md: allow a maximum extent to be set for resyncing
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58 * Stripe cache
59 */
60
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
68
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
79 */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82 * The following can be used to debug the driver
83 */
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
105 }
106
107 static void return_io(struct bio *return_bi)
108 {
109 struct bio *bi = return_bi;
110 while (bi) {
111
112 return_bi = bi->bi_next;
113 bi->bi_next = NULL;
114 bi->bi_size = 0;
115 bi->bi_end_io(bi,
116 test_bit(BIO_UPTODATE, &bi->bi_flags)
117 ? 0 : -EIO);
118 bi = return_bi;
119 }
120 }
121
122 static void print_raid5_conf (raid5_conf_t *conf);
123
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
125 {
126 if (atomic_dec_and_test(&sh->count)) {
127 BUG_ON(!list_empty(&sh->lru));
128 BUG_ON(atomic_read(&conf->active_stripes)==0);
129 if (test_bit(STRIPE_HANDLE, &sh->state)) {
130 if (test_bit(STRIPE_DELAYED, &sh->state)) {
131 list_add_tail(&sh->lru, &conf->delayed_list);
132 blk_plug_device(conf->mddev->queue);
133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134 sh->bm_seq - conf->seq_write > 0) {
135 list_add_tail(&sh->lru, &conf->bitmap_list);
136 blk_plug_device(conf->mddev->queue);
137 } else {
138 clear_bit(STRIPE_BIT_DELAY, &sh->state);
139 list_add_tail(&sh->lru, &conf->handle_list);
140 }
141 md_wakeup_thread(conf->mddev->thread);
142 } else {
143 BUG_ON(sh->ops.pending);
144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 atomic_dec(&conf->preread_active_stripes);
146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 md_wakeup_thread(conf->mddev->thread);
148 }
149 atomic_dec(&conf->active_stripes);
150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 list_add_tail(&sh->lru, &conf->inactive_list);
152 wake_up(&conf->wait_for_stripe);
153 if (conf->retry_read_aligned)
154 md_wakeup_thread(conf->mddev->thread);
155 }
156 }
157 }
158 }
159 static void release_stripe(struct stripe_head *sh)
160 {
161 raid5_conf_t *conf = sh->raid_conf;
162 unsigned long flags;
163
164 spin_lock_irqsave(&conf->device_lock, flags);
165 __release_stripe(conf, sh);
166 spin_unlock_irqrestore(&conf->device_lock, flags);
167 }
168
169 static inline void remove_hash(struct stripe_head *sh)
170 {
171 pr_debug("remove_hash(), stripe %llu\n",
172 (unsigned long long)sh->sector);
173
174 hlist_del_init(&sh->hash);
175 }
176
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
178 {
179 struct hlist_head *hp = stripe_hash(conf, sh->sector);
180
181 pr_debug("insert_hash(), stripe %llu\n",
182 (unsigned long long)sh->sector);
183
184 CHECK_DEVLOCK();
185 hlist_add_head(&sh->hash, hp);
186 }
187
188
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
191 {
192 struct stripe_head *sh = NULL;
193 struct list_head *first;
194
195 CHECK_DEVLOCK();
196 if (list_empty(&conf->inactive_list))
197 goto out;
198 first = conf->inactive_list.next;
199 sh = list_entry(first, struct stripe_head, lru);
200 list_del_init(first);
201 remove_hash(sh);
202 atomic_inc(&conf->active_stripes);
203 out:
204 return sh;
205 }
206
207 static void shrink_buffers(struct stripe_head *sh, int num)
208 {
209 struct page *p;
210 int i;
211
212 for (i=0; i<num ; i++) {
213 p = sh->dev[i].page;
214 if (!p)
215 continue;
216 sh->dev[i].page = NULL;
217 put_page(p);
218 }
219 }
220
221 static int grow_buffers(struct stripe_head *sh, int num)
222 {
223 int i;
224
225 for (i=0; i<num; i++) {
226 struct page *page;
227
228 if (!(page = alloc_page(GFP_KERNEL))) {
229 return 1;
230 }
231 sh->dev[i].page = page;
232 }
233 return 0;
234 }
235
236 static void raid5_build_block (struct stripe_head *sh, int i);
237
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
239 {
240 raid5_conf_t *conf = sh->raid_conf;
241 int i;
242
243 BUG_ON(atomic_read(&sh->count) != 0);
244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
246
247 CHECK_DEVLOCK();
248 pr_debug("init_stripe called, stripe %llu\n",
249 (unsigned long long)sh->sector);
250
251 remove_hash(sh);
252
253 sh->sector = sector;
254 sh->pd_idx = pd_idx;
255 sh->state = 0;
256
257 sh->disks = disks;
258
259 for (i = sh->disks; i--; ) {
260 struct r5dev *dev = &sh->dev[i];
261
262 if (dev->toread || dev->read || dev->towrite || dev->written ||
263 test_bit(R5_LOCKED, &dev->flags)) {
264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265 (unsigned long long)sh->sector, i, dev->toread,
266 dev->read, dev->towrite, dev->written,
267 test_bit(R5_LOCKED, &dev->flags));
268 BUG();
269 }
270 dev->flags = 0;
271 raid5_build_block(sh, i);
272 }
273 insert_hash(conf, sh);
274 }
275
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
277 {
278 struct stripe_head *sh;
279 struct hlist_node *hn;
280
281 CHECK_DEVLOCK();
282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284 if (sh->sector == sector && sh->disks == disks)
285 return sh;
286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
287 return NULL;
288 }
289
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
292
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 int pd_idx, int noblock)
295 {
296 struct stripe_head *sh;
297
298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
299
300 spin_lock_irq(&conf->device_lock);
301
302 do {
303 wait_event_lock_irq(conf->wait_for_stripe,
304 conf->quiesce == 0,
305 conf->device_lock, /* nothing */);
306 sh = __find_stripe(conf, sector, disks);
307 if (!sh) {
308 if (!conf->inactive_blocked)
309 sh = get_free_stripe(conf);
310 if (noblock && sh == NULL)
311 break;
312 if (!sh) {
313 conf->inactive_blocked = 1;
314 wait_event_lock_irq(conf->wait_for_stripe,
315 !list_empty(&conf->inactive_list) &&
316 (atomic_read(&conf->active_stripes)
317 < (conf->max_nr_stripes *3/4)
318 || !conf->inactive_blocked),
319 conf->device_lock,
320 raid5_unplug_device(conf->mddev->queue)
321 );
322 conf->inactive_blocked = 0;
323 } else
324 init_stripe(sh, sector, pd_idx, disks);
325 } else {
326 if (atomic_read(&sh->count)) {
327 BUG_ON(!list_empty(&sh->lru));
328 } else {
329 if (!test_bit(STRIPE_HANDLE, &sh->state))
330 atomic_inc(&conf->active_stripes);
331 if (list_empty(&sh->lru) &&
332 !test_bit(STRIPE_EXPANDING, &sh->state))
333 BUG();
334 list_del_init(&sh->lru);
335 }
336 }
337 } while (sh == NULL);
338
339 if (sh)
340 atomic_inc(&sh->count);
341
342 spin_unlock_irq(&conf->device_lock);
343 return sh;
344 }
345
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
348 do { \
349 if (test_bit(op, &sh->ops.pending) && \
350 !test_bit(op, &sh->ops.complete)) { \
351 if (test_and_set_bit(op, &sh->ops.ack)) \
352 clear_bit(op, &pend); \
353 else \
354 ack++; \
355 } else \
356 clear_bit(op, &pend); \
357 } while (0)
358
359 /* find new work to run, do not resubmit work that is already
360 * in flight
361 */
362 static unsigned long get_stripe_work(struct stripe_head *sh)
363 {
364 unsigned long pending;
365 int ack = 0;
366
367 pending = sh->ops.pending;
368
369 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 test_and_ack_op(STRIPE_OP_CHECK, pending);
375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376 ack++;
377
378 sh->ops.count -= ack;
379 if (unlikely(sh->ops.count < 0)) {
380 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
381 "ops.complete: %#lx\n", pending, sh->ops.pending,
382 sh->ops.ack, sh->ops.complete);
383 BUG();
384 }
385
386 return pending;
387 }
388
389 static void
390 raid5_end_read_request(struct bio *bi, int error);
391 static void
392 raid5_end_write_request(struct bio *bi, int error);
393
394 static void ops_run_io(struct stripe_head *sh)
395 {
396 raid5_conf_t *conf = sh->raid_conf;
397 int i, disks = sh->disks;
398
399 might_sleep();
400
401 for (i = disks; i--; ) {
402 int rw;
403 struct bio *bi;
404 mdk_rdev_t *rdev;
405 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
406 rw = WRITE;
407 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408 rw = READ;
409 else
410 continue;
411
412 bi = &sh->dev[i].req;
413
414 bi->bi_rw = rw;
415 if (rw == WRITE)
416 bi->bi_end_io = raid5_end_write_request;
417 else
418 bi->bi_end_io = raid5_end_read_request;
419
420 rcu_read_lock();
421 rdev = rcu_dereference(conf->disks[i].rdev);
422 if (rdev && test_bit(Faulty, &rdev->flags))
423 rdev = NULL;
424 if (rdev)
425 atomic_inc(&rdev->nr_pending);
426 rcu_read_unlock();
427
428 if (rdev) {
429 if (test_bit(STRIPE_SYNCING, &sh->state) ||
430 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
431 test_bit(STRIPE_EXPAND_READY, &sh->state))
432 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
433
434 bi->bi_bdev = rdev->bdev;
435 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436 __FUNCTION__, (unsigned long long)sh->sector,
437 bi->bi_rw, i);
438 atomic_inc(&sh->count);
439 bi->bi_sector = sh->sector + rdev->data_offset;
440 bi->bi_flags = 1 << BIO_UPTODATE;
441 bi->bi_vcnt = 1;
442 bi->bi_max_vecs = 1;
443 bi->bi_idx = 0;
444 bi->bi_io_vec = &sh->dev[i].vec;
445 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446 bi->bi_io_vec[0].bv_offset = 0;
447 bi->bi_size = STRIPE_SIZE;
448 bi->bi_next = NULL;
449 if (rw == WRITE &&
450 test_bit(R5_ReWrite, &sh->dev[i].flags))
451 atomic_add(STRIPE_SECTORS,
452 &rdev->corrected_errors);
453 generic_make_request(bi);
454 } else {
455 if (rw == WRITE)
456 set_bit(STRIPE_DEGRADED, &sh->state);
457 pr_debug("skip op %ld on disc %d for sector %llu\n",
458 bi->bi_rw, i, (unsigned long long)sh->sector);
459 clear_bit(R5_LOCKED, &sh->dev[i].flags);
460 set_bit(STRIPE_HANDLE, &sh->state);
461 }
462 }
463 }
464
465 static struct dma_async_tx_descriptor *
466 async_copy_data(int frombio, struct bio *bio, struct page *page,
467 sector_t sector, struct dma_async_tx_descriptor *tx)
468 {
469 struct bio_vec *bvl;
470 struct page *bio_page;
471 int i;
472 int page_offset;
473
474 if (bio->bi_sector >= sector)
475 page_offset = (signed)(bio->bi_sector - sector) * 512;
476 else
477 page_offset = (signed)(sector - bio->bi_sector) * -512;
478 bio_for_each_segment(bvl, bio, i) {
479 int len = bio_iovec_idx(bio, i)->bv_len;
480 int clen;
481 int b_offset = 0;
482
483 if (page_offset < 0) {
484 b_offset = -page_offset;
485 page_offset += b_offset;
486 len -= b_offset;
487 }
488
489 if (len > 0 && page_offset + len > STRIPE_SIZE)
490 clen = STRIPE_SIZE - page_offset;
491 else
492 clen = len;
493
494 if (clen > 0) {
495 b_offset += bio_iovec_idx(bio, i)->bv_offset;
496 bio_page = bio_iovec_idx(bio, i)->bv_page;
497 if (frombio)
498 tx = async_memcpy(page, bio_page, page_offset,
499 b_offset, clen,
500 ASYNC_TX_DEP_ACK,
501 tx, NULL, NULL);
502 else
503 tx = async_memcpy(bio_page, page, b_offset,
504 page_offset, clen,
505 ASYNC_TX_DEP_ACK,
506 tx, NULL, NULL);
507 }
508 if (clen < len) /* hit end of page */
509 break;
510 page_offset += len;
511 }
512
513 return tx;
514 }
515
516 static void ops_complete_biofill(void *stripe_head_ref)
517 {
518 struct stripe_head *sh = stripe_head_ref;
519 struct bio *return_bi = NULL;
520 raid5_conf_t *conf = sh->raid_conf;
521 int i;
522
523 pr_debug("%s: stripe %llu\n", __FUNCTION__,
524 (unsigned long long)sh->sector);
525
526 /* clear completed biofills */
527 for (i = sh->disks; i--; ) {
528 struct r5dev *dev = &sh->dev[i];
529
530 /* acknowledge completion of a biofill operation */
531 /* and check if we need to reply to a read request,
532 * new R5_Wantfill requests are held off until
533 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
534 */
535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536 struct bio *rbi, *rbi2;
537
538 /* The access to dev->read is outside of the
539 * spin_lock_irq(&conf->device_lock), but is protected
540 * by the STRIPE_OP_BIOFILL pending bit
541 */
542 BUG_ON(!dev->read);
543 rbi = dev->read;
544 dev->read = NULL;
545 while (rbi && rbi->bi_sector <
546 dev->sector + STRIPE_SECTORS) {
547 rbi2 = r5_next_bio(rbi, dev->sector);
548 spin_lock_irq(&conf->device_lock);
549 if (--rbi->bi_phys_segments == 0) {
550 rbi->bi_next = return_bi;
551 return_bi = rbi;
552 }
553 spin_unlock_irq(&conf->device_lock);
554 rbi = rbi2;
555 }
556 }
557 }
558 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
559
560 return_io(return_bi);
561
562 set_bit(STRIPE_HANDLE, &sh->state);
563 release_stripe(sh);
564 }
565
566 static void ops_run_biofill(struct stripe_head *sh)
567 {
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
570 int i;
571
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
574
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
578 struct bio *rbi;
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
581 dev->toread = NULL;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
586 dev->sector, tx);
587 rbi = r5_next_bio(rbi, dev->sector);
588 }
589 }
590 }
591
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
595 }
596
597 static void ops_complete_compute5(void *stripe_head_ref)
598 {
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
602
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
605
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
611 release_stripe(sh);
612 }
613
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616 {
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
623 int count = 0;
624 struct dma_async_tx_descriptor *tx;
625 int i;
626
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630
631 for (i = disks; i--; )
632 if (i != target)
633 xor_srcs[count++] = sh->dev[i].page;
634
635 atomic_inc(&sh->count);
636
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
640 else
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
644
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 async_tx_ack(tx);
648
649 return tx;
650 }
651
652 static void ops_complete_prexor(void *stripe_head_ref)
653 {
654 struct stripe_head *sh = stripe_head_ref;
655
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
658
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660 }
661
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664 {
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
669
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
675
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
681 }
682
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
686
687 return tx;
688 }
689
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
692 unsigned long pending)
693 {
694 int disks = sh->disks;
695 int pd_idx = sh->pd_idx, i;
696
697 /* check if prexor is active which means only process blocks
698 * that are part of a read-modify-write (Wantprexor)
699 */
700 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
701
702 pr_debug("%s: stripe %llu\n", __FUNCTION__,
703 (unsigned long long)sh->sector);
704
705 for (i = disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 struct bio *chosen;
708 int towrite;
709
710 towrite = 0;
711 if (prexor) { /* rmw */
712 if (dev->towrite &&
713 test_bit(R5_Wantprexor, &dev->flags))
714 towrite = 1;
715 } else { /* rcw */
716 if (i != pd_idx && dev->towrite &&
717 test_bit(R5_LOCKED, &dev->flags))
718 towrite = 1;
719 }
720
721 if (towrite) {
722 struct bio *wbi;
723
724 spin_lock(&sh->lock);
725 chosen = dev->towrite;
726 dev->towrite = NULL;
727 BUG_ON(dev->written);
728 wbi = dev->written = chosen;
729 spin_unlock(&sh->lock);
730
731 while (wbi && wbi->bi_sector <
732 dev->sector + STRIPE_SECTORS) {
733 tx = async_copy_data(1, wbi, dev->page,
734 dev->sector, tx);
735 wbi = r5_next_bio(wbi, dev->sector);
736 }
737 }
738 }
739
740 return tx;
741 }
742
743 static void ops_complete_postxor(void *stripe_head_ref)
744 {
745 struct stripe_head *sh = stripe_head_ref;
746
747 pr_debug("%s: stripe %llu\n", __FUNCTION__,
748 (unsigned long long)sh->sector);
749
750 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
751 set_bit(STRIPE_HANDLE, &sh->state);
752 release_stripe(sh);
753 }
754
755 static void ops_complete_write(void *stripe_head_ref)
756 {
757 struct stripe_head *sh = stripe_head_ref;
758 int disks = sh->disks, i, pd_idx = sh->pd_idx;
759
760 pr_debug("%s: stripe %llu\n", __FUNCTION__,
761 (unsigned long long)sh->sector);
762
763 for (i = disks; i--; ) {
764 struct r5dev *dev = &sh->dev[i];
765 if (dev->written || i == pd_idx)
766 set_bit(R5_UPTODATE, &dev->flags);
767 }
768
769 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
770 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
771
772 set_bit(STRIPE_HANDLE, &sh->state);
773 release_stripe(sh);
774 }
775
776 static void
777 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
778 unsigned long pending)
779 {
780 /* kernel stack size limits the total number of disks */
781 int disks = sh->disks;
782 struct page *xor_srcs[disks];
783
784 int count = 0, pd_idx = sh->pd_idx, i;
785 struct page *xor_dest;
786 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
787 unsigned long flags;
788 dma_async_tx_callback callback;
789
790 pr_debug("%s: stripe %llu\n", __FUNCTION__,
791 (unsigned long long)sh->sector);
792
793 /* check if prexor is active which means only process blocks
794 * that are part of a read-modify-write (written)
795 */
796 if (prexor) {
797 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
798 for (i = disks; i--; ) {
799 struct r5dev *dev = &sh->dev[i];
800 if (dev->written)
801 xor_srcs[count++] = dev->page;
802 }
803 } else {
804 xor_dest = sh->dev[pd_idx].page;
805 for (i = disks; i--; ) {
806 struct r5dev *dev = &sh->dev[i];
807 if (i != pd_idx)
808 xor_srcs[count++] = dev->page;
809 }
810 }
811
812 /* check whether this postxor is part of a write */
813 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
814 ops_complete_write : ops_complete_postxor;
815
816 /* 1/ if we prexor'd then the dest is reused as a source
817 * 2/ if we did not prexor then we are redoing the parity
818 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
819 * for the synchronous xor case
820 */
821 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
822 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
823
824 atomic_inc(&sh->count);
825
826 if (unlikely(count == 1)) {
827 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
828 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
829 flags, tx, callback, sh);
830 } else
831 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
832 flags, tx, callback, sh);
833 }
834
835 static void ops_complete_check(void *stripe_head_ref)
836 {
837 struct stripe_head *sh = stripe_head_ref;
838 int pd_idx = sh->pd_idx;
839
840 pr_debug("%s: stripe %llu\n", __FUNCTION__,
841 (unsigned long long)sh->sector);
842
843 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
844 sh->ops.zero_sum_result == 0)
845 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
846
847 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
848 set_bit(STRIPE_HANDLE, &sh->state);
849 release_stripe(sh);
850 }
851
852 static void ops_run_check(struct stripe_head *sh)
853 {
854 /* kernel stack size limits the total number of disks */
855 int disks = sh->disks;
856 struct page *xor_srcs[disks];
857 struct dma_async_tx_descriptor *tx;
858
859 int count = 0, pd_idx = sh->pd_idx, i;
860 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
861
862 pr_debug("%s: stripe %llu\n", __FUNCTION__,
863 (unsigned long long)sh->sector);
864
865 for (i = disks; i--; ) {
866 struct r5dev *dev = &sh->dev[i];
867 if (i != pd_idx)
868 xor_srcs[count++] = dev->page;
869 }
870
871 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
872 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
873
874 if (tx)
875 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876 else
877 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878
879 atomic_inc(&sh->count);
880 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
881 ops_complete_check, sh);
882 }
883
884 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
885 {
886 int overlap_clear = 0, i, disks = sh->disks;
887 struct dma_async_tx_descriptor *tx = NULL;
888
889 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
890 ops_run_biofill(sh);
891 overlap_clear++;
892 }
893
894 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
895 tx = ops_run_compute5(sh, pending);
896
897 if (test_bit(STRIPE_OP_PREXOR, &pending))
898 tx = ops_run_prexor(sh, tx);
899
900 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
901 tx = ops_run_biodrain(sh, tx, pending);
902 overlap_clear++;
903 }
904
905 if (test_bit(STRIPE_OP_POSTXOR, &pending))
906 ops_run_postxor(sh, tx, pending);
907
908 if (test_bit(STRIPE_OP_CHECK, &pending))
909 ops_run_check(sh);
910
911 if (test_bit(STRIPE_OP_IO, &pending))
912 ops_run_io(sh);
913
914 if (overlap_clear)
915 for (i = disks; i--; ) {
916 struct r5dev *dev = &sh->dev[i];
917 if (test_and_clear_bit(R5_Overlap, &dev->flags))
918 wake_up(&sh->raid_conf->wait_for_overlap);
919 }
920 }
921
922 static int grow_one_stripe(raid5_conf_t *conf)
923 {
924 struct stripe_head *sh;
925 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
926 if (!sh)
927 return 0;
928 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
929 sh->raid_conf = conf;
930 spin_lock_init(&sh->lock);
931
932 if (grow_buffers(sh, conf->raid_disks)) {
933 shrink_buffers(sh, conf->raid_disks);
934 kmem_cache_free(conf->slab_cache, sh);
935 return 0;
936 }
937 sh->disks = conf->raid_disks;
938 /* we just created an active stripe so... */
939 atomic_set(&sh->count, 1);
940 atomic_inc(&conf->active_stripes);
941 INIT_LIST_HEAD(&sh->lru);
942 release_stripe(sh);
943 return 1;
944 }
945
946 static int grow_stripes(raid5_conf_t *conf, int num)
947 {
948 struct kmem_cache *sc;
949 int devs = conf->raid_disks;
950
951 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
952 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
953 conf->active_name = 0;
954 sc = kmem_cache_create(conf->cache_name[conf->active_name],
955 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
956 0, 0, NULL);
957 if (!sc)
958 return 1;
959 conf->slab_cache = sc;
960 conf->pool_size = devs;
961 while (num--)
962 if (!grow_one_stripe(conf))
963 return 1;
964 return 0;
965 }
966
967 #ifdef CONFIG_MD_RAID5_RESHAPE
968 static int resize_stripes(raid5_conf_t *conf, int newsize)
969 {
970 /* Make all the stripes able to hold 'newsize' devices.
