513 * volume character devices start from 1. Thus, we allocate one major
514 * number and ubi->vtbl_slots + 1 minor numbers.
515 */
516 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
517 if (err) {
518 ubi_err("cannot register UBI character devices");
519 return err;
520 }
521
522 ubi_assert(MINOR(dev) == 0);
523 cdev_init(&ubi->cdev, &ubi_cdev_operations);
524 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
525 ubi->cdev.owner = THIS_MODULE;
526
527 err = cdev_add(&ubi->cdev, dev, 1);
528 if (err) {
529 ubi_err("cannot add character device");
530 goto out_unreg;
531 }
532
533 err = ubi_sysfs_init(ubi, ref);
534 if (err)
535 goto out_sysfs;
536
537 for (i = 0; i < ubi->vtbl_slots; i++)
538 if (ubi->volumes[i]) {
539 err = ubi_add_volume(ubi, ubi->volumes[i]);
540 if (err) {
541 ubi_err("cannot add volume %d", i);
542 goto out_volumes;
543 }
544 }
545
546 return 0;
547
548 out_volumes:
549 kill_volumes(ubi);
550 out_sysfs:
551 if (*ref)
552 get_device(&ubi->dev);
553 ubi_sysfs_close(ubi);
554 cdev_del(&ubi->cdev);
555 out_unreg:
556 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
557 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
558 return err;
559 }
560
561 /**
562 * uif_close - close user interfaces for an UBI device.
563 * @ubi: UBI device description object
564 *
565 * Note, since this function un-registers UBI volume device objects (@vol->dev),
566 * the memory allocated voe the volumes is freed as well (in the release
567 * function).
568 */
569 static void uif_close(struct ubi_device *ubi)
570 {
571 kill_volumes(ubi);
572 ubi_sysfs_close(ubi);
573 cdev_del(&ubi->cdev);
574 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
575 }
576
577 /**
578 * ubi_free_internal_volumes - free internal volumes.
579 * @ubi: UBI device description object
580 */
581 void ubi_free_internal_volumes(struct ubi_device *ubi)
582 {
583 int i;
584
585 for (i = ubi->vtbl_slots;
586 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
587 kfree(ubi->volumes[i]->eba_tbl);
588 kfree(ubi->volumes[i]);
589 }
590 }
591
592 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
593 {
594 int limit, device_pebs;
595 uint64_t device_size;
596
597 if (!max_beb_per1024)
598 return 0;
599
600 /*
601 * Here we are using size of the entire flash chip and
602 * not just the MTD partition size because the maximum
603 * number of bad eraseblocks is a percentage of the
604 * whole device and bad eraseblocks are not fairly
605 * distributed over the flash chip. So the worst case
606 * is that all the bad eraseblocks of the chip are in
607 * the MTD partition we are attaching (ubi->mtd).
608 */
609 device_size = mtd_get_device_size(ubi->mtd);
610 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
611 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
612
613 /* Round it up */
614 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
615 limit += 1;
616
617 return limit;
618 }
619
620 /**
621 * io_init - initialize I/O sub-system for a given UBI device.
622 * @ubi: UBI device description object
623 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
624 *
625 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
626 * assumed:
627 * o EC header is always at offset zero - this cannot be changed;
628 * o VID header starts just after the EC header at the closest address
629 * aligned to @io->hdrs_min_io_size;
630 * o data starts just after the VID header at the closest address aligned to
631 * @io->min_io_size
632 *
633 * This function returns zero in case of success and a negative error code in
634 * case of failure.
635 */
636 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
637 {
638 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
639 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
640
641 if (ubi->mtd->numeraseregions != 0) {
642 /*
643 * Some flashes have several erase regions. Different regions
644 * may have different eraseblock size and other
645 * characteristics. It looks like mostly multi-region flashes
646 * have one "main" region and one or more small regions to
647 * store boot loader code or boot parameters or whatever. I
648 * guess we should just pick the largest region. But this is
649 * not implemented.
650 */
651 ubi_err("multiple regions, not implemented");
652 return -EINVAL;
653 }
654
655 if (ubi->vid_hdr_offset < 0)
656 return -EINVAL;
657
658 /*
659 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
660 * physical eraseblocks maximum.
