Merge branch 'master' of ../mine
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / denali.c
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/module.h>
28
29 #include "denali.h"
30
31 MODULE_LICENSE("GPL");
32
33 /* We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
35 */
36 #define NAND_DEFAULT_TIMINGS -1
37
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
42
43 #define DENALI_NAND_NAME "denali-nand"
44
45 /* We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience. */
47 #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
48 INTR_STATUS0__ECC_TRANSACTION_DONE | \
49 INTR_STATUS0__ECC_ERR | \
50 INTR_STATUS0__PROGRAM_FAIL | \
51 INTR_STATUS0__LOAD_COMP | \
52 INTR_STATUS0__PROGRAM_COMP | \
53 INTR_STATUS0__TIME_OUT | \
54 INTR_STATUS0__ERASE_FAIL | \
55 INTR_STATUS0__RST_COMP | \
56 INTR_STATUS0__ERASE_COMP)
57
58 /* indicates whether or not the internal value for the flash bank is
59 * valid or not */
60 #define CHIP_SELECT_INVALID -1
61
62 #define SUPPORT_8BITECC 1
63
64 /* This macro divides two integers and rounds fractional values up
65 * to the nearest integer value. */
66 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67
68 /* this macro allows us to convert from an MTD structure to our own
69 * device context (denali) structure.
70 */
71 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72
73 /* These constants are defined by the driver to enable common driver
74 * configuration options. */
75 #define SPARE_ACCESS 0x41
76 #define MAIN_ACCESS 0x42
77 #define MAIN_SPARE_ACCESS 0x43
78
79 #define DENALI_READ 0
80 #define DENALI_WRITE 0x100
81
82 /* types of device accesses. We can issue commands and get status */
83 #define COMMAND_CYCLE 0
84 #define ADDR_CYCLE 1
85 #define STATUS_CYCLE 2
86
87 /* this is a helper macro that allows us to
88 * format the bank into the proper bits for the controller */
89 #define BANK(x) ((x) << 24)
90
91 /* List of platforms this NAND controller has be integrated into */
92 static const struct pci_device_id denali_pci_ids[] = {
93 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
94 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
95 { /* end: all zeroes */ }
96 };
97
98
99 /* these are static lookup tables that give us easy access to
100 * registers in the NAND controller.
101 */
102 static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
103 INTR_STATUS1,
104 INTR_STATUS2,
105 INTR_STATUS3};
106
107 static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
108 DEVICE_RESET__BANK1,
109 DEVICE_RESET__BANK2,
110 DEVICE_RESET__BANK3};
111
112 static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
113 INTR_STATUS1__TIME_OUT,
114 INTR_STATUS2__TIME_OUT,
115 INTR_STATUS3__TIME_OUT};
116
117 static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
118 INTR_STATUS1__RST_COMP,
119 INTR_STATUS2__RST_COMP,
120 INTR_STATUS3__RST_COMP};
121
122 /* forward declarations */
123 static void clear_interrupts(struct denali_nand_info *denali);
124 static uint32_t wait_for_irq(struct denali_nand_info *denali,
125 uint32_t irq_mask);
126 static void denali_irq_enable(struct denali_nand_info *denali,
127 uint32_t int_mask);
128 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
129
130 /* Certain operations for the denali NAND controller use
131 * an indexed mode to read/write data. The operation is
132 * performed by writing the address value of the command
133 * to the device memory followed by the data. This function
134 * abstracts this common operation.
135 */
136 static void index_addr(struct denali_nand_info *denali,
137 uint32_t address, uint32_t data)
138 {
139 iowrite32(address, denali->flash_mem);
140 iowrite32(data, denali->flash_mem + 0x10);
141 }
142
143 /* Perform an indexed read of the device */
144 static void index_addr_read_data(struct denali_nand_info *denali,
145 uint32_t address, uint32_t *pdata)
146 {
147 iowrite32(address, denali->flash_mem);
148 *pdata = ioread32(denali->flash_mem + 0x10);
149 }
150
151 /* We need to buffer some data for some of the NAND core routines.
152 * The operations manage buffering that data. */
153 static void reset_buf(struct denali_nand_info *denali)
154 {
155 denali->buf.head = denali->buf.tail = 0;
156 }
157
158 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
159 {
160 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
161 denali->buf.buf[denali->buf.tail++] = byte;
162 }
163
164 /* reads the status of the device */
165 static void read_status(struct denali_nand_info *denali)
166 {
167 uint32_t cmd = 0x0;
168
169 /* initialize the data buffer to store status */
170 reset_buf(denali);
171
172 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
173 if (cmd)
174 write_byte_to_buf(denali, NAND_STATUS_WP);
175 else
176 write_byte_to_buf(denali, 0);
177 }
178
179 /* resets a specific device connected to the core */
180 static void reset_bank(struct denali_nand_info *denali)
181 {
182 uint32_t irq_status = 0;
183 uint32_t irq_mask = reset_complete[denali->flash_bank] |
184 operation_timeout[denali->flash_bank];
185 int bank = 0;
186
187 clear_interrupts(denali);
188
189 bank = device_reset_banks[denali->flash_bank];
190 iowrite32(bank, denali->flash_reg + DEVICE_RESET);
191
192 irq_status = wait_for_irq(denali, irq_mask);
193
194 if (irq_status & operation_timeout[denali->flash_bank])
195 dev_err(&denali->dev->dev, "reset bank failed.\n");
196 }
197
198 /* Reset the flash controller */
199 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
200 {
201 uint32_t i;
202
203 dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
204 __FILE__, __LINE__, __func__);
205
206 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
207 iowrite32(reset_complete[i] | operation_timeout[i],
208 denali->flash_reg + intr_status_addresses[i]);
209
210 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
211 iowrite32(device_reset_banks[i],
212 denali->flash_reg + DEVICE_RESET);
213 while (!(ioread32(denali->flash_reg +
214 intr_status_addresses[i]) &
215 (reset_complete[i] | operation_timeout[i])))
216 cpu_relax();
217 if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
218 operation_timeout[i])
219 dev_dbg(&denali->dev->dev,
220 "NAND Reset operation timed out on bank %d\n", i);
221 }
222
223 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
224 iowrite32(reset_complete[i] | operation_timeout[i],
225 denali->flash_reg + intr_status_addresses[i]);
226
227 return PASS;
228 }
229
230 /* this routine calculates the ONFI timing values for a given mode and
231 * programs the clocking register accordingly. The mode is determined by
232 * the get_onfi_nand_para routine.
