import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / misc / mediatek / xhci_test / mtk-usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 int extralen;
81 unsigned char *extra; /* Extra descriptors */
82
83 /* array of desc.bNumEndpoint endpoints associated with this
84 * interface setting. these will be in no particular order.
85 */
86 struct usb_host_endpoint *endpoint;
87
88 char *string; /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92 USB_INTERFACE_UNBOUND = 0,
93 USB_INTERFACE_BINDING,
94 USB_INTERFACE_BOUND,
95 USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99 * struct usb_interface - what usb device drivers talk to
100 * @altsetting: array of interface structures, one for each alternate
101 * setting that may be selected. Each one includes a set of
102 * endpoint configurations. They will be in no particular order.
103 * @cur_altsetting: the current altsetting.
104 * @num_altsetting: number of altsettings defined.
105 * @intf_assoc: interface association descriptor
106 * @minor: the minor number assigned to this interface, if this
107 * interface is bound to a driver that uses the USB major number.
108 * If this interface does not use the USB major, this field should
109 * be unused. The driver should set this value in the probe()
110 * function of the driver, after it has been assigned a minor
111 * number from the USB core by calling usb_register_dev().
112 * @condition: binding state of the interface: not bound, binding
113 * (in probe()), bound to a driver, or unbinding (in disconnect())
114 * @sysfs_files_created: sysfs attributes exist
115 * @ep_devs_created: endpoint child pseudo-devices exist
116 * @unregistering: flag set when the interface is being unregistered
117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118 * capability during autosuspend.
119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120 * has been deferred.
121 * @needs_binding: flag set when the driver should be re-probed or unbound
122 * following a reset or suspend operation it doesn't support.
123 * @dev: driver model's view of this device
124 * @usb_dev: if an interface is bound to the USB major, this will point
125 * to the sysfs representation for that device.
126 * @pm_usage_cnt: PM usage counter for this interface
127 * @reset_ws: Used for scheduling resets from atomic context.
128 * @reset_running: set to 1 if the interface is currently running a
129 * queued reset so that usb_cancel_queued_reset() doesn't try to
130 * remove from the workqueue when running inside the worker
131 * thread. See __usb_queue_reset_device().
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned reset_running:1;
183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES 32
207 #define USB_MAXIADS (USB_MAXINTERFACES/2)
208
209 /**
210 * struct usb_interface_cache - long-term representation of a device interface
211 * @num_altsetting: number of altsettings defined.
212 * @ref: reference counter.
213 * @altsetting: variable-length array of interface structures, one for
214 * each alternate setting that may be selected. Each one includes a
215 * set of endpoint configurations. They will be in no particular order.
216 *
217 * These structures persist for the lifetime of a usb_device, unlike
218 * struct usb_interface (which persists only as long as its configuration
219 * is installed). The altsetting arrays can be accessed through these
220 * structures at any time, permitting comparison of configurations and
221 * providing support for the /proc/bus/usb/devices pseudo-file.
222 */
223 struct usb_interface_cache {
224 unsigned num_altsetting; /* number of alternate settings */
225 struct kref ref; /* reference counter */
226
227 /* variable-length array of alternate settings for this interface,
228 * stored in no particular order */
229 struct usb_host_interface altsetting[0];
230 };
231 #define ref_to_usb_interface_cache(r) \
232 container_of(r, struct usb_interface_cache, ref)
233 #define altsetting_to_usb_interface_cache(a) \
234 container_of(a, struct usb_interface_cache, altsetting[0])
235
236 /**
237 * struct usb_host_config - representation of a device's configuration
238 * @desc: the device's configuration descriptor.
239 * @string: pointer to the cached version of the iConfiguration string, if
240 * present for this configuration.
241 * @intf_assoc: list of any interface association descriptors in this config
242 * @interface: array of pointers to usb_interface structures, one for each
243 * interface in the configuration. The number of interfaces is stored
244 * in desc.bNumInterfaces. These pointers are valid only while the
245 * the configuration is active.
246 * @intf_cache: array of pointers to usb_interface_cache structures, one
247 * for each interface in the configuration. These structures exist
248 * for the entire life of the device.
249 * @extra: pointer to buffer containing all extra descriptors associated
250 * with this configuration (those preceding the first interface
251 * descriptor).
252 * @extralen: length of the extra descriptors buffer.
253 *
254 * USB devices may have multiple configurations, but only one can be active
255 * at any time. Each encapsulates a different operational environment;
256 * for example, a dual-speed device would have separate configurations for
257 * full-speed and high-speed operation. The number of configurations
258 * available is stored in the device descriptor as bNumConfigurations.
259 *
260 * A configuration can contain multiple interfaces. Each corresponds to
261 * a different function of the USB device, and all are available whenever
262 * the configuration is active. The USB standard says that interfaces
263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264 * of devices get this wrong. In addition, the interface array is not
265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
266 * look up an interface entry based on its number.
267 *
268 * Device drivers should not attempt to activate configurations. The choice
269 * of which configuration to install is a policy decision based on such
270 * considerations as available power, functionality provided, and the user's
271 * desires (expressed through userspace tools). However, drivers can call
272 * usb_reset_configuration() to reinitialize the current configuration and
273 * all its interfaces.
274 */
275 struct usb_host_config {
276 struct usb_config_descriptor desc;
277
278 char *string; /* iConfiguration string, if present */
279
280 /* List of any Interface Association Descriptors in this
281 * configuration. */
282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283
284 /* the interfaces associated with this configuration,
285 * stored in no particular order */
286 struct usb_interface *interface[USB_MAXINTERFACES];
287
288 /* Interface information available even when this is not the
289 * active configuration */
290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291
292 unsigned char *extra; /* Extra descriptors */
293 int extralen;
294 };
295
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 struct usb_bos_descriptor *desc;
299
300 /* wireless cap descriptor is handled by wusb */
301 struct usb_ext_cap_descriptor *ext_cap;
302 struct usb_ss_cap_descriptor *ss_cap;
303 struct usb_ss_container_id_descriptor *ss_id;
304 };
305
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 __usb_get_extra_descriptor((ifpoint)->extra, \
310 (ifpoint)->extralen, \
311 type, (void **)ptr)
312
313 /* ----------------------------------------------------------------------- */
314
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319
320 /*
321 * Allocated per bus (tree of devices) we have:
322 */
323 struct usb_bus {
324 struct device *controller; /* host/master side hardware */
325 int busnum; /* Bus number (in order of reg) */
326 const char *bus_name; /* stable id (PCI slot_name etc) */
327 u8 uses_dma; /* Does the host controller use DMA? */
328 u8 uses_pio_for_control; /*
329 * Does the host controller use PIO
330 * for control transfers?
331 */
332 u8 otg_port; /* 0, or number of OTG/HNP port */
333 unsigned is_b_host:1; /* true during some HNP roleswitches */
334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
335 unsigned no_stop_on_short:1; /*
336 * Quirk: some controllers don't stop
337 * the ep queue on a short transfer
338 * with the URB_SHORT_NOT_OK flag set.
339 */
340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
341
342 int devnum_next; /* Next open device number in
343 * round-robin allocation */
344
345 struct usb_devmap devmap; /* device address allocation map */
346 struct usb_device *root_hub; /* Root hub */
347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
348 struct list_head bus_list; /* list of busses */
349
350 int bandwidth_allocated; /* on this bus: how much of the time
351 * reserved for periodic (intr/iso)
352 * requests is used, on average?