661 */
662
663 ubi->peb_size = ubi->mtd->erasesize;
664 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
665 ubi->flash_size = ubi->mtd->size;
666
667 if (mtd_can_have_bb(ubi->mtd)) {
668 ubi->bad_allowed = 1;
669 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
670 }
671
672 if (ubi->mtd->type == MTD_NORFLASH) {
673 ubi_assert(ubi->mtd->writesize == 1);
674 ubi->nor_flash = 1;
675 }
676
677 ubi->min_io_size = ubi->mtd->writesize;
678 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
679
680 /*
681 * Make sure minimal I/O unit is power of 2. Note, there is no
682 * fundamental reason for this assumption. It is just an optimization
683 * which allows us to avoid costly division operations.
684 */
685 if (!is_power_of_2(ubi->min_io_size)) {
686 ubi_err("min. I/O unit (%d) is not power of 2",
687 ubi->min_io_size);
688 return -EINVAL;
689 }
690
691 ubi_assert(ubi->hdrs_min_io_size > 0);
692 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
693 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
694
695 ubi->max_write_size = ubi->mtd->writebufsize;
696 /*
697 * Maximum write size has to be greater or equivalent to min. I/O
698 * size, and be multiple of min. I/O size.
699 */
700 if (ubi->max_write_size < ubi->min_io_size ||
701 ubi->max_write_size % ubi->min_io_size ||
702 !is_power_of_2(ubi->max_write_size)) {
703 ubi_err("bad write buffer size %d for %d min. I/O unit",
704 ubi->max_write_size, ubi->min_io_size);
705 return -EINVAL;
706 }
707
708 /* Calculate default aligned sizes of EC and VID headers */
709 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
710 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
711
712 dbg_gen("min_io_size %d", ubi->min_io_size);
713 dbg_gen("max_write_size %d", ubi->max_write_size);
714 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
715 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
716 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
717
718 if (ubi->vid_hdr_offset == 0)
719 /* Default offset */
720 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
721 ubi->ec_hdr_alsize;
722 else {
723 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
724 ~(ubi->hdrs_min_io_size - 1);
725 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
726 ubi->vid_hdr_aloffset;
727 }
728
729 /* Similar for the data offset */
730 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
731 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
732
733 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
734 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
735 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
736 dbg_gen("leb_start %d", ubi->leb_start);
737
738 /* The shift must be aligned to 32-bit boundary */
739 if (ubi->vid_hdr_shift % 4) {
740 ubi_err("unaligned VID header shift %d",
741 ubi->vid_hdr_shift);
742 return -EINVAL;
743 }
744
745 /* Check sanity */
746 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
747 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
748 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
749 ubi->leb_start & (ubi->min_io_size - 1)) {
750 ubi_err("bad VID header (%d) or data offsets (%d)",
751 ubi->vid_hdr_offset, ubi->leb_start);
752 return -EINVAL;
753 }
754
755 /*
756 * Set maximum amount of physical erroneous eraseblocks to be 10%.
757 * Erroneous PEB are those which have read errors.
758 */
759 ubi->max_erroneous = ubi->peb_count / 10;
760 if (ubi->max_erroneous < 16)
761 ubi->max_erroneous = 16;
762 dbg_gen("max_erroneous %d", ubi->max_erroneous);
763
764 /*
765 * It may happen that EC and VID headers are situated in one minimal
766 * I/O unit. In this case we can only accept this UBI image in
767 * read-only mode.
768 */
769 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
770 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
771 ubi->ro_mode = 1;
772 }
773
774 ubi->leb_size = ubi->peb_size - ubi->leb_start;
775
776 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
777 ubi_msg("MTD device %d is write-protected, attach in read-only mode",
778 ubi->mtd->index);
779 ubi->ro_mode = 1;
780 }
781
782 /*
783 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
784 * unfortunately, MTD does not provide this information. We should loop
785 * over all physical eraseblocks and invoke mtd->block_is_bad() for
786 * each physical eraseblock. So, we leave @ubi->bad_peb_count
787 * uninitialized so far.
788 */
789
790 return 0;
791 }
792
793 /**
794 * autoresize - re-size the volume which has the "auto-resize" flag set.
