Merge tag 'fixes-for-3.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
40
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
44
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
47
48 /*
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
51 */
52 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
53
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56
57 /*
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
61 */
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
64
65 /*
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
70 */
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 removable,
80 "MMC/SD cards are removable and may be removed during suspend");
81
82 /*
83 * Internal function. Schedule delayed work in the MMC work queue.
84 */
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 unsigned long delay)
87 {
88 return queue_delayed_work(workqueue, work, delay);
89 }
90
91 /*
92 * Internal function. Flush all scheduled work from the MMC work queue.
93 */
94 static void mmc_flush_scheduled_work(void)
95 {
96 flush_workqueue(workqueue);
97 }
98
99 #ifdef CONFIG_FAIL_MMC_REQUEST
100
101 /*
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
104 */
105 static void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 struct mmc_command *cmd = mrq->cmd;
109 struct mmc_data *data = mrq->data;
110 static const int data_errors[] = {
111 -ETIMEDOUT,
112 -EILSEQ,
113 -EIO,
114 };
115
116 if (!data)
117 return;
118
119 if (cmd->error || data->error ||
120 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 return;
122
123 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
124 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
125 }
126
127 #else /* CONFIG_FAIL_MMC_REQUEST */
128
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 struct mmc_request *mrq)
131 {
132 }
133
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
135
136 /**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 if (err && cmd->retries && mmc_host_is_spi(host)) {
150 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 cmd->retries = 0;
152 }
153
154 if (err && cmd->retries && !mmc_card_removed(host->card)) {
155 /*
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
158 */
159 if (mrq->done)
160 mrq->done(mrq);
161 } else {
162 mmc_should_fail_request(host, mrq);
163
164 led_trigger_event(host->led, LED_OFF);
165
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host), cmd->opcode, err,
168 cmd->resp[0], cmd->resp[1],
169 cmd->resp[2], cmd->resp[3]);
170
171 if (mrq->data) {
172 pr_debug("%s: %d bytes transferred: %d\n",
173 mmc_hostname(host),
174 mrq->data->bytes_xfered, mrq->data->error);
175 }
176
177 if (mrq->stop) {
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host), mrq->stop->opcode,
180 mrq->stop->error,
181 mrq->stop->resp[0], mrq->stop->resp[1],
182 mrq->stop->resp[2], mrq->stop->resp[3]);
183 }
184
185 if (mrq->done)
186 mrq->done(mrq);
187
188 mmc_host_clk_release(host);
189 }
190 }
191
192 EXPORT_SYMBOL(mmc_request_done);
193
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 #ifdef CONFIG_MMC_DEBUG
198 unsigned int i, sz;
199 struct scatterlist *sg;
200 #endif
201
202 if (mrq->sbc) {
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host), mrq->sbc->opcode,
205 mrq->sbc->arg, mrq->sbc->flags);
206 }
207
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->cmd->opcode,
210 mrq->cmd->arg, mrq->cmd->flags);
211
212 if (mrq->data) {
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host), mrq->data->blksz,
216 mrq->data->blocks, mrq->data->flags,
217 mrq->data->timeout_ns / 1000000,
218 mrq->data->timeout_clks);
219 }
220
221 if (mrq->stop) {
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->arg, mrq->stop->flags);
225 }
226
227 WARN_ON(!host->claimed);
228
229 mrq->cmd->error = 0;
230 mrq->cmd->mrq = mrq;
231 if (mrq->data) {
232 BUG_ON(mrq->data->blksz > host->max_blk_size);
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
236
237 #ifdef CONFIG_MMC_DEBUG
238 sz = 0;
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
251 }
252 }
253 mmc_host_clk_hold(host);
254 led_trigger_event(host->led, LED_FULL);
255 host->ops->request(host, mrq);
256 }
257
258 /**
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
263 *
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
267 */
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269 {
270 int err;
271 int timeout;
272 bool use_busy_signal;
273
274 BUG_ON(!card);
275
276 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 return;
278
279 err = mmc_read_bkops_status(card);
280 if (err) {
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card->host), err);
283 return;
284 }
285
286 if (!card->ext_csd.raw_bkops_status)
287 return;
288
289 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 from_exception)
291 return;
292
293 mmc_claim_host(card->host);
294 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 timeout = MMC_BKOPS_MAX_TIMEOUT;
296 use_busy_signal = true;
297 } else {
298 timeout = 0;
299 use_busy_signal = false;
300 }
301
302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 if (err) {
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card->host), err);
307 goto out;
308 }
309
310 /*
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
314 */
315 if (!use_busy_signal)
316 mmc_card_set_doing_bkops(card);
317 out:
318 mmc_release_host(card->host);
319 }
320 EXPORT_SYMBOL(mmc_start_bkops);
321
322 /*
323 * mmc_wait_data_done() - done callback for data request
324 * @mrq: done data request
325 *
326 * Wakes up mmc context, passed as a callback to host controller driver
327 */
328 static void mmc_wait_data_done(struct mmc_request *mrq)
329 {
330 mrq->host->context_info.is_done_rcv = true;
331 wake_up_interruptible(&mrq->host->context_info.wait);
332 }
333
334 static void mmc_wait_done(struct mmc_request *mrq)
335 {
336 complete(&mrq->completion);
337 }
338
339 /*
340 *__mmc_start_data_req() - starts data request
341 * @host: MMC host to start the request
342 * @mrq: data request to start
343 *
344 * Sets the done callback to be called when request is completed by the card.
345 * Starts data mmc request execution
346 */
347 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
348 {
349 mrq->done = mmc_wait_data_done;
350 mrq->host = host;
351 if (mmc_card_removed(host->card)) {
352 mrq->cmd->error = -ENOMEDIUM;
353 mmc_wait_data_done(mrq);
354 return -ENOMEDIUM;
355 }
356 mmc_start_request(host, mrq);
357
358 return 0;
359 }
360
361 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
362 {
363 init_completion(&mrq->completion);
364 mrq->done = mmc_wait_done;
365 if (mmc_card_removed(host->card)) {
366 mrq->cmd->error = -ENOMEDIUM;
367 complete(&mrq->completion);
368 return -ENOMEDIUM;
369 }
370 mmc_start_request(host, mrq);
371 return 0;
372 }
373
374 /*
375 * mmc_wait_for_data_req_done() - wait for request completed
376 * @host: MMC host to prepare the command.
377 * @mrq: MMC request to wait for
378 *
379 * Blocks MMC context till host controller will ack end of data request
380 * execution or new request notification arrives from the block layer.
381 * Handles command retries.
382 *
383 * Returns enum mmc_blk_status after checking errors.
384 */
385 static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 struct mmc_request *mrq,
387 struct mmc_async_req *next_req)
388 {
389 struct mmc_command *cmd;
390 struct mmc_context_info *context_info = &host->context_info;
391 int err;
392 unsigned long flags;
393
394 while (1) {
395 wait_event_interruptible(context_info->wait,
396 (context_info->is_done_rcv ||
397 context_info->is_new_req));
398 spin_lock_irqsave(&context_info->lock, flags);
399 context_info->is_waiting_last_req = false;
400 spin_unlock_irqrestore(&context_info->lock, flags);
401 if (context_info->is_done_rcv) {
402 context_info->is_done_rcv = false;
403 context_info->is_new_req = false;
404 cmd = mrq->cmd;
405 if (!cmd->error || !cmd->retries ||
406 mmc_card_removed(host->card)) {
407 err = host->areq->err_check(host->card,
408 host->areq);
409 break; /* return err */
410 } else {
411 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
412 mmc_hostname(host),
413 cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 host->ops->request(host, mrq);
417 continue; /* wait for done/new event again */
418 }
419 } else if (context_info->is_new_req) {
420 context_info->is_new_req = false;
421 if (!next_req) {
422 err = MMC_BLK_NEW_REQUEST;
423 break; /* return err */
424 }
425 }
426 }
427 return err;
428 }
429
430 static void mmc_wait_for_req_done(struct mmc_host *host,
431 struct mmc_request *mrq)
432 {
433 struct mmc_command *cmd;
434
435 while (1) {
436 wait_for_completion(&mrq->completion);
437
438 cmd = mrq->cmd;
439 if (!cmd->error || !cmd->retries ||
440 mmc_card_removed(host->card))
441 break;
442
443 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
444 mmc_hostname(host), cmd->opcode, cmd->error);
445 cmd->retries--;
446 cmd->error = 0;
447 host->ops->request(host, mrq);
448 }
449 }
450
451 /**
452 * mmc_pre_req - Prepare for a new request
453 * @host: MMC host to prepare command
454 * @mrq: MMC request to prepare for
455 * @is_first_req: true if there is no previous started request
456 * that may run in parellel to this call, otherwise false
457 *
458 * mmc_pre_req() is called in prior to mmc_start_req() to let
459 * host prepare for the new request. Preparation of a request may be
460 * performed while another request is running on the host.
461 */
462 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
463 bool is_first_req)
464 {
465 if (host->ops->pre_req) {
466 mmc_host_clk_hold(host);
467 host->ops->pre_req(host, mrq, is_first_req);
468 mmc_host_clk_release(host);
469 }
470 }
471
472 /**
473 * mmc_post_req - Post process a completed request
474 * @host: MMC host to post process command
475 * @mrq: MMC request to post process for
476 * @err: Error, if non zero, clean up any resources made in pre_req
477 *
478 * Let the host post process a completed request. Post processing of
479 * a request may be performed while another reuqest is running.
480 */
481 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
482 int err)
483 {
484 if (host->ops->post_req) {
485 mmc_host_clk_hold(host);
486 host->ops->post_req(host, mrq, err);
487 mmc_host_clk_release(host);
488 }
489 }
490
491 /**
492 * mmc_start_req - start a non-blocking request
493 * @host: MMC host to start command
494 * @areq: async request to start
495 * @error: out parameter returns 0 for success, otherwise non zero
496 *
497 * Start a new MMC custom command request for a host.
