Merge tag 'v3.10.85' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/mmc.h>
40
41 #include <linux/mmc/ioctl.h>
42 #include <linux/mmc/card.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sd.h>
46
47 #include <asm/uaccess.h>
48
49 #include "queue.h"
50 #include <mach/mtk_meminfo.h>
51
52 //add vmstat info with block tag log
53 #include <linux/vmstat.h>
54 #define FEATURE_STORAGE_VMSTAT_LOGGER
55
56
57 #include <linux/xlog.h>
58 #include <asm/div64.h>
59 #include <linux/vmalloc.h>
60
61 #include <linux/mmc/sd_misc.h>
62
63 #define MET_USER_EVENT_SUPPORT
64 #include <linux/met_drv.h>
65
66 #define FEATURE_STORAGE_PERF_INDEX
67 //enable storage log in user load
68 #if 0
69 #ifdef USER_BUILD_KERNEL
70 #undef FEATURE_STORAGE_PERF_INDEX
71 #endif
72 #endif
73
74 MODULE_ALIAS("mmc:block");
75 #ifdef MODULE_PARAM_PREFIX
76 #undef MODULE_PARAM_PREFIX
77 #endif
78 #define MODULE_PARAM_PREFIX "mmcblk."
79
80 #define INAND_CMD38_ARG_EXT_CSD 113
81 #define INAND_CMD38_ARG_ERASE 0x00
82 #define INAND_CMD38_ARG_TRIM 0x01
83 #define INAND_CMD38_ARG_SECERASE 0x80
84 #define INAND_CMD38_ARG_SECTRIM1 0x81
85 #define INAND_CMD38_ARG_SECTRIM2 0x88
86 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
87
88 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
89 (req->cmd_flags & REQ_META)) && \
90 (rq_data_dir(req) == WRITE))
91 #define PACKED_CMD_VER 0x01
92 #define PACKED_CMD_WR 0x02
93
94 static DEFINE_MUTEX(block_mutex);
95
96 /*
97 * The defaults come from config options but can be overriden by module
98 * or bootarg options.
99 */
100 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
101
102 /*
103 * We've only got one major, so number of mmcblk devices is
104 * limited to 256 / number of minors per device.
105 */
106 static int max_devices;
107
108 /* 256 minors, so at most 256 separate devices */
109 static DECLARE_BITMAP(dev_use, 256);
110 static DECLARE_BITMAP(name_use, 256);
111
112 /*
113 * There is one mmc_blk_data per slot.
114 */
115 struct mmc_blk_data {
116 spinlock_t lock;
117 struct gendisk *disk;
118 struct mmc_queue queue;
119 struct list_head part;
120
121 unsigned int flags;
122 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
123 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
124 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
125
126 unsigned int usage;
127 unsigned int read_only;
128 unsigned int part_type;
129 unsigned int name_idx;
130 unsigned int reset_done;
131 #define MMC_BLK_READ BIT(0)
132 #define MMC_BLK_WRITE BIT(1)
133 #define MMC_BLK_DISCARD BIT(2)
134 #define MMC_BLK_SECDISCARD BIT(3)
135
136 /*
137 * Only set in main mmc_blk_data associated
138 * with mmc_card with mmc_set_drvdata, and keeps
139 * track of the current selected device partition.
140 */
141 unsigned int part_curr;
142 struct device_attribute force_ro;
143 struct device_attribute power_ro_lock;
144 int area_type;
145 };
146
147 static DEFINE_MUTEX(open_lock);
148
149 enum {
150 MMC_PACKED_NR_IDX = -1,
151 MMC_PACKED_NR_ZERO,
152 MMC_PACKED_NR_SINGLE,
153 };
154
155 module_param(perdev_minors, int, 0444);
156 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
157
158 static inline int mmc_blk_part_switch(struct mmc_card *card,
159 struct mmc_blk_data *md);
160 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
161
162 #ifndef CONFIG_MTK_FPGA
163 #include <linux/met_ftrace_bio.h>
164 #endif
165
166 char mmc_get_rw_type(u32 opcode)
167 {
168 switch (opcode)
169 {
170 case MMC_READ_SINGLE_BLOCK:
171 case MMC_READ_MULTIPLE_BLOCK:
172 return 'R';
173 case MMC_WRITE_BLOCK:
174 case MMC_WRITE_MULTIPLE_BLOCK:
175 return 'W';
176 default:
177 // Unknown opcode!!!
178 return 'X';
179 }
180 }
181
182 inline int check_met_mmc_async_req_legal(struct mmc_host *host, struct mmc_async_req *areq)
183 {
184 int is_legal = 0;
185
186 if (!((host == NULL) || (areq == NULL) || (areq->mrq == NULL)
187 || (areq->mrq->cmd == NULL) || (areq->mrq->data == NULL)
188 || (host->card == NULL))) {
189 is_legal = 1;
190 }
191
192 return is_legal;
193 }
194
195 inline int check_met_mmc_blk_data_legal(struct mmc_blk_data *md)
196 {
197 int is_legal = 0;
198
199 if (!((md == NULL) || (md->disk == NULL))) {
200 is_legal = 1;
201 }
202
203 return is_legal;
204 }
205
206 inline int check_met_mmc_req_legal(struct mmc_host *host, struct mmc_request *req)
207 {
208 int is_legal = 0;
209
210 if (!((host == NULL) || (req == NULL) || (req->cmd == NULL)
211 || (req->data == NULL) || (host->card == NULL))) {
212 is_legal = 1;
213 }
214
215 return is_legal;
216 }
217
218 void met_mmc_insert(struct mmc_host *host, struct mmc_async_req *areq)
219 {
220 struct mmc_blk_data *md;
221 char type;
222
223 if (!check_met_mmc_async_req_legal(host, areq))
224 return;
225
226 md = mmc_get_drvdata(host->card);
227 if (!check_met_mmc_blk_data_legal(md))
228 return;
229
230 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
231 if (type == 'X')
232 return;
233
234 #ifndef CONFIG_MTK_FPGA
235 MET_FTRACE_PRINTK(met_mmc_insert, md, areq, type);
236 #endif
237 }
238
239 void met_mmc_dma_map(struct mmc_host *host, struct mmc_async_req *areq)
240 {
241 struct mmc_blk_data *md;
242 char type;
243
244 if (!check_met_mmc_async_req_legal(host, areq))
245 return;
246
247 md = mmc_get_drvdata(host->card);
248 if (!check_met_mmc_blk_data_legal(md))
249 return;
250
251 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
252 if (type == 'X')
253 return;
254 #ifndef CONFIG_MTK_FPGA
255 MET_FTRACE_PRINTK(met_mmc_dma_map, md, areq, type);
256 #endif
257 }
258
259 //void met_mmc_issue(struct mmc_host *host, struct mmc_async_req *areq)
260 //{
261 // struct mmc_blk_data *md;
262 // char type;
263 //
264 // if (!check_met_mmc_async_req_legal(host, areq))
265 // return;
266 //
267 // md = mmc_get_drvdata(host->card);
268 //
269 // type = mmc_get_rw_type(areq->mrq->cmd->opcode);
270 // if (type == 'X')
271 // return;
272 //
273 // MET_FTRACE_PRINTK(met_mmc_issue, md, areq, type);
274 //}
275
276 void met_mmc_issue(struct mmc_host *host, struct mmc_request *req)
277 {
278 struct mmc_blk_data *md;
279 char type;
280
281 if (!check_met_mmc_req_legal(host, req))
282 return;
283
284 md = mmc_get_drvdata(host->card);
285 if (!check_met_mmc_blk_data_legal(md))
286 return;
287
288 type = mmc_get_rw_type(req->cmd->opcode);
289 if (type == 'X')
290 return;
291 #ifndef CONFIG_MTK_FPGA
292 MET_FTRACE_PRINTK(met_mmc_issue, md, req, type);
293 #endif
294 }
295
296 void met_mmc_send_cmd(struct mmc_host *host, struct mmc_command *cmd)
297 {
298 struct mmc_blk_data *md = mmc_get_drvdata(host->card);
299 char type;
300
301 type = mmc_get_rw_type(cmd->opcode);
302 if (type == 'X')
303 return;
304
305 trace_printk("%d,%d %c %d + %d [%s]\n",
306 md->disk->major, md->disk->first_minor, type,
307 cmd->arg, cmd->data->blocks,
308 current->comm);
309 }
310
311 void met_mmc_xfr_done(struct mmc_host *host, struct mmc_command *cmd)
312 {
313 struct mmc_blk_data *md=mmc_get_drvdata(host->card);
314 char type;
315
316 type = mmc_get_rw_type(cmd->opcode);
317 if (type == 'X')
318 return;
319
320 trace_printk("%d,%d %c %d + %d [%s]\n",
321 md->disk->major, md->disk->first_minor, type,
322 cmd->arg, cmd->data->blocks,
323 current->comm);
324 }
325
326 void met_mmc_wait_xfr(struct mmc_host *host, struct mmc_async_req *areq)
327 {
328 struct mmc_blk_data *md = mmc_get_drvdata(host->card);
329 char type;
330
331 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
332 if (type == 'X')
333 return;
334
335 trace_printk("%d,%d %c %d + %d [%s]\n",
336 md->disk->major, md->disk->first_minor, type,
337 areq->mrq->cmd->arg, areq->mrq->data->blocks,
338 current->comm);
339
340 }
341
342 void met_mmc_tuning_start(struct mmc_host *host, struct mmc_command *cmd)
343 {
344 struct mmc_blk_data *md = mmc_get_drvdata(host->card);
345 char type;
346
347 type = mmc_get_rw_type(cmd->opcode);
348 if (type == 'X')
349 return;
350
351 trace_printk("%d,%d %c %d + %d [%s]\n",
352 md->disk->major, md->disk->first_minor, type,
353 cmd->arg, cmd->data->blocks,
354 current->comm);
355 }
356
357 void met_mmc_tuning_end(struct mmc_host *host, struct mmc_command *cmd)
358 {
359 struct mmc_blk_data *md = mmc_get_drvdata(host->card);
360 char type;
361
362 type = mmc_get_rw_type(cmd->opcode);
363 if (type == 'X')
364 return;
365
366 trace_printk("%d,%d %c %d + %d [%s]\n",
367 md->disk->major, md->disk->first_minor, type,
368 cmd->arg, cmd->data->blocks,
369 current->comm);
370 }
371
372 void met_mmc_complete(struct mmc_host *host, struct mmc_async_req *areq)
373 {
374 struct mmc_blk_data *md;
375 char type;
376
377 if (!check_met_mmc_async_req_legal(host, areq))
378 return;
379
380 md = mmc_get_drvdata(host->card);
381 if (!check_met_mmc_blk_data_legal(md))
382 return;
383
384 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
385 if (type == 'X')
386 return;
387 #ifndef CONFIG_MTK_FPGA
388 MET_FTRACE_PRINTK(met_mmc_complete, md, areq, type);
389 #endif
390 }
391
392 void met_mmc_dma_unmap_start(struct mmc_host *host, struct mmc_async_req *areq)
393 {
394 struct mmc_blk_data *md;
395 char type;
396
397 if (!check_met_mmc_async_req_legal(host, areq))
398 return;
399
400 md = mmc_get_drvdata(host->card);
401 if (!check_met_mmc_blk_data_legal(md))
402 return;
403
404 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
405 if (type == 'X')
406 return;
407 #ifndef CONFIG_MTK_FPGA
408 MET_FTRACE_PRINTK(met_mmc_dma_unmap_start, md, areq, type);
409 #endif
410 }
411
412 void met_mmc_dma_unmap_stop(struct mmc_host *host, struct mmc_async_req *areq)
413 {
414 struct mmc_blk_data *md;
415 char type;
416
417 if (!check_met_mmc_async_req_legal(host, areq))
418 return;
419
420 md = mmc_get_drvdata(host->card);
421 if (!check_met_mmc_blk_data_legal(md))
422 return;
423
424 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
425 if (type == 'X')
426 return;
427 #ifndef CONFIG_MTK_FPGA
428 MET_FTRACE_PRINTK(met_mmc_dma_unmap_stop, md, areq, type);
429 #endif
430 }
431
432 void met_mmc_continue_req_end(struct mmc_host *host, struct mmc_async_req *areq)
433 {
434 struct mmc_blk_data *md;
435 char type;
436
437 if (!check_met_mmc_async_req_legal(host, areq))
438 return;
439
440 md = mmc_get_drvdata(host->card);
441 if (!check_met_mmc_blk_data_legal(md))
442 return;
443
444 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
445 if (type == 'X')
446 return;
447 #ifndef CONFIG_MTK_FPGA
448 MET_FTRACE_PRINTK(met_mmc_continue_req_end, md, areq, type);
449 #endif
450 }
451
452 void met_mmc_dma_stop(struct mmc_host *host, struct mmc_async_req *areq, unsigned int bd_num)
453 {
454 struct mmc_blk_data *md;
455 char type;
456
457 if (!check_met_mmc_async_req_legal(host, areq))
458 return;
459