795 * @ubi: UBI device description object
796 * @vol_id: ID of the volume to re-size
797 *
798 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
799 * the volume table to the largest possible size. See comments in ubi-header.h
800 * for more description of the flag. Returns zero in case of success and a
801 * negative error code in case of failure.
802 */
803 static int autoresize(struct ubi_device *ubi, int vol_id)
804 {
805 struct ubi_volume_desc desc;
806 struct ubi_volume *vol = ubi->volumes[vol_id];
807 int err, old_reserved_pebs = vol->reserved_pebs;
808
809 if (ubi->ro_mode) {
810 ubi_warn("skip auto-resize because of R/O mode");
811 return 0;
812 }
813
814 /*
815 * Clear the auto-resize flag in the volume in-memory copy of the
816 * volume table, and 'ubi_resize_volume()' will propagate this change
817 * to the flash.
818 */
819 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
820
821 if (ubi->avail_pebs == 0) {
822 struct ubi_vtbl_record vtbl_rec;
823
824 /*
825 * No available PEBs to re-size the volume, clear the flag on
826 * flash and exit.
827 */
828 vtbl_rec = ubi->vtbl[vol_id];
829 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
830 if (err)
831 ubi_err("cannot clean auto-resize flag for volume %d",
832 vol_id);
833 } else {
834 desc.vol = vol;
835 err = ubi_resize_volume(&desc,
836 old_reserved_pebs + ubi->avail_pebs);
837 if (err)
838 ubi_err("cannot auto-resize volume %d", vol_id);
839 }
840
841 if (err)
842 return err;
843
844 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
845 vol->name, old_reserved_pebs, vol->reserved_pebs);
846 return 0;
847 }
848
849 /**
850 * ubi_attach_mtd_dev - attach an MTD device.
851 * @mtd: MTD device description object
852 * @ubi_num: number to assign to the new UBI device
853 * @vid_hdr_offset: VID header offset
854 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
855 *
856 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
857 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
858 * which case this function finds a vacant device number and assigns it
859 * automatically. Returns the new UBI device number in case of success and a
860 * negative error code in case of failure.
861 *
862 * Note, the invocations of this function has to be serialized by the
863 * @ubi_devices_mutex.
864 */
865 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
866 int vid_hdr_offset, int max_beb_per1024)
867 {
868 struct ubi_device *ubi;
869 int i, err, ref = 0;
870
871 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
872 return -EINVAL;
873
874 if (!max_beb_per1024)
875 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
876
877 /*
878 * Check if we already have the same MTD device attached.
879 *
880 * Note, this function assumes that UBI devices creations and deletions
881 * are serialized, so it does not take the &ubi_devices_lock.
882 */
883 for (i = 0; i < UBI_MAX_DEVICES; i++) {
884 ubi = ubi_devices[i];
885 if (ubi && mtd->index == ubi->mtd->index) {
886 ubi_err("mtd%d is already attached to ubi%d",
887 mtd->index, i);
888 return -EEXIST;
889 }
890 }
891
892 /*
893 * Make sure this MTD device is not emulated on top of an UBI volume
894 * already. Well, generally this recursion works fine, but there are
895 * different problems like the UBI module takes a reference to itself
896 * by attaching (and thus, opening) the emulated MTD device. This
897 * results in inability to unload the module. And in general it makes
898 * no sense to attach emulated MTD devices, so we prohibit this.