498 * If there is on ongoing async request wait for completion
499 * of that request and start the new one and return.
500 * Does not wait for the new request to complete.
501 *
502 * Returns the completed request, NULL in case of none completed.
503 * Wait for the an ongoing request (previoulsy started) to complete and
504 * return the completed request. If there is no ongoing request, NULL
505 * is returned without waiting. NULL is not an error condition.
506 */
507 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
508 struct mmc_async_req *areq, int *error)
509 {
510 int err = 0;
511 int start_err = 0;
512 struct mmc_async_req *data = host->areq;
513
514 /* Prepare a new request */
515 if (areq)
516 mmc_pre_req(host, areq->mrq, !host->areq);
517
518 if (host->areq) {
519 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
520 if (err == MMC_BLK_NEW_REQUEST) {
521 if (error)
522 *error = err;
523 /*
524 * The previous request was not completed,
525 * nothing to return
526 */
527 return NULL;
528 }
529 /*
530 * Check BKOPS urgency for each R1 response
531 */
532 if (host->card && mmc_card_mmc(host->card) &&
533 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
534 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
535 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
536 mmc_start_bkops(host->card, true);
537 }
538
539 if (!err && areq)
540 start_err = __mmc_start_data_req(host, areq->mrq);
541
542 if (host->areq)
543 mmc_post_req(host, host->areq->mrq, 0);
544
545 /* Cancel a prepared request if it was not started. */
546 if ((err || start_err) && areq)
547 mmc_post_req(host, areq->mrq, -EINVAL);
548
549 if (err)
550 host->areq = NULL;
551 else
552 host->areq = areq;
553
554 if (error)
555 *error = err;
556 return data;
557 }
558 EXPORT_SYMBOL(mmc_start_req);
559
560 /**
561 * mmc_wait_for_req - start a request and wait for completion
562 * @host: MMC host to start command
563 * @mrq: MMC request to start
564 *
565 * Start a new MMC custom command request for a host, and wait
566 * for the command to complete. Does not attempt to parse the
567 * response.
568 */
569 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
570 {
571 __mmc_start_req(host, mrq);
572 mmc_wait_for_req_done(host, mrq);
573 }
574 EXPORT_SYMBOL(mmc_wait_for_req);
575
576 /**
577 * mmc_interrupt_hpi - Issue for High priority Interrupt
578 * @card: the MMC card associated with the HPI transfer
579 *
580 * Issued High Priority Interrupt, and check for card status
581 * until out-of prg-state.
582 */
583 int mmc_interrupt_hpi(struct mmc_card *card)
584 {
585 int err;
586 u32 status;
587 unsigned long prg_wait;
588
589 BUG_ON(!card);
590
591 if (!card->ext_csd.hpi_en) {
592 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
593 return 1;
594 }
595
596 mmc_claim_host(card->host);
597 err = mmc_send_status(card, &status);
598 if (err) {
599 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
600 goto out;
601 }
602
603 switch (R1_CURRENT_STATE(status)) {
604 case R1_STATE_IDLE:
605 case R1_STATE_READY:
606 case R1_STATE_STBY:
607 case R1_STATE_TRAN:
608 /*
609 * In idle and transfer states, HPI is not needed and the caller
610 * can issue the next intended command immediately
611 */
612 goto out;
613 case R1_STATE_PRG:
614 break;
615 default:
616 /* In all other states, it's illegal to issue HPI */
617 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
618 mmc_hostname(card->host), R1_CURRENT_STATE(status));
619 err = -EINVAL;
620 goto out;
621 }
622
623 err = mmc_send_hpi_cmd(card, &status);
624 if (err)
625 goto out;
626
627 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
628 do {
629 err = mmc_send_status(card, &status);
630
631 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
632 break;
633 if (time_after(jiffies, prg_wait))
634 err = -ETIMEDOUT;
635 } while (!err);
636
637 out:
638 mmc_release_host(card->host);
639 return err;
640 }
641 EXPORT_SYMBOL(mmc_interrupt_hpi);
642
643 /**
644 * mmc_wait_for_cmd - start a command and wait for completion
645 * @host: MMC host to start command
646 * @cmd: MMC command to start
647 * @retries: maximum number of retries
648 *
649 * Start a new MMC command for a host, and wait for the command
650 * to complete. Return any error that occurred while the command
651 * was executing. Do not attempt to parse the response.
652 */
653 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
654 {
655 struct mmc_request mrq = {NULL};
656
657 WARN_ON(!host->claimed);
658
659 memset(cmd->resp, 0, sizeof(cmd->resp));
660 cmd->retries = retries;
661
662 mrq.cmd = cmd;
663 cmd->data = NULL;
664
665 mmc_wait_for_req(host, &mrq);
666
667 return cmd->error;
668 }
669
670 EXPORT_SYMBOL(mmc_wait_for_cmd);
671
672 /**
673 * mmc_stop_bkops - stop ongoing BKOPS
674 * @card: MMC card to check BKOPS
675 *
676 * Send HPI command to stop ongoing background operations to
677 * allow rapid servicing of foreground operations, e.g. read/
678 * writes. Wait until the card comes out of the programming state
679 * to avoid errors in servicing read/write requests.
680 */
681 int mmc_stop_bkops(struct mmc_card *card)
682 {
683 int err = 0;
684
685 BUG_ON(!card);
686 err = mmc_interrupt_hpi(card);
687
688 /*
689 * If err is EINVAL, we can't issue an HPI.
690 * It should complete the BKOPS.
691 */
692 if (!err || (err == -EINVAL)) {
693 mmc_card_clr_doing_bkops(card);
694 err = 0;
695 }
696
697 return err;
698 }
699 EXPORT_SYMBOL(mmc_stop_bkops);
700
701 int mmc_read_bkops_status(struct mmc_card *card)
702 {
703 int err;
704 u8 *ext_csd;
705
706 /*
707 * In future work, we should consider storing the entire ext_csd.
708 */
709 ext_csd = kmalloc(512, GFP_KERNEL);
710 if (!ext_csd) {
711 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
712 mmc_hostname(card->host));
713 return -ENOMEM;
714 }
715
716 mmc_claim_host(card->host);
717 err = mmc_send_ext_csd(card, ext_csd);
718 mmc_release_host(card->host);
719 if (err)
720 goto out;
721
722 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
723 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
724 out:
725 kfree(ext_csd);
726 return err;
727 }
728 EXPORT_SYMBOL(mmc_read_bkops_status);
729
730 /**
731 * mmc_set_data_timeout - set the timeout for a data command
732 * @data: data phase for command
733 * @card: the MMC card associated with the data transfer
734 *
735 * Computes the data timeout parameters according to the
736 * correct algorithm given the card type.
737 */
738 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
739 {
740 unsigned int mult;
741
742 /*
743 * SDIO cards only define an upper 1 s limit on access.
744 */
745 if (mmc_card_sdio(card)) {
746 data->timeout_ns = 1000000000;
747 data->timeout_clks = 0;
748 return;
749 }
750
751 /*
752 * SD cards use a 100 multiplier rather than 10
753 */
754 mult = mmc_card_sd(card) ? 100 : 10;
755
756 /*
757 * Scale up the multiplier (and therefore the timeout) by
758 * the r2w factor for writes.
759 */
760 if (data->flags & MMC_DATA_WRITE)
761 mult <<= card->csd.r2w_factor;
762
763 data->timeout_ns = card->csd.tacc_ns * mult;
764 data->timeout_clks = card->csd.tacc_clks * mult;
765
766 /*
767 * SD cards also have an upper limit on the timeout.
768 */
769 if (mmc_card_sd(card)) {
770 unsigned int timeout_us, limit_us;
771
772 timeout_us = data->timeout_ns / 1000;
773 if (mmc_host_clk_rate(card->host))
774 timeout_us += data->timeout_clks * 1000 /
775 (mmc_host_clk_rate(card->host) / 1000);
776
777 if (data->flags & MMC_DATA_WRITE)
778 /*
779 * The MMC spec "It is strongly recommended
780 * for hosts to implement more than 500ms
781 * timeout value even if the card indicates
782 * the 250ms maximum busy length." Even the
783 * previous value of 300ms is known to be
784 * insufficient for some cards.
785 */
786 limit_us = 3000000;
787 else
788 limit_us = 100000;
789
790 /*
791 * SDHC cards always use these fixed values.
792 */
793 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
794 data->timeout_ns = limit_us * 1000;
795 data->timeout_clks = 0;
796 }
797 }
798
799 /*
800 * Some cards require longer data read timeout than indicated in CSD.
801 * Address this by setting the read timeout to a "reasonably high"
802 * value. For the cards tested, 300ms has proven enough. If necessary,
803 * this value can be increased if other problematic cards require this.
804 */
805 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
806 data->timeout_ns = 300000000;
807 data->timeout_clks = 0;
808 }
809
810 /*
811 * Some cards need very high timeouts if driven in SPI mode.
812 * The worst observed timeout was 900ms after writing a
813 * continuous stream of data until the internal logic
814 * overflowed.
815 */
816 if (mmc_host_is_spi(card->host)) {
817 if (data->flags & MMC_DATA_WRITE) {
818 if (data->timeout_ns < 1000000000)
819 data->timeout_ns = 1000000000; /* 1s */
820 } else {
821 if (data->timeout_ns < 100000000)
822 data->timeout_ns = 100000000; /* 100ms */
823 }
824 }
825 }
826 EXPORT_SYMBOL(mmc_set_data_timeout);
827
828 /**
829 * mmc_align_data_size - pads a transfer size to a more optimal value
830 * @card: the MMC card associated with the data transfer
831 * @sz: original transfer size
832 *
833 * Pads the original data size with a number of extra bytes in
834 * order to avoid controller bugs and/or performance hits
835 * (e.g. some controllers revert to PIO for certain sizes).
836 *
837 * Returns the improved size, which might be unmodified.
838 *
839 * Note that this function is only relevant when issuing a
840 * single scatter gather entry.