353 * Units: microseconds/frame.
354 * Limits: Full/low speed reserve 90%,
355 * while high speed reserves 80%.
356 */
357 int bandwidth_int_reqs; /* number of Interrupt requests */
358 int bandwidth_isoc_reqs; /* number of Isoc. requests */
359
360 unsigned resuming_ports; /* bit array: resuming root-hub ports */
361
362 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
363 struct mon_bus *mon_bus; /* non-null when associated */
364 int monitored; /* non-zero when monitored */
365 #endif
366 };
367
368 /* ----------------------------------------------------------------------- */
369
370 /* This is arbitrary.
371 * From USB 2.0 spec Table 11-13, offset 7, a hub can
372 * have up to 255 ports. The most yet reported is 10.
373 *
374 * Current Wireless USB host hardware (Intel i1480 for example) allows
375 * up to 22 devices to connect. Upcoming hardware might raise that
376 * limit. Because the arrays need to add a bit for hub status data, we
377 * do 31, so plus one evens out to four bytes.
378 */
379 #define USB_MAXCHILDREN (31)
380
381 struct usb_tt;
382
383 enum usb_device_removable {
384 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
385 USB_DEVICE_REMOVABLE,
386 USB_DEVICE_FIXED,
387 };
388
389 enum usb_port_connect_type {
390 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
391 USB_PORT_CONNECT_TYPE_HOT_PLUG,
392 USB_PORT_CONNECT_TYPE_HARD_WIRED,
393 USB_PORT_NOT_USED,
394 };
395
396 /*
397 * USB 3.0 Link Power Management (LPM) parameters.
398 *
399 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
400 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
401 * All three are stored in nanoseconds.
402 */
403 struct usb3_lpm_parameters {
404 /*
405 * Maximum exit latency (MEL) for the host to send a packet to the
406 * device (either a Ping for isoc endpoints, or a data packet for
407 * interrupt endpoints), the hubs to decode the packet, and for all hubs
408 * in the path to transition the links to U0.
409 */
410 unsigned int mel;
411 /*
412 * Maximum exit latency for a device-initiated LPM transition to bring
413 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
414 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
415 */
416 unsigned int pel;
417
418 /*
419 * The System Exit Latency (SEL) includes PEL, and three other
420 * latencies. After a device initiates a U0 transition, it will take
421 * some time from when the device sends the ERDY to when it will finally
422 * receive the data packet. Basically, SEL should be the worse-case
423 * latency from when a device starts initiating a U0 transition to when
424 * it will get data.
425 */
426 unsigned int sel;
427 /*
428 * The idle timeout value that is currently programmed into the parent
429 * hub for this device. When the timer counts to zero, the parent hub
430 * will initiate an LPM transition to either U1 or U2.
431 */
432 int timeout;
433 };
434
435 /**
436 * struct usb_device - kernel's representation of a USB device
437 * @devnum: device number; address on a USB bus
438 * @devpath: device ID string for use in messages (e.g., /port/...)
439 * @route: tree topology hex string for use with xHCI
440 * @state: device state: configured, not attached, etc.
441 * @speed: device speed: high/full/low (or error)
442 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
443 * @ttport: device port on that tt hub
444 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
445 * @parent: our hub, unless we're the root
446 * @bus: bus we're part of
447 * @ep0: endpoint 0 data (default control pipe)
448 * @dev: generic device interface
449 * @descriptor: USB device descriptor
450 * @bos: USB device BOS descriptor set
451 * @config: all of the device's configs
452 * @actconfig: the active configuration
453 * @ep_in: array of IN endpoints
454 * @ep_out: array of OUT endpoints
455 * @rawdescriptors: raw descriptors for each config
456 * @bus_mA: Current available from the bus
457 * @portnum: parent port number (origin 1)
458 * @level: number of USB hub ancestors
459 * @can_submit: URBs may be submitted
460 * @persist_enabled: USB_PERSIST enabled for this device
461 * @have_langid: whether string_langid is valid
462 * @authorized: policy has said we can use it;
463 * (user space) policy determines if we authorize this device to be
464 * used or not. By default, wired USB devices are authorized.
465 * WUSB devices are not, until we authorize them from user space.
466 * FIXME -- complete doc
467 * @authenticated: Crypto authentication passed
468 * @wusb: device is Wireless USB
469 * @lpm_capable: device supports LPM
470 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
471 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
472 * @usb3_lpm_enabled: USB3 hardware LPM enabled
473 * @string_langid: language ID for strings
474 * @product: iProduct string, if present (static)
475 * @manufacturer: iManufacturer string, if present (static)
476 * @serial: iSerialNumber string, if present (static)
477 * @filelist: usbfs files that are open to this device
478 * @maxchild: number of ports if hub
479 * @quirks: quirks of the whole device
480 * @urbnum: number of URBs submitted for the whole device
481 * @active_duration: total time device is not suspended
482 * @connect_time: time device was first connected
483 * @do_remote_wakeup: remote wakeup should be enabled
484 * @reset_resume: needs reset instead of resume
485 * @port_is_suspended: the upstream port is suspended (L2 or U3)
486 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
487 * specific data for the device.
488 * @slot_id: Slot ID assigned by xHCI
489 * @removable: Device can be physically removed from this port
490 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
491 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
492 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
493 * to keep track of the number of functions that require USB 3.0 Link Power
494 * Management to be disabled for this usb_device. This count should only
495 * be manipulated by those functions, with the bandwidth_mutex is held.
496 *
497 * Notes:
498 * Usbcore drivers should not set usbdev->state directly. Instead use
499 * usb_set_device_state().