899 */
900 if (mtd->type == MTD_UBIVOLUME) {
901 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
902 mtd->index);
903 return -EINVAL;
904 }
905
906 if (ubi_num == UBI_DEV_NUM_AUTO) {
907 /* Search for an empty slot in the @ubi_devices array */
908 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
909 if (!ubi_devices[ubi_num])
910 break;
911 if (ubi_num == UBI_MAX_DEVICES) {
912 ubi_err("only %d UBI devices may be created",
913 UBI_MAX_DEVICES);
914 return -ENFILE;
915 }
916 } else {
917 if (ubi_num >= UBI_MAX_DEVICES)
918 return -EINVAL;
919
920 /* Make sure ubi_num is not busy */
921 if (ubi_devices[ubi_num]) {
922 ubi_err("ubi%d already exists", ubi_num);
923 return -EEXIST;
924 }
925 }
926
927 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
928 if (!ubi)
929 return -ENOMEM;
930
931 ubi->mtd = mtd;
932 ubi->ubi_num = ubi_num;
933 ubi->vid_hdr_offset = vid_hdr_offset;
934 ubi->autoresize_vol_id = -1;
935
936 #ifdef CONFIG_MTD_UBI_FASTMAP
937 ubi->fm_pool.used = ubi->fm_pool.size = 0;
938 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
939
940 /*
941 * fm_pool.max_size is 5% of the total number of PEBs but it's also
942 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
943 */
944 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
945 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
946 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
947 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
948
949 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
950 ubi->fm_disabled = !fm_autoconvert;
951
952 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
953 <= UBI_FM_MAX_START) {
954 ubi_err("More than %i PEBs are needed for fastmap, sorry.",
955 UBI_FM_MAX_START);
956 ubi->fm_disabled = 1;
957 }
958
959 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
960 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
961 #else
962 ubi->fm_disabled = 1;
963 #endif
964 mutex_init(&ubi->buf_mutex);
965 mutex_init(&ubi->ckvol_mutex);
966 mutex_init(&ubi->device_mutex);
967 spin_lock_init(&ubi->volumes_lock);
968 mutex_init(&ubi->fm_mutex);
969 init_rwsem(&ubi->fm_sem);
970
971 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
972
973 err = io_init(ubi, max_beb_per1024);
974 if (err)
975 goto out_free;
976
977 err = -ENOMEM;
978 ubi->peb_buf = vmalloc(ubi->peb_size);
979 if (!ubi->peb_buf)
980 goto out_free;
981
982 #ifdef CONFIG_MTD_UBI_FASTMAP
983 ubi->fm_size = ubi_calc_fm_size(ubi);
984 ubi->fm_buf = vzalloc(ubi->fm_size);
985 if (!ubi->fm_buf)
986 goto out_free;
987 #endif
988 err = ubi_attach(ubi, 0);
989 if (err) {
990 ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
991 goto out_free;
992 }
993
994 if (ubi->autoresize_vol_id != -1) {
995 err = autoresize(ubi, ubi->autoresize_vol_id);
996 if (err)
997 goto out_detach;
998 }
999
1000 /* Make device "available" before it becomes accessible via sysfs */
1001 ubi_devices[ubi_num] = ubi;
1002
1003 err = uif_init(ubi, &ref);
1004 if (err)
1005 goto out_detach;
1006
1007 err = ubi_debugfs_init_dev(ubi);
1008 if (err)
1009 goto out_uif;
1010
1011 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
1012 if (IS_ERR(ubi->bgt_thread)) {
1013 err = PTR_ERR(ubi->bgt_thread);
1014 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1015 err);
1016 goto out_debugfs;
1017 }
1018
1019 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1020 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1021 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1022 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1023 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1024 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1025 ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1026 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1027 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1028 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1029 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1030 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1031 ubi->vtbl_slots);
1032 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1033 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1034 ubi->image_seq);
1035 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1036 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1037
1038 /*
1039 * The below lock makes sure we do not race with 'ubi_thread()' which
1040 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1041 */
1042 spin_lock(&ubi->wl_lock);
1043 ubi->thread_enabled = 1;
1044 wake_up_process(ubi->bgt_thread);
1045 spin_unlock(&ubi->wl_lock);
1046
1047 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1048 return ubi_num;
1049
1050 out_debugfs:
1051 ubi_debugfs_exit_dev(ubi);
1052 out_uif:
1053 get_device(&ubi->dev);
1054 ubi_assert(ref);
1055 uif_close(ubi);
1056 out_detach:
1057 ubi_devices[ubi_num] = NULL;
1058 ubi_wl_close(ubi);
1059 ubi_free_internal_volumes(ubi);
1060 vfree(ubi->vtbl);
1061 out_free:
1062 vfree(ubi->peb_buf);
1063 vfree(ubi->fm_buf);
1064 if (ref)
1065 put_device(&ubi->dev);
1066 else
1067 kfree(ubi);
1068 return err;
1069 }
1070
1071 /**
1072 * ubi_detach_mtd_dev - detach an MTD device.