841 */
842 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
843 {
844 /*
845 * FIXME: We don't have a system for the controller to tell
846 * the core about its problems yet, so for now we just 32-bit
847 * align the size.
848 */
849 sz = ((sz + 3) / 4) * 4;
850
851 return sz;
852 }
853 EXPORT_SYMBOL(mmc_align_data_size);
854
855 /**
856 * __mmc_claim_host - exclusively claim a host
857 * @host: mmc host to claim
858 * @abort: whether or not the operation should be aborted
859 *
860 * Claim a host for a set of operations. If @abort is non null and
861 * dereference a non-zero value then this will return prematurely with
862 * that non-zero value without acquiring the lock. Returns zero
863 * with the lock held otherwise.
864 */
865 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
866 {
867 DECLARE_WAITQUEUE(wait, current);
868 unsigned long flags;
869 int stop;
870
871 might_sleep();
872
873 add_wait_queue(&host->wq, &wait);
874 spin_lock_irqsave(&host->lock, flags);
875 while (1) {
876 set_current_state(TASK_UNINTERRUPTIBLE);
877 stop = abort ? atomic_read(abort) : 0;
878 if (stop || !host->claimed || host->claimer == current)
879 break;
880 spin_unlock_irqrestore(&host->lock, flags);
881 schedule();
882 spin_lock_irqsave(&host->lock, flags);
883 }
884 set_current_state(TASK_RUNNING);
885 if (!stop) {
886 host->claimed = 1;
887 host->claimer = current;
888 host->claim_cnt += 1;
889 } else
890 wake_up(&host->wq);
891 spin_unlock_irqrestore(&host->lock, flags);
892 remove_wait_queue(&host->wq, &wait);
893 if (host->ops->enable && !stop && host->claim_cnt == 1)
894 host->ops->enable(host);
895 return stop;
896 }
897
898 EXPORT_SYMBOL(__mmc_claim_host);
899
900 /**
901 * mmc_try_claim_host - try exclusively to claim a host
902 * @host: mmc host to claim
903 *
904 * Returns %1 if the host is claimed, %0 otherwise.
905 */
906 int mmc_try_claim_host(struct mmc_host *host)
907 {
908 int claimed_host = 0;
909 unsigned long flags;
910
911 spin_lock_irqsave(&host->lock, flags);
912 if (!host->claimed || host->claimer == current) {
913 host->claimed = 1;
914 host->claimer = current;
915 host->claim_cnt += 1;
916 claimed_host = 1;
917 }
918 spin_unlock_irqrestore(&host->lock, flags);
919 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
920 host->ops->enable(host);
921 return claimed_host;
922 }
923 EXPORT_SYMBOL(mmc_try_claim_host);
924
925 /**
926 * mmc_release_host - release a host
927 * @host: mmc host to release
928 *
929 * Release a MMC host, allowing others to claim the host
930 * for their operations.
931 */
932 void mmc_release_host(struct mmc_host *host)
933 {
934 unsigned long flags;
935
936 WARN_ON(!host->claimed);
937
938 if (host->ops->disable && host->claim_cnt == 1)
939 host->ops->disable(host);
940
941 spin_lock_irqsave(&host->lock, flags);
942 if (--host->claim_cnt) {
943 /* Release for nested claim */
944 spin_unlock_irqrestore(&host->lock, flags);
945 } else {
946 host->claimed = 0;
947 host->claimer = NULL;
948 spin_unlock_irqrestore(&host->lock, flags);
949 wake_up(&host->wq);
950 }
951 }
952 EXPORT_SYMBOL(mmc_release_host);
953
954 /*
955 * Internal function that does the actual ios call to the host driver,
956 * optionally printing some debug output.
957 */
958 static inline void mmc_set_ios(struct mmc_host *host)
959 {
960 struct mmc_ios *ios = &host->ios;
961
962 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
963 "width %u timing %u\n",
964 mmc_hostname(host), ios->clock, ios->bus_mode,
965 ios->power_mode, ios->chip_select, ios->vdd,
966 ios->bus_width, ios->timing);
967
968 if (ios->clock > 0)
969 mmc_set_ungated(host);
970 host->ops->set_ios(host, ios);
971 }
972
973 /*
974 * Control chip select pin on a host.
975 */
976 void mmc_set_chip_select(struct mmc_host *host, int mode)
977 {
978 mmc_host_clk_hold(host);
979 host->ios.chip_select = mode;
980 mmc_set_ios(host);
981 mmc_host_clk_release(host);
982 }
983
984 /*
985 * Sets the host clock to the highest possible frequency that
986 * is below "hz".
987 */
988 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
989 {
990 WARN_ON(hz < host->f_min);
991
992 if (hz > host->f_max)
993 hz = host->f_max;
994
995 host->ios.clock = hz;
996 mmc_set_ios(host);
997 }
998
999 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1000 {
1001 mmc_host_clk_hold(host);
1002 __mmc_set_clock(host, hz);
1003 mmc_host_clk_release(host);
1004 }
1005
1006 #ifdef CONFIG_MMC_CLKGATE
1007 /*
1008 * This gates the clock by setting it to 0 Hz.
1009 */
1010 void mmc_gate_clock(struct mmc_host *host)
1011 {
1012 unsigned long flags;
1013
1014 spin_lock_irqsave(&host->clk_lock, flags);
1015 host->clk_old = host->ios.clock;
1016 host->ios.clock = 0;
1017 host->clk_gated = true;
1018 spin_unlock_irqrestore(&host->clk_lock, flags);
1019 mmc_set_ios(host);
1020 }
1021
1022 /*
1023 * This restores the clock from gating by using the cached
1024 * clock value.
1025 */
1026 void mmc_ungate_clock(struct mmc_host *host)
1027 {
1028 /*
1029 * We should previously have gated the clock, so the clock shall
1030 * be 0 here! The clock may however be 0 during initialization,
1031 * when some request operations are performed before setting
1032 * the frequency. When ungate is requested in that situation
1033 * we just ignore the call.
1034 */
1035 if (host->clk_old) {
1036 BUG_ON(host->ios.clock);
1037 /* This call will also set host->clk_gated to false */
1038 __mmc_set_clock(host, host->clk_old);
1039 }
1040 }
1041
1042 void mmc_set_ungated(struct mmc_host *host)
1043 {
1044 unsigned long flags;
1045
1046 /*
1047 * We've been given a new frequency while the clock is gated,
1048 * so make sure we regard this as ungating it.
1049 */
1050 spin_lock_irqsave(&host->clk_lock, flags);
1051 host->clk_gated = false;
1052 spin_unlock_irqrestore(&host->clk_lock, flags);
1053 }
1054
1055 #else
1056 void mmc_set_ungated(struct mmc_host *host)
1057 {
1058 }
1059 #endif
1060
1061 /*
1062 * Change the bus mode (open drain/push-pull) of a host.
1063 */
1064 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1065 {
1066 mmc_host_clk_hold(host);
1067 host->ios.bus_mode = mode;
1068 mmc_set_ios(host);
1069 mmc_host_clk_release(host);
1070 }
1071
1072 /*
1073 * Change data bus width of a host.
1074 */
1075 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1076 {
1077 mmc_host_clk_hold(host);
1078 host->ios.bus_width = width;
1079 mmc_set_ios(host);
1080 mmc_host_clk_release(host);
1081 }
1082
1083 /**
1084 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1085 * @vdd: voltage (mV)
1086 * @low_bits: prefer low bits in boundary cases
1087 *
1088 * This function returns the OCR bit number according to the provided @vdd
1089 * value. If conversion is not possible a negative errno value returned.
1090 *
1091 * Depending on the @low_bits flag the function prefers low or high OCR bits
1092 * on boundary voltages. For example,
1093 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1094 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1095 *
1096 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1097 */
1098 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1099 {
1100 const int max_bit = ilog2(MMC_VDD_35_36);
1101 int bit;
1102
1103 if (vdd < 1650 || vdd > 3600)
1104 return -EINVAL;
1105
1106 if (vdd >= 1650 && vdd <= 1950)
1107 return ilog2(MMC_VDD_165_195);
1108
1109 if (low_bits)
1110 vdd -= 1;
1111
1112 /* Base 2000 mV, step 100 mV, bit's base 8. */
1113 bit = (vdd - 2000) / 100 + 8;
1114 if (bit > max_bit)
1115 return max_bit;
1116 return bit;
1117 }
1118
1119 /**
1120 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1121 * @vdd_min: minimum voltage value (mV)
1122 * @vdd_max: maximum voltage value (mV)
1123 *
1124 * This function returns the OCR mask bits according to the provided @vdd_min
1125 * and @vdd_max values. If conversion is not possible the function returns 0.
1126 *
1127 * Notes wrt boundary cases:
1128 * This function sets the OCR bits for all boundary voltages, for example
1129 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1130 * MMC_VDD_34_35 mask.
1131 */
1132 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1133 {
1134 u32 mask = 0;
1135
1136 if (vdd_max < vdd_min)
1137 return 0;
1138
1139 /* Prefer high bits for the boundary vdd_max values. */
1140 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1141 if (vdd_max < 0)
1142 return 0;
1143
1144 /* Prefer low bits for the boundary vdd_min values. */
1145 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1146 if (vdd_min < 0)
1147 return 0;
1148
1149 /* Fill the mask, from max bit to min bit. */
1150 while (vdd_max >= vdd_min)
1151 mask |= 1 << vdd_max--;
1152
1153 return mask;
1154 }
1155 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1156
1157 #ifdef CONFIG_REGULATOR
1158
1159 /**
1160 * mmc_regulator_get_ocrmask - return mask of supported voltages
1161 * @supply: regulator to use
1162 *
1163 * This returns either a negative errno, or a mask of voltages that
1164 * can be provided to MMC/SD/SDIO devices using the specified voltage
1165 * regulator. This would normally be called before registering the
1166 * MMC host adapter.
