Merge tag 'md-3.10-fixes' of git://neil.brown.name/md
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2 * Copyright © 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2 as
23 * published by the Free Software Foundation.
24 *
25 */
26
27 #include <linux/dma-mapping.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_mtd.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39
40 #include <linux/dmaengine.h>
41 #include <linux/gpio.h>
42 #include <linux/io.h>
43 #include <linux/platform_data/atmel.h>
44 #include <linux/pinctrl/consumer.h>
45
46 #include <mach/cpu.h>
47
48 static int use_dma = 1;
49 module_param(use_dma, int, 0);
50
51 static int on_flash_bbt = 0;
52 module_param(on_flash_bbt, int, 0);
53
54 /* Register access macros */
55 #define ecc_readl(add, reg) \
56 __raw_readl(add + ATMEL_ECC_##reg)
57 #define ecc_writel(add, reg, value) \
58 __raw_writel((value), add + ATMEL_ECC_##reg)
59
60 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
61
62 /* oob layout for large page size
63 * bad block info is on bytes 0 and 1
64 * the bytes have to be consecutives to avoid
65 * several NAND_CMD_RNDOUT during read
66 */
67 static struct nand_ecclayout atmel_oobinfo_large = {
68 .eccbytes = 4,
69 .eccpos = {60, 61, 62, 63},
70 .oobfree = {
71 {2, 58}
72 },
73 };
74
75 /* oob layout for small page size
76 * bad block info is on bytes 4 and 5
77 * the bytes have to be consecutives to avoid
78 * several NAND_CMD_RNDOUT during read
79 */
80 static struct nand_ecclayout atmel_oobinfo_small = {
81 .eccbytes = 4,
82 .eccpos = {0, 1, 2, 3},
83 .oobfree = {
84 {6, 10}
85 },
86 };
87
88 struct atmel_nand_host {
89 struct nand_chip nand_chip;
90 struct mtd_info mtd;
91 void __iomem *io_base;
92 dma_addr_t io_phys;
93 struct atmel_nand_data board;
94 struct device *dev;
95 void __iomem *ecc;
96
97 struct completion comp;
98 struct dma_chan *dma_chan;
99
100 bool has_pmecc;
101 u8 pmecc_corr_cap;
102 u16 pmecc_sector_size;
103 u32 pmecc_lookup_table_offset;
104 u32 pmecc_lookup_table_offset_512;
105 u32 pmecc_lookup_table_offset_1024;
106
107 int pmecc_bytes_per_sector;
108 int pmecc_sector_number;
109 int pmecc_degree; /* Degree of remainders */
110 int pmecc_cw_len; /* Length of codeword */
111
112 void __iomem *pmerrloc_base;
113 void __iomem *pmecc_rom_base;
114
115 /* lookup table for alpha_to and index_of */
116 void __iomem *pmecc_alpha_to;
117 void __iomem *pmecc_index_of;
118
119 /* data for pmecc computation */
120 int16_t *pmecc_partial_syn;
121 int16_t *pmecc_si;
122 int16_t *pmecc_smu; /* Sigma table */
123 int16_t *pmecc_lmu; /* polynomal order */
124 int *pmecc_mu;
125 int *pmecc_dmu;
126 int *pmecc_delta;
127 };
128
129 static struct nand_ecclayout atmel_pmecc_oobinfo;
130
131 static int cpu_has_dma(void)
132 {
133 return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
134 }
135
136 /*
137 * Enable NAND.
138 */
139 static void atmel_nand_enable(struct atmel_nand_host *host)
140 {
141 if (gpio_is_valid(host->board.enable_pin))
142 gpio_set_value(host->board.enable_pin, 0);
143 }
144
145 /*
146 * Disable NAND.
147 */
148 static void atmel_nand_disable(struct atmel_nand_host *host)
149 {
150 if (gpio_is_valid(host->board.enable_pin))
151 gpio_set_value(host->board.enable_pin, 1);
152 }
153
154 /*
155 * Hardware specific access to control-lines
156 */
157 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
158 {
159 struct nand_chip *nand_chip = mtd->priv;
160 struct atmel_nand_host *host = nand_chip->priv;
161
162 if (ctrl & NAND_CTRL_CHANGE) {
163 if (ctrl & NAND_NCE)
164 atmel_nand_enable(host);
165 else
166 atmel_nand_disable(host);
167 }
168 if (cmd == NAND_CMD_NONE)
169 return;
170
171 if (ctrl & NAND_CLE)
172 writeb(cmd, host->io_base + (1 << host->board.cle));
173 else
174 writeb(cmd, host->io_base + (1 << host->board.ale));
175 }
176
177 /*
178 * Read the Device Ready pin.
179 */
180 static int atmel_nand_device_ready(struct mtd_info *mtd)
181 {
182 struct nand_chip *nand_chip = mtd->priv;
183 struct atmel_nand_host *host = nand_chip->priv;
184
185 return gpio_get_value(host->board.rdy_pin) ^
186 !!host->board.rdy_pin_active_low;
187 }
188
189 /*
190 * Minimal-overhead PIO for data access.