500 */
501 struct usb_device {
502 int devnum;
503 char devpath[16];
504 u32 route;
505 enum usb_device_state state;
506 enum usb_device_speed speed;
507
508 struct usb_tt *tt;
509 int ttport;
510
511 unsigned int toggle[2];
512
513 struct usb_device *parent;
514 struct usb_bus *bus;
515 struct usb_host_endpoint ep0;
516
517 struct device dev;
518
519 struct usb_device_descriptor descriptor;
520 struct usb_host_bos *bos;
521 struct usb_host_config *config;
522
523 struct usb_host_config *actconfig;
524 struct usb_host_endpoint *ep_in[16];
525 struct usb_host_endpoint *ep_out[16];
526
527 char **rawdescriptors;
528
529 unsigned short bus_mA;
530 u8 portnum;
531 u8 level;
532
533 unsigned can_submit:1;
534 unsigned persist_enabled:1;
535 unsigned have_langid:1;
536 unsigned authorized:1;
537 unsigned authenticated:1;
538 unsigned wusb:1;
539 unsigned lpm_capable:1;
540 unsigned usb2_hw_lpm_capable:1;
541 unsigned usb2_hw_lpm_enabled:1;
542 unsigned usb3_lpm_enabled:1;
543 int string_langid;
544
545 /* static strings from the device */
546 char *product;
547 char *manufacturer;
548 char *serial;
549
550 struct list_head filelist;
551
552 int maxchild;
553 struct usb_device **children;
554
555 u32 quirks;
556 atomic_t urbnum;
557
558 unsigned long active_duration;
559
560 #ifdef CONFIG_PM
561 unsigned long connect_time;
562
563 unsigned do_remote_wakeup:1;
564 unsigned reset_resume:1;
565 unsigned port_is_suspended:1;
566 #endif
567 struct wusb_dev *wusb_dev;
568 int slot_id;
569 enum usb_device_removable removable;
570 struct usb3_lpm_parameters u1_params;
571 struct usb3_lpm_parameters u2_params;
572 unsigned lpm_disable_count;
573 };
574 #define to_usb_device(d) container_of(d, struct usb_device, dev)
575
576 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
577 {
578 return to_usb_device(intf->dev.parent);
579 }
580
581 extern struct usb_device *usb_get_dev(struct usb_device *dev);
582 extern void usb_put_dev(struct usb_device *dev);
583 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
584 int port1);
585
586 /**
587 * usb_hub_for_each_child - iterate over all child devices on the hub
588 * @hdev: USB device belonging to the usb hub
589 * @port1: portnum associated with child device
590 * @child: child device pointer
591 */
592 #define usb_hub_for_each_child(hdev, port1, child) \
593 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
594 port1 <= hdev->maxchild; \
595 child = usb_hub_find_child(hdev, ++port1)) \
596 if (!child) continue; else
597
598 /* USB device locking */
599 #define usb_lock_device(udev) device_lock(&(udev)->dev)
600 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
601 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
602 extern int usb_lock_device_for_reset(struct usb_device *udev,
603 const struct usb_interface *iface);
604
605 /* USB port reset for device reinitialization */
606 extern int usb_reset_device(struct usb_device *dev);
607 extern void usb_queue_reset_device(struct usb_interface *dev);
608
609 #ifdef CONFIG_ACPI
610 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
611 bool enable);
612 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
613 #else
614 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
615 bool enable) { return 0; }
616 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
617 { return true; }
618 #endif
619
620 /* USB autosuspend and autoresume */
621 #ifdef CONFIG_PM_RUNTIME
622 extern void usb_enable_autosuspend(struct usb_device *udev);
623 extern void usb_disable_autosuspend(struct usb_device *udev);
624
625 extern int usb_autopm_get_interface(struct usb_interface *intf);
626 extern void usb_autopm_put_interface(struct usb_interface *intf);
627 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
628 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
629 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
630 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
631
632 static inline void usb_mark_last_busy(struct usb_device *udev)
633 {
634 pm_runtime_mark_last_busy(&udev->dev);
635 }
636
637 #else
638
639 static inline int usb_enable_autosuspend(struct usb_device *udev)
640 { return 0; }
641 static inline int usb_disable_autosuspend(struct usb_device *udev)
642 { return 0; }
643
644 static inline int usb_autopm_get_interface(struct usb_interface *intf)
645 { return 0; }
646 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
647 { return 0; }
648
649 static inline void usb_autopm_put_interface(struct usb_interface *intf)
650 { }
651 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
652 { }
653 static inline void usb_autopm_get_interface_no_resume(
654 struct usb_interface *intf)
655 { }
656 static inline void usb_autopm_put_interface_no_suspend(
657 struct usb_interface *intf)
658 { }
659 static inline void usb_mark_last_busy(struct usb_device *udev)
660 { }
661 #endif
662
663 extern int usb_disable_lpm(struct usb_device *udev);
664 extern void usb_enable_lpm(struct usb_device *udev);
665 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
666 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
667 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
668
669 extern int usb_disable_ltm(struct usb_device *udev);
670 extern void usb_enable_ltm(struct usb_device *udev);
671
672 static inline bool usb_device_supports_ltm(struct usb_device *udev)
673 {
674 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
675 return false;
676 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
677 }
678
679
680 /*-------------------------------------------------------------------------*/
681
682 /* for drivers using iso endpoints */
683 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
684
685 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
686 extern int usb_alloc_streams(struct usb_interface *interface,
687 struct usb_host_endpoint **eps, unsigned int num_eps,
688 unsigned int num_streams, gfp_t mem_flags);
689
690 /* Reverts a group of bulk endpoints back to not using stream IDs. */
691 extern void usb_free_streams(struct usb_interface *interface,
692 struct usb_host_endpoint **eps, unsigned int num_eps,
693 gfp_t mem_flags);
694
695 /* used these for multi-interface device registration */
696 extern int usb_driver_claim_interface(struct usb_driver *driver,
697 struct usb_interface *iface, void *priv);
698
699 /**
700 * usb_interface_claimed - returns true iff an interface is claimed
701 * @iface: the interface being checked
702 *
703 * Returns true (nonzero) iff the interface is claimed, else false (zero).
704 * Callers must own the driver model's usb bus readlock. So driver
705 * probe() entries don't need extra locking, but other call contexts
706 * may need to explicitly claim that lock.
707 *
708 */
709 static inline int usb_interface_claimed(struct usb_interface *iface)
710 {
711 return (iface->dev.driver != NULL);
712 }
713
714 extern void usb_driver_release_interface(struct usb_driver *driver,
715 struct usb_interface *iface);
716 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
717 const struct usb_device_id *id);
718 extern int usb_match_one_id(struct usb_interface *interface,
719 const struct usb_device_id *id);
720
721 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
722 int minor);
723 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
724 unsigned ifnum);
725 extern struct usb_host_interface *usb_altnum_to_altsetting(
726 const struct usb_interface *intf, unsigned int altnum);
727 extern struct usb_host_interface *usb_find_alt_setting(
728 struct usb_host_config *config,
729 unsigned int iface_num,
730 unsigned int alt_num);
731
732
733 /**
734 * usb_make_path - returns stable device path in the usb tree
735 * @dev: the device whose path is being constructed
736 * @buf: where to put the string
737 * @size: how big is "buf"?
738 *
739 * Returns length of the string (> 0) or negative if size was too small.
740 *
741 * This identifier is intended to be "stable", reflecting physical paths in
742 * hardware such as physical bus addresses for host controllers or ports on
743 * USB hubs. That makes it stay the same until systems are physically
744 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
745 * controllers. Adding and removing devices, including virtual root hubs
746 * in host controller driver modules, does not change these path identifiers;
747 * neither does rebooting or re-enumerating. These are more useful identifiers
748 * than changeable ("unstable") ones like bus numbers or device addresses.
749 *
750 * With a partial exception for devices connected to USB 2.0 root hubs, these
751 * identifiers are also predictable. So long as the device tree isn't changed,
752 * plugging any USB device into a given hub port always gives it the same path.
753 * Because of the use of "companion" controllers, devices connected to ports on
754 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
755 * high speed, and a different one if they are full or low speed.
756 */
757 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
758 {
759 int actual;
760 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
761 dev->devpath);
762 return (actual >= (int)size) ? -1 : actual;
763 }
764
765 /*-------------------------------------------------------------------------*/
766
767 #define USB_DEVICE_ID_MATCH_DEVICE \
768 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
769 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
770 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
771 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
772 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
773 #define USB_DEVICE_ID_MATCH_DEV_INFO \
774 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
775 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
776 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
777 #define USB_DEVICE_ID_MATCH_INT_INFO \
778 (USB_DEVICE_ID_MATCH_INT_CLASS | \
779 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
780 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
781
782 /**
783 * USB_DEVICE - macro used to describe a specific usb device
784 * @vend: the 16 bit USB Vendor ID
785 * @prod: the 16 bit USB Product ID
786 *
787 * This macro is used to create a struct usb_device_id that matches a
788 * specific device.