233 */
234 static void nand_onfi_timing_set(struct denali_nand_info *denali,
235 uint16_t mode)
236 {
237 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
238 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
239 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
240 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
241 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
242 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
243 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
244 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
245 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
246 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
247 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
248 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
249
250 uint16_t TclsRising = 1;
251 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
252 uint16_t dv_window = 0;
253 uint16_t en_lo, en_hi;
254 uint16_t acc_clks;
255 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
256
257 dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
258 __FILE__, __LINE__, __func__);
259
260 en_lo = CEIL_DIV(Trp[mode], CLK_X);
261 en_hi = CEIL_DIV(Treh[mode], CLK_X);
262 #if ONFI_BLOOM_TIME
263 if ((en_hi * CLK_X) < (Treh[mode] + 2))
264 en_hi++;
265 #endif
266
267 if ((en_lo + en_hi) * CLK_X < Trc[mode])
268 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
269
270 if ((en_lo + en_hi) < CLK_MULTI)
271 en_lo += CLK_MULTI - en_lo - en_hi;
272
273 while (dv_window < 8) {
274 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
275
276 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
277
278 data_invalid =
279 data_invalid_rhoh <
280 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
281
282 dv_window = data_invalid - Trea[mode];
283
284 if (dv_window < 8)
285 en_lo++;
286 }
287
288 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
289
290 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
291 acc_clks++;
292
293 if ((data_invalid - acc_clks * CLK_X) < 2)
294 dev_warn(&denali->dev->dev, "%s, Line %d: Warning!\n",
295 __FILE__, __LINE__);
296
297 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
298 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
299 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
300 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
301 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
302 if (!TclsRising)
303 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
304 if (cs_cnt == 0)
305 cs_cnt = 1;
306
307 if (Tcea[mode]) {
308 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
309 cs_cnt++;
310 }
311
312 #if MODE5_WORKAROUND
313 if (mode == 5)
314 acc_clks = 5;
315 #endif
316
317 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
318 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
319 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
320 acc_clks = 6;
321
322 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
323 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
324 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
325 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
326 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
327 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
328 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
329 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
330 }
331
332 /* queries the NAND device to see what ONFI modes it supports. */
333 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
334 {
335 int i;
336 /* we needn't to do a reset here because driver has already
337 * reset all the banks before
338 * */
339 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
340 ONFI_TIMING_MODE__VALUE))
341 return FAIL;
342
343 for (i = 5; i > 0; i--) {
344 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
345 (0x01 << i))
346 break;
347 }
348
349 nand_onfi_timing_set(denali, i);
350
351 /* By now, all the ONFI devices we know support the page cache */
352 /* rw feature. So here we enable the pipeline_rw_ahead feature */
353 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
354 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
355
356 return PASS;
357 }
358
359 static void get_samsung_nand_para(struct denali_nand_info *denali,
360 uint8_t device_id)
361 {
362 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
363 /* Set timing register values according to datasheet */
364 iowrite32(5, denali->flash_reg + ACC_CLKS);
365 iowrite32(20, denali->flash_reg + RE_2_WE);
366 iowrite32(12, denali->flash_reg + WE_2_RE);
367 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
368 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
369 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
370 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
371 }
372 }
373
374 static void get_toshiba_nand_para(struct denali_nand_info *denali)
375 {
376 uint32_t tmp;
377
378 /* Workaround to fix a controller bug which reports a wrong */
379 /* spare area size for some kind of Toshiba NAND device */
380 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
381 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
382 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
383 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
384 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
385 iowrite32(tmp,
386 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
387 #if SUPPORT_15BITECC
388 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
389 #elif SUPPORT_8BITECC
390 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
391 #endif
392 }
393 }
394
395 static void get_hynix_nand_para(struct denali_nand_info *denali,
396 uint8_t device_id)
397 {
398 uint32_t main_size, spare_size;
399
400 switch (device_id) {
401 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
402 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
403 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
404 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
405 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
406 main_size = 4096 *
407 ioread32(denali->flash_reg + DEVICES_CONNECTED);
408 spare_size = 224 *
409 ioread32(denali->flash_reg + DEVICES_CONNECTED);
410 iowrite32(main_size,
411 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
412 iowrite32(spare_size,
413 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
414 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
415 #if SUPPORT_15BITECC
416 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
417 #elif SUPPORT_8BITECC
418 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
419 #endif
420 break;
421 default:
422 dev_warn(&denali->dev->dev,
423 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
424 "Will use default parameter values instead.\n",
425 device_id);
426 }
427 }
428
429 /* determines how many NAND chips are connected to the controller. Note for
430 * Intel CE4100 devices we don't support more than one device.
431 */
432 static void find_valid_banks(struct denali_nand_info *denali)
433 {
434 uint32_t id[LLD_MAX_FLASH_BANKS];
435 int i;
436
437 denali->total_used_banks = 1;
438 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
439 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
440 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
441 index_addr_read_data(denali,
442 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
443
444 dev_dbg(&denali->dev->dev,
445 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
446
447 if (i == 0) {
448 if (!(id[i] & 0x0ff))
449 break; /* WTF? */
450 } else {
451 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
452 denali->total_used_banks++;
453 else
454 break;
455 }
456 }
457
458 if (denali->platform == INTEL_CE4100) {
459 /* Platform limitations of the CE4100 device limit
460 * users to a single chip solution for NAND.
461 * Multichip support is not enabled.
462 */
463 if (denali->total_used_banks != 1) {
464 dev_err(&denali->dev->dev,
465 "Sorry, Intel CE4100 only supports "
466 "a single NAND device.\n");
467 BUG();
468 }
469 }
470 dev_dbg(&denali->dev->dev,
471 "denali->total_used_banks: %d\n", denali->total_used_banks);
472 }
473
474 static void detect_partition_feature(struct denali_nand_info *denali)
475 {
476 /* For MRST platform, denali->fwblks represent the
477 * number of blocks firmware is taken,
478 * FW is in protect partition and MTD driver has no
479 * permission to access it. So let driver know how many
480 * blocks it can't touch.