460 md = mmc_get_drvdata(host->card);
461 if (!check_met_mmc_blk_data_legal(md))
462 return;
463
464 type = mmc_get_rw_type(areq->mrq->cmd->opcode);
465 if (type == 'X')
466 return;
467 #ifndef CONFIG_MTK_FPGA
468 MET_FTRACE_PRINTK(met_mmc_dma_stop, md, areq, type, bd_num);
469 #endif
470 }
471
472 //void met_mmc_end(struct mmc_host *host, struct mmc_async_req *areq)
473 //{
474 // struct mmc_blk_data *md;
475 // char type;
476 //
477 // if (areq && areq->mrq && host && host->card) {
478 // type = mmc_get_rw_type(areq->mrq->cmd->opcode);
479 // if (type == 'X')
480 // return;
481 //
482 // md = mmc_get_drvdata(host->card);
483 //
484 // if (areq && areq->mrq)
485 // {
486 // trace_printk("%d,%d %c %d + %d [%s]\n",
487 // md->disk->major, md->disk->first_minor, type,
488 // areq->mrq->cmd->arg, areq->mrq->data->blocks,
489 // current->comm);
490 // }
491 // }
492 //}
493
494 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
495 {
496 struct mmc_packed *packed = mqrq->packed;
497
498 BUG_ON(!packed);
499
500 mqrq->cmd_type = MMC_PACKED_NONE;
501 packed->nr_entries = MMC_PACKED_NR_ZERO;
502 packed->idx_failure = MMC_PACKED_NR_IDX;
503 packed->retries = 0;
504 packed->blocks = 0;
505 }
506
507 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
508 {
509 struct mmc_blk_data *md;
510
511 mutex_lock(&open_lock);
512 md = disk->private_data;
513 if (md && md->usage == 0)
514 md = NULL;
515 if (md)
516 md->usage++;
517 mutex_unlock(&open_lock);
518
519 return md;
520 }
521
522 static inline int mmc_get_devidx(struct gendisk *disk)
523 {
524 int devidx = disk->first_minor / perdev_minors;
525 return devidx;
526 }
527
528 static void mmc_blk_put(struct mmc_blk_data *md)
529 {
530 mutex_lock(&open_lock);
531 md->usage--;
532 if (md->usage == 0) {
533 int devidx = mmc_get_devidx(md->disk);
534 blk_cleanup_queue(md->queue.queue);
535
536 __clear_bit(devidx, dev_use);
537
538 put_disk(md->disk);
539 kfree(md);
540 }
541 mutex_unlock(&open_lock);
542 }
543
544 static ssize_t power_ro_lock_show(struct device *dev,
545 struct device_attribute *attr, char *buf)
546 {
547 int ret;
548 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
549 struct mmc_card *card = md->queue.card;
550 int locked = 0;
551
552 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
553 locked = 2;
554 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
555 locked = 1;
556
557 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
558
559 mmc_blk_put(md);
560
561 return ret;
562 }
563
564 static ssize_t power_ro_lock_store(struct device *dev,
565 struct device_attribute *attr, const char *buf, size_t count)
566 {
567 int ret;
568 struct mmc_blk_data *md, *part_md;
569 struct mmc_card *card;
570 unsigned long set;
571
572 if (kstrtoul(buf, 0, &set))
573 return -EINVAL;
574
575 if (set != 1)
576 return count;
577
578 md = mmc_blk_get(dev_to_disk(dev));
579 card = md->queue.card;
580
581 mmc_claim_host(card->host);
582
583 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
584 card->ext_csd.boot_ro_lock |
585 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
586 card->ext_csd.part_time);
587 if (ret)
588 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
589 else
590 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
591
592 mmc_release_host(card->host);
593
594 if (!ret) {
595 pr_info("%s: Locking boot partition ro until next power on\n",
596 md->disk->disk_name);
597 set_disk_ro(md->disk, 1);
598
599 list_for_each_entry(part_md, &md->part, part)
600 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
601 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
602 set_disk_ro(part_md->disk, 1);
603 }
604 }
605
606 mmc_blk_put(md);
607 return count;
608 }
609
610 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
611 char *buf)
612 {
613 int ret;
614 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
615
616 ret = snprintf(buf, PAGE_SIZE, "%d\n",
617 get_disk_ro(dev_to_disk(dev)) ^
618 md->read_only);
619 mmc_blk_put(md);
620 return ret;
621 }
622
623 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
624 const char *buf, size_t count)
625 {
626 int ret;
627 char *end;
628 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
629 unsigned long set = simple_strtoul(buf, &end, 0);
630 if (end == buf) {
631 ret = -EINVAL;
632 goto out;
633 }
634
635 set_disk_ro(dev_to_disk(dev), set || md->read_only);
636 ret = count;
637 out:
638 mmc_blk_put(md);
639 return ret;
640 }
641
642 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
643 {
644 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
645 int ret = -ENXIO;
646
647 mutex_lock(&block_mutex);
648 if (md) {
649 if (md->usage == 2)
650 check_disk_change(bdev);
651 ret = 0;
652
653 if ((mode & FMODE_WRITE) && md->read_only) {
654 mmc_blk_put(md);
655 ret = -EROFS;
656 }
657 }
658 mutex_unlock(&block_mutex);
659
660 return ret;
661 }
662
663 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
664 {
665 struct mmc_blk_data *md = disk->private_data;
666
667 mutex_lock(&block_mutex);
668 mmc_blk_put(md);
669 mutex_unlock(&block_mutex);
670 }
671
672 static int
673 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
674 {
675 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
676 geo->heads = 4;
677 geo->sectors = 16;
678 return 0;
679 }
680
681 struct mmc_blk_ioc_data {
682 struct mmc_ioc_cmd ic;
683 unsigned char *buf;
684 u64 buf_bytes;
685 };
686
687 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
688 struct mmc_ioc_cmd __user *user)
689 {
690 struct mmc_blk_ioc_data *idata;
691 int err;
692
693 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
694 if (!idata) {
695 err = -ENOMEM;
696 goto out;
697 }
698
699 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
700 err = -EFAULT;
701 goto idata_err;
702 }
703
704 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
705 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
706 err = -EOVERFLOW;
707 goto idata_err;
708 }
709
710 if (!idata->buf_bytes)
711 return idata;
712
713 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
714 if (!idata->buf) {
715 err = -ENOMEM;
716 goto idata_err;
717 }
718
719 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
720 idata->ic.data_ptr, idata->buf_bytes)) {
721 err = -EFAULT;
722 goto copy_err;
723 }
724
725 return idata;
726
727 copy_err:
728 kfree(idata->buf);
729 idata_err:
730 kfree(idata);
731 out:
732 return ERR_PTR(err);
733 }
734
735 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
736 u32 retries_max)
737 {
738 int err;
739 u32 retry_count = 0;
740
741 if (!status || !retries_max)
742 return -EINVAL;
743
744 do {
745 err = get_card_status(card, status, 5);
746 if (err)
747 break;
748
749 if (!R1_STATUS(*status) &&
750 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
751 break; /* RPMB programming operation complete */
752
753 /*
754 * Rechedule to give the MMC device a chance to continue
755 * processing the previous command without being polled too
756 * frequently.
757 */
758 usleep_range(1000, 5000);
759 } while (++retry_count < retries_max);
760
761 if (retry_count == retries_max)
762 err = -EPERM;
763
764 return err;
765 }
766
767 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
768 struct mmc_ioc_cmd __user *ic_ptr)
769 {
770 struct mmc_blk_ioc_data *idata;
771 struct mmc_blk_data *md;
772 struct mmc_card *card;
773 struct mmc_command cmd = {0};
774 struct mmc_data data = {0};
775 struct mmc_request mrq = {NULL};
776 struct scatterlist sg;
777 int err;
778 int is_rpmb = false;
779 u32 status = 0;
780
781 /*
782 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
783 * whole block device, not on a partition. This prevents overspray
784 * between sibling partitions.
785 */
786 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
787 return -EPERM;
788
789 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
790 if (IS_ERR(idata))
791 return PTR_ERR(idata);
792
793 md = mmc_blk_get(bdev->bd_disk);
794 if (!md) {
795 err = -EINVAL;
796 goto cmd_err;
797 }
798
799 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
800 is_rpmb = true;
801
802 card = md->queue.card;
803 if (IS_ERR(card)) {
804 err = PTR_ERR(card);
805 goto cmd_done;
806 }
807
808 cmd.opcode = idata->ic.opcode;
809 cmd.arg = idata->ic.arg;
810 cmd.flags = idata->ic.flags;
811
812 if (idata->buf_bytes) {
813 data.sg = &sg;
814 data.sg_len = 1;
815 data.blksz = idata->ic.blksz;
816 data.blocks = idata->ic.blocks;
817
818 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
819
820 if (idata->ic.write_flag)
821 data.flags = MMC_DATA_WRITE;
822 else
823 data.flags = MMC_DATA_READ;
824
825 /* data.flags must already be set before doing this. */
826 mmc_set_data_timeout(&data, card);
827
828 /* Allow overriding the timeout_ns for empirical tuning. */
829 if (idata->ic.data_timeout_ns)
830 data.timeout_ns = idata->ic.data_timeout_ns;
831
832 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
833 /*
834 * Pretend this is a data transfer and rely on the
835 * host driver to compute timeout. When all host
836 * drivers support cmd.cmd_timeout for R1B, this
837 * can be changed to:
838 *
839 * mrq.data = NULL;
840 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
841 */
842 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
843 }
844
845 mrq.data = &data;
846 }
847
848 mrq.cmd = &cmd;
849
850 mmc_claim_host(card->host);
851
852 err = mmc_blk_part_switch(card, md);
853 if (err)
854 goto cmd_rel_host;
855
856 if (idata->ic.is_acmd) {
857 err = mmc_app_cmd(card->host, card);
858 if (err)
859 goto cmd_rel_host;
860 }
861
862 if (is_rpmb) {
863 err = mmc_set_blockcount(card, data.blocks,
864 idata->ic.write_flag & (1 << 31));
865 if (err)
866 goto cmd_rel_host;
867 }
868
869 mmc_wait_for_req(card->host, &mrq);
870
871 if (cmd.error) {
872 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
873 __func__, cmd.error);
874 err = cmd.error;
875 goto cmd_rel_host;
876 }
877 if (data.error) {
878 dev_err(mmc_dev(card->host), "%s: data error %d\n",
879 __func__, data.error);
880 err = data.error;
881 goto cmd_rel_host;
882 }
883
884 /*
885 * According to the SD specs, some commands require a delay after
886 * issuing the command.
887 */
888 if (idata->ic.postsleep_min_us)
889 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
890
891 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
892 err = -EFAULT;
893 goto cmd_rel_host;
894 }
895
896 if (!idata->ic.write_flag) {
897 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
898 idata->buf, idata->buf_bytes)) {
899 err = -EFAULT;
900 goto cmd_rel_host;
901 }
902 }
903
904 if (is_rpmb) {
905 /*
906 * Ensure RPMB command has completed by polling CMD13
907 * "Send Status".