789 */
790 #define USB_DEVICE(vend, prod) \
791 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
792 .idVendor = (vend), \
793 .idProduct = (prod)
794 /**
795 * USB_DEVICE_VER - describe a specific usb device with a version range
796 * @vend: the 16 bit USB Vendor ID
797 * @prod: the 16 bit USB Product ID
798 * @lo: the bcdDevice_lo value
799 * @hi: the bcdDevice_hi value
800 *
801 * This macro is used to create a struct usb_device_id that matches a
802 * specific device, with a version range.
803 */
804 #define USB_DEVICE_VER(vend, prod, lo, hi) \
805 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
806 .idVendor = (vend), \
807 .idProduct = (prod), \
808 .bcdDevice_lo = (lo), \
809 .bcdDevice_hi = (hi)
810
811 /**
812 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
813 * @vend: the 16 bit USB Vendor ID
814 * @prod: the 16 bit USB Product ID
815 * @cl: bInterfaceClass value
816 *
817 * This macro is used to create a struct usb_device_id that matches a
818 * specific interface class of devices.
819 */
820 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
821 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
822 USB_DEVICE_ID_MATCH_INT_CLASS, \
823 .idVendor = (vend), \
824 .idProduct = (prod), \
825 .bInterfaceClass = (cl)
826
827 /**
828 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
829 * @vend: the 16 bit USB Vendor ID
830 * @prod: the 16 bit USB Product ID
831 * @pr: bInterfaceProtocol value
832 *
833 * This macro is used to create a struct usb_device_id that matches a
834 * specific interface protocol of devices.
835 */
836 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
837 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
838 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
839 .idVendor = (vend), \
840 .idProduct = (prod), \
841 .bInterfaceProtocol = (pr)
842
843 /**
844 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
845 * @vend: the 16 bit USB Vendor ID
846 * @prod: the 16 bit USB Product ID
847 * @num: bInterfaceNumber value
848 *
849 * This macro is used to create a struct usb_device_id that matches a
850 * specific interface number of devices.
851 */
852 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
853 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
854 USB_DEVICE_ID_MATCH_INT_NUMBER, \
855 .idVendor = (vend), \
856 .idProduct = (prod), \
857 .bInterfaceNumber = (num)
858
859 /**
860 * USB_DEVICE_INFO - macro used to describe a class of usb devices
861 * @cl: bDeviceClass value
862 * @sc: bDeviceSubClass value
863 * @pr: bDeviceProtocol value
864 *
865 * This macro is used to create a struct usb_device_id that matches a
866 * specific class of devices.
867 */
868 #define USB_DEVICE_INFO(cl, sc, pr) \
869 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
870 .bDeviceClass = (cl), \
871 .bDeviceSubClass = (sc), \
872 .bDeviceProtocol = (pr)
873
874 /**
875 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
876 * @cl: bInterfaceClass value
877 * @sc: bInterfaceSubClass value
878 * @pr: bInterfaceProtocol value
879 *
880 * This macro is used to create a struct usb_device_id that matches a
881 * specific class of interfaces.
882 */
883 #define USB_INTERFACE_INFO(cl, sc, pr) \
884 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
885 .bInterfaceClass = (cl), \
886 .bInterfaceSubClass = (sc), \
887 .bInterfaceProtocol = (pr)
888
889 /**
890 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
891 * @vend: the 16 bit USB Vendor ID
892 * @prod: the 16 bit USB Product ID
893 * @cl: bInterfaceClass value
894 * @sc: bInterfaceSubClass value
895 * @pr: bInterfaceProtocol value
896 *
897 * This macro is used to create a struct usb_device_id that matches a
898 * specific device with a specific class of interfaces.
899 *
900 * This is especially useful when explicitly matching devices that have
901 * vendor specific bDeviceClass values, but standards-compliant interfaces.
902 */
903 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
904 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
905 | USB_DEVICE_ID_MATCH_DEVICE, \
906 .idVendor = (vend), \
907 .idProduct = (prod), \
908 .bInterfaceClass = (cl), \
909 .bInterfaceSubClass = (sc), \
910 .bInterfaceProtocol = (pr)
911
912 /**
913 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
914 * @vend: the 16 bit USB Vendor ID
915 * @cl: bInterfaceClass value
916 * @sc: bInterfaceSubClass value
917 * @pr: bInterfaceProtocol value
918 *
919 * This macro is used to create a struct usb_device_id that matches a
920 * specific vendor with a specific class of interfaces.
921 *
922 * This is especially useful when explicitly matching devices that have
923 * vendor specific bDeviceClass values, but standards-compliant interfaces.
924 */
925 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
926 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
927 | USB_DEVICE_ID_MATCH_VENDOR, \
928 .idVendor = (vend), \
929 .bInterfaceClass = (cl), \
930 .bInterfaceSubClass = (sc), \
931 .bInterfaceProtocol = (pr)
932
933 /* ----------------------------------------------------------------------- */
934
935 /* Stuff for dynamic usb ids */
936 struct usb_dynids {
937 spinlock_t lock;
938 struct list_head list;
939 };
940
941 struct usb_dynid {
942 struct list_head node;
943 struct usb_device_id id;
944 };
945
946 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
947 struct device_driver *driver,
948 const char *buf, size_t count);
949
950 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
951
952 /**
953 * struct usbdrv_wrap - wrapper for driver-model structure
954 * @driver: The driver-model core driver structure.
955 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
956 */
957 struct usbdrv_wrap {
958 struct device_driver driver;
959 int for_devices;
960 };
961
962 /**
963 * struct usb_driver - identifies USB interface driver to usbcore
964 * @name: The driver name should be unique among USB drivers,
965 * and should normally be the same as the module name.
966 * @probe: Called to see if the driver is willing to manage a particular
967 * interface on a device. If it is, probe returns zero and uses
968 * usb_set_intfdata() to associate driver-specific data with the
969 * interface. It may also use usb_set_interface() to specify the
970 * appropriate altsetting. If unwilling to manage the interface,
971 * return -ENODEV, if genuine IO errors occurred, an appropriate
972 * negative errno value.
973 * @disconnect: Called when the interface is no longer accessible, usually
974 * because its device has been (or is being) disconnected or the
975 * driver module is being unloaded.
976 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
977 * the "usbfs" filesystem. This lets devices provide ways to
978 * expose information to user space regardless of where they
979 * do (or don't) show up otherwise in the filesystem.
980 * @suspend: Called when the device is going to be suspended by the
981 * system either from system sleep or runtime suspend context. The
982 * return value will be ignored in system sleep context, so do NOT
983 * try to continue using the device if suspend fails in this case.
984 * Instead, let the resume or reset-resume routine recover from
985 * the failure.
986 * @resume: Called when the device is being resumed by the system.
987 * @reset_resume: Called when the suspended device has been reset instead
988 * of being resumed.
989 * @pre_reset: Called by usb_reset_device() when the device is about to be
990 * reset. This routine must not return until the driver has no active
991 * URBs for the device, and no more URBs may be submitted until the
992 * post_reset method is called.
993 * @post_reset: Called by usb_reset_device() after the device
994 * has been reset
995 * @id_table: USB drivers use ID table to support hotplugging.
996 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
997 * or your driver's probe function will never get called.
998 * @dynids: used internally to hold the list of dynamically added device
999 * ids for this driver.
1000 * @drvwrap: Driver-model core structure wrapper.
1001 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1002 * added to this driver by preventing the sysfs file from being created.
1003 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1004 * for interfaces bound to this driver.
1005 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1006 * endpoints before calling the driver's disconnect method.