481 * */
482 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
483 if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
484 PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
485 denali->fwblks =
486 ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
487 MIN_MAX_BANK_1__MIN_VALUE) *
488 denali->blksperchip)
489 +
490 (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
491 MIN_BLK_ADDR_1__VALUE);
492 } else
493 denali->fwblks = SPECTRA_START_BLOCK;
494 } else
495 denali->fwblks = SPECTRA_START_BLOCK;
496 }
497
498 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
499 {
500 uint16_t status = PASS;
501 uint32_t id_bytes[5], addr;
502 uint8_t i, maf_id, device_id;
503
504 dev_dbg(&denali->dev->dev,
505 "%s, Line %d, Function: %s\n",
506 __FILE__, __LINE__, __func__);
507
508 /* Use read id method to get device ID and other
509 * params. For some NAND chips, controller can't
510 * report the correct device ID by reading from
511 * DEVICE_ID register
512 * */
513 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
514 index_addr(denali, (uint32_t)addr | 0, 0x90);
515 index_addr(denali, (uint32_t)addr | 1, 0);
516 for (i = 0; i < 5; i++)
517 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
518 maf_id = id_bytes[0];
519 device_id = id_bytes[1];
520
521 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
522 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
523 if (FAIL == get_onfi_nand_para(denali))
524 return FAIL;
525 } else if (maf_id == 0xEC) { /* Samsung NAND */
526 get_samsung_nand_para(denali, device_id);
527 } else if (maf_id == 0x98) { /* Toshiba NAND */
528 get_toshiba_nand_para(denali);
529 } else if (maf_id == 0xAD) { /* Hynix NAND */
530 get_hynix_nand_para(denali, device_id);
531 }
532
533 dev_info(&denali->dev->dev,
534 "Dump timing register values:"
535 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
536 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
537 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
538 ioread32(denali->flash_reg + ACC_CLKS),
539 ioread32(denali->flash_reg + RE_2_WE),
540 ioread32(denali->flash_reg + RE_2_RE),
541 ioread32(denali->flash_reg + WE_2_RE),
542 ioread32(denali->flash_reg + ADDR_2_DATA),
543 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
544 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
545 ioread32(denali->flash_reg + CS_SETUP_CNT));
546
547 find_valid_banks(denali);
548
549 detect_partition_feature(denali);
550
551 /* If the user specified to override the default timings
552 * with a specific ONFI mode, we apply those changes here.
553 */
554 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
555 nand_onfi_timing_set(denali, onfi_timing_mode);
556
557 return status;
558 }
559
560 static void denali_set_intr_modes(struct denali_nand_info *denali,
561 uint16_t INT_ENABLE)
562 {
563 dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
564 __FILE__, __LINE__, __func__);
565
566 if (INT_ENABLE)
567 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
568 else
569 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
570 }
571
572 /* validation function to verify that the controlling software is making
573 * a valid request
574 */
575 static inline bool is_flash_bank_valid(int flash_bank)
576 {
577 return (flash_bank >= 0 && flash_bank < 4);
578 }
579
580 static void denali_irq_init(struct denali_nand_info *denali)
581 {
582 uint32_t int_mask = 0;
583
584 /* Disable global interrupts */
585 denali_set_intr_modes(denali, false);
586
587 int_mask = DENALI_IRQ_ALL;
588
589 /* Clear all status bits */
590 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
591 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
592 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
593 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
594
595 denali_irq_enable(denali, int_mask);
596 }
597
598 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
599 {
600 denali_set_intr_modes(denali, false);
601 free_irq(irqnum, denali);
602 }
603
604 static void denali_irq_enable(struct denali_nand_info *denali,
605 uint32_t int_mask)
606 {
607 iowrite32(int_mask, denali->flash_reg + INTR_EN0);
608 iowrite32(int_mask, denali->flash_reg + INTR_EN1);
609 iowrite32(int_mask, denali->flash_reg + INTR_EN2);
610 iowrite32(int_mask, denali->flash_reg + INTR_EN3);
611 }
612
613 /* This function only returns when an interrupt that this driver cares about
614 * occurs. This is to reduce the overhead of servicing interrupts
615 */
616 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
617 {
618 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
619 }
620
621 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
622 static inline void clear_interrupt(struct denali_nand_info *denali,
623 uint32_t irq_mask)
624 {
625 uint32_t intr_status_reg = 0;
626
627 intr_status_reg = intr_status_addresses[denali->flash_bank];
628
629 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
630 }
631
632 static void clear_interrupts(struct denali_nand_info *denali)
633 {
634 uint32_t status = 0x0;
635 spin_lock_irq(&denali->irq_lock);
636
637 status = read_interrupt_status(denali);
638 clear_interrupt(denali, status);
639
640 denali->irq_status = 0x0;
641 spin_unlock_irq(&denali->irq_lock);
642 }
643
644 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
645 {
646 uint32_t intr_status_reg = 0;
647
648 intr_status_reg = intr_status_addresses[denali->flash_bank];
649
650 return ioread32(denali->flash_reg + intr_status_reg);
651 }
652
653 /* This is the interrupt service routine. It handles all interrupts
654 * sent to this device. Note that on CE4100, this is a shared
655 * interrupt.
656 */
657 static irqreturn_t denali_isr(int irq, void *dev_id)
658 {
659 struct denali_nand_info *denali = dev_id;
660 uint32_t irq_status = 0x0;
661 irqreturn_t result = IRQ_NONE;
662
663 spin_lock(&denali->irq_lock);
664
665 /* check to see if a valid NAND chip has
666 * been selected.
667 */
668 if (is_flash_bank_valid(denali->flash_bank)) {
669 /* check to see if controller generated
670 * the interrupt, since this is a shared interrupt */
671 irq_status = denali_irq_detected(denali);
672 if (irq_status != 0) {
673 /* handle interrupt */
674 /* first acknowledge it */
675 clear_interrupt(denali, irq_status);
676 /* store the status in the device context for someone
677 to read */
678 denali->irq_status |= irq_status;
679 /* notify anyone who cares that it happened */
680 complete(&denali->complete);
681 /* tell the OS that we've handled this */
682 result = IRQ_HANDLED;
683 }
684 }
685 spin_unlock(&denali->irq_lock);
686 return result;
687 }
688 #define BANK(x) ((x) << 24)
689
690 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
691 {
692 unsigned long comp_res = 0;
693 uint32_t intr_status = 0;
694 bool retry = false;
695 unsigned long timeout = msecs_to_jiffies(1000);
696
697 do {
698 comp_res =
699 wait_for_completion_timeout(&denali->complete, timeout);
700 spin_lock_irq(&denali->irq_lock);
701 intr_status = denali->irq_status;
702
703 if (intr_status & irq_mask) {
704 denali->irq_status &= ~irq_mask;
705 spin_unlock_irq(&denali->irq_lock);
706 /* our interrupt was detected */
707 break;
708 } else {
709 /* these are not the interrupts you are looking for -
710 * need to wait again */
711 spin_unlock_irq(&denali->irq_lock);
712 retry = true;
713 }
714 } while (comp_res != 0);
715
716 if (comp_res == 0) {
717 /* timeout */
718 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
719 intr_status, irq_mask);
720
721 intr_status = 0;
722 }
723 return intr_status;
724 }
725
726 /* This helper function setups the registers for ECC and whether or not
727 * the spare area will be transfered. */
728 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
729 bool transfer_spare)
730 {
731 int ecc_en_flag = 0, transfer_spare_flag = 0;
732
733 /* set ECC, transfer spare bits if needed */
734 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
735 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
736
737 /* Enable spare area/ECC per user's request. */
738 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
739 iowrite32(transfer_spare_flag,
740 denali->flash_reg + TRANSFER_SPARE_REG);
741 }
742
743 /* sends a pipeline command operation to the controller. See the Denali NAND
744 * controller's user guide for more information (section 4.2.3.6).
