md/raid5: add simple plugging infrastructure.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60 * Stripe cache
61 */
62
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85 * The following can be used to debug the driver
86 */
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
160 {
161 int slot = *count;
162
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176 struct bio *bi = return_bi;
177 while (bi) {
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
184 }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 plugger_set_plug(&conf->plug);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 sh->bm_seq - conf->seq_write > 0) {
207 list_add_tail(&sh->lru, &conf->bitmap_list);
208 plugger_set_plug(&conf->plug);
209 } else {
210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 list_add_tail(&sh->lru, &conf->handle_list);
212 }
213 md_wakeup_thread(conf->mddev->thread);
214 } else {
215 BUG_ON(stripe_operations_active(sh));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
220 }
221 atomic_dec(&conf->active_stripes);
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
224 wake_up(&conf->wait_for_stripe);
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
227 }
228 }
229 }
230 }
231
232 static void release_stripe(struct stripe_head *sh)
233 {
234 raid5_conf_t *conf = sh->raid_conf;
235 unsigned long flags;
236
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
246
247 hlist_del_init(&sh->hash);
248 }
249
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
253
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
256
257 CHECK_DEVLOCK();
258 hlist_add_head(&sh->hash, hp);
259 }
260
261
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
267
268 CHECK_DEVLOCK();
269 if (list_empty(&conf->inactive_list))
270 goto out;
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
274 remove_hash(sh);
275 atomic_inc(&conf->active_stripes);
276 out:
277 return sh;
278 }
279
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282 struct page *p;
283 int i;
284 int num = sh->raid_conf->pool_size;
285
286 for (i = 0; i < num ; i++) {
287 p = sh->dev[i].page;
288 if (!p)
289 continue;
290 sh->dev[i].page = NULL;
291 put_page(p);
292 }
293 }
294
295 static int grow_buffers(struct stripe_head *sh)
296 {
297 int i;
298 int num = sh->raid_conf->pool_size;
299
300 for (i = 0; i < num; i++) {
301 struct page *page;
302
303 if (!(page = alloc_page(GFP_KERNEL))) {
304 return 1;
305 }
306 sh->dev[i].page = page;
307 }
308 return 0;
309 }
310
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
314
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317 raid5_conf_t *conf = sh->raid_conf;
318 int i;
319
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 BUG_ON(stripe_operations_active(sh));
323
324 CHECK_DEVLOCK();
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh->sector);
327
328 remove_hash(sh);
329
330 sh->generation = conf->generation - previous;
331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 sh->sector = sector;
333 stripe_set_idx(sector, conf, previous, sh);
334 sh->state = 0;
335
336
337 for (i = sh->disks; i--; ) {
338 struct r5dev *dev = &sh->dev[i];
339
340 if (dev->toread || dev->read || dev->towrite || dev->written ||
341 test_bit(R5_LOCKED, &dev->flags)) {
342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh->sector, i, dev->toread,
344 dev->read, dev->towrite, dev->written,
345 test_bit(R5_LOCKED, &dev->flags));
346 BUG();
347 }
348 dev->flags = 0;
349 raid5_build_block(sh, i, previous);
350 }
351 insert_hash(conf, sh);
352 }
353
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 short generation)
356 {
357 struct stripe_head *sh;
358 struct hlist_node *hn;
359
360 CHECK_DEVLOCK();
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 if (sh->sector == sector && sh->generation == generation)
364 return sh;
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 return NULL;
367 }
368
369 /*
370 * Need to check if array has failed when deciding whether to:
371 * - start an array
372 * - remove non-faulty devices
373 * - add a spare
374 * - allow a reshape
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
381 */
382 static int has_failed(raid5_conf_t *conf)
383 {
384 int degraded;
385 int i;
386 if (conf->mddev->reshape_position == MaxSector)
387 return conf->mddev->degraded > conf->max_degraded;
388
389 rcu_read_lock();
390 degraded = 0;
391 for (i = 0; i < conf->previous_raid_disks; i++) {
392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 if (!rdev || test_bit(Faulty, &rdev->flags))
394 degraded++;
395 else if (test_bit(In_sync, &rdev->flags))
396 ;
397 else
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
405 * be in-sync.
406 */
407 if (conf->raid_disks >= conf->previous_raid_disks)
408 degraded++;
409 }
410 rcu_read_unlock();
411 if (degraded > conf->max_degraded)
412 return 1;
413 rcu_read_lock();
414 degraded = 0;
415 for (i = 0; i < conf->raid_disks; i++) {
416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 if (!rdev || test_bit(Faulty, &rdev->flags))
418 degraded++;
419 else if (test_bit(In_sync, &rdev->flags))
420 ;
421 else
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
426 */
427 if (conf->raid_disks <= conf->previous_raid_disks)
428 degraded++;
429 }
430 rcu_read_unlock();
431 if (degraded > conf->max_degraded)
432 return 1;
433 return 0;
434 }
435
436 static void unplug_slaves(mddev_t *mddev);
437 static void raid5_unplug_device(raid5_conf_t *conf);
438
439 static struct stripe_head *
440 get_active_stripe(raid5_conf_t *conf, sector_t sector,
441 int previous, int noblock, int noquiesce)
442 {
443 struct stripe_head *sh;
444
445 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446
447 spin_lock_irq(&conf->device_lock);
448
449 do {
450 wait_event_lock_irq(conf->wait_for_stripe,
451 conf->quiesce == 0 || noquiesce,
452 conf->device_lock, /* nothing */);
453 sh = __find_stripe(conf, sector, conf->generation - previous);
454 if (!sh) {
455 if (!conf->inactive_blocked)
456 sh = get_free_stripe(conf);
457 if (noblock && sh == NULL)
458 break;
459 if (!sh) {
460 conf->inactive_blocked = 1;
461 wait_event_lock_irq(conf->wait_for_stripe,
462 !list_empty(&conf->inactive_list) &&
463 (atomic_read(&conf->active_stripes)
464 < (conf->max_nr_stripes *3/4)
465 || !conf->inactive_blocked),
466 conf->device_lock,
467 raid5_unplug_device(conf)
468 );
469 conf->inactive_blocked = 0;
470 } else
471 init_stripe(sh, sector, previous);
472 } else {
473 if (atomic_read(&sh->count)) {
474 BUG_ON(!list_empty(&sh->lru)
475 && !test_bit(STRIPE_EXPANDING, &sh->state));
476 } else {
477 if (!test_bit(STRIPE_HANDLE, &sh->state))
478 atomic_inc(&conf->active_stripes);
479 if (list_empty(&sh->lru) &&
480 !test_bit(STRIPE_EXPANDING, &sh->state))
481 BUG();
482 list_del_init(&sh->lru);
483 }
484 }
485 } while (sh == NULL);
486
487 if (sh)
488 atomic_inc(&sh->count);
489
490 spin_unlock_irq(&conf->device_lock);
491 return sh;
492 }
493
494 static void
495 raid5_end_read_request(struct bio *bi, int error);
496 static void
497 raid5_end_write_request(struct bio *bi, int error);
498
499 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
500 {
501 raid5_conf_t *conf = sh->raid_conf;
502 int i, disks = sh->disks;
503
504 might_sleep();
505
506 for (i = disks; i--; ) {
507 int rw;
508 struct bio *bi;
509 mdk_rdev_t *rdev;
510 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
511 rw = WRITE;
512 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
513 rw = READ;
514 else
515 continue;
516
517 bi = &sh->dev[i].req;
518
519 bi->bi_rw = rw;
520 if (rw == WRITE)
521 bi->bi_end_io = raid5_end_write_request;
522 else
523 bi->bi_end_io = raid5_end_read_request;
524
525 rcu_read_lock();
526 rdev = rcu_dereference(conf->disks[i].rdev);
527 if (rdev && test_bit(Faulty, &rdev->flags))
528 rdev = NULL;
529 if (rdev)
530 atomic_inc(&rdev->nr_pending);
531 rcu_read_unlock();
532
533 if (rdev) {
534 if (s->syncing || s->expanding || s->expanded)
535 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
536
537 set_bit(STRIPE_IO_STARTED, &sh->state);
538
539 bi->bi_bdev = rdev->bdev;
540 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
541 __func__, (unsigned long long)sh->sector,
542 bi->bi_rw, i);
543 atomic_inc(&sh->count);
544 bi->bi_sector = sh->sector + rdev->data_offset;
545 bi->bi_flags = 1 << BIO_UPTODATE;
546 bi->bi_vcnt = 1;
547 bi->bi_max_vecs = 1;
548 bi->bi_idx = 0;
549 bi->bi_io_vec = &sh->dev[i].vec;
550 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
551 bi->bi_io_vec[0].bv_offset = 0;
552 bi->bi_size = STRIPE_SIZE;
553 bi->bi_next = NULL;
554 if (rw == WRITE &&
555 test_bit(R5_ReWrite, &sh->dev[i].flags))
556 atomic_add(STRIPE_SECTORS,
557 &rdev->corrected_errors);
558 generic_make_request(bi);
559 } else {
560 if (rw == WRITE)
561 set_bit(STRIPE_DEGRADED, &sh->state);
562 pr_debug("skip op %ld on disc %d for sector %llu\n",
563 bi->bi_rw, i, (unsigned long long)sh->sector);
564 clear_bit(R5_LOCKED, &sh->dev[i].flags);
565 set_bit(STRIPE_HANDLE, &sh->state);
566 }
567 }
568 }
569
570 static struct dma_async_tx_descriptor *
571 async_copy_data(int frombio, struct bio *bio, struct page *page,
572 sector_t sector, struct dma_async_tx_descriptor *tx)
573 {
574 struct bio_vec *bvl;
575 struct page *bio_page;
576 int i;
577 int page_offset;
578 struct async_submit_ctl submit;
579 enum async_tx_flags flags = 0;
580
581 if (bio->bi_sector >= sector)
582 page_offset = (signed)(bio->bi_sector - sector) * 512;
583 else
584 page_offset = (signed)(sector - bio->bi_sector) * -512;
585
586 if (frombio)
587 flags |= ASYNC_TX_FENCE;
588 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
589
590 bio_for_each_segment(bvl, bio, i) {
591 int len = bio_iovec_idx(bio, i)->bv_len;
592 int clen;
593 int b_offset = 0;
594
595 if (page_offset < 0) {
596 b_offset = -page_offset;
597 page_offset += b_offset;
598 len -= b_offset;
599 }
600
601 if (len > 0 && page_offset + len > STRIPE_SIZE)
602 clen = STRIPE_SIZE - page_offset;
603 else
604 clen = len;
605
606 if (clen > 0) {
607 b_offset += bio_iovec_idx(bio, i)->bv_offset;
608 bio_page = bio_iovec_idx(bio, i)->bv_page;
609 if (frombio)
610 tx = async_memcpy(page, bio_page, page_offset,
611 b_offset, clen, &submit);
612 else
613 tx = async_memcpy(bio_page, page, b_offset,
614 page_offset, clen, &submit);
615 }
616 /* chain the operations */
617 submit.depend_tx = tx;
618
619 if (clen < len) /* hit end of page */
620 break;
621 page_offset += len;
622 }
623
624 return tx;
625 }
626
627 static void ops_complete_biofill(void *stripe_head_ref)
628 {
629 struct stripe_head *sh = stripe_head_ref;
630 struct bio *return_bi = NULL;
631 raid5_conf_t *conf = sh->raid_conf;
632 int i;
633
634 pr_debug("%s: stripe %llu\n", __func__,
