f8013c1d8cd5f8afaf958d660236b8dd2406562d
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33
34 #include "mtdcore.h"
35
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
46 };
47
48 /*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
51 */
52 #define PART(x) ((struct mtd_part *)(x))
53
54
55 /*
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
58 */
59
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 size_t *retlen, u_char *buf)
62 {
63 struct mtd_part *part = PART(mtd);
64 struct mtd_ecc_stats stats;
65 int res;
66
67 stats = part->master->ecc_stats;
68 res = part->master->_read(part->master, from + part->offset, len,
69 retlen, buf);
70 if (unlikely(mtd_is_eccerr(res)))
71 mtd->ecc_stats.failed +=
72 part->master->ecc_stats.failed - stats.failed;
73 else
74 mtd->ecc_stats.corrected +=
75 part->master->ecc_stats.corrected - stats.corrected;
76 return res;
77 }
78
79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
80 size_t *retlen, void **virt, resource_size_t *phys)
81 {
82 struct mtd_part *part = PART(mtd);
83
84 return part->master->_point(part->master, from + part->offset, len,
85 retlen, virt, phys);
86 }
87
88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
89 {
90 struct mtd_part *part = PART(mtd);
91
92 return part->master->_unpoint(part->master, from + part->offset, len);
93 }
94
95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
96 unsigned long len,
97 unsigned long offset,
98 unsigned long flags)
99 {
100 struct mtd_part *part = PART(mtd);
101
102 offset += part->offset;
103 return part->master->_get_unmapped_area(part->master, len, offset,
104 flags);
105 }
106
107 static int part_read_oob(struct mtd_info *mtd, loff_t from,
108 struct mtd_oob_ops *ops)
109 {
110 struct mtd_part *part = PART(mtd);
111 int res;
112
113 if (from >= mtd->size)
114 return -EINVAL;
115 if (ops->datbuf && from + ops->len > mtd->size)
116 return -EINVAL;
117
118 /*
119 * If OOB is also requested, make sure that we do not read past the end
120 * of this partition.
121 */
122 if (ops->oobbuf) {
123 size_t len, pages;
124
125 if (ops->mode == MTD_OPS_AUTO_OOB)
126 len = mtd->oobavail;
127 else
128 len = mtd->oobsize;
129 pages = mtd_div_by_ws(mtd->size, mtd);
130 pages -= mtd_div_by_ws(from, mtd);
131 if (ops->ooboffs + ops->ooblen > pages * len)
132 return -EINVAL;
133 }
134
135 res = part->master->_read_oob(part->master, from + part->offset, ops);
136 if (unlikely(res)) {
137 if (mtd_is_bitflip(res))
138 mtd->ecc_stats.corrected++;
139 if (mtd_is_eccerr(res))
140 mtd->ecc_stats.failed++;
141 }
142 return res;
143 }
144
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146 size_t len, size_t *retlen, u_char *buf)
147 {
148 struct mtd_part *part = PART(mtd);
149 return part->master->_read_user_prot_reg(part->master, from, len,
150 retlen, buf);
151 }
152
153 static int part_get_user_prot_info(struct mtd_info *mtd,
154 struct otp_info *buf, size_t len)
155 {
156 struct mtd_part *part = PART(mtd);
157 return part->master->_get_user_prot_info(part->master, buf, len);
158 }
159
160 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
161 size_t len, size_t *retlen, u_char *buf)
162 {
163 struct mtd_part *part = PART(mtd);
164 return part->master->_read_fact_prot_reg(part->master, from, len,
165 retlen, buf);
166 }
167
168 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
169 size_t len)
170 {
171 struct mtd_part *part = PART(mtd);
172 return part->master->_get_fact_prot_info(part->master, buf, len);
173 }
174
175 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
176 size_t *retlen, const u_char *buf)
177 {
178 struct mtd_part *part = PART(mtd);
179 return part->master->_write(part->master, to + part->offset, len,
180 retlen, buf);
181 }
182
183 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
184 size_t *retlen, const u_char *buf)
185 {
186 struct mtd_part *part = PART(mtd);
187 return part->master->_panic_write(part->master, to + part->offset, len,
188 retlen, buf);
189 }
190
191 static int part_write_oob(struct mtd_info *mtd, loff_t to,
192 struct mtd_oob_ops *ops)
193 {
194 struct mtd_part *part = PART(mtd);
195
196 if (to >= mtd->size)
197 return -EINVAL;
198 if (ops->datbuf && to + ops->len > mtd->size)
199 return -EINVAL;
200 return part->master->_write_oob(part->master, to + part->offset, ops);
201 }
202
203 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
204 size_t len, size_t *retlen, u_char *buf)
205 {
206 struct mtd_part *part = PART(mtd);
207 return part->master->_write_user_prot_reg(part->master, from, len,
208 retlen, buf);
209 }
210