745 */
746 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
747 bool ecc_en,
748 bool transfer_spare,
749 int access_type,
750 int op)
751 {
752 int status = PASS;
753 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
754 irq_mask = 0;
755
756 if (op == DENALI_READ)
757 irq_mask = INTR_STATUS0__LOAD_COMP;
758 else if (op == DENALI_WRITE)
759 irq_mask = 0;
760 else
761 BUG();
762
763 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
764
765 /* clear interrupts */
766 clear_interrupts(denali);
767
768 addr = BANK(denali->flash_bank) | denali->page;
769
770 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
771 cmd = MODE_01 | addr;
772 iowrite32(cmd, denali->flash_mem);
773 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
774 /* read spare area */
775 cmd = MODE_10 | addr;
776 index_addr(denali, (uint32_t)cmd, access_type);
777
778 cmd = MODE_01 | addr;
779 iowrite32(cmd, denali->flash_mem);
780 } else if (op == DENALI_READ) {
781 /* setup page read request for access type */
782 cmd = MODE_10 | addr;
783 index_addr(denali, (uint32_t)cmd, access_type);
784
785 /* page 33 of the NAND controller spec indicates we should not
786 use the pipeline commands in Spare area only mode. So we
787 don't.
788 */
789 if (access_type == SPARE_ACCESS) {
790 cmd = MODE_01 | addr;
791 iowrite32(cmd, denali->flash_mem);
792 } else {
793 index_addr(denali, (uint32_t)cmd,
794 0x2000 | op | page_count);
795
796 /* wait for command to be accepted
797 * can always use status0 bit as the
798 * mask is identical for each
799 * bank. */
800 irq_status = wait_for_irq(denali, irq_mask);
801
802 if (irq_status == 0) {
803 dev_err(&denali->dev->dev,
804 "cmd, page, addr on timeout "
805 "(0x%x, 0x%x, 0x%x)\n",
806 cmd, denali->page, addr);
807 status = FAIL;
808 } else {
809 cmd = MODE_01 | addr;
810 iowrite32(cmd, denali->flash_mem);
811 }
812 }
813 }
814 return status;
815 }
816
817 /* helper function that simply writes a buffer to the flash */
818 static int write_data_to_flash_mem(struct denali_nand_info *denali,
819 const uint8_t *buf,
820 int len)
821 {
822 uint32_t i = 0, *buf32;
823
824 /* verify that the len is a multiple of 4. see comment in
825 * read_data_from_flash_mem() */
826 BUG_ON((len % 4) != 0);
827
828 /* write the data to the flash memory */
829 buf32 = (uint32_t *)buf;
830 for (i = 0; i < len / 4; i++)
831 iowrite32(*buf32++, denali->flash_mem + 0x10);
832 return i*4; /* intent is to return the number of bytes read */
833 }
834
835 /* helper function that simply reads a buffer from the flash */
836 static int read_data_from_flash_mem(struct denali_nand_info *denali,
837 uint8_t *buf,
838 int len)
839 {
840 uint32_t i = 0, *buf32;
841
842 /* we assume that len will be a multiple of 4, if not
843 * it would be nice to know about it ASAP rather than
844 * have random failures...
845 * This assumption is based on the fact that this
846 * function is designed to be used to read flash pages,
847 * which are typically multiples of 4...
848 */
849
850 BUG_ON((len % 4) != 0);
851
852 /* transfer the data from the flash */
853 buf32 = (uint32_t *)buf;
854 for (i = 0; i < len / 4; i++)
855 *buf32++ = ioread32(denali->flash_mem + 0x10);
856 return i*4; /* intent is to return the number of bytes read */
857 }
858
859 /* writes OOB data to the device */
860 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
861 {
862 struct denali_nand_info *denali = mtd_to_denali(mtd);
863 uint32_t irq_status = 0;
864 uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
865 INTR_STATUS0__PROGRAM_FAIL;
866 int status = 0;
867
868 denali->page = page;
869
870 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
871 DENALI_WRITE) == PASS) {
872 write_data_to_flash_mem(denali, buf, mtd->oobsize);
873
874 /* wait for operation to complete */
875 irq_status = wait_for_irq(denali, irq_mask);
876
877 if (irq_status == 0) {
878 dev_err(&denali->dev->dev, "OOB write failed\n");
879 status = -EIO;
880 }
881 } else {
882 dev_err(&denali->dev->dev, "unable to send pipeline command\n");
883 status = -EIO;
884 }
885 return status;
886 }
887
888 /* reads OOB data from the device */
889 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
890 {
891 struct denali_nand_info *denali = mtd_to_denali(mtd);
892 uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
893 irq_status = 0, addr = 0x0, cmd = 0x0;
894
895 denali->page = page;
896
897 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
898 DENALI_READ) == PASS) {
899 read_data_from_flash_mem(denali, buf, mtd->oobsize);
900
901 /* wait for command to be accepted
902 * can always use status0 bit as the mask is identical for each
903 * bank. */
904 irq_status = wait_for_irq(denali, irq_mask);
905
906 if (irq_status == 0)
907 dev_err(&denali->dev->dev, "page on OOB timeout %d\n",
908 denali->page);
909
910 /* We set the device back to MAIN_ACCESS here as I observed
911 * instability with the controller if you do a block erase
912 * and the last transaction was a SPARE_ACCESS. Block erase
913 * is reliable (according to the MTD test infrastructure)
914 * if you are in MAIN_ACCESS.
915 */
916 addr = BANK(denali->flash_bank) | denali->page;
917 cmd = MODE_10 | addr;
918 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
919 }
920 }
921
922 /* this function examines buffers to see if they contain data that
923 * indicate that the buffer is part of an erased region of flash.