1007 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1008 * to initiate lower power link state transitions when an idle timeout
1009 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1010 *
1011 * USB interface drivers must provide a name, probe() and disconnect()
1012 * methods, and an id_table. Other driver fields are optional.
1013 *
1014 * The id_table is used in hotplugging. It holds a set of descriptors,
1015 * and specialized data may be associated with each entry. That table
1016 * is used by both user and kernel mode hotplugging support.
1017 *
1018 * The probe() and disconnect() methods are called in a context where
1019 * they can sleep, but they should avoid abusing the privilege. Most
1020 * work to connect to a device should be done when the device is opened,
1021 * and undone at the last close. The disconnect code needs to address
1022 * concurrency issues with respect to open() and close() methods, as
1023 * well as forcing all pending I/O requests to complete (by unlinking
1024 * them as necessary, and blocking until the unlinks complete).
1025 */
1026 struct usb_driver {
1027 const char *name;
1028
1029 int (*probe) (struct usb_interface *intf,
1030 const struct usb_device_id *id);
1031
1032 void (*disconnect) (struct usb_interface *intf);
1033
1034 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1035 void *buf);
1036
1037 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1038 int (*resume) (struct usb_interface *intf);
1039 int (*reset_resume)(struct usb_interface *intf);
1040
1041 int (*pre_reset)(struct usb_interface *intf);
1042 int (*post_reset)(struct usb_interface *intf);
1043
1044 const struct usb_device_id *id_table;
1045
1046 struct usb_dynids dynids;
1047 struct usbdrv_wrap drvwrap;
1048 unsigned int no_dynamic_id:1;
1049 unsigned int supports_autosuspend:1;
1050 unsigned int disable_hub_initiated_lpm:1;
1051 unsigned int soft_unbind:1;
1052 };
1053 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1054
1055 /**
1056 * struct usb_device_driver - identifies USB device driver to usbcore
1057 * @name: The driver name should be unique among USB drivers,
1058 * and should normally be the same as the module name.
1059 * @probe: Called to see if the driver is willing to manage a particular
1060 * device. If it is, probe returns zero and uses dev_set_drvdata()
1061 * to associate driver-specific data with the device. If unwilling
1062 * to manage the device, return a negative errno value.
1063 * @disconnect: Called when the device is no longer accessible, usually
1064 * because it has been (or is being) disconnected or the driver's
1065 * module is being unloaded.
1066 * @suspend: Called when the device is going to be suspended by the system.
1067 * @resume: Called when the device is being resumed by the system.
1068 * @drvwrap: Driver-model core structure wrapper.
1069 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1070 * for devices bound to this driver.
1071 *
1072 * USB drivers must provide all the fields listed above except drvwrap.
1073 */
1074 struct usb_device_driver {
1075 const char *name;
1076
1077 int (*probe) (struct usb_device *udev);
1078 void (*disconnect) (struct usb_device *udev);
1079
1080 int (*suspend) (struct usb_device *udev, pm_message_t message);
1081 int (*resume) (struct usb_device *udev, pm_message_t message);
1082 struct usbdrv_wrap drvwrap;
1083 unsigned int supports_autosuspend:1;
1084 };
1085 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1086 drvwrap.driver)
1087
1088 extern struct bus_type usb_bus_type;
1089
1090 /**
1091 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1092 * @name: the usb class device name for this driver. Will show up in sysfs.
1093 * @devnode: Callback to provide a naming hint for a possible
1094 * device node to create.
1095 * @fops: pointer to the struct file_operations of this driver.
1096 * @minor_base: the start of the minor range for this driver.
1097 *
1098 * This structure is used for the usb_register_dev() and
1099 * usb_unregister_dev() functions, to consolidate a number of the
1100 * parameters used for them.
1101 */
1102 struct usb_class_driver {
1103 char *name;
1104 char *(*devnode)(struct device *dev, umode_t *mode);
1105 const struct file_operations *fops;
1106 int minor_base;
1107 };
1108
1109 /*
1110 * use these in module_init()/module_exit()
1111 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1112 */
1113 extern int usb_register_driver(struct usb_driver *, struct module *,
1114 const char *);
1115
1116 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1117 #define usb_register(driver) \
1118 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1119
1120 extern void usb_deregister(struct usb_driver *);
1121
1122 /**
1123 * module_usb_driver() - Helper macro for registering a USB driver
1124 * @__usb_driver: usb_driver struct
1125 *
1126 * Helper macro for USB drivers which do not do anything special in module
1127 * init/exit. This eliminates a lot of boilerplate. Each module may only
1128 * use this macro once, and calling it replaces module_init() and module_exit()
1129 */
1130 #define module_usb_driver(__usb_driver) \
1131 module_driver(__usb_driver, usb_register, \
1132 usb_deregister)
1133
1134 extern int usb_register_device_driver(struct usb_device_driver *,
1135 struct module *);
1136 extern void usb_deregister_device_driver(struct usb_device_driver *);
1137
1138 extern int usb_register_dev(struct usb_interface *intf,
1139 struct usb_class_driver *class_driver);
1140 extern void usb_deregister_dev(struct usb_interface *intf,
1141 struct usb_class_driver *class_driver);
1142
1143 extern int usb_disabled(void);
1144
1145 /* ----------------------------------------------------------------------- */
1146
1147 /*
1148 * URB support, for asynchronous request completions
1149 */
1150
1151 /*
1152 * urb->transfer_flags:
1153 *
1154 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1155 */
1156 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1157 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1158 * slot in the schedule */
1159 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1160 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1161 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1162 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1163 * needed */
1164 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1165
1166 /* The following flags are used internally by usbcore and HCDs */
1167 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1168 #define URB_DIR_OUT 0
1169 #define URB_DIR_MASK URB_DIR_IN
1170
1171 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1172 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1173 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1174 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1175 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1176 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1177 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1178 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1179
1180 struct usb_iso_packet_descriptor {
1181 unsigned int offset;
1182 unsigned int length; /* expected length */
1183 unsigned int actual_length;
1184 int status;
1185 };
1186
1187 struct urb;
1188
1189 struct usb_anchor {
1190 struct list_head urb_list;
1191 wait_queue_head_t wait;
1192 spinlock_t lock;
1193 unsigned int poisoned:1;
1194 };
1195
1196 static inline void init_usb_anchor(struct usb_anchor *anchor)
1197 {
1198 INIT_LIST_HEAD(&anchor->urb_list);
1199 init_waitqueue_head(&anchor->wait);
1200 spin_lock_init(&anchor->lock);
1201 }
1202
1203 typedef void (*usb_complete_t)(struct urb *);
1204
1205 /**
1206 * struct urb - USB Request Block
1207 * @urb_list: For use by current owner of the URB.
1208 * @anchor_list: membership in the list of an anchor
1209 * @anchor: to anchor URBs to a common mooring
1210 * @ep: Points to the endpoint's data structure. Will eventually
1211 * replace @pipe.
1212 * @pipe: Holds endpoint number, direction, type, and more.
1213 * Create these values with the eight macros available;
1214 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1215 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1216 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1217 * numbers range from zero to fifteen. Note that "in" endpoint two
1218 * is a different endpoint (and pipe) from "out" endpoint two.
1219 * The current configuration controls the existence, type, and
1220 * maximum packet size of any given endpoint.
1221 * @stream_id: the endpoint's stream ID for bulk streams
1222 * @dev: Identifies the USB device to perform the request.
