include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / fsl_upm.c
1 /*
2 * Freescale UPM NAND driver.
3 *
4 * Copyright © 2007-2008 MontaVista Software, Inc.
5 *
6 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_platform.h>
22 #include <linux/of_gpio.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <asm/fsl_lbc.h>
26
27 #define FSL_UPM_WAIT_RUN_PATTERN 0x1
28 #define FSL_UPM_WAIT_WRITE_BYTE 0x2
29 #define FSL_UPM_WAIT_WRITE_BUFFER 0x4
30
31 struct fsl_upm_nand {
32 struct device *dev;
33 struct mtd_info mtd;
34 struct nand_chip chip;
35 int last_ctrl;
36 #ifdef CONFIG_MTD_PARTITIONS
37 struct mtd_partition *parts;
38 #endif
39
40 struct fsl_upm upm;
41 uint8_t upm_addr_offset;
42 uint8_t upm_cmd_offset;
43 void __iomem *io_base;
44 int rnb_gpio[NAND_MAX_CHIPS];
45 uint32_t mchip_offsets[NAND_MAX_CHIPS];
46 uint32_t mchip_count;
47 uint32_t mchip_number;
48 int chip_delay;
49 uint32_t wait_flags;
50 };
51
52 #define to_fsl_upm_nand(mtd) container_of(mtd, struct fsl_upm_nand, mtd)
53
54 static int fun_chip_ready(struct mtd_info *mtd)
55 {
56 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
57
58 if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
59 return 1;
60
61 dev_vdbg(fun->dev, "busy\n");
62 return 0;
63 }
64
65 static void fun_wait_rnb(struct fsl_upm_nand *fun)
66 {
67 if (fun->rnb_gpio[fun->mchip_number] >= 0) {
68 int cnt = 1000000;
69
70 while (--cnt && !fun_chip_ready(&fun->mtd))
71 cpu_relax();
72 if (!cnt)
73 dev_err(fun->dev, "tired waiting for RNB\n");
74 } else {
75 ndelay(100);
76 }
77 }
78
79 static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
80 {
81 struct nand_chip *chip = mtd->priv;
82 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
83 u32 mar;
84
85 if (!(ctrl & fun->last_ctrl)) {
86 fsl_upm_end_pattern(&fun->upm);
87
88 if (cmd == NAND_CMD_NONE)
89 return;
90
91 fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
92 }
93
94 if (ctrl & NAND_CTRL_CHANGE) {
95 if (ctrl & NAND_ALE)
96 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
97 else if (ctrl & NAND_CLE)
98 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
99 }
100
101 mar = (cmd << (32 - fun->upm.width)) |
102 fun->mchip_offsets[fun->mchip_number];
103 fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
104
105 if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
106 fun_wait_rnb(fun);
107 }
108
109 static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
110 {
111 struct nand_chip *chip = mtd->priv;
112 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
113
114 if (mchip_nr == -1) {
115 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
116 } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
117 fun->mchip_number = mchip_nr;
118 chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
119 chip->IO_ADDR_W = chip->IO_ADDR_R;
120 } else {
121 BUG();
122 }
123 }
124
125 static uint8_t fun_read_byte(struct mtd_info *mtd)
126 {
127 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
128
129 return in_8(fun->chip.IO_ADDR_R);
130 }
131
132 static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
133 {
134 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
135 int i;
136
137 for (i = 0; i < len; i++)
138 buf[i] = in_8(fun->chip.IO_ADDR_R);
139 }
140
141 static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
142 {
143 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
144 int i;
145
146 for (i = 0; i < len; i++) {
147 out_8(fun->chip.IO_ADDR_W, buf[i]);
148 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
149 fun_wait_rnb(fun);
150 }
151 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
152 fun_wait_rnb(fun);
153 }
154
155 static int __devinit fun_chip_init(struct fsl_upm_nand *fun,
156 const struct device_node *upm_np,
157 const struct resource *io_res)
158 {
159 int ret;
160 struct device_node *flash_np;
161 #ifdef CONFIG_MTD_PARTITIONS
162 static const char *part_types[] = { "cmdlinepart", NULL, };
163 #endif
164
165 fun->chip.IO_ADDR_R = fun->io_base;
166 fun->chip.IO_ADDR_W = fun->io_base;
167 fun->chip.cmd_ctrl = fun_cmd_ctrl;
168 fun->chip.chip_delay = fun->chip_delay;
169 fun->chip.read_byte = fun_read_byte;
170 fun->chip.read_buf = fun_read_buf;
171 fun->chip.write_buf = fun_write_buf;
172 fun->chip.ecc.mode = NAND_ECC_SOFT;
173 if (fun->mchip_count > 1)
174 fun->chip.select_chip = fun_select_chip;
175
176 if (fun->rnb_gpio[0] >= 0)
177 fun->chip.dev_ready = fun_chip_ready;
178
179 fun->mtd.priv = &fun->chip;
180 fun->mtd.owner = THIS_MODULE;
181
182 flash_np = of_get_next_child(upm_np, NULL);
183 if (!flash_np)
184 return -ENODEV;
185
186 fun->mtd.name = kasprintf(GFP_KERNEL, "%x.%s", io_res->start,
187 flash_np->name);
188 if (!fun->mtd.name) {
189 ret = -ENOMEM;
190 goto err;