924 */
925 bool is_erased(uint8_t *buf, int len)
926 {
927 int i = 0;
928 for (i = 0; i < len; i++)
929 if (buf[i] != 0xFF)
930 return false;
931 return true;
932 }
933 #define ECC_SECTOR_SIZE 512
934
935 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
936 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
937 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
938 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
939 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
940 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
941
942 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
943 uint32_t irq_status)
944 {
945 bool check_erased_page = false;
946
947 if (irq_status & INTR_STATUS0__ECC_ERR) {
948 /* read the ECC errors. we'll ignore them for now */
949 uint32_t err_address = 0, err_correction_info = 0;
950 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
951 uint32_t err_correction_value = 0;
952 denali_set_intr_modes(denali, false);
953
954 do {
955 err_address = ioread32(denali->flash_reg +
956 ECC_ERROR_ADDRESS);
957 err_sector = ECC_SECTOR(err_address);
958 err_byte = ECC_BYTE(err_address);
959
960 err_correction_info = ioread32(denali->flash_reg +
961 ERR_CORRECTION_INFO);
962 err_correction_value =
963 ECC_CORRECTION_VALUE(err_correction_info);
964 err_device = ECC_ERR_DEVICE(err_correction_info);
965
966 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
967 /* If err_byte is larger than ECC_SECTOR_SIZE,
968 * means error happend in OOB, so we ignore
969 * it. It's no need for us to correct it
970 * err_device is represented the NAND error
971 * bits are happened in if there are more
972 * than one NAND connected.
973 * */
974 if (err_byte < ECC_SECTOR_SIZE) {
975 int offset;
976 offset = (err_sector *
977 ECC_SECTOR_SIZE +
978 err_byte) *
979 denali->devnum +
980 err_device;
981 /* correct the ECC error */
982 buf[offset] ^= err_correction_value;
983 denali->mtd.ecc_stats.corrected++;
984 }
985 } else {
986 /* if the error is not correctable, need to
987 * look at the page to see if it is an erased
988 * page. if so, then it's not a real ECC error
989 * */
990 check_erased_page = true;
991 }
992 } while (!ECC_LAST_ERR(err_correction_info));
993 /* Once handle all ecc errors, controller will triger
994 * a ECC_TRANSACTION_DONE interrupt, so here just wait
995 * for a while for this interrupt
996 * */
997 while (!(read_interrupt_status(denali) &
998 INTR_STATUS0__ECC_TRANSACTION_DONE))
999 cpu_relax();
1000 clear_interrupts(denali);
1001 denali_set_intr_modes(denali, true);
1002 }
1003 return check_erased_page;
1004 }
1005
1006 /* programs the controller to either enable/disable DMA transfers */
1007 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1008 {
1009 uint32_t reg_val = 0x0;
1010
1011 if (en)
1012 reg_val = DMA_ENABLE__FLAG;
1013
1014 iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1015 ioread32(denali->flash_reg + DMA_ENABLE);
1016 }
1017
1018 /* setups the HW to perform the data DMA */
1019 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1020 {
1021 uint32_t mode = 0x0;
1022 const int page_count = 1;
1023 dma_addr_t addr = denali->buf.dma_buf;
1024
1025 mode = MODE_10 | BANK(denali->flash_bank);
1026
1027 /* DMA is a four step process */
1028
1029 /* 1. setup transfer type and # of pages */
1030 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1031
1032 /* 2. set memory high address bits 23:8 */
1033 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1034
1035 /* 3. set memory low address bits 23:8 */
1036 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1037
1038 /* 4. interrupt when complete, burst len = 64 bytes*/
1039 index_addr(denali, mode | 0x14000, 0x2400);
1040 }
1041
1042 /* writes a page. user specifies type, and this function handles the
1043 * configuration details. */
1044 static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1045 const uint8_t *buf, bool raw_xfer)
1046 {
1047 struct denali_nand_info *denali = mtd_to_denali(mtd);
1048 struct pci_dev *pci_dev = denali->dev;
1049
1050 dma_addr_t addr = denali->buf.dma_buf;
1051 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1052
1053 uint32_t irq_status = 0;
1054 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1055 INTR_STATUS0__PROGRAM_FAIL;
1056
1057 /* if it is a raw xfer, we want to disable ecc, and send
1058 * the spare area.
1059 * !raw_xfer - enable ecc
1060 * raw_xfer - transfer spare
1061 */
1062 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1063
1064 /* copy buffer into DMA buffer */
1065 memcpy(denali->buf.buf, buf, mtd->writesize);
1066
1067 if (raw_xfer) {
1068 /* transfer the data to the spare area */
1069 memcpy(denali->buf.buf + mtd->writesize,
1070 chip->oob_poi,
1071 mtd->oobsize);
1072 }
1073
1074 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
1075
1076 clear_interrupts(denali);
1077 denali_enable_dma(denali, true);
1078
1079 denali_setup_dma(denali, DENALI_WRITE);
1080
1081 /* wait for operation to complete */
1082 irq_status = wait_for_irq(denali, irq_mask);
1083
1084 if (irq_status == 0) {
1085 dev_err(&denali->dev->dev,
1086 "timeout on write_page (type = %d)\n",
1087 raw_xfer);
1088 denali->status =
1089 (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
1090 NAND_STATUS_FAIL : PASS;
1091 }
1092
1093 denali_enable_dma(denali, false);
1094 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
1095 }
1096
1097 /* NAND core entry points */
1098
1099 /* this is the callback that the NAND core calls to write a page. Since
1100 * writing a page with ECC or without is similar, all the work is done
1101 * by write_page above.
1102 * */
1103 static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1104 const uint8_t *buf)
1105 {
1106 /* for regular page writes, we let HW handle all the ECC
1107 * data written to the device. */
1108 write_page(mtd, chip, buf, false);
1109 }
1110
1111 /* This is the callback that the NAND core calls to write a page without ECC.
1112 * raw access is similiar to ECC page writes, so all the work is done in the
1113 * write_page() function above.