635 (unsigned long long)sh->sector);
636
637 /* clear completed biofills */
638 spin_lock_irq(&conf->device_lock);
639 for (i = sh->disks; i--; ) {
640 struct r5dev *dev = &sh->dev[i];
641
642 /* acknowledge completion of a biofill operation */
643 /* and check if we need to reply to a read request,
644 * new R5_Wantfill requests are held off until
645 * !STRIPE_BIOFILL_RUN
646 */
647 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
648 struct bio *rbi, *rbi2;
649
650 BUG_ON(!dev->read);
651 rbi = dev->read;
652 dev->read = NULL;
653 while (rbi && rbi->bi_sector <
654 dev->sector + STRIPE_SECTORS) {
655 rbi2 = r5_next_bio(rbi, dev->sector);
656 if (!raid5_dec_bi_phys_segments(rbi)) {
657 rbi->bi_next = return_bi;
658 return_bi = rbi;
659 }
660 rbi = rbi2;
661 }
662 }
663 }
664 spin_unlock_irq(&conf->device_lock);
665 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
666
667 return_io(return_bi);
668
669 set_bit(STRIPE_HANDLE, &sh->state);
670 release_stripe(sh);
671 }
672
673 static void ops_run_biofill(struct stripe_head *sh)
674 {
675 struct dma_async_tx_descriptor *tx = NULL;
676 raid5_conf_t *conf = sh->raid_conf;
677 struct async_submit_ctl submit;
678 int i;
679
680 pr_debug("%s: stripe %llu\n", __func__,
681 (unsigned long long)sh->sector);
682
683 for (i = sh->disks; i--; ) {
684 struct r5dev *dev = &sh->dev[i];
685 if (test_bit(R5_Wantfill, &dev->flags)) {
686 struct bio *rbi;
687 spin_lock_irq(&conf->device_lock);
688 dev->read = rbi = dev->toread;
689 dev->toread = NULL;
690 spin_unlock_irq(&conf->device_lock);
691 while (rbi && rbi->bi_sector <
692 dev->sector + STRIPE_SECTORS) {
693 tx = async_copy_data(0, rbi, dev->page,
694 dev->sector, tx);
695 rbi = r5_next_bio(rbi, dev->sector);
696 }
697 }
698 }
699
700 atomic_inc(&sh->count);
701 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
702 async_trigger_callback(&submit);
703 }
704
705 static void mark_target_uptodate(struct stripe_head *sh, int target)
706 {
707 struct r5dev *tgt;
708
709 if (target < 0)
710 return;
711
712 tgt = &sh->dev[target];
713 set_bit(R5_UPTODATE, &tgt->flags);
714 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
715 clear_bit(R5_Wantcompute, &tgt->flags);
716 }
717
718 static void ops_complete_compute(void *stripe_head_ref)
719 {
720 struct stripe_head *sh = stripe_head_ref;
721
722 pr_debug("%s: stripe %llu\n", __func__,
723 (unsigned long long)sh->sector);
724
725 /* mark the computed target(s) as uptodate */
726 mark_target_uptodate(sh, sh->ops.target);
727 mark_target_uptodate(sh, sh->ops.target2);
728
729 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
730 if (sh->check_state == check_state_compute_run)
731 sh->check_state = check_state_compute_result;
732 set_bit(STRIPE_HANDLE, &sh->state);
733 release_stripe(sh);
734 }
735
736 /* return a pointer to the address conversion region of the scribble buffer */
737 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
738 struct raid5_percpu *percpu)
739 {
740 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
741 }
742
743 static struct dma_async_tx_descriptor *
744 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
745 {
746 int disks = sh->disks;
747 struct page **xor_srcs = percpu->scribble;
748 int target = sh->ops.target;
749 struct r5dev *tgt = &sh->dev[target];
750 struct page *xor_dest = tgt->page;
751 int count = 0;
752 struct dma_async_tx_descriptor *tx;
753 struct async_submit_ctl submit;
754 int i;
755
756 pr_debug("%s: stripe %llu block: %d\n",
757 __func__, (unsigned long long)sh->sector, target);
758 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
759
760 for (i = disks; i--; )
761 if (i != target)
762 xor_srcs[count++] = sh->dev[i].page;
763
764 atomic_inc(&sh->count);
765
766 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
767 ops_complete_compute, sh, to_addr_conv(sh, percpu));
768 if (unlikely(count == 1))
769 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
770 else
771 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
772
773 return tx;
774 }
775
776 /* set_syndrome_sources - populate source buffers for gen_syndrome
777 * @srcs - (struct page *) array of size sh->disks
778 * @sh - stripe_head to parse
779 *
780 * Populates srcs in proper layout order for the stripe and returns the
781 * 'count' of sources to be used in a call to async_gen_syndrome. The P
782 * destination buffer is recorded in srcs[count] and the Q destination
783 * is recorded in srcs[count+1]].
784 */
785 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
786 {
787 int disks = sh->disks;
788 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
789 int d0_idx = raid6_d0(sh);
790 int count;
791 int i;
792
793 for (i = 0; i < disks; i++)
794 srcs[i] = NULL;
795
796 count = 0;
797 i = d0_idx;
798 do {
799 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
800
801 srcs[slot] = sh->dev[i].page;
802 i = raid6_next_disk(i, disks);
803 } while (i != d0_idx);
804
805 return syndrome_disks;
806 }
807
808 static struct dma_async_tx_descriptor *
809 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
810 {
811 int disks = sh->disks;
812 struct page **blocks = percpu->scribble;
813 int target;
814 int qd_idx = sh->qd_idx;
815 struct dma_async_tx_descriptor *tx;
816 struct async_submit_ctl submit;
817 struct r5dev *tgt;
818 struct page *dest;
819 int i;
820 int count;
821
822 if (sh->ops.target < 0)
823 target = sh->ops.target2;
824 else if (sh->ops.target2 < 0)
825 target = sh->ops.target;
826 else
827 /* we should only have one valid target */
828 BUG();
829 BUG_ON(target < 0);
830 pr_debug("%s: stripe %llu block: %d\n",
831 __func__, (unsigned long long)sh->sector, target);
832
833 tgt = &sh->dev[target];
834 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
835 dest = tgt->page;
836
837 atomic_inc(&sh->count);
838
839 if (target == qd_idx) {
840 count = set_syndrome_sources(blocks, sh);
841 blocks[count] = NULL; /* regenerating p is not necessary */
842 BUG_ON(blocks[count+1] != dest); /* q should already be set */
843 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
844 ops_complete_compute, sh,
845 to_addr_conv(sh, percpu));
846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
847 } else {
848 /* Compute any data- or p-drive using XOR */
849 count = 0;
850 for (i = disks; i-- ; ) {
851 if (i == target || i == qd_idx)
852 continue;
853 blocks[count++] = sh->dev[i].page;
854 }
855
856 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
857 NULL, ops_complete_compute, sh,
858 to_addr_conv(sh, percpu));
859 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
860 }
861
862 return tx;
863 }
864
865 static struct dma_async_tx_descriptor *
866 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
867 {
868 int i, count, disks = sh->disks;
869 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
870 int d0_idx = raid6_d0(sh);
871 int faila = -1, failb = -1;
872 int target = sh->ops.target;
873 int target2 = sh->ops.target2;
874 struct r5dev *tgt = &sh->dev[target];
875 struct r5dev *tgt2 = &sh->dev[target2];
876 struct dma_async_tx_descriptor *tx;
877 struct page **blocks = percpu->scribble;
878 struct async_submit_ctl submit;
879
880 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
881 __func__, (unsigned long long)sh->sector, target, target2);
882 BUG_ON(target < 0 || target2 < 0);
883 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
885
886 /* we need to open-code set_syndrome_sources to handle the
887 * slot number conversion for 'faila' and 'failb'
888 */
889 for (i = 0; i < disks ; i++)
890 blocks[i] = NULL;
891 count = 0;
892 i = d0_idx;
893 do {
894 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
895
896 blocks[slot] = sh->dev[i].page;
897
898 if (i == target)
899 faila = slot;
900 if (i == target2)
901 failb = slot;
902 i = raid6_next_disk(i, disks);
903 } while (i != d0_idx);
904
905 BUG_ON(faila == failb);
906 if (failb < faila)
907 swap(faila, failb);
908 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
909 __func__, (unsigned long long)sh->sector, faila, failb);
910
911 atomic_inc(&sh->count);
912
913 if (failb == syndrome_disks+1) {
914 /* Q disk is one of the missing disks */
915 if (faila == syndrome_disks) {
916 /* Missing P+Q, just recompute */
917 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
918 ops_complete_compute, sh,
919 to_addr_conv(sh, percpu));
920 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
921 STRIPE_SIZE, &submit);
922 } else {
923 struct page *dest;
924 int data_target;
925 int qd_idx = sh->qd_idx;
926
927 /* Missing D+Q: recompute D from P, then recompute Q */
928 if (target == qd_idx)
929 data_target = target2;
930 else
931 data_target = target;
932
933 count = 0;
934 for (i = disks; i-- ; ) {
935 if (i == data_target || i == qd_idx)
936 continue;
937 blocks[count++] = sh->dev[i].page;
938 }
939 dest = sh->dev[data_target].page;
940 init_async_submit(&submit,
941 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
942 NULL, NULL, NULL,
943 to_addr_conv(sh, percpu));
944 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
945 &submit);
946
947 count = set_syndrome_sources(blocks, sh);
948 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
949 ops_complete_compute, sh,
950 to_addr_conv(sh, percpu));
951 return async_gen_syndrome(blocks, 0, count+2,
952 STRIPE_SIZE, &submit);
953 }
954 } else {
955 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
956 ops_complete_compute, sh,
957 to_addr_conv(sh, percpu));
958 if (failb == syndrome_disks) {
959 /* We're missing D+P. */
960 return async_raid6_datap_recov(syndrome_disks+2,
961 STRIPE_SIZE, faila,
962 blocks, &submit);
963 } else {
964 /* We're missing D+D. */
965 return async_raid6_2data_recov(syndrome_disks+2,
966 STRIPE_SIZE, faila, failb,
967 blocks, &submit);
968 }
969 }
970 }
971
972
973 static void ops_complete_prexor(void *stripe_head_ref)
974 {
975 struct stripe_head *sh = stripe_head_ref;
976
977 pr_debug("%s: stripe %llu\n", __func__,
978 (unsigned long long)sh->sector);
979 }
980
981 static struct dma_async_tx_descriptor *
982 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
983 struct dma_async_tx_descriptor *tx)
984 {
985 int disks = sh->disks;
986 struct page **xor_srcs = percpu->scribble;
987 int count = 0, pd_idx = sh->pd_idx, i;
988 struct async_submit_ctl submit;
989
990 /* existing parity data subtracted */
991 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
992
993 pr_debug("%s: stripe %llu\n", __func__,
994 (unsigned long long)sh->sector);
995
996 for (i = disks; i--; ) {
997 struct r5dev *dev = &sh->dev[i];
998 /* Only process blocks that are known to be uptodate */
999 if (test_bit(R5_Wantdrain, &dev->flags))
1000 xor_srcs[count++] = dev->page;
1001 }
1002