1167 */
1168 int mmc_regulator_get_ocrmask(struct regulator *supply)
1169 {
1170 int result = 0;
1171 int count;
1172 int i;
1173
1174 count = regulator_count_voltages(supply);
1175 if (count < 0)
1176 return count;
1177
1178 for (i = 0; i < count; i++) {
1179 int vdd_uV;
1180 int vdd_mV;
1181
1182 vdd_uV = regulator_list_voltage(supply, i);
1183 if (vdd_uV <= 0)
1184 continue;
1185
1186 vdd_mV = vdd_uV / 1000;
1187 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1188 }
1189
1190 return result;
1191 }
1192 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1193
1194 /**
1195 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1196 * @mmc: the host to regulate
1197 * @supply: regulator to use
1198 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1199 *
1200 * Returns zero on success, else negative errno.
1201 *
1202 * MMC host drivers may use this to enable or disable a regulator using
1203 * a particular supply voltage. This would normally be called from the
1204 * set_ios() method.
1205 */
1206 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1207 struct regulator *supply,
1208 unsigned short vdd_bit)
1209 {
1210 int result = 0;
1211 int min_uV, max_uV;
1212
1213 if (vdd_bit) {
1214 int tmp;
1215 int voltage;
1216
1217 /*
1218 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1219 * bits this regulator doesn't quite support ... don't
1220 * be too picky, most cards and regulators are OK with
1221 * a 0.1V range goof (it's a small error percentage).
1222 */
1223 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1224 if (tmp == 0) {
1225 min_uV = 1650 * 1000;
1226 max_uV = 1950 * 1000;
1227 } else {
1228 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1229 max_uV = min_uV + 100 * 1000;
1230 }
1231
1232 /*
1233 * If we're using a fixed/static regulator, don't call
1234 * regulator_set_voltage; it would fail.
1235 */
1236 voltage = regulator_get_voltage(supply);
1237
1238 if (!regulator_can_change_voltage(supply))
1239 min_uV = max_uV = voltage;
1240
1241 if (voltage < 0)
1242 result = voltage;
1243 else if (voltage < min_uV || voltage > max_uV)
1244 result = regulator_set_voltage(supply, min_uV, max_uV);
1245 else
1246 result = 0;
1247
1248 if (result == 0 && !mmc->regulator_enabled) {
1249 result = regulator_enable(supply);
1250 if (!result)
1251 mmc->regulator_enabled = true;
1252 }
1253 } else if (mmc->regulator_enabled) {
1254 result = regulator_disable(supply);
1255 if (result == 0)
1256 mmc->regulator_enabled = false;
1257 }
1258
1259 if (result)
1260 dev_err(mmc_dev(mmc),
1261 "could not set regulator OCR (%d)\n", result);
1262 return result;
1263 }
1264 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1265
1266 int mmc_regulator_get_supply(struct mmc_host *mmc)
1267 {
1268 struct device *dev = mmc_dev(mmc);
1269 struct regulator *supply;
1270 int ret;
1271
1272 supply = devm_regulator_get(dev, "vmmc");
1273 mmc->supply.vmmc = supply;
1274 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1275
1276 if (IS_ERR(supply))
1277 return PTR_ERR(supply);
1278
1279 ret = mmc_regulator_get_ocrmask(supply);
1280 if (ret > 0)
1281 mmc->ocr_avail = ret;
1282 else
1283 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1284
1285 return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1288
1289 #endif /* CONFIG_REGULATOR */
1290
1291 /*
1292 * Mask off any voltages we don't support and select
1293 * the lowest voltage
1294 */
1295 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1296 {
1297 int bit;
1298
1299 ocr &= host->ocr_avail;
1300
1301 bit = ffs(ocr);
1302 if (bit) {
1303 bit -= 1;
1304
1305 ocr &= 3 << bit;
1306
1307 mmc_host_clk_hold(host);
1308 host->ios.vdd = bit;
1309 mmc_set_ios(host);
1310 mmc_host_clk_release(host);
1311 } else {
1312 pr_warning("%s: host doesn't support card's voltages\n",
1313 mmc_hostname(host));
1314 ocr = 0;
1315 }
1316
1317 return ocr;
1318 }
1319
1320 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1321 {
1322 int err = 0;
1323 int old_signal_voltage = host->ios.signal_voltage;
1324
1325 host->ios.signal_voltage = signal_voltage;
1326 if (host->ops->start_signal_voltage_switch) {
1327 mmc_host_clk_hold(host);
1328 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1329 mmc_host_clk_release(host);
1330 }
1331
1332 if (err)
1333 host->ios.signal_voltage = old_signal_voltage;
1334
1335 return err;
1336
1337 }
1338
1339 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1340 {
1341 struct mmc_command cmd = {0};
1342 int err = 0;
1343 u32 clock;
1344
1345 BUG_ON(!host);
1346
1347 /*
1348 * Send CMD11 only if the request is to switch the card to
1349 * 1.8V signalling.
1350 */
1351 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1352 return __mmc_set_signal_voltage(host, signal_voltage);
1353
1354 /*
1355 * If we cannot switch voltages, return failure so the caller
1356 * can continue without UHS mode
1357 */
1358 if (!host->ops->start_signal_voltage_switch)
1359 return -EPERM;
1360 if (!host->ops->card_busy)
1361 pr_warning("%s: cannot verify signal voltage switch\n",
1362 mmc_hostname(host));
1363
1364 cmd.opcode = SD_SWITCH_VOLTAGE;
1365 cmd.arg = 0;
1366 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1367
1368 err = mmc_wait_for_cmd(host, &cmd, 0);
1369 if (err)
1370 return err;
1371
1372 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1373 return -EIO;
1374
1375 mmc_host_clk_hold(host);
1376 /*
1377 * The card should drive cmd and dat[0:3] low immediately
1378 * after the response of cmd11, but wait 1 ms to be sure
1379 */
1380 mmc_delay(1);
1381 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1382 err = -EAGAIN;
1383 goto power_cycle;
1384 }
1385 /*
1386 * During a signal voltage level switch, the clock must be gated
1387 * for 5 ms according to the SD spec
1388 */
1389 clock = host->ios.clock;
1390 host->ios.clock = 0;
1391 mmc_set_ios(host);
1392
1393 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1394 /*
1395 * Voltages may not have been switched, but we've already
1396 * sent CMD11, so a power cycle is required anyway
1397 */
1398 err = -EAGAIN;
1399 goto power_cycle;
1400 }
1401
1402 /* Keep clock gated for at least 5 ms */
1403 mmc_delay(5);
1404 host->ios.clock = clock;
1405 mmc_set_ios(host);
1406
1407 /* Wait for at least 1 ms according to spec */
1408 mmc_delay(1);
1409
1410 /*
1411 * Failure to switch is indicated by the card holding
1412 * dat[0:3] low
1413 */
1414 if (host->ops->card_busy && host->ops->card_busy(host))
1415 err = -EAGAIN;
1416
1417 power_cycle:
1418 if (err) {
1419 pr_debug("%s: Signal voltage switch failed, "
1420 "power cycling card\n", mmc_hostname(host));
1421 mmc_power_cycle(host);
1422 }
1423
1424 mmc_host_clk_release(host);
1425
1426 return err;
1427 }
1428
1429 /*
1430 * Select timing parameters for host.
1431 */
1432 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1433 {
1434 mmc_host_clk_hold(host);
1435 host->ios.timing = timing;
1436 mmc_set_ios(host);
1437 mmc_host_clk_release(host);
1438 }
1439
1440 /*
1441 * Select appropriate driver type for host.
1442 */
1443 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1444 {
1445 mmc_host_clk_hold(host);
1446 host->ios.drv_type = drv_type;
1447 mmc_set_ios(host);
1448 mmc_host_clk_release(host);
1449 }
1450
1451 /*
1452 * Apply power to the MMC stack. This is a two-stage process.
1453 * First, we enable power to the card without the clock running.
1454 * We then wait a bit for the power to stabilise. Finally,
1455 * enable the bus drivers and clock to the card.
1456 *
1457 * We must _NOT_ enable the clock prior to power stablising.
1458 *
1459 * If a host does all the power sequencing itself, ignore the
1460 * initial MMC_POWER_UP stage.
1461 */
1462 static void mmc_power_up(struct mmc_host *host)
1463 {
1464 int bit;
1465
1466 if (host->ios.power_mode == MMC_POWER_ON)
1467 return;
1468
1469 mmc_host_clk_hold(host);
1470
1471 /* If ocr is set, we use it */
1472 if (host->ocr)
1473 bit = ffs(host->ocr) - 1;
1474 else
1475 bit = fls(host->ocr_avail) - 1;
1476
1477 host->ios.vdd = bit;
1478 if (mmc_host_is_spi(host))
1479 host->ios.chip_select = MMC_CS_HIGH;
1480 else
1481 host->ios.chip_select = MMC_CS_DONTCARE;
1482 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1483 host->ios.power_mode = MMC_POWER_UP;
1484 host->ios.bus_width = MMC_BUS_WIDTH_1;
1485 host->ios.timing = MMC_TIMING_LEGACY;
1486 mmc_set_ios(host);
1487
1488 /* Set signal voltage to 3.3V */
1489 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1490
1491 /*
1492 * This delay should be sufficient to allow the power supply
1493 * to reach the minimum voltage.
1494 */
1495 mmc_delay(10);
1496
1497 host->ios.clock = host->f_init;
1498
1499 host->ios.power_mode = MMC_POWER_ON;
1500 mmc_set_ios(host);
1501
1502 /*
1503 * This delay must be at least 74 clock sizes, or 1 ms, or the
1504 * time required to reach a stable voltage.
1505 */
1506 mmc_delay(10);
1507
1508 mmc_host_clk_release(host);
1509 }
1510
1511 void mmc_power_off(struct mmc_host *host)
1512 {
1513 if (host->ios.power_mode == MMC_POWER_OFF)
1514 return;
1515
1516 mmc_host_clk_hold(host);
1517
1518 host->ios.clock = 0;
1519 host->ios.vdd = 0;
1520
1521
1522 /*
1523 * Reset ocr mask to be the highest possible voltage supported for
1524 * this mmc host. This value will be used at next power up.