1114 */
1115 static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1116 const uint8_t *buf)
1117 {
1118 /* for raw page writes, we want to disable ECC and simply write
1119 whatever data is in the buffer. */
1120 write_page(mtd, chip, buf, true);
1121 }
1122
1123 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1124 int page)
1125 {
1126 return write_oob_data(mtd, chip->oob_poi, page);
1127 }
1128
1129 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1130 int page, int sndcmd)
1131 {
1132 read_oob_data(mtd, chip->oob_poi, page);
1133
1134 return 0; /* notify NAND core to send command to
1135 NAND device. */
1136 }
1137
1138 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1139 uint8_t *buf, int page)
1140 {
1141 struct denali_nand_info *denali = mtd_to_denali(mtd);
1142 struct pci_dev *pci_dev = denali->dev;
1143
1144 dma_addr_t addr = denali->buf.dma_buf;
1145 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1146
1147 uint32_t irq_status = 0;
1148 uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1149 INTR_STATUS0__ECC_ERR;
1150 bool check_erased_page = false;
1151
1152 if (page != denali->page) {
1153 dev_err(&denali->dev->dev, "IN %s: page %d is not"
1154 " equal to denali->page %d, investigate!!",
1155 __func__, page, denali->page);
1156 BUG();
1157 }
1158
1159 setup_ecc_for_xfer(denali, true, false);
1160
1161 denali_enable_dma(denali, true);
1162 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1163
1164 clear_interrupts(denali);
1165 denali_setup_dma(denali, DENALI_READ);
1166
1167 /* wait for operation to complete */
1168 irq_status = wait_for_irq(denali, irq_mask);
1169
1170 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1171
1172 memcpy(buf, denali->buf.buf, mtd->writesize);
1173
1174 check_erased_page = handle_ecc(denali, buf, irq_status);
1175 denali_enable_dma(denali, false);
1176
1177 if (check_erased_page) {
1178 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1179
1180 /* check ECC failures that may have occurred on erased pages */
1181 if (check_erased_page) {
1182 if (!is_erased(buf, denali->mtd.writesize))
1183 denali->mtd.ecc_stats.failed++;
1184 if (!is_erased(buf, denali->mtd.oobsize))
1185 denali->mtd.ecc_stats.failed++;
1186 }
1187 }
1188 return 0;
1189 }
1190
1191 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1192 uint8_t *buf, int page)
1193 {
1194 struct denali_nand_info *denali = mtd_to_denali(mtd);
1195 struct pci_dev *pci_dev = denali->dev;
1196
1197 dma_addr_t addr = denali->buf.dma_buf;
1198 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1199
1200 uint32_t irq_status = 0;
1201 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1202
1203 if (page != denali->page) {
1204 dev_err(&denali->dev->dev, "IN %s: page %d is not"
1205 " equal to denali->page %d, investigate!!",
1206 __func__, page, denali->page);
1207 BUG();
1208 }
1209
1210 setup_ecc_for_xfer(denali, false, true);
1211 denali_enable_dma(denali, true);
1212
1213 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1214
1215 clear_interrupts(denali);
1216 denali_setup_dma(denali, DENALI_READ);
1217
1218 /* wait for operation to complete */
1219 irq_status = wait_for_irq(denali, irq_mask);
1220
1221 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1222
1223 denali_enable_dma(denali, false);
1224
1225 memcpy(buf, denali->buf.buf, mtd->writesize);
1226 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1227
1228 return 0;
1229 }
1230
1231 static uint8_t denali_read_byte(struct mtd_info *mtd)
1232 {
1233 struct denali_nand_info *denali = mtd_to_denali(mtd);
1234 uint8_t result = 0xff;
1235
1236 if (denali->buf.head < denali->buf.tail)
1237 result = denali->buf.buf[denali->buf.head++];
1238
1239 return result;
1240 }
1241
1242 static void denali_select_chip(struct mtd_info *mtd, int chip)
1243 {
1244 struct denali_nand_info *denali = mtd_to_denali(mtd);
1245
1246 spin_lock_irq(&denali->irq_lock);
1247 denali->flash_bank = chip;
1248 spin_unlock_irq(&denali->irq_lock);
1249 }
1250
1251 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1252 {
1253 struct denali_nand_info *denali = mtd_to_denali(mtd);
1254 int status = denali->status;
1255 denali->status = 0;
1256
1257 return status;
1258 }
1259
1260 static void denali_erase(struct mtd_info *mtd, int page)
1261 {
1262 struct denali_nand_info *denali = mtd_to_denali(mtd);
1263
1264 uint32_t cmd = 0x0, irq_status = 0;
1265
1266 /* clear interrupts */
1267 clear_interrupts(denali);
1268
1269 /* setup page read request for access type */
1270 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1271 index_addr(denali, (uint32_t)cmd, 0x1);
1272
1273 /* wait for erase to complete or failure to occur */
1274 irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1275 INTR_STATUS0__ERASE_FAIL);
1276
1277 denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
1278 NAND_STATUS_FAIL : PASS;
1279 }
1280
1281 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1282 int page)
1283 {
1284 struct denali_nand_info *denali = mtd_to_denali(mtd);
1285 uint32_t addr, id;
1286 int i;
1287
1288 switch (cmd) {
1289 case NAND_CMD_PAGEPROG:
1290 break;
1291 case NAND_CMD_STATUS:
1292 read_status(denali);
1293 break;
1294 case NAND_CMD_READID:
1295 case NAND_CMD_PARAM:
1296 reset_buf(denali);
1297 /*sometimes ManufactureId read from register is not right
1298 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1299 * So here we send READID cmd to NAND insteand
1300 * */
1301 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1302 index_addr(denali, (uint32_t)addr | 0, 0x90);
1303 index_addr(denali, (uint32_t)addr | 1, 0);
1304 for (i = 0; i < 5; i++) {
1305 index_addr_read_data(denali,
1306 (uint32_t)addr | 2,
1307 &id);
1308 write_byte_to_buf(denali, id);
1309 }
1310 break;
1311 case NAND_CMD_READ0:
1312 case NAND_CMD_SEQIN:
1313 denali->page = page;
1314 break;
1315 case NAND_CMD_RESET:
1316 reset_bank(denali);
1317 break;
1318 case NAND_CMD_READOOB:
1319 /* TODO: Read OOB data */
1320 break;
1321 default:
1322 printk(KERN_ERR ": unsupported command"
1323 " received 0x%x\n", cmd);
1324 break;
1325 }
1326 }
1327
1328 /* stubs for ECC functions not used by the NAND core */
1329 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1330 uint8_t *ecc_code)
1331 {
1332 struct denali_nand_info *denali = mtd_to_denali(mtd);
1333 dev_err(&denali->dev->dev,
1334 "denali_ecc_calculate called unexpectedly\n");
1335 BUG();
1336 return -EIO;
1337 }
1338
1339 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1340 uint8_t *read_ecc, uint8_t *calc_ecc)
1341 {
1342 struct denali_nand_info *denali = mtd_to_denali(mtd);
1343 dev_err(&denali->dev->dev,
1344 "denali_ecc_correct called unexpectedly\n");
1345 BUG();
1346 return -EIO;
1347 }
1348
1349 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1350 {
1351 struct denali_nand_info *denali = mtd_to_denali(mtd);
1352 dev_err(&denali->dev->dev,
1353 "denali_ecc_hwctl called unexpectedly\n");
1354 BUG();
1355 }
1356 /* end NAND core entry points */
1357
1358 /* Initialization code to bring the device up to a known good state */
1359 static void denali_hw_init(struct denali_nand_info *denali)
1360 {
1361 /* tell driver how many bit controller will skip before
1362 * writing ECC code in OOB, this register may be already
1363 * set by firmware. So we read this value out.