1003 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1004 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1005 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1006
1007 return tx;
1008 }
1009
1010 static struct dma_async_tx_descriptor *
1011 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1012 {
1013 int disks = sh->disks;
1014 int i;
1015
1016 pr_debug("%s: stripe %llu\n", __func__,
1017 (unsigned long long)sh->sector);
1018
1019 for (i = disks; i--; ) {
1020 struct r5dev *dev = &sh->dev[i];
1021 struct bio *chosen;
1022
1023 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1024 struct bio *wbi;
1025
1026 spin_lock(&sh->lock);
1027 chosen = dev->towrite;
1028 dev->towrite = NULL;
1029 BUG_ON(dev->written);
1030 wbi = dev->written = chosen;
1031 spin_unlock(&sh->lock);
1032
1033 while (wbi && wbi->bi_sector <
1034 dev->sector + STRIPE_SECTORS) {
1035 tx = async_copy_data(1, wbi, dev->page,
1036 dev->sector, tx);
1037 wbi = r5_next_bio(wbi, dev->sector);
1038 }
1039 }
1040 }
1041
1042 return tx;
1043 }
1044
1045 static void ops_complete_reconstruct(void *stripe_head_ref)
1046 {
1047 struct stripe_head *sh = stripe_head_ref;
1048 int disks = sh->disks;
1049 int pd_idx = sh->pd_idx;
1050 int qd_idx = sh->qd_idx;
1051 int i;
1052
1053 pr_debug("%s: stripe %llu\n", __func__,
1054 (unsigned long long)sh->sector);
1055
1056 for (i = disks; i--; ) {
1057 struct r5dev *dev = &sh->dev[i];
1058
1059 if (dev->written || i == pd_idx || i == qd_idx)
1060 set_bit(R5_UPTODATE, &dev->flags);
1061 }
1062
1063 if (sh->reconstruct_state == reconstruct_state_drain_run)
1064 sh->reconstruct_state = reconstruct_state_drain_result;
1065 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1066 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1067 else {
1068 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1069 sh->reconstruct_state = reconstruct_state_result;
1070 }
1071
1072 set_bit(STRIPE_HANDLE, &sh->state);
1073 release_stripe(sh);
1074 }
1075
1076 static void
1077 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1078 struct dma_async_tx_descriptor *tx)
1079 {
1080 int disks = sh->disks;
1081 struct page **xor_srcs = percpu->scribble;
1082 struct async_submit_ctl submit;
1083 int count = 0, pd_idx = sh->pd_idx, i;
1084 struct page *xor_dest;
1085 int prexor = 0;
1086 unsigned long flags;
1087
1088 pr_debug("%s: stripe %llu\n", __func__,
1089 (unsigned long long)sh->sector);
1090
1091 /* check if prexor is active which means only process blocks
1092 * that are part of a read-modify-write (written)
1093 */
1094 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1095 prexor = 1;
1096 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1097 for (i = disks; i--; ) {
1098 struct r5dev *dev = &sh->dev[i];
1099 if (dev->written)
1100 xor_srcs[count++] = dev->page;
1101 }
1102 } else {
1103 xor_dest = sh->dev[pd_idx].page;
1104 for (i = disks; i--; ) {
1105 struct r5dev *dev = &sh->dev[i];
1106 if (i != pd_idx)
1107 xor_srcs[count++] = dev->page;
1108 }
1109 }
1110
1111 /* 1/ if we prexor'd then the dest is reused as a source
1112 * 2/ if we did not prexor then we are redoing the parity
1113 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1114 * for the synchronous xor case
1115 */
1116 flags = ASYNC_TX_ACK |
1117 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1118
1119 atomic_inc(&sh->count);
1120
1121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1122 to_addr_conv(sh, percpu));
1123 if (unlikely(count == 1))
1124 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125 else
1126 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 }
1128
1129 static void
1130 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1131 struct dma_async_tx_descriptor *tx)
1132 {
1133 struct async_submit_ctl submit;
1134 struct page **blocks = percpu->scribble;
1135 int count;
1136
1137 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1138
1139 count = set_syndrome_sources(blocks, sh);
1140
1141 atomic_inc(&sh->count);
1142
1143 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1144 sh, to_addr_conv(sh, percpu));
1145 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1146 }
1147
1148 static void ops_complete_check(void *stripe_head_ref)
1149 {
1150 struct stripe_head *sh = stripe_head_ref;
1151
1152 pr_debug("%s: stripe %llu\n", __func__,
1153 (unsigned long long)sh->sector);
1154
1155 sh->check_state = check_state_check_result;
1156 set_bit(STRIPE_HANDLE, &sh->state);
1157 release_stripe(sh);
1158 }
1159
1160 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1161 {
1162 int disks = sh->disks;
1163 int pd_idx = sh->pd_idx;
1164 int qd_idx = sh->qd_idx;
1165 struct page *xor_dest;
1166 struct page **xor_srcs = percpu->scribble;
1167 struct dma_async_tx_descriptor *tx;
1168 struct async_submit_ctl submit;
1169 int count;
1170 int i;
1171
1172 pr_debug("%s: stripe %llu\n", __func__,
1173 (unsigned long long)sh->sector);
1174
1175 count = 0;
1176 xor_dest = sh->dev[pd_idx].page;
1177 xor_srcs[count++] = xor_dest;
1178 for (i = disks; i--; ) {
1179 if (i == pd_idx || i == qd_idx)
1180 continue;
1181 xor_srcs[count++] = sh->dev[i].page;
1182 }
1183
1184 init_async_submit(&submit, 0, NULL, NULL, NULL,
1185 to_addr_conv(sh, percpu));
1186 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1187 &sh->ops.zero_sum_result, &submit);
1188
1189 atomic_inc(&sh->count);
1190 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1191 tx = async_trigger_callback(&submit);
1192 }
1193
1194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1195 {
1196 struct page **srcs = percpu->scribble;
1197 struct async_submit_ctl submit;
1198 int count;
1199
1200 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1201 (unsigned long long)sh->sector, checkp);
1202
1203 count = set_syndrome_sources(srcs, sh);
1204 if (!checkp)
1205 srcs[count] = NULL;
1206
1207 atomic_inc(&sh->count);
1208 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1209 sh, to_addr_conv(sh, percpu));
1210 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1211 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1212 }
1213
1214 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1215 {
1216 int overlap_clear = 0, i, disks = sh->disks;
1217 struct dma_async_tx_descriptor *tx = NULL;
1218 raid5_conf_t *conf = sh->raid_conf;
1219 int level = conf->level;
1220 struct raid5_percpu *percpu;
1221 unsigned long cpu;
1222
1223 cpu = get_cpu();
1224 percpu = per_cpu_ptr(conf->percpu, cpu);
1225 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1226 ops_run_biofill(sh);
1227 overlap_clear++;
1228 }
1229
1230 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1231 if (level < 6)
1232 tx = ops_run_compute5(sh, percpu);
1233 else {
1234 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1235 tx = ops_run_compute6_1(sh, percpu);
1236 else
1237 tx = ops_run_compute6_2(sh, percpu);
1238 }
1239 /* terminate the chain if reconstruct is not set to be run */
1240 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1241 async_tx_ack(tx);
1242 }
1243
1244 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1245 tx = ops_run_prexor(sh, percpu, tx);
1246
1247 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1248 tx = ops_run_biodrain(sh, tx);
1249 overlap_clear++;
1250 }
1251
1252 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1253 if (level < 6)
1254 ops_run_reconstruct5(sh, percpu, tx);
1255 else
1256 ops_run_reconstruct6(sh, percpu, tx);
1257 }
1258
1259 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1260 if (sh->check_state == check_state_run)
1261 ops_run_check_p(sh, percpu);
1262 else if (sh->check_state == check_state_run_q)
1263 ops_run_check_pq(sh, percpu, 0);
1264 else if (sh->check_state == check_state_run_pq)
1265 ops_run_check_pq(sh, percpu, 1);
1266 else
1267 BUG();
1268 }
1269
1270 if (overlap_clear)
1271 for (i = disks; i--; ) {
1272 struct r5dev *dev = &sh->dev[i];
1273 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1274 wake_up(&sh->raid_conf->wait_for_overlap);
1275 }
1276 put_cpu();
1277 }
1278
1279 #ifdef CONFIG_MULTICORE_RAID456
1280 static void async_run_ops(void *param, async_cookie_t cookie)
1281 {
1282 struct stripe_head *sh = param;
1283 unsigned long ops_request = sh->ops.request;
1284
1285 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1286 wake_up(&sh->ops.wait_for_ops);
1287
1288 __raid_run_ops(sh, ops_request);
1289 release_stripe(sh);
1290 }
1291
1292 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1293 {
1294 /* since handle_stripe can be called outside of raid5d context
1295 * we need to ensure sh->ops.request is de-staged before another
1296 * request arrives
1297 */
1298 wait_event(sh->ops.wait_for_ops,
1299 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1300 sh->ops.request = ops_request;
1301
1302 atomic_inc(&sh->count);
1303 async_schedule(async_run_ops, sh);
1304 }
1305 #else
1306 #define raid_run_ops __raid_run_ops
1307 #endif
1308
1309 static int grow_one_stripe(raid5_conf_t *conf)
1310 {
1311 struct stripe_head *sh;
1312 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1313 if (!sh)
1314 return 0;
1315 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1316 sh->raid_conf = conf;
1317 spin_lock_init(&sh->lock);
1318 #ifdef CONFIG_MULTICORE_RAID456
1319 init_waitqueue_head(&sh->ops.wait_for_ops);
1320 #endif
1321
1322 if (grow_buffers(sh)) {
1323 shrink_buffers(sh);
1324 kmem_cache_free(conf->slab_cache, sh);
1325 return 0;
1326 }
1327 /* we just created an active stripe so... */
1328 atomic_set(&sh->count, 1);
1329 atomic_inc(&conf->active_stripes);
1330 INIT_LIST_HEAD(&sh->lru);
1331 release_stripe(sh);
1332 return 1;
1333 }
1334
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1336 {
1337 struct kmem_cache *sc;
1338 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1339
1340 if (conf->mddev->gendisk)
1341 sprintf(conf->cache_name[0],
1342 "raid%d-%s", conf->level, mdname(conf->mddev));
1343 else
1344 sprintf(conf->cache_name[0],
1345 "raid%d-%p", conf->level, conf->mddev);
1346 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1347
1348 conf->active_name = 0;
1349 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1350 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351 0, 0, NULL);
1352 if (!sc)
1353 return 1;
1354 conf->slab_cache = sc;
1355 conf->pool_size = devs;
1356 while (num--)
1357 if (!grow_one_stripe(conf))
1358 return 1;
1359 return 0;
1360 }
1361
1362 /**
1363 * scribble_len - return the required size of the scribble region
1364 * @num - total number of disks in the array
1365 *
1366 * The size must be enough to contain:
1367 * 1/ a struct page pointer for each device in the array +2
1368 * 2/ room to convert each entry in (1) to its corresponding dma
1369 * (dma_map_page()) or page (page_address()) address.