1525 */
1526 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1527
1528 if (!mmc_host_is_spi(host)) {
1529 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1530 host->ios.chip_select = MMC_CS_DONTCARE;
1531 }
1532 host->ios.power_mode = MMC_POWER_OFF;
1533 host->ios.bus_width = MMC_BUS_WIDTH_1;
1534 host->ios.timing = MMC_TIMING_LEGACY;
1535 mmc_set_ios(host);
1536
1537 /*
1538 * Some configurations, such as the 802.11 SDIO card in the OLPC
1539 * XO-1.5, require a short delay after poweroff before the card
1540 * can be successfully turned on again.
1541 */
1542 mmc_delay(1);
1543
1544 mmc_host_clk_release(host);
1545 }
1546
1547 void mmc_power_cycle(struct mmc_host *host)
1548 {
1549 mmc_power_off(host);
1550 /* Wait at least 1 ms according to SD spec */
1551 mmc_delay(1);
1552 mmc_power_up(host);
1553 }
1554
1555 /*
1556 * Cleanup when the last reference to the bus operator is dropped.
1557 */
1558 static void __mmc_release_bus(struct mmc_host *host)
1559 {
1560 BUG_ON(!host);
1561 BUG_ON(host->bus_refs);
1562 BUG_ON(!host->bus_dead);
1563
1564 host->bus_ops = NULL;
1565 }
1566
1567 /*
1568 * Increase reference count of bus operator
1569 */
1570 static inline void mmc_bus_get(struct mmc_host *host)
1571 {
1572 unsigned long flags;
1573
1574 spin_lock_irqsave(&host->lock, flags);
1575 host->bus_refs++;
1576 spin_unlock_irqrestore(&host->lock, flags);
1577 }
1578
1579 /*
1580 * Decrease reference count of bus operator and free it if
1581 * it is the last reference.
1582 */
1583 static inline void mmc_bus_put(struct mmc_host *host)
1584 {
1585 unsigned long flags;
1586
1587 spin_lock_irqsave(&host->lock, flags);
1588 host->bus_refs--;
1589 if ((host->bus_refs == 0) && host->bus_ops)
1590 __mmc_release_bus(host);
1591 spin_unlock_irqrestore(&host->lock, flags);
1592 }
1593
1594 /*
1595 * Assign a mmc bus handler to a host. Only one bus handler may control a
1596 * host at any given time.
1597 */
1598 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1599 {
1600 unsigned long flags;
1601
1602 BUG_ON(!host);
1603 BUG_ON(!ops);
1604
1605 WARN_ON(!host->claimed);
1606
1607 spin_lock_irqsave(&host->lock, flags);
1608
1609 BUG_ON(host->bus_ops);
1610 BUG_ON(host->bus_refs);
1611
1612 host->bus_ops = ops;
1613 host->bus_refs = 1;
1614 host->bus_dead = 0;
1615
1616 spin_unlock_irqrestore(&host->lock, flags);
1617 }
1618
1619 /*
1620 * Remove the current bus handler from a host.
1621 */
1622 void mmc_detach_bus(struct mmc_host *host)
1623 {
1624 unsigned long flags;
1625
1626 BUG_ON(!host);
1627
1628 WARN_ON(!host->claimed);
1629 WARN_ON(!host->bus_ops);
1630
1631 spin_lock_irqsave(&host->lock, flags);
1632
1633 host->bus_dead = 1;
1634
1635 spin_unlock_irqrestore(&host->lock, flags);
1636
1637 mmc_bus_put(host);
1638 }
1639
1640 /**
1641 * mmc_detect_change - process change of state on a MMC socket
1642 * @host: host which changed state.
1643 * @delay: optional delay to wait before detection (jiffies)
1644 *
1645 * MMC drivers should call this when they detect a card has been
1646 * inserted or removed. The MMC layer will confirm that any
1647 * present card is still functional, and initialize any newly
1648 * inserted.
1649 */
1650 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1651 {
1652 #ifdef CONFIG_MMC_DEBUG
1653 unsigned long flags;
1654 spin_lock_irqsave(&host->lock, flags);
1655 WARN_ON(host->removed);
1656 spin_unlock_irqrestore(&host->lock, flags);
1657 #endif
1658 host->detect_change = 1;
1659 mmc_schedule_delayed_work(&host->detect, delay);
1660 }
1661
1662 EXPORT_SYMBOL(mmc_detect_change);
1663
1664 void mmc_init_erase(struct mmc_card *card)
1665 {
1666 unsigned int sz;
1667
1668 if (is_power_of_2(card->erase_size))
1669 card->erase_shift = ffs(card->erase_size) - 1;
1670 else
1671 card->erase_shift = 0;
1672
1673 /*
1674 * It is possible to erase an arbitrarily large area of an SD or MMC
1675 * card. That is not desirable because it can take a long time
1676 * (minutes) potentially delaying more important I/O, and also the
1677 * timeout calculations become increasingly hugely over-estimated.
1678 * Consequently, 'pref_erase' is defined as a guide to limit erases
1679 * to that size and alignment.
1680 *
1681 * For SD cards that define Allocation Unit size, limit erases to one
1682 * Allocation Unit at a time. For MMC cards that define High Capacity
1683 * Erase Size, whether it is switched on or not, limit to that size.
1684 * Otherwise just have a stab at a good value. For modern cards it
1685 * will end up being 4MiB. Note that if the value is too small, it
1686 * can end up taking longer to erase.
1687 */
1688 if (mmc_card_sd(card) && card->ssr.au) {
1689 card->pref_erase = card->ssr.au;
1690 card->erase_shift = ffs(card->ssr.au) - 1;
1691 } else if (card->ext_csd.hc_erase_size) {
1692 card->pref_erase = card->ext_csd.hc_erase_size;
1693 } else {
1694 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1695 if (sz < 128)
1696 card->pref_erase = 512 * 1024 / 512;
1697 else if (sz < 512)
1698 card->pref_erase = 1024 * 1024 / 512;
1699 else if (sz < 1024)
1700 card->pref_erase = 2 * 1024 * 1024 / 512;
1701 else
1702 card->pref_erase = 4 * 1024 * 1024 / 512;
1703 if (card->pref_erase < card->erase_size)
1704 card->pref_erase = card->erase_size;
1705 else {
1706 sz = card->pref_erase % card->erase_size;
1707 if (sz)
1708 card->pref_erase += card->erase_size - sz;
1709 }
1710 }
1711 }
1712
1713 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1714 unsigned int arg, unsigned int qty)
1715 {
1716 unsigned int erase_timeout;
1717
1718 if (arg == MMC_DISCARD_ARG ||
1719 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1720 erase_timeout = card->ext_csd.trim_timeout;
1721 } else if (card->ext_csd.erase_group_def & 1) {
1722 /* High Capacity Erase Group Size uses HC timeouts */
1723 if (arg == MMC_TRIM_ARG)
1724 erase_timeout = card->ext_csd.trim_timeout;
1725 else
1726 erase_timeout = card->ext_csd.hc_erase_timeout;
1727 } else {
1728 /* CSD Erase Group Size uses write timeout */
1729 unsigned int mult = (10 << card->csd.r2w_factor);
1730 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1731 unsigned int timeout_us;
1732
1733 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1734 if (card->csd.tacc_ns < 1000000)
1735 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1736 else
1737 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1738
1739 /*
1740 * ios.clock is only a target. The real clock rate might be
1741 * less but not that much less, so fudge it by multiplying by 2.
1742 */
1743 timeout_clks <<= 1;
1744 timeout_us += (timeout_clks * 1000) /
1745 (mmc_host_clk_rate(card->host) / 1000);
1746
1747 erase_timeout = timeout_us / 1000;
1748
1749 /*
1750 * Theoretically, the calculation could underflow so round up
1751 * to 1ms in that case.
1752 */
1753 if (!erase_timeout)
1754 erase_timeout = 1;
1755 }
1756
1757 /* Multiplier for secure operations */
1758 if (arg & MMC_SECURE_ARGS) {
1759 if (arg == MMC_SECURE_ERASE_ARG)
1760 erase_timeout *= card->ext_csd.sec_erase_mult;
1761 else
1762 erase_timeout *= card->ext_csd.sec_trim_mult;
1763 }
1764
1765 erase_timeout *= qty;
1766
1767 /*
1768 * Ensure at least a 1 second timeout for SPI as per
1769 * 'mmc_set_data_timeout()'
1770 */
1771 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1772 erase_timeout = 1000;
1773
1774 return erase_timeout;
1775 }
1776
1777 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1778 unsigned int arg,
1779 unsigned int qty)
1780 {
1781 unsigned int erase_timeout;
1782
1783 if (card->ssr.erase_timeout) {
1784 /* Erase timeout specified in SD Status Register (SSR) */
1785 erase_timeout = card->ssr.erase_timeout * qty +
1786 card->ssr.erase_offset;
1787 } else {
1788 /*
1789 * Erase timeout not specified in SD Status Register (SSR) so
1790 * use 250ms per write block.
1791 */
1792 erase_timeout = 250 * qty;
1793 }
1794
1795 /* Must not be less than 1 second */
1796 if (erase_timeout < 1000)
1797 erase_timeout = 1000;
1798
1799 return erase_timeout;
1800 }
1801
1802 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1803 unsigned int arg,
1804 unsigned int qty)
1805 {
1806 if (mmc_card_sd(card))
1807 return mmc_sd_erase_timeout(card, arg, qty);
1808 else
1809 return mmc_mmc_erase_timeout(card, arg, qty);
1810 }
1811
1812 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1813 unsigned int to, unsigned int arg)
1814 {
1815 struct mmc_command cmd = {0};
1816 unsigned int qty = 0;
1817 unsigned long timeout;
1818 int err;
1819
1820 /*
1821 * qty is used to calculate the erase timeout which depends on how many
1822 * erase groups (or allocation units in SD terminology) are affected.