191 */
192 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
193 {
194 struct nand_chip *nand_chip = mtd->priv;
195
196 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
197 }
198
199 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
200 {
201 struct nand_chip *nand_chip = mtd->priv;
202
203 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
204 }
205
206 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
207 {
208 struct nand_chip *nand_chip = mtd->priv;
209
210 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
211 }
212
213 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
214 {
215 struct nand_chip *nand_chip = mtd->priv;
216
217 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
218 }
219
220 static void dma_complete_func(void *completion)
221 {
222 complete(completion);
223 }
224
225 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
226 int is_read)
227 {
228 struct dma_device *dma_dev;
229 enum dma_ctrl_flags flags;
230 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
231 struct dma_async_tx_descriptor *tx = NULL;
232 dma_cookie_t cookie;
233 struct nand_chip *chip = mtd->priv;
234 struct atmel_nand_host *host = chip->priv;
235 void *p = buf;
236 int err = -EIO;
237 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
238
239 if (buf >= high_memory)
240 goto err_buf;
241
242 dma_dev = host->dma_chan->device;
243
244 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
245 DMA_COMPL_SKIP_DEST_UNMAP;
246
247 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
248 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
249 dev_err(host->dev, "Failed to dma_map_single\n");
250 goto err_buf;
251 }
252
253 if (is_read) {
254 dma_src_addr = host->io_phys;
255 dma_dst_addr = phys_addr;
256 } else {
257 dma_src_addr = phys_addr;
258 dma_dst_addr = host->io_phys;
259 }
260
261 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
262 dma_src_addr, len, flags);
263 if (!tx) {
264 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
265 goto err_dma;
266 }
267
268 init_completion(&host->comp);
269 tx->callback = dma_complete_func;
270 tx->callback_param = &host->comp;
271
272 cookie = tx->tx_submit(tx);
273 if (dma_submit_error(cookie)) {
274 dev_err(host->dev, "Failed to do DMA tx_submit\n");
275 goto err_dma;
276 }
277
278 dma_async_issue_pending(host->dma_chan);
279 wait_for_completion(&host->comp);
280
281 err = 0;
282
283 err_dma:
284 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
285 err_buf:
286 if (err != 0)
287 dev_warn(host->dev, "Fall back to CPU I/O\n");
288 return err;
289 }
290
291 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
292 {
293 struct nand_chip *chip = mtd->priv;
294 struct atmel_nand_host *host = chip->priv;
295
296 if (use_dma && len > mtd->oobsize)
297 /* only use DMA for bigger than oob size: better performances */
298 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
299 return;
300
301 if (host->board.bus_width_16)
302 atmel_read_buf16(mtd, buf, len);
303 else
304 atmel_read_buf8(mtd, buf, len);
305 }
306
307 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
308 {
309 struct nand_chip *chip = mtd->priv;
310 struct atmel_nand_host *host = chip->priv;
311
312 if (use_dma && len > mtd->oobsize)
313 /* only use DMA for bigger than oob size: better performances */
314 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
315 return;
316
317 if (host->board.bus_width_16)
318 atmel_write_buf16(mtd, buf, len);
319 else
320 atmel_write_buf8(mtd, buf, len);
321 }
322
323 /*
324 * Return number of ecc bytes per sector according to sector size and
325 * correction capability
326 *
327 * Following table shows what at91 PMECC supported:
328 * Correction Capability Sector_512_bytes Sector_1024_bytes
329 * ===================== ================ =================
330 * 2-bits 4-bytes 4-bytes
331 * 4-bits 7-bytes 7-bytes
332 * 8-bits 13-bytes 14-bytes
333 * 12-bits 20-bytes 21-bytes
334 * 24-bits 39-bytes 42-bytes
335 */
336 static int pmecc_get_ecc_bytes(int cap, int sector_size)
337 {
338 int m = 12 + sector_size / 512;
339 return (m * cap + 7) / 8;
340 }
341
342 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
343 int oobsize, int ecc_len)
344 {
345 int i;
346
347 layout->eccbytes = ecc_len;
348
349 /* ECC will occupy the last ecc_len bytes continuously */
350 for (i = 0; i < ecc_len; i++)
351 layout->eccpos[i] = oobsize - ecc_len + i;
352
353 layout->oobfree[0].offset = 2;
354 layout->oobfree[0].length =
355 oobsize - ecc_len - layout->oobfree[0].offset;
356 }
357
358 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
359 {
360 int table_size;
361
362 table_size = host->pmecc_sector_size == 512 ?
363 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
364
365 return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
366 table_size * sizeof(int16_t);
367 }
368
369 static void pmecc_data_free(struct atmel_nand_host *host)
370 {
371 kfree(host->pmecc_partial_syn);
372 kfree(host->pmecc_si);
373 kfree(host->pmecc_lmu);
374 kfree(host->pmecc_smu);
375 kfree(host->pmecc_mu);
376 kfree(host->pmecc_dmu);
377 kfree(host->pmecc_delta);
378 }
379
380 static int pmecc_data_alloc(struct atmel_nand_host *host)
381 {
382 const int cap = host->pmecc_corr_cap;
383
384 host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t),
385 GFP_KERNEL);
386 host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL);
387 host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL);
388 host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t),
389 GFP_KERNEL);
390 host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
391 host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
392 host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
393
394 if (host->pmecc_partial_syn &&
395 host->pmecc_si &&
396 host->pmecc_lmu &&
397 host->pmecc_smu &&
398 host->pmecc_mu &&
399 host->pmecc_dmu &&
400 host->pmecc_delta)
401 return 0;
402
403 /* error happened */
404 pmecc_data_free(host);
405 return -ENOMEM;
406 }
407
408 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
409 {
410 struct nand_chip *nand_chip = mtd->priv;
411 struct atmel_nand_host *host = nand_chip->priv;
412 int i;
413 uint32_t value;
414
415 /* Fill odd syndromes */
416 for (i = 0; i < host->pmecc_corr_cap; i++) {
417 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
418 if (i & 1)
419 value >>= 16;
420 value &= 0xffff;
421 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
422 }
423 }
424
425 static void pmecc_substitute(struct mtd_info *mtd)
426 {
427 struct nand_chip *nand_chip = mtd->priv;
428 struct atmel_nand_host *host = nand_chip->priv;
429 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
430 int16_t __iomem *index_of = host->pmecc_index_of;
431 int16_t *partial_syn = host->pmecc_partial_syn;
432 const int cap = host->pmecc_corr_cap;
433 int16_t *si;
434 int i, j;
435
436 /* si[] is a table that holds the current syndrome value,