211 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
212 size_t len)
213 {
214 struct mtd_part *part = PART(mtd);
215 return part->master->_lock_user_prot_reg(part->master, from, len);
216 }
217
218 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
219 unsigned long count, loff_t to, size_t *retlen)
220 {
221 struct mtd_part *part = PART(mtd);
222 return part->master->_writev(part->master, vecs, count,
223 to + part->offset, retlen);
224 }
225
226 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
227 {
228 struct mtd_part *part = PART(mtd);
229 int ret;
230
231 instr->addr += part->offset;
232 ret = part->master->_erase(part->master, instr);
233 if (ret) {
234 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
235 instr->fail_addr -= part->offset;
236 instr->addr -= part->offset;
237 }
238 return ret;
239 }
240
241 void mtd_erase_callback(struct erase_info *instr)
242 {
243 if (instr->mtd->_erase == part_erase) {
244 struct mtd_part *part = PART(instr->mtd);
245
246 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
247 instr->fail_addr -= part->offset;
248 instr->addr -= part->offset;
249 }
250 if (instr->callback)
251 instr->callback(instr);
252 }
253 EXPORT_SYMBOL_GPL(mtd_erase_callback);
254
255 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
256 {
257 struct mtd_part *part = PART(mtd);
258 return part->master->_lock(part->master, ofs + part->offset, len);
259 }
260
261 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
262 {
263 struct mtd_part *part = PART(mtd);
264 return part->master->_unlock(part->master, ofs + part->offset, len);
265 }
266
267 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
268 {
269 struct mtd_part *part = PART(mtd);
270 return part->master->_is_locked(part->master, ofs + part->offset, len);
271 }
272
273 static void part_sync(struct mtd_info *mtd)
274 {
275 struct mtd_part *part = PART(mtd);
276 part->master->_sync(part->master);
277 }
278
279 static int part_suspend(struct mtd_info *mtd)
280 {
281 struct mtd_part *part = PART(mtd);
282 return part->master->_suspend(part->master);
283 }
284
285 static void part_resume(struct mtd_info *mtd)
286 {
287 struct mtd_part *part = PART(mtd);
288 part->master->_resume(part->master);
289 }
290
291 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
292 {
293 struct mtd_part *part = PART(mtd);
294 ofs += part->offset;
295 return part->master->_block_isbad(part->master, ofs);
296 }
297
298 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
299 {
300 struct mtd_part *part = PART(mtd);
301 int res;
302
303 ofs += part->offset;
304 res = part->master->_block_markbad(part->master, ofs);
305 if (!res)
306 mtd->ecc_stats.badblocks++;
307 return res;
308 }
309
310 static inline void free_partition(struct mtd_part *p)
311 {
312 kfree(p->mtd.name);
313 kfree(p);
314 }
315
316 /*
317 * This function unregisters and destroy all slave MTD objects which are
318 * attached to the given master MTD object.
319 */
320
321 int del_mtd_partitions(struct mtd_info *master)
322 {
323 struct mtd_part *slave, *next;
324 int ret, err = 0;
325
326 mutex_lock(&mtd_partitions_mutex);
327 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
328 if (slave->master == master) {
329 ret = del_mtd_device(&slave->mtd);
330 if (ret < 0) {
331 err = ret;
332 continue;
333 }
334 list_del(&slave->list);
335 free_partition(slave);
336 }
337 mutex_unlock(&mtd_partitions_mutex);
338
339 return err;
340 }
341
342 static struct mtd_part *allocate_partition(struct mtd_info *master,
343 const struct mtd_partition *part, int partno,
344 uint64_t cur_offset)
345 {
346 struct mtd_part *slave;
347 char *name;
348
349 /* allocate the partition structure */
350 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
351 name = kstrdup(part->name, GFP_KERNEL);
352 if (!name || !slave) {
353 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
354 master->name);
355 kfree(name);
356 kfree(slave);
357 return ERR_PTR(-ENOMEM);
358 }
359
360 /* set up the MTD object for this partition */
361 slave->mtd.type = master->type;
362 slave->mtd.flags = master->flags & ~part->mask_flags;
363 slave->mtd.size = part->size;
364 slave->mtd.writesize = master->writesize;
365 slave->mtd.writebufsize = master->writebufsize;
366 slave->mtd.oobsize = master->oobsize;
367 slave->mtd.oobavail = master->oobavail;
368 slave->mtd.subpage_sft = master->subpage_sft;
369
370 slave->mtd.name = name;
371 slave->mtd.owner = master->owner;
372 slave->mtd.backing_dev_info = master->backing_dev_info;
373
374 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
375 * to have the same data be in two different partitions.