1223 * @status: This is read in non-iso completion functions to get the
1224 * status of the particular request. ISO requests only use it
1225 * to tell whether the URB was unlinked; detailed status for
1226 * each frame is in the fields of the iso_frame-desc.
1227 * @transfer_flags: A variety of flags may be used to affect how URB
1228 * submission, unlinking, or operation are handled. Different
1229 * kinds of URB can use different flags.
1230 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1231 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1232 * (however, do not leave garbage in transfer_buffer even then).
1233 * This buffer must be suitable for DMA; allocate it with
1234 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1235 * of this buffer will be modified. This buffer is used for the data
1236 * stage of control transfers.
1237 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1238 * the device driver is saying that it provided this DMA address,
1239 * which the host controller driver should use in preference to the
1240 * transfer_buffer.
1241 * @sg: scatter gather buffer list
1242 * @num_mapped_sgs: (internal) number of mapped sg entries
1243 * @num_sgs: number of entries in the sg list
1244 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1245 * be broken up into chunks according to the current maximum packet
1246 * size for the endpoint, which is a function of the configuration
1247 * and is encoded in the pipe. When the length is zero, neither
1248 * transfer_buffer nor transfer_dma is used.
1249 * @actual_length: This is read in non-iso completion functions, and
1250 * it tells how many bytes (out of transfer_buffer_length) were
1251 * transferred. It will normally be the same as requested, unless
1252 * either an error was reported or a short read was performed.
1253 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1254 * short reads be reported as errors.
1255 * @setup_packet: Only used for control transfers, this points to eight bytes
1256 * of setup data. Control transfers always start by sending this data
1257 * to the device. Then transfer_buffer is read or written, if needed.
1258 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1259 * this field; setup_packet must point to a valid buffer.
1260 * @start_frame: Returns the initial frame for isochronous transfers.
1261 * @number_of_packets: Lists the number of ISO transfer buffers.
1262 * @interval: Specifies the polling interval for interrupt or isochronous
1263 * transfers. The units are frames (milliseconds) for full and low
1264 * speed devices, and microframes (1/8 millisecond) for highspeed
1265 * and SuperSpeed devices.
1266 * @error_count: Returns the number of ISO transfers that reported errors.
1267 * @context: For use in completion functions. This normally points to
1268 * request-specific driver context.
1269 * @complete: Completion handler. This URB is passed as the parameter to the
1270 * completion function. The completion function may then do what
1271 * it likes with the URB, including resubmitting or freeing it.
1272 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1273 * collect the transfer status for each buffer.
1274 *
1275 * This structure identifies USB transfer requests. URBs must be allocated by
1276 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1277 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1278 * are submitted using usb_submit_urb(), and pending requests may be canceled
1279 * using usb_unlink_urb() or usb_kill_urb().
1280 *
1281 * Data Transfer Buffers:
1282 *
1283 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1284 * taken from the general page pool. That is provided by transfer_buffer
1285 * (control requests also use setup_packet), and host controller drivers
1286 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1287 * mapping operations can be expensive on some platforms (perhaps using a dma
1288 * bounce buffer or talking to an IOMMU),
1289 * although they're cheap on commodity x86 and ppc hardware.
1290 *
1291 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1292 * which tells the host controller driver that no such mapping is needed for
1293 * the transfer_buffer since
1294 * the device driver is DMA-aware. For example, a device driver might
1295 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1296 * When this transfer flag is provided, host controller drivers will
1297 * attempt to use the dma address found in the transfer_dma
1298 * field rather than determining a dma address themselves.
1299 *
1300 * Note that transfer_buffer must still be set if the controller
1301 * does not support DMA (as indicated by bus.uses_dma) and when talking
1302 * to root hub. If you have to trasfer between highmem zone and the device
1303 * on such controller, create a bounce buffer or bail out with an error.
1304 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1305 * capable, assign NULL to it, so that usbmon knows not to use the value.
1306 * The setup_packet must always be set, so it cannot be located in highmem.
1307 *
1308 * Initialization:
1309 *
1310 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1311 * zero), and complete fields. All URBs must also initialize
1312 * transfer_buffer and transfer_buffer_length. They may provide the
1313 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1314 * to be treated as errors; that flag is invalid for write requests.
1315 *
1316 * Bulk URBs may
1317 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1318 * should always terminate with a short packet, even if it means adding an
1319 * extra zero length packet.
1320 *
1321 * Control URBs must provide a valid pointer in the setup_packet field.
1322 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1323 * beforehand.
1324 *
1325 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1326 * or, for highspeed devices, 125 microsecond units)
1327 * to poll for transfers. After the URB has been submitted, the interval
1328 * field reflects how the transfer was actually scheduled.
1329 * The polling interval may be more frequent than requested.
1330 * For example, some controllers have a maximum interval of 32 milliseconds,
1331 * while others support intervals of up to 1024 milliseconds.
1332 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1333 * endpoints, as well as high speed interrupt endpoints, the encoding of
1334 * the transfer interval in the endpoint descriptor is logarithmic.
1335 * Device drivers must convert that value to linear units themselves.)
1336 *
1337 * If an isochronous endpoint queue isn't already running, the host
1338 * controller will schedule a new URB to start as soon as bandwidth
1339 * utilization allows. If the queue is running then a new URB will be
1340 * scheduled to start in the first transfer slot following the end of the
1341 * preceding URB, if that slot has not already expired. If the slot has
1342 * expired (which can happen when IRQ delivery is delayed for a long time),
1343 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1344 * is clear then the URB will be scheduled to start in the expired slot,
1345 * implying that some of its packets will not be transferred; if the flag
1346 * is set then the URB will be scheduled in the first unexpired slot,
1347 * breaking the queue's synchronization. Upon URB completion, the
1348 * start_frame field will be set to the (micro)frame number in which the
1349 * transfer was scheduled. Ranges for frame counter values are HC-specific
1350 * and can go from as low as 256 to as high as 65536 frames.
1351 *
1352 * Isochronous URBs have a different data transfer model, in part because
1353 * the quality of service is only "best effort". Callers provide specially
1354 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1355 * at the end. Each such packet is an individual ISO transfer. Isochronous
1356 * URBs are normally queued, submitted by drivers to arrange that
1357 * transfers are at least double buffered, and then explicitly resubmitted
1358 * in completion handlers, so
1359 * that data (such as audio or video) streams at as constant a rate as the
1360 * host controller scheduler can support.
1361 *
1362 * Completion Callbacks:
1363 *
1364 * The completion callback is made in_interrupt(), and one of the first
1365 * things that a completion handler should do is check the status field.
1366 * The status field is provided for all URBs. It is used to report
1367 * unlinked URBs, and status for all non-ISO transfers. It should not
1368 * be examined before the URB is returned to the completion handler.
1369 *
1370 * The context field is normally used to link URBs back to the relevant
1371 * driver or request state.
1372 *
1373 * When the completion callback is invoked for non-isochronous URBs, the
1374 * actual_length field tells how many bytes were transferred. This field
1375 * is updated even when the URB terminated with an error or was unlinked.
1376 *
1377 * ISO transfer status is reported in the status and actual_length fields
1378 * of the iso_frame_desc array, and the number of errors is reported in
1379 * error_count. Completion callbacks for ISO transfers will normally
1380 * (re)submit URBs to ensure a constant transfer rate.