1073 * @ubi_num: UBI device number to detach from
1074 * @anyway: detach MTD even if device reference count is not zero
1075 *
1076 * This function destroys an UBI device number @ubi_num and detaches the
1077 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1078 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1079 * exist.
1080 *
1081 * Note, the invocations of this function has to be serialized by the
1082 * @ubi_devices_mutex.
1083 */
1084 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1085 {
1086 struct ubi_device *ubi;
1087
1088 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1089 return -EINVAL;
1090
1091 ubi = ubi_get_device(ubi_num);
1092 if (!ubi)
1093 return -EINVAL;
1094
1095 spin_lock(&ubi_devices_lock);
1096 put_device(&ubi->dev);
1097 ubi->ref_count -= 1;
1098 if (ubi->ref_count) {
1099 if (!anyway) {
1100 spin_unlock(&ubi_devices_lock);
1101 return -EBUSY;
1102 }
1103 /* This may only happen if there is a bug */
1104 ubi_err("%s reference count %d, destroy anyway",
1105 ubi->ubi_name, ubi->ref_count);
1106 }
1107 ubi_devices[ubi_num] = NULL;
1108 spin_unlock(&ubi_devices_lock);
1109
1110 ubi_assert(ubi_num == ubi->ubi_num);
1111 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1112 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1113 #ifdef CONFIG_MTD_UBI_FASTMAP
1114 /* If we don't write a new fastmap at detach time we lose all
1115 * EC updates that have been made since the last written fastmap. */
1116 ubi_update_fastmap(ubi);
1117 #endif
1118 /*
1119 * Before freeing anything, we have to stop the background thread to
1120 * prevent it from doing anything on this device while we are freeing.
1121 */
1122 if (ubi->bgt_thread)
1123 kthread_stop(ubi->bgt_thread);
1124
1125 /*
1126 * Get a reference to the device in order to prevent 'dev_release()'
1127 * from freeing the @ubi object.
1128 */
1129 get_device(&ubi->dev);
1130
1131 ubi_debugfs_exit_dev(ubi);
1132 uif_close(ubi);
1133
1134 ubi_wl_close(ubi);
1135 ubi_free_internal_volumes(ubi);
1136 vfree(ubi->vtbl);
1137 put_mtd_device(ubi->mtd);
1138 vfree(ubi->peb_buf);
1139 vfree(ubi->fm_buf);
1140 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1141 put_device(&ubi->dev);
1142 return 0;
1143 }
1144
1145 /**
1146 * open_mtd_by_chdev - open an MTD device by its character device node path.
1147 * @mtd_dev: MTD character device node path
1148 *
1149 * This helper function opens an MTD device by its character node device path.
1150 * Returns MTD device description object in case of success and a negative
1151 * error code in case of failure.
1152 */
1153 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1154 {
1155 int err, major, minor, mode;
1156 struct path path;
1157
1158 /* Probably this is an MTD character device node path */
1159 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1160 if (err)
1161 return ERR_PTR(err);
1162
1163 /* MTD device number is defined by the major / minor numbers */
1164 major = imajor(path.dentry->d_inode);
1165 minor = iminor(path.dentry->d_inode);
1166 mode = path.dentry->d_inode->i_mode;
1167 path_put(&path);
1168 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1169 return ERR_PTR(-EINVAL);
1170
1171 if (minor & 1)
1172 /*
1173 * Just do not think the "/dev/mtdrX" devices support is need,
1174 * so do not support them to avoid doing extra work.
1175 */
1176 return ERR_PTR(-EINVAL);
1177
1178 return get_mtd_device(NULL, minor / 2);
1179 }
1180
1181 /**
1182 * open_mtd_device - open MTD device by name, character device path, or number.
1183 * @mtd_dev: name, character device node path, or MTD device device number
1184 *
1185 * This function tries to open and MTD device described by @mtd_dev string,
1186 * which is first treated as ASCII MTD device number, and if it is not true, it
1187 * is treated as MTD device name, and if that is also not true, it is treated
1188 * as MTD character device node path. Returns MTD device description object in
1189 * case of success and a negative error code in case of failure.