971 * New slots in each stripe get 'page' set to a new page.
972 *
973 * This happens in stages:
974 * 1/ create a new kmem_cache and allocate the required number of
975 * stripe_heads.
976 * 2/ gather all the old stripe_heads and tranfer the pages across
977 * to the new stripe_heads. This will have the side effect of
978 * freezing the array as once all stripe_heads have been collected,
979 * no IO will be possible. Old stripe heads are freed once their
980 * pages have been transferred over, and the old kmem_cache is
981 * freed when all stripes are done.
982 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
983 * we simple return a failre status - no need to clean anything up.
984 * 4/ allocate new pages for the new slots in the new stripe_heads.
985 * If this fails, we don't bother trying the shrink the
986 * stripe_heads down again, we just leave them as they are.
987 * As each stripe_head is processed the new one is released into
988 * active service.
989 *
990 * Once step2 is started, we cannot afford to wait for a write,
991 * so we use GFP_NOIO allocations.
992 */
993 struct stripe_head *osh, *nsh;
994 LIST_HEAD(newstripes);
995 struct disk_info *ndisks;
996 int err = 0;
997 struct kmem_cache *sc;
998 int i;
999
1000 if (newsize <= conf->pool_size)
1001 return 0; /* never bother to shrink */
1002
1003 md_allow_write(conf->mddev);
1004
1005 /* Step 1 */
1006 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1007 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1008 0, 0, NULL);
1009 if (!sc)
1010 return -ENOMEM;
1011
1012 for (i = conf->max_nr_stripes; i; i--) {
1013 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1014 if (!nsh)
1015 break;
1016
1017 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1018
1019 nsh->raid_conf = conf;
1020 spin_lock_init(&nsh->lock);
1021
1022 list_add(&nsh->lru, &newstripes);
1023 }
1024 if (i) {
1025 /* didn't get enough, give up */
1026 while (!list_empty(&newstripes)) {
1027 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1028 list_del(&nsh->lru);
1029 kmem_cache_free(sc, nsh);
1030 }
1031 kmem_cache_destroy(sc);
1032 return -ENOMEM;
1033 }
1034 /* Step 2 - Must use GFP_NOIO now.
1035 * OK, we have enough stripes, start collecting inactive
1036 * stripes and copying them over
1037 */
1038 list_for_each_entry(nsh, &newstripes, lru) {
1039 spin_lock_irq(&conf->device_lock);
1040 wait_event_lock_irq(conf->wait_for_stripe,
1041 !list_empty(&conf->inactive_list),
1042 conf->device_lock,
1043 unplug_slaves(conf->mddev)
1044 );
1045 osh = get_free_stripe(conf);
1046 spin_unlock_irq(&conf->device_lock);
1047 atomic_set(&nsh->count, 1);
1048 for(i=0; i<conf->pool_size; i++)
1049 nsh->dev[i].page = osh->dev[i].page;
1050 for( ; i<newsize; i++)
1051 nsh->dev[i].page = NULL;
1052 kmem_cache_free(conf->slab_cache, osh);
1053 }
1054 kmem_cache_destroy(conf->slab_cache);
1055
1056 /* Step 3.
1057 * At this point, we are holding all the stripes so the array
1058 * is completely stalled, so now is a good time to resize
1059 * conf->disks.
1060 */
1061 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1062 if (ndisks) {
1063 for (i=0; i<conf->raid_disks; i++)
1064 ndisks[i] = conf->disks[i];
1065 kfree(conf->disks);
1066 conf->disks = ndisks;
1067 } else
1068 err = -ENOMEM;
1069
1070 /* Step 4, return new stripes to service */
1071 while(!list_empty(&newstripes)) {
1072 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1073 list_del_init(&nsh->lru);
1074 for (i=conf->raid_disks; i < newsize; i++)
1075 if (nsh->dev[i].page == NULL) {
1076 struct page *p = alloc_page(GFP_NOIO);
1077 nsh->dev[i].page = p;
1078 if (!p)
1079 err = -ENOMEM;
1080 }
1081 release_stripe(nsh);
1082 }
1083 /* critical section pass, GFP_NOIO no longer needed */
1084
1085 conf->slab_cache = sc;
1086 conf->active_name = 1-conf->active_name;
1087 conf->pool_size = newsize;
1088 return err;
1089 }
1090 #endif
1091
1092 static int drop_one_stripe(raid5_conf_t *conf)
1093 {
1094 struct stripe_head *sh;
1095
1096 spin_lock_irq(&conf->device_lock);
1097 sh = get_free_stripe(conf);
1098 spin_unlock_irq(&conf->device_lock);
1099 if (!sh)
1100 return 0;
1101 BUG_ON(atomic_read(&sh->count));
1102 shrink_buffers(sh, conf->pool_size);
1103 kmem_cache_free(conf->slab_cache, sh);
1104 atomic_dec(&conf->active_stripes);
1105 return 1;
1106 }
1107
1108 static void shrink_stripes(raid5_conf_t *conf)
1109 {
1110 while (drop_one_stripe(conf))
1111 ;
1112
1113 if (conf->slab_cache)
1114 kmem_cache_destroy(conf->slab_cache);
1115 conf->slab_cache = NULL;
1116 }
1117
1118 static void raid5_end_read_request(struct bio * bi, int error)
1119 {
1120 struct stripe_head *sh = bi->bi_private;
1121 raid5_conf_t *conf = sh->raid_conf;
1122 int disks = sh->disks, i;
1123 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1124 char b[BDEVNAME_SIZE];
1125 mdk_rdev_t *rdev;
1126
1127
1128 for (i=0 ; i<disks; i++)
1129 if (bi == &sh->dev[i].req)
1130 break;
1131
1132 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1133 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1134 uptodate);
1135 if (i == disks) {
1136 BUG();
1137 return;
1138 }
1139
1140 if (uptodate) {
1141 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1142 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1143 rdev = conf->disks[i].rdev;
1144 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1145 mdname(conf->mddev), STRIPE_SECTORS,
1146 (unsigned long long)sh->sector + rdev->data_offset,
1147 bdevname(rdev->bdev, b));
1148 clear_bit(R5_ReadError, &sh->dev[i].flags);
1149 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1150 }
1151 if (atomic_read(&conf->disks[i].rdev->read_errors))
1152 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1153 } else {
1154 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1155 int retry = 0;
1156 rdev = conf->disks[i].rdev;
1157
1158 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1159 atomic_inc(&rdev->read_errors);
1160 if (conf->mddev->degraded)
1161 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1162 mdname(conf->mddev),
1163 (unsigned long long)sh->sector + rdev->data_offset,
1164 bdn);
1165 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1166 /* Oh, no!!! */
1167 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1168 mdname(conf->mddev),
1169 (unsigned long long)sh->sector + rdev->data_offset,
1170 bdn);
1171 else if (atomic_read(&rdev->read_errors)
1172 > conf->max_nr_stripes)
1173 printk(KERN_WARNING
1174 "raid5:%s: Too many read errors, failing device %s.\n",
1175 mdname(conf->mddev), bdn);
1176 else
1177 retry = 1;
1178 if (retry)
1179 set_bit(R5_ReadError, &sh->dev[i].flags);
1180 else {
1181 clear_bit(R5_ReadError, &sh->dev[i].flags);
1182 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1183 md_error(conf->mddev, rdev);
1184 }
1185 }
1186 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1187 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1188 set_bit(STRIPE_HANDLE, &sh->state);
1189 release_stripe(sh);
1190 }
1191
1192 static void raid5_end_write_request (struct bio *bi, int error)
1193 {
1194 struct stripe_head *sh = bi->bi_private;
1195 raid5_conf_t *conf = sh->raid_conf;
1196 int disks = sh->disks, i;
1197 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1198
1199 for (i=0 ; i<disks; i++)
1200 if (bi == &sh->dev[i].req)
1201 break;
1202
1203 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1204 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1205 uptodate);
1206 if (i == disks) {
1207 BUG();
1208 return;
1209 }
1210
1211 if (!uptodate)
1212 md_error(conf->mddev, conf->disks[i].rdev);
1213
1214 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1215
1216 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 set_bit(STRIPE_HANDLE, &sh->state);
1218 release_stripe(sh);
1219 }
1220
1221
1222 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1223
1224 static void raid5_build_block (struct stripe_head *sh, int i)
1225 {
1226 struct r5dev *dev = &sh->dev[i];
1227
1228 bio_init(&dev->req);
1229 dev->req.bi_io_vec = &dev->vec;
1230 dev->req.bi_vcnt++;
1231 dev->req.bi_max_vecs++;
1232 dev->vec.bv_page = dev->page;
1233 dev->vec.bv_len = STRIPE_SIZE;
1234 dev->vec.bv_offset = 0;
1235
1236 dev->req.bi_sector = sh->sector;
1237 dev->req.bi_private = sh;
1238
1239 dev->flags = 0;
1240 dev->sector = compute_blocknr(sh, i);
1241 }
1242
1243 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1244 {
1245 char b[BDEVNAME_SIZE];
1246 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1247 pr_debug("raid5: error called\n");
1248
1249 if (!test_bit(Faulty, &rdev->flags)) {
1250 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1251 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1252 unsigned long flags;
1253 spin_lock_irqsave(&conf->device_lock, flags);
1254 mddev->degraded++;
1255 spin_unlock_irqrestore(&conf->device_lock, flags);
1256 /*
1257 * if recovery was running, make sure it aborts.
1258 */
1259 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1260 }
1261 set_bit(Faulty, &rdev->flags);
1262 printk (KERN_ALERT
1263 "raid5: Disk failure on %s, disabling device."
1264 " Operation continuing on %d devices\n",
1265 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1266 }
1267 }
1268
1269 /*
1270 * Input: a 'big' sector number,
1271 * Output: index of the data and parity disk, and the sector # in them.
1272 */
1273 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1274 unsigned int data_disks, unsigned int * dd_idx,
1275 unsigned int * pd_idx, raid5_conf_t *conf)
1276 {
1277 long stripe;
1278 unsigned long chunk_number;
1279 unsigned int chunk_offset;
1280 sector_t new_sector;
1281 int sectors_per_chunk = conf->chunk_size >> 9;
1282
1283 /* First compute the information on this sector */
1284
1285 /*
1286 * Compute the chunk number and the sector offset inside the chunk
1287 */
1288 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289 chunk_number = r_sector;
1290 BUG_ON(r_sector != chunk_number);
1291
1292 /*
1293 * Compute the stripe number
1294 */
1295 stripe = chunk_number / data_disks;
1296
1297 /*
1298 * Compute the data disk and parity disk indexes inside the stripe
1299 */
1300 *dd_idx = chunk_number % data_disks;
1301
1302 /*
1303 * Select the parity disk based on the user selected algorithm.
1304 */
1305 switch(conf->level) {
1306 case 4:
1307 *pd_idx = data_disks;
1308 break;
1309 case 5:
1310 switch (conf->algorithm) {
1311 case ALGORITHM_LEFT_ASYMMETRIC:
1312 *pd_idx = data_disks - stripe % raid_disks;
1313 if (*dd_idx >= *pd_idx)
1314 (*dd_idx)++;
1315 break;
1316 case ALGORITHM_RIGHT_ASYMMETRIC:
1317 *pd_idx = stripe % raid_disks;
1318 if (*dd_idx >= *pd_idx)
1319 (*dd_idx)++;
1320 break;
1321 case ALGORITHM_LEFT_SYMMETRIC:
1322 *pd_idx = data_disks - stripe % raid_disks;
1323 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324 break;
1325 case ALGORITHM_RIGHT_SYMMETRIC:
1326 *pd_idx = stripe % raid_disks;
1327 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328 break;
1329 default:
1330 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1331 conf->algorithm);
1332 }
1333 break;
1334 case 6:
1335
1336 /**** FIX THIS ****/
1337 switch (conf->algorithm) {
1338 case ALGORITHM_LEFT_ASYMMETRIC:
1339 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1340 if (*pd_idx == raid_disks-1)
1341 (*dd_idx)++; /* Q D D D P */
1342 else if (*dd_idx >= *pd_idx)
1343 (*dd_idx) += 2; /* D D P Q D */
1344 break;
1345 case ALGORITHM_RIGHT_ASYMMETRIC:
1346 *pd_idx = stripe % raid_disks;
1347 if (*pd_idx == raid_disks-1)
1348 (*dd_idx)++; /* Q D D D P */
1349 else if (*dd_idx >= *pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1351 break;
1352 case ALGORITHM_LEFT_SYMMETRIC:
1353 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1354 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355 break;
1356 case ALGORITHM_RIGHT_SYMMETRIC:
1357 *pd_idx = stripe % raid_disks;
1358 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359 break;
1360 default:
1361 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1362 conf->algorithm);
1363 }
1364 break;
1365 }
1366
1367 /*
1368 * Finally, compute the new sector number
1369 */
1370 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1371 return new_sector;
1372 }
1373
1374
1375 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1376 {
1377 raid5_conf_t *conf = sh->raid_conf;
1378 int raid_disks = sh->disks;
1379 int data_disks = raid_disks - conf->max_degraded;
1380 sector_t new_sector = sh->sector, check;
1381 int sectors_per_chunk = conf->chunk_size >> 9;
1382 sector_t stripe;
1383 int chunk_offset;
1384 int chunk_number, dummy1, dummy2, dd_idx = i;
1385 sector_t r_sector;
1386
1387
1388 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1389 stripe = new_sector;
1390 BUG_ON(new_sector != stripe);
1391
1392 if (i == sh->pd_idx)
1393 return 0;
1394 switch(conf->level) {
1395 case 4: break;
1396 case 5:
1397 switch (conf->algorithm) {
1398 case ALGORITHM_LEFT_ASYMMETRIC:
1399 case ALGORITHM_RIGHT_ASYMMETRIC:
1400 if (i > sh->pd_idx)
1401 i--;
1402 break;
1403 case ALGORITHM_LEFT_SYMMETRIC:
1404 case ALGORITHM_RIGHT_SYMMETRIC:
1405 if (i < sh->pd_idx)
1406 i += raid_disks;
1407 i -= (sh->pd_idx + 1);
1408 break;
1409 default:
1410 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1411 conf->algorithm);
1412 }
1413 break;
1414 case 6:
1415 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1416 return 0; /* It is the Q disk */
1417 switch (conf->algorithm) {
1418 case ALGORITHM_LEFT_ASYMMETRIC:
1419 case ALGORITHM_RIGHT_ASYMMETRIC:
1420 if (sh->pd_idx == raid_disks-1)
1421 i--; /* Q D D D P */
1422 else if (i > sh->pd_idx)
1423 i -= 2; /* D D P Q D */
1424 break;
1425 case ALGORITHM_LEFT_SYMMETRIC:
1426 case ALGORITHM_RIGHT_SYMMETRIC:
1427 if (sh->pd_idx == raid_disks-1)
1428 i--; /* Q D D D P */
1429 else {
1430 /* D D P Q D */
1431 if (i < sh->pd_idx)
1432 i += raid_disks;
1433 i -= (sh->pd_idx + 2);
1434 }
1435 break;
1436 default:
1437 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1438 conf->algorithm);
1439 }
1440 break;
1441 }
1442
1443 chunk_number = stripe * data_disks + i;
1444 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1445
1446 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1447 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1448 printk(KERN_ERR "compute_blocknr: map not correct\n");
1449 return 0;
1450 }
1451 return r_sector;
1452 }
1453
1454
1455
1456 /*
1457 * Copy data between a page in the stripe cache, and one or more bion
1458 * The page could align with the middle of the bio, or there could be
1459 * several bion, each with several bio_vecs, which cover part of the page
1460 * Multiple bion are linked together on bi_next. There may be extras
1461 * at the end of this list. We ignore them.