908 */
909 err = ioctl_rpmb_card_status_poll(card, &status, 5);
910 if (err)
911 dev_err(mmc_dev(card->host),
912 "%s: Card Status=0x%08X, error %d\n",
913 __func__, status, err);
914 }
915
916 cmd_rel_host:
917 mmc_release_host(card->host);
918
919 cmd_done:
920 mmc_blk_put(md);
921 cmd_err:
922 kfree(idata->buf);
923 kfree(idata);
924 return err;
925 }
926
927 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
928 unsigned int cmd, unsigned long arg)
929 {
930 int ret = -EINVAL;
931 if (cmd == MMC_IOC_CMD)
932 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
933 return ret;
934 }
935
936 #ifdef CONFIG_COMPAT
937 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
938 unsigned int cmd, unsigned long arg)
939 {
940 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
941 }
942 #endif
943
944 static const struct block_device_operations mmc_bdops = {
945 .open = mmc_blk_open,
946 .release = mmc_blk_release,
947 .getgeo = mmc_blk_getgeo,
948 .owner = THIS_MODULE,
949 .ioctl = mmc_blk_ioctl,
950 #ifdef CONFIG_COMPAT
951 .compat_ioctl = mmc_blk_compat_ioctl,
952 #endif
953 };
954
955 static inline int mmc_blk_part_switch(struct mmc_card *card,
956 struct mmc_blk_data *md)
957 {
958 int ret;
959 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
960
961 if (main_md->part_curr == md->part_type)
962 return 0;
963
964 if (mmc_card_mmc(card)) {
965 u8 part_config = card->ext_csd.part_config;
966
967 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
968 part_config |= md->part_type;
969
970 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
971 EXT_CSD_PART_CONFIG, part_config,
972 card->ext_csd.part_time);
973 if (ret)
974 return ret;
975
976 card->ext_csd.part_config = part_config;
977 }
978
979 main_md->part_curr = md->part_type;
980 return 0;
981 }
982
983 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
984 {
985 int err;
986 u32 result;
987 __be32 *blocks;
988
989 struct mmc_request mrq = {NULL};
990 struct mmc_command cmd = {0};
991 struct mmc_data data = {0};
992
993 struct scatterlist sg;
994
995 cmd.opcode = MMC_APP_CMD;
996 cmd.arg = card->rca << 16;
997 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
998
999 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1000 if (err)
1001 return (u32)-1;
1002 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
1003 return (u32)-1;
1004
1005 memset(&cmd, 0, sizeof(struct mmc_command));
1006
1007 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1008 cmd.arg = 0;
1009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1010
1011 data.blksz = 4;
1012 data.blocks = 1;
1013 data.flags = MMC_DATA_READ;
1014 data.sg = &sg;
1015 data.sg_len = 1;
1016 mmc_set_data_timeout(&data, card);
1017
1018 mrq.cmd = &cmd;
1019 mrq.data = &data;
1020
1021 blocks = kmalloc(4, GFP_KERNEL);
1022 if (!blocks)
1023 return (u32)-1;
1024
1025 sg_init_one(&sg, blocks, 4);
1026
1027 mmc_wait_for_req(card->host, &mrq);
1028
1029 result = ntohl(*blocks);
1030 kfree(blocks);
1031
1032 if (cmd.error || data.error)
1033 result = (u32)-1;
1034
1035 return result;
1036 }
1037
1038 u32 __mmc_sd_num_wr_blocks(struct mmc_card *card)
1039 {
1040 return mmc_sd_num_wr_blocks(card);
1041 }
1042 EXPORT_SYMBOL(__mmc_sd_num_wr_blocks);
1043
1044 static int send_stop(struct mmc_card *card, u32 *status)
1045 {
1046 struct mmc_command cmd = {0};
1047 int err;
1048
1049 cmd.opcode = MMC_STOP_TRANSMISSION;
1050 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1051 err = mmc_wait_for_cmd(card->host, &cmd, 5);
1052 if (err == 0)
1053 *status = cmd.resp[0];
1054 return err;
1055 }
1056
1057 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
1058 {
1059 struct mmc_command cmd = {0};
1060 int err;
1061
1062 cmd.opcode = MMC_SEND_STATUS;
1063 if (!mmc_host_is_spi(card->host))
1064 cmd.arg = card->rca << 16;
1065 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1066 err = mmc_wait_for_cmd(card->host, &cmd, retries);
1067 if (err == 0)
1068 *status = cmd.resp[0];
1069 return err;
1070 }
1071
1072 #define ERR_NOMEDIUM 3
1073 #define ERR_RETRY 2
1074 #define ERR_ABORT 1
1075 #define ERR_CONTINUE 0
1076
1077 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
1078 bool status_valid, u32 status)
1079 {
1080 switch (error) {
1081 case -EILSEQ:
1082 /* response crc error, retry the r/w cmd */
1083 pr_err("%s: %s sending %s command, card status %#x\n",
1084 req->rq_disk->disk_name, "response CRC error",
1085 name, status);
1086 return ERR_RETRY;
1087
1088 case -ETIMEDOUT:
1089 pr_err("%s: %s sending %s command, card status %#x\n",
1090 req->rq_disk->disk_name, "timed out", name, status);
1091
1092 /* If the status cmd initially failed, retry the r/w cmd */
1093 if (!status_valid) {
1094 pr_err("%s: status not valid, retrying timeout\n", req->rq_disk->disk_name);
1095 return ERR_RETRY;
1096 }
1097 /*
1098 * If it was a r/w cmd crc error, or illegal command
1099 * (eg, issued in wrong state) then retry - we should
1100 * have corrected the state problem above.
1101 */
1102 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
1103 pr_err("%s: command error, retrying timeout\n", req->rq_disk->disk_name);
1104 return ERR_RETRY;
1105 }
1106
1107 /* Otherwise abort the command */
1108 pr_err("%s: not retrying timeout\n", req->rq_disk->disk_name);
1109 return ERR_ABORT;
1110
1111 default:
1112 /* We don't understand the error code the driver gave us */
1113 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
1114 req->rq_disk->disk_name, error, status);
1115 return ERR_ABORT;
1116 }
1117 }
1118
1119 /*
1120 * Initial r/w and stop cmd error recovery.
1121 * We don't know whether the card received the r/w cmd or not, so try to
1122 * restore things back to a sane state. Essentially, we do this as follows:
1123 * - Obtain card status. If the first attempt to obtain card status fails,
1124 * the status word will reflect the failed status cmd, not the failed
1125 * r/w cmd. If we fail to obtain card status, it suggests we can no
1126 * longer communicate with the card.
1127 * - Check the card state. If the card received the cmd but there was a
1128 * transient problem with the response, it might still be in a data transfer
1129 * mode. Try to send it a stop command. If this fails, we can't recover.
1130 * - If the r/w cmd failed due to a response CRC error, it was probably
1131 * transient, so retry the cmd.
1132 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1133 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1134 * illegal cmd, retry.
1135 * Otherwise we don't understand what happened, so abort.
1136 */
1137 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1138 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
1139 {
1140 bool prev_cmd_status_valid = true;
1141 u32 status, stop_status = 0;
1142 int err, retry;
1143
1144 if (mmc_card_removed(card))
1145 return ERR_NOMEDIUM;
1146
1147 /*
1148 * Try to get card status which indicates both the card state
1149 * and why there was no response. If the first attempt fails,
1150 * we can't be sure the returned status is for the r/w command.
1151 */
1152 for (retry = 2; retry >= 0; retry--) {
1153 err = get_card_status(card, &status, 0);
1154 if (!err)
1155 break;
1156
1157 prev_cmd_status_valid = false;
1158 pr_err("%s: error %d sending status command, %sing\n",
1159 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1160 }
1161
1162 /* We couldn't get a response from the card. Give up. */
1163 if (err) {
1164 /* Check if the card is removed */
1165 if (mmc_detect_card_removed(card->host))
1166 return ERR_NOMEDIUM;
1167 return ERR_ABORT;
1168 }
1169
1170 /* Flag ECC errors */
1171 if ((status & R1_CARD_ECC_FAILED) ||
1172 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1173 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1174 *ecc_err = 1;
1175
1176 /* Flag General errors */
1177 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1178 if ((status & R1_ERROR) ||
1179 (brq->stop.resp[0] & R1_ERROR)) {
1180 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1181 req->rq_disk->disk_name, __func__,
1182 brq->stop.resp[0], status);
1183 *gen_err = 1;
1184 }
1185
1186 /*
1187 * Check the current card state. If it is in some data transfer
1188 * mode, tell it to stop (and hopefully transition back to TRAN.)
1189 */
1190 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1191 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1192 err = send_stop(card, &stop_status);
1193 if (err)
1194 {
1195 get_card_status(card,&status,0);
1196 if ((R1_CURRENT_STATE(status) == R1_STATE_TRAN) ||(R1_CURRENT_STATE(status) == R1_STATE_PRG)){
1197 err=0;
1198 stop_status=0;
1199 pr_err("b card status %d \n",status);
1200 }
1201 else
1202 pr_err("g card status %d \n",status);
1203 }
1204 if (err)
1205 pr_err("%s: error %d sending stop command\n",
1206 req->rq_disk->disk_name, err);
1207
1208 /*
1209 * If the stop cmd also timed out, the card is probably
1210 * not present, so abort. Other errors are bad news too.
1211 */
1212 if (err)
1213 return ERR_ABORT;
1214 if (stop_status & R1_CARD_ECC_FAILED)
1215 *ecc_err = 1;
1216 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1217 if (stop_status & R1_ERROR) {
1218 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1219 req->rq_disk->disk_name, __func__,
1220 stop_status);
1221 *gen_err = 1;
1222 }
1223 }
1224
1225 /* Check for set block count errors */
1226 if (brq->sbc.error)
1227 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1228 prev_cmd_status_valid, status);
1229
1230 /* Check for r/w command errors */
1231 if (brq->cmd.error)
1232 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1233 prev_cmd_status_valid, status);
1234
1235 /* Data errors */
1236 if (!brq->stop.error)
1237 return ERR_CONTINUE;
1238
1239 /* Now for stop errors. These aren't fatal to the transfer. */
1240 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1241 req->rq_disk->disk_name, brq->stop.error,
1242 brq->cmd.resp[0], status);
1243
1244 /*
1245 * Subsitute in our own stop status as this will give the error
1246 * state which happened during the execution of the r/w command.
1247 */
1248 if (stop_status) {
1249 brq->stop.resp[0] = stop_status;
1250 brq->stop.error = 0;
1251 }
1252 return ERR_CONTINUE;
1253 }
1254
1255 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1256 int type)
1257 {
1258 int err;
1259
1260 if (md->reset_done & type)
1261 return -EEXIST;
1262
1263 md->reset_done |= type;
1264 err = mmc_hw_reset(host);
1265 /* Ensure we switch back to the correct partition */
1266 if (err != -EOPNOTSUPP) {
1267 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
1268 int part_err;
1269
1270 main_md->part_curr = main_md->part_type;
1271 part_err = mmc_blk_part_switch(host->card, md);
1272 if (part_err) {
1273 /*
1274 * We have failed to get back into the correct
1275 * partition, so we need to abort the whole request.
1276 */
1277 return -ENODEV;
1278 }
1279 }
1280 return err;
1281 }
1282
1283 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1284 {
1285 md->reset_done &= ~type;
1286 }
1287
1288 int mmc_access_rpmb(struct mmc_queue *mq)
1289 {
1290 struct mmc_blk_data *md = mq->data;
1291 /*
1292 * If this is a RPMB partition access, return ture
1293 */
1294 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1295 return true;
1296
1297 return false;
1298 }
1299
1300 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1301 {
1302 struct mmc_blk_data *md = mq->data;
1303 struct mmc_card *card = md->queue.card;
1304 unsigned int from, nr, arg;
1305 int err = 0, type = MMC_BLK_DISCARD;
1306
1307 if (!mmc_can_erase(card)) {
1308 err = -EOPNOTSUPP;
1309 goto out;
1310 }
1311
1312 from = blk_rq_pos(req);
1313 nr = blk_rq_sectors(req);
1314
1315 if (mmc_can_discard(card))
1316 arg = MMC_DISCARD_ARG;
1317 else if (mmc_can_trim(card))
1318 arg = MMC_TRIM_ARG;
1319 else
1320 arg = MMC_ERASE_ARG;
1321 retry:
1322 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1323 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1324 INAND_CMD38_ARG_EXT_CSD,
1325 arg == MMC_TRIM_ARG ?
1326 INAND_CMD38_ARG_TRIM :
1327 INAND_CMD38_ARG_ERASE,
1328 0);
1329 if (err)
1330 goto out;
1331 }
1332 err = mmc_erase(card, from, nr, arg);
1333 out:
1334 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1335 goto retry;
1336 if (!err)
1337 mmc_blk_reset_success(md, type);
1338 blk_end_request(req, err, blk_rq_bytes(req));
1339
1340 return err ? 0 : 1;
1341 }
1342
1343 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1344 struct request *req)
1345 {
1346 struct mmc_blk_data *md = mq->data;
1347 struct mmc_card *card = md->queue.card;
1348 unsigned int from, nr, arg, trim_arg, erase_arg;
1349 int err = 0, type = MMC_BLK_SECDISCARD;
1350
1351 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
1352 err = -EOPNOTSUPP;
1353 goto out;
1354 }
1355
1356 from = blk_rq_pos(req);
1357 nr = blk_rq_sectors(req);
1358
1359 /* The sanitize operation is supported at v4.5 only */
1360 if (mmc_can_sanitize(card)) {
1361 erase_arg = MMC_ERASE_ARG;
1362 trim_arg = MMC_TRIM_ARG;
1363 } else {
1364 erase_arg = MMC_SECURE_ERASE_ARG;
1365 trim_arg = MMC_SECURE_TRIM1_ARG;
1366 }
1367
1368 if (mmc_erase_group_aligned(card, from, nr))
1369 arg = erase_arg;
1370 else if (mmc_can_trim(card))
1371 arg = trim_arg;
1372 else {
1373 err = -EINVAL;
1374 goto out;
1375 }
1376 retry:
1377 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1378 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1379 INAND_CMD38_ARG_EXT_CSD,
1380 arg == MMC_SECURE_TRIM1_ARG ?
1381 INAND_CMD38_ARG_SECTRIM1 :
1382 INAND_CMD38_ARG_SECERASE,
1383 0);
1384 if (err)
1385 goto out_retry;
1386 }
1387
1388 err = mmc_erase(card, from, nr, arg);
1389 if (err == -EIO)
1390 goto out_retry;
1391 if (err)
1392 goto out;
1393
1394 if (arg == MMC_SECURE_TRIM1_ARG) {
1395 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1396 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1397 INAND_CMD38_ARG_EXT_CSD,
1398 INAND_CMD38_ARG_SECTRIM2,
1399 0);
1400 if (err)
1401 goto out_retry;
1402 }
1403
1404 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1405 if (err == -EIO)
1406 goto out_retry;
1407 if (err)
1408 goto out;
1409 }
1410
1411 if (mmc_can_sanitize(card)) {
1412 trace_mmc_blk_erase_start(EXT_CSD_SANITIZE_START, 0, 0);
1413 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1414 EXT_CSD_SANITIZE_START, 1, 0);
1415 trace_mmc_blk_erase_end(EXT_CSD_SANITIZE_START, 0, 0);
1416 }
1417 out_retry:
1418 if (err && !mmc_blk_reset(md, card->host, type))
1419 goto retry;
1420 if (!err)
1421 mmc_blk_reset_success(md, type);
1422 out:
1423 blk_end_request(req, err, blk_rq_bytes(req));
1424
1425 return err ? 0 : 1;
1426 }
1427
1428 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1429 {
1430 struct mmc_blk_data *md = mq->data;
1431 struct mmc_card *card = md->queue.card;
1432 int ret = 0;
1433
1434 ret = mmc_flush_cache(card);
1435 if (ret)
1436 ret = -EIO;
1437
1438 blk_end_request_all(req, ret);
1439
1440 return ret ? 0 : 1;
1441 }
1442
1443 /*
1444 * Reformat current write as a reliable write, supporting
1445 * both legacy and the enhanced reliable write MMC cards.