191 }
192
193 ret = nand_scan(&fun->mtd, fun->mchip_count);
194 if (ret)
195 goto err;
196
197 #ifdef CONFIG_MTD_PARTITIONS
198 ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0);
199
200 #ifdef CONFIG_MTD_OF_PARTS
201 if (ret == 0) {
202 ret = of_mtd_parse_partitions(fun->dev, flash_np, &fun->parts);
203 if (ret < 0)
204 goto err;
205 }
206 #endif
207 if (ret > 0)
208 ret = add_mtd_partitions(&fun->mtd, fun->parts, ret);
209 else
210 #endif
211 ret = add_mtd_device(&fun->mtd);
212 err:
213 of_node_put(flash_np);
214 return ret;
215 }
216
217 static int __devinit fun_probe(struct of_device *ofdev,
218 const struct of_device_id *ofid)
219 {
220 struct fsl_upm_nand *fun;
221 struct resource io_res;
222 const uint32_t *prop;
223 int rnb_gpio;
224 int ret;
225 int size;
226 int i;
227
228 fun = kzalloc(sizeof(*fun), GFP_KERNEL);
229 if (!fun)
230 return -ENOMEM;
231
232 ret = of_address_to_resource(ofdev->node, 0, &io_res);
233 if (ret) {
234 dev_err(&ofdev->dev, "can't get IO base\n");
235 goto err1;
236 }
237
238 ret = fsl_upm_find(io_res.start, &fun->upm);
239 if (ret) {
240 dev_err(&ofdev->dev, "can't find UPM\n");
241 goto err1;
242 }
243
244 prop = of_get_property(ofdev->node, "fsl,upm-addr-offset", &size);
245 if (!prop || size != sizeof(uint32_t)) {
246 dev_err(&ofdev->dev, "can't get UPM address offset\n");
247 ret = -EINVAL;
248 goto err1;
249 }
250 fun->upm_addr_offset = *prop;
251
252 prop = of_get_property(ofdev->node, "fsl,upm-cmd-offset", &size);
253 if (!prop || size != sizeof(uint32_t)) {
254 dev_err(&ofdev->dev, "can't get UPM command offset\n");
255 ret = -EINVAL;
256 goto err1;
257 }
258 fun->upm_cmd_offset = *prop;
259
260 prop = of_get_property(ofdev->node,
261 "fsl,upm-addr-line-cs-offsets", &size);
262 if (prop && (size / sizeof(uint32_t)) > 0) {
263 fun->mchip_count = size / sizeof(uint32_t);
264 if (fun->mchip_count >= NAND_MAX_CHIPS) {
265 dev_err(&ofdev->dev, "too much multiple chips\n");
266 goto err1;
267 }
268 for (i = 0; i < fun->mchip_count; i++)
269 fun->mchip_offsets[i] = prop[i];
270 } else {
271 fun->mchip_count = 1;
272 }
273
274 for (i = 0; i < fun->mchip_count; i++) {
275 fun->rnb_gpio[i] = -1;
276 rnb_gpio = of_get_gpio(ofdev->node, i);
277 if (rnb_gpio >= 0) {
278 ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
279 if (ret) {
280 dev_err(&ofdev->dev,
281 "can't request RNB gpio #%d\n", i);
282 goto err2;
283 }
284 gpio_direction_input(rnb_gpio);
285 fun->rnb_gpio[i] = rnb_gpio;
286 } else if (rnb_gpio == -EINVAL) {
287 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
288 goto err2;
289 }
290 }
291
292 prop = of_get_property(ofdev->node, "chip-delay", NULL);
293 if (prop)
294 fun->chip_delay = *prop;
295 else
296 fun->chip_delay = 50;
297
298 prop = of_get_property(ofdev->node, "fsl,upm-wait-flags", &size);
299 if (prop && size == sizeof(uint32_t))
300 fun->wait_flags = *prop;
301 else
302 fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
303 FSL_UPM_WAIT_WRITE_BYTE;
304
305 fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
306 io_res.end - io_res.start + 1);
307 if (!fun->io_base) {
308 ret = -ENOMEM;
309 goto err2;
310 }
311
312 fun->dev = &ofdev->dev;
313 fun->last_ctrl = NAND_CLE;
314
315 ret = fun_chip_init(fun, ofdev->node, &io_res);
316 if (ret)
317 goto err2;
318
319 dev_set_drvdata(&ofdev->dev, fun);
320
321 return 0;
322 err2:
323 for (i = 0; i < fun->mchip_count; i++) {
324 if (fun->rnb_gpio[i] < 0)
325 break;
326 gpio_free(fun->rnb_gpio[i]);
327 }
328 err1:
329 kfree(fun);
330
331 return ret;
332 }
333
334 static int __devexit fun_remove(struct of_device *ofdev)
335 {
336 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
337 int i;
338
339 nand_release(&fun->mtd);
340 kfree(fun->mtd.name);
341
342 for (i = 0; i < fun->mchip_count; i++) {
343 if (fun->rnb_gpio[i] < 0)
344 break;
345 gpio_free(fun->rnb_gpio[i]);
346 }
347
348 kfree(fun);
349
350 return 0;
351 }
352
353 static struct of_device_id of_fun_match[] = {
354 { .compatible = "fsl,upm-nand" },
355 {},
356 };
357 MODULE_DEVICE_TABLE(of, of_fun_match);
358
359 static struct of_platform_driver of_fun_driver = {
360 .name = "fsl,upm-nand",
361 .match_table = of_fun_match,
362 .probe = fun_probe,
363 .remove = __devexit_p(fun_remove),
364 };
365
366 static int __init fun_module_init(void)
367 {
368 return of_register_platform_driver(&of_fun_driver);
369 }
370 module_init(fun_module_init);
371
372 static void __exit fun_module_exit(void)
373 {
374 of_unregister_platform_driver(&of_fun_driver);
375 }
376 module_exit(fun_module_exit);
377
378 MODULE_LICENSE("GPL");
379 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
380 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
381 "LocalBus User-Programmable Machine");