1462 */
1463 static void copy_data(int frombio, struct bio *bio,
1464 struct page *page,
1465 sector_t sector)
1466 {
1467 char *pa = page_address(page);
1468 struct bio_vec *bvl;
1469 int i;
1470 int page_offset;
1471
1472 if (bio->bi_sector >= sector)
1473 page_offset = (signed)(bio->bi_sector - sector) * 512;
1474 else
1475 page_offset = (signed)(sector - bio->bi_sector) * -512;
1476 bio_for_each_segment(bvl, bio, i) {
1477 int len = bio_iovec_idx(bio,i)->bv_len;
1478 int clen;
1479 int b_offset = 0;
1480
1481 if (page_offset < 0) {
1482 b_offset = -page_offset;
1483 page_offset += b_offset;
1484 len -= b_offset;
1485 }
1486
1487 if (len > 0 && page_offset + len > STRIPE_SIZE)
1488 clen = STRIPE_SIZE - page_offset;
1489 else clen = len;
1490
1491 if (clen > 0) {
1492 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1493 if (frombio)
1494 memcpy(pa+page_offset, ba+b_offset, clen);
1495 else
1496 memcpy(ba+b_offset, pa+page_offset, clen);
1497 __bio_kunmap_atomic(ba, KM_USER0);
1498 }
1499 if (clen < len) /* hit end of page */
1500 break;
1501 page_offset += len;
1502 }
1503 }
1504
1505 #define check_xor() do { \
1506 if (count == MAX_XOR_BLOCKS) { \
1507 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1508 count = 0; \
1509 } \
1510 } while(0)
1511
1512 static void compute_parity6(struct stripe_head *sh, int method)
1513 {
1514 raid6_conf_t *conf = sh->raid_conf;
1515 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1516 struct bio *chosen;
1517 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1518 void *ptrs[disks];
1519
1520 qd_idx = raid6_next_disk(pd_idx, disks);
1521 d0_idx = raid6_next_disk(qd_idx, disks);
1522
1523 pr_debug("compute_parity, stripe %llu, method %d\n",
1524 (unsigned long long)sh->sector, method);
1525
1526 switch(method) {
1527 case READ_MODIFY_WRITE:
1528 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1529 case RECONSTRUCT_WRITE:
1530 for (i= disks; i-- ;)
1531 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1532 chosen = sh->dev[i].towrite;
1533 sh->dev[i].towrite = NULL;
1534
1535 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1536 wake_up(&conf->wait_for_overlap);
1537
1538 BUG_ON(sh->dev[i].written);
1539 sh->dev[i].written = chosen;
1540 }
1541 break;
1542 case CHECK_PARITY:
1543 BUG(); /* Not implemented yet */
1544 }
1545
1546 for (i = disks; i--;)
1547 if (sh->dev[i].written) {
1548 sector_t sector = sh->dev[i].sector;
1549 struct bio *wbi = sh->dev[i].written;
1550 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1551 copy_data(1, wbi, sh->dev[i].page, sector);
1552 wbi = r5_next_bio(wbi, sector);
1553 }
1554
1555 set_bit(R5_LOCKED, &sh->dev[i].flags);
1556 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1557 }
1558
1559 // switch(method) {
1560 // case RECONSTRUCT_WRITE:
1561 // case CHECK_PARITY:
1562 // case UPDATE_PARITY:
1563 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1564 /* FIX: Is this ordering of drives even remotely optimal? */
1565 count = 0;
1566 i = d0_idx;
1567 do {
1568 ptrs[count++] = page_address(sh->dev[i].page);
1569 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1570 printk("block %d/%d not uptodate on parity calc\n", i,count);
1571 i = raid6_next_disk(i, disks);
1572 } while ( i != d0_idx );
1573 // break;
1574 // }
1575
1576 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1577
1578 switch(method) {
1579 case RECONSTRUCT_WRITE:
1580 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1583 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1584 break;
1585 case UPDATE_PARITY:
1586 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1587 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1588 break;
1589 }
1590 }
1591
1592
1593 /* Compute one missing block */
1594 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1595 {
1596 int i, count, disks = sh->disks;
1597 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1598 int pd_idx = sh->pd_idx;
1599 int qd_idx = raid6_next_disk(pd_idx, disks);
1600
1601 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1602 (unsigned long long)sh->sector, dd_idx);
1603
1604 if ( dd_idx == qd_idx ) {
1605 /* We're actually computing the Q drive */
1606 compute_parity6(sh, UPDATE_PARITY);
1607 } else {
1608 dest = page_address(sh->dev[dd_idx].page);
1609 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1610 count = 0;
1611 for (i = disks ; i--; ) {
1612 if (i == dd_idx || i == qd_idx)
1613 continue;
1614 p = page_address(sh->dev[i].page);
1615 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1616 ptr[count++] = p;
1617 else
1618 printk("compute_block() %d, stripe %llu, %d"
1619 " not present\n", dd_idx,
1620 (unsigned long long)sh->sector, i);
1621
1622 check_xor();
1623 }
1624 if (count)
1625 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1626 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1627 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1628 }
1629 }
1630
1631 /* Compute two missing blocks */
1632 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1633 {
1634 int i, count, disks = sh->disks;
1635 int pd_idx = sh->pd_idx;
1636 int qd_idx = raid6_next_disk(pd_idx, disks);
1637 int d0_idx = raid6_next_disk(qd_idx, disks);
1638 int faila, failb;
1639
1640 /* faila and failb are disk numbers relative to d0_idx */
1641 /* pd_idx become disks-2 and qd_idx become disks-1 */
1642 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1643 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1644
1645 BUG_ON(faila == failb);
1646 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1647
1648 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1649 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1650
1651 if ( failb == disks-1 ) {
1652 /* Q disk is one of the missing disks */
1653 if ( faila == disks-2 ) {
1654 /* Missing P+Q, just recompute */
1655 compute_parity6(sh, UPDATE_PARITY);
1656 return;
1657 } else {
1658 /* We're missing D+Q; recompute D from P */
1659 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1660 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1661 return;
1662 }
1663 }
1664
1665 /* We're missing D+P or D+D; build pointer table */
1666 {
1667 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1668 void *ptrs[disks];
1669
1670 count = 0;
1671 i = d0_idx;
1672 do {
1673 ptrs[count++] = page_address(sh->dev[i].page);
1674 i = raid6_next_disk(i, disks);
1675 if (i != dd_idx1 && i != dd_idx2 &&
1676 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1677 printk("compute_2 with missing block %d/%d\n", count, i);
1678 } while ( i != d0_idx );
1679
1680 if ( failb == disks-2 ) {
1681 /* We're missing D+P. */
1682 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1683 } else {
1684 /* We're missing D+D. */
1685 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686 }
1687
1688 /* Both the above update both missing blocks */
1689 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1690 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1691 }
1692 }
1693
1694 static int
1695 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1696 {
1697 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1698 int locked = 0;
1699
1700 if (rcw) {
1701 /* if we are not expanding this is a proper write request, and
1702 * there will be bios with new data to be drained into the
1703 * stripe cache
1704 */
1705 if (!expand) {
1706 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1707 sh->ops.count++;
1708 }
1709
1710 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1711 sh->ops.count++;
1712
1713 for (i = disks; i--; ) {
1714 struct r5dev *dev = &sh->dev[i];
1715
1716 if (dev->towrite) {
1717 set_bit(R5_LOCKED, &dev->flags);
1718 if (!expand)
1719 clear_bit(R5_UPTODATE, &dev->flags);
1720 locked++;
1721 }
1722 }
1723 } else {
1724 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1725 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1726
1727 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1728 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1729 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1730
1731 sh->ops.count += 3;
1732
1733 for (i = disks; i--; ) {
1734 struct r5dev *dev = &sh->dev[i];
1735 if (i == pd_idx)
1736 continue;
1737
1738 /* For a read-modify write there may be blocks that are
1739 * locked for reading while others are ready to be
1740 * written so we distinguish these blocks by the
1741 * R5_Wantprexor bit
1742 */
1743 if (dev->towrite &&
1744 (test_bit(R5_UPTODATE, &dev->flags) ||
1745 test_bit(R5_Wantcompute, &dev->flags))) {
1746 set_bit(R5_Wantprexor, &dev->flags);
1747 set_bit(R5_LOCKED, &dev->flags);
1748 clear_bit(R5_UPTODATE, &dev->flags);
1749 locked++;
1750 }
1751 }
1752 }
1753
1754 /* keep the parity disk locked while asynchronous operations
1755 * are in flight
1756 */
1757 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1758 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1759 locked++;
1760
1761 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1762 __FUNCTION__, (unsigned long long)sh->sector,
1763 locked, sh->ops.pending);
1764
1765 return locked;
1766 }
1767
1768 /*
1769 * Each stripe/dev can have one or more bion attached.
1770 * toread/towrite point to the first in a chain.
1771 * The bi_next chain must be in order.
1772 */
1773 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1774 {
1775 struct bio **bip;
1776 raid5_conf_t *conf = sh->raid_conf;
1777 int firstwrite=0;
1778
1779 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1780 (unsigned long long)bi->bi_sector,
1781 (unsigned long long)sh->sector);
1782
1783
1784 spin_lock(&sh->lock);
1785 spin_lock_irq(&conf->device_lock);
1786 if (forwrite) {
1787 bip = &sh->dev[dd_idx].towrite;
1788 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1789 firstwrite = 1;
1790 } else
1791 bip = &sh->dev[dd_idx].toread;
1792 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1793 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1794 goto overlap;
1795 bip = & (*bip)->bi_next;
1796 }
1797 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1798 goto overlap;
1799
1800 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1801 if (*bip)
1802 bi->bi_next = *bip;
1803 *bip = bi;
1804 bi->bi_phys_segments ++;
1805 spin_unlock_irq(&conf->device_lock);
1806 spin_unlock(&sh->lock);
1807
1808 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1809 (unsigned long long)bi->bi_sector,
1810 (unsigned long long)sh->sector, dd_idx);
1811
1812 if (conf->mddev->bitmap && firstwrite) {
1813 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1814 STRIPE_SECTORS, 0);
1815 sh->bm_seq = conf->seq_flush+1;
1816 set_bit(STRIPE_BIT_DELAY, &sh->state);
1817 }
1818
1819 if (forwrite) {
1820 /* check if page is covered */
1821 sector_t sector = sh->dev[dd_idx].sector;
1822 for (bi=sh->dev[dd_idx].towrite;
1823 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1824 bi && bi->bi_sector <= sector;
1825 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1826 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1827 sector = bi->bi_sector + (bi->bi_size>>9);
1828 }
1829 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1830 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1831 }
1832 return 1;
1833
1834 overlap:
1835 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1836 spin_unlock_irq(&conf->device_lock);
1837 spin_unlock(&sh->lock);
1838 return 0;
1839 }
1840
1841 static void end_reshape(raid5_conf_t *conf);
1842
1843 static int page_is_zero(struct page *p)
1844 {
1845 char *a = page_address(p);
1846 return ((*(u32*)a) == 0 &&
1847 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1848 }
1849
1850 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1851 {
1852 int sectors_per_chunk = conf->chunk_size >> 9;
1853 int pd_idx, dd_idx;
1854 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1855
1856 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1857 *sectors_per_chunk + chunk_offset,
1858 disks, disks - conf->max_degraded,
1859 &dd_idx, &pd_idx, conf);
1860 return pd_idx;
1861 }
1862
1863 static void
1864 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1865 struct stripe_head_state *s, int disks,
1866 struct bio **return_bi)
1867 {
1868 int i;
1869 for (i = disks; i--; ) {
1870 struct bio *bi;
1871 int bitmap_end = 0;
1872
1873 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1874 mdk_rdev_t *rdev;
1875 rcu_read_lock();
1876 rdev = rcu_dereference(conf->disks[i].rdev);
1877 if (rdev && test_bit(In_sync, &rdev->flags))
1878 /* multiple read failures in one stripe */
1879 md_error(conf->mddev, rdev);
1880 rcu_read_unlock();
1881 }
1882 spin_lock_irq(&conf->device_lock);
1883 /* fail all writes first */
1884 bi = sh->dev[i].towrite;
1885 sh->dev[i].towrite = NULL;
1886 if (bi) {
1887 s->to_write--;
1888 bitmap_end = 1;
1889 }
1890
1891 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1892 wake_up(&conf->wait_for_overlap);
1893
1894 while (bi && bi->bi_sector <
1895 sh->dev[i].sector + STRIPE_SECTORS) {
1896 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1897 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1898 if (--bi->bi_phys_segments == 0) {
1899 md_write_end(conf->mddev);
1900 bi->bi_next = *return_bi;
1901 *return_bi = bi;
1902 }
1903 bi = nextbi;
1904 }
1905 /* and fail all 'written' */
1906 bi = sh->dev[i].written;
1907 sh->dev[i].written = NULL;
1908 if (bi) bitmap_end = 1;
1909 while (bi && bi->bi_sector <
1910 sh->dev[i].sector + STRIPE_SECTORS) {
1911 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1912 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1913 if (--bi->bi_phys_segments == 0) {
1914 md_write_end(conf->mddev);
1915 bi->bi_next = *return_bi;
1916 *return_bi = bi;
1917 }
1918 bi = bi2;
1919 }
1920
1921 /* fail any reads if this device is non-operational and
1922 * the data has not reached the cache yet.
1923 */
1924 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1925 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1926 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1927 bi = sh->dev[i].toread;
1928 sh->dev[i].toread = NULL;
1929 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1930 wake_up(&conf->wait_for_overlap);
1931 if (bi) s->to_read--;
1932 while (bi && bi->bi_sector <
1933 sh->dev[i].sector + STRIPE_SECTORS) {
1934 struct bio *nextbi =
1935 r5_next_bio(bi, sh->dev[i].sector);
1936 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1937 if (--bi->bi_phys_segments == 0) {
1938 bi->bi_next = *return_bi;
1939 *return_bi = bi;
1940 }
1941 bi = nextbi;
1942 }
1943 }
1944 spin_unlock_irq(&conf->device_lock);
1945 if (bitmap_end)
1946 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1947 STRIPE_SECTORS, 0, 0);
1948 }
1949
1950 }
1951
1952 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1953 * to process
1954 */
1955 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1956 struct stripe_head_state *s, int disk_idx, int disks)
1957 {
1958 struct r5dev *dev = &sh->dev[disk_idx];
1959 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1960
1961 /* don't schedule compute operations or reads on the parity block while
1962 * a check is in flight
1963 */
1964 if ((disk_idx == sh->pd_idx) &&
1965 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1966 return ~0;
1967
1968 /* is the data in this block needed, and can we get it? */
1969 if (!test_bit(R5_LOCKED, &dev->flags) &&
1970 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1971 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1972 s->syncing || s->expanding || (s->failed &&
1973 (failed_dev->toread || (failed_dev->towrite &&
1974 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1975 ))))) {
1976 /* 1/ We would like to get this block, possibly by computing it,
1977 * but we might not be able to.
1978 *
1979 * 2/ Since parity check operations potentially make the parity
1980 * block !uptodate it will need to be refreshed before any
1981 * compute operations on data disks are scheduled.
1982 *
1983 * 3/ We hold off parity block re-reads until check operations
1984 * have quiesced.
1985 */
1986 if ((s->uptodate == disks - 1) &&
1987 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1988 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1989 set_bit(R5_Wantcompute, &dev->flags);
1990 sh->ops.target = disk_idx;
1991 s->req_compute = 1;
1992 sh->ops.count++;
1993 /* Careful: from this point on 'uptodate' is in the eye
1994 * of raid5_run_ops which services 'compute' operations
1995 * before writes. R5_Wantcompute flags a block that will
1996 * be R5_UPTODATE by the time it is needed for a
1997 * subsequent operation.