1446 * In each transfer we'll handle only as much as a single
1447 * reliable write can handle, thus finish the request in
1448 * partial completions.
1449 */
1450 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1451 struct mmc_card *card,
1452 struct request *req)
1453 {
1454 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1455 /* Legacy mode imposes restrictions on transfers. */
1456 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1457 brq->data.blocks = 1;
1458
1459 if (brq->data.blocks > card->ext_csd.rel_sectors)
1460 brq->data.blocks = card->ext_csd.rel_sectors;
1461 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1462 brq->data.blocks = 1;
1463 }
1464 }
1465
1466 #define CMD_ERRORS \
1467 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1468 R1_ADDRESS_ERROR | /* Misaligned address */ \
1469 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1470 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1471 R1_CC_ERROR | /* Card controller error */ \
1472 R1_ERROR) /* General/unknown error */
1473
1474 static int mmc_blk_err_check(struct mmc_card *card,
1475 struct mmc_async_req *areq)
1476 {
1477 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1478 mmc_active);
1479 struct mmc_blk_request *brq = &mq_mrq->brq;
1480 struct request *req = mq_mrq->req;
1481 int ecc_err = 0, gen_err = 0;
1482
1483 /*
1484 * sbc.error indicates a problem with the set block count
1485 * command. No data will have been transferred.
1486 *
1487 * cmd.error indicates a problem with the r/w command. No
1488 * data will have been transferred.
1489 *
1490 * stop.error indicates a problem with the stop command. Data
1491 * may have been transferred, or may still be transferring.
1492 */
1493 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1494 brq->data.error) {
1495 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1496 case ERR_RETRY:
1497 return MMC_BLK_RETRY;
1498 case ERR_ABORT:
1499 return MMC_BLK_ABORT;
1500 case ERR_NOMEDIUM:
1501 return MMC_BLK_NOMEDIUM;
1502 case ERR_CONTINUE:
1503 break;
1504 }
1505 }
1506
1507 /*
1508 * Check for errors relating to the execution of the
1509 * initial command - such as address errors. No data
1510 * has been transferred.
1511 */
1512 if (brq->cmd.resp[0] & CMD_ERRORS) {
1513 pr_err("%s: r/w command failed, status = %#x\n",
1514 req->rq_disk->disk_name, brq->cmd.resp[0]);
1515 return MMC_BLK_ABORT;
1516 }
1517
1518 /*
1519 * Everything else is either success, or a data error of some
1520 * kind. If it was a write, we may have transitioned to
1521 * program mode, which we have to wait for it to complete.
1522 */
1523 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1524 u32 status;
1525 unsigned long timeout;
1526
1527 /* Check stop command response */
1528 if (brq->stop.resp[0] & R1_ERROR) {
1529 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1530 req->rq_disk->disk_name, __func__,
1531 brq->stop.resp[0]);
1532 gen_err = 1;
1533 }
1534
1535 timeout = jiffies + msecs_to_jiffies(MMC_BLK_TIMEOUT_MS);
1536 do {
1537 int err = get_card_status(card, &status, 5);
1538 if (err) {
1539 pr_err("%s: error %d requesting status\n",
1540 req->rq_disk->disk_name, err);
1541 return MMC_BLK_CMD_ERR;
1542 }
1543
1544 if (status & R1_ERROR) {
1545 pr_err("%s: %s: general error sending status command, card status %#x\n",
1546 req->rq_disk->disk_name, __func__,
1547 status);
1548 gen_err = 1;
1549 }
1550
1551 /* Timeout if the device never becomes ready for data
1552 * and never leaves the program state.
1553 */
1554 if (time_after(jiffies, timeout)) {
1555 pr_err("%s: Card stuck in programming state!"\
1556 " %s %s\n", mmc_hostname(card->host),
1557 req->rq_disk->disk_name, __func__);
1558
1559 return MMC_BLK_CMD_ERR;
1560 }
1561 /*
1562 * Some cards mishandle the status bits,
1563 * so make sure to check both the busy
1564 * indication and the card state.
1565 */
1566 } while (!(status & R1_READY_FOR_DATA) ||
1567 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1568 }
1569
1570 /* if general error occurs, retry the write operation. */
1571 if (gen_err) {
1572 pr_warn("%s: retrying write for general error\n",
1573 req->rq_disk->disk_name);
1574 return MMC_BLK_RETRY;
1575 }
1576
1577 if (brq->data.error) {
1578 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1579 req->rq_disk->disk_name, brq->data.error,
1580 (unsigned)blk_rq_pos(req),
1581 (unsigned)blk_rq_sectors(req),
1582 brq->cmd.resp[0], brq->stop.resp[0]);
1583
1584 if (rq_data_dir(req) == READ) {
1585 if (ecc_err)
1586 return MMC_BLK_ECC_ERR;
1587 return MMC_BLK_DATA_ERR;
1588 } else {
1589 return MMC_BLK_CMD_ERR;
1590 }
1591 }
1592
1593 if (!brq->data.bytes_xfered)
1594 return MMC_BLK_RETRY;
1595
1596 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1597 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1598 return MMC_BLK_PARTIAL;
1599 else
1600 return MMC_BLK_SUCCESS;
1601 }
1602
1603 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1604 return MMC_BLK_PARTIAL;
1605
1606 return MMC_BLK_SUCCESS;
1607 }
1608
1609 static int mmc_blk_packed_err_check(struct mmc_card *card,
1610 struct mmc_async_req *areq)
1611 {
1612 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1613 mmc_active);
1614 struct request *req = mq_rq->req;
1615 struct mmc_packed *packed = mq_rq->packed;
1616 int err, check, status;
1617 u8 *ext_csd;
1618
1619 BUG_ON(!packed);
1620
1621 packed->retries--;
1622 check = mmc_blk_err_check(card, areq);
1623 err = get_card_status(card, &status, 0);
1624 if (err) {
1625 pr_err("%s: error %d sending status command\n",
1626 req->rq_disk->disk_name, err);
1627 return MMC_BLK_ABORT;
1628 }
1629
1630 if (status & R1_EXCEPTION_EVENT) {
1631 ext_csd = kzalloc(512, GFP_KERNEL);
1632 if (!ext_csd) {
1633 pr_err("%s: unable to allocate buffer for ext_csd\n",
1634 req->rq_disk->disk_name);
1635 return -ENOMEM;
1636 }
1637
1638 err = mmc_send_ext_csd(card, ext_csd);
1639 if (err) {
1640 pr_err("%s: error %d sending ext_csd\n",
1641 req->rq_disk->disk_name, err);
1642 check = MMC_BLK_ABORT;
1643 goto free;
1644 }
1645
1646 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1647 EXT_CSD_PACKED_FAILURE) &&
1648 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1649 EXT_CSD_PACKED_GENERIC_ERROR)) {
1650 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1651 EXT_CSD_PACKED_INDEXED_ERROR) {
1652 packed->idx_failure =
1653 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1654 check = MMC_BLK_PARTIAL;
1655 }
1656 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1657 "failure index: %d\n",
1658 req->rq_disk->disk_name, packed->nr_entries,
1659 packed->blocks, packed->idx_failure);
1660 }
1661 free:
1662 kfree(ext_csd);
1663 }
1664
1665 return check;
1666 }
1667
1668 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1669 struct mmc_card *card,
1670 int disable_multi,
1671 struct mmc_queue *mq)
1672 {
1673 u32 readcmd, writecmd;
1674 struct mmc_blk_request *brq = &mqrq->brq;
1675 struct request *req = mqrq->req;
1676 struct mmc_blk_data *md = mq->data;
1677 bool do_data_tag;
1678
1679 /*
1680 * Reliable writes are used to implement Forced Unit Access and
1681 * REQ_META accesses, and are supported only on MMCs.
1682 *
1683 * XXX: this really needs a good explanation of why REQ_META
1684 * is treated special.
1685 */
1686 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1687 (req->cmd_flags & REQ_META)) &&
1688 (rq_data_dir(req) == WRITE) &&
1689 (md->flags & MMC_BLK_REL_WR);
1690
1691 memset(brq, 0, sizeof(struct mmc_blk_request));
1692 brq->mrq.cmd = &brq->cmd;
1693 brq->mrq.data = &brq->data;
1694
1695 brq->cmd.arg = blk_rq_pos(req);
1696 if (!mmc_card_blockaddr(card))
1697 brq->cmd.arg <<= 9;
1698 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1699 brq->data.blksz = 512;
1700 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1701 brq->stop.arg = 0;
1702 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1703 brq->data.blocks = blk_rq_sectors(req);
1704
1705 /*
1706 * The block layer doesn't support all sector count
1707 * restrictions, so we need to be prepared for too big
1708 * requests.
1709 */
1710 if (brq->data.blocks > card->host->max_blk_count)
1711 brq->data.blocks = card->host->max_blk_count;
1712
1713 if (brq->data.blocks > 1) {
1714 /*
1715 * After a read error, we redo the request one sector
1716 * at a time in order to accurately determine which
1717 * sectors can be read successfully.
1718 */
1719 if (disable_multi)
1720 brq->data.blocks = 1;
1721
1722 /* Some controllers can't do multiblock reads due to hw bugs */
1723 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1724 rq_data_dir(req) == READ)
1725 brq->data.blocks = 1;
1726 }
1727
1728 if (brq->data.blocks > 1 || do_rel_wr) {
1729 /* SPI multiblock writes terminate using a special
1730 * token, not a STOP_TRANSMISSION request.
1731 */
1732 if (!mmc_host_is_spi(card->host) ||
1733 rq_data_dir(req) == READ)
1734 brq->mrq.stop = &brq->stop;
1735 readcmd = MMC_READ_MULTIPLE_BLOCK;
1736 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1737 } else {
1738 brq->mrq.stop = NULL;
1739 readcmd = MMC_READ_SINGLE_BLOCK;
1740 writecmd = MMC_WRITE_BLOCK;
1741 }
1742 #ifdef CONFIG_MTK_EMMC_CACHE
1743 /* for non-cacheable system data,
1744 * the implementation of reliable write / force prg write,
1745 * must be applied with mutli write cmd
1746 * */
1747 if (mmc_card_mmc(card) && (card->ext_csd.cache_ctrl & 0x1)){
1748 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1749 }
1750 #endif
1751 if (rq_data_dir(req) == READ) {
1752 brq->cmd.opcode = readcmd;
1753 brq->data.flags |= MMC_DATA_READ;
1754 } else {
1755 brq->cmd.opcode = writecmd;
1756 brq->data.flags |= MMC_DATA_WRITE;
1757 }
1758
1759 if (do_rel_wr)
1760 mmc_apply_rel_rw(brq, card, req);
1761
1762 /*
1763 * Data tag is used only during writing meta data to speed
1764 * up write and any subsequent read of this meta data
1765 */
1766 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1767 (req->cmd_flags & REQ_META) &&
1768 (rq_data_dir(req) == WRITE) &&
1769 ((brq->data.blocks * brq->data.blksz) >=
1770 card->ext_csd.data_tag_unit_size);
1771
1772 /*
1773 * Pre-defined multi-block transfers are preferable to
1774 * open ended-ones (and necessary for reliable writes).
1775 * However, it is not sufficient to just send CMD23,
1776 * and avoid the final CMD12, as on an error condition
1777 * CMD12 (stop) needs to be sent anyway. This, coupled
1778 * with Auto-CMD23 enhancements provided by some
1779 * hosts, means that the complexity of dealing
1780 * with this is best left to the host. If CMD23 is
1781 * supported by card and host, we'll fill sbc in and let
1782 * the host deal with handling it correctly. This means
1783 * that for hosts that don't expose MMC_CAP_CMD23, no
1784 * change of behavior will be observed.
1785 *
1786 * N.B: Some MMC cards experience perf degradation.
1787 * We'll avoid using CMD23-bounded multiblock writes for
1788 * these, while retaining features like reliable writes.
1789 */
1790 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1791 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1792 do_data_tag)) {
1793 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1794 brq->sbc.arg = brq->data.blocks |
1795 (do_rel_wr ? (1 << 31) : 0) |
1796 (do_data_tag ? (1 << 29) : 0);
1797 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1798 brq->mrq.sbc = &brq->sbc;
1799 }
1800
1801 mmc_set_data_timeout(&brq->data, card);
1802
1803 brq->data.sg = mqrq->sg;
1804 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1805
1806 if (brq->data.sg_len > 1024)
1807 pr_err("%s:%d sglen = %x\n", __func__, __LINE__, brq->data.sg_len);
1808
1809 /*
1810 * Adjust the sg list so it is the same size as the
1811 * request.