376 */
377 slave->mtd.dev.parent = master->dev.parent;
378
379 slave->mtd._read = part_read;
380 slave->mtd._write = part_write;
381
382 if (master->_panic_write)
383 slave->mtd._panic_write = part_panic_write;
384
385 if (master->_point && master->_unpoint) {
386 slave->mtd._point = part_point;
387 slave->mtd._unpoint = part_unpoint;
388 }
389
390 if (master->_get_unmapped_area)
391 slave->mtd._get_unmapped_area = part_get_unmapped_area;
392 if (master->_read_oob)
393 slave->mtd._read_oob = part_read_oob;
394 if (master->_write_oob)
395 slave->mtd._write_oob = part_write_oob;
396 if (master->_read_user_prot_reg)
397 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
398 if (master->_read_fact_prot_reg)
399 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
400 if (master->_write_user_prot_reg)
401 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
402 if (master->_lock_user_prot_reg)
403 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
404 if (master->_get_user_prot_info)
405 slave->mtd._get_user_prot_info = part_get_user_prot_info;
406 if (master->_get_fact_prot_info)
407 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
408 if (master->_sync)
409 slave->mtd._sync = part_sync;
410 if (!partno && !master->dev.class && master->_suspend &&
411 master->_resume) {
412 slave->mtd._suspend = part_suspend;
413 slave->mtd._resume = part_resume;
414 }
415 if (master->_writev)
416 slave->mtd._writev = part_writev;
417 if (master->_lock)
418 slave->mtd._lock = part_lock;
419 if (master->_unlock)
420 slave->mtd._unlock = part_unlock;
421 if (master->_is_locked)
422 slave->mtd._is_locked = part_is_locked;
423 if (master->_block_isbad)
424 slave->mtd._block_isbad = part_block_isbad;
425 if (master->_block_markbad)
426 slave->mtd._block_markbad = part_block_markbad;
427 slave->mtd._erase = part_erase;
428 slave->master = master;
429 slave->offset = part->offset;
430
431 if (slave->offset == MTDPART_OFS_APPEND)
432 slave->offset = cur_offset;
433 if (slave->offset == MTDPART_OFS_NXTBLK) {
434 slave->offset = cur_offset;
435 if (mtd_mod_by_eb(cur_offset, master) != 0) {
436 /* Round up to next erasesize */
437 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
438 printk(KERN_NOTICE "Moving partition %d: "
439 "0x%012llx -> 0x%012llx\n", partno,
440 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
441 }
442 }
443 if (slave->offset == MTDPART_OFS_RETAIN) {
444 slave->offset = cur_offset;
445 if (master->size - slave->offset >= slave->mtd.size) {
446 slave->mtd.size = master->size - slave->offset
447 - slave->mtd.size;
448 } else {
449 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
450 part->name, master->size - slave->offset,
451 slave->mtd.size);
452 /* register to preserve ordering */
453 goto out_register;
454 }
455 }
456 if (slave->mtd.size == MTDPART_SIZ_FULL)
457 slave->mtd.size = master->size - slave->offset;
458
459 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
460 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
461
462 /* let's do some sanity checks */
463 if (slave->offset >= master->size) {
464 /* let's register it anyway to preserve ordering */
465 slave->offset = 0;
466 slave->mtd.size = 0;
467 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
468 part->name);
469 goto out_register;
470 }
471 if (slave->offset + slave->mtd.size > master->size) {
472 slave->mtd.size = master->size - slave->offset;
473 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
474 part->name, master->name, (unsigned long long)slave->mtd.size);
475 }
476 if (master->numeraseregions > 1) {
477 /* Deal with variable erase size stuff */
478 int i, max = master->numeraseregions;
479 u64 end = slave->offset + slave->mtd.size;
480 struct mtd_erase_region_info *regions = master->eraseregions;
481
482 /* Find the first erase regions which is part of this