1998 */
1999 s->uptodate++;
2000 return 0; /* uptodate + compute == disks */
2001 } else if ((s->uptodate < disks - 1) &&
2002 test_bit(R5_Insync, &dev->flags)) {
2003 /* Note: we hold off compute operations while checks are
2004 * in flight, but we still prefer 'compute' over 'read'
2005 * hence we only read if (uptodate < * disks-1)
2006 */
2007 set_bit(R5_LOCKED, &dev->flags);
2008 set_bit(R5_Wantread, &dev->flags);
2009 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2010 sh->ops.count++;
2011 s->locked++;
2012 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2013 s->syncing);
2014 }
2015 }
2016
2017 return ~0;
2018 }
2019
2020 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2021 struct stripe_head_state *s, int disks)
2022 {
2023 int i;
2024
2025 /* Clear completed compute operations. Parity recovery
2026 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2027 * later on in this routine
2028 */
2029 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2030 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2032 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2033 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2034 }
2035
2036 /* look for blocks to read/compute, skip this if a compute
2037 * is already in flight, or if the stripe contents are in the
2038 * midst of changing due to a write
2039 */
2040 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2041 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2042 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2043 for (i = disks; i--; )
2044 if (__handle_issuing_new_read_requests5(
2045 sh, s, i, disks) == 0)
2046 break;
2047 }
2048 set_bit(STRIPE_HANDLE, &sh->state);
2049 }
2050
2051 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2052 struct stripe_head_state *s, struct r6_state *r6s,
2053 int disks)
2054 {
2055 int i;
2056 for (i = disks; i--; ) {
2057 struct r5dev *dev = &sh->dev[i];
2058 if (!test_bit(R5_LOCKED, &dev->flags) &&
2059 !test_bit(R5_UPTODATE, &dev->flags) &&
2060 (dev->toread || (dev->towrite &&
2061 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2062 s->syncing || s->expanding ||
2063 (s->failed >= 1 &&
2064 (sh->dev[r6s->failed_num[0]].toread ||
2065 s->to_write)) ||
2066 (s->failed >= 2 &&
2067 (sh->dev[r6s->failed_num[1]].toread ||
2068 s->to_write)))) {
2069 /* we would like to get this block, possibly
2070 * by computing it, but we might not be able to
2071 */
2072 if (s->uptodate == disks-1) {
2073 pr_debug("Computing stripe %llu block %d\n",
2074 (unsigned long long)sh->sector, i);
2075 compute_block_1(sh, i, 0);
2076 s->uptodate++;
2077 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2078 /* Computing 2-failure is *very* expensive; only
2079 * do it if failed >= 2
2080 */
2081 int other;
2082 for (other = disks; other--; ) {
2083 if (other == i)
2084 continue;
2085 if (!test_bit(R5_UPTODATE,
2086 &sh->dev[other].flags))
2087 break;
2088 }
2089 BUG_ON(other < 0);
2090 pr_debug("Computing stripe %llu blocks %d,%d\n",
2091 (unsigned long long)sh->sector,
2092 i, other);
2093 compute_block_2(sh, i, other);
2094 s->uptodate += 2;
2095 } else if (test_bit(R5_Insync, &dev->flags)) {
2096 set_bit(R5_LOCKED, &dev->flags);
2097 set_bit(R5_Wantread, &dev->flags);
2098 s->locked++;
2099 pr_debug("Reading block %d (sync=%d)\n",
2100 i, s->syncing);
2101 }
2102 }
2103 }
2104 set_bit(STRIPE_HANDLE, &sh->state);
2105 }
2106
2107
2108 /* handle_completed_write_requests
2109 * any written block on an uptodate or failed drive can be returned.
2110 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2111 * never LOCKED, so we don't need to test 'failed' directly.
2112 */
2113 static void handle_completed_write_requests(raid5_conf_t *conf,
2114 struct stripe_head *sh, int disks, struct bio **return_bi)
2115 {
2116 int i;
2117 struct r5dev *dev;
2118
2119 for (i = disks; i--; )
2120 if (sh->dev[i].written) {
2121 dev = &sh->dev[i];
2122 if (!test_bit(R5_LOCKED, &dev->flags) &&
2123 test_bit(R5_UPTODATE, &dev->flags)) {
2124 /* We can return any write requests */
2125 struct bio *wbi, *wbi2;
2126 int bitmap_end = 0;
2127 pr_debug("Return write for disc %d\n", i);
2128 spin_lock_irq(&conf->device_lock);
2129 wbi = dev->written;
2130 dev->written = NULL;
2131 while (wbi && wbi->bi_sector <
2132 dev->sector + STRIPE_SECTORS) {
2133 wbi2 = r5_next_bio(wbi, dev->sector);
2134 if (--wbi->bi_phys_segments == 0) {
2135 md_write_end(conf->mddev);
2136 wbi->bi_next = *return_bi;
2137 *return_bi = wbi;
2138 }
2139 wbi = wbi2;
2140 }
2141 if (dev->towrite == NULL)
2142 bitmap_end = 1;
2143 spin_unlock_irq(&conf->device_lock);
2144 if (bitmap_end)
2145 bitmap_endwrite(conf->mddev->bitmap,
2146 sh->sector,
2147 STRIPE_SECTORS,
2148 !test_bit(STRIPE_DEGRADED, &sh->state),
2149 0);
2150 }
2151 }
2152 }
2153
2154 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2155 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2156 {
2157 int rmw = 0, rcw = 0, i;
2158 for (i = disks; i--; ) {
2159 /* would I have to read this buffer for read_modify_write */
2160 struct r5dev *dev = &sh->dev[i];
2161 if ((dev->towrite || i == sh->pd_idx) &&
2162 !test_bit(R5_LOCKED, &dev->flags) &&
2163 !(test_bit(R5_UPTODATE, &dev->flags) ||
2164 test_bit(R5_Wantcompute, &dev->flags))) {
2165 if (test_bit(R5_Insync, &dev->flags))
2166 rmw++;
2167 else
2168 rmw += 2*disks; /* cannot read it */
2169 }
2170 /* Would I have to read this buffer for reconstruct_write */
2171 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2172 !test_bit(R5_LOCKED, &dev->flags) &&
2173 !(test_bit(R5_UPTODATE, &dev->flags) ||
2174 test_bit(R5_Wantcompute, &dev->flags))) {
2175 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2176 else
2177 rcw += 2*disks;
2178 }
2179 }
2180 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2181 (unsigned long long)sh->sector, rmw, rcw);
2182 set_bit(STRIPE_HANDLE, &sh->state);
2183 if (rmw < rcw && rmw > 0)
2184 /* prefer read-modify-write, but need to get some data */
2185 for (i = disks; i--; ) {
2186 struct r5dev *dev = &sh->dev[i];
2187 if ((dev->towrite || i == sh->pd_idx) &&
2188 !test_bit(R5_LOCKED, &dev->flags) &&
2189 !(test_bit(R5_UPTODATE, &dev->flags) ||
2190 test_bit(R5_Wantcompute, &dev->flags)) &&
2191 test_bit(R5_Insync, &dev->flags)) {
2192 if (
2193 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2194 pr_debug("Read_old block "
2195 "%d for r-m-w\n", i);
2196 set_bit(R5_LOCKED, &dev->flags);
2197 set_bit(R5_Wantread, &dev->flags);
2198 if (!test_and_set_bit(
2199 STRIPE_OP_IO, &sh->ops.pending))
2200 sh->ops.count++;
2201 s->locked++;
2202 } else {
2203 set_bit(STRIPE_DELAYED, &sh->state);
2204 set_bit(STRIPE_HANDLE, &sh->state);
2205 }
2206 }
2207 }
2208 if (rcw <= rmw && rcw > 0)
2209 /* want reconstruct write, but need to get some data */
2210 for (i = disks; i--; ) {
2211 struct r5dev *dev = &sh->dev[i];
2212 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2213 i != sh->pd_idx &&
2214 !test_bit(R5_LOCKED, &dev->flags) &&
2215 !(test_bit(R5_UPTODATE, &dev->flags) ||
2216 test_bit(R5_Wantcompute, &dev->flags)) &&
2217 test_bit(R5_Insync, &dev->flags)) {
2218 if (
2219 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2220 pr_debug("Read_old block "
2221 "%d for Reconstruct\n", i);
2222 set_bit(R5_LOCKED, &dev->flags);
2223 set_bit(R5_Wantread, &dev->flags);
2224 if (!test_and_set_bit(
2225 STRIPE_OP_IO, &sh->ops.pending))
2226 sh->ops.count++;
2227 s->locked++;
2228 } else {
2229 set_bit(STRIPE_DELAYED, &sh->state);
2230 set_bit(STRIPE_HANDLE, &sh->state);
2231 }
2232 }
2233 }
2234 /* now if nothing is locked, and if we have enough data,
2235 * we can start a write request
2236 */
2237 /* since handle_stripe can be called at any time we need to handle the
2238 * case where a compute block operation has been submitted and then a
2239 * subsequent call wants to start a write request. raid5_run_ops only
2240 * handles the case where compute block and postxor are requested
2241 * simultaneously. If this is not the case then new writes need to be
2242 * held off until the compute completes.
2243 */
2244 if ((s->req_compute ||
2245 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2246 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2247 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2248 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2249 }
2250
2251 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2252 struct stripe_head *sh, struct stripe_head_state *s,
2253 struct r6_state *r6s, int disks)
2254 {
2255 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2256 int qd_idx = r6s->qd_idx;
2257 for (i = disks; i--; ) {
2258 struct r5dev *dev = &sh->dev[i];
2259 /* Would I have to read this buffer for reconstruct_write */
2260 if (!test_bit(R5_OVERWRITE, &dev->flags)
2261 && i != pd_idx && i != qd_idx
2262 && (!test_bit(R5_LOCKED, &dev->flags)
2263 ) &&
2264 !test_bit(R5_UPTODATE, &dev->flags)) {
2265 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2266 else {
2267 pr_debug("raid6: must_compute: "
2268 "disk %d flags=%#lx\n", i, dev->flags);
2269 must_compute++;
2270 }
2271 }
2272 }
2273 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2274 (unsigned long long)sh->sector, rcw, must_compute);
2275 set_bit(STRIPE_HANDLE, &sh->state);
2276
2277 if (rcw > 0)
2278 /* want reconstruct write, but need to get some data */
2279 for (i = disks; i--; ) {
2280 struct r5dev *dev = &sh->dev[i];
2281 if (!test_bit(R5_OVERWRITE, &dev->flags)
2282 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2283 && !test_bit(R5_LOCKED, &dev->flags) &&
2284 !test_bit(R5_UPTODATE, &dev->flags) &&
2285 test_bit(R5_Insync, &dev->flags)) {
2286 if (
2287 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2288 pr_debug("Read_old stripe %llu "
2289 "block %d for Reconstruct\n",
2290 (unsigned long long)sh->sector, i);
2291 set_bit(R5_LOCKED, &dev->flags);
2292 set_bit(R5_Wantread, &dev->flags);
2293 s->locked++;
2294 } else {
2295 pr_debug("Request delayed stripe %llu "
2296 "block %d for Reconstruct\n",
2297 (unsigned long long)sh->sector, i);
2298 set_bit(STRIPE_DELAYED, &sh->state);
2299 set_bit(STRIPE_HANDLE, &sh->state);
2300 }
2301 }
2302 }
2303 /* now if nothing is locked, and if we have enough data, we can start a
2304 * write request
2305 */
2306 if (s->locked == 0 && rcw == 0 &&
2307 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2308 if (must_compute > 0) {
2309 /* We have failed blocks and need to compute them */
2310 switch (s->failed) {
2311 case 0:
2312 BUG();
2313 case 1:
2314 compute_block_1(sh, r6s->failed_num[0], 0);
2315 break;
2316 case 2:
2317 compute_block_2(sh, r6s->failed_num[0],
2318 r6s->failed_num[1]);
2319 break;
2320 default: /* This request should have been failed? */
2321 BUG();
2322 }
2323 }
2324
2325 pr_debug("Computing parity for stripe %llu\n",
2326 (unsigned long long)sh->sector);
2327 compute_parity6(sh, RECONSTRUCT_WRITE);
2328 /* now every locked buffer is ready to be written */
2329 for (i = disks; i--; )
2330 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2331 pr_debug("Writing stripe %llu block %d\n",
2332 (unsigned long long)sh->sector, i);
2333 s->locked++;
2334 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2335 }
2336 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2337 set_bit(STRIPE_INSYNC, &sh->state);
2338
2339 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2340 atomic_dec(&conf->preread_active_stripes);
2341 if (atomic_read(&conf->preread_active_stripes) <
2342 IO_THRESHOLD)
2343 md_wakeup_thread(conf->mddev->thread);
2344 }
2345 }
2346 }
2347
2348 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2349 struct stripe_head_state *s, int disks)
2350 {
2351 set_bit(STRIPE_HANDLE, &sh->state);
2352 /* Take one of the following actions:
2353 * 1/ start a check parity operation if (uptodate == disks)
2354 * 2/ finish a check parity operation and act on the result
2355 * 3/ skip to the writeback section if we previously
2356 * initiated a recovery operation
2357 */
2358 if (s->failed == 0 &&
2359 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2360 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2361 BUG_ON(s->uptodate != disks);
2362 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2363 sh->ops.count++;
2364 s->uptodate--;
2365 } else if (
2366 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2367 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2368 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2369
2370 if (sh->ops.zero_sum_result == 0)
2371 /* parity is correct (on disc,
2372 * not in buffer any more)
2373 */
2374 set_bit(STRIPE_INSYNC, &sh->state);
2375 else {
2376 conf->mddev->resync_mismatches +=
2377 STRIPE_SECTORS;
2378 if (test_bit(
2379 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2380 /* don't try to repair!! */
2381 set_bit(STRIPE_INSYNC, &sh->state);
2382 else {
2383 set_bit(STRIPE_OP_COMPUTE_BLK,
2384 &sh->ops.pending);
2385 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2386 &sh->ops.pending);
2387 set_bit(R5_Wantcompute,
2388 &sh->dev[sh->pd_idx].flags);
2389 sh->ops.target = sh->pd_idx;
2390 sh->ops.count++;
2391 s->uptodate++;
2392 }
2393 }
2394 }
2395 }
2396
2397 /* check if we can clear a parity disk reconstruct */
2398 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2399 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2400
2401 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2402 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2403 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2404 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2405 }
2406
2407 /* Wait for check parity and compute block operations to complete
2408 * before write-back
2409 */
2410 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2411 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2412 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2413 struct r5dev *dev;
2414 /* either failed parity check, or recovery is happening */
2415 if (s->failed == 0)
2416 s->failed_num = sh->pd_idx;
2417 dev = &sh->dev[s->failed_num];
2418 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2419 BUG_ON(s->uptodate != disks);
2420
2421 set_bit(R5_LOCKED, &dev->flags);
2422 set_bit(R5_Wantwrite, &dev->flags);
2423 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2424 sh->ops.count++;
2425
2426 clear_bit(STRIPE_DEGRADED, &sh->state);
2427 s->locked++;
2428 set_bit(STRIPE_INSYNC, &sh->state);
2429 }
2430 }
2431
2432
2433 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2434 struct stripe_head_state *s,
2435 struct r6_state *r6s, struct page *tmp_page,
2436 int disks)
2437 {
2438 int update_p = 0, update_q = 0;
2439 struct r5dev *dev;
2440 int pd_idx = sh->pd_idx;
2441 int qd_idx = r6s->qd_idx;
2442
2443 set_bit(STRIPE_HANDLE, &sh->state);
2444
2445 BUG_ON(s->failed > 2);
2446 BUG_ON(s->uptodate < disks);
2447 /* Want to check and possibly repair P and Q.
2448 * However there could be one 'failed' device, in which
2449 * case we can only check one of them, possibly using the
2450 * other to generate missing data
2451 */
2452
2453 /* If !tmp_page, we cannot do the calculations,
2454 * but as we have set STRIPE_HANDLE, we will soon be called
2455 * by stripe_handle with a tmp_page - just wait until then.
2456 */
2457 if (tmp_page) {
2458 if (s->failed == r6s->q_failed) {
2459 /* The only possible failed device holds 'Q', so it
2460 * makes sense to check P (If anything else were failed,
2461 * we would have used P to recreate it).
2462 */
2463 compute_block_1(sh, pd_idx, 1);
2464 if (!page_is_zero(sh->dev[pd_idx].page)) {
2465 compute_block_1(sh, pd_idx, 0);
2466 update_p = 1;
2467 }
2468 }
2469 if (!r6s->q_failed && s->failed < 2) {
2470 /* q is not failed, and we didn't use it to generate
2471 * anything, so it makes sense to check it
2472 */
2473 memcpy(page_address(tmp_page),
2474 page_address(sh->dev[qd_idx].page),
2475 STRIPE_SIZE);
2476 compute_parity6(sh, UPDATE_PARITY);
2477 if (memcmp(page_address(tmp_page),
2478 page_address(sh->dev[qd_idx].page),
2479 STRIPE_SIZE) != 0) {
2480 clear_bit(STRIPE_INSYNC, &sh->state);
2481 update_q = 1;
2482 }
2483 }
2484 if (update_p || update_q) {
2485 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2486 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2487 /* don't try to repair!! */
2488 update_p = update_q = 0;
2489 }
2490
2491 /* now write out any block on a failed drive,
2492 * or P or Q if they need it
2493 */
2494
2495 if (s->failed == 2) {
2496 dev = &sh->dev[r6s->failed_num[1]];
2497 s->locked++;
2498 set_bit(R5_LOCKED, &dev->flags);
2499 set_bit(R5_Wantwrite, &dev->flags);
2500 }
2501 if (s->failed >= 1) {
2502 dev = &sh->dev[r6s->failed_num[0]];
2503 s->locked++;
2504 set_bit(R5_LOCKED, &dev->flags);
2505 set_bit(R5_Wantwrite, &dev->flags);
2506 }
2507
2508 if (update_p) {
2509 dev = &sh->dev[pd_idx];
2510 s->locked++;
2511 set_bit(R5_LOCKED, &dev->flags);
2512 set_bit(R5_Wantwrite, &dev->flags);
2513 }
2514 if (update_q) {
2515 dev = &sh->dev[qd_idx];
2516 s->locked++;
2517 set_bit(R5_LOCKED, &dev->flags);
2518 set_bit(R5_Wantwrite, &dev->flags);
2519 }
2520 clear_bit(STRIPE_DEGRADED, &sh->state);
2521
2522 set_bit(STRIPE_INSYNC, &sh->state);
2523 }
2524 }
2525
2526 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2527 struct r6_state *r6s)
2528 {
2529 int i;
2530
2531 /* We have read all the blocks in this stripe and now we need to
2532 * copy some of them into a target stripe for expand.