1812 */
1813 if (brq->data.blocks != blk_rq_sectors(req)) {
1814 int i, data_size = brq->data.blocks << 9;
1815 struct scatterlist *sg;
1816
1817 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1818 data_size -= sg->length;
1819 if (data_size <= 0) {
1820 sg->length += data_size;
1821 i++;
1822 break;
1823 }
1824 }
1825 brq->data.sg_len = i;
1826 pr_err("%s:%d sglen = %x\n", __func__, __LINE__, brq->data.sg_len);
1827 }
1828
1829 mqrq->mmc_active.mrq = &brq->mrq;
1830 mqrq->mmc_active.err_check = mmc_blk_err_check;
1831
1832 mmc_queue_bounce_pre(mqrq);
1833 }
1834
1835 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1836 struct mmc_card *card)
1837 {
1838 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1839 unsigned int max_seg_sz = queue_max_segment_size(q);
1840 unsigned int len, nr_segs = 0;
1841
1842 do {
1843 len = min(hdr_sz, max_seg_sz);
1844 hdr_sz -= len;
1845 nr_segs++;
1846 } while (hdr_sz);
1847
1848 return nr_segs;
1849 }
1850
1851 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1852 {
1853 struct request_queue *q = mq->queue;
1854 struct mmc_card *card = mq->card;
1855 struct request *cur = req, *next = NULL;
1856 struct mmc_blk_data *md = mq->data;
1857 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1858 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1859 unsigned int req_sectors = 0, phys_segments = 0;
1860 unsigned int max_blk_count, max_phys_segs;
1861 bool put_back = true;
1862 u8 max_packed_rw = 0;
1863 u8 reqs = 0;
1864
1865 if (!(md->flags & MMC_BLK_PACKED_CMD))
1866 goto no_packed;
1867
1868 if ((rq_data_dir(cur) == WRITE) &&
1869 mmc_host_packed_wr(card->host))
1870 max_packed_rw = card->ext_csd.max_packed_writes;
1871
1872 if (max_packed_rw == 0)
1873 goto no_packed;
1874
1875 if (mmc_req_rel_wr(cur) &&
1876 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1877 goto no_packed;
1878
1879 if (mmc_large_sector(card) &&
1880 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1881 goto no_packed;
1882
1883 mmc_blk_clear_packed(mqrq);
1884
1885 max_blk_count = min(card->host->max_blk_count,
1886 card->host->max_req_size >> 9);
1887 if (unlikely(max_blk_count > 0xffff))
1888 max_blk_count = 0xffff;
1889
1890 max_phys_segs = queue_max_segments(q);
1891 req_sectors += blk_rq_sectors(cur);
1892 phys_segments += cur->nr_phys_segments;
1893
1894 if (rq_data_dir(cur) == WRITE) {
1895 req_sectors += mmc_large_sector(card) ? 8 : 1;
1896 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1897 }
1898
1899 do {
1900 if (reqs >= max_packed_rw - 1) {
1901 put_back = false;
1902 break;
1903 }
1904
1905 spin_lock_irq(q->queue_lock);
1906 next = blk_fetch_request(q);
1907 spin_unlock_irq(q->queue_lock);
1908 if (!next) {
1909 put_back = false;
1910 break;
1911 }
1912
1913 if (mmc_large_sector(card) &&
1914 !IS_ALIGNED(blk_rq_sectors(next), 8))
1915 break;
1916
1917 if (next->cmd_flags & REQ_DISCARD ||
1918 next->cmd_flags & REQ_FLUSH)
1919 break;
1920
1921 if (rq_data_dir(cur) != rq_data_dir(next))
1922 break;
1923
1924 if (mmc_req_rel_wr(next) &&
1925 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1926 break;
1927
1928 req_sectors += blk_rq_sectors(next);
1929 if (req_sectors > max_blk_count)
1930 break;
1931
1932 phys_segments += next->nr_phys_segments;
1933 if (phys_segments > max_phys_segs)
1934 break;
1935
1936 list_add_tail(&next->queuelist, &mqrq->packed->list);
1937 cur = next;
1938 reqs++;
1939 } while (1);
1940
1941 if (put_back) {
1942 spin_lock_irq(q->queue_lock);
1943 blk_requeue_request(q, next);
1944 spin_unlock_irq(q->queue_lock);
1945 }
1946
1947 if (reqs > 0) {
1948 list_add(&req->queuelist, &mqrq->packed->list);
1949 mqrq->packed->nr_entries = ++reqs;
1950 mqrq->packed->retries = reqs;
1951 return reqs;
1952 }
1953
1954 no_packed:
1955 mqrq->cmd_type = MMC_PACKED_NONE;
1956 return 0;
1957 }
1958
1959 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1960 struct mmc_card *card,
1961 struct mmc_queue *mq)
1962 {
1963 struct mmc_blk_request *brq = &mqrq->brq;
1964 struct request *req = mqrq->req;
1965 struct request *prq;
1966 struct mmc_blk_data *md = mq->data;
1967 struct mmc_packed *packed = mqrq->packed;
1968 bool do_rel_wr, do_data_tag;
1969 u32 *packed_cmd_hdr;
1970 u8 hdr_blocks;
1971 u8 i = 1;
1972
1973 BUG_ON(!packed);
1974
1975 mqrq->cmd_type = MMC_PACKED_WRITE;
1976 packed->blocks = 0;
1977 packed->idx_failure = MMC_PACKED_NR_IDX;
1978
1979 packed_cmd_hdr = packed->cmd_hdr;
1980 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1981 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1982 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1983 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1984
1985 /*
1986 * Argument for each entry of packed group
1987 */
1988 list_for_each_entry(prq, &packed->list, queuelist) {
1989 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1990 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1991 (prq->cmd_flags & REQ_META) &&
1992 (rq_data_dir(prq) == WRITE) &&
1993 ((brq->data.blocks * brq->data.blksz) >=
1994 card->ext_csd.data_tag_unit_size);
1995 /* Argument of CMD23 */
1996 packed_cmd_hdr[(i * 2)] =
1997 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1998 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1999 blk_rq_sectors(prq);
2000 /* Argument of CMD18 or CMD25 */
2001 packed_cmd_hdr[((i * 2)) + 1] =
2002 mmc_card_blockaddr(card) ?
2003 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
2004 packed->blocks += blk_rq_sectors(prq);
2005 i++;
2006 }
2007
2008 memset(brq, 0, sizeof(struct mmc_blk_request));
2009 brq->mrq.cmd = &brq->cmd;
2010 brq->mrq.data = &brq->data;
2011 brq->mrq.sbc = &brq->sbc;
2012 brq->mrq.stop = &brq->stop;
2013
2014 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
2015 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
2016 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
2017
2018 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
2019 brq->cmd.arg = blk_rq_pos(req);
2020 if (!mmc_card_blockaddr(card))
2021 brq->cmd.arg <<= 9;
2022 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
2023
2024 brq->data.blksz = 512;
2025 brq->data.blocks = packed->blocks + hdr_blocks;
2026 brq->data.flags |= MMC_DATA_WRITE;
2027
2028 brq->stop.opcode = MMC_STOP_TRANSMISSION;
2029 brq->stop.arg = 0;
2030 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2031
2032 mmc_set_data_timeout(&brq->data, card);
2033
2034 brq->data.sg = mqrq->sg;
2035 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
2036 pr_err("%s: sglen = %d\n", __func__, brq->data.sg_len);
2037
2038 mqrq->mmc_active.mrq = &brq->mrq;
2039 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
2040
2041 mmc_queue_bounce_pre(mqrq);
2042 }
2043
2044 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
2045 struct mmc_blk_request *brq, struct request *req,
2046 int ret)
2047 {
2048 struct mmc_queue_req *mq_rq;
2049 mq_rq = container_of(brq, struct mmc_queue_req, brq);
2050
2051 /*
2052 * If this is an SD card and we're writing, we can first
2053 * mark the known good sectors as ok.
2054 *
2055 * If the card is not SD, we can still ok written sectors
2056 * as reported by the controller (which might be less than
2057 * the real number of written sectors, but never more).
2058 */
2059 if (mmc_card_sd(card)) {
2060 u32 blocks;
2061
2062 blocks = mmc_sd_num_wr_blocks(card);
2063 if (blocks != (u32)-1) {
2064 ret = blk_end_request(req, 0, blocks << 9);
2065 }
2066 } else {
2067 if (!mmc_packed_cmd(mq_rq->cmd_type))
2068 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
2069 }
2070 return ret;
2071 }
2072
2073 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
2074 {
2075 struct request *prq;
2076 struct mmc_packed *packed = mq_rq->packed;
2077 int idx = packed->idx_failure, i = 0;
2078 int ret = 0;
2079
2080 BUG_ON(!packed);
2081
2082 while (!list_empty(&packed->list)) {
2083 prq = list_entry_rq(packed->list.next);
2084 if (idx == i) {
2085 /* retry from error index */
2086 packed->nr_entries -= idx;
2087 mq_rq->req = prq;
2088 ret = 1;
2089
2090 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
2091 list_del_init(&prq->queuelist);
2092 mmc_blk_clear_packed(mq_rq);
2093 }
2094 return ret;
2095 }
2096 list_del_init(&prq->queuelist);
2097 blk_end_request(prq, 0, blk_rq_bytes(prq));
2098 i++;
2099 }
2100
2101 mmc_blk_clear_packed(mq_rq);
2102 return ret;
2103 }
2104
2105 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
2106 {
2107 struct request *prq;
2108 struct mmc_packed *packed = mq_rq->packed;
2109
2110 BUG_ON(!packed);
2111
2112 while (!list_empty(&packed->list)) {
2113 prq = list_entry_rq(packed->list.next);
2114 list_del_init(&prq->queuelist);
2115 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
2116 }
2117
2118 mmc_blk_clear_packed(mq_rq);
2119 }
2120
2121 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
2122 struct mmc_queue_req *mq_rq)
2123 {
2124 struct request *prq;
2125 struct request_queue *q = mq->queue;
2126 struct mmc_packed *packed = mq_rq->packed;
2127
2128 BUG_ON(!packed);
2129
2130 while (!list_empty(&packed->list)) {
2131 prq = list_entry_rq(packed->list.prev);
2132 if (prq->queuelist.prev != &packed->list) {
2133 list_del_init(&prq->queuelist);
2134 spin_lock_irq(q->queue_lock);
2135 blk_requeue_request(mq->queue, prq);
2136 spin_unlock_irq(q->queue_lock);
2137 } else {
2138 list_del_init(&prq->queuelist);
2139 }
2140 }
2141
2142 mmc_blk_clear_packed(mq_rq);
2143 }
2144 #if defined(FEATURE_STORAGE_PERF_INDEX)
2145 #define PRT_TIME_PERIOD 500000000
2146 #define UP_LIMITS_4BYTE 4294967295UL //((4*1024*1024*1024)-1)
2147 #define ID_CNT 10
2148 pid_t mmcqd[ID_CNT]={0};
2149 bool start_async_req[ID_CNT] = {0};
2150 unsigned long long start_async_req_time[ID_CNT] = {0};
2151 static unsigned long long mmcqd_tag_t1[ID_CNT]={0}, mmccid_tag_t1=0;
2152 unsigned long long mmcqd_t_usage_wr[ID_CNT]={0}, mmcqd_t_usage_rd[ID_CNT]={0};
2153 unsigned int mmcqd_rq_size_wr[ID_CNT]={0}, mmcqd_rq_size_rd[ID_CNT]={0};
2154 static unsigned int mmcqd_wr_offset_tag[ID_CNT]={0}, mmcqd_rd_offset_tag[ID_CNT]={0}, mmcqd_wr_offset[ID_CNT]={0}, mmcqd_rd_offset[ID_CNT]={0};
2155 static unsigned int mmcqd_wr_bit[ID_CNT]={0},mmcqd_wr_tract[ID_CNT]={0};
2156 static unsigned int mmcqd_rd_bit[ID_CNT]={0},mmcqd_rd_tract[ID_CNT]={0};
2157 static unsigned int mmcqd_wr_break[ID_CNT]={0}, mmcqd_rd_break[ID_CNT]={0};
2158 unsigned int mmcqd_rq_count[ID_CNT]={0}, mmcqd_wr_rq_count[ID_CNT]={0}, mmcqd_rd_rq_count[ID_CNT]={0};
2159 extern u32 g_u32_cid[4];
2160 #ifdef FEATURE_STORAGE_META_LOG
2161 int check_perdev_minors = CONFIG_MMC_BLOCK_MINORS;
2162 struct metadata_rwlogger metadata_logger[10] = {{{0}}};
2163 #endif
2164
2165 unsigned int mmcqd_work_percent[ID_CNT]={0};
2166 unsigned int mmcqd_w_throughput[ID_CNT]={0};
2167 unsigned int mmcqd_r_throughput[ID_CNT]={0};
2168 unsigned int mmcqd_read_clear[ID_CNT]={0};
2169
2170 static void g_var_clear(unsigned int idx)
2171 {
2172 mmcqd_t_usage_wr[idx]=0;
2173 mmcqd_t_usage_rd[idx]=0;
2174 mmcqd_rq_size_wr[idx]=0;