1370 *
1371 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1372 * calculate over all devices (not just the data blocks), using zeros in place
1373 * of the P and Q blocks.
1374 */
1375 static size_t scribble_len(int num)
1376 {
1377 size_t len;
1378
1379 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1380
1381 return len;
1382 }
1383
1384 static int resize_stripes(raid5_conf_t *conf, int newsize)
1385 {
1386 /* Make all the stripes able to hold 'newsize' devices.
1387 * New slots in each stripe get 'page' set to a new page.
1388 *
1389 * This happens in stages:
1390 * 1/ create a new kmem_cache and allocate the required number of
1391 * stripe_heads.
1392 * 2/ gather all the old stripe_heads and tranfer the pages across
1393 * to the new stripe_heads. This will have the side effect of
1394 * freezing the array as once all stripe_heads have been collected,
1395 * no IO will be possible. Old stripe heads are freed once their
1396 * pages have been transferred over, and the old kmem_cache is
1397 * freed when all stripes are done.
1398 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1399 * we simple return a failre status - no need to clean anything up.
1400 * 4/ allocate new pages for the new slots in the new stripe_heads.
1401 * If this fails, we don't bother trying the shrink the
1402 * stripe_heads down again, we just leave them as they are.
1403 * As each stripe_head is processed the new one is released into
1404 * active service.
1405 *
1406 * Once step2 is started, we cannot afford to wait for a write,
1407 * so we use GFP_NOIO allocations.
1408 */
1409 struct stripe_head *osh, *nsh;
1410 LIST_HEAD(newstripes);
1411 struct disk_info *ndisks;
1412 unsigned long cpu;
1413 int err;
1414 struct kmem_cache *sc;
1415 int i;
1416
1417 if (newsize <= conf->pool_size)
1418 return 0; /* never bother to shrink */
1419
1420 err = md_allow_write(conf->mddev);
1421 if (err)
1422 return err;
1423
1424 /* Step 1 */
1425 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1426 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427 0, 0, NULL);
1428 if (!sc)
1429 return -ENOMEM;
1430
1431 for (i = conf->max_nr_stripes; i; i--) {
1432 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1433 if (!nsh)
1434 break;
1435
1436 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1437
1438 nsh->raid_conf = conf;
1439 spin_lock_init(&nsh->lock);
1440 #ifdef CONFIG_MULTICORE_RAID456
1441 init_waitqueue_head(&nsh->ops.wait_for_ops);
1442 #endif
1443
1444 list_add(&nsh->lru, &newstripes);
1445 }
1446 if (i) {
1447 /* didn't get enough, give up */
1448 while (!list_empty(&newstripes)) {
1449 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1450 list_del(&nsh->lru);
1451 kmem_cache_free(sc, nsh);
1452 }
1453 kmem_cache_destroy(sc);
1454 return -ENOMEM;
1455 }
1456 /* Step 2 - Must use GFP_NOIO now.
1457 * OK, we have enough stripes, start collecting inactive
1458 * stripes and copying them over
1459 */
1460 list_for_each_entry(nsh, &newstripes, lru) {
1461 spin_lock_irq(&conf->device_lock);
1462 wait_event_lock_irq(conf->wait_for_stripe,
1463 !list_empty(&conf->inactive_list),
1464 conf->device_lock,
1465 unplug_slaves(conf->mddev)
1466 );
1467 osh = get_free_stripe(conf);
1468 spin_unlock_irq(&conf->device_lock);
1469 atomic_set(&nsh->count, 1);
1470 for(i=0; i<conf->pool_size; i++)
1471 nsh->dev[i].page = osh->dev[i].page;
1472 for( ; i<newsize; i++)
1473 nsh->dev[i].page = NULL;
1474 kmem_cache_free(conf->slab_cache, osh);
1475 }
1476 kmem_cache_destroy(conf->slab_cache);
1477
1478 /* Step 3.
1479 * At this point, we are holding all the stripes so the array
1480 * is completely stalled, so now is a good time to resize
1481 * conf->disks and the scribble region
1482 */
1483 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1484 if (ndisks) {
1485 for (i=0; i<conf->raid_disks; i++)
1486 ndisks[i] = conf->disks[i];
1487 kfree(conf->disks);
1488 conf->disks = ndisks;
1489 } else
1490 err = -ENOMEM;
1491
1492 get_online_cpus();
1493 conf->scribble_len = scribble_len(newsize);
1494 for_each_present_cpu(cpu) {
1495 struct raid5_percpu *percpu;
1496 void *scribble;
1497
1498 percpu = per_cpu_ptr(conf->percpu, cpu);
1499 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1500
1501 if (scribble) {
1502 kfree(percpu->scribble);
1503 percpu->scribble = scribble;
1504 } else {
1505 err = -ENOMEM;
1506 break;
1507 }
1508 }
1509 put_online_cpus();
1510
1511 /* Step 4, return new stripes to service */
1512 while(!list_empty(&newstripes)) {
1513 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1514 list_del_init(&nsh->lru);
1515
1516 for (i=conf->raid_disks; i < newsize; i++)
1517 if (nsh->dev[i].page == NULL) {
1518 struct page *p = alloc_page(GFP_NOIO);
1519 nsh->dev[i].page = p;
1520 if (!p)
1521 err = -ENOMEM;
1522 }
1523 release_stripe(nsh);
1524 }
1525 /* critical section pass, GFP_NOIO no longer needed */
1526
1527 conf->slab_cache = sc;
1528 conf->active_name = 1-conf->active_name;
1529 conf->pool_size = newsize;
1530 return err;
1531 }
1532
1533 static int drop_one_stripe(raid5_conf_t *conf)
1534 {
1535 struct stripe_head *sh;
1536
1537 spin_lock_irq(&conf->device_lock);
1538 sh = get_free_stripe(conf);
1539 spin_unlock_irq(&conf->device_lock);
1540 if (!sh)
1541 return 0;
1542 BUG_ON(atomic_read(&sh->count));
1543 shrink_buffers(sh);
1544 kmem_cache_free(conf->slab_cache, sh);
1545 atomic_dec(&conf->active_stripes);
1546 return 1;
1547 }
1548
1549 static void shrink_stripes(raid5_conf_t *conf)
1550 {
1551 while (drop_one_stripe(conf))
1552 ;
1553
1554 if (conf->slab_cache)
1555 kmem_cache_destroy(conf->slab_cache);
1556 conf->slab_cache = NULL;
1557 }
1558
1559 static void raid5_end_read_request(struct bio * bi, int error)
1560 {
1561 struct stripe_head *sh = bi->bi_private;
1562 raid5_conf_t *conf = sh->raid_conf;
1563 int disks = sh->disks, i;
1564 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1565 char b[BDEVNAME_SIZE];
1566 mdk_rdev_t *rdev;
1567
1568
1569 for (i=0 ; i<disks; i++)
1570 if (bi == &sh->dev[i].req)
1571 break;
1572
1573 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1574 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1575 uptodate);
1576 if (i == disks) {
1577 BUG();
1578 return;
1579 }
1580
1581 if (uptodate) {
1582 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1583 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1584 rdev = conf->disks[i].rdev;
1585 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1586 " (%lu sectors at %llu on %s)\n",
1587 mdname(conf->mddev), STRIPE_SECTORS,
1588 (unsigned long long)(sh->sector
1589 + rdev->data_offset),
1590 bdevname(rdev->bdev, b));
1591 clear_bit(R5_ReadError, &sh->dev[i].flags);
1592 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1593 }
1594 if (atomic_read(&conf->disks[i].rdev->read_errors))
1595 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1596 } else {
1597 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1598 int retry = 0;
1599 rdev = conf->disks[i].rdev;
1600
1601 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1602 atomic_inc(&rdev->read_errors);
1603 if (conf->mddev->degraded >= conf->max_degraded)
1604 printk_rl(KERN_WARNING
1605 "md/raid:%s: read error not correctable "
1606 "(sector %llu on %s).\n",
1607 mdname(conf->mddev),
1608 (unsigned long long)(sh->sector
1609 + rdev->data_offset),
1610 bdn);
1611 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612 /* Oh, no!!! */
1613 printk_rl(KERN_WARNING
1614 "md/raid:%s: read error NOT corrected!! "
1615 "(sector %llu on %s).\n",
1616 mdname(conf->mddev),
1617 (unsigned long long)(sh->sector
1618 + rdev->data_offset),
1619 bdn);
1620 else if (atomic_read(&rdev->read_errors)
1621 > conf->max_nr_stripes)
1622 printk(KERN_WARNING
1623 "md/raid:%s: Too many read errors, failing device %s.\n",
1624 mdname(conf->mddev), bdn);
1625 else
1626 retry = 1;
1627 if (retry)
1628 set_bit(R5_ReadError, &sh->dev[i].flags);
1629 else {
1630 clear_bit(R5_ReadError, &sh->dev[i].flags);
1631 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1632 md_error(conf->mddev, rdev);
1633 }
1634 }
1635 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1636 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1637 set_bit(STRIPE_HANDLE, &sh->state);
1638 release_stripe(sh);
1639 }
1640
1641 static void raid5_end_write_request(struct bio *bi, int error)
1642 {
1643 struct stripe_head *sh = bi->bi_private;
1644 raid5_conf_t *conf = sh->raid_conf;
1645 int disks = sh->disks, i;
1646 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1647
1648 for (i=0 ; i<disks; i++)
1649 if (bi == &sh->dev[i].req)
1650 break;
1651
1652 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1653 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1654 uptodate);
1655 if (i == disks) {
1656 BUG();
1657 return;
1658 }
1659
1660 if (!uptodate)
1661 md_error(conf->mddev, conf->disks[i].rdev);
1662
1663 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1664
1665 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1666 set_bit(STRIPE_HANDLE, &sh->state);
1667 release_stripe(sh);
1668 }
1669
1670
1671 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1672
1673 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1674 {
1675 struct r5dev *dev = &sh->dev[i];
1676
1677 bio_init(&dev->req);
1678 dev->req.bi_io_vec = &dev->vec;
1679 dev->req.bi_vcnt++;
1680 dev->req.bi_max_vecs++;
1681 dev->vec.bv_page = dev->page;
1682 dev->vec.bv_len = STRIPE_SIZE;
1683 dev->vec.bv_offset = 0;
1684
1685 dev->req.bi_sector = sh->sector;
1686 dev->req.bi_private = sh;
1687
1688 dev->flags = 0;
1689 dev->sector = compute_blocknr(sh, i, previous);
1690 }
1691
1692 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1693 {
1694 char b[BDEVNAME_SIZE];
1695 raid5_conf_t *conf = mddev->private;
1696 pr_debug("raid456: error called\n");
1697
1698 if (!test_bit(Faulty, &rdev->flags)) {
1699 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1700 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1701 unsigned long flags;
1702 spin_lock_irqsave(&conf->device_lock, flags);
1703 mddev->degraded++;
1704 spin_unlock_irqrestore(&conf->device_lock, flags);
1705 /*
1706 * if recovery was running, make sure it aborts.