1823 * We count erasing part of an erase group as one erase group.
1824 * For SD, the allocation units are always a power of 2. For MMC, the
1825 * erase group size is almost certainly also power of 2, but it does not
1826 * seem to insist on that in the JEDEC standard, so we fall back to
1827 * division in that case. SD may not specify an allocation unit size,
1828 * in which case the timeout is based on the number of write blocks.
1829 *
1830 * Note that the timeout for secure trim 2 will only be correct if the
1831 * number of erase groups specified is the same as the total of all
1832 * preceding secure trim 1 commands. Since the power may have been
1833 * lost since the secure trim 1 commands occurred, it is generally
1834 * impossible to calculate the secure trim 2 timeout correctly.
1835 */
1836 if (card->erase_shift)
1837 qty += ((to >> card->erase_shift) -
1838 (from >> card->erase_shift)) + 1;
1839 else if (mmc_card_sd(card))
1840 qty += to - from + 1;
1841 else
1842 qty += ((to / card->erase_size) -
1843 (from / card->erase_size)) + 1;
1844
1845 if (!mmc_card_blockaddr(card)) {
1846 from <<= 9;
1847 to <<= 9;
1848 }
1849
1850 if (mmc_card_sd(card))
1851 cmd.opcode = SD_ERASE_WR_BLK_START;
1852 else
1853 cmd.opcode = MMC_ERASE_GROUP_START;
1854 cmd.arg = from;
1855 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1856 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1857 if (err) {
1858 pr_err("mmc_erase: group start error %d, "
1859 "status %#x\n", err, cmd.resp[0]);
1860 err = -EIO;
1861 goto out;
1862 }
1863
1864 memset(&cmd, 0, sizeof(struct mmc_command));
1865 if (mmc_card_sd(card))
1866 cmd.opcode = SD_ERASE_WR_BLK_END;
1867 else
1868 cmd.opcode = MMC_ERASE_GROUP_END;
1869 cmd.arg = to;
1870 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1871 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1872 if (err) {
1873 pr_err("mmc_erase: group end error %d, status %#x\n",
1874 err, cmd.resp[0]);
1875 err = -EIO;
1876 goto out;
1877 }
1878
1879 memset(&cmd, 0, sizeof(struct mmc_command));
1880 cmd.opcode = MMC_ERASE;
1881 cmd.arg = arg;
1882 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1883 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1884 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1885 if (err) {
1886 pr_err("mmc_erase: erase error %d, status %#x\n",
1887 err, cmd.resp[0]);
1888 err = -EIO;
1889 goto out;
1890 }
1891
1892 if (mmc_host_is_spi(card->host))
1893 goto out;
1894
1895 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1896 do {
1897 memset(&cmd, 0, sizeof(struct mmc_command));
1898 cmd.opcode = MMC_SEND_STATUS;
1899 cmd.arg = card->rca << 16;
1900 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1901 /* Do not retry else we can't see errors */
1902 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1903 if (err || (cmd.resp[0] & 0xFDF92000)) {
1904 pr_err("error %d requesting status %#x\n",
1905 err, cmd.resp[0]);
1906 err = -EIO;
1907 goto out;
1908 }
1909
1910 /* Timeout if the device never becomes ready for data and
1911 * never leaves the program state.
1912 */
1913 if (time_after(jiffies, timeout)) {
1914 pr_err("%s: Card stuck in programming state! %s\n",
1915 mmc_hostname(card->host), __func__);
1916 err = -EIO;
1917 goto out;
1918 }
1919
1920 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1921 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1922 out:
1923 return err;
1924 }
1925
1926 /**
1927 * mmc_erase - erase sectors.
1928 * @card: card to erase
1929 * @from: first sector to erase
1930 * @nr: number of sectors to erase
1931 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1932 *
1933 * Caller must claim host before calling this function.
1934 */
1935 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1936 unsigned int arg)
1937 {
1938 unsigned int rem, to = from + nr;
1939
1940 if (!(card->host->caps & MMC_CAP_ERASE) ||
1941 !(card->csd.cmdclass & CCC_ERASE))
1942 return -EOPNOTSUPP;
1943
1944 if (!card->erase_size)
1945 return -EOPNOTSUPP;
1946
1947 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1948 return -EOPNOTSUPP;
1949
1950 if ((arg & MMC_SECURE_ARGS) &&
1951 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1952 return -EOPNOTSUPP;
1953
1954 if ((arg & MMC_TRIM_ARGS) &&
1955 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1956 return -EOPNOTSUPP;
1957
1958 if (arg == MMC_SECURE_ERASE_ARG) {
1959 if (from % card->erase_size || nr % card->erase_size)
1960 return -EINVAL;
1961 }
1962
1963 if (arg == MMC_ERASE_ARG) {
1964 rem = from % card->erase_size;
1965 if (rem) {
1966 rem = card->erase_size - rem;
1967 from += rem;
1968 if (nr > rem)
1969 nr -= rem;
1970 else
1971 return 0;
1972 }
1973 rem = nr % card->erase_size;
1974 if (rem)
1975 nr -= rem;
1976 }
1977
1978 if (nr == 0)
1979 return 0;
1980
1981 to = from + nr;
1982
1983 if (to <= from)
1984 return -EINVAL;
1985
1986 /* 'from' and 'to' are inclusive */
1987 to -= 1;
1988
1989 return mmc_do_erase(card, from, to, arg);
1990 }
1991 EXPORT_SYMBOL(mmc_erase);
1992
1993 int mmc_can_erase(struct mmc_card *card)
1994 {
1995 if ((card->host->caps & MMC_CAP_ERASE) &&
1996 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1997 return 1;
1998 return 0;
1999 }
2000 EXPORT_SYMBOL(mmc_can_erase);
2001
2002 int mmc_can_trim(struct mmc_card *card)
2003 {
2004 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2005 return 1;
2006 return 0;
2007 }
2008 EXPORT_SYMBOL(mmc_can_trim);
2009
2010 int mmc_can_discard(struct mmc_card *card)
2011 {
2012 /*
2013 * As there's no way to detect the discard support bit at v4.5
2014 * use the s/w feature support filed.
2015 */
2016 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2017 return 1;
2018 return 0;
2019 }
2020 EXPORT_SYMBOL(mmc_can_discard);
2021
2022 int mmc_can_sanitize(struct mmc_card *card)
2023 {
2024 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2025 return 0;
2026 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2027 return 1;
2028 return 0;
2029 }
2030 EXPORT_SYMBOL(mmc_can_sanitize);
2031
2032 int mmc_can_secure_erase_trim(struct mmc_card *card)
2033 {
2034 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2035 return 1;
2036 return 0;
2037 }
2038 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2039
2040 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2041 unsigned int nr)
2042 {
2043 if (!card->erase_size)
2044 return 0;
2045 if (from % card->erase_size || nr % card->erase_size)
2046 return 0;
2047 return 1;
2048 }
2049 EXPORT_SYMBOL(mmc_erase_group_aligned);
2050
2051 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2052 unsigned int arg)
2053 {
2054 struct mmc_host *host = card->host;
2055 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2056 unsigned int last_timeout = 0;
2057
2058 if (card->erase_shift)
2059 max_qty = UINT_MAX >> card->erase_shift;
2060 else if (mmc_card_sd(card))
2061 max_qty = UINT_MAX;
2062 else
2063 max_qty = UINT_MAX / card->erase_size;
2064
2065 /* Find the largest qty with an OK timeout */
2066 do {
2067 y = 0;
2068 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2069 timeout = mmc_erase_timeout(card, arg, qty + x);
2070 if (timeout > host->max_discard_to)
2071 break;
2072 if (timeout < last_timeout)
2073 break;
2074 last_timeout = timeout;
2075 y = x;
2076 }
2077 qty += y;
2078 } while (y);
2079
2080 if (!qty)
2081 return 0;
2082
2083 if (qty == 1)
2084 return 1;
2085
2086 /* Convert qty to sectors */
2087 if (card->erase_shift)
2088 max_discard = --qty << card->erase_shift;
2089 else if (mmc_card_sd(card))
2090 max_discard = qty;
2091 else
2092 max_discard = --qty * card->erase_size;
2093
2094 return max_discard;
2095 }
2096
2097 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2098 {
2099 struct mmc_host *host = card->host;
2100 unsigned int max_discard, max_trim;
2101
2102 if (!host->max_discard_to)
2103 return UINT_MAX;
2104
2105 /*
2106 * Without erase_group_def set, MMC erase timeout depends on clock
2107 * frequence which can change. In that case, the best choice is
2108 * just the preferred erase size.