437 * an element of that table belongs to the field
438 */
439 si = host->pmecc_si;
440
441 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
442
443 /* Computation 2t syndromes based on S(x) */
444 /* Odd syndromes */
445 for (i = 1; i < 2 * cap; i += 2) {
446 for (j = 0; j < host->pmecc_degree; j++) {
447 if (partial_syn[i] & ((unsigned short)0x1 << j))
448 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
449 }
450 }
451 /* Even syndrome = (Odd syndrome) ** 2 */
452 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
453 if (si[j] == 0) {
454 si[i] = 0;
455 } else {
456 int16_t tmp;
457
458 tmp = readw_relaxed(index_of + si[j]);
459 tmp = (tmp * 2) % host->pmecc_cw_len;
460 si[i] = readw_relaxed(alpha_to + tmp);
461 }
462 }
463
464 return;
465 }
466
467 static void pmecc_get_sigma(struct mtd_info *mtd)
468 {
469 struct nand_chip *nand_chip = mtd->priv;
470 struct atmel_nand_host *host = nand_chip->priv;
471
472 int16_t *lmu = host->pmecc_lmu;
473 int16_t *si = host->pmecc_si;
474 int *mu = host->pmecc_mu;
475 int *dmu = host->pmecc_dmu; /* Discrepancy */
476 int *delta = host->pmecc_delta; /* Delta order */
477 int cw_len = host->pmecc_cw_len;
478 const int16_t cap = host->pmecc_corr_cap;
479 const int num = 2 * cap + 1;
480 int16_t __iomem *index_of = host->pmecc_index_of;
481 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
482 int i, j, k;
483 uint32_t dmu_0_count, tmp;
484 int16_t *smu = host->pmecc_smu;
485
486 /* index of largest delta */
487 int ro;
488 int largest;
489 int diff;
490
491 dmu_0_count = 0;
492
493 /* First Row */
494
495 /* Mu */
496 mu[0] = -1;
497
498 memset(smu, 0, sizeof(int16_t) * num);
499 smu[0] = 1;
500
501 /* discrepancy set to 1 */
502 dmu[0] = 1;
503 /* polynom order set to 0 */
504 lmu[0] = 0;
505 delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
506
507 /* Second Row */
508
509 /* Mu */
510 mu[1] = 0;
511 /* Sigma(x) set to 1 */
512 memset(&smu[num], 0, sizeof(int16_t) * num);
513 smu[num] = 1;
514
515 /* discrepancy set to S1 */
516 dmu[1] = si[1];
517
518 /* polynom order set to 0 */
519 lmu[1] = 0;
520
521 delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
522
523 /* Init the Sigma(x) last row */
524 memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
525
526 for (i = 1; i <= cap; i++) {
527 mu[i + 1] = i << 1;
528 /* Begin Computing Sigma (Mu+1) and L(mu) */
529 /* check if discrepancy is set to 0 */
530 if (dmu[i] == 0) {
531 dmu_0_count++;
532
533 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
534 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
535 tmp += 2;
536 else
537 tmp += 1;
538
539 if (dmu_0_count == tmp) {
540 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
541 smu[(cap + 1) * num + j] =
542 smu[i * num + j];
543
544 lmu[cap + 1] = lmu[i];
545 return;
546 }
547
548 /* copy polynom */
549 for (j = 0; j <= lmu[i] >> 1; j++)
550 smu[(i + 1) * num + j] = smu[i * num + j];
551
552 /* copy previous polynom order to the next */
553 lmu[i + 1] = lmu[i];
554 } else {
555 ro = 0;
556 largest = -1;
557 /* find largest delta with dmu != 0 */
558 for (j = 0; j < i; j++) {
559 if ((dmu[j]) && (delta[j] > largest)) {
560 largest = delta[j];
561 ro = j;
562 }
563 }
564
565 /* compute difference */
566 diff = (mu[i] - mu[ro]);
567
568 /* Compute degree of the new smu polynomial */
569 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
570 lmu[i + 1] = lmu[i];
571 else
572 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
573
574 /* Init smu[i+1] with 0 */
575 for (k = 0; k < num; k++)
576 smu[(i + 1) * num + k] = 0;
577
578 /* Compute smu[i+1] */
579 for (k = 0; k <= lmu[ro] >> 1; k++) {
580 int16_t a, b, c;
581
582 if (!(smu[ro * num + k] && dmu[i]))
583 continue;
584 a = readw_relaxed(index_of + dmu[i]);
585 b = readw_relaxed(index_of + dmu[ro]);
586 c = readw_relaxed(index_of + smu[ro * num + k]);
587 tmp = a + (cw_len - b) + c;
588 a = readw_relaxed(alpha_to + tmp % cw_len);
589 smu[(i + 1) * num + (k + diff)] = a;
590 }
591
592 for (k = 0; k <= lmu[i] >> 1; k++)
593 smu[(i + 1) * num + k] ^= smu[i * num + k];
594 }
595
596 /* End Computing Sigma (Mu+1) and L(mu) */
597 /* In either case compute delta */
598 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
599
600 /* Do not compute discrepancy for the last iteration */
601 if (i >= cap)
602 continue;
603
604 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
605 tmp = 2 * (i - 1);
606 if (k == 0) {
607 dmu[i + 1] = si[tmp + 3];
608 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
609 int16_t a, b, c;
610 a = readw_relaxed(index_of +
611 smu[(i + 1) * num + k]);
612 b = si[2 * (i - 1) + 3 - k];
613 c = readw_relaxed(index_of + b);
614 tmp = a + c;
615 tmp %= cw_len;
616 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
617 dmu[i + 1];
618 }
619 }
620 }
621
622 return;
623 }
624
625 static int pmecc_err_location(struct mtd_info *mtd)
626 {
627 struct nand_chip *nand_chip = mtd->priv;
628 struct atmel_nand_host *host = nand_chip->priv;
629 unsigned long end_time;
630 const int cap = host->pmecc_corr_cap;
631 const int num = 2 * cap + 1;
632 int sector_size = host->pmecc_sector_size;
633 int err_nbr = 0; /* number of error */
634 int roots_nbr; /* number of roots */
635 int i;
636 uint32_t val;
637 int16_t *smu = host->pmecc_smu;
638
639 pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
640
641 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
642 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
643 smu[(cap + 1) * num + i]);
644 err_nbr++;
645 }
646
647 val = (err_nbr - 1) << 16;
648 if (sector_size == 1024)
649 val |= 1;
650
651 pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
652 pmerrloc_writel(host->pmerrloc_base, ELEN,
653 sector_size * 8 + host->pmecc_degree * cap);
654
655 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
656 while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
657 & PMERRLOC_CALC_DONE)) {
658 if (unlikely(time_after(jiffies, end_time))) {
659 dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
660 return -1;
661 }
662 cpu_relax();
663 }
664
665 roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
666 & PMERRLOC_ERR_NUM_MASK) >> 8;
667 /* Number of roots == degree of smu hence <= cap */
668 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
669 return err_nbr - 1;
670
671 /* Number of roots does not match the degree of smu
672 * unable to correct error */
673 return -1;
674 }
675
676 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
677 int sector_num, int extra_bytes, int err_nbr)
678 {
679 struct nand_chip *nand_chip = mtd->priv;
680 struct atmel_nand_host *host = nand_chip->priv;
681 int i = 0;
682 int byte_pos, bit_pos, sector_size, pos;
683 uint32_t tmp;
684 uint8_t err_byte;
685
686 sector_size = host->pmecc_sector_size;
687
688 while (err_nbr) {
689 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
690 byte_pos = tmp / 8;
691 bit_pos = tmp % 8;
692