1707 */
1708 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1709 }
1710 set_bit(Faulty, &rdev->flags);
1711 printk(KERN_ALERT
1712 "md/raid:%s: Disk failure on %s, disabling device.\n"
1713 KERN_ALERT
1714 "md/raid:%s: Operation continuing on %d devices.\n",
1715 mdname(mddev),
1716 bdevname(rdev->bdev, b),
1717 mdname(mddev),
1718 conf->raid_disks - mddev->degraded);
1719 }
1720 }
1721
1722 /*
1723 * Input: a 'big' sector number,
1724 * Output: index of the data and parity disk, and the sector # in them.
1725 */
1726 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1727 int previous, int *dd_idx,
1728 struct stripe_head *sh)
1729 {
1730 sector_t stripe, stripe2;
1731 sector_t chunk_number;
1732 unsigned int chunk_offset;
1733 int pd_idx, qd_idx;
1734 int ddf_layout = 0;
1735 sector_t new_sector;
1736 int algorithm = previous ? conf->prev_algo
1737 : conf->algorithm;
1738 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1739 : conf->chunk_sectors;
1740 int raid_disks = previous ? conf->previous_raid_disks
1741 : conf->raid_disks;
1742 int data_disks = raid_disks - conf->max_degraded;
1743
1744 /* First compute the information on this sector */
1745
1746 /*
1747 * Compute the chunk number and the sector offset inside the chunk
1748 */
1749 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1750 chunk_number = r_sector;
1751
1752 /*
1753 * Compute the stripe number
1754 */
1755 stripe = chunk_number;
1756 *dd_idx = sector_div(stripe, data_disks);
1757 stripe2 = stripe;
1758 /*
1759 * Select the parity disk based on the user selected algorithm.
1760 */
1761 pd_idx = qd_idx = ~0;
1762 switch(conf->level) {
1763 case 4:
1764 pd_idx = data_disks;
1765 break;
1766 case 5:
1767 switch (algorithm) {
1768 case ALGORITHM_LEFT_ASYMMETRIC:
1769 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1770 if (*dd_idx >= pd_idx)
1771 (*dd_idx)++;
1772 break;
1773 case ALGORITHM_RIGHT_ASYMMETRIC:
1774 pd_idx = sector_div(stripe2, raid_disks);
1775 if (*dd_idx >= pd_idx)
1776 (*dd_idx)++;
1777 break;
1778 case ALGORITHM_LEFT_SYMMETRIC:
1779 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1780 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1781 break;
1782 case ALGORITHM_RIGHT_SYMMETRIC:
1783 pd_idx = sector_div(stripe2, raid_disks);
1784 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1785 break;
1786 case ALGORITHM_PARITY_0:
1787 pd_idx = 0;
1788 (*dd_idx)++;
1789 break;
1790 case ALGORITHM_PARITY_N:
1791 pd_idx = data_disks;
1792 break;
1793 default:
1794 BUG();
1795 }
1796 break;
1797 case 6:
1798
1799 switch (algorithm) {
1800 case ALGORITHM_LEFT_ASYMMETRIC:
1801 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1802 qd_idx = pd_idx + 1;
1803 if (pd_idx == raid_disks-1) {
1804 (*dd_idx)++; /* Q D D D P */
1805 qd_idx = 0;
1806 } else if (*dd_idx >= pd_idx)
1807 (*dd_idx) += 2; /* D D P Q D */
1808 break;
1809 case ALGORITHM_RIGHT_ASYMMETRIC:
1810 pd_idx = sector_div(stripe2, raid_disks);
1811 qd_idx = pd_idx + 1;
1812 if (pd_idx == raid_disks-1) {
1813 (*dd_idx)++; /* Q D D D P */
1814 qd_idx = 0;
1815 } else if (*dd_idx >= pd_idx)
1816 (*dd_idx) += 2; /* D D P Q D */
1817 break;
1818 case ALGORITHM_LEFT_SYMMETRIC:
1819 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1820 qd_idx = (pd_idx + 1) % raid_disks;
1821 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1822 break;
1823 case ALGORITHM_RIGHT_SYMMETRIC:
1824 pd_idx = sector_div(stripe2, raid_disks);
1825 qd_idx = (pd_idx + 1) % raid_disks;
1826 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1827 break;
1828
1829 case ALGORITHM_PARITY_0:
1830 pd_idx = 0;
1831 qd_idx = 1;
1832 (*dd_idx) += 2;
1833 break;
1834 case ALGORITHM_PARITY_N:
1835 pd_idx = data_disks;
1836 qd_idx = data_disks + 1;
1837 break;
1838
1839 case ALGORITHM_ROTATING_ZERO_RESTART:
1840 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1841 * of blocks for computing Q is different.
1842 */
1843 pd_idx = sector_div(stripe2, raid_disks);
1844 qd_idx = pd_idx + 1;
1845 if (pd_idx == raid_disks-1) {
1846 (*dd_idx)++; /* Q D D D P */
1847 qd_idx = 0;
1848 } else if (*dd_idx >= pd_idx)
1849 (*dd_idx) += 2; /* D D P Q D */
1850 ddf_layout = 1;
1851 break;
1852
1853 case ALGORITHM_ROTATING_N_RESTART:
1854 /* Same a left_asymmetric, by first stripe is
1855 * D D D P Q rather than
1856 * Q D D D P
1857 */
1858 stripe2 += 1;
1859 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1860 qd_idx = pd_idx + 1;
1861 if (pd_idx == raid_disks-1) {
1862 (*dd_idx)++; /* Q D D D P */
1863 qd_idx = 0;
1864 } else if (*dd_idx >= pd_idx)
1865 (*dd_idx) += 2; /* D D P Q D */
1866 ddf_layout = 1;
1867 break;
1868
1869 case ALGORITHM_ROTATING_N_CONTINUE:
1870 /* Same as left_symmetric but Q is before P */
1871 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1872 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1873 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1874 ddf_layout = 1;
1875 break;
1876
1877 case ALGORITHM_LEFT_ASYMMETRIC_6:
1878 /* RAID5 left_asymmetric, with Q on last device */
1879 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1880 if (*dd_idx >= pd_idx)
1881 (*dd_idx)++;
1882 qd_idx = raid_disks - 1;
1883 break;
1884
1885 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1886 pd_idx = sector_div(stripe2, raid_disks-1);
1887 if (*dd_idx >= pd_idx)
1888 (*dd_idx)++;
1889 qd_idx = raid_disks - 1;
1890 break;
1891
1892 case ALGORITHM_LEFT_SYMMETRIC_6:
1893 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1894 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1895 qd_idx = raid_disks - 1;
1896 break;
1897
1898 case ALGORITHM_RIGHT_SYMMETRIC_6:
1899 pd_idx = sector_div(stripe2, raid_disks-1);
1900 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1901 qd_idx = raid_disks - 1;
1902 break;
1903
1904 case ALGORITHM_PARITY_0_6:
1905 pd_idx = 0;
1906 (*dd_idx)++;
1907 qd_idx = raid_disks - 1;
1908 break;
1909
1910 default:
1911 BUG();
1912 }
1913 break;
1914 }
1915
1916 if (sh) {
1917 sh->pd_idx = pd_idx;
1918 sh->qd_idx = qd_idx;
1919 sh->ddf_layout = ddf_layout;
1920 }
1921 /*
1922 * Finally, compute the new sector number
1923 */
1924 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1925 return new_sector;
1926 }
1927
1928
1929 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1930 {
1931 raid5_conf_t *conf = sh->raid_conf;
1932 int raid_disks = sh->disks;
1933 int data_disks = raid_disks - conf->max_degraded;
1934 sector_t new_sector = sh->sector, check;
1935 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1936 : conf->chunk_sectors;
1937 int algorithm = previous ? conf->prev_algo
1938 : conf->algorithm;
1939 sector_t stripe;
1940 int chunk_offset;
1941 sector_t chunk_number;
1942 int dummy1, dd_idx = i;
1943 sector_t r_sector;
1944 struct stripe_head sh2;
1945
1946
1947 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1948 stripe = new_sector;
1949
1950 if (i == sh->pd_idx)
1951 return 0;
1952 switch(conf->level) {
1953 case 4: break;
1954 case 5:
1955 switch (algorithm) {
1956 case ALGORITHM_LEFT_ASYMMETRIC:
1957 case ALGORITHM_RIGHT_ASYMMETRIC:
1958 if (i > sh->pd_idx)
1959 i--;
1960 break;
1961 case ALGORITHM_LEFT_SYMMETRIC:
1962 case ALGORITHM_RIGHT_SYMMETRIC:
1963 if (i < sh->pd_idx)
1964 i += raid_disks;
1965 i -= (sh->pd_idx + 1);
1966 break;
1967 case ALGORITHM_PARITY_0:
1968 i -= 1;
1969 break;
1970 case ALGORITHM_PARITY_N:
1971 break;
1972 default:
1973 BUG();
1974 }
1975 break;
1976 case 6:
1977 if (i == sh->qd_idx)
1978 return 0; /* It is the Q disk */
1979 switch (algorithm) {
1980 case ALGORITHM_LEFT_ASYMMETRIC:
1981 case ALGORITHM_RIGHT_ASYMMETRIC:
1982 case ALGORITHM_ROTATING_ZERO_RESTART:
1983 case ALGORITHM_ROTATING_N_RESTART:
1984 if (sh->pd_idx == raid_disks-1)
1985 i--; /* Q D D D P */
1986 else if (i > sh->pd_idx)
1987 i -= 2; /* D D P Q D */
1988 break;
1989 case ALGORITHM_LEFT_SYMMETRIC:
1990 case ALGORITHM_RIGHT_SYMMETRIC:
1991 if (sh->pd_idx == raid_disks-1)
1992 i--; /* Q D D D P */
1993 else {
1994 /* D D P Q D */
1995 if (i < sh->pd_idx)
1996 i += raid_disks;
1997 i -= (sh->pd_idx + 2);
1998 }
1999 break;
2000 case ALGORITHM_PARITY_0:
2001 i -= 2;
2002 break;
2003 case ALGORITHM_PARITY_N:
2004 break;
2005 case ALGORITHM_ROTATING_N_CONTINUE:
2006 /* Like left_symmetric, but P is before Q */
2007 if (sh->pd_idx == 0)
2008 i--; /* P D D D Q */
2009 else {
2010 /* D D Q P D */
2011 if (i < sh->pd_idx)
2012 i += raid_disks;
2013 i -= (sh->pd_idx + 1);
2014 }
2015 break;
2016 case ALGORITHM_LEFT_ASYMMETRIC_6:
2017 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2018 if (i > sh->pd_idx)
2019 i--;
2020 break;
2021 case ALGORITHM_LEFT_SYMMETRIC_6:
2022 case ALGORITHM_RIGHT_SYMMETRIC_6:
2023 if (i < sh->pd_idx)
2024 i += data_disks + 1;
2025 i -= (sh->pd_idx + 1);
2026 break;
2027 case ALGORITHM_PARITY_0_6:
2028 i -= 1;
2029 break;
2030 default:
2031 BUG();
2032 }
2033 break;
2034 }
2035
2036 chunk_number = stripe * data_disks + i;
2037 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2038
2039 check = raid5_compute_sector(conf, r_sector,
2040 previous, &dummy1, &sh2);
2041 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2042 || sh2.qd_idx != sh->qd_idx) {
2043 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2044 mdname(conf->mddev));
2045 return 0;
2046 }
2047 return r_sector;
2048 }
2049
2050
2051 static void
2052 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2053 int rcw, int expand)
2054 {
2055 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2056 raid5_conf_t *conf = sh->raid_conf;
2057 int level = conf->level;
2058
2059 if (rcw) {
2060 /* if we are not expanding this is a proper write request, and
2061 * there will be bios with new data to be drained into the
2062 * stripe cache
2063 */
2064 if (!expand) {
2065 sh->reconstruct_state = reconstruct_state_drain_run;
2066 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2067 } else
2068 sh->reconstruct_state = reconstruct_state_run;
2069
2070 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2071
2072 for (i = disks; i--; ) {
2073 struct r5dev *dev = &sh->dev[i];
2074
2075 if (dev->towrite) {
2076 set_bit(R5_LOCKED, &dev->flags);
2077 set_bit(R5_Wantdrain, &dev->flags);
2078 if (!expand)
2079 clear_bit(R5_UPTODATE, &dev->flags);
2080 s->locked++;
2081 }
2082 }
2083 if (s->locked + conf->max_degraded == disks)
2084 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2085 atomic_inc(&conf->pending_full_writes);
2086 } else {
2087 BUG_ON(level == 6);
2088 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2089 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2090
2091 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2092 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2093 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2094 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2095
2096 for (i = disks; i--; ) {
2097 struct r5dev *dev = &sh->dev[i];
2098 if (i == pd_idx)
2099 continue;
2100
2101 if (dev->towrite &&
2102 (test_bit(R5_UPTODATE, &dev->flags) ||
2103 test_bit(R5_Wantcompute, &dev->flags))) {
2104 set_bit(R5_Wantdrain, &dev->flags);
2105 set_bit(R5_LOCKED, &dev->flags);
2106 clear_bit(R5_UPTODATE, &dev->flags);
2107 s->locked++;
2108 }
2109 }
2110 }
2111
2112 /* keep the parity disk(s) locked while asynchronous operations
2113 * are in flight
2114 */
2115 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2116 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2117 s->locked++;
2118
2119 if (level == 6) {
2120 int qd_idx = sh->qd_idx;
2121 struct r5dev *dev = &sh->dev[qd_idx];
2122
2123 set_bit(R5_LOCKED, &dev->flags);
2124 clear_bit(R5_UPTODATE, &dev->flags);
2125 s->locked++;
2126 }
2127
2128 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2129 __func__, (unsigned long long)sh->sector,
2130 s->locked, s->ops_request);
2131 }
2132
2133 /*
2134 * Each stripe/dev can have one or more bion attached.