2109 */
2110 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2111 return card->pref_erase;
2112
2113 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2114 if (mmc_can_trim(card)) {
2115 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2116 if (max_trim < max_discard)
2117 max_discard = max_trim;
2118 } else if (max_discard < card->erase_size) {
2119 max_discard = 0;
2120 }
2121 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2122 mmc_hostname(host), max_discard, host->max_discard_to);
2123 return max_discard;
2124 }
2125 EXPORT_SYMBOL(mmc_calc_max_discard);
2126
2127 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2128 {
2129 struct mmc_command cmd = {0};
2130
2131 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2132 return 0;
2133
2134 cmd.opcode = MMC_SET_BLOCKLEN;
2135 cmd.arg = blocklen;
2136 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2137 return mmc_wait_for_cmd(card->host, &cmd, 5);
2138 }
2139 EXPORT_SYMBOL(mmc_set_blocklen);
2140
2141 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2142 bool is_rel_write)
2143 {
2144 struct mmc_command cmd = {0};
2145
2146 cmd.opcode = MMC_SET_BLOCK_COUNT;
2147 cmd.arg = blockcount & 0x0000FFFF;
2148 if (is_rel_write)
2149 cmd.arg |= 1 << 31;
2150 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2151 return mmc_wait_for_cmd(card->host, &cmd, 5);
2152 }
2153 EXPORT_SYMBOL(mmc_set_blockcount);
2154
2155 static void mmc_hw_reset_for_init(struct mmc_host *host)
2156 {
2157 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2158 return;
2159 mmc_host_clk_hold(host);
2160 host->ops->hw_reset(host);
2161 mmc_host_clk_release(host);
2162 }
2163
2164 int mmc_can_reset(struct mmc_card *card)
2165 {
2166 u8 rst_n_function;
2167
2168 if (!mmc_card_mmc(card))
2169 return 0;
2170 rst_n_function = card->ext_csd.rst_n_function;
2171 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2172 return 0;
2173 return 1;
2174 }
2175 EXPORT_SYMBOL(mmc_can_reset);
2176
2177 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2178 {
2179 struct mmc_card *card = host->card;
2180
2181 if (!host->bus_ops->power_restore)
2182 return -EOPNOTSUPP;
2183
2184 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2185 return -EOPNOTSUPP;
2186
2187 if (!card)
2188 return -EINVAL;
2189
2190 if (!mmc_can_reset(card))
2191 return -EOPNOTSUPP;
2192
2193 mmc_host_clk_hold(host);
2194 mmc_set_clock(host, host->f_init);
2195
2196 host->ops->hw_reset(host);
2197
2198 /* If the reset has happened, then a status command will fail */
2199 if (check) {
2200 struct mmc_command cmd = {0};
2201 int err;
2202
2203 cmd.opcode = MMC_SEND_STATUS;
2204 if (!mmc_host_is_spi(card->host))
2205 cmd.arg = card->rca << 16;
2206 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2207 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2208 if (!err) {
2209 mmc_host_clk_release(host);
2210 return -ENOSYS;
2211 }
2212 }
2213
2214 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2215 if (mmc_host_is_spi(host)) {
2216 host->ios.chip_select = MMC_CS_HIGH;
2217 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2218 } else {
2219 host->ios.chip_select = MMC_CS_DONTCARE;
2220 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2221 }
2222 host->ios.bus_width = MMC_BUS_WIDTH_1;
2223 host->ios.timing = MMC_TIMING_LEGACY;
2224 mmc_set_ios(host);
2225
2226 mmc_host_clk_release(host);
2227
2228 return host->bus_ops->power_restore(host);
2229 }
2230
2231 int mmc_hw_reset(struct mmc_host *host)
2232 {
2233 return mmc_do_hw_reset(host, 0);
2234 }
2235 EXPORT_SYMBOL(mmc_hw_reset);
2236
2237 int mmc_hw_reset_check(struct mmc_host *host)
2238 {
2239 return mmc_do_hw_reset(host, 1);
2240 }
2241 EXPORT_SYMBOL(mmc_hw_reset_check);
2242
2243 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2244 {
2245 host->f_init = freq;
2246
2247 #ifdef CONFIG_MMC_DEBUG
2248 pr_info("%s: %s: trying to init card at %u Hz\n",
2249 mmc_hostname(host), __func__, host->f_init);
2250 #endif
2251 mmc_power_up(host);
2252
2253 /*
2254 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2255 * do a hardware reset if possible.
2256 */
2257 mmc_hw_reset_for_init(host);
2258
2259 /*
2260 * sdio_reset sends CMD52 to reset card. Since we do not know
2261 * if the card is being re-initialized, just send it. CMD52
2262 * should be ignored by SD/eMMC cards.
2263 */
2264 sdio_reset(host);
2265 mmc_go_idle(host);
2266
2267 mmc_send_if_cond(host, host->ocr_avail);
2268
2269 /* Order's important: probe SDIO, then SD, then MMC */
2270 if (!mmc_attach_sdio(host))
2271 return 0;
2272 if (!mmc_attach_sd(host))
2273 return 0;
2274 if (!mmc_attach_mmc(host))
2275 return 0;
2276
2277 mmc_power_off(host);
2278 return -EIO;
2279 }
2280
2281 int _mmc_detect_card_removed(struct mmc_host *host)
2282 {
2283 int ret;
2284
2285 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2286 return 0;
2287
2288 if (!host->card || mmc_card_removed(host->card))
2289 return 1;
2290
2291 ret = host->bus_ops->alive(host);
2292
2293 /*
2294 * Card detect status and alive check may be out of sync if card is
2295 * removed slowly, when card detect switch changes while card/slot
2296 * pads are still contacted in hardware (refer to "SD Card Mechanical
2297 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2298 * detect work 200ms later for this case.
2299 */
2300 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2301 mmc_detect_change(host, msecs_to_jiffies(200));
2302 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2303 }
2304
2305 if (ret) {
2306 mmc_card_set_removed(host->card);
2307 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2308 }
2309
2310 return ret;
2311 }
2312
2313 int mmc_detect_card_removed(struct mmc_host *host)
2314 {
2315 struct mmc_card *card = host->card;
2316 int ret;
2317
2318 WARN_ON(!host->claimed);
2319
2320 if (!card)
2321 return 1;
2322
2323 ret = mmc_card_removed(card);
2324 /*
2325 * The card will be considered unchanged unless we have been asked to
2326 * detect a change or host requires polling to provide card detection.
2327 */
2328 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2329 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2330 return ret;
2331
2332 host->detect_change = 0;
2333 if (!ret) {
2334 ret = _mmc_detect_card_removed(host);
2335 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2336 /*
2337 * Schedule a detect work as soon as possible to let a
2338 * rescan handle the card removal.
2339 */
2340 cancel_delayed_work(&host->detect);
2341 mmc_detect_change(host, 0);
2342 }
2343 }
2344
2345 return ret;
2346 }
2347 EXPORT_SYMBOL(mmc_detect_card_removed);
2348
2349 void mmc_rescan(struct work_struct *work)
2350 {
2351 struct mmc_host *host =
2352 container_of(work, struct mmc_host, detect.work);
2353 int i;
2354
2355 if (host->rescan_disable)
2356 return;
2357
2358 /* If there is a non-removable card registered, only scan once */
2359 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2360 return;
2361 host->rescan_entered = 1;
2362
2363 mmc_bus_get(host);
2364
2365 /*
2366 * if there is a _removable_ card registered, check whether it is
2367 * still present
2368 */
2369 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2370 && !(host->caps & MMC_CAP_NONREMOVABLE))
2371 host->bus_ops->detect(host);
2372
2373 host->detect_change = 0;
2374
2375 /*
2376 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2377 * the card is no longer present.
2378 */
2379 mmc_bus_put(host);
2380 mmc_bus_get(host);
2381
2382 /* if there still is a card present, stop here */
2383 if (host->bus_ops != NULL) {
2384 mmc_bus_put(host);
2385 goto out;
2386 }
2387
2388 /*
2389 * Only we can add a new handler, so it's safe to
2390 * release the lock here.
2391 */
2392 mmc_bus_put(host);
2393
2394 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2395 mmc_claim_host(host);
2396 mmc_power_off(host);
2397 mmc_release_host(host);
2398 goto out;
2399 }
2400
2401 mmc_claim_host(host);
2402 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2403 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2404 break;
2405 if (freqs[i] <= host->f_min)
2406 break;
2407 }
2408 mmc_release_host(host);
2409
2410 out:
2411 if (host->caps & MMC_CAP_NEEDS_POLL)
2412 mmc_schedule_delayed_work(&host->detect, HZ);
2413 }
2414
2415 void mmc_start_host(struct mmc_host *host)
2416 {
2417 host->f_init = max(freqs[0], host->f_min);
2418 host->rescan_disable = 0;
2419 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2420 mmc_power_off(host);
2421 else
2422 mmc_power_up(host);
2423 mmc_detect_change(host, 0);
2424 }
2425
2426 void mmc_stop_host(struct mmc_host *host)
2427 {
2428 #ifdef CONFIG_MMC_DEBUG
2429 unsigned long flags;
2430 spin_lock_irqsave(&host->lock, flags);
2431 host->removed = 1;
2432 spin_unlock_irqrestore(&host->lock, flags);
2433 #endif
2434
2435 host->rescan_disable = 1;
2436 cancel_delayed_work_sync(&host->detect);
2437 mmc_flush_scheduled_work();
2438
2439 /* clear pm flags now and let card drivers set them as needed */
2440 host->pm_flags = 0;
2441
2442 mmc_bus_get(host);
2443 if (host->bus_ops && !host->bus_dead) {
2444 /* Calling bus_ops->remove() with a claimed host can deadlock */
2445 if (host->bus_ops->remove)
2446 host->bus_ops->remove(host);
2447
2448 mmc_claim_host(host);
2449 mmc_detach_bus(host);
2450 mmc_power_off(host);
2451 mmc_release_host(host);
2452 mmc_bus_put(host);
2453 return;
2454 }
2455 mmc_bus_put(host);
2456
2457 BUG_ON(host->card);
2458
2459 mmc_power_off(host);
2460 }
2461
2462 int mmc_power_save_host(struct mmc_host *host)
2463 {
2464 int ret = 0;
2465
2466 #ifdef CONFIG_MMC_DEBUG
2467 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2468 #endif
2469
2470 mmc_bus_get(host);
2471
2472 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2473 mmc_bus_put(host);
2474 return -EINVAL;
2475 }
2476
2477 if (host->bus_ops->power_save)
2478 ret = host->bus_ops->power_save(host);
2479
2480 mmc_bus_put(host);
2481
2482 mmc_power_off(host);
2483
2484 return ret;
2485 }
2486 EXPORT_SYMBOL(mmc_power_save_host);
2487
2488 int mmc_power_restore_host(struct mmc_host *host)
2489 {
2490 int ret;
2491
2492 #ifdef CONFIG_MMC_DEBUG
2493 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2494 #endif
2495
2496 mmc_bus_get(host);
2497
2498 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2499 mmc_bus_put(host);
2500 return -EINVAL;
2501 }
2502
2503 mmc_power_up(host);
2504 ret = host->bus_ops->power_restore(host);
2505
2506 mmc_bus_put(host);
2507
2508 return ret;
2509 }
2510 EXPORT_SYMBOL(mmc_power_restore_host);
2511
2512 int mmc_card_awake(struct mmc_host *host)
2513 {
2514 int err = -ENOSYS;
2515
2516 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2517 return 0;
2518
2519 mmc_bus_get(host);
2520
2521 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2522 err = host->bus_ops->awake(host);
2523
2524 mmc_bus_put(host);
2525
2526 return err;
2527 }
2528 EXPORT_SYMBOL(mmc_card_awake);
2529
2530 int mmc_card_sleep(struct mmc_host *host)
2531 {
2532 int err = -ENOSYS;
2533
2534 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2535 return 0;
2536
2537 mmc_bus_get(host);
2538
2539 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2540 err = host->bus_ops->sleep(host);
2541
2542 mmc_bus_put(host);
2543
2544 return err;
2545 }
2546 EXPORT_SYMBOL(mmc_card_sleep);
2547
2548 int mmc_card_can_sleep(struct mmc_host *host)
2549 {
2550 struct mmc_card *card = host->card;
2551
2552 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2553 return 1;
2554 return 0;
2555 }
2556 EXPORT_SYMBOL(mmc_card_can_sleep);
2557
2558 /*
2559 * Flush the cache to the non-volatile storage.