2533 */
2534 struct dma_async_tx_descriptor *tx = NULL;
2535 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2536 for (i = 0; i < sh->disks; i++)
2537 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2538 int dd_idx, pd_idx, j;
2539 struct stripe_head *sh2;
2540
2541 sector_t bn = compute_blocknr(sh, i);
2542 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2543 conf->raid_disks -
2544 conf->max_degraded, &dd_idx,
2545 &pd_idx, conf);
2546 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2547 pd_idx, 1);
2548 if (sh2 == NULL)
2549 /* so far only the early blocks of this stripe
2550 * have been requested. When later blocks
2551 * get requested, we will try again
2552 */
2553 continue;
2554 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2555 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2556 /* must have already done this block */
2557 release_stripe(sh2);
2558 continue;
2559 }
2560
2561 /* place all the copies on one channel */
2562 tx = async_memcpy(sh2->dev[dd_idx].page,
2563 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2564 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2565
2566 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2567 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2568 for (j = 0; j < conf->raid_disks; j++)
2569 if (j != sh2->pd_idx &&
2570 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2571 sh2->disks)) &&
2572 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2573 break;
2574 if (j == conf->raid_disks) {
2575 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2576 set_bit(STRIPE_HANDLE, &sh2->state);
2577 }
2578 release_stripe(sh2);
2579
2580 }
2581 /* done submitting copies, wait for them to complete */
2582 if (tx) {
2583 async_tx_ack(tx);
2584 dma_wait_for_async_tx(tx);
2585 }
2586 }
2587
2588 /*
2589 * handle_stripe - do things to a stripe.
2590 *
2591 * We lock the stripe and then examine the state of various bits
2592 * to see what needs to be done.
2593 * Possible results:
2594 * return some read request which now have data
2595 * return some write requests which are safely on disc
2596 * schedule a read on some buffers
2597 * schedule a write of some buffers
2598 * return confirmation of parity correctness
2599 *
2600 * buffers are taken off read_list or write_list, and bh_cache buffers
2601 * get BH_Lock set before the stripe lock is released.
2602 *
2603 */
2604
2605 static void handle_stripe5(struct stripe_head *sh)
2606 {
2607 raid5_conf_t *conf = sh->raid_conf;
2608 int disks = sh->disks, i;
2609 struct bio *return_bi = NULL;
2610 struct stripe_head_state s;
2611 struct r5dev *dev;
2612 unsigned long pending = 0;
2613
2614 memset(&s, 0, sizeof(s));
2615 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2616 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2617 atomic_read(&sh->count), sh->pd_idx,
2618 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2619
2620 spin_lock(&sh->lock);
2621 clear_bit(STRIPE_HANDLE, &sh->state);
2622 clear_bit(STRIPE_DELAYED, &sh->state);
2623
2624 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2625 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2626 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2627 /* Now to look around and see what can be done */
2628
2629 /* clean-up completed biofill operations */
2630 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2631 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2632 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2633 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2634 }
2635
2636 rcu_read_lock();
2637 for (i=disks; i--; ) {
2638 mdk_rdev_t *rdev;
2639 struct r5dev *dev = &sh->dev[i];
2640 clear_bit(R5_Insync, &dev->flags);
2641
2642 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2643 "written %p\n", i, dev->flags, dev->toread, dev->read,
2644 dev->towrite, dev->written);
2645
2646 /* maybe we can request a biofill operation
2647 *
2648 * new wantfill requests are only permitted while
2649 * STRIPE_OP_BIOFILL is clear
2650 */
2651 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2652 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2653 set_bit(R5_Wantfill, &dev->flags);
2654
2655 /* now count some things */
2656 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2657 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2658 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2659
2660 if (test_bit(R5_Wantfill, &dev->flags))
2661 s.to_fill++;
2662 else if (dev->toread)
2663 s.to_read++;
2664 if (dev->towrite) {
2665 s.to_write++;
2666 if (!test_bit(R5_OVERWRITE, &dev->flags))
2667 s.non_overwrite++;
2668 }
2669 if (dev->written)
2670 s.written++;
2671 rdev = rcu_dereference(conf->disks[i].rdev);
2672 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2673 /* The ReadError flag will just be confusing now */
2674 clear_bit(R5_ReadError, &dev->flags);
2675 clear_bit(R5_ReWrite, &dev->flags);
2676 }
2677 if (!rdev || !test_bit(In_sync, &rdev->flags)
2678 || test_bit(R5_ReadError, &dev->flags)) {
2679 s.failed++;
2680 s.failed_num = i;
2681 } else
2682 set_bit(R5_Insync, &dev->flags);
2683 }
2684 rcu_read_unlock();
2685
2686 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2687 sh->ops.count++;
2688
2689 pr_debug("locked=%d uptodate=%d to_read=%d"
2690 " to_write=%d failed=%d failed_num=%d\n",
2691 s.locked, s.uptodate, s.to_read, s.to_write,
2692 s.failed, s.failed_num);
2693 /* check if the array has lost two devices and, if so, some requests might
2694 * need to be failed
2695 */
2696 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2697 handle_requests_to_failed_array(conf, sh, &s, disks,
2698 &return_bi);
2699 if (s.failed > 1 && s.syncing) {
2700 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2701 clear_bit(STRIPE_SYNCING, &sh->state);
2702 s.syncing = 0;
2703 }
2704
2705 /* might be able to return some write requests if the parity block
2706 * is safe, or on a failed drive
2707 */
2708 dev = &sh->dev[sh->pd_idx];
2709 if ( s.written &&
2710 ((test_bit(R5_Insync, &dev->flags) &&
2711 !test_bit(R5_LOCKED, &dev->flags) &&
2712 test_bit(R5_UPTODATE, &dev->flags)) ||
2713 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2714 handle_completed_write_requests(conf, sh, disks, &return_bi);
2715
2716 /* Now we might consider reading some blocks, either to check/generate
2717 * parity, or to satisfy requests
2718 * or to load a block that is being partially written.
2719 */
2720 if (s.to_read || s.non_overwrite ||
2721 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2722 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2723 handle_issuing_new_read_requests5(sh, &s, disks);
2724
2725 /* Now we check to see if any write operations have recently
2726 * completed
2727 */
2728
2729 /* leave prexor set until postxor is done, allows us to distinguish
2730 * a rmw from a rcw during biodrain
2731 */
2732 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2733 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2734
2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2736 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2737 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2738
2739 for (i = disks; i--; )
2740 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2741 }
2742
2743 /* if only POSTXOR is set then this is an 'expand' postxor */
2744 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2745 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2746
2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2748 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2749 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2750
2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2752 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2753 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2754
2755 /* All the 'written' buffers and the parity block are ready to
2756 * be written back to disk
2757 */
2758 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2759 for (i = disks; i--; ) {
2760 dev = &sh->dev[i];
2761 if (test_bit(R5_LOCKED, &dev->flags) &&
2762 (i == sh->pd_idx || dev->written)) {
2763 pr_debug("Writing block %d\n", i);
2764 set_bit(R5_Wantwrite, &dev->flags);
2765 if (!test_and_set_bit(
2766 STRIPE_OP_IO, &sh->ops.pending))
2767 sh->ops.count++;
2768 if (!test_bit(R5_Insync, &dev->flags) ||
2769 (i == sh->pd_idx && s.failed == 0))
2770 set_bit(STRIPE_INSYNC, &sh->state);
2771 }
2772 }
2773 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2774 atomic_dec(&conf->preread_active_stripes);
2775 if (atomic_read(&conf->preread_active_stripes) <
2776 IO_THRESHOLD)
2777 md_wakeup_thread(conf->mddev->thread);
2778 }
2779 }
2780
2781 /* Now to consider new write requests and what else, if anything
2782 * should be read. We do not handle new writes when:
2783 * 1/ A 'write' operation (copy+xor) is already in flight.
2784 * 2/ A 'check' operation is in flight, as it may clobber the parity
2785 * block.
2786 */
2787 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2788 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2789 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2790
2791 /* maybe we need to check and possibly fix the parity for this stripe
2792 * Any reads will already have been scheduled, so we just see if enough
2793 * data is available. The parity check is held off while parity
2794 * dependent operations are in flight.
2795 */
2796 if ((s.syncing && s.locked == 0 &&
2797 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2798 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2799 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2800 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2801 handle_parity_checks5(conf, sh, &s, disks);
2802
2803 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2804 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2805 clear_bit(STRIPE_SYNCING, &sh->state);
2806 }
2807
2808 /* If the failed drive is just a ReadError, then we might need to progress
2809 * the repair/check process
2810 */
2811 if (s.failed == 1 && !conf->mddev->ro &&
2812 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2813 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2814 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2815 ) {
2816 dev = &sh->dev[s.failed_num];
2817 if (!test_bit(R5_ReWrite, &dev->flags)) {
2818 set_bit(R5_Wantwrite, &dev->flags);
2819 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2820 sh->ops.count++;
2821 set_bit(R5_ReWrite, &dev->flags);
2822 set_bit(R5_LOCKED, &dev->flags);
2823 s.locked++;
2824 } else {
2825 /* let's read it back */
2826 set_bit(R5_Wantread, &dev->flags);
2827 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2828 sh->ops.count++;
2829 set_bit(R5_LOCKED, &dev->flags);
2830 s.locked++;
2831 }
2832 }
2833
2834 /* Finish postxor operations initiated by the expansion
2835 * process
2836 */
2837 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2838 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2839
2840 clear_bit(STRIPE_EXPANDING, &sh->state);
2841
2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2843 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2844 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2845
2846 for (i = conf->raid_disks; i--; ) {
2847 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2848 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2849 sh->ops.count++;
2850 }
2851 }
2852
2853 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2854 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2855 /* Need to write out all blocks after computing parity */
2856 sh->disks = conf->raid_disks;
2857 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2858 conf->raid_disks);
2859 s.locked += handle_write_operations5(sh, 1, 1);
2860 } else if (s.expanded &&
2861 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2862 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2863 atomic_dec(&conf->reshape_stripes);
2864 wake_up(&conf->wait_for_overlap);
2865 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2866 }
2867
2868 if (s.expanding && s.locked == 0 &&
2869 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2870 handle_stripe_expansion(conf, sh, NULL);
2871
2872 if (sh->ops.count)
2873 pending = get_stripe_work(sh);
2874
2875 spin_unlock(&sh->lock);
2876
2877 if (pending)
2878 raid5_run_ops(sh, pending);
2879
2880 return_io(return_bi);
2881
2882 }
2883
2884 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2885 {
2886 raid6_conf_t *conf = sh->raid_conf;
2887 int disks = sh->disks;
2888 struct bio *return_bi = NULL;
2889 int i, pd_idx = sh->pd_idx;
2890 struct stripe_head_state s;
2891 struct r6_state r6s;
2892 struct r5dev *dev, *pdev, *qdev;
2893
2894 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2895 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2896 "pd_idx=%d, qd_idx=%d\n",
2897 (unsigned long long)sh->sector, sh->state,
2898 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2899 memset(&s, 0, sizeof(s));
2900
2901 spin_lock(&sh->lock);
2902 clear_bit(STRIPE_HANDLE, &sh->state);
2903 clear_bit(STRIPE_DELAYED, &sh->state);
2904
2905 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2906 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2907 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2908 /* Now to look around and see what can be done */
2909
2910 rcu_read_lock();
2911 for (i=disks; i--; ) {
2912 mdk_rdev_t *rdev;
2913 dev = &sh->dev[i];
2914 clear_bit(R5_Insync, &dev->flags);
2915
2916 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2917 i, dev->flags, dev->toread, dev->towrite, dev->written);
2918 /* maybe we can reply to a read */
2919 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2920 struct bio *rbi, *rbi2;
2921 pr_debug("Return read for disc %d\n", i);
2922 spin_lock_irq(&conf->device_lock);
2923 rbi = dev->toread;
2924 dev->toread = NULL;
2925 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2926 wake_up(&conf->wait_for_overlap);
2927 spin_unlock_irq(&conf->device_lock);
2928 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2929 copy_data(0, rbi, dev->page, dev->sector);
2930 rbi2 = r5_next_bio(rbi, dev->sector);
2931 spin_lock_irq(&conf->device_lock);
2932 if (--rbi->bi_phys_segments == 0) {
2933 rbi->bi_next = return_bi;
2934 return_bi = rbi;
2935 }
2936 spin_unlock_irq(&conf->device_lock);
2937 rbi = rbi2;
2938 }
2939 }
2940
2941 /* now count some things */
2942 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2943 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2944
2945
2946 if (dev->toread)
2947 s.to_read++;
2948 if (dev->towrite) {
2949 s.to_write++;
2950 if (!test_bit(R5_OVERWRITE, &dev->flags))
2951 s.non_overwrite++;
2952 }
2953 if (dev->written)
2954 s.written++;
2955 rdev = rcu_dereference(conf->disks[i].rdev);
2956 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2957 /* The ReadError flag will just be confusing now */
2958 clear_bit(R5_ReadError, &dev->flags);
2959 clear_bit(R5_ReWrite, &dev->flags);
2960 }
2961 if (!rdev || !test_bit(In_sync, &rdev->flags)
2962 || test_bit(R5_ReadError, &dev->flags)) {
2963 if (s.failed < 2)
2964 r6s.failed_num[s.failed] = i;
2965 s.failed++;
2966 } else
2967 set_bit(R5_Insync, &dev->flags);
2968 }
2969 rcu_read_unlock();
2970 pr_debug("locked=%d uptodate=%d to_read=%d"
2971 " to_write=%d failed=%d failed_num=%d,%d\n",
2972 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2973 r6s.failed_num[0], r6s.failed_num[1]);
2974 /* check if the array has lost >2 devices and, if so, some requests
2975 * might need to be failed
2976 */
2977 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2978 handle_requests_to_failed_array(conf, sh, &s, disks,
2979 &return_bi);
2980 if (s.failed > 2 && s.syncing) {
2981 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2982 clear_bit(STRIPE_SYNCING, &sh->state);
2983 s.syncing = 0;
2984 }
2985
2986 /*
2987 * might be able to return some write requests if the parity blocks
2988 * are safe, or on a failed drive
2989 */
2990 pdev = &sh->dev[pd_idx];
2991 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2992 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2993 qdev = &sh->dev[r6s.qd_idx];
2994 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2995 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2996
2997 if ( s.written &&
2998 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2999 && !test_bit(R5_LOCKED, &pdev->flags)
3000 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3001 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3002 && !test_bit(R5_LOCKED, &qdev->flags)
3003 && test_bit(R5_UPTODATE, &qdev->flags)))))
3004 handle_completed_write_requests(conf, sh, disks, &return_bi);
3005
3006 /* Now we might consider reading some blocks, either to check/generate
3007 * parity, or to satisfy requests
3008 * or to load a block that is being partially written.