1381 *
1382 * Note that even fields marked "public" should not be touched by the driver
1383 * when the urb is owned by the hcd, that is, since the call to
1384 * usb_submit_urb() till the entry into the completion routine.
1385 */
1386 struct urb {
1387 /* private: usb core and host controller only fields in the urb */
1388 struct kref kref; /* reference count of the URB */
1389 void *hcpriv; /* private data for host controller */
1390 atomic_t use_count; /* concurrent submissions counter */
1391 atomic_t reject; /* submissions will fail */
1392 int unlinked; /* unlink error code */
1393
1394 /* public: documented fields in the urb that can be used by drivers */
1395 struct list_head urb_list; /* list head for use by the urb's
1396 * current owner */
1397 struct list_head anchor_list; /* the URB may be anchored */
1398 struct usb_anchor *anchor;
1399 struct usb_device *dev; /* (in) pointer to associated device */
1400 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1401 unsigned int pipe; /* (in) pipe information */
1402 unsigned int stream_id; /* (in) stream ID */
1403 int status; /* (return) non-ISO status */
1404 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1405 void *transfer_buffer; /* (in) associated data buffer */
1406 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1407 struct scatterlist *sg; /* (in) scatter gather buffer list */
1408 int num_mapped_sgs; /* (internal) mapped sg entries */
1409 int num_sgs; /* (in) number of entries in the sg list */
1410 u32 transfer_buffer_length; /* (in) data buffer length */
1411 u32 actual_length; /* (return) actual transfer length */
1412 unsigned char *setup_packet; /* (in) setup packet (control only) */
1413 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1414 int start_frame; /* (modify) start frame (ISO) */
1415 int number_of_packets; /* (in) number of ISO packets */
1416 int interval; /* (modify) transfer interval
1417 * (INT/ISO) */
1418 int error_count; /* (return) number of ISO errors */
1419 void *context; /* (in) context for completion */
1420 usb_complete_t complete; /* (in) completion routine */
1421 struct usb_iso_packet_descriptor iso_frame_desc[0];
1422 /* (in) ISO ONLY */
1423 };
1424
1425 /* ----------------------------------------------------------------------- */
1426
1427 /**
1428 * usb_fill_control_urb - initializes a control urb
1429 * @urb: pointer to the urb to initialize.
1430 * @dev: pointer to the struct usb_device for this urb.
1431 * @pipe: the endpoint pipe
1432 * @setup_packet: pointer to the setup_packet buffer
1433 * @transfer_buffer: pointer to the transfer buffer
1434 * @buffer_length: length of the transfer buffer
1435 * @complete_fn: pointer to the usb_complete_t function
1436 * @context: what to set the urb context to.
1437 *
1438 * Initializes a control urb with the proper information needed to submit
1439 * it to a device.
1440 */
1441 static inline void usb_fill_control_urb(struct urb *urb,
1442 struct usb_device *dev,
1443 unsigned int pipe,
1444 unsigned char *setup_packet,
1445 void *transfer_buffer,
1446 int buffer_length,
1447 usb_complete_t complete_fn,
1448 void *context)
1449 {
1450 urb->dev = dev;
1451 urb->pipe = pipe;
1452 urb->setup_packet = setup_packet;
1453 urb->transfer_buffer = transfer_buffer;
1454 urb->transfer_buffer_length = buffer_length;
1455 urb->complete = complete_fn;
1456 urb->context = context;
1457 }
1458
1459 /**
1460 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1461 * @urb: pointer to the urb to initialize.
1462 * @dev: pointer to the struct usb_device for this urb.
1463 * @pipe: the endpoint pipe
1464 * @transfer_buffer: pointer to the transfer buffer
1465 * @buffer_length: length of the transfer buffer
1466 * @complete_fn: pointer to the usb_complete_t function
1467 * @context: what to set the urb context to.
1468 *
1469 * Initializes a bulk urb with the proper information needed to submit it
1470 * to a device.
1471 */
1472 static inline void usb_fill_bulk_urb(struct urb *urb,
1473 struct usb_device *dev,
1474 unsigned int pipe,
1475 void *transfer_buffer,
1476 int buffer_length,
1477 usb_complete_t complete_fn,
1478 void *context)
1479 {
1480 urb->dev = dev;
1481 urb->pipe = pipe;
1482 urb->transfer_buffer = transfer_buffer;
1483 urb->transfer_buffer_length = buffer_length;
1484 urb->complete = complete_fn;
1485 urb->context = context;
1486 }
1487
1488 /**
1489 * usb_fill_int_urb - macro to help initialize a interrupt urb
1490 * @urb: pointer to the urb to initialize.
1491 * @dev: pointer to the struct usb_device for this urb.
1492 * @pipe: the endpoint pipe
1493 * @transfer_buffer: pointer to the transfer buffer
1494 * @buffer_length: length of the transfer buffer
1495 * @complete_fn: pointer to the usb_complete_t function
1496 * @context: what to set the urb context to.
1497 * @interval: what to set the urb interval to, encoded like
1498 * the endpoint descriptor's bInterval value.
1499 *
1500 * Initializes a interrupt urb with the proper information needed to submit
1501 * it to a device.
1502 *
1503 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1504 * encoding of the endpoint interval, and express polling intervals in
1505 * microframes (eight per millisecond) rather than in frames (one per
1506 * millisecond).
1507 *
1508 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1509 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1510 * through to the host controller, rather than being translated into microframe
1511 * units.
1512 */
1513 static inline void usb_fill_int_urb(struct urb *urb,
1514 struct usb_device *dev,
1515 unsigned int pipe,
1516 void *transfer_buffer,
1517 int buffer_length,
1518 usb_complete_t complete_fn,
1519 void *context,
1520 int interval)
1521 {
1522 urb->dev = dev;
1523 urb->pipe = pipe;
1524 urb->transfer_buffer = transfer_buffer;
1525 urb->transfer_buffer_length = buffer_length;
1526 urb->complete = complete_fn;
1527 urb->context = context;
1528 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1529 urb->interval = 1 << (interval - 1);
1530 else
1531 urb->interval = interval;
1532 urb->start_frame = -1;
1533 }
1534
1535 extern void usb_init_urb(struct urb *urb);
1536 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1537 extern void usb_free_urb(struct urb *urb);
1538 #define usb_put_urb usb_free_urb
1539 extern struct urb *usb_get_urb(struct urb *urb);
1540 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1541 extern int usb_unlink_urb(struct urb *urb);
1542 extern void usb_kill_urb(struct urb *urb);
1543 extern void usb_poison_urb(struct urb *urb);
1544 extern void usb_unpoison_urb(struct urb *urb);
1545 extern void usb_block_urb(struct urb *urb);
1546 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1547 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1548 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1549 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1550 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1551 extern void usb_unanchor_urb(struct urb *urb);
1552 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1553 unsigned int timeout);
1554 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1555 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1556 extern int usb_anchor_empty(struct usb_anchor *anchor);
1557
1558 #define usb_unblock_urb usb_unpoison_urb
1559
1560 /**
1561 * usb_urb_dir_in - check if an URB describes an IN transfer
1562 * @urb: URB to be checked
1563 *
1564 * Returns 1 if @urb describes an IN transfer (device-to-host),
1565 * otherwise 0.
1566 */
1567 static inline int usb_urb_dir_in(struct urb *urb)
1568 {
1569 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1570 }
1571
1572 /**
1573 * usb_urb_dir_out - check if an URB describes an OUT transfer
1574 * @urb: URB to be checked
1575 *
1576 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1577 * otherwise 0.