1190 */
1191 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1192 {
1193 struct mtd_info *mtd;
1194 int mtd_num;
1195 char *endp;
1196
1197 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1198 if (*endp != '\0' || mtd_dev == endp) {
1199 /*
1200 * This does not look like an ASCII integer, probably this is
1201 * MTD device name.
1202 */
1203 mtd = get_mtd_device_nm(mtd_dev);
1204 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1205 /* Probably this is an MTD character device node path */
1206 mtd = open_mtd_by_chdev(mtd_dev);
1207 } else
1208 mtd = get_mtd_device(NULL, mtd_num);
1209
1210 return mtd;
1211 }
1212
1213 static int __init ubi_init(void)
1214 {
1215 int err, i, k;
1216
1217 /* Ensure that EC and VID headers have correct size */
1218 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1219 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1220
1221 if (mtd_devs > UBI_MAX_DEVICES) {
1222 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1223 return -EINVAL;
1224 }
1225
1226 /* Create base sysfs directory and sysfs files */
1227 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1228 if (IS_ERR(ubi_class)) {
1229 err = PTR_ERR(ubi_class);
1230 ubi_err("cannot create UBI class");
1231 goto out;
1232 }
1233
1234 err = class_create_file(ubi_class, &ubi_version);
1235 if (err) {
1236 ubi_err("cannot create sysfs file");
1237 goto out_class;
1238 }
1239
1240 err = misc_register(&ubi_ctrl_cdev);
1241 if (err) {
1242 ubi_err("cannot register device");
1243 goto out_version;
1244 }
1245
1246 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1247 sizeof(struct ubi_wl_entry),
1248 0, 0, NULL);
1249 if (!ubi_wl_entry_slab)
1250 goto out_dev_unreg;
1251
1252 err = ubi_debugfs_init();
1253 if (err)
1254 goto out_slab;
1255
1256
1257 /* Attach MTD devices */
1258 for (i = 0; i < mtd_devs; i++) {
1259 struct mtd_dev_param *p = &mtd_dev_param[i];
1260 struct mtd_info *mtd;
1261
1262 cond_resched();
1263
1264 mtd = open_mtd_device(p->name);
1265 if (IS_ERR(mtd)) {
1266 err = PTR_ERR(mtd);
1267 goto out_detach;
1268 }
1269
1270 mutex_lock(&ubi_devices_mutex);
1271 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1272 p->vid_hdr_offs, p->max_beb_per1024);
1273 mutex_unlock(&ubi_devices_mutex);
1274 if (err < 0) {
1275 ubi_err("cannot attach mtd%d", mtd->index);
1276 put_mtd_device(mtd);
1277
1278 /*
1279 * Originally UBI stopped initializing on any error.
1280 * However, later on it was found out that this
1281 * behavior is not very good when UBI is compiled into
1282 * the kernel and the MTD devices to attach are passed
1283 * through the command line. Indeed, UBI failure
1284 * stopped whole boot sequence.
1285 *
1286 * To fix this, we changed the behavior for the
1287 * non-module case, but preserved the old behavior for
1288 * the module case, just for compatibility. This is a
1289 * little inconsistent, though.
1290 */
1291 if (ubi_is_module())
1292 goto out_detach;
1293 }
1294 }
1295
1296 return 0;
1297
1298 out_detach:
1299 for (k = 0; k < i; k++)
1300 if (ubi_devices[k]) {
1301 mutex_lock(&ubi_devices_mutex);
1302 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1303 mutex_unlock(&ubi_devices_mutex);
1304 }
1305 ubi_debugfs_exit();
1306 out_slab:
1307 kmem_cache_destroy(ubi_wl_entry_slab);
1308 out_dev_unreg:
1309 misc_deregister(&ubi_ctrl_cdev);
1310 out_version:
1311 class_remove_file(ubi_class, &ubi_version);
1312 out_class:
1313 class_destroy(ubi_class);
1314 out:
1315 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1316 return err;
1317 }
1318 late_initcall(ubi_init);
1319
1320 static void __exit ubi_exit(void)
1321 {
1322 int i;
1323
1324 for (i = 0; i < UBI_MAX_DEVICES; i++)
1325 if (ubi_devices[i]) {
1326 mutex_lock(&ubi_devices_mutex);
1327 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1328 mutex_unlock(&ubi_devices_mutex);
1329 }
1330 ubi_debugfs_exit();
1331 kmem_cache_destroy(ubi_wl_entry_slab);
1332 misc_deregister(&ubi_ctrl_cdev);
1333 class_remove_file(ubi_class, &ubi_version);
1334 class_destroy(ubi_class);
1335 }
1336 module_exit(ubi_exit);
1337
1338 /**
1339 * bytes_str_to_int - convert a number of bytes string into an integer.