693 if (byte_pos >= (sector_size + extra_bytes))
694 BUG(); /* should never happen */
695
696 if (byte_pos < sector_size) {
697 err_byte = *(buf + byte_pos);
698 *(buf + byte_pos) ^= (1 << bit_pos);
699
700 pos = sector_num * host->pmecc_sector_size + byte_pos;
701 dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
702 pos, bit_pos, err_byte, *(buf + byte_pos));
703 } else {
704 /* Bit flip in OOB area */
705 tmp = sector_num * host->pmecc_bytes_per_sector
706 + (byte_pos - sector_size);
707 err_byte = ecc[tmp];
708 ecc[tmp] ^= (1 << bit_pos);
709
710 pos = tmp + nand_chip->ecc.layout->eccpos[0];
711 dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
712 pos, bit_pos, err_byte, ecc[tmp]);
713 }
714
715 i++;
716 err_nbr--;
717 }
718
719 return;
720 }
721
722 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
723 u8 *ecc)
724 {
725 struct nand_chip *nand_chip = mtd->priv;
726 struct atmel_nand_host *host = nand_chip->priv;
727 int i, err_nbr, eccbytes;
728 uint8_t *buf_pos;
729 int total_err = 0;
730
731 eccbytes = nand_chip->ecc.bytes;
732 for (i = 0; i < eccbytes; i++)
733 if (ecc[i] != 0xff)
734 goto normal_check;
735 /* Erased page, return OK */
736 return 0;
737
738 normal_check:
739 for (i = 0; i < host->pmecc_sector_number; i++) {
740 err_nbr = 0;
741 if (pmecc_stat & 0x1) {
742 buf_pos = buf + i * host->pmecc_sector_size;
743
744 pmecc_gen_syndrome(mtd, i);
745 pmecc_substitute(mtd);
746 pmecc_get_sigma(mtd);
747
748 err_nbr = pmecc_err_location(mtd);
749 if (err_nbr == -1) {
750 dev_err(host->dev, "PMECC: Too many errors\n");
751 mtd->ecc_stats.failed++;
752 return -EIO;
753 } else {
754 pmecc_correct_data(mtd, buf_pos, ecc, i,
755 host->pmecc_bytes_per_sector, err_nbr);
756 mtd->ecc_stats.corrected += err_nbr;
757 total_err += err_nbr;
758 }
759 }
760 pmecc_stat >>= 1;
761 }
762
763 return total_err;
764 }
765
766 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
767 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
768 {
769 struct atmel_nand_host *host = chip->priv;
770 int eccsize = chip->ecc.size;
771 uint8_t *oob = chip->oob_poi;
772 uint32_t *eccpos = chip->ecc.layout->eccpos;
773 uint32_t stat;
774 unsigned long end_time;
775 int bitflips = 0;
776
777 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
778 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
779 pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG)
780 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
781
782 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
783 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
784
785 chip->read_buf(mtd, buf, eccsize);
786 chip->read_buf(mtd, oob, mtd->oobsize);
787
788 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
789 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
790 if (unlikely(time_after(jiffies, end_time))) {
791 dev_err(host->dev, "PMECC: Timeout to get error status.\n");
792 return -EIO;
793 }
794 cpu_relax();
795 }
796
797 stat = pmecc_readl_relaxed(host->ecc, ISR);
798 if (stat != 0) {
799 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
800 if (bitflips < 0)
801 /* uncorrectable errors */
802 return 0;
803 }
804
805 return bitflips;
806 }
807
808 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
809 struct nand_chip *chip, const uint8_t *buf, int oob_required)
810 {
811 struct atmel_nand_host *host = chip->priv;
812 uint32_t *eccpos = chip->ecc.layout->eccpos;
813 int i, j;
814 unsigned long end_time;
815
816 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
817 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
818
819 pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) |
820 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
821
822 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
823 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
824
825 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
826
827 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
828 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
829 if (unlikely(time_after(jiffies, end_time))) {
830 dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
831 return -EIO;
832 }
833 cpu_relax();
834 }
835
836 for (i = 0; i < host->pmecc_sector_number; i++) {
837 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
838 int pos;
839
840 pos = i * host->pmecc_bytes_per_sector + j;
841 chip->oob_poi[eccpos[pos]] =
842 pmecc_readb_ecc_relaxed(host->ecc, i, j);
843 }
844 }
845 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
846
847 return 0;
848 }
849
850 static void atmel_pmecc_core_init(struct mtd_info *mtd)
851 {
852 struct nand_chip *nand_chip = mtd->priv;
853 struct atmel_nand_host *host = nand_chip->priv;
854 uint32_t val = 0;
855 struct nand_ecclayout *ecc_layout;
856
857 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
858 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
859
860 switch (host->pmecc_corr_cap) {
861 case 2:
862 val = PMECC_CFG_BCH_ERR2;
863 break;
864 case 4:
865 val = PMECC_CFG_BCH_ERR4;
866 break;
867 case 8:
868 val = PMECC_CFG_BCH_ERR8;
869 break;
870 case 12:
871 val = PMECC_CFG_BCH_ERR12;
872 break;
873 case 24:
874 val = PMECC_CFG_BCH_ERR24;
875 break;
876 }
877
878 if (host->pmecc_sector_size == 512)
879 val |= PMECC_CFG_SECTOR512;
880 else if (host->pmecc_sector_size == 1024)
881 val |= PMECC_CFG_SECTOR1024;
882
883 switch (host->pmecc_sector_number) {
884 case 1:
885 val |= PMECC_CFG_PAGE_1SECTOR;
886 break;
887 case 2:
888 val |= PMECC_CFG_PAGE_2SECTORS;
889 break;
890 case 4:
891 val |= PMECC_CFG_PAGE_4SECTORS;
892 break;
893 case 8:
894 val |= PMECC_CFG_PAGE_8SECTORS;
895 break;
896 }
897
898 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
899 | PMECC_CFG_AUTO_DISABLE);
900 pmecc_writel(host->ecc, CFG, val);
901
902 ecc_layout = nand_chip->ecc.layout;
903 pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
904 pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
905 pmecc_writel(host->ecc, EADDR,
906 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
907 /* See datasheet about PMECC Clock Control Register */
908 pmecc_writel(host->ecc, CLK, 2);
909 pmecc_writel(host->ecc, IDR, 0xff);
910 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
911 }
912
913 /*
914 * Get ECC requirement in ONFI parameters, returns -1 if ONFI
915 * parameters is not supported.
916 * return 0 if success to get the ECC requirement.
917 */
918 static int get_onfi_ecc_param(struct nand_chip *chip,
919 int *ecc_bits, int *sector_size)
920 {
921 *ecc_bits = *sector_size = 0;
922
923 if (chip->onfi_params.ecc_bits == 0xff)
924 /* TODO: the sector_size and ecc_bits need to be find in
925 * extended ecc parameter, currently we don't support it.
926 */
927 return -1;
928
929 *ecc_bits = chip->onfi_params.ecc_bits;
930
931 /* The default sector size (ecc codeword size) is 512 */
932 *sector_size = 512;
933
934 return 0;
935 }
936
937 /*
938 * Get ecc requirement from ONFI parameters ecc requirement.