1578 */
1579 static inline int usb_urb_dir_out(struct urb *urb)
1580 {
1581 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1582 }
1583
1584 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1585 gfp_t mem_flags, dma_addr_t *dma);
1586 void usb_free_coherent(struct usb_device *dev, size_t size,
1587 void *addr, dma_addr_t dma);
1588
1589 #if 0
1590 struct urb *usb_buffer_map(struct urb *urb);
1591 void usb_buffer_dmasync(struct urb *urb);
1592 void usb_buffer_unmap(struct urb *urb);
1593 #endif
1594
1595 struct scatterlist;
1596 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1597 struct scatterlist *sg, int nents);
1598 #if 0
1599 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1600 struct scatterlist *sg, int n_hw_ents);
1601 #endif
1602 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1603 struct scatterlist *sg, int n_hw_ents);
1604
1605 /*-------------------------------------------------------------------*
1606 * SYNCHRONOUS CALL SUPPORT *
1607 *-------------------------------------------------------------------*/
1608
1609 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1610 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1611 void *data, __u16 size, int timeout);
1612 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1613 void *data, int len, int *actual_length, int timeout);
1614 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1615 void *data, int len, int *actual_length,
1616 int timeout);
1617
1618 /* wrappers around usb_control_msg() for the most common standard requests */
1619 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1620 unsigned char descindex, void *buf, int size);
1621 extern int usb_get_status(struct usb_device *dev,
1622 int type, int target, void *data);
1623 extern int usb_string(struct usb_device *dev, int index,
1624 char *buf, size_t size);
1625
1626 /* wrappers that also update important state inside usbcore */
1627 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1628 extern int usb_reset_configuration(struct usb_device *dev);
1629 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1630 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1631
1632 /* this request isn't really synchronous, but it belongs with the others */
1633 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1634
1635 /*
1636 * timeouts, in milliseconds, used for sending/receiving control messages
1637 * they typically complete within a few frames (msec) after they're issued
1638 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1639 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1640 */
1641 #define USB_CTRL_GET_TIMEOUT 5000
1642 #define USB_CTRL_SET_TIMEOUT 5000
1643
1644
1645 /**
1646 * struct usb_sg_request - support for scatter/gather I/O
1647 * @status: zero indicates success, else negative errno
1648 * @bytes: counts bytes transferred.
1649 *
1650 * These requests are initialized using usb_sg_init(), and then are used
1651 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1652 * members of the request object aren't for driver access.
1653 *
1654 * The status and bytecount values are valid only after usb_sg_wait()
1655 * returns. If the status is zero, then the bytecount matches the total
1656 * from the request.
1657 *
1658 * After an error completion, drivers may need to clear a halt condition
1659 * on the endpoint.
1660 */
1661 struct usb_sg_request {
1662 int status;
1663 size_t bytes;
1664
1665 /* private:
1666 * members below are private to usbcore,
1667 * and are not provided for driver access!
1668 */
1669 spinlock_t lock;
1670
1671 struct usb_device *dev;
1672 int pipe;
1673
1674 int entries;
1675 struct urb **urbs;
1676
1677 int count;
1678 struct completion complete;
1679 };
1680
1681 int usb_sg_init(
1682 struct usb_sg_request *io,
1683 struct usb_device *dev,
1684 unsigned pipe,
1685 unsigned period,
1686 struct scatterlist *sg,
1687 int nents,
1688 size_t length,
1689 gfp_t mem_flags
1690 );
1691 void usb_sg_cancel(struct usb_sg_request *io);
1692 void usb_sg_wait(struct usb_sg_request *io);
1693
1694
1695 /* ----------------------------------------------------------------------- */
1696
1697 /*
1698 * For various legacy reasons, Linux has a small cookie that's paired with
1699 * a struct usb_device to identify an endpoint queue. Queue characteristics
1700 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1701 * an unsigned int encoded as:
1702 *
1703 * - direction: bit 7 (0 = Host-to-Device [Out],
1704 * 1 = Device-to-Host [In] ...
1705 * like endpoint bEndpointAddress)
1706 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1707 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1708 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1709 * 10 = control, 11 = bulk)
1710 *
1711 * Given the device address and endpoint descriptor, pipes are redundant.
1712 */
1713
1714 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1715 /* (yet ... they're the values used by usbfs) */
1716 #define PIPE_ISOCHRONOUS 0
1717 #define PIPE_INTERRUPT 1
1718 #define PIPE_CONTROL 2
1719 #define PIPE_BULK 3
1720
1721 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1722 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1723
1724 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1725 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1726
1727 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1728 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1729 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1730 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1731 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1732
1733 static inline unsigned int __create_pipe(struct usb_device *dev,
1734 unsigned int endpoint)
1735 {
1736 return (dev->devnum << 8) | (endpoint << 15);
1737 }
1738
1739 /* Create various pipes... */
1740 #define usb_sndctrlpipe(dev, endpoint) \
1741 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1742 #define usb_rcvctrlpipe(dev, endpoint) \
1743 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1744 #define usb_sndisocpipe(dev, endpoint) \
1745 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1746 #define usb_rcvisocpipe(dev, endpoint) \
1747 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1748 #define usb_sndbulkpipe(dev, endpoint) \
1749 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1750 #define usb_rcvbulkpipe(dev, endpoint) \
1751 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1752 #define usb_sndintpipe(dev, endpoint) \
1753 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1754 #define usb_rcvintpipe(dev, endpoint) \
1755 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1756
1757 static inline struct usb_host_endpoint *
1758 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1759 {
1760 struct usb_host_endpoint **eps;
1761 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1762 return eps[usb_pipeendpoint(pipe)];
1763 }
1764
1765 /*-------------------------------------------------------------------------*/
1766
1767 static inline __u16
1768 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1769 {
1770 struct usb_host_endpoint *ep;
1771 unsigned epnum = usb_pipeendpoint(pipe);
1772
1773 if (is_out) {
1774 WARN_ON(usb_pipein(pipe));
1775 ep = udev->ep_out[epnum];
1776 } else {
1777 WARN_ON(usb_pipeout(pipe));
1778 ep = udev->ep_in[epnum];
1779 }
1780 if (!ep)
1781 return 0;
1782
1783 /* NOTE: only 0x07ff bits are for packet size... */
1784 return usb_endpoint_maxp(&ep->desc);
1785 }
1786
1787 /* ----------------------------------------------------------------------- */
1788
1789 /* translate USB error codes to codes user space understands */
1790 static inline int usb_translate_errors(int error_code)
1791 {
1792 switch (error_code) {
1793 case 0:
1794 case -ENOMEM:
1795 case -ENODEV:
1796 case -EOPNOTSUPP:
1797 return error_code;
1798 default:
1799 return -EIO;
1800 }
1801 }
1802
1803 /* Events from the usb core */
1804 #define USB_DEVICE_ADD 0x0001
1805 #define USB_DEVICE_REMOVE 0x0002
1806 #define USB_BUS_ADD 0x0003
1807 #define USB_BUS_REMOVE 0x0004
1808 extern void usb_register_notify(struct notifier_block *nb);
1809 extern void usb_unregister_notify(struct notifier_block *nb);
1810
1811 /* debugfs stuff */
1812 extern struct dentry *usb_debug_root;
1813
1814 #endif /* __KERNEL__ */
1815
1816 #endif