2175 mmcqd_rq_size_rd[idx]=0;
2176 mmcqd_rq_count[idx]=0;
2177 mmcqd_wr_offset[idx]=0;
2178 mmcqd_rd_offset[idx]=0;
2179 mmcqd_wr_break[idx]=0;
2180 mmcqd_rd_break[idx]=0;
2181 mmcqd_wr_tract[idx]=0;
2182 mmcqd_wr_bit[idx]=0;
2183 mmcqd_rd_tract[idx]=0;
2184 mmcqd_rd_bit[idx]=0;
2185 mmcqd_wr_rq_count[idx]=0;
2186 mmcqd_rd_rq_count[idx]=0;
2187 }
2188
2189 unsigned int find_mmcqd_index(void)
2190 {
2191 pid_t mmcqd_pid=0;
2192 unsigned int idx=0;
2193 unsigned char i=0;
2194
2195 mmcqd_pid = task_pid_nr(current);
2196
2197 if(mmcqd[0] ==0) {
2198 mmcqd[0] = mmcqd_pid;
2199 start_async_req[0]=0;
2200 }
2201
2202 for(i=0;i<ID_CNT;i++)
2203 {
2204 if(mmcqd_pid == mmcqd[i])
2205 {
2206 idx=i;
2207 break;
2208 }
2209 if ((mmcqd[i] == 0) ||( i==ID_CNT-1))
2210 {
2211 mmcqd[i]=mmcqd_pid;
2212 start_async_req[i]=0;
2213 idx=i;
2214 break;
2215 }
2216 }
2217 return idx;
2218 }
2219
2220 #endif
2221 //#undef FEATURE_STORAGE_PID_LOGGER
2222 #if defined(FEATURE_STORAGE_PID_LOGGER)
2223
2224 struct struct_pid_logger g_pid_logger[PID_ID_CNT]={{0,0,{0},{0},{0},{0}}};
2225
2226
2227
2228 unsigned char *page_logger = NULL;
2229 spinlock_t g_locker;
2230
2231 #endif
2232 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
2233 {
2234 struct mmc_blk_data *md = mq->data;
2235 struct mmc_card *card = md->queue.card;
2236 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
2237 int ret = 1, disable_multi = 0, retry = 0, type;
2238 enum mmc_blk_status status;
2239 struct mmc_queue_req *mq_rq;
2240 struct request *req = rqc;
2241 struct mmc_async_req *areq;
2242 const u8 packed_nr = 2;
2243 u8 reqs = 0;
2244 unsigned long long time1 = 0;
2245 #if defined(FEATURE_STORAGE_PERF_INDEX)
2246 pid_t mmcqd_pid=0;
2247 unsigned long long t_period=0, t_usage=0;
2248 unsigned int t_percent=0;
2249 unsigned int perf_meter=0;
2250 unsigned int rq_byte=0,rq_sector=0,sect_offset=0;
2251 unsigned int diversity=0;
2252 unsigned int idx=0;
2253 #ifdef FEATURE_STORAGE_META_LOG
2254 unsigned int mmcmetaindex=0;
2255 #endif
2256 #endif
2257 #if defined(FEATURE_STORAGE_PID_LOGGER)
2258 unsigned int index=0;
2259 #endif
2260
2261 if (!rqc && !mq->mqrq_prev->req)
2262 return 0;
2263 time1 = sched_clock();
2264
2265 if (rqc)
2266 reqs = mmc_blk_prep_packed_list(mq, rqc);
2267 #if defined(FEATURE_STORAGE_PERF_INDEX)
2268 mmcqd_pid = task_pid_nr(current);
2269
2270 idx = find_mmcqd_index();
2271
2272 mmcqd_read_clear[idx] = 1;
2273 if(mmccid_tag_t1==0)
2274 mmccid_tag_t1 = time1;
2275 t_period = time1 - mmccid_tag_t1;
2276 if(t_period >= (unsigned long long )((PRT_TIME_PERIOD)*(unsigned long long )10))
2277 {
2278 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "MMC Queue Thread:%d, %d, %d, %d, %d \n", mmcqd[0], mmcqd[1], mmcqd[2], mmcqd[3], mmcqd[4]);
2279 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "MMC CID: %lx %lx %lx %lx \n", g_u32_cid[0], g_u32_cid[1], g_u32_cid[2], g_u32_cid[3]);
2280 mmccid_tag_t1 = time1;
2281 }
2282 if(mmcqd_tag_t1[idx]==0)
2283 mmcqd_tag_t1[idx] = time1;
2284 t_period = time1 - mmcqd_tag_t1[idx];
2285
2286 if(t_period >= (unsigned long long )PRT_TIME_PERIOD)
2287 {
2288 mmcqd_read_clear[idx] = 2;
2289 mmcqd_work_percent[idx] = 1;
2290 mmcqd_r_throughput[idx] = 0;
2291 mmcqd_w_throughput[idx] = 0;
2292 t_usage = mmcqd_t_usage_wr [idx] + mmcqd_t_usage_rd[idx];
2293 if(t_period > t_usage*100)
2294 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd:%d Workload < 1%%, duty %lld, period %lld, req_cnt=%d \n", mmcqd[idx], t_usage, t_period, mmcqd_rq_count[idx]);
2295 else
2296 {
2297 do_div(t_period, 100); //boundary issue
2298 t_percent =((unsigned int)t_usage)/((unsigned int)t_period);
2299 mmcqd_work_percent[idx] = t_percent;
2300 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd:%d Workload=%d%%, duty %lld, period %lld00, req_cnt=%d \n", mmcqd[idx], t_percent, t_usage, t_period, mmcqd_rq_count[idx]); //period %lld00 == period %lld x100
2301 }
2302 if(mmcqd_wr_rq_count[idx] >= 2)
2303 {
2304 diversity = mmcqd_wr_offset[idx]/(mmcqd_wr_rq_count[idx]-1);
2305 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd:%d Write Diversity=%d sectors offset, req_cnt=%d, break_cnt=%d, tract_cnt=%d, bit_cnt=%d\n", mmcqd[idx], diversity, mmcqd_wr_rq_count[idx], mmcqd_wr_break[idx], mmcqd_wr_tract[idx], mmcqd_wr_bit[idx]);
2306 }
2307 if(mmcqd_rd_rq_count[idx] >= 2)
2308 {
2309 diversity = mmcqd_rd_offset[idx]/(mmcqd_rd_rq_count[idx]-1);
2310 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd:%d Read Diversity=%d sectors offset, req_cnt=%d, break_cnt=%d, tract_cnt=%d, bit_cnt=%d\n", mmcqd[idx], diversity, mmcqd_rd_rq_count[idx], mmcqd_rd_break[idx], mmcqd_rd_tract[idx], mmcqd_rd_bit[idx]);
2311 }
2312 if(mmcqd_t_usage_wr[idx])
2313 {
2314 do_div(mmcqd_t_usage_wr[idx], 1000000); //boundary issue
2315 if(mmcqd_t_usage_wr[idx]) // discard print if duration will <1ms
2316 {
2317 perf_meter = (mmcqd_rq_size_wr[idx])/((unsigned int)mmcqd_t_usage_wr[idx]); //kb/s
2318 mmcqd_w_throughput[idx] = perf_meter;
2319 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd:%d Write Throughput=%d kB/s, size: %d bytes, time:%lld ms\n", mmcqd[idx], perf_meter, mmcqd_rq_size_wr[idx], mmcqd_t_usage_wr[idx]);
2320 }
2321 }
2322 if(mmcqd_t_usage_rd[idx])
2323 {
2324 do_div(mmcqd_t_usage_rd[idx], 1000000); //boundary issue
2325 if(mmcqd_t_usage_rd[idx]) // discard print if duration will <1ms
2326 {
2327 perf_meter = (mmcqd_rq_size_rd[idx])/((unsigned int)mmcqd_t_usage_rd[idx]); //kb/s
2328 mmcqd_r_throughput[idx] = perf_meter;
2329 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd:%d Read Throughput=%d kB/s, size: %d bytes, time:%lld ms\n", mmcqd[idx], perf_meter, mmcqd_rq_size_rd[idx], mmcqd_t_usage_rd[idx]);
2330 }
2331 }
2332 mmcqd_tag_t1[idx]=time1;
2333 g_var_clear(idx);
2334 #ifdef FEATURE_STORAGE_META_LOG
2335 mmcmetaindex = mmc_get_devidx(md->disk);
2336 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd metarw WR:%d NWR:%d HR:%d WDR:%d HDR:%d WW:%d NWW:%d HW:%d\n",
2337 metadata_logger[mmcmetaindex].metadata_rw_logger[0], metadata_logger[mmcmetaindex].metadata_rw_logger[1],
2338 metadata_logger[mmcmetaindex].metadata_rw_logger[2], metadata_logger[mmcmetaindex].metadata_rw_logger[3],
2339 metadata_logger[mmcmetaindex].metadata_rw_logger[4], metadata_logger[mmcmetaindex].metadata_rw_logger[5],
2340 metadata_logger[mmcmetaindex].metadata_rw_logger[6], metadata_logger[mmcmetaindex].metadata_rw_logger[7]);
2341 clear_metadata_rw_status(md->disk->first_minor);
2342 #endif
2343 #if defined(FEATURE_STORAGE_PID_LOGGER)
2344 do {
2345 int i;
2346 for(index=0; index<PID_ID_CNT; index++) {
2347
2348 if( g_pid_logger[index].current_pid!=0 && g_pid_logger[index].current_pid == mmcqd_pid)
2349 break;
2350 }
2351 if( index == PID_ID_CNT )
2352 break;
2353 for( i=0; i<PID_LOGGER_COUNT; i++) {
2354 //printk(KERN_INFO"hank mmcqd %d %d", g_pid_logger[index].pid_logger[i], mmcqd_pid);
2355 if( g_pid_logger[index].pid_logger[i] == 0)
2356 break;
2357 sprintf (g_pid_logger[index].pid_buffer+i*37, "{%05d:%05d:%08d:%05d:%08d}", g_pid_logger[index].pid_logger[i], g_pid_logger[index].pid_logger_counter[i], g_pid_logger[index].pid_logger_length[i], g_pid_logger[index].pid_logger_r_counter[i], g_pid_logger[index].pid_logger_r_length[i]);
2358
2359 }
2360 if( i != 0) {
2361 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "mmcqd pid:%d %s\n", g_pid_logger[index].current_pid, g_pid_logger[index].pid_buffer);
2362 //xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "sizeof(&(g_pid_logger[index].pid_logger)):%d\n", sizeof(unsigned short)*PID_LOGGER_COUNT);
2363 //memset( &(g_pid_logger[index].pid_logger), 0, sizeof(struct struct_pid_logger)-(unsigned long)&(((struct struct_pid_logger *)0)->pid_logger));
2364 memset( &(g_pid_logger[index].pid_logger), 0, sizeof(unsigned short)*PID_LOGGER_COUNT);
2365 memset( &(g_pid_logger[index].pid_logger_counter), 0, sizeof(unsigned short)*PID_LOGGER_COUNT);
2366 memset( &(g_pid_logger[index].pid_logger_length), 0, sizeof(unsigned int)*PID_LOGGER_COUNT);
2367 memset( &(g_pid_logger[index].pid_logger_r_counter), 0, sizeof(unsigned short)*PID_LOGGER_COUNT);
2368 memset( &(g_pid_logger[index].pid_logger_r_length), 0, sizeof(unsigned int)*PID_LOGGER_COUNT);
2369 memset( &(g_pid_logger[index].pid_buffer), 0, sizeof(char)*1024);
2370
2371
2372 }
2373 g_pid_logger[index].pid_buffer[0] = '\0';
2374
2375 } while(0);
2376 #endif
2377
2378 #if defined(FEATURE_STORAGE_VMSTAT_LOGGER)
2379 xlog_printk(ANDROID_LOG_DEBUG, "BLOCK_TAG", "vmstat (FP:%ld)(FD:%ld)(ND:%ld)(WB:%ld)(NW:%ld)\n",
2380 ((global_page_state(NR_FILE_PAGES)) << (PAGE_SHIFT - 10)),
2381 ((global_page_state(NR_FILE_DIRTY)) << (PAGE_SHIFT - 10)),
2382 ((global_page_state(NR_DIRTIED)) << (PAGE_SHIFT - 10)),
2383 ((global_page_state(NR_WRITEBACK)) << (PAGE_SHIFT - 10)),
2384 ((global_page_state(NR_WRITTEN)) << (PAGE_SHIFT - 10)));
2385 #endif
2386
2387 }
2388 if( rqc )
2389 {
2390 rq_byte = blk_rq_bytes(rqc);
2391 rq_sector = blk_rq_sectors(rqc);
2392 if(rq_data_dir(rqc) == WRITE)
2393 {
2394 if(mmcqd_wr_offset_tag[idx]>0)
2395 {
2396 sect_offset = abs(blk_rq_pos(rqc) - mmcqd_wr_offset_tag[idx]);
2397 mmcqd_wr_offset[idx] += sect_offset;
2398 if(sect_offset == 1)
2399 mmcqd_wr_break[idx]++;
2400 }
2401 mmcqd_wr_offset_tag[idx] = blk_rq_pos(rqc) + rq_sector;
2402 if(rq_sector <= 1) //512 bytes
2403 mmcqd_wr_bit[idx] ++;
2404 else if(rq_sector >= 1016) //508kB
2405 mmcqd_wr_tract[idx] ++;
2406 }
2407 else //read
2408 {
2409 if(mmcqd_rd_offset_tag[idx]>0)
2410 {
2411 sect_offset = abs(blk_rq_pos(rqc) - mmcqd_rd_offset_tag[idx]);
2412 mmcqd_rd_offset[idx] += sect_offset;
2413 if(sect_offset == 1)
2414 mmcqd_rd_break[idx]++;
2415 }
2416 mmcqd_rd_offset_tag[idx] = blk_rq_pos(rqc) + rq_sector;
2417 if(rq_sector <= 1) //512 bytes
2418 mmcqd_rd_bit[idx] ++;
2419 else if(rq_sector >= 1016) //508kB
2420 mmcqd_rd_tract[idx] ++;
2421 }
2422 }
2423 #endif
2424 do {
2425 if (rqc) {
2426 /*
2427 * When 4KB native sector is enabled, only 8 blocks
2428 * multiple read or write is allowed
2429 */
2430 if ((brq->data.blocks & 0x07) &&
2431 (card->ext_csd.data_sector_size == 4096)) {
2432 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
2433 req->rq_disk->disk_name);
2434 mq_rq = mq->mqrq_cur;
2435 goto cmd_abort;
2436 }
2437
2438 if (reqs >= packed_nr)
2439 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
2440 card, mq);
2441 else
2442 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2443 areq = &mq->mqrq_cur->mmc_active;
2444 } else
2445 areq = NULL;
2446 areq = mmc_start_req(card->host, areq, (int *) &status);
2447 if (!areq) {
2448 if (status == MMC_BLK_NEW_REQUEST)
2449 mq->flags |= MMC_QUEUE_NEW_REQUEST;
2450 return 0;
2451 }
2452
2453 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
2454 brq = &mq_rq->brq;
2455 req = mq_rq->req;
2456 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2457 mmc_queue_bounce_post(mq_rq);
2458
2459 switch (status) {
2460 case MMC_BLK_SUCCESS:
2461 case MMC_BLK_PARTIAL:
2462 /*
2463 * A block was successfully transferred.