3009 */
3010 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3011 (s.syncing && (s.uptodate < disks)) || s.expanding)
3012 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3013
3014 /* now to consider writing and what else, if anything should be read */
3015 if (s.to_write)
3016 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3017
3018 /* maybe we need to check and possibly fix the parity for this stripe
3019 * Any reads will already have been scheduled, so we just see if enough
3020 * data is available
3021 */
3022 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3023 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3024
3025 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3026 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3027 clear_bit(STRIPE_SYNCING, &sh->state);
3028 }
3029
3030 /* If the failed drives are just a ReadError, then we might need
3031 * to progress the repair/check process
3032 */
3033 if (s.failed <= 2 && !conf->mddev->ro)
3034 for (i = 0; i < s.failed; i++) {
3035 dev = &sh->dev[r6s.failed_num[i]];
3036 if (test_bit(R5_ReadError, &dev->flags)
3037 && !test_bit(R5_LOCKED, &dev->flags)
3038 && test_bit(R5_UPTODATE, &dev->flags)
3039 ) {
3040 if (!test_bit(R5_ReWrite, &dev->flags)) {
3041 set_bit(R5_Wantwrite, &dev->flags);
3042 set_bit(R5_ReWrite, &dev->flags);
3043 set_bit(R5_LOCKED, &dev->flags);
3044 } else {
3045 /* let's read it back */
3046 set_bit(R5_Wantread, &dev->flags);
3047 set_bit(R5_LOCKED, &dev->flags);
3048 }
3049 }
3050 }
3051
3052 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3053 /* Need to write out all blocks after computing P&Q */
3054 sh->disks = conf->raid_disks;
3055 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3056 conf->raid_disks);
3057 compute_parity6(sh, RECONSTRUCT_WRITE);
3058 for (i = conf->raid_disks ; i-- ; ) {
3059 set_bit(R5_LOCKED, &sh->dev[i].flags);
3060 s.locked++;
3061 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3062 }
3063 clear_bit(STRIPE_EXPANDING, &sh->state);
3064 } else if (s.expanded) {
3065 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3066 atomic_dec(&conf->reshape_stripes);
3067 wake_up(&conf->wait_for_overlap);
3068 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3069 }
3070
3071 if (s.expanding && s.locked == 0 &&
3072 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3073 handle_stripe_expansion(conf, sh, &r6s);
3074
3075 spin_unlock(&sh->lock);
3076
3077 return_io(return_bi);
3078
3079 for (i=disks; i-- ;) {
3080 int rw;
3081 struct bio *bi;
3082 mdk_rdev_t *rdev;
3083 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3084 rw = WRITE;
3085 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3086 rw = READ;
3087 else
3088 continue;
3089
3090 bi = &sh->dev[i].req;
3091
3092 bi->bi_rw = rw;
3093 if (rw == WRITE)
3094 bi->bi_end_io = raid5_end_write_request;
3095 else
3096 bi->bi_end_io = raid5_end_read_request;
3097
3098 rcu_read_lock();
3099 rdev = rcu_dereference(conf->disks[i].rdev);
3100 if (rdev && test_bit(Faulty, &rdev->flags))
3101 rdev = NULL;
3102 if (rdev)
3103 atomic_inc(&rdev->nr_pending);
3104 rcu_read_unlock();
3105
3106 if (rdev) {
3107 if (s.syncing || s.expanding || s.expanded)
3108 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3109
3110 bi->bi_bdev = rdev->bdev;
3111 pr_debug("for %llu schedule op %ld on disc %d\n",
3112 (unsigned long long)sh->sector, bi->bi_rw, i);
3113 atomic_inc(&sh->count);
3114 bi->bi_sector = sh->sector + rdev->data_offset;
3115 bi->bi_flags = 1 << BIO_UPTODATE;
3116 bi->bi_vcnt = 1;
3117 bi->bi_max_vecs = 1;
3118 bi->bi_idx = 0;
3119 bi->bi_io_vec = &sh->dev[i].vec;
3120 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3121 bi->bi_io_vec[0].bv_offset = 0;
3122 bi->bi_size = STRIPE_SIZE;
3123 bi->bi_next = NULL;
3124 if (rw == WRITE &&
3125 test_bit(R5_ReWrite, &sh->dev[i].flags))
3126 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3127 generic_make_request(bi);
3128 } else {
3129 if (rw == WRITE)
3130 set_bit(STRIPE_DEGRADED, &sh->state);
3131 pr_debug("skip op %ld on disc %d for sector %llu\n",
3132 bi->bi_rw, i, (unsigned long long)sh->sector);
3133 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3134 set_bit(STRIPE_HANDLE, &sh->state);
3135 }
3136 }
3137 }
3138
3139 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3140 {
3141 if (sh->raid_conf->level == 6)
3142 handle_stripe6(sh, tmp_page);
3143 else
3144 handle_stripe5(sh);
3145 }
3146
3147
3148
3149 static void raid5_activate_delayed(raid5_conf_t *conf)
3150 {
3151 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3152 while (!list_empty(&conf->delayed_list)) {
3153 struct list_head *l = conf->delayed_list.next;
3154 struct stripe_head *sh;
3155 sh = list_entry(l, struct stripe_head, lru);
3156 list_del_init(l);
3157 clear_bit(STRIPE_DELAYED, &sh->state);
3158 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3159 atomic_inc(&conf->preread_active_stripes);
3160 list_add_tail(&sh->lru, &conf->handle_list);
3161 }
3162 }
3163 }
3164
3165 static void activate_bit_delay(raid5_conf_t *conf)
3166 {
3167 /* device_lock is held */
3168 struct list_head head;
3169 list_add(&head, &conf->bitmap_list);
3170 list_del_init(&conf->bitmap_list);
3171 while (!list_empty(&head)) {
3172 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3173 list_del_init(&sh->lru);
3174 atomic_inc(&sh->count);
3175 __release_stripe(conf, sh);
3176 }
3177 }
3178
3179 static void unplug_slaves(mddev_t *mddev)
3180 {
3181 raid5_conf_t *conf = mddev_to_conf(mddev);
3182 int i;
3183
3184 rcu_read_lock();
3185 for (i=0; i<mddev->raid_disks; i++) {
3186 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3187 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3188 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3189
3190 atomic_inc(&rdev->nr_pending);
3191 rcu_read_unlock();
3192
3193 blk_unplug(r_queue);
3194
3195 rdev_dec_pending(rdev, mddev);
3196 rcu_read_lock();
3197 }
3198 }
3199 rcu_read_unlock();
3200 }
3201
3202 static void raid5_unplug_device(struct request_queue *q)
3203 {
3204 mddev_t *mddev = q->queuedata;
3205 raid5_conf_t *conf = mddev_to_conf(mddev);
3206 unsigned long flags;
3207
3208 spin_lock_irqsave(&conf->device_lock, flags);
3209
3210 if (blk_remove_plug(q)) {
3211 conf->seq_flush++;
3212 raid5_activate_delayed(conf);
3213 }
3214 md_wakeup_thread(mddev->thread);
3215
3216 spin_unlock_irqrestore(&conf->device_lock, flags);
3217
3218 unplug_slaves(mddev);
3219 }
3220
3221 static int raid5_congested(void *data, int bits)
3222 {
3223 mddev_t *mddev = data;
3224 raid5_conf_t *conf = mddev_to_conf(mddev);
3225
3226 /* No difference between reads and writes. Just check
3227 * how busy the stripe_cache is
3228 */
3229 if (conf->inactive_blocked)
3230 return 1;
3231 if (conf->quiesce)
3232 return 1;
3233 if (list_empty_careful(&conf->inactive_list))
3234 return 1;
3235
3236 return 0;
3237 }
3238
3239 /* We want read requests to align with chunks where possible,
3240 * but write requests don't need to.
3241 */
3242 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3243 {
3244 mddev_t *mddev = q->queuedata;
3245 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3246 int max;
3247 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3248 unsigned int bio_sectors = bio->bi_size >> 9;
3249
3250 if (bio_data_dir(bio) == WRITE)
3251 return biovec->bv_len; /* always allow writes to be mergeable */
3252
3253 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3254 if (max < 0) max = 0;
3255 if (max <= biovec->bv_len && bio_sectors == 0)
3256 return biovec->bv_len;
3257 else
3258 return max;
3259 }
3260
3261
3262 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3263 {
3264 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3265 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3266 unsigned int bio_sectors = bio->bi_size >> 9;
3267
3268 return chunk_sectors >=
3269 ((sector & (chunk_sectors - 1)) + bio_sectors);
3270 }
3271
3272 /*
3273 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3274 * later sampled by raid5d.
3275 */
3276 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3277 {
3278 unsigned long flags;
3279
3280 spin_lock_irqsave(&conf->device_lock, flags);
3281
3282 bi->bi_next = conf->retry_read_aligned_list;
3283 conf->retry_read_aligned_list = bi;
3284
3285 spin_unlock_irqrestore(&conf->device_lock, flags);
3286 md_wakeup_thread(conf->mddev->thread);
3287 }
3288
3289
3290 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3291 {
3292 struct bio *bi;
3293
3294 bi = conf->retry_read_aligned;
3295 if (bi) {
3296 conf->retry_read_aligned = NULL;
3297 return bi;
3298 }
3299 bi = conf->retry_read_aligned_list;
3300 if(bi) {
3301 conf->retry_read_aligned_list = bi->bi_next;
3302 bi->bi_next = NULL;
3303 bi->bi_phys_segments = 1; /* biased count of active stripes */
3304 bi->bi_hw_segments = 0; /* count of processed stripes */
3305 }
3306
3307 return bi;
3308 }
3309
3310
3311 /*
3312 * The "raid5_align_endio" should check if the read succeeded and if it
3313 * did, call bio_endio on the original bio (having bio_put the new bio
3314 * first).
3315 * If the read failed..
3316 */
3317 static void raid5_align_endio(struct bio *bi, int error)
3318 {
3319 struct bio* raid_bi = bi->bi_private;
3320 mddev_t *mddev;
3321 raid5_conf_t *conf;
3322 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3323 mdk_rdev_t *rdev;
3324
3325 bio_put(bi);
3326
3327 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3328 conf = mddev_to_conf(mddev);
3329 rdev = (void*)raid_bi->bi_next;
3330 raid_bi->bi_next = NULL;
3331
3332 rdev_dec_pending(rdev, conf->mddev);
3333
3334 if (!error && uptodate) {
3335 bio_endio(raid_bi, 0);
3336 if (atomic_dec_and_test(&conf->active_aligned_reads))
3337 wake_up(&conf->wait_for_stripe);
3338 return;
3339 }
3340
3341
3342 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3343
3344 add_bio_to_retry(raid_bi, conf);
3345 }
3346
3347 static int bio_fits_rdev(struct bio *bi)
3348 {
3349 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3350
3351 if ((bi->bi_size>>9) > q->max_sectors)
3352 return 0;
3353 blk_recount_segments(q, bi);
3354 if (bi->bi_phys_segments > q->max_phys_segments ||
3355 bi->bi_hw_segments > q->max_hw_segments)
3356 return 0;
3357
3358 if (q->merge_bvec_fn)
3359 /* it's too hard to apply the merge_bvec_fn at this stage,
3360 * just just give up
3361 */
3362 return 0;
3363
3364 return 1;
3365 }
3366
3367
3368 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3369 {
3370 mddev_t *mddev = q->queuedata;
3371 raid5_conf_t *conf = mddev_to_conf(mddev);
3372 const unsigned int raid_disks = conf->raid_disks;
3373 const unsigned int data_disks = raid_disks - conf->max_degraded;
3374 unsigned int dd_idx, pd_idx;
3375 struct bio* align_bi;
3376 mdk_rdev_t *rdev;
3377
3378 if (!in_chunk_boundary(mddev, raid_bio)) {
3379 pr_debug("chunk_aligned_read : non aligned\n");
3380 return 0;
3381 }
3382 /*
3383 * use bio_clone to make a copy of the bio
3384 */
3385 align_bi = bio_clone(raid_bio, GFP_NOIO);
3386 if (!align_bi)
3387 return 0;
3388 /*
3389 * set bi_end_io to a new function, and set bi_private to the
3390 * original bio.
3391 */
3392 align_bi->bi_end_io = raid5_align_endio;
3393 align_bi->bi_private = raid_bio;
3394 /*
3395 * compute position
3396 */
3397 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3398 raid_disks,
3399 data_disks,
3400 &dd_idx,
3401 &pd_idx,
3402 conf);
3403
3404 rcu_read_lock();
3405 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3406 if (rdev && test_bit(In_sync, &rdev->flags)) {
3407 atomic_inc(&rdev->nr_pending);
3408 rcu_read_unlock();
3409 raid_bio->bi_next = (void*)rdev;
3410 align_bi->bi_bdev = rdev->bdev;
3411 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3412 align_bi->bi_sector += rdev->data_offset;
3413
3414 if (!bio_fits_rdev(align_bi)) {
3415 /* too big in some way */
3416 bio_put(align_bi);
3417 rdev_dec_pending(rdev, mddev);
3418 return 0;
3419 }
3420
3421 spin_lock_irq(&conf->device_lock);
3422 wait_event_lock_irq(conf->wait_for_stripe,
3423 conf->quiesce == 0,
3424 conf->device_lock, /* nothing */);
3425 atomic_inc(&conf->active_aligned_reads);
3426 spin_unlock_irq(&conf->device_lock);
3427
3428 generic_make_request(align_bi);
3429 return 1;
3430 } else {
3431 rcu_read_unlock();
3432 bio_put(align_bi);
3433 return 0;
3434 }
3435 }
3436
3437
3438 static int make_request(struct request_queue *q, struct bio * bi)
3439 {
3440 mddev_t *mddev = q->queuedata;
3441 raid5_conf_t *conf = mddev_to_conf(mddev);
3442 unsigned int dd_idx, pd_idx;
3443 sector_t new_sector;
3444 sector_t logical_sector, last_sector;
3445 struct stripe_head *sh;
3446 const int rw = bio_data_dir(bi);
3447 int remaining;
3448
3449 if (unlikely(bio_barrier(bi))) {
3450 bio_endio(bi, -EOPNOTSUPP);
3451 return 0;
3452 }
3453
3454 md_write_start(mddev, bi);
3455
3456 disk_stat_inc(mddev->gendisk, ios[rw]);
3457 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3458
3459 if (rw == READ &&
3460 mddev->reshape_position == MaxSector &&
3461 chunk_aligned_read(q,bi))
3462 return 0;
3463
3464 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3465 last_sector = bi->bi_sector + (bi->bi_size>>9);
3466 bi->bi_next = NULL;
3467 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3468
3469 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3470 DEFINE_WAIT(w);
3471 int disks, data_disks;
3472
3473 retry:
3474 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3475 if (likely(conf->expand_progress == MaxSector))
3476 disks = conf->raid_disks;
3477 else {
3478 /* spinlock is needed as expand_progress may be
3479 * 64bit on a 32bit platform, and so it might be
3480 * possible to see a half-updated value
3481 * Ofcourse expand_progress could change after
3482 * the lock is dropped, so once we get a reference
3483 * to the stripe that we think it is, we will have
3484 * to check again.
3485 */
3486 spin_lock_irq(&conf->device_lock);
3487 disks = conf->raid_disks;
3488 if (logical_sector >= conf->expand_progress)
3489 disks = conf->previous_raid_disks;
3490 else {
3491 if (logical_sector >= conf->expand_lo) {
3492 spin_unlock_irq(&conf->device_lock);
3493 schedule();
3494 goto retry;
3495 }
3496 }
3497 spin_unlock_irq(&conf->device_lock);
3498 }
3499 data_disks = disks - conf->max_degraded;
3500
3501 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3502 &dd_idx, &pd_idx, conf);
3503 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3504 (unsigned long long)new_sector,
3505 (unsigned long long)logical_sector);
3506
3507 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3508 if (sh) {
3509 if (unlikely(conf->expand_progress != MaxSector)) {
3510 /* expansion might have moved on while waiting for a
3511 * stripe, so we must do the range check again.
3512 * Expansion could still move past after this
3513 * test, but as we are holding a reference to
3514 * 'sh', we know that if that happens,
3515 * STRIPE_EXPANDING will get set and the expansion
3516 * won't proceed until we finish with the stripe.
3517 */
3518 int must_retry = 0;
3519 spin_lock_irq(&conf->device_lock);
3520 if (logical_sector < conf->expand_progress &&
3521 disks == conf->previous_raid_disks)
3522 /* mismatch, need to try again */
3523 must_retry = 1;
3524 spin_unlock_irq(&conf->device_lock);
3525 if (must_retry) {
3526 release_stripe(sh);
3527 goto retry;
3528 }
3529 }
3530 /* FIXME what if we get a false positive because these
3531 * are being updated.
3532 */
3533 if (logical_sector >= mddev->suspend_lo &&
3534 logical_sector < mddev->suspend_hi) {
3535 release_stripe(sh);
3536 schedule();
3537 goto retry;
3538 }
3539
3540 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3541 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3542 /* Stripe is busy expanding or
3543 * add failed due to overlap. Flush everything
3544 * and wait a while
3545 */
3546 raid5_unplug_device(mddev->queue);
3547 release_stripe(sh);
3548 schedule();
3549 goto retry;
3550 }
3551 finish_wait(&conf->wait_for_overlap, &w);
3552 handle_stripe(sh, NULL);
3553 release_stripe(sh);
3554 } else {
3555 /* cannot get stripe for read-ahead, just give-up */
3556 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3557 finish_wait(&conf->wait_for_overlap, &w);
3558 break;
3559 }
3560
3561 }
3562 spin_lock_irq(&conf->device_lock);
3563 remaining = --bi->bi_phys_segments;
3564 spin_unlock_irq(&conf->device_lock);
3565 if (remaining == 0) {
3566
3567 if ( rw == WRITE )
3568 md_write_end(mddev);
3569
3570 bi->bi_end_io(bi,
3571 test_bit(BIO_UPTODATE, &bi->bi_flags)
3572 ? 0 : -EIO);
3573 }
3574 return 0;
3575 }
3576
3577 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3578 {
3579 /* reshaping is quite different to recovery/resync so it is
3580 * handled quite separately ... here.
3581 *
3582 * On each call to sync_request, we gather one chunk worth of
3583 * destination stripes and flag them as expanding.
3584 * Then we find all the source stripes and request reads.
3585 * As the reads complete, handle_stripe will copy the data
3586 * into the destination stripe and release that stripe.
3587 */
3588 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3589 struct stripe_head *sh;
3590 int pd_idx;
3591 sector_t first_sector, last_sector;
3592 int raid_disks = conf->previous_raid_disks;
3593 int data_disks = raid_disks - conf->max_degraded;
3594 int new_data_disks = conf->raid_disks - conf->max_degraded;
3595 int i;
3596 int dd_idx;
3597 sector_t writepos, safepos, gap;
3598
3599 if (sector_nr == 0 &&
3600 conf->expand_progress != 0) {
3601 /* restarting in the middle, skip the initial sectors */
3602 sector_nr = conf->expand_progress;
3603 sector_div(sector_nr, new_data_disks);
3604 *skipped = 1;
3605 return sector_nr;
3606 }
3607
3608 /* we update the metadata when there is more than 3Meg
3609 * in the block range (that is rather arbitrary, should
3610 * probably be time based) or when the data about to be
3611 * copied would over-write the source of the data at
3612 * the front of the range.
3613 * i.e. one new_stripe forward from expand_progress new_maps
3614 * to after where expand_lo old_maps to
3615 */
3616 writepos = conf->expand_progress +
3617 conf->chunk_size/512*(new_data_disks);
3618 sector_div(writepos, new_data_disks);
3619 safepos = conf->expand_lo;
3620 sector_div(safepos, data_disks);
3621 gap = conf->expand_progress - conf->expand_lo;
3622
3623 if (writepos >= safepos ||
3624 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3625 /* Cannot proceed until we've updated the superblock... */
3626 wait_event(conf->wait_for_overlap,
3627 atomic_read(&conf->reshape_stripes)==0);
3628 mddev->reshape_position = conf->expand_progress;
3629 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3630 md_wakeup_thread(mddev->thread);
3631 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3632 kthread_should_stop());
3633 spin_lock_irq(&conf->device_lock);
3634 conf->expand_lo = mddev->reshape_position;
3635 spin_unlock_irq(&conf->device_lock);
3636 wake_up(&conf->wait_for_overlap);
3637 }
3638
3639 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3640 int j;
3641 int skipped = 0;
3642 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3643 sh = get_active_stripe(conf, sector_nr+i,
3644 conf->raid_disks, pd_idx, 0);
3645 set_bit(STRIPE_EXPANDING, &sh->state);
3646 atomic_inc(&conf->reshape_stripes);
3647 /* If any of this stripe is beyond the end of the old
3648 * array, then we need to zero those blocks
3649 */
3650 for (j=sh->disks; j--;) {
3651 sector_t s;
3652 if (j == sh->pd_idx)
3653 continue;
3654 if (conf->level == 6 &&
3655 j == raid6_next_disk(sh->pd_idx, sh->disks))
3656 continue;
3657 s = compute_blocknr(sh, j);
3658 if (s < (mddev->array_size<<1)) {
3659 skipped = 1;
3660 continue;
3661 }
3662 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3663 set_bit(R5_Expanded, &sh->dev[j].flags);
3664 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3665 }
3666 if (!skipped) {
3667 set_bit(STRIPE_EXPAND_READY, &sh->state);
3668 set_bit(STRIPE_HANDLE, &sh->state);
3669 }
3670 release_stripe(sh);
3671 }
3672 spin_lock_irq(&conf->device_lock);
3673 conf->expand_progress = (sector_nr + i) * new_data_disks;
3674 spin_unlock_irq(&conf->device_lock);
3675 /* Ok, those stripe are ready. We can start scheduling
3676 * reads on the source stripes.