939 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
940 * will set them according to ONFI ecc requirement. Otherwise, use the
941 * value in DTS file.
942 * return 0 if success. otherwise return error code.
943 */
944 static int pmecc_choose_ecc(struct atmel_nand_host *host,
945 int *cap, int *sector_size)
946 {
947 /* Get ECC requirement from ONFI parameters */
948 *cap = *sector_size = 0;
949 if (host->nand_chip.onfi_version) {
950 if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
951 dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
952 *cap, *sector_size);
953 else
954 dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
955 } else {
956 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
957 }
958 if (*cap == 0 && *sector_size == 0) {
959 *cap = 2;
960 *sector_size = 512;
961 }
962
963 /* If dts file doesn't specify then use the one in ONFI parameters */
964 if (host->pmecc_corr_cap == 0) {
965 /* use the most fitable ecc bits (the near bigger one ) */
966 if (*cap <= 2)
967 host->pmecc_corr_cap = 2;
968 else if (*cap <= 4)
969 host->pmecc_corr_cap = 4;
970 else if (*cap < 8)
971 host->pmecc_corr_cap = 8;
972 else if (*cap < 12)
973 host->pmecc_corr_cap = 12;
974 else if (*cap < 24)
975 host->pmecc_corr_cap = 24;
976 else
977 return -EINVAL;
978 }
979 if (host->pmecc_sector_size == 0) {
980 /* use the most fitable sector size (the near smaller one ) */
981 if (*sector_size >= 1024)
982 host->pmecc_sector_size = 1024;
983 else if (*sector_size >= 512)
984 host->pmecc_sector_size = 512;
985 else
986 return -EINVAL;
987 }
988 return 0;
989 }
990
991 static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
992 struct atmel_nand_host *host)
993 {
994 struct mtd_info *mtd = &host->mtd;
995 struct nand_chip *nand_chip = &host->nand_chip;
996 struct resource *regs, *regs_pmerr, *regs_rom;
997 int cap, sector_size, err_no;
998
999 err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1000 if (err_no) {
1001 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1002 return err_no;
1003 }
1004
1005 if (cap != host->pmecc_corr_cap ||
1006 sector_size != host->pmecc_sector_size)
1007 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1008
1009 cap = host->pmecc_corr_cap;
1010 sector_size = host->pmecc_sector_size;
1011 host->pmecc_lookup_table_offset = (sector_size == 512) ?
1012 host->pmecc_lookup_table_offset_512 :
1013 host->pmecc_lookup_table_offset_1024;
1014
1015 dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1016 cap, sector_size);
1017
1018 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1019 if (!regs) {
1020 dev_warn(host->dev,
1021 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1022 nand_chip->ecc.mode = NAND_ECC_SOFT;
1023 return 0;
1024 }
1025
1026 host->ecc = ioremap(regs->start, resource_size(regs));
1027 if (host->ecc == NULL) {
1028 dev_err(host->dev, "ioremap failed\n");
1029 err_no = -EIO;
1030 goto err_pmecc_ioremap;
1031 }
1032
1033 regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1034 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1035 if (regs_pmerr && regs_rom) {
1036 host->pmerrloc_base = ioremap(regs_pmerr->start,
1037 resource_size(regs_pmerr));
1038 host->pmecc_rom_base = ioremap(regs_rom->start,
1039 resource_size(regs_rom));
1040 }
1041
1042 if (!host->pmerrloc_base || !host->pmecc_rom_base) {
1043 dev_err(host->dev,
1044 "Can not get I/O resource for PMECC ERRLOC controller or ROM!\n");
1045 err_no = -EIO;
1046 goto err_pmloc_ioremap;
1047 }
1048
1049 /* ECC is calculated for the whole page (1 step) */
1050 nand_chip->ecc.size = mtd->writesize;
1051
1052 /* set ECC page size and oob layout */
1053 switch (mtd->writesize) {
1054 case 2048:
1055 host->pmecc_degree = PMECC_GF_DIMENSION_13;
1056 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1057 host->pmecc_sector_number = mtd->writesize / sector_size;
1058 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1059 cap, sector_size);
1060 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1061 host->pmecc_index_of = host->pmecc_rom_base +
1062 host->pmecc_lookup_table_offset;
1063
1064 nand_chip->ecc.steps = 1;
1065 nand_chip->ecc.strength = cap;
1066 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1067 host->pmecc_sector_number;
1068 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1069 dev_err(host->dev, "No room for ECC bytes\n");
1070 err_no = -EINVAL;
1071 goto err_no_ecc_room;
1072 }
1073 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1074 mtd->oobsize,
1075 nand_chip->ecc.bytes);
1076 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1077 break;
1078 case 512:
1079 case 1024:
1080 case 4096:
1081 /* TODO */
1082 dev_warn(host->dev,
1083 "Unsupported page size for PMECC, use Software ECC\n");
1084 default:
1085 /* page size not handled by HW ECC */
1086 /* switching back to soft ECC */
1087 nand_chip->ecc.mode = NAND_ECC_SOFT;
1088 return 0;
1089 }
1090
1091 /* Allocate data for PMECC computation */
1092 err_no = pmecc_data_alloc(host);
1093 if (err_no) {
1094 dev_err(host->dev,
1095 "Cannot allocate memory for PMECC computation!\n");
1096 goto err_pmecc_data_alloc;
1097 }
1098
1099 nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1100 nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1101
1102 atmel_pmecc_core_init(mtd);
1103
1104 return 0;
1105
1106 err_pmecc_data_alloc:
1107 err_no_ecc_room:
1108 err_pmloc_ioremap:
1109 iounmap(host->ecc);
1110 if (host->pmerrloc_base)
1111 iounmap(host->pmerrloc_base);
1112 if (host->pmecc_rom_base)
1113 iounmap(host->pmecc_rom_base);
1114 err_pmecc_ioremap:
1115 return err_no;
1116 }
1117
1118 /*
1119 * Calculate HW ECC
1120 *
1121 * function called after a write
1122 *
1123 * mtd: MTD block structure
1124 * dat: raw data (unused)
1125 * ecc_code: buffer for ECC
1126 */
1127 static int atmel_nand_calculate(struct mtd_info *mtd,
1128 const u_char *dat, unsigned char *ecc_code)
1129 {
1130 struct nand_chip *nand_chip = mtd->priv;
1131 struct atmel_nand_host *host = nand_chip->priv;
1132 unsigned int ecc_value;
1133
1134 /* get the first 2 ECC bytes */
1135 ecc_value = ecc_readl(host->ecc, PR);
1136
1137 ecc_code[0] = ecc_value & 0xFF;
1138 ecc_code[1] = (ecc_value >> 8) & 0xFF;
1139
1140 /* get the last 2 ECC bytes */
1141 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1142
1143 ecc_code[2] = ecc_value & 0xFF;
1144 ecc_code[3] = (ecc_value >> 8) & 0xFF;
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * HW ECC read page function
1151 *
1152 * mtd: mtd info structure
1153 * chip: nand chip info structure
1154 * buf: buffer to store read data
1155 * oob_required: caller expects OOB data read to chip->oob_poi
1156 */
1157 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1158 uint8_t *buf, int oob_required, int page)
1159 {
1160 int eccsize = chip->ecc.size;
1161 int eccbytes = chip->ecc.bytes;
1162 uint32_t *eccpos = chip->ecc.layout->eccpos;
1163 uint8_t *p = buf;
1164 uint8_t *oob = chip->oob_poi;
1165 uint8_t *ecc_pos;
1166 int stat;
1167 unsigned int max_bitflips = 0;
1168
1169 /*
1170 * Errata: ALE is incorrectly wired up to the ECC controller
1171 * on the AP7000, so it will include the address cycles in the
1172 * ECC calculation.