2464 */
2465 mmc_blk_reset_success(md, type);
2466
2467 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2468 ret = mmc_blk_end_packed_req(mq_rq);
2469 break;
2470 } else {
2471 ret = blk_end_request(req, 0,
2472 brq->data.bytes_xfered);
2473 }
2474
2475 // if (card && card->host && card->host->areq)
2476 // met_mmc_end(card->host, card->host->areq);
2477
2478 /*
2479 * If the blk_end_request function returns non-zero even
2480 * though all data has been transferred and no errors
2481 * were returned by the host controller, it's a bug.
2482 */
2483 if (status == MMC_BLK_SUCCESS && ret) {
2484 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2485 __func__, blk_rq_bytes(req),
2486 brq->data.bytes_xfered);
2487 rqc = NULL;
2488 goto cmd_abort;
2489 }
2490 break;
2491 case MMC_BLK_CMD_ERR:
2492 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2493 if (mmc_blk_reset(md, card->host, type))
2494 goto cmd_abort;
2495 if (!ret)
2496 goto start_new_req;
2497 break;
2498 case MMC_BLK_RETRY:
2499 if (retry++ < 5)
2500 break;
2501 /* Fall through */
2502 case MMC_BLK_ABORT:
2503 if (!mmc_blk_reset(md, card->host, type))
2504 break;
2505 goto cmd_abort;
2506 case MMC_BLK_DATA_ERR: {
2507 int err;
2508
2509 err = mmc_blk_reset(md, card->host, type);
2510 if (!err)
2511 break;
2512 if (err == -ENODEV ||
2513 mmc_packed_cmd(mq_rq->cmd_type))
2514 goto cmd_abort;
2515 /* Fall through */
2516 }
2517 case MMC_BLK_ECC_ERR:
2518 if (brq->data.blocks > 1) {
2519 /* Redo read one sector at a time */
2520 pr_warning("%s: retrying using single block read\n",
2521 req->rq_disk->disk_name);
2522 disable_multi = 1;
2523 break;
2524 }
2525 /*
2526 * After an error, we redo I/O one sector at a
2527 * time, so we only reach here after trying to
2528 * read a single sector.
2529 */
2530 ret = blk_end_request(req, -EIO,
2531 brq->data.blksz);
2532 if (!ret)
2533 goto start_new_req;
2534 break;
2535 case MMC_BLK_NOMEDIUM:
2536 goto cmd_abort;
2537 default:
2538 pr_err("%s: Unhandled return value (%d)",
2539 req->rq_disk->disk_name, status);
2540 goto cmd_abort;
2541 }
2542
2543 if (ret) {
2544 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2545 if (!mq_rq->packed->retries)
2546 goto cmd_abort;
2547 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2548 mmc_start_req(card->host,
2549 &mq_rq->mmc_active, NULL);
2550 } else {
2551
2552 /*
2553 * In case of a incomplete request
2554 * prepare it again and resend.
2555 */
2556 mmc_blk_rw_rq_prep(mq_rq, card,
2557 disable_multi, mq);
2558 mmc_start_req(card->host,
2559 &mq_rq->mmc_active, NULL);
2560 }
2561 }
2562 } while (ret);
2563
2564 return 1;
2565
2566 cmd_abort:
2567 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2568 mmc_blk_abort_packed_req(mq_rq);
2569 } else {
2570 if (mmc_card_removed(card))
2571 req->cmd_flags |= REQ_QUIET;
2572 while (ret)
2573 ret = blk_end_request(req, -EIO,
2574 blk_rq_cur_bytes(req));
2575 }
2576
2577 start_new_req:
2578 if (rqc) {
2579 if (mmc_card_removed(card)) {
2580 rqc->cmd_flags |= REQ_QUIET;
2581 blk_end_request_all(rqc, -EIO);
2582 } else {
2583 /*
2584 * If current request is packed, it needs to put back.
2585 */
2586 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2587 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2588
2589 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2590 mmc_start_req(card->host,
2591 &mq->mqrq_cur->mmc_active, NULL);
2592 }
2593 }
2594
2595 return 0;
2596 }
2597
2598 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2599 {
2600 int ret;
2601 struct mmc_blk_data *md = mq->data;
2602 struct mmc_card *card = md->queue.card;
2603 struct mmc_host *host = card->host;
2604 unsigned long flags;
2605 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2606
2607 #ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
2608 if (mmc_bus_needs_resume(card->host))
2609 mmc_resume_bus(card->host);
2610 #endif
2611
2612 if (req && !mq->mqrq_prev->req)
2613 /* claim host only for the first request */
2614 mmc_claim_host(card->host);
2615
2616 ret = mmc_blk_part_switch(card, md);
2617 if (ret) {
2618 if (req) {
2619 blk_end_request_all(req, -EIO);
2620 }
2621 ret = 0;
2622 goto out;
2623 }
2624
2625 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2626 if (cmd_flags & REQ_DISCARD) {
2627 /* complete ongoing async transfer before issuing discard */
2628 if (card->host->areq)
2629 mmc_blk_issue_rw_rq(mq, NULL);
2630 if (req->cmd_flags & REQ_SECURE &&
2631 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2632 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2633 else
2634 ret = mmc_blk_issue_discard_rq(mq, req);
2635 } else if (cmd_flags & REQ_FLUSH) {
2636 /* complete ongoing async transfer before issuing flush */
2637 if (card->host->areq)
2638 mmc_blk_issue_rw_rq(mq, NULL);
2639 ret = mmc_blk_issue_flush(mq, req);
2640 } else {
2641 if (!req && host->areq) {
2642 spin_lock_irqsave(&host->context_info.lock, flags);
2643 host->context_info.is_waiting_last_req = true;
2644 spin_unlock_irqrestore(&host->context_info.lock, flags);
2645 }
2646 ret = mmc_blk_issue_rw_rq(mq, req);
2647 }
2648
2649 out:
2650 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2651 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2652 /*
2653 * Release host when there are no more requests
2654 * and after special request(discard, flush) is done.
2655 * In case sepecial request, there is no reentry to
2656 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2657 */
2658 mmc_release_host(card->host);
2659 return ret;
2660 }
2661
2662 static inline int mmc_blk_readonly(struct mmc_card *card)
2663 {
2664 return mmc_card_readonly(card) ||
2665 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2666 }
2667
2668 //#if defined(FEATURE_STORAGE_PID_LOGGER)
2669 //extern unsigned long get_memory_size(void);
2670 //#endif
2671 #ifdef CONFIG_MTK_EXTMEM
2672 extern void* extmem_malloc_page_align(size_t bytes);
2673 #endif
2674 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2675 struct device *parent,
2676 sector_t size,
2677 bool default_ro,
2678 const char *subname,
2679 int area_type)
2680 {
2681 struct mmc_blk_data *md;
2682 int devidx, ret;
2683
2684 devidx = find_first_zero_bit(dev_use, max_devices);
2685 if (devidx >= max_devices)
2686 return ERR_PTR(-ENOSPC);
2687 __set_bit(devidx, dev_use);
2688
2689 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2690 if (!md) {
2691 ret = -ENOMEM;
2692 goto out;
2693 }
2694
2695 /*
2696 * !subname implies we are creating main mmc_blk_data that will be
2697 * associated with mmc_card with mmc_set_drvdata. Due to device
2698 * partitions, devidx will not coincide with a per-physical card
2699 * index anymore so we keep track of a name index.
2700 */
2701 if (!subname) {
2702 md->name_idx = find_first_zero_bit(name_use, max_devices);
2703 __set_bit(md->name_idx, name_use);
2704 } else
2705 md->name_idx = ((struct mmc_blk_data *)
2706 dev_to_disk(parent)->private_data)->name_idx;
2707
2708 md->area_type = area_type;
2709
2710 /*
2711 * Set the read-only status based on the supported commands
2712 * and the write protect switch.
2713 */
2714 md->read_only = mmc_blk_readonly(card);
2715
2716 md->disk = alloc_disk(perdev_minors);
2717 if (md->disk == NULL) {
2718 ret = -ENOMEM;
2719 goto err_kfree;
2720 }
2721
2722 spin_lock_init(&md->lock);
2723 INIT_LIST_HEAD(&md->part);
2724 md->usage = 1;
2725
2726 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2727 if (ret)
2728 goto err_putdisk;
2729 #if defined(FEATURE_STORAGE_PID_LOGGER)
2730 if( !page_logger){
2731 //num_page_logger = sizeof(struct page_pid_logger);
2732 //page_logger = vmalloc(num_physpages*sizeof(struct page_pid_logger));
2733 // solution: use get_memory_size to obtain the size from start pfn to max pfn
2734
2735 //unsigned long count = get_memory_size() >> PAGE_SHIFT;
2736 unsigned long count = get_max_DRAM_size() >> PAGE_SHIFT;
2737 #ifdef CONFIG_MTK_EXTMEM
2738 page_logger = extmem_malloc_page_align(count * sizeof(struct page_pid_logger));
2739 #else
2740 page_logger = vmalloc(count * sizeof(struct page_pid_logger));
2741 #endif
2742 if( page_logger) {
2743 memset( page_logger, -1, count*sizeof( struct page_pid_logger));
2744 }
2745 spin_lock_init(&g_locker);
2746 }
2747 #endif
2748 #if defined(FEATURE_STORAGE_META_LOG)
2749 check_perdev_minors = perdev_minors;
2750 #endif
2751
2752 md->queue.issue_fn = mmc_blk_issue_rq;
2753 md->queue.data = md;
2754
2755 md->disk->major = MMC_BLOCK_MAJOR;
2756 md->disk->first_minor = devidx * perdev_minors;
2757 md->disk->fops = &mmc_bdops;
2758 md->disk->private_data = md;
2759 md->disk->queue = md->queue.queue;
2760 md->disk->driverfs_dev = parent;
2761 set_disk_ro(md->disk, md->read_only || default_ro);
2762 md->disk->flags = GENHD_FL_EXT_DEVT;
2763 if (area_type & MMC_BLK_DATA_AREA_RPMB)
2764 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2765
2766 /*
2767 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2768 *
2769 * - be set for removable media with permanent block devices
2770 * - be unset for removable block devices with permanent media
2771 *
2772 * Since MMC block devices clearly fall under the second
2773 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2774 * should use the block device creation/destruction hotplug
2775 * messages to tell when the card is present.
2776 */
2777
2778 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2779 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2780
2781 if (mmc_card_mmc(card))
2782 blk_queue_logical_block_size(md->queue.queue,
2783 card->ext_csd.data_sector_size);
2784 else
2785 blk_queue_logical_block_size(md->queue.queue, 512);
2786
2787 set_capacity(md->disk, size);
2788
2789 if (mmc_host_cmd23(card->host)) {
2790 if (mmc_card_mmc(card) ||
2791 (mmc_card_sd(card) &&
2792 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2793 md->flags |= MMC_BLK_CMD23;
2794 }
2795
2796 if (mmc_card_mmc(card) &&
2797 md->flags & MMC_BLK_CMD23 &&
2798 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2799 card->ext_csd.rel_sectors)) {
2800 md->flags |= MMC_BLK_REL_WR;
2801 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2802 }
2803
2804 if (mmc_card_mmc(card) &&
2805 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2806 (md->flags & MMC_BLK_CMD23) &&
2807 card->ext_csd.packed_event_en) {
2808 if (!mmc_packed_init(&md->queue, card))
2809 md->flags |= MMC_BLK_PACKED_CMD;
2810 }
2811
2812 return md;
2813
2814 err_putdisk:
2815 put_disk(md->disk);
2816 err_kfree:
2817 kfree(md);
2818 out:
2819 return ERR_PTR(ret);
2820 }
2821
2822 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2823 {
2824 sector_t size;
2825 #ifdef CONFIG_MTK_EMMC_SUPPORT
2826 unsigned int l_reserve;
2827 struct storage_info s_info = {0};
2828 #endif
2829 struct mmc_blk_data *md;
2830
2831 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2832 /*
2833 * The EXT_CSD sector count is in number or 512 byte
2834 * sectors.