3677 * The source stripes are determined by mapping the first and last
3678 * block on the destination stripes.
3679 */
3680 first_sector =
3681 raid5_compute_sector(sector_nr*(new_data_disks),
3682 raid_disks, data_disks,
3683 &dd_idx, &pd_idx, conf);
3684 last_sector =
3685 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3686 *(new_data_disks) -1,
3687 raid_disks, data_disks,
3688 &dd_idx, &pd_idx, conf);
3689 if (last_sector >= (mddev->size<<1))
3690 last_sector = (mddev->size<<1)-1;
3691 while (first_sector <= last_sector) {
3692 pd_idx = stripe_to_pdidx(first_sector, conf,
3693 conf->previous_raid_disks);
3694 sh = get_active_stripe(conf, first_sector,
3695 conf->previous_raid_disks, pd_idx, 0);
3696 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3697 set_bit(STRIPE_HANDLE, &sh->state);
3698 release_stripe(sh);
3699 first_sector += STRIPE_SECTORS;
3700 }
3701 /* If this takes us to the resync_max point where we have to pause,
3702 * then we need to write out the superblock.
3703 */
3704 sector_nr += conf->chunk_size>>9;
3705 if (sector_nr >= mddev->resync_max) {
3706 /* Cannot proceed until we've updated the superblock... */
3707 wait_event(conf->wait_for_overlap,
3708 atomic_read(&conf->reshape_stripes) == 0);
3709 mddev->reshape_position = conf->expand_progress;
3710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3711 md_wakeup_thread(mddev->thread);
3712 wait_event(mddev->sb_wait,
3713 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3714 || kthread_should_stop());
3715 spin_lock_irq(&conf->device_lock);
3716 conf->expand_lo = mddev->reshape_position;
3717 spin_unlock_irq(&conf->device_lock);
3718 wake_up(&conf->wait_for_overlap);
3719 }
3720 return conf->chunk_size>>9;
3721 }
3722
3723 /* FIXME go_faster isn't used */
3724 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3725 {
3726 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3727 struct stripe_head *sh;
3728 int pd_idx;
3729 int raid_disks = conf->raid_disks;
3730 sector_t max_sector = mddev->size << 1;
3731 int sync_blocks;
3732 int still_degraded = 0;
3733 int i;
3734
3735 if (sector_nr >= max_sector) {
3736 /* just being told to finish up .. nothing much to do */
3737 unplug_slaves(mddev);
3738 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3739 end_reshape(conf);
3740 return 0;
3741 }
3742
3743 if (mddev->curr_resync < max_sector) /* aborted */
3744 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3745 &sync_blocks, 1);
3746 else /* completed sync */
3747 conf->fullsync = 0;
3748 bitmap_close_sync(mddev->bitmap);
3749
3750 return 0;
3751 }
3752
3753 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3754 return reshape_request(mddev, sector_nr, skipped);
3755
3756 /* No need to check resync_max as we never do more than one
3757 * stripe, and as resync_max will always be on a chunk boundary,
3758 * if the check in md_do_sync didn't fire, there is no chance
3759 * of overstepping resync_max here
3760 */
3761
3762 /* if there is too many failed drives and we are trying
3763 * to resync, then assert that we are finished, because there is
3764 * nothing we can do.
3765 */
3766 if (mddev->degraded >= conf->max_degraded &&
3767 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3768 sector_t rv = (mddev->size << 1) - sector_nr;
3769 *skipped = 1;
3770 return rv;
3771 }
3772 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3773 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3774 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3775 /* we can skip this block, and probably more */
3776 sync_blocks /= STRIPE_SECTORS;
3777 *skipped = 1;
3778 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3779 }
3780
3781
3782 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3783
3784 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3785 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3786 if (sh == NULL) {
3787 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3788 /* make sure we don't swamp the stripe cache if someone else
3789 * is trying to get access
3790 */
3791 schedule_timeout_uninterruptible(1);
3792 }
3793 /* Need to check if array will still be degraded after recovery/resync
3794 * We don't need to check the 'failed' flag as when that gets set,
3795 * recovery aborts.
3796 */
3797 for (i=0; i<mddev->raid_disks; i++)
3798 if (conf->disks[i].rdev == NULL)
3799 still_degraded = 1;
3800
3801 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3802
3803 spin_lock(&sh->lock);
3804 set_bit(STRIPE_SYNCING, &sh->state);
3805 clear_bit(STRIPE_INSYNC, &sh->state);
3806 spin_unlock(&sh->lock);
3807
3808 handle_stripe(sh, NULL);
3809 release_stripe(sh);
3810
3811 return STRIPE_SECTORS;
3812 }
3813
3814 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3815 {
3816 /* We may not be able to submit a whole bio at once as there
3817 * may not be enough stripe_heads available.
3818 * We cannot pre-allocate enough stripe_heads as we may need
3819 * more than exist in the cache (if we allow ever large chunks).
3820 * So we do one stripe head at a time and record in
3821 * ->bi_hw_segments how many have been done.
3822 *
3823 * We *know* that this entire raid_bio is in one chunk, so
3824 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3825 */
3826 struct stripe_head *sh;
3827 int dd_idx, pd_idx;
3828 sector_t sector, logical_sector, last_sector;
3829 int scnt = 0;
3830 int remaining;
3831 int handled = 0;
3832
3833 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3834 sector = raid5_compute_sector( logical_sector,
3835 conf->raid_disks,
3836 conf->raid_disks - conf->max_degraded,
3837 &dd_idx,
3838 &pd_idx,
3839 conf);
3840 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3841
3842 for (; logical_sector < last_sector;
3843 logical_sector += STRIPE_SECTORS,
3844 sector += STRIPE_SECTORS,
3845 scnt++) {
3846
3847 if (scnt < raid_bio->bi_hw_segments)
3848 /* already done this stripe */
3849 continue;
3850
3851 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3852
3853 if (!sh) {
3854 /* failed to get a stripe - must wait */
3855 raid_bio->bi_hw_segments = scnt;
3856 conf->retry_read_aligned = raid_bio;
3857 return handled;
3858 }
3859
3860 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3861 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3862 release_stripe(sh);
3863 raid_bio->bi_hw_segments = scnt;
3864 conf->retry_read_aligned = raid_bio;
3865 return handled;
3866 }
3867
3868 handle_stripe(sh, NULL);
3869 release_stripe(sh);
3870 handled++;
3871 }
3872 spin_lock_irq(&conf->device_lock);
3873 remaining = --raid_bio->bi_phys_segments;
3874 spin_unlock_irq(&conf->device_lock);
3875 if (remaining == 0) {
3876
3877 raid_bio->bi_end_io(raid_bio,
3878 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3879 ? 0 : -EIO);
3880 }
3881 if (atomic_dec_and_test(&conf->active_aligned_reads))
3882 wake_up(&conf->wait_for_stripe);
3883 return handled;
3884 }
3885
3886
3887
3888 /*
3889 * This is our raid5 kernel thread.
3890 *
3891 * We scan the hash table for stripes which can be handled now.
3892 * During the scan, completed stripes are saved for us by the interrupt
3893 * handler, so that they will not have to wait for our next wakeup.
3894 */
3895 static void raid5d (mddev_t *mddev)
3896 {
3897 struct stripe_head *sh;
3898 raid5_conf_t *conf = mddev_to_conf(mddev);
3899 int handled;
3900
3901 pr_debug("+++ raid5d active\n");
3902
3903 md_check_recovery(mddev);
3904
3905 handled = 0;
3906 spin_lock_irq(&conf->device_lock);
3907 while (1) {
3908 struct list_head *first;
3909 struct bio *bio;
3910
3911 if (conf->seq_flush != conf->seq_write) {
3912 int seq = conf->seq_flush;
3913 spin_unlock_irq(&conf->device_lock);
3914 bitmap_unplug(mddev->bitmap);
3915 spin_lock_irq(&conf->device_lock);
3916 conf->seq_write = seq;
3917 activate_bit_delay(conf);
3918 }
3919
3920 if (list_empty(&conf->handle_list) &&
3921 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3922 !blk_queue_plugged(mddev->queue) &&
3923 !list_empty(&conf->delayed_list))
3924 raid5_activate_delayed(conf);
3925
3926 while ((bio = remove_bio_from_retry(conf))) {
3927 int ok;
3928 spin_unlock_irq(&conf->device_lock);
3929 ok = retry_aligned_read(conf, bio);
3930 spin_lock_irq(&conf->device_lock);
3931 if (!ok)
3932 break;
3933 handled++;
3934 }
3935
3936 if (list_empty(&conf->handle_list)) {
3937 async_tx_issue_pending_all();
3938 break;
3939 }
3940
3941 first = conf->handle_list.next;
3942 sh = list_entry(first, struct stripe_head, lru);
3943
3944 list_del_init(first);
3945 atomic_inc(&sh->count);
3946 BUG_ON(atomic_read(&sh->count)!= 1);
3947 spin_unlock_irq(&conf->device_lock);
3948
3949 handled++;
3950 handle_stripe(sh, conf->spare_page);
3951 release_stripe(sh);
3952
3953 spin_lock_irq(&conf->device_lock);
3954 }
3955 pr_debug("%d stripes handled\n", handled);
3956
3957 spin_unlock_irq(&conf->device_lock);
3958
3959 unplug_slaves(mddev);
3960
3961 pr_debug("--- raid5d inactive\n");
3962 }
3963
3964 static ssize_t
3965 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3966 {
3967 raid5_conf_t *conf = mddev_to_conf(mddev);
3968 if (conf)
3969 return sprintf(page, "%d\n", conf->max_nr_stripes);
3970 else
3971 return 0;
3972 }
3973
3974 static ssize_t
3975 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3976 {
3977 raid5_conf_t *conf = mddev_to_conf(mddev);
3978 char *end;
3979 int new;
3980 if (len >= PAGE_SIZE)
3981 return -EINVAL;
3982 if (!conf)
3983 return -ENODEV;
3984
3985 new = simple_strtoul(page, &end, 10);
3986 if (!*page || (*end && *end != '\n') )
3987 return -EINVAL;
3988 if (new <= 16 || new > 32768)
3989 return -EINVAL;
3990 while (new < conf->max_nr_stripes) {
3991 if (drop_one_stripe(conf))
3992 conf->max_nr_stripes--;
3993 else
3994 break;
3995 }
3996 md_allow_write(mddev);
3997 while (new > conf->max_nr_stripes) {
3998 if (grow_one_stripe(conf))
3999 conf->max_nr_stripes++;
4000 else break;
4001 }
4002 return len;
4003 }
4004
4005 static struct md_sysfs_entry
4006 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4007 raid5_show_stripe_cache_size,
4008 raid5_store_stripe_cache_size);
4009
4010 static ssize_t
4011 stripe_cache_active_show(mddev_t *mddev, char *page)
4012 {
4013 raid5_conf_t *conf = mddev_to_conf(mddev);
4014 if (conf)
4015 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4016 else
4017 return 0;
4018 }
4019
4020 static struct md_sysfs_entry
4021 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4022
4023 static struct attribute *raid5_attrs[] = {
4024 &raid5_stripecache_size.attr,
4025 &raid5_stripecache_active.attr,
4026 NULL,
4027 };
4028 static struct attribute_group raid5_attrs_group = {
4029 .name = NULL,
4030 .attrs = raid5_attrs,
4031 };
4032
4033 static int run(mddev_t *mddev)
4034 {
4035 raid5_conf_t *conf;
4036 int raid_disk, memory;
4037 mdk_rdev_t *rdev;
4038 struct disk_info *disk;
4039 struct list_head *tmp;
4040 int working_disks = 0;
4041
4042 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4043 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4044 mdname(mddev), mddev->level);
4045 return -EIO;
4046 }
4047
4048 if (mddev->reshape_position != MaxSector) {
4049 /* Check that we can continue the reshape.
4050 * Currently only disks can change, it must
4051 * increase, and we must be past the point where
4052 * a stripe over-writes itself
4053 */
4054 sector_t here_new, here_old;
4055 int old_disks;
4056 int max_degraded = (mddev->level == 5 ? 1 : 2);
4057
4058 if (mddev->new_level != mddev->level ||
4059 mddev->new_layout != mddev->layout ||
4060 mddev->new_chunk != mddev->chunk_size) {
4061 printk(KERN_ERR "raid5: %s: unsupported reshape "
4062 "required - aborting.\n",
4063 mdname(mddev));
4064 return -EINVAL;
4065 }
4066 if (mddev->delta_disks <= 0) {
4067 printk(KERN_ERR "raid5: %s: unsupported reshape "
4068 "(reduce disks) required - aborting.\n",
4069 mdname(mddev));
4070 return -EINVAL;
4071 }
4072 old_disks = mddev->raid_disks - mddev->delta_disks;
4073 /* reshape_position must be on a new-stripe boundary, and one
4074 * further up in new geometry must map after here in old
4075 * geometry.
4076 */
4077 here_new = mddev->reshape_position;
4078 if (sector_div(here_new, (mddev->chunk_size>>9)*
4079 (mddev->raid_disks - max_degraded))) {
4080 printk(KERN_ERR "raid5: reshape_position not "
4081 "on a stripe boundary\n");
4082 return -EINVAL;
4083 }
4084 /* here_new is the stripe we will write to */
4085 here_old = mddev->reshape_position;
4086 sector_div(here_old, (mddev->chunk_size>>9)*
4087 (old_disks-max_degraded));
4088 /* here_old is the first stripe that we might need to read
4089 * from */
4090 if (here_new >= here_old) {
4091 /* Reading from the same stripe as writing to - bad */
4092 printk(KERN_ERR "raid5: reshape_position too early for "
4093 "auto-recovery - aborting.\n");
4094 return -EINVAL;
4095 }
4096 printk(KERN_INFO "raid5: reshape will continue\n");
4097 /* OK, we should be able to continue; */
4098 }
4099
4100
4101 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4102 if ((conf = mddev->private) == NULL)
4103 goto abort;
4104 if (mddev->reshape_position == MaxSector) {
4105 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4106 } else {
4107 conf->raid_disks = mddev->raid_disks;
4108 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4109 }
4110
4111 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4112 GFP_KERNEL);
4113 if (!conf->disks)
4114 goto abort;
4115
4116 conf->mddev = mddev;
4117
4118 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4119 goto abort;
4120
4121 if (mddev->level == 6) {
4122 conf->spare_page = alloc_page(GFP_KERNEL);
4123 if (!conf->spare_page)
4124 goto abort;
4125 }
4126 spin_lock_init(&conf->device_lock);
4127 init_waitqueue_head(&conf->wait_for_stripe);
4128 init_waitqueue_head(&conf->wait_for_overlap);
4129 INIT_LIST_HEAD(&conf->handle_list);
4130 INIT_LIST_HEAD(&conf->delayed_list);
4131 INIT_LIST_HEAD(&conf->bitmap_list);
4132 INIT_LIST_HEAD(&conf->inactive_list);
4133 atomic_set(&conf->active_stripes, 0);
4134 atomic_set(&conf->preread_active_stripes, 0);
4135 atomic_set(&conf->active_aligned_reads, 0);
4136
4137 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4138
4139 ITERATE_RDEV(mddev,rdev,tmp) {
4140 raid_disk = rdev->raid_disk;
4141 if (raid_disk >= conf->raid_disks
4142 || raid_disk < 0)
4143 continue;
4144 disk = conf->disks + raid_disk;
4145
4146 disk->rdev = rdev;
4147
4148 if (test_bit(In_sync, &rdev->flags)) {
4149 char b[BDEVNAME_SIZE];
4150 printk(KERN_INFO "raid5: device %s operational as raid"
4151 " disk %d\n", bdevname(rdev->bdev,b),
4152 raid_disk);
4153 working_disks++;
4154 }
4155 }
4156
4157 /*
4158 * 0 for a fully functional array, 1 or 2 for a degraded array.