1173 *
1174 * Workaround: Reset the parity registers before reading the
1175 * actual data.
1176 */
1177 if (cpu_is_at32ap7000()) {
1178 struct atmel_nand_host *host = chip->priv;
1179 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1180 }
1181
1182 /* read the page */
1183 chip->read_buf(mtd, p, eccsize);
1184
1185 /* move to ECC position if needed */
1186 if (eccpos[0] != 0) {
1187 /* This only works on large pages
1188 * because the ECC controller waits for
1189 * NAND_CMD_RNDOUTSTART after the
1190 * NAND_CMD_RNDOUT.
1191 * anyway, for small pages, the eccpos[0] == 0
1192 */
1193 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1194 mtd->writesize + eccpos[0], -1);
1195 }
1196
1197 /* the ECC controller needs to read the ECC just after the data */
1198 ecc_pos = oob + eccpos[0];
1199 chip->read_buf(mtd, ecc_pos, eccbytes);
1200
1201 /* check if there's an error */
1202 stat = chip->ecc.correct(mtd, p, oob, NULL);
1203
1204 if (stat < 0) {
1205 mtd->ecc_stats.failed++;
1206 } else {
1207 mtd->ecc_stats.corrected += stat;
1208 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1209 }
1210
1211 /* get back to oob start (end of page) */
1212 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1213
1214 /* read the oob */
1215 chip->read_buf(mtd, oob, mtd->oobsize);
1216
1217 return max_bitflips;
1218 }
1219
1220 /*
1221 * HW ECC Correction
1222 *
1223 * function called after a read
1224 *
1225 * mtd: MTD block structure
1226 * dat: raw data read from the chip
1227 * read_ecc: ECC from the chip (unused)
1228 * isnull: unused
1229 *
1230 * Detect and correct a 1 bit error for a page
1231 */
1232 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1233 u_char *read_ecc, u_char *isnull)
1234 {
1235 struct nand_chip *nand_chip = mtd->priv;
1236 struct atmel_nand_host *host = nand_chip->priv;
1237 unsigned int ecc_status;
1238 unsigned int ecc_word, ecc_bit;
1239
1240 /* get the status from the Status Register */
1241 ecc_status = ecc_readl(host->ecc, SR);
1242
1243 /* if there's no error */
1244 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1245 return 0;
1246
1247 /* get error bit offset (4 bits) */
1248 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1249 /* get word address (12 bits) */
1250 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1251 ecc_word >>= 4;
1252
1253 /* if there are multiple errors */
1254 if (ecc_status & ATMEL_ECC_MULERR) {
1255 /* check if it is a freshly erased block
1256 * (filled with 0xff) */
1257 if ((ecc_bit == ATMEL_ECC_BITADDR)
1258 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1259 /* the block has just been erased, return OK */
1260 return 0;
1261 }
1262 /* it doesn't seems to be a freshly
1263 * erased block.
1264 * We can't correct so many errors */
1265 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1266 " Unable to correct.\n");
1267 return -EIO;
1268 }
1269
1270 /* if there's a single bit error : we can correct it */
1271 if (ecc_status & ATMEL_ECC_ECCERR) {
1272 /* there's nothing much to do here.
1273 * the bit error is on the ECC itself.
1274 */
1275 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1276 " Nothing to correct\n");
1277 return 0;
1278 }
1279
1280 dev_dbg(host->dev, "atmel_nand : one bit error on data."
1281 " (word offset in the page :"
1282 " 0x%x bit offset : 0x%x)\n",
1283 ecc_word, ecc_bit);
1284 /* correct the error */
1285 if (nand_chip->options & NAND_BUSWIDTH_16) {
1286 /* 16 bits words */
1287 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1288 } else {
1289 /* 8 bits words */
1290 dat[ecc_word] ^= (1 << ecc_bit);
1291 }
1292 dev_dbg(host->dev, "atmel_nand : error corrected\n");
1293 return 1;
1294 }
1295
1296 /*
1297 * Enable HW ECC : unused on most chips
1298 */
1299 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1300 {
1301 if (cpu_is_at32ap7000()) {
1302 struct nand_chip *nand_chip = mtd->priv;
1303 struct atmel_nand_host *host = nand_chip->priv;
1304 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1305 }
1306 }
1307
1308 #if defined(CONFIG_OF)
1309 static int atmel_of_init_port(struct atmel_nand_host *host,
1310 struct device_node *np)
1311 {
1312 u32 val;
1313 u32 offset[2];
1314 int ecc_mode;
1315 struct atmel_nand_data *board = &host->board;
1316 enum of_gpio_flags flags;
1317
1318 if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1319 if (val >= 32) {
1320 dev_err(host->dev, "invalid addr-offset %u\n", val);
1321 return -EINVAL;
1322 }
1323 board->ale = val;
1324 }
1325
1326 if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1327 if (val >= 32) {
1328 dev_err(host->dev, "invalid cmd-offset %u\n", val);
1329 return -EINVAL;
1330 }
1331 board->cle = val;
1332 }
1333
1334 ecc_mode = of_get_nand_ecc_mode(np);
1335
1336 board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1337
1338 board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1339
1340 if (of_get_nand_bus_width(np) == 16)
1341 board->bus_width_16 = 1;
1342
1343 board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1344 board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1345
1346 board->enable_pin = of_get_gpio(np, 1);
1347 board->det_pin = of_get_gpio(np, 2);
1348
1349 host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1350
1351 if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1352 return 0; /* Not using PMECC */
1353
1354 /* use PMECC, get correction capability, sector size and lookup
1355 * table offset.