483 * partition. */
484 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
485 ;
486 /* The loop searched for the region _behind_ the first one */
487 if (i > 0)
488 i--;
489
490 /* Pick biggest erasesize */
491 for (; i < max && regions[i].offset < end; i++) {
492 if (slave->mtd.erasesize < regions[i].erasesize) {
493 slave->mtd.erasesize = regions[i].erasesize;
494 }
495 }
496 BUG_ON(slave->mtd.erasesize == 0);
497 } else {
498 /* Single erase size */
499 slave->mtd.erasesize = master->erasesize;
500 }
501
502 if ((slave->mtd.flags & MTD_WRITEABLE) &&
503 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
504 /* Doesn't start on a boundary of major erase size */
505 /* FIXME: Let it be writable if it is on a boundary of
506 * _minor_ erase size though */
507 slave->mtd.flags &= ~MTD_WRITEABLE;
508 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
509 part->name);
510 }
511 if ((slave->mtd.flags & MTD_WRITEABLE) &&
512 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
513 slave->mtd.flags &= ~MTD_WRITEABLE;
514 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
515 part->name);
516 }
517
518 slave->mtd.ecclayout = master->ecclayout;
519 slave->mtd.ecc_strength = master->ecc_strength;
520 slave->mtd.bitflip_threshold = master->bitflip_threshold;
521
522 if (master->_block_isbad) {
523 uint64_t offs = 0;
524
525 while (offs < slave->mtd.size) {
526 if (mtd_block_isbad(master, offs + slave->offset))
527 slave->mtd.ecc_stats.badblocks++;
528 offs += slave->mtd.erasesize;
529 }
530 }
531
532 out_register:
533 return slave;
534 }
535
536 int mtd_add_partition(struct mtd_info *master, char *name,
537 long long offset, long long length)
538 {
539 struct mtd_partition part;
540 struct mtd_part *p, *new;
541 uint64_t start, end;
542 int ret = 0;
543
544 /* the direct offset is expected */
545 if (offset == MTDPART_OFS_APPEND ||
546 offset == MTDPART_OFS_NXTBLK)
547 return -EINVAL;
548
549 if (length == MTDPART_SIZ_FULL)
550 length = master->size - offset;
551
552 if (length <= 0)
553 return -EINVAL;
554
555 part.name = name;
556 part.size = length;
557 part.offset = offset;
558 part.mask_flags = 0;
559 part.ecclayout = NULL;
560
561 new = allocate_partition(master, &part, -1, offset);
562 if (IS_ERR(new))
563 return PTR_ERR(new);
564
565 start = offset;
566 end = offset + length;
567
568 mutex_lock(&mtd_partitions_mutex);
569 list_for_each_entry(p, &mtd_partitions, list)
570 if (p->master == master) {
571 if ((start >= p->offset) &&
572 (start < (p->offset + p->mtd.size)))
573 goto err_inv;
574
575 if ((end >= p->offset) &&
576 (end < (p->offset + p->mtd.size)))
577 goto err_inv;
578 }
579
580 list_add(&new->list, &mtd_partitions);
581 mutex_unlock(&mtd_partitions_mutex);
582
583 add_mtd_device(&new->mtd);
584
585 return ret;
586 err_inv:
587 mutex_unlock(&mtd_partitions_mutex);
588 free_partition(new);
589 return -EINVAL;
590 }
591 EXPORT_SYMBOL_GPL(mtd_add_partition);
592
593 int mtd_del_partition(struct mtd_info *master, int partno)
594 {
595 struct mtd_part *slave, *next;
596 int ret = -EINVAL;
597
598 mutex_lock(&mtd_partitions_mutex);
599 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
600 if ((slave->master == master) &&
601 (slave->mtd.index == partno)) {
602 ret = del_mtd_device(&slave->mtd);
603 if (ret < 0)
604 break;
605
606 list_del(&slave->list);
607 free_partition(slave);
608 break;
609 }
610 mutex_unlock(&mtd_partitions_mutex);
611
612 return ret;
613 }
614 EXPORT_SYMBOL_GPL(mtd_del_partition);
615
616 /*
617 * This function, given a master MTD object and a partition table, creates
618 * and registers slave MTD objects which are bound to the master according to
619 * the partition definitions.
620 *
621 * We don't register the master, or expect the caller to have done so,
622 * for reasons of data integrity.