2135 * toread/towrite point to the first in a chain.
2136 * The bi_next chain must be in order.
2137 */
2138 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2139 {
2140 struct bio **bip;
2141 raid5_conf_t *conf = sh->raid_conf;
2142 int firstwrite=0;
2143
2144 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2145 (unsigned long long)bi->bi_sector,
2146 (unsigned long long)sh->sector);
2147
2148
2149 spin_lock(&sh->lock);
2150 spin_lock_irq(&conf->device_lock);
2151 if (forwrite) {
2152 bip = &sh->dev[dd_idx].towrite;
2153 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2154 firstwrite = 1;
2155 } else
2156 bip = &sh->dev[dd_idx].toread;
2157 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2158 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2159 goto overlap;
2160 bip = & (*bip)->bi_next;
2161 }
2162 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2163 goto overlap;
2164
2165 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2166 if (*bip)
2167 bi->bi_next = *bip;
2168 *bip = bi;
2169 bi->bi_phys_segments++;
2170 spin_unlock_irq(&conf->device_lock);
2171 spin_unlock(&sh->lock);
2172
2173 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2174 (unsigned long long)bi->bi_sector,
2175 (unsigned long long)sh->sector, dd_idx);
2176
2177 if (conf->mddev->bitmap && firstwrite) {
2178 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2179 STRIPE_SECTORS, 0);
2180 sh->bm_seq = conf->seq_flush+1;
2181 set_bit(STRIPE_BIT_DELAY, &sh->state);
2182 }
2183
2184 if (forwrite) {
2185 /* check if page is covered */
2186 sector_t sector = sh->dev[dd_idx].sector;
2187 for (bi=sh->dev[dd_idx].towrite;
2188 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2189 bi && bi->bi_sector <= sector;
2190 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2191 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2192 sector = bi->bi_sector + (bi->bi_size>>9);
2193 }
2194 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2195 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2196 }
2197 return 1;
2198
2199 overlap:
2200 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2201 spin_unlock_irq(&conf->device_lock);
2202 spin_unlock(&sh->lock);
2203 return 0;
2204 }
2205
2206 static void end_reshape(raid5_conf_t *conf);
2207
2208 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2209 struct stripe_head *sh)
2210 {
2211 int sectors_per_chunk =
2212 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2213 int dd_idx;
2214 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2215 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2216
2217 raid5_compute_sector(conf,
2218 stripe * (disks - conf->max_degraded)
2219 *sectors_per_chunk + chunk_offset,
2220 previous,
2221 &dd_idx, sh);
2222 }
2223
2224 static void
2225 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2226 struct stripe_head_state *s, int disks,
2227 struct bio **return_bi)
2228 {
2229 int i;
2230 for (i = disks; i--; ) {
2231 struct bio *bi;
2232 int bitmap_end = 0;
2233
2234 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2235 mdk_rdev_t *rdev;
2236 rcu_read_lock();
2237 rdev = rcu_dereference(conf->disks[i].rdev);
2238 if (rdev && test_bit(In_sync, &rdev->flags))
2239 /* multiple read failures in one stripe */
2240 md_error(conf->mddev, rdev);
2241 rcu_read_unlock();
2242 }
2243 spin_lock_irq(&conf->device_lock);
2244 /* fail all writes first */
2245 bi = sh->dev[i].towrite;
2246 sh->dev[i].towrite = NULL;
2247 if (bi) {
2248 s->to_write--;
2249 bitmap_end = 1;
2250 }
2251
2252 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2253 wake_up(&conf->wait_for_overlap);
2254
2255 while (bi && bi->bi_sector <
2256 sh->dev[i].sector + STRIPE_SECTORS) {
2257 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2258 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2259 if (!raid5_dec_bi_phys_segments(bi)) {
2260 md_write_end(conf->mddev);
2261 bi->bi_next = *return_bi;
2262 *return_bi = bi;
2263 }
2264 bi = nextbi;
2265 }
2266 /* and fail all 'written' */
2267 bi = sh->dev[i].written;
2268 sh->dev[i].written = NULL;
2269 if (bi) bitmap_end = 1;
2270 while (bi && bi->bi_sector <
2271 sh->dev[i].sector + STRIPE_SECTORS) {
2272 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2273 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2274 if (!raid5_dec_bi_phys_segments(bi)) {
2275 md_write_end(conf->mddev);
2276 bi->bi_next = *return_bi;
2277 *return_bi = bi;
2278 }
2279 bi = bi2;
2280 }
2281
2282 /* fail any reads if this device is non-operational and
2283 * the data has not reached the cache yet.
2284 */
2285 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2286 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2287 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2288 bi = sh->dev[i].toread;
2289 sh->dev[i].toread = NULL;
2290 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2291 wake_up(&conf->wait_for_overlap);
2292 if (bi) s->to_read--;
2293 while (bi && bi->bi_sector <
2294 sh->dev[i].sector + STRIPE_SECTORS) {
2295 struct bio *nextbi =
2296 r5_next_bio(bi, sh->dev[i].sector);
2297 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2298 if (!raid5_dec_bi_phys_segments(bi)) {
2299 bi->bi_next = *return_bi;
2300 *return_bi = bi;
2301 }
2302 bi = nextbi;
2303 }
2304 }
2305 spin_unlock_irq(&conf->device_lock);
2306 if (bitmap_end)
2307 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2308 STRIPE_SECTORS, 0, 0);
2309 }
2310
2311 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2312 if (atomic_dec_and_test(&conf->pending_full_writes))
2313 md_wakeup_thread(conf->mddev->thread);
2314 }
2315
2316 /* fetch_block5 - checks the given member device to see if its data needs
2317 * to be read or computed to satisfy a request.
2318 *
2319 * Returns 1 when no more member devices need to be checked, otherwise returns
2320 * 0 to tell the loop in handle_stripe_fill5 to continue
2321 */
2322 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2323 int disk_idx, int disks)
2324 {
2325 struct r5dev *dev = &sh->dev[disk_idx];
2326 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2327
2328 /* is the data in this block needed, and can we get it? */
2329 if (!test_bit(R5_LOCKED, &dev->flags) &&
2330 !test_bit(R5_UPTODATE, &dev->flags) &&
2331 (dev->toread ||
2332 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2333 s->syncing || s->expanding ||
2334 (s->failed &&
2335 (failed_dev->toread ||
2336 (failed_dev->towrite &&
2337 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2338 /* We would like to get this block, possibly by computing it,
2339 * otherwise read it if the backing disk is insync
2340 */
2341 if ((s->uptodate == disks - 1) &&
2342 (s->failed && disk_idx == s->failed_num)) {
2343 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2344 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2345 set_bit(R5_Wantcompute, &dev->flags);
2346 sh->ops.target = disk_idx;
2347 sh->ops.target2 = -1;
2348 s->req_compute = 1;
2349 /* Careful: from this point on 'uptodate' is in the eye
2350 * of raid_run_ops which services 'compute' operations
2351 * before writes. R5_Wantcompute flags a block that will
2352 * be R5_UPTODATE by the time it is needed for a
2353 * subsequent operation.
2354 */
2355 s->uptodate++;
2356 return 1; /* uptodate + compute == disks */
2357 } else if (test_bit(R5_Insync, &dev->flags)) {
2358 set_bit(R5_LOCKED, &dev->flags);
2359 set_bit(R5_Wantread, &dev->flags);
2360 s->locked++;
2361 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2362 s->syncing);
2363 }
2364 }
2365
2366 return 0;
2367 }
2368
2369 /**
2370 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2371 */
2372 static void handle_stripe_fill5(struct stripe_head *sh,
2373 struct stripe_head_state *s, int disks)
2374 {
2375 int i;
2376
2377 /* look for blocks to read/compute, skip this if a compute
2378 * is already in flight, or if the stripe contents are in the
2379 * midst of changing due to a write
2380 */
2381 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2382 !sh->reconstruct_state)
2383 for (i = disks; i--; )
2384 if (fetch_block5(sh, s, i, disks))
2385 break;
2386 set_bit(STRIPE_HANDLE, &sh->state);
2387 }
2388
2389 /* fetch_block6 - checks the given member device to see if its data needs
2390 * to be read or computed to satisfy a request.