1356 * If correction bits and sector size are not specified, then find
1357 * them from NAND ONFI parameters.
1358 */
1359 if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1360 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1361 (val != 24)) {
1362 dev_err(host->dev,
1363 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1364 val);
1365 return -EINVAL;
1366 }
1367 host->pmecc_corr_cap = (u8)val;
1368 }
1369
1370 if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1371 if ((val != 512) && (val != 1024)) {
1372 dev_err(host->dev,
1373 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1374 val);
1375 return -EINVAL;
1376 }
1377 host->pmecc_sector_size = (u16)val;
1378 }
1379
1380 if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1381 offset, 2) != 0) {
1382 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1383 return -EINVAL;
1384 }
1385 if (!offset[0] && !offset[1]) {
1386 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1387 return -EINVAL;
1388 }
1389 host->pmecc_lookup_table_offset_512 = offset[0];
1390 host->pmecc_lookup_table_offset_1024 = offset[1];
1391
1392 return 0;
1393 }
1394 #else
1395 static int atmel_of_init_port(struct atmel_nand_host *host,
1396 struct device_node *np)
1397 {
1398 return -EINVAL;
1399 }
1400 #endif
1401
1402 static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1403 struct atmel_nand_host *host)
1404 {
1405 struct mtd_info *mtd = &host->mtd;
1406 struct nand_chip *nand_chip = &host->nand_chip;
1407 struct resource *regs;
1408
1409 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1410 if (!regs) {
1411 dev_err(host->dev,
1412 "Can't get I/O resource regs, use software ECC\n");
1413 nand_chip->ecc.mode = NAND_ECC_SOFT;
1414 return 0;
1415 }
1416
1417 host->ecc = ioremap(regs->start, resource_size(regs));
1418 if (host->ecc == NULL) {
1419 dev_err(host->dev, "ioremap failed\n");
1420 return -EIO;
1421 }
1422
1423 /* ECC is calculated for the whole page (1 step) */
1424 nand_chip->ecc.size = mtd->writesize;
1425
1426 /* set ECC page size and oob layout */
1427 switch (mtd->writesize) {
1428 case 512:
1429 nand_chip->ecc.layout = &atmel_oobinfo_small;
1430 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1431 break;
1432 case 1024:
1433 nand_chip->ecc.layout = &atmel_oobinfo_large;
1434 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1435 break;
1436 case 2048:
1437 nand_chip->ecc.layout = &atmel_oobinfo_large;
1438 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1439 break;
1440 case 4096:
1441 nand_chip->ecc.layout = &atmel_oobinfo_large;
1442 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1443 break;
1444 default:
1445 /* page size not handled by HW ECC */
1446 /* switching back to soft ECC */
1447 nand_chip->ecc.mode = NAND_ECC_SOFT;
1448 return 0;
1449 }
1450
1451 /* set up for HW ECC */
1452 nand_chip->ecc.calculate = atmel_nand_calculate;
1453 nand_chip->ecc.correct = atmel_nand_correct;
1454 nand_chip->ecc.hwctl = atmel_nand_hwctl;
1455 nand_chip->ecc.read_page = atmel_nand_read_page;
1456 nand_chip->ecc.bytes = 4;
1457 nand_chip->ecc.strength = 1;
1458
1459 return 0;
1460 }
1461
1462 /*
1463 * Probe for the NAND device.
1464 */
1465 static int __init atmel_nand_probe(struct platform_device *pdev)
1466 {
1467 struct atmel_nand_host *host;
1468 struct mtd_info *mtd;
1469 struct nand_chip *nand_chip;
1470 struct resource *mem;
1471 struct mtd_part_parser_data ppdata = {};
1472 int res;
1473 struct pinctrl *pinctrl;
1474
1475 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1476 if (!mem) {
1477 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
1478 return -ENXIO;
1479 }
1480
1481 /* Allocate memory for the device structure (and zero it) */
1482 host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
1483 if (!host) {
1484 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1485 return -ENOMEM;
1486 }
1487
1488 host->io_phys = (dma_addr_t)mem->start;
1489
1490 host->io_base = ioremap(mem->start, resource_size(mem));
1491 if (host->io_base == NULL) {
1492 printk(KERN_ERR "atmel_nand: ioremap failed\n");
1493 res = -EIO;
1494 goto err_nand_ioremap;
1495 }
1496
1497 mtd = &host->mtd;
1498 nand_chip = &host->nand_chip;
1499 host->dev = &pdev->dev;
1500 if (pdev->dev.of_node) {
1501 res = atmel_of_init_port(host, pdev->dev.of_node);
1502 if (res)
1503 goto err_ecc_ioremap;
1504 } else {
1505 memcpy(&host->board, pdev->dev.platform_data,
1506 sizeof(struct atmel_nand_data));
1507 }
1508
1509 nand_chip->priv = host; /* link the private data structures */
1510 mtd->priv = nand_chip;
1511 mtd->owner = THIS_MODULE;
1512
1513 /* Set address of NAND IO lines */
1514 nand_chip->IO_ADDR_R = host->io_base;
1515 nand_chip->IO_ADDR_W = host->io_base;
1516 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1517
1518 pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1519 if (IS_ERR(pinctrl)) {
1520 dev_err(host->dev, "Failed to request pinctrl\n");
1521 res = PTR_ERR(pinctrl);
1522 goto err_ecc_ioremap;
1523 }
1524
1525 if (gpio_is_valid(host->board.rdy_pin)) {
1526 res = gpio_request(host->board.rdy_pin, "nand_rdy");
1527 if (res < 0) {
1528 dev_err(&pdev->dev,
1529 "can't request rdy gpio %d\n",
1530 host->board.rdy_pin);
1531 goto err_ecc_ioremap;
1532 }
1533
1534 res = gpio_direction_input(host->board.rdy_pin);
1535 if (res < 0) {
1536 dev_err(&pdev->dev,
1537 "can't request input direction rdy gpio %d\n",
1538 host->board.rdy_pin);
1539 goto err_ecc_ioremap;
1540 }
1541
1542 nand_chip->dev_ready = atmel_nand_device_ready;