1364 * if this value is 0, just let it be.
1365 * */
1366 denali->bbtskipbytes = ioread32(denali->flash_reg +
1367 SPARE_AREA_SKIP_BYTES);
1368 denali_nand_reset(denali);
1369 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1370 iowrite32(CHIP_EN_DONT_CARE__FLAG,
1371 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1372
1373 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1374
1375 /* Should set value for these registers when init */
1376 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1377 iowrite32(1, denali->flash_reg + ECC_ENABLE);
1378 denali_nand_timing_set(denali);
1379 denali_irq_init(denali);
1380 }
1381
1382 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1383 * but denali controller in MRST only support 15bit and 8bit ECC
1384 * correction
1385 * */
1386 #define ECC_8BITS 14
1387 static struct nand_ecclayout nand_8bit_oob = {
1388 .eccbytes = 14,
1389 };
1390
1391 #define ECC_15BITS 26
1392 static struct nand_ecclayout nand_15bit_oob = {
1393 .eccbytes = 26,
1394 };
1395
1396 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1397 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1398
1399 static struct nand_bbt_descr bbt_main_descr = {
1400 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1401 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1402 .offs = 8,
1403 .len = 4,
1404 .veroffs = 12,
1405 .maxblocks = 4,
1406 .pattern = bbt_pattern,
1407 };
1408
1409 static struct nand_bbt_descr bbt_mirror_descr = {
1410 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1411 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1412 .offs = 8,
1413 .len = 4,
1414 .veroffs = 12,
1415 .maxblocks = 4,
1416 .pattern = mirror_pattern,
1417 };
1418
1419 /* initialize driver data structures */
1420 void denali_drv_init(struct denali_nand_info *denali)
1421 {
1422 denali->idx = 0;
1423
1424 /* setup interrupt handler */
1425 /* the completion object will be used to notify
1426 * the callee that the interrupt is done */
1427 init_completion(&denali->complete);
1428
1429 /* the spinlock will be used to synchronize the ISR
1430 * with any element that might be access shared
1431 * data (interrupt status) */
1432 spin_lock_init(&denali->irq_lock);
1433
1434 /* indicate that MTD has not selected a valid bank yet */
1435 denali->flash_bank = CHIP_SELECT_INVALID;
1436
1437 /* initialize our irq_status variable to indicate no interrupts */
1438 denali->irq_status = 0;
1439 }
1440
1441 /* driver entry point */
1442 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1443 {
1444 int ret = -ENODEV;
1445 resource_size_t csr_base, mem_base;
1446 unsigned long csr_len, mem_len;
1447 struct denali_nand_info *denali;
1448
1449 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1450 if (!denali)
1451 return -ENOMEM;
1452
1453 ret = pci_enable_device(dev);
1454 if (ret) {
1455 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1456 goto failed_alloc_memery;
1457 }
1458
1459 if (id->driver_data == INTEL_CE4100) {
1460 /* Due to a silicon limitation, we can only support
1461 * ONFI timing mode 1 and below.
1462 */
1463 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1464 printk(KERN_ERR "Intel CE4100 only supports"
1465 " ONFI timing mode 1 or below\n");
1466 ret = -EINVAL;
1467 goto failed_enable_dev;
1468 }
1469 denali->platform = INTEL_CE4100;
1470 mem_base = pci_resource_start(dev, 0);
1471 mem_len = pci_resource_len(dev, 1);
1472 csr_base = pci_resource_start(dev, 1);
1473 csr_len = pci_resource_len(dev, 1);
1474 } else {
1475 denali->platform = INTEL_MRST;
1476 csr_base = pci_resource_start(dev, 0);
1477 csr_len = pci_resource_len(dev, 0);
1478 mem_base = pci_resource_start(dev, 1);
1479 mem_len = pci_resource_len(dev, 1);
1480 if (!mem_len) {
1481 mem_base = csr_base + csr_len;
1482 mem_len = csr_len;
1483 }
1484 }
1485
1486 /* Is 32-bit DMA supported? */
1487 ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
1488
1489 if (ret) {
1490 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1491 goto failed_enable_dev;
1492 }
1493 denali->buf.dma_buf =
1494 pci_map_single(dev, denali->buf.buf,
1495 DENALI_BUF_SIZE,
1496 PCI_DMA_BIDIRECTIONAL);
1497
1498 if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1499 dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1500 goto failed_enable_dev;
1501 }
1502
1503 pci_set_master(dev);
1504 denali->dev = dev;
1505 denali->mtd.dev.parent = &dev->dev;
1506
1507 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1508 if (ret) {
1509 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1510 goto failed_dma_map;
1511 }
1512
1513 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1514 if (!denali->flash_reg) {
1515 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1516 ret = -ENOMEM;
1517 goto failed_req_regions;
1518 }
1519
1520 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1521 if (!denali->flash_mem) {
1522 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1523 ret = -ENOMEM;
1524 goto failed_remap_reg;
1525 }
1526
1527 denali_hw_init(denali);
1528 denali_drv_init(denali);
1529
1530 /* denali_isr register is done after all the hardware
1531 * initilization is finished*/
1532 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1533 DENALI_NAND_NAME, denali)) {
1534 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1535 ret = -ENODEV;
1536 goto failed_remap_mem;
1537 }
1538
1539 /* now that our ISR is registered, we can enable interrupts */
1540 denali_set_intr_modes(denali, true);
1541
1542 pci_set_drvdata(dev, denali);
1543
1544 denali->mtd.name = "denali-nand";
1545 denali->mtd.owner = THIS_MODULE;
1546 denali->mtd.priv = &denali->nand;
1547
1548 /* register the driver with the NAND core subsystem */
1549 denali->nand.select_chip = denali_select_chip;
1550 denali->nand.cmdfunc = denali_cmdfunc;
1551 denali->nand.read_byte = denali_read_byte;
1552 denali->nand.waitfunc = denali_waitfunc;
1553
1554 /* scan for NAND devices attached to the controller
1555 * this is the first stage in a two step process to register
1556 * with the nand subsystem */
1557 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
1558 ret = -ENXIO;
1559 goto failed_req_irq;
1560 }
1561
1562 /* MTD supported page sizes vary by kernel. We validate our
1563 * kernel supports the device here.