1340 * @str: the string to convert
1341 *
1342 * This function returns positive resulting integer in case of success and a
1343 * negative error code in case of failure.
1344 */
1345 static int __init bytes_str_to_int(const char *str)
1346 {
1347 char *endp;
1348 unsigned long result;
1349
1350 result = simple_strtoul(str, &endp, 0);
1351 if (str == endp || result >= INT_MAX) {
1352 ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1353 return -EINVAL;
1354 }
1355
1356 switch (*endp) {
1357 case 'G':
1358 result *= 1024;
1359 case 'M':
1360 result *= 1024;
1361 case 'K':
1362 result *= 1024;
1363 if (endp[1] == 'i' && endp[2] == 'B')
1364 endp += 2;
1365 case '\0':
1366 break;
1367 default:
1368 ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1369 return -EINVAL;
1370 }
1371
1372 return result;
1373 }
1374
1375 /**
1376 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1377 * @val: the parameter value to parse
1378 * @kp: not used
1379 *
1380 * This function returns zero in case of success and a negative error code in
1381 * case of error.
1382 */
1383 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1384 {
1385 int i, len;
1386 struct mtd_dev_param *p;
1387 char buf[MTD_PARAM_LEN_MAX];
1388 char *pbuf = &buf[0];
1389 char *tokens[MTD_PARAM_MAX_COUNT];
1390
1391 if (!val)
1392 return -EINVAL;
1393
1394 if (mtd_devs == UBI_MAX_DEVICES) {
1395 ubi_err("UBI error: too many parameters, max. is %d\n",
1396 UBI_MAX_DEVICES);
1397 return -EINVAL;
1398 }
1399
1400 len = strnlen(val, MTD_PARAM_LEN_MAX);
1401 if (len == MTD_PARAM_LEN_MAX) {
1402 ubi_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1403 val, MTD_PARAM_LEN_MAX);
1404 return -EINVAL;
1405 }
1406
1407 if (len == 0) {
1408 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1409 return 0;
1410 }
1411
1412 strcpy(buf, val);
1413
1414 /* Get rid of the final newline */
1415 if (buf[len - 1] == '\n')
1416 buf[len - 1] = '\0';
1417
1418 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1419 tokens[i] = strsep(&pbuf, ",");
1420
1421 if (pbuf) {
1422 ubi_err("UBI error: too many arguments at \"%s\"\n", val);
1423 return -EINVAL;
1424 }
1425
1426 p = &mtd_dev_param[mtd_devs];
1427 strcpy(&p->name[0], tokens[0]);
1428
1429 if (tokens[1])
1430 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1431
1432 if (p->vid_hdr_offs < 0)
1433 return p->vid_hdr_offs;
1434
1435 if (tokens[2]) {
1436 int err = kstrtoint(tokens[2], 10, &p->max_beb_per1024);
1437
1438 if (err) {
1439 ubi_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1440 tokens[2]);
1441 return -EINVAL;
1442 }
1443 }
1444
1445 mtd_devs += 1;
1446 return 0;
1447 }
1448
1449 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1450 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024]].\n"
1451 "Multiple \"mtd\" parameters may be specified.\n"
1452 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1453 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1454 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1455 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1456 "\n"
1457 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1458 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1459 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1460 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1461 #ifdef CONFIG_MTD_UBI_FASTMAP
1462 module_param(fm_autoconvert, bool, 0644);
1463 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1464 #endif
1465 MODULE_VERSION(__stringify(UBI_VERSION));
1466 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1467 MODULE_AUTHOR("Artem Bityutskiy");
1468 MODULE_LICENSE("GPL");