1543 }
1544
1545 if (gpio_is_valid(host->board.enable_pin)) {
1546 res = gpio_request(host->board.enable_pin, "nand_enable");
1547 if (res < 0) {
1548 dev_err(&pdev->dev,
1549 "can't request enable gpio %d\n",
1550 host->board.enable_pin);
1551 goto err_ecc_ioremap;
1552 }
1553
1554 res = gpio_direction_output(host->board.enable_pin, 1);
1555 if (res < 0) {
1556 dev_err(&pdev->dev,
1557 "can't request output direction enable gpio %d\n",
1558 host->board.enable_pin);
1559 goto err_ecc_ioremap;
1560 }
1561 }
1562
1563 nand_chip->ecc.mode = host->board.ecc_mode;
1564 nand_chip->chip_delay = 20; /* 20us command delay time */
1565
1566 if (host->board.bus_width_16) /* 16-bit bus width */
1567 nand_chip->options |= NAND_BUSWIDTH_16;
1568
1569 nand_chip->read_buf = atmel_read_buf;
1570 nand_chip->write_buf = atmel_write_buf;
1571
1572 platform_set_drvdata(pdev, host);
1573 atmel_nand_enable(host);
1574
1575 if (gpio_is_valid(host->board.det_pin)) {
1576 res = gpio_request(host->board.det_pin, "nand_det");
1577 if (res < 0) {
1578 dev_err(&pdev->dev,
1579 "can't request det gpio %d\n",
1580 host->board.det_pin);
1581 goto err_no_card;
1582 }
1583
1584 res = gpio_direction_input(host->board.det_pin);
1585 if (res < 0) {
1586 dev_err(&pdev->dev,
1587 "can't request input direction det gpio %d\n",
1588 host->board.det_pin);
1589 goto err_no_card;
1590 }
1591
1592 if (gpio_get_value(host->board.det_pin)) {
1593 printk(KERN_INFO "No SmartMedia card inserted.\n");
1594 res = -ENXIO;
1595 goto err_no_card;
1596 }
1597 }
1598
1599 if (host->board.on_flash_bbt || on_flash_bbt) {
1600 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
1601 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1602 }
1603
1604 if (!cpu_has_dma())
1605 use_dma = 0;
1606
1607 if (use_dma) {
1608 dma_cap_mask_t mask;
1609
1610 dma_cap_zero(mask);
1611 dma_cap_set(DMA_MEMCPY, mask);
1612 host->dma_chan = dma_request_channel(mask, NULL, NULL);
1613 if (!host->dma_chan) {
1614 dev_err(host->dev, "Failed to request DMA channel\n");
1615 use_dma = 0;
1616 }
1617 }
1618 if (use_dma)
1619 dev_info(host->dev, "Using %s for DMA transfers.\n",
1620 dma_chan_name(host->dma_chan));
1621 else
1622 dev_info(host->dev, "No DMA support for NAND access.\n");
1623
1624 /* first scan to find the device and get the page size */
1625 if (nand_scan_ident(mtd, 1, NULL)) {
1626 res = -ENXIO;
1627 goto err_scan_ident;
1628 }
1629
1630 if (nand_chip->ecc.mode == NAND_ECC_HW) {
1631 if (host->has_pmecc)
1632 res = atmel_pmecc_nand_init_params(pdev, host);
1633 else
1634 res = atmel_hw_nand_init_params(pdev, host);
1635
1636 if (res != 0)
1637 goto err_hw_ecc;
1638 }
1639
1640 /* second phase scan */
1641 if (nand_scan_tail(mtd)) {
1642 res = -ENXIO;
1643 goto err_scan_tail;
1644 }
1645
1646 mtd->name = "atmel_nand";
1647 ppdata.of_node = pdev->dev.of_node;
1648 res = mtd_device_parse_register(mtd, NULL, &ppdata,
1649 host->board.parts, host->board.num_parts);
1650 if (!res)
1651 return res;
1652
1653 err_scan_tail:
1654 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1655 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1656 pmecc_data_free(host);
1657 }
1658 if (host->ecc)
1659 iounmap(host->ecc);
1660 if (host->pmerrloc_base)
1661 iounmap(host->pmerrloc_base);
1662 if (host->pmecc_rom_base)
1663 iounmap(host->pmecc_rom_base);
1664 err_hw_ecc:
1665 err_scan_ident:
1666 err_no_card:
1667 atmel_nand_disable(host);
1668 platform_set_drvdata(pdev, NULL);
1669 if (host->dma_chan)
1670 dma_release_channel(host->dma_chan);
1671 err_ecc_ioremap:
1672 iounmap(host->io_base);
1673 err_nand_ioremap:
1674 kfree(host);
1675 return res;
1676 }
1677
1678 /*
1679 * Remove a NAND device.
1680 */
1681 static int __exit atmel_nand_remove(struct platform_device *pdev)
1682 {
1683 struct atmel_nand_host *host = platform_get_drvdata(pdev);
1684 struct mtd_info *mtd = &host->mtd;
1685
1686 nand_release(mtd);
1687
1688 atmel_nand_disable(host);
1689
1690 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1691 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1692 pmerrloc_writel(host->pmerrloc_base, ELDIS,
1693 PMERRLOC_DISABLE);
1694 pmecc_data_free(host);
1695 }
1696
1697 if (gpio_is_valid(host->board.det_pin))
1698 gpio_free(host->board.det_pin);
1699
1700 if (gpio_is_valid(host->board.enable_pin))
1701 gpio_free(host->board.enable_pin);
1702
1703 if (gpio_is_valid(host->board.rdy_pin))
1704 gpio_free(host->board.rdy_pin);
1705
1706 if (host->ecc)
1707 iounmap(host->ecc);
1708 if (host->pmecc_rom_base)
1709 iounmap(host->pmecc_rom_base);
1710 if (host->pmerrloc_base)
1711 iounmap(host->pmerrloc_base);
1712
1713 if (host->dma_chan)
1714 dma_release_channel(host->dma_chan);
1715
1716 iounmap(host->io_base);
1717 kfree(host);
1718
1719 return 0;
1720 }
1721
1722 #if defined(CONFIG_OF)
1723 static const struct of_device_id atmel_nand_dt_ids[] = {
1724 { .compatible = "atmel,at91rm9200-nand" },
1725 { /* sentinel */ }
1726 };
1727
1728 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
1729 #endif
1730
1731 static struct platform_driver atmel_nand_driver = {
1732 .remove = __exit_p(atmel_nand_remove),
1733 .driver = {
1734 .name = "atmel_nand",
1735 .owner = THIS_MODULE,
1736 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
1737 },
1738 };
1739
1740 module_platform_driver_probe(atmel_nand_driver, atmel_nand_probe);
1741
1742 MODULE_LICENSE("GPL");
1743 MODULE_AUTHOR("Rick Bronson");
1744 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
1745 MODULE_ALIAS("platform:atmel_nand");