1564 */
1565 if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1566 ret = -ENODEV;
1567 printk(KERN_ERR "Spectra: device size not supported by this "
1568 "version of MTD.");
1569 goto failed_req_irq;
1570 }
1571
1572 /* support for multi nand
1573 * MTD known nothing about multi nand,
1574 * so we should tell it the real pagesize
1575 * and anything necessery
1576 */
1577 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1578 denali->nand.chipsize <<= (denali->devnum - 1);
1579 denali->nand.page_shift += (denali->devnum - 1);
1580 denali->nand.pagemask = (denali->nand.chipsize >>
1581 denali->nand.page_shift) - 1;
1582 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1583 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1584 denali->nand.chip_shift += (denali->devnum - 1);
1585 denali->mtd.writesize <<= (denali->devnum - 1);
1586 denali->mtd.oobsize <<= (denali->devnum - 1);
1587 denali->mtd.erasesize <<= (denali->devnum - 1);
1588 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1589 denali->bbtskipbytes *= denali->devnum;
1590
1591 /* second stage of the NAND scan
1592 * this stage requires information regarding ECC and
1593 * bad block management. */
1594
1595 /* Bad block management */
1596 denali->nand.bbt_td = &bbt_main_descr;
1597 denali->nand.bbt_md = &bbt_mirror_descr;
1598
1599 /* skip the scan for now until we have OOB read and write support */
1600 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
1601 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1602
1603 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1604 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1605 * SLC if possible.
1606 * */
1607 if (denali->nand.cellinfo & 0xc &&
1608 (denali->mtd.oobsize > (denali->bbtskipbytes +
1609 ECC_15BITS * (denali->mtd.writesize /
1610 ECC_SECTOR_SIZE)))) {
1611 /* if MLC OOB size is large enough, use 15bit ECC*/
1612 denali->nand.ecc.layout = &nand_15bit_oob;
1613 denali->nand.ecc.bytes = ECC_15BITS;
1614 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1615 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1616 ECC_8BITS * (denali->mtd.writesize /
1617 ECC_SECTOR_SIZE))) {
1618 printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1619 " contain 8bit ECC correction codes");
1620 goto failed_req_irq;
1621 } else {
1622 denali->nand.ecc.layout = &nand_8bit_oob;
1623 denali->nand.ecc.bytes = ECC_8BITS;
1624 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1625 }
1626
1627 denali->nand.ecc.bytes *= denali->devnum;
1628 denali->nand.ecc.layout->eccbytes *=
1629 denali->mtd.writesize / ECC_SECTOR_SIZE;
1630 denali->nand.ecc.layout->oobfree[0].offset =
1631 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1632 denali->nand.ecc.layout->oobfree[0].length =
1633 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1634 denali->bbtskipbytes;
1635
1636 /* Let driver know the total blocks number and
1637 * how many blocks contained by each nand chip.
1638 * blksperchip will help driver to know how many
1639 * blocks is taken by FW.
1640 * */
1641 denali->totalblks = denali->mtd.size >>
1642 denali->nand.phys_erase_shift;
1643 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1644
1645 /* These functions are required by the NAND core framework, otherwise,
1646 * the NAND core will assert. However, we don't need them, so we'll stub
1647 * them out. */
1648 denali->nand.ecc.calculate = denali_ecc_calculate;
1649 denali->nand.ecc.correct = denali_ecc_correct;
1650 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1651
1652 /* override the default read operations */
1653 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1654 denali->nand.ecc.read_page = denali_read_page;
1655 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1656 denali->nand.ecc.write_page = denali_write_page;
1657 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1658 denali->nand.ecc.read_oob = denali_read_oob;
1659 denali->nand.ecc.write_oob = denali_write_oob;
1660 denali->nand.erase_cmd = denali_erase;
1661
1662 if (nand_scan_tail(&denali->mtd)) {
1663 ret = -ENXIO;
1664 goto failed_req_irq;
1665 }
1666
1667 ret = add_mtd_device(&denali->mtd);
1668 if (ret) {
1669 dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
1670 ret);
1671 goto failed_req_irq;
1672 }
1673 return 0;
1674
1675 failed_req_irq:
1676 denali_irq_cleanup(dev->irq, denali);
1677 failed_remap_mem:
1678 iounmap(denali->flash_mem);
1679 failed_remap_reg:
1680 iounmap(denali->flash_reg);
1681 failed_req_regions:
1682 pci_release_regions(dev);
1683 failed_dma_map:
1684 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1685 PCI_DMA_BIDIRECTIONAL);
1686 failed_enable_dev:
1687 pci_disable_device(dev);
1688 failed_alloc_memery:
1689 kfree(denali);
1690 return ret;
1691 }
1692
1693 /* driver exit point */
1694 static void denali_pci_remove(struct pci_dev *dev)
1695 {
1696 struct denali_nand_info *denali = pci_get_drvdata(dev);
1697
1698 nand_release(&denali->mtd);
1699 del_mtd_device(&denali->mtd);
1700
1701 denali_irq_cleanup(dev->irq, denali);
1702
1703 iounmap(denali->flash_reg);
1704 iounmap(denali->flash_mem);
1705 pci_release_regions(dev);
1706 pci_disable_device(dev);
1707 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1708 PCI_DMA_BIDIRECTIONAL);
1709 pci_set_drvdata(dev, NULL);
1710 kfree(denali);
1711 }
1712
1713 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1714
1715 static struct pci_driver denali_pci_driver = {
1716 .name = DENALI_NAND_NAME,
1717 .id_table = denali_pci_ids,
1718 .probe = denali_pci_probe,
1719 .remove = denali_pci_remove,
1720 };
1721
1722 static int __devinit denali_init(void)
1723 {
1724 printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
1725 __DATE__, __TIME__);
1726 return pci_register_driver(&denali_pci_driver);
1727 }
1728
1729 /* Free memory */
1730 static void __devexit denali_exit(void)
1731 {
1732 pci_unregister_driver(&denali_pci_driver);
1733 }
1734
1735 module_init(denali_init);
1736 module_exit(denali_exit);