2560 */
2561 int mmc_flush_cache(struct mmc_card *card)
2562 {
2563 struct mmc_host *host = card->host;
2564 int err = 0;
2565
2566 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2567 return err;
2568
2569 if (mmc_card_mmc(card) &&
2570 (card->ext_csd.cache_size > 0) &&
2571 (card->ext_csd.cache_ctrl & 1)) {
2572 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2573 EXT_CSD_FLUSH_CACHE, 1, 0);
2574 if (err)
2575 pr_err("%s: cache flush error %d\n",
2576 mmc_hostname(card->host), err);
2577 }
2578
2579 return err;
2580 }
2581 EXPORT_SYMBOL(mmc_flush_cache);
2582
2583 /*
2584 * Turn the cache ON/OFF.
2585 * Turning the cache OFF shall trigger flushing of the data
2586 * to the non-volatile storage.
2587 * This function should be called with host claimed
2588 */
2589 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2590 {
2591 struct mmc_card *card = host->card;
2592 unsigned int timeout;
2593 int err = 0;
2594
2595 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2596 mmc_card_is_removable(host))
2597 return err;
2598
2599 if (card && mmc_card_mmc(card) &&
2600 (card->ext_csd.cache_size > 0)) {
2601 enable = !!enable;
2602
2603 if (card->ext_csd.cache_ctrl ^ enable) {
2604 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2605 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2606 EXT_CSD_CACHE_CTRL, enable, timeout);
2607 if (err)
2608 pr_err("%s: cache %s error %d\n",
2609 mmc_hostname(card->host),
2610 enable ? "on" : "off",
2611 err);
2612 else
2613 card->ext_csd.cache_ctrl = enable;
2614 }
2615 }
2616
2617 return err;
2618 }
2619 EXPORT_SYMBOL(mmc_cache_ctrl);
2620
2621 #ifdef CONFIG_PM
2622
2623 /**
2624 * mmc_suspend_host - suspend a host
2625 * @host: mmc host
2626 */
2627 int mmc_suspend_host(struct mmc_host *host)
2628 {
2629 int err = 0;
2630
2631 cancel_delayed_work(&host->detect);
2632 mmc_flush_scheduled_work();
2633
2634 mmc_bus_get(host);
2635 if (host->bus_ops && !host->bus_dead) {
2636 if (host->bus_ops->suspend) {
2637 if (mmc_card_doing_bkops(host->card)) {
2638 err = mmc_stop_bkops(host->card);
2639 if (err)
2640 goto out;
2641 }
2642 err = host->bus_ops->suspend(host);
2643 }
2644
2645 if (err == -ENOSYS || !host->bus_ops->resume) {
2646 /*
2647 * We simply "remove" the card in this case.
2648 * It will be redetected on resume. (Calling
2649 * bus_ops->remove() with a claimed host can
2650 * deadlock.)
2651 */
2652 if (host->bus_ops->remove)
2653 host->bus_ops->remove(host);
2654 mmc_claim_host(host);
2655 mmc_detach_bus(host);
2656 mmc_power_off(host);
2657 mmc_release_host(host);
2658 host->pm_flags = 0;
2659 err = 0;
2660 }
2661 }
2662 mmc_bus_put(host);
2663
2664 if (!err && !mmc_card_keep_power(host))
2665 mmc_power_off(host);
2666
2667 out:
2668 return err;
2669 }
2670
2671 EXPORT_SYMBOL(mmc_suspend_host);
2672
2673 /**
2674 * mmc_resume_host - resume a previously suspended host
2675 * @host: mmc host
2676 */
2677 int mmc_resume_host(struct mmc_host *host)
2678 {
2679 int err = 0;
2680
2681 mmc_bus_get(host);
2682 if (host->bus_ops && !host->bus_dead) {
2683 if (!mmc_card_keep_power(host)) {
2684 mmc_power_up(host);
2685 mmc_select_voltage(host, host->ocr);
2686 /*
2687 * Tell runtime PM core we just powered up the card,
2688 * since it still believes the card is powered off.
2689 * Note that currently runtime PM is only enabled
2690 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2691 */
2692 if (mmc_card_sdio(host->card) &&
2693 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2694 pm_runtime_disable(&host->card->dev);
2695 pm_runtime_set_active(&host->card->dev);
2696 pm_runtime_enable(&host->card->dev);
2697 }
2698 }
2699 BUG_ON(!host->bus_ops->resume);
2700 err = host->bus_ops->resume(host);
2701 if (err) {
2702 pr_warning("%s: error %d during resume "
2703 "(card was removed?)\n",
2704 mmc_hostname(host), err);
2705 err = 0;
2706 }
2707 }
2708 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2709 mmc_bus_put(host);
2710
2711 return err;
2712 }
2713 EXPORT_SYMBOL(mmc_resume_host);
2714
2715 /* Do the card removal on suspend if card is assumed removeable
2716 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2717 to sync the card.
2718 */
2719 int mmc_pm_notify(struct notifier_block *notify_block,
2720 unsigned long mode, void *unused)
2721 {
2722 struct mmc_host *host = container_of(
2723 notify_block, struct mmc_host, pm_notify);
2724 unsigned long flags;
2725 int err = 0;
2726
2727 switch (mode) {
2728 case PM_HIBERNATION_PREPARE:
2729 case PM_SUSPEND_PREPARE:
2730 if (host->card && mmc_card_mmc(host->card) &&
2731 mmc_card_doing_bkops(host->card)) {
2732 err = mmc_stop_bkops(host->card);
2733 if (err) {
2734 pr_err("%s: didn't stop bkops\n",
2735 mmc_hostname(host));
2736 return err;
2737 }
2738 mmc_card_clr_doing_bkops(host->card);
2739 }
2740
2741 spin_lock_irqsave(&host->lock, flags);
2742 host->rescan_disable = 1;
2743 spin_unlock_irqrestore(&host->lock, flags);
2744 cancel_delayed_work_sync(&host->detect);
2745
2746 if (!host->bus_ops || host->bus_ops->suspend)
2747 break;
2748
2749 /* Calling bus_ops->remove() with a claimed host can deadlock */
2750 if (host->bus_ops->remove)
2751 host->bus_ops->remove(host);
2752
2753 mmc_claim_host(host);
2754 mmc_detach_bus(host);
2755 mmc_power_off(host);
2756 mmc_release_host(host);
2757 host->pm_flags = 0;
2758 break;
2759
2760 case PM_POST_SUSPEND:
2761 case PM_POST_HIBERNATION:
2762 case PM_POST_RESTORE:
2763
2764 spin_lock_irqsave(&host->lock, flags);
2765 host->rescan_disable = 0;
2766 spin_unlock_irqrestore(&host->lock, flags);
2767 mmc_detect_change(host, 0);
2768
2769 }
2770
2771 return 0;
2772 }
2773 #endif
2774
2775 /**
2776 * mmc_init_context_info() - init synchronization context
2777 * @host: mmc host
2778 *
2779 * Init struct context_info needed to implement asynchronous
2780 * request mechanism, used by mmc core, host driver and mmc requests
2781 * supplier.
2782 */
2783 void mmc_init_context_info(struct mmc_host *host)
2784 {
2785 spin_lock_init(&host->context_info.lock);
2786 host->context_info.is_new_req = false;
2787 host->context_info.is_done_rcv = false;
2788 host->context_info.is_waiting_last_req = false;
2789 init_waitqueue_head(&host->context_info.wait);
2790 }
2791
2792 static int __init mmc_init(void)
2793 {
2794 int ret;
2795
2796 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2797 if (!workqueue)
2798 return -ENOMEM;
2799
2800 ret = mmc_register_bus();
2801 if (ret)
2802 goto destroy_workqueue;
2803
2804 ret = mmc_register_host_class();
2805 if (ret)
2806 goto unregister_bus;
2807
2808 ret = sdio_register_bus();
2809 if (ret)
2810 goto unregister_host_class;
2811
2812 return 0;
2813
2814 unregister_host_class:
2815 mmc_unregister_host_class();
2816 unregister_bus:
2817 mmc_unregister_bus();
2818 destroy_workqueue:
2819 destroy_workqueue(workqueue);
2820
2821 return ret;
2822 }
2823
2824 static void __exit mmc_exit(void)
2825 {
2826 sdio_unregister_bus();
2827 mmc_unregister_host_class();
2828 mmc_unregister_bus();
2829 destroy_workqueue(workqueue);
2830 }
2831
2832 subsys_initcall(mmc_init);
2833 module_exit(mmc_exit);
2834
2835 MODULE_LICENSE("GPL");