623 */
624
625 int add_mtd_partitions(struct mtd_info *master,
626 const struct mtd_partition *parts,
627 int nbparts)
628 {
629 struct mtd_part *slave;
630 uint64_t cur_offset = 0;
631 int i;
632
633 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
634
635 for (i = 0; i < nbparts; i++) {
636 slave = allocate_partition(master, parts + i, i, cur_offset);
637 if (IS_ERR(slave)) {
638 del_mtd_partitions(master);
639 return PTR_ERR(slave);
640 }
641
642 mutex_lock(&mtd_partitions_mutex);
643 list_add(&slave->list, &mtd_partitions);
644 mutex_unlock(&mtd_partitions_mutex);
645
646 add_mtd_device(&slave->mtd);
647
648 cur_offset = slave->offset + slave->mtd.size;
649 }
650
651 return 0;
652 }
653
654 static DEFINE_SPINLOCK(part_parser_lock);
655 static LIST_HEAD(part_parsers);
656
657 static struct mtd_part_parser *get_partition_parser(const char *name)
658 {
659 struct mtd_part_parser *p, *ret = NULL;
660
661 spin_lock(&part_parser_lock);
662
663 list_for_each_entry(p, &part_parsers, list)
664 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
665 ret = p;
666 break;
667 }
668
669 spin_unlock(&part_parser_lock);
670
671 return ret;
672 }
673
674 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
675
676 int register_mtd_parser(struct mtd_part_parser *p)
677 {
678 spin_lock(&part_parser_lock);
679 list_add(&p->list, &part_parsers);
680 spin_unlock(&part_parser_lock);
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(register_mtd_parser);
685
686 int deregister_mtd_parser(struct mtd_part_parser *p)
687 {
688 spin_lock(&part_parser_lock);
689 list_del(&p->list);
690 spin_unlock(&part_parser_lock);
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
694
695 /*
696 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
697 * are changing this array!
698 */
699 static const char * const default_mtd_part_types[] = {
700 "cmdlinepart",
701 "ofpart",
702 NULL
703 };
704
705 /**
706 * parse_mtd_partitions - parse MTD partitions
707 * @master: the master partition (describes whole MTD device)
708 * @types: names of partition parsers to try or %NULL
709 * @pparts: array of partitions found is returned here
710 * @data: MTD partition parser-specific data
711 *
712 * This function tries to find partition on MTD device @master. It uses MTD
713 * partition parsers, specified in @types. However, if @types is %NULL, then
714 * the default list of parsers is used. The default list contains only the
715 * "cmdlinepart" and "ofpart" parsers ATM.
716 * Note: If there are more then one parser in @types, the kernel only takes the
717 * partitions parsed out by the first parser.
718 *
719 * This function may return:
720 * o a negative error code in case of failure
721 * o zero if no partitions were found
722 * o a positive number of found partitions, in which case on exit @pparts will
723 * point to an array containing this number of &struct mtd_info objects.
724 */
725 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
726 struct mtd_partition **pparts,
727 struct mtd_part_parser_data *data)
728 {
729 struct mtd_part_parser *parser;
730 int ret = 0;
731
732 if (!types)
733 types = default_mtd_part_types;
734
735 for ( ; ret <= 0 && *types; types++) {
736 parser = get_partition_parser(*types);
737 if (!parser && !request_module("%s", *types))
738 parser = get_partition_parser(*types);
739 if (!parser)
740 continue;
741 ret = (*parser->parse_fn)(master, pparts, data);
742 put_partition_parser(parser);
743 if (ret > 0) {
744 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
745 ret, parser->name, master->name);
746 break;
747 }
748 }
749 return ret;
750 }
751
752 int mtd_is_partition(const struct mtd_info *mtd)
753 {
754 struct mtd_part *part;
755 int ispart = 0;
756
757 mutex_lock(&mtd_partitions_mutex);
758 list_for_each_entry(part, &mtd_partitions, list)
759 if (&part->mtd == mtd) {
760 ispart = 1;
761 break;
762 }
763 mutex_unlock(&mtd_partitions_mutex);
764
765 return ispart;
766 }
767 EXPORT_SYMBOL_GPL(mtd_is_partition);
768
769 /* Returns the size of the entire flash chip */
770 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
771 {
772 if (!mtd_is_partition(mtd))
773 return mtd->size;
774
775 return PART(mtd)->master->size;
776 }
777 EXPORT_SYMBOL_GPL(mtd_get_device_size);