4159 */
4160 mddev->degraded = conf->raid_disks - working_disks;
4161 conf->mddev = mddev;
4162 conf->chunk_size = mddev->chunk_size;
4163 conf->level = mddev->level;
4164 if (conf->level == 6)
4165 conf->max_degraded = 2;
4166 else
4167 conf->max_degraded = 1;
4168 conf->algorithm = mddev->layout;
4169 conf->max_nr_stripes = NR_STRIPES;
4170 conf->expand_progress = mddev->reshape_position;
4171
4172 /* device size must be a multiple of chunk size */
4173 mddev->size &= ~(mddev->chunk_size/1024 -1);
4174 mddev->resync_max_sectors = mddev->size << 1;
4175
4176 if (conf->level == 6 && conf->raid_disks < 4) {
4177 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4178 mdname(mddev), conf->raid_disks);
4179 goto abort;
4180 }
4181 if (!conf->chunk_size || conf->chunk_size % 4) {
4182 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4183 conf->chunk_size, mdname(mddev));
4184 goto abort;
4185 }
4186 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4187 printk(KERN_ERR
4188 "raid5: unsupported parity algorithm %d for %s\n",
4189 conf->algorithm, mdname(mddev));
4190 goto abort;
4191 }
4192 if (mddev->degraded > conf->max_degraded) {
4193 printk(KERN_ERR "raid5: not enough operational devices for %s"
4194 " (%d/%d failed)\n",
4195 mdname(mddev), mddev->degraded, conf->raid_disks);
4196 goto abort;
4197 }
4198
4199 if (mddev->degraded > 0 &&
4200 mddev->recovery_cp != MaxSector) {
4201 if (mddev->ok_start_degraded)
4202 printk(KERN_WARNING
4203 "raid5: starting dirty degraded array: %s"
4204 "- data corruption possible.\n",
4205 mdname(mddev));
4206 else {
4207 printk(KERN_ERR
4208 "raid5: cannot start dirty degraded array for %s\n",
4209 mdname(mddev));
4210 goto abort;
4211 }
4212 }
4213
4214 {
4215 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4216 if (!mddev->thread) {
4217 printk(KERN_ERR
4218 "raid5: couldn't allocate thread for %s\n",
4219 mdname(mddev));
4220 goto abort;
4221 }
4222 }
4223 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4224 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4225 if (grow_stripes(conf, conf->max_nr_stripes)) {
4226 printk(KERN_ERR
4227 "raid5: couldn't allocate %dkB for buffers\n", memory);
4228 shrink_stripes(conf);
4229 md_unregister_thread(mddev->thread);
4230 goto abort;
4231 } else
4232 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4233 memory, mdname(mddev));
4234
4235 if (mddev->degraded == 0)
4236 printk("raid5: raid level %d set %s active with %d out of %d"
4237 " devices, algorithm %d\n", conf->level, mdname(mddev),
4238 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4239 conf->algorithm);
4240 else
4241 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4242 " out of %d devices, algorithm %d\n", conf->level,
4243 mdname(mddev), mddev->raid_disks - mddev->degraded,
4244 mddev->raid_disks, conf->algorithm);
4245
4246 print_raid5_conf(conf);
4247
4248 if (conf->expand_progress != MaxSector) {
4249 printk("...ok start reshape thread\n");
4250 conf->expand_lo = conf->expand_progress;
4251 atomic_set(&conf->reshape_stripes, 0);
4252 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4253 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4254 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4255 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4256 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4257 "%s_reshape");
4258 }
4259
4260 /* read-ahead size must cover two whole stripes, which is
4261 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4262 */
4263 {
4264 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4265 int stripe = data_disks *
4266 (mddev->chunk_size / PAGE_SIZE);
4267 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4268 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4269 }
4270
4271 /* Ok, everything is just fine now */
4272 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4273 printk(KERN_WARNING
4274 "raid5: failed to create sysfs attributes for %s\n",
4275 mdname(mddev));
4276
4277 mddev->queue->unplug_fn = raid5_unplug_device;
4278 mddev->queue->backing_dev_info.congested_data = mddev;
4279 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4280
4281 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4282 conf->max_degraded);
4283
4284 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4285
4286 return 0;
4287 abort:
4288 if (conf) {
4289 print_raid5_conf(conf);
4290 safe_put_page(conf->spare_page);
4291 kfree(conf->disks);
4292 kfree(conf->stripe_hashtbl);
4293 kfree(conf);
4294 }
4295 mddev->private = NULL;
4296 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4297 return -EIO;
4298 }
4299
4300
4301
4302 static int stop(mddev_t *mddev)
4303 {
4304 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4305
4306 md_unregister_thread(mddev->thread);
4307 mddev->thread = NULL;
4308 shrink_stripes(conf);
4309 kfree(conf->stripe_hashtbl);
4310 mddev->queue->backing_dev_info.congested_fn = NULL;
4311 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4312 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4313 kfree(conf->disks);
4314 kfree(conf);
4315 mddev->private = NULL;
4316 return 0;
4317 }
4318
4319 #ifdef DEBUG
4320 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4321 {
4322 int i;
4323
4324 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4325 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4326 seq_printf(seq, "sh %llu, count %d.\n",
4327 (unsigned long long)sh->sector, atomic_read(&sh->count));
4328 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4329 for (i = 0; i < sh->disks; i++) {
4330 seq_printf(seq, "(cache%d: %p %ld) ",
4331 i, sh->dev[i].page, sh->dev[i].flags);
4332 }
4333 seq_printf(seq, "\n");
4334 }
4335
4336 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4337 {
4338 struct stripe_head *sh;
4339 struct hlist_node *hn;
4340 int i;
4341
4342 spin_lock_irq(&conf->device_lock);
4343 for (i = 0; i < NR_HASH; i++) {
4344 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4345 if (sh->raid_conf != conf)
4346 continue;
4347 print_sh(seq, sh);
4348 }
4349 }
4350 spin_unlock_irq(&conf->device_lock);
4351 }
4352 #endif
4353
4354 static void status (struct seq_file *seq, mddev_t *mddev)
4355 {
4356 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4357 int i;
4358
4359 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4360 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4361 for (i = 0; i < conf->raid_disks; i++)
4362 seq_printf (seq, "%s",
4363 conf->disks[i].rdev &&
4364 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4365 seq_printf (seq, "]");
4366 #ifdef DEBUG
4367 seq_printf (seq, "\n");
4368 printall(seq, conf);
4369 #endif
4370 }
4371
4372 static void print_raid5_conf (raid5_conf_t *conf)
4373 {
4374 int i;
4375 struct disk_info *tmp;
4376
4377 printk("RAID5 conf printout:\n");
4378 if (!conf) {
4379 printk("(conf==NULL)\n");
4380 return;
4381 }
4382 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4383 conf->raid_disks - conf->mddev->degraded);
4384
4385 for (i = 0; i < conf->raid_disks; i++) {
4386 char b[BDEVNAME_SIZE];
4387 tmp = conf->disks + i;
4388 if (tmp->rdev)
4389 printk(" disk %d, o:%d, dev:%s\n",
4390 i, !test_bit(Faulty, &tmp->rdev->flags),
4391 bdevname(tmp->rdev->bdev,b));
4392 }
4393 }
4394
4395 static int raid5_spare_active(mddev_t *mddev)
4396 {
4397 int i;
4398 raid5_conf_t *conf = mddev->private;
4399 struct disk_info *tmp;
4400
4401 for (i = 0; i < conf->raid_disks; i++) {
4402 tmp = conf->disks + i;
4403 if (tmp->rdev
4404 && !test_bit(Faulty, &tmp->rdev->flags)
4405 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4406 unsigned long flags;
4407 spin_lock_irqsave(&conf->device_lock, flags);
4408 mddev->degraded--;
4409 spin_unlock_irqrestore(&conf->device_lock, flags);
4410 }
4411 }
4412 print_raid5_conf(conf);
4413 return 0;
4414 }
4415
4416 static int raid5_remove_disk(mddev_t *mddev, int number)
4417 {
4418 raid5_conf_t *conf = mddev->private;
4419 int err = 0;
4420 mdk_rdev_t *rdev;
4421 struct disk_info *p = conf->disks + number;
4422
4423 print_raid5_conf(conf);
4424 rdev = p->rdev;
4425 if (rdev) {
4426 if (test_bit(In_sync, &rdev->flags) ||
4427 atomic_read(&rdev->nr_pending)) {
4428 err = -EBUSY;
4429 goto abort;
4430 }
4431 p->rdev = NULL;
4432 synchronize_rcu();
4433 if (atomic_read(&rdev->nr_pending)) {
4434 /* lost the race, try later */
4435 err = -EBUSY;
4436 p->rdev = rdev;
4437 }
4438 }
4439 abort:
4440
4441 print_raid5_conf(conf);
4442 return err;
4443 }
4444
4445 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4446 {
4447 raid5_conf_t *conf = mddev->private;
4448 int found = 0;
4449 int disk;
4450 struct disk_info *p;
4451
4452 if (mddev->degraded > conf->max_degraded)
4453 /* no point adding a device */
4454 return 0;
4455
4456 /*
4457 * find the disk ... but prefer rdev->saved_raid_disk
4458 * if possible.
4459 */
4460 if (rdev->saved_raid_disk >= 0 &&
4461 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4462 disk = rdev->saved_raid_disk;
4463 else
4464 disk = 0;
4465 for ( ; disk < conf->raid_disks; disk++)
4466 if ((p=conf->disks + disk)->rdev == NULL) {
4467 clear_bit(In_sync, &rdev->flags);
4468 rdev->raid_disk = disk;
4469 found = 1;
4470 if (rdev->saved_raid_disk != disk)
4471 conf->fullsync = 1;
4472 rcu_assign_pointer(p->rdev, rdev);
4473 break;
4474 }
4475 print_raid5_conf(conf);
4476 return found;
4477 }
4478
4479 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4480 {
4481 /* no resync is happening, and there is enough space
4482 * on all devices, so we can resize.
4483 * We need to make sure resync covers any new space.
4484 * If the array is shrinking we should possibly wait until
4485 * any io in the removed space completes, but it hardly seems
4486 * worth it.
4487 */
4488 raid5_conf_t *conf = mddev_to_conf(mddev);
4489
4490 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4491 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4492 set_capacity(mddev->gendisk, mddev->array_size << 1);
4493 mddev->changed = 1;
4494 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4495 mddev->recovery_cp = mddev->size << 1;
4496 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4497 }
4498 mddev->size = sectors /2;
4499 mddev->resync_max_sectors = sectors;
4500 return 0;
4501 }
4502
4503 #ifdef CONFIG_MD_RAID5_RESHAPE
4504 static int raid5_check_reshape(mddev_t *mddev)
4505 {
4506 raid5_conf_t *conf = mddev_to_conf(mddev);
4507 int err;
4508
4509 if (mddev->delta_disks < 0 ||
4510 mddev->new_level != mddev->level)
4511 return -EINVAL; /* Cannot shrink array or change level yet */
4512 if (mddev->delta_disks == 0)
4513 return 0; /* nothing to do */
4514
4515 /* Can only proceed if there are plenty of stripe_heads.
4516 * We need a minimum of one full stripe,, and for sensible progress
4517 * it is best to have about 4 times that.
4518 * If we require 4 times, then the default 256 4K stripe_heads will
4519 * allow for chunk sizes up to 256K, which is probably OK.
4520 * If the chunk size is greater, user-space should request more
4521 * stripe_heads first.
4522 */
4523 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4524 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4525 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4526 (mddev->chunk_size / STRIPE_SIZE)*4);
4527 return -ENOSPC;
4528 }
4529
4530 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4531 if (err)
4532 return err;
4533
4534 if (mddev->degraded > conf->max_degraded)
4535 return -EINVAL;
4536 /* looks like we might be able to manage this */
4537 return 0;
4538 }
4539
4540 static int raid5_start_reshape(mddev_t *mddev)
4541 {
4542 raid5_conf_t *conf = mddev_to_conf(mddev);
4543 mdk_rdev_t *rdev;
4544 struct list_head *rtmp;
4545 int spares = 0;
4546 int added_devices = 0;
4547 unsigned long flags;
4548
4549 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4550 return -EBUSY;
4551
4552 ITERATE_RDEV(mddev, rdev, rtmp)
4553 if (rdev->raid_disk < 0 &&
4554 !test_bit(Faulty, &rdev->flags))
4555 spares++;
4556
4557 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4558 /* Not enough devices even to make a degraded array
4559 * of that size
4560 */
4561 return -EINVAL;
4562
4563 atomic_set(&conf->reshape_stripes, 0);
4564 spin_lock_irq(&conf->device_lock);
4565 conf->previous_raid_disks = conf->raid_disks;
4566 conf->raid_disks += mddev->delta_disks;
4567 conf->expand_progress = 0;
4568 conf->expand_lo = 0;
4569 spin_unlock_irq(&conf->device_lock);
4570
4571 /* Add some new drives, as many as will fit.
4572 * We know there are enough to make the newly sized array work.
4573 */
4574 ITERATE_RDEV(mddev, rdev, rtmp)
4575 if (rdev->raid_disk < 0 &&
4576 !test_bit(Faulty, &rdev->flags)) {
4577 if (raid5_add_disk(mddev, rdev)) {
4578 char nm[20];
4579 set_bit(In_sync, &rdev->flags);
4580 added_devices++;
4581 rdev->recovery_offset = 0;
4582 sprintf(nm, "rd%d", rdev->raid_disk);
4583 if (sysfs_create_link(&mddev->kobj,
4584 &rdev->kobj, nm))
4585 printk(KERN_WARNING
4586 "raid5: failed to create "
4587 " link %s for %s\n",
4588 nm, mdname(mddev));
4589 } else
4590 break;
4591 }
4592
4593 spin_lock_irqsave(&conf->device_lock, flags);
4594 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4595 spin_unlock_irqrestore(&conf->device_lock, flags);
4596 mddev->raid_disks = conf->raid_disks;
4597 mddev->reshape_position = 0;
4598 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4599
4600 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4601 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4602 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4603 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4604 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4605 "%s_reshape");
4606 if (!mddev->sync_thread) {
4607 mddev->recovery = 0;
4608 spin_lock_irq(&conf->device_lock);
4609 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4610 conf->expand_progress = MaxSector;
4611 spin_unlock_irq(&conf->device_lock);
4612 return -EAGAIN;
4613 }
4614 md_wakeup_thread(mddev->sync_thread);
4615 md_new_event(mddev);
4616 return 0;
4617 }
4618 #endif
4619
4620 static void end_reshape(raid5_conf_t *conf)
4621 {
4622 struct block_device *bdev;
4623
4624 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4625 conf->mddev->array_size = conf->mddev->size *
4626 (conf->raid_disks - conf->max_degraded);
4627 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4628 conf->mddev->changed = 1;
4629
4630 bdev = bdget_disk(conf->mddev->gendisk, 0);
4631 if (bdev) {
4632 mutex_lock(&bdev->bd_inode->i_mutex);
4633 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4634 mutex_unlock(&bdev->bd_inode->i_mutex);
4635 bdput(bdev);
4636 }
4637 spin_lock_irq(&conf->device_lock);
4638 conf->expand_progress = MaxSector;
4639 spin_unlock_irq(&conf->device_lock);
4640 conf->mddev->reshape_position = MaxSector;
4641
4642 /* read-ahead size must cover two whole stripes, which is
4643 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4644 */
4645 {
4646 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4647 int stripe = data_disks *
4648 (conf->mddev->chunk_size / PAGE_SIZE);
4649 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4650 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4651 }
4652 }
4653 }
4654
4655 static void raid5_quiesce(mddev_t *mddev, int state)
4656 {
4657 raid5_conf_t *conf = mddev_to_conf(mddev);
4658
4659 switch(state) {
4660 case 2: /* resume for a suspend */
4661 wake_up(&conf->wait_for_overlap);
4662 break;
4663
4664 case 1: /* stop all writes */
4665 spin_lock_irq(&conf->device_lock);
4666 conf->quiesce = 1;
4667 wait_event_lock_irq(conf->wait_for_stripe,
4668 atomic_read(&conf->active_stripes) == 0 &&
4669 atomic_read(&conf->active_aligned_reads) == 0,
4670 conf->device_lock, /* nothing */);
4671 spin_unlock_irq(&conf->device_lock);
4672 break;
4673
4674 case 0: /* re-enable writes */
4675 spin_lock_irq(&conf->device_lock);
4676 conf->quiesce = 0;
4677 wake_up(&conf->wait_for_stripe);
4678 wake_up(&conf->wait_for_overlap);
4679 spin_unlock_irq(&conf->device_lock);
4680 break;
4681 }
4682 }
4683
4684 static struct mdk_personality raid6_personality =
4685 {
4686 .name = "raid6",
4687 .level = 6,
4688 .owner = THIS_MODULE,
4689 .make_request = make_request,
4690 .run = run,
4691 .stop = stop,
4692 .status = status,
4693 .error_handler = error,
4694 .hot_add_disk = raid5_add_disk,
4695 .hot_remove_disk= raid5_remove_disk,
4696 .spare_active = raid5_spare_active,
4697 .sync_request = sync_request,
4698 .resize = raid5_resize,
4699 #ifdef CONFIG_MD_RAID5_RESHAPE
4700 .check_reshape = raid5_check_reshape,
4701 .start_reshape = raid5_start_reshape,
4702 #endif
4703 .quiesce = raid5_quiesce,
4704 };
4705 static struct mdk_personality raid5_personality =
4706 {
4707 .name = "raid5",
4708 .level = 5,
4709 .owner = THIS_MODULE,
4710 .make_request = make_request,
4711 .run = run,
4712 .stop = stop,
4713 .status = status,
4714 .error_handler = error,
4715 .hot_add_disk = raid5_add_disk,
4716 .hot_remove_disk= raid5_remove_disk,
4717 .spare_active = raid5_spare_active,
4718 .sync_request = sync_request,
4719 .resize = raid5_resize,
4720 #ifdef CONFIG_MD_RAID5_RESHAPE
4721 .check_reshape = raid5_check_reshape,
4722 .start_reshape = raid5_start_reshape,
4723 #endif
4724 .quiesce = raid5_quiesce,
4725 };
4726
4727 static struct mdk_personality raid4_personality =
4728 {
4729 .name = "raid4",
4730 .level = 4,
4731 .owner = THIS_MODULE,
4732 .make_request = make_request,
4733 .run = run,
4734 .stop = stop,
4735 .status = status,
4736 .error_handler = error,
4737 .hot_add_disk = raid5_add_disk,
4738 .hot_remove_disk= raid5_remove_disk,
4739 .spare_active = raid5_spare_active,
4740 .sync_request = sync_request,
4741 .resize = raid5_resize,
4742 #ifdef CONFIG_MD_RAID5_RESHAPE
4743 .check_reshape = raid5_check_reshape,
4744 .start_reshape = raid5_start_reshape,
4745 #endif
4746 .quiesce = raid5_quiesce,
4747 };
4748
4749 static int __init raid5_init(void)
4750 {
4751 int e;
4752
4753 e = raid6_select_algo();
4754 if ( e )
4755 return e;
4756 register_md_personality(&raid6_personality);
4757 register_md_personality(&raid5_personality);
4758 register_md_personality(&raid4_personality);
4759 return 0;
4760 }
4761
4762 static void raid5_exit(void)
4763 {
4764 unregister_md_personality(&raid6_personality);
4765 unregister_md_personality(&raid5_personality);
4766 unregister_md_personality(&raid4_personality);
4767 }
4768
4769 module_init(raid5_init);
4770 module_exit(raid5_exit);
4771 MODULE_LICENSE("GPL");
4772 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4773 MODULE_ALIAS("md-raid5");
4774 MODULE_ALIAS("md-raid4");
4775 MODULE_ALIAS("md-level-5");
4776 MODULE_ALIAS("md-level-4");
4777 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4778 MODULE_ALIAS("md-raid6");
4779 MODULE_ALIAS("md-level-6");
4780
4781 /* This used to be two separate modules, they were: */
4782 MODULE_ALIAS("raid5");
4783 MODULE_ALIAS("raid6");