2391 *
2392 * Returns 1 when no more member devices need to be checked, otherwise returns
2393 * 0 to tell the loop in handle_stripe_fill6 to continue
2394 */
2395 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2396 struct r6_state *r6s, int disk_idx, int disks)
2397 {
2398 struct r5dev *dev = &sh->dev[disk_idx];
2399 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2400 &sh->dev[r6s->failed_num[1]] };
2401
2402 if (!test_bit(R5_LOCKED, &dev->flags) &&
2403 !test_bit(R5_UPTODATE, &dev->flags) &&
2404 (dev->toread ||
2405 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2406 s->syncing || s->expanding ||
2407 (s->failed >= 1 &&
2408 (fdev[0]->toread || s->to_write)) ||
2409 (s->failed >= 2 &&
2410 (fdev[1]->toread || s->to_write)))) {
2411 /* we would like to get this block, possibly by computing it,
2412 * otherwise read it if the backing disk is insync
2413 */
2414 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2415 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2416 if ((s->uptodate == disks - 1) &&
2417 (s->failed && (disk_idx == r6s->failed_num[0] ||
2418 disk_idx == r6s->failed_num[1]))) {
2419 /* have disk failed, and we're requested to fetch it;
2420 * do compute it
2421 */
2422 pr_debug("Computing stripe %llu block %d\n",
2423 (unsigned long long)sh->sector, disk_idx);
2424 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2425 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2426 set_bit(R5_Wantcompute, &dev->flags);
2427 sh->ops.target = disk_idx;
2428 sh->ops.target2 = -1; /* no 2nd target */
2429 s->req_compute = 1;
2430 s->uptodate++;
2431 return 1;
2432 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2433 /* Computing 2-failure is *very* expensive; only
2434 * do it if failed >= 2
2435 */
2436 int other;
2437 for (other = disks; other--; ) {
2438 if (other == disk_idx)
2439 continue;
2440 if (!test_bit(R5_UPTODATE,
2441 &sh->dev[other].flags))
2442 break;
2443 }
2444 BUG_ON(other < 0);
2445 pr_debug("Computing stripe %llu blocks %d,%d\n",
2446 (unsigned long long)sh->sector,
2447 disk_idx, other);
2448 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2449 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2450 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2451 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2452 sh->ops.target = disk_idx;
2453 sh->ops.target2 = other;
2454 s->uptodate += 2;
2455 s->req_compute = 1;
2456 return 1;
2457 } else if (test_bit(R5_Insync, &dev->flags)) {
2458 set_bit(R5_LOCKED, &dev->flags);
2459 set_bit(R5_Wantread, &dev->flags);
2460 s->locked++;
2461 pr_debug("Reading block %d (sync=%d)\n",
2462 disk_idx, s->syncing);
2463 }
2464 }
2465
2466 return 0;
2467 }
2468
2469 /**
2470 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2471 */
2472 static void handle_stripe_fill6(struct stripe_head *sh,
2473 struct stripe_head_state *s, struct r6_state *r6s,
2474 int disks)
2475 {
2476 int i;
2477
2478 /* look for blocks to read/compute, skip this if a compute
2479 * is already in flight, or if the stripe contents are in the
2480 * midst of changing due to a write
2481 */
2482 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2483 !sh->reconstruct_state)
2484 for (i = disks; i--; )
2485 if (fetch_block6(sh, s, r6s, i, disks))
2486 break;
2487 set_bit(STRIPE_HANDLE, &sh->state);
2488 }
2489
2490
2491 /* handle_stripe_clean_event
2492 * any written block on an uptodate or failed drive can be returned.
2493 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2494 * never LOCKED, so we don't need to test 'failed' directly.
2495 */
2496 static void handle_stripe_clean_event(raid5_conf_t *conf,
2497 struct stripe_head *sh, int disks, struct bio **return_bi)
2498 {
2499 int i;
2500 struct r5dev *dev;
2501
2502 for (i = disks; i--; )
2503 if (sh->dev[i].written) {
2504 dev = &sh->dev[i];
2505 if (!test_bit(R5_LOCKED, &dev->flags) &&
2506 test_bit(R5_UPTODATE, &dev->flags)) {
2507 /* We can return any write requests */
2508 struct bio *wbi, *wbi2;
2509 int bitmap_end = 0;
2510 pr_debug("Return write for disc %d\n", i);
2511 spin_lock_irq(&conf->device_lock);
2512 wbi = dev->written;
2513 dev->written = NULL;
2514 while (wbi && wbi->bi_sector <
2515 dev->sector + STRIPE_SECTORS) {
2516 wbi2 = r5_next_bio(wbi, dev->sector);
2517 if (!raid5_dec_bi_phys_segments(wbi)) {
2518 md_write_end(conf->mddev);
2519 wbi->bi_next = *return_bi;
2520 *return_bi = wbi;
2521 }
2522 wbi = wbi2;
2523 }
2524 if (dev->towrite == NULL)
2525 bitmap_end = 1;
2526 spin_unlock_irq(&conf->device_lock);
2527 if (bitmap_end)
2528 bitmap_endwrite(conf->mddev->bitmap,
2529 sh->sector,
2530 STRIPE_SECTORS,
2531 !test_bit(STRIPE_DEGRADED, &sh->state),
2532 0);
2533 }
2534 }
2535
2536 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2537 if (atomic_dec_and_test(&conf->pending_full_writes))
2538 md_wakeup_thread(conf->mddev->thread);
2539 }
2540
2541 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2542 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2543 {
2544 int rmw = 0, rcw = 0, i;
2545 for (i = disks; i--; ) {
2546 /* would I have to read this buffer for read_modify_write */
2547 struct r5dev *dev = &sh->dev[i];
2548 if ((dev->towrite || i == sh->pd_idx) &&
2549 !test_bit(R5_LOCKED, &dev->flags) &&
2550 !(test_bit(R5_UPTODATE, &dev->flags) ||
2551 test_bit(R5_Wantcompute, &dev->flags))) {
2552 if (test_bit(R5_Insync, &dev->flags))
2553 rmw++;
2554 else
2555 rmw += 2*disks; /* cannot read it */
2556 }
2557 /* Would I have to read this buffer for reconstruct_write */
2558 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2559 !test_bit(R5_LOCKED, &dev->flags) &&
2560 !(test_bit(R5_UPTODATE, &dev->flags) ||
2561 test_bit(R5_Wantcompute, &dev->flags))) {
2562 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2563 else
2564 rcw += 2*disks;
2565 }
2566 }
2567 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2568 (unsigned long long)sh->sector, rmw, rcw);
2569 set_bit(STRIPE_HANDLE, &sh->state);
2570 if (rmw < rcw && rmw > 0)
2571 /* prefer read-modify-write, but need to get some data */
2572 for (i = disks; i--; ) {
2573 struct r5dev *dev = &sh->dev[i];
2574 if ((dev->towrite || i == sh->pd_idx) &&
2575 !test_bit(R5_LOCKED, &dev->flags) &&
2576 !(test_bit(R5_UPTODATE, &dev->flags) ||
2577 test_bit(R5_Wantcompute, &dev->flags)) &&
2578 test_bit(R5_Insync, &dev->flags)) {
2579 if (
2580 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2581 pr_debug("Read_old block "
2582 "%d for r-m-w\n", i);
2583 set_bit(R5_LOCKED, &dev->flags);
2584 set_bit(R5_Wantread, &dev->flags);
2585 s->locked++;
2586 } else {
2587 set_bit(STRIPE_DELAYED, &sh->state);
2588 set_bit(STRIPE_HANDLE, &sh->state);
2589 }
2590 }
2591 }
2592 if (rcw <= rmw && rcw > 0)
2593 /* want reconstruct write, but need to get some data */
2594 for (i = disks; i--; ) {
2595 struct r5dev *dev = &sh->dev[i];
2596 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2597 i != sh->pd_idx &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604 pr_debug("Read_old block "
2605 "%d for Reconstruct\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612 }
2613 }
2614 }
2615 /* now if nothing is locked, and if we have enough data,
2616 * we can start a write request
2617 */
2618 /* since handle_stripe can be called at any time we need to handle the
2619 * case where a compute block operation has been submitted and then a
2620 * subsequent call wants to start a write request. raid_run_ops only
2621 * handles the case where compute block and reconstruct are requested
2622 * simultaneously. If this is not the case then new writes need to be
2623 * held off until the compute completes.
2624 */
2625 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2626 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2627 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2628 schedule_reconstruction(sh, s, rcw == 0, 0);
2629 }
2630
2631 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2632 struct stripe_head *sh, struct stripe_head_state *s,
2633 struct r6_state *r6s, int disks)
2634 {
2635 int rcw = 0, pd_idx = sh->pd_idx, i;
2636 int qd_idx = sh->qd_idx;
2637
2638 set_bit(STRIPE_HANDLE, &sh->state);
2639 for (i = disks; i--; ) {
2640 struct r5dev *dev = &sh->dev[i];
2641 /* check if we haven't enough data */
2642 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2643 i != pd_idx && i != qd_idx &&
2644 !test_bit(R5_LOCKED, &dev->flags) &&
2645 !(test_bit(R5_UPTODATE, &dev->flags) ||
2646 test_bit(R5_Wantcompute, &dev->flags))) {
2647 rcw++;
2648 if (!test_bit(R5_Insync, &dev->flags))
2649 continue; /* it's a failed drive */
2650
2651 if (
2652 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2653 pr_debug("Read_old stripe %llu "
2654 "block %d for Reconstruct\n",
2655 (unsigned long long)sh->sector, i);
2656 set_bit(R5_LOCKED, &dev->flags);
2657 set_bit(R5_Wantread, &dev->flags);
2658 s->locked++;
2659 } else {
2660 pr_debug("Request delayed stripe %llu "
2661 "block %d for Reconstruct\n",
2662 (unsigned long long)sh->sector, i);
2663 set_bit(STRIPE_DELAYED, &sh->state);
2664 set_bit(STRIPE_HANDLE, &sh->state);
2665 }
2666 }
2667 }
2668 /* now if nothing is locked, and if we have enough data, we can start a
2669 * write request
2670 */
2671 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2672 s->locked == 0 && rcw == 0 &&
2673 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2674 schedule_reconstruction(sh, s, 1, 0);
2675 }
2676 }
2677
2678 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2679 struct stripe_head_state *s, int disks)
2680 {
2681 struct r5dev *dev = NULL;
2682
2683 set_bit(STRIPE_HANDLE, &sh->state);
2684
2685 switch (sh->check_state) {
2686 case check_state_idle:
2687 /* start a new check operation if there are no failures */
2688 if (s->failed == 0) {
2689 BUG_ON(s->uptodate != disks);
2690 sh->check_state = check_state_run;
2691 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2692 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2693 s->uptodate--;
2694 break;
2695 }
2696 dev = &sh->dev[s->failed_num];
2697 /* fall through */
2698 case check_state_compute_result:
2699 sh->check_state = check_state_idle;
2700 if (!dev)
2701 dev = &sh->dev[sh->pd_idx];
2702
2703 /* check that a write has not made the stripe insync */
2704 if (test_bit(STRIPE_INSYNC, &sh->state))
2705 break;
2706
2707 /* either failed parity check, or recovery is happening */
2708 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2709 BUG_ON(s->uptodate != disks);
2710
2711 set_bit(R5_LOCKED, &dev->flags);
2712 s->locked++;
2713 set_bit(R5_Wantwrite, &dev->flags);
2714
2715 clear_bit(STRIPE_DEGRADED, &sh->state);
2716 set_bit(STRIPE_INSYNC, &sh->state);
2717 break;
2718 case check_state_run:
2719 break; /* we will be called again upon completion */
2720 case check_state_check_result:
2721 sh->check_state = check_state_idle;
2722
2723 /* if a failure occurred during the check operation, leave
2724 * STRIPE_INSYNC not set and let the stripe be handled again
2725 */
2726 if (s->failed)
2727 break;
2728
2729 /* handle a successful check operation, if parity is correct
2730 * we are done. Otherwise update the mismatch count and repair
2731 * parity if !MD_RECOVERY_CHECK
2732 */
2733 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2734 /* parity is correct (on disc,
2735 * not in buffer any more)
2736 */
2737 set_bit(STRIPE_INSYNC, &sh->state);
2738 else {
2739 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2740 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2741 /* don't try to repair!! */
2742 set_bit(STRIPE_INSYNC, &sh->state);
2743 else {
2744 sh->check_state = check_state_compute_run;
2745 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2746 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2747 set_bit(R5_Wantcompute,
2748 &sh->dev[sh->pd_idx].flags);
2749 sh->ops.target = sh->pd_idx;
2750 sh->ops.target2 = -1;
2751 s->uptodate++;
2752 }
2753 }
2754 break;
2755 case check_state_compute_run:
2756 break;
2757 default:
2758 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2759 __func__, sh->check_state,
2760 (unsigned long long) sh->sector);
2761 BUG();
2762 }
2763 }
2764
2765
2766 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2767 struct stripe_head_state *s,
2768 struct r6_state *r6s, int disks)
2769 {
2770 int pd_idx = sh->pd_idx;
2771 int qd_idx = sh->qd_idx;
2772 struct r5dev *dev;
2773
2774 set_bit(STRIPE_HANDLE, &sh->state);
2775
2776 BUG_ON(s->failed > 2);
2777
2778 /* Want to check and possibly repair P and Q.