2835 */
2836 size = card->ext_csd.sectors;
2837 } else {
2838 /*
2839 * The CSD capacity field is in units of read_blkbits.
2840 * set_capacity takes units of 512 bytes.
2841 */
2842 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2843 }
2844
2845 if(!mmc_card_sd(card)){
2846 #ifdef CONFIG_MTK_EMMC_SUPPORT
2847 msdc_get_info(EMMC_CARD_BOOT, EMMC_RESERVE, &s_info);
2848 l_reserve = s_info.emmc_reserve;
2849 printk("l_reserve = 0x%x\n", l_reserve);
2850 size -= l_reserve; /*reserved for 64MB (emmc otp + emmc combo offset + reserved)*/
2851 #endif
2852 }
2853 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2854 MMC_BLK_DATA_AREA_MAIN);
2855 return md;
2856 }
2857
2858 static int mmc_blk_alloc_part(struct mmc_card *card,
2859 struct mmc_blk_data *md,
2860 unsigned int part_type,
2861 sector_t size,
2862 bool default_ro,
2863 const char *subname,
2864 int area_type)
2865 {
2866 char cap_str[10];
2867 struct mmc_blk_data *part_md;
2868
2869 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2870 subname, area_type);
2871 if (IS_ERR(part_md))
2872 return PTR_ERR(part_md);
2873 part_md->part_type = part_type;
2874 list_add(&part_md->part, &md->part);
2875
2876 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2877 cap_str, sizeof(cap_str));
2878 pr_info("%s: %s %s partition %u %s\n",
2879 part_md->disk->disk_name, mmc_card_id(card),
2880 mmc_card_name(card), part_md->part_type, cap_str);
2881 return 0;
2882 }
2883
2884 /* MMC Physical partitions consist of two boot partitions and
2885 * up to four general purpose partitions.
2886 * For each partition enabled in EXT_CSD a block device will be allocatedi
2887 * to provide access to the partition.
2888 */
2889
2890 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2891 {
2892 int idx, ret = 0;
2893
2894 if (!mmc_card_mmc(card))
2895 return 0;
2896
2897 for (idx = 0; idx < card->nr_parts; idx++) {
2898 if (card->part[idx].size) {
2899 ret = mmc_blk_alloc_part(card, md,
2900 card->part[idx].part_cfg,
2901 card->part[idx].size >> 9,
2902 card->part[idx].force_ro,
2903 card->part[idx].name,
2904 card->part[idx].area_type);
2905 if (ret)
2906 return ret;
2907 }
2908 }
2909
2910 return ret;
2911 }
2912
2913 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2914 {
2915 struct mmc_card *card;
2916
2917 if (md) {
2918 card = md->queue.card;
2919 if (md->disk->flags & GENHD_FL_UP) {
2920 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2921 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2922 card->ext_csd.boot_ro_lockable)
2923 device_remove_file(disk_to_dev(md->disk),
2924 &md->power_ro_lock);
2925
2926 /* Stop new requests from getting into the queue */
2927 del_gendisk(md->disk);
2928 }
2929
2930 /* Then flush out any already in there */
2931 mmc_cleanup_queue(&md->queue);
2932 if (md->flags & MMC_BLK_PACKED_CMD)
2933 mmc_packed_clean(&md->queue);
2934 mmc_blk_put(md);
2935 }
2936 }
2937
2938 static void mmc_blk_remove_parts(struct mmc_card *card,
2939 struct mmc_blk_data *md)
2940 {
2941 struct list_head *pos, *q;
2942 struct mmc_blk_data *part_md;
2943
2944 __clear_bit(md->name_idx, name_use);
2945 list_for_each_safe(pos, q, &md->part) {
2946 part_md = list_entry(pos, struct mmc_blk_data, part);
2947 list_del(pos);
2948 mmc_blk_remove_req(part_md);
2949 }
2950 }
2951
2952 static int mmc_add_disk(struct mmc_blk_data *md)
2953 {
2954 int ret;
2955 struct mmc_card *card = md->queue.card;
2956
2957 add_disk(md->disk);
2958 md->force_ro.show = force_ro_show;
2959 md->force_ro.store = force_ro_store;
2960 sysfs_attr_init(&md->force_ro.attr);
2961 md->force_ro.attr.name = "force_ro";
2962 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2963 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2964 if (ret)
2965 goto force_ro_fail;
2966
2967 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2968 card->ext_csd.boot_ro_lockable) {
2969 umode_t mode;
2970
2971 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2972 mode = S_IRUGO;
2973 else
2974 mode = S_IRUGO | S_IWUSR;
2975
2976 md->power_ro_lock.show = power_ro_lock_show;
2977 md->power_ro_lock.store = power_ro_lock_store;
2978 sysfs_attr_init(&md->power_ro_lock.attr);
2979 md->power_ro_lock.attr.mode = mode;
2980 md->power_ro_lock.attr.name =
2981 "ro_lock_until_next_power_on";
2982 ret = device_create_file(disk_to_dev(md->disk),
2983 &md->power_ro_lock);
2984 if (ret)
2985 goto power_ro_lock_fail;
2986 }
2987 return ret;
2988
2989 power_ro_lock_fail:
2990 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2991 force_ro_fail:
2992 del_gendisk(md->disk);
2993
2994 return ret;
2995 }
2996
2997 #define CID_MANFID_SANDISK 0x2
2998 #define CID_MANFID_TOSHIBA 0x11
2999 #define CID_MANFID_MICRON 0x13
3000 #define CID_MANFID_SAMSUNG 0x15
3001 #define CID_MANFID_SANDISK_NEW 0x45
3002 #define CID_MANFID_HYNIX 0x90
3003 #define CID_MANFID_KSI 0x70
3004
3005 static const struct mmc_fixup blk_fixups[] =
3006 {
3007 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
3008 MMC_QUIRK_INAND_CMD38),
3009 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
3010 MMC_QUIRK_INAND_CMD38),
3011 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
3012 MMC_QUIRK_INAND_CMD38),
3013 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
3014 MMC_QUIRK_INAND_CMD38),
3015 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
3016 MMC_QUIRK_INAND_CMD38),
3017 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_SANDISK_NEW, CID_OEMID_ANY, add_quirk,
3018 MMC_QUIRK_PON),
3019 /*
3020 * Some MMC cards experience performance degradation with CMD23
3021 * instead of CMD12-bounded multiblock transfers. For now we'll
3022 * black list what's bad...
3023 * - Certain Toshiba cards.
3024 *
3025 * N.B. This doesn't affect SD cards.
3026 */
3027 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
3028 MMC_QUIRK_BLK_NO_CMD23),
3029 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
3030 MMC_QUIRK_BLK_NO_CMD23),
3031 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
3032 MMC_QUIRK_BLK_NO_CMD23),
3033
3034 /*
3035 * Some Micron MMC cards needs longer data read timeout than
3036 * indicated in CSD.
3037 */
3038 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
3039 MMC_QUIRK_LONG_READ_TIME),
3040
3041 /*
3042 * On these Samsung MoviNAND parts, performing secure erase or
3043 * secure trim can result in unrecoverable corruption due to a
3044 * firmware bug.
3045 */
3046 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3047 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3048 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3049 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3050 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3051 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3052 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3053 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3054 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3055 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3056 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3057 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3058 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3059 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3060 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
3061 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
3062 #ifdef CONFIG_MTK_EMMC_CACHE
3063 /*
3064 * Some MMC cards cache feature, cannot flush the previous cache data by force programming or reliable write
3065 * which cannot gurrantee the strong order betwee meta data and file data.
3066 */
3067
3068 /*
3069 * Toshiba eMMC after enable cache feature, write performance drop, because flush operation waste much time
3070 */
3071 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
3072 MMC_QUIRK_DISABLE_CACHE),
3073 #endif
3074
3075 /* Hynix 4.41 trim will lead boot up failed. */
3076 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_HYNIX, CID_OEMID_ANY, add_quirk_mmc,
3077 MMC_QUIRK_TRIM_UNSTABLE),
3078
3079 /* KSI PRV=0x3 trim will lead write performance drop. */
3080 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_KSI, CID_OEMID_ANY, add_quirk_mmc_ksi_v03_skip_trim,
3081 MMC_QUIRK_KSI_V03_SKIP_TRIM),
3082
3083 END_FIXUP
3084 };
3085
3086 #if defined(CONFIG_MTK_EMMC_SUPPORT) && !defined(CONFIG_MTK_GPT_SCHEME_SUPPORT)
3087 extern void emmc_create_sys_symlink (struct mmc_card *card);
3088 #endif
3089 static int mmc_blk_probe(struct mmc_card *card)
3090 {
3091 struct mmc_blk_data *md, *part_md;
3092 char cap_str[10];
3093
3094 /*
3095 * Check that the card supports the command class(es) we need.
3096 */
3097 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3098 return -ENODEV;
3099
3100 md = mmc_blk_alloc(card);
3101 if (IS_ERR(md))
3102 return PTR_ERR(md);
3103
3104 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
3105 cap_str, sizeof(cap_str));
3106 pr_info("%s: %s %s %s %s\n",
3107 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
3108 cap_str, md->read_only ? "(ro)" : "");
3109
3110 if (mmc_blk_alloc_parts(card, md))
3111 goto out;
3112
3113 mmc_set_drvdata(card, md);
3114 mmc_fixup_device(card, blk_fixups);
3115
3116 printk("[%s]: %s by manufacturer settings, quirks=0x%x\n", __func__, md->disk->disk_name, card->quirks);
3117
3118 #ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
3119 mmc_set_bus_resume_policy(card->host, 1);
3120 #endif
3121 if (mmc_add_disk(md))
3122 goto out;
3123
3124 list_for_each_entry(part_md, &md->part, part) {
3125 if (mmc_add_disk(part_md))
3126 goto out;
3127 }
3128 #if defined(CONFIG_MTK_EMMC_SUPPORT) && !defined(CONFIG_MTK_GPT_SCHEME_SUPPORT)
3129 emmc_create_sys_symlink(card);
3130 #endif
3131 return 0;
3132
3133 out:
3134 mmc_blk_remove_parts(card, md);
3135 mmc_blk_remove_req(md);
3136 return 0;
3137 }
3138
3139 static void mmc_blk_remove(struct mmc_card *card)
3140 {
3141 struct mmc_blk_data *md = mmc_get_drvdata(card);
3142
3143 mmc_blk_remove_parts(card, md);
3144 mmc_claim_host(card->host);
3145 mmc_blk_part_switch(card, md);
3146 mmc_release_host(card->host);
3147 mmc_blk_remove_req(md);
3148 mmc_set_drvdata(card, NULL);
3149 #ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
3150 mmc_set_bus_resume_policy(card->host, 0);
3151 #endif
3152 }
3153
3154 #ifdef CONFIG_PM
3155 static int mmc_blk_suspend(struct mmc_card *card)
3156 {
3157 struct mmc_blk_data *part_md;
3158 struct mmc_blk_data *md = mmc_get_drvdata(card);
3159
3160 if (md) {
3161 mmc_queue_suspend(&md->queue);
3162 list_for_each_entry(part_md, &md->part, part) {
3163 mmc_queue_suspend(&part_md->queue);
3164 }
3165 }
3166 return 0;
3167 }
3168
3169 static int mmc_blk_resume(struct mmc_card *card)
3170 {
3171 struct mmc_blk_data *part_md;
3172 struct mmc_blk_data *md = mmc_get_drvdata(card);
3173
3174 if (md) {
3175 /*
3176 * Resume involves the card going into idle state,
3177 * so current partition is always the main one.
3178 */
3179 md->part_curr = md->part_type;
3180 mmc_queue_resume(&md->queue);
3181 list_for_each_entry(part_md, &md->part, part) {
3182 mmc_queue_resume(&part_md->queue);
3183 }
3184 }
3185 return 0;
3186 }
3187 #else
3188 #define mmc_blk_suspend NULL
3189 #define mmc_blk_resume NULL
3190 #endif
3191
3192 static struct mmc_driver mmc_driver = {
3193 .drv = {
3194 .name = "mmcblk",
3195 },
3196 .probe = mmc_blk_probe,
3197 .remove = mmc_blk_remove,
3198 .suspend = mmc_blk_suspend,
3199 .resume = mmc_blk_resume,
3200 };
3201
3202 static int __init mmc_blk_init(void)
3203 {
3204 int res;
3205
3206 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3207 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3208
3209 max_devices = 256 / perdev_minors;
3210
3211 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3212 if (res)
3213 goto out;
3214
3215 res = mmc_register_driver(&mmc_driver);
3216 if (res)
3217 goto out2;
3218
3219 return 0;
3220 out2:
3221 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3222 out:
3223 return res;
3224 }
3225
3226 static void __exit mmc_blk_exit(void)
3227 {
3228 mmc_unregister_driver(&mmc_driver);
3229 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3230 }
3231
3232 module_init(mmc_blk_init);
3233 module_exit(mmc_blk_exit);
3234
3235 MODULE_LICENSE("GPL");
3236 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3237