2779 * However there could be one 'failed' device, in which
2780 * case we can only check one of them, possibly using the
2781 * other to generate missing data
2782 */
2783
2784 switch (sh->check_state) {
2785 case check_state_idle:
2786 /* start a new check operation if there are < 2 failures */
2787 if (s->failed == r6s->q_failed) {
2788 /* The only possible failed device holds Q, so it
2789 * makes sense to check P (If anything else were failed,
2790 * we would have used P to recreate it).
2791 */
2792 sh->check_state = check_state_run;
2793 }
2794 if (!r6s->q_failed && s->failed < 2) {
2795 /* Q is not failed, and we didn't use it to generate
2796 * anything, so it makes sense to check it
2797 */
2798 if (sh->check_state == check_state_run)
2799 sh->check_state = check_state_run_pq;
2800 else
2801 sh->check_state = check_state_run_q;
2802 }
2803
2804 /* discard potentially stale zero_sum_result */
2805 sh->ops.zero_sum_result = 0;
2806
2807 if (sh->check_state == check_state_run) {
2808 /* async_xor_zero_sum destroys the contents of P */
2809 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2810 s->uptodate--;
2811 }
2812 if (sh->check_state >= check_state_run &&
2813 sh->check_state <= check_state_run_pq) {
2814 /* async_syndrome_zero_sum preserves P and Q, so
2815 * no need to mark them !uptodate here
2816 */
2817 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2818 break;
2819 }
2820
2821 /* we have 2-disk failure */
2822 BUG_ON(s->failed != 2);
2823 /* fall through */
2824 case check_state_compute_result:
2825 sh->check_state = check_state_idle;
2826
2827 /* check that a write has not made the stripe insync */
2828 if (test_bit(STRIPE_INSYNC, &sh->state))
2829 break;
2830
2831 /* now write out any block on a failed drive,
2832 * or P or Q if they were recomputed
2833 */
2834 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2835 if (s->failed == 2) {
2836 dev = &sh->dev[r6s->failed_num[1]];
2837 s->locked++;
2838 set_bit(R5_LOCKED, &dev->flags);
2839 set_bit(R5_Wantwrite, &dev->flags);
2840 }
2841 if (s->failed >= 1) {
2842 dev = &sh->dev[r6s->failed_num[0]];
2843 s->locked++;
2844 set_bit(R5_LOCKED, &dev->flags);
2845 set_bit(R5_Wantwrite, &dev->flags);
2846 }
2847 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2848 dev = &sh->dev[pd_idx];
2849 s->locked++;
2850 set_bit(R5_LOCKED, &dev->flags);
2851 set_bit(R5_Wantwrite, &dev->flags);
2852 }
2853 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2854 dev = &sh->dev[qd_idx];
2855 s->locked++;
2856 set_bit(R5_LOCKED, &dev->flags);
2857 set_bit(R5_Wantwrite, &dev->flags);
2858 }
2859 clear_bit(STRIPE_DEGRADED, &sh->state);
2860
2861 set_bit(STRIPE_INSYNC, &sh->state);
2862 break;
2863 case check_state_run:
2864 case check_state_run_q:
2865 case check_state_run_pq:
2866 break; /* we will be called again upon completion */
2867 case check_state_check_result:
2868 sh->check_state = check_state_idle;
2869
2870 /* handle a successful check operation, if parity is correct
2871 * we are done. Otherwise update the mismatch count and repair
2872 * parity if !MD_RECOVERY_CHECK
2873 */
2874 if (sh->ops.zero_sum_result == 0) {
2875 /* both parities are correct */
2876 if (!s->failed)
2877 set_bit(STRIPE_INSYNC, &sh->state);
2878 else {
2879 /* in contrast to the raid5 case we can validate
2880 * parity, but still have a failure to write
2881 * back
2882 */
2883 sh->check_state = check_state_compute_result;
2884 /* Returning at this point means that we may go
2885 * off and bring p and/or q uptodate again so
2886 * we make sure to check zero_sum_result again
2887 * to verify if p or q need writeback
2888 */
2889 }
2890 } else {
2891 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2892 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2893 /* don't try to repair!! */
2894 set_bit(STRIPE_INSYNC, &sh->state);
2895 else {
2896 int *target = &sh->ops.target;
2897
2898 sh->ops.target = -1;
2899 sh->ops.target2 = -1;
2900 sh->check_state = check_state_compute_run;
2901 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2902 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2903 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2904 set_bit(R5_Wantcompute,
2905 &sh->dev[pd_idx].flags);
2906 *target = pd_idx;
2907 target = &sh->ops.target2;
2908 s->uptodate++;
2909 }
2910 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2911 set_bit(R5_Wantcompute,
2912 &sh->dev[qd_idx].flags);
2913 *target = qd_idx;
2914 s->uptodate++;
2915 }
2916 }
2917 }
2918 break;
2919 case check_state_compute_run:
2920 break;
2921 default:
2922 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2923 __func__, sh->check_state,
2924 (unsigned long long) sh->sector);
2925 BUG();
2926 }
2927 }
2928
2929 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2930 struct r6_state *r6s)
2931 {
2932 int i;
2933
2934 /* We have read all the blocks in this stripe and now we need to
2935 * copy some of them into a target stripe for expand.
2936 */
2937 struct dma_async_tx_descriptor *tx = NULL;
2938 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2939 for (i = 0; i < sh->disks; i++)
2940 if (i != sh->pd_idx && i != sh->qd_idx) {
2941 int dd_idx, j;
2942 struct stripe_head *sh2;
2943 struct async_submit_ctl submit;
2944
2945 sector_t bn = compute_blocknr(sh, i, 1);
2946 sector_t s = raid5_compute_sector(conf, bn, 0,
2947 &dd_idx, NULL);
2948 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2949 if (sh2 == NULL)
2950 /* so far only the early blocks of this stripe
2951 * have been requested. When later blocks
2952 * get requested, we will try again
2953 */
2954 continue;
2955 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2956 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2957 /* must have already done this block */
2958 release_stripe(sh2);
2959 continue;
2960 }
2961
2962 /* place all the copies on one channel */
2963 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2964 tx = async_memcpy(sh2->dev[dd_idx].page,
2965 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2966 &submit);
2967
2968 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2969 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2970 for (j = 0; j < conf->raid_disks; j++)
2971 if (j != sh2->pd_idx &&
2972 (!r6s || j != sh2->qd_idx) &&
2973 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2974 break;
2975 if (j == conf->raid_disks) {
2976 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2977 set_bit(STRIPE_HANDLE, &sh2->state);
2978 }
2979 release_stripe(sh2);
2980
2981 }
2982 /* done submitting copies, wait for them to complete */
2983 if (tx) {
2984 async_tx_ack(tx);
2985 dma_wait_for_async_tx(tx);
2986 }
2987 }
2988
2989
2990 /*
2991 * handle_stripe - do things to a stripe.
2992 *
2993 * We lock the stripe and then examine the state of various bits
2994 * to see what needs to be done.
2995 * Possible results:
2996 * return some read request which now have data
2997 * return some write requests which are safely on disc
2998 * schedule a read on some buffers
2999 * schedule a write of some buffers
3000 * return confirmation of parity correctness
3001 *
3002 * buffers are taken off read_list or write_list, and bh_cache buffers
3003 * get BH_Lock set before the stripe lock is released.
3004 *
3005 */
3006
3007 static void handle_stripe5(struct stripe_head *sh)
3008 {
3009 raid5_conf_t *conf = sh->raid_conf;
3010 int disks = sh->disks, i;
3011 struct bio *return_bi = NULL;
3012 struct stripe_head_state s;
3013 struct r5dev *dev;
3014 mdk_rdev_t *blocked_rdev = NULL;
3015 int prexor;
3016 int dec_preread_active = 0;
3017
3018 memset(&s, 0, sizeof(s));
3019 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3020 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3021 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3022 sh->reconstruct_state);
3023
3024 spin_lock(&sh->lock);
3025 clear_bit(STRIPE_HANDLE, &sh->state);
3026 clear_bit(STRIPE_DELAYED, &sh->state);
3027
3028 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3029 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3030 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3031
3032 /* Now to look around and see what can be done */
3033 rcu_read_lock();
3034 for (i=disks; i--; ) {
3035 mdk_rdev_t *rdev;
3036
3037 dev = &sh->dev[i];
3038
3039 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3040 "written %p\n", i, dev->flags, dev->toread, dev->read,
3041 dev->towrite, dev->written);
3042
3043 /* maybe we can request a biofill operation
3044 *
3045 * new wantfill requests are only permitted while
3046 * ops_complete_biofill is guaranteed to be inactive
3047 */
3048 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3049 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3050 set_bit(R5_Wantfill, &dev->flags);
3051
3052 /* now count some things */
3053 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3054 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3055 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3056
3057 if (test_bit(R5_Wantfill, &dev->flags))
3058 s.to_fill++;
3059 else if (dev->toread)
3060 s.to_read++;
3061 if (dev->towrite) {
3062 s.to_write++;
3063 if (!test_bit(R5_OVERWRITE, &dev->flags))
3064 s.non_overwrite++;
3065 }
3066 if (dev->written)
3067 s.written++;
3068 rdev = rcu_dereference(conf->disks[i].rdev);
3069 if (blocked_rdev == NULL &&
3070 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3071 blocked_rdev = rdev;
3072 atomic_inc(&rdev->nr_pending);
3073 }
3074 clear_bit(R5_Insync, &dev->flags);
3075 if (!rdev)
3076 /* Not in-sync */;
3077 else if (test_bit(In_sync, &rdev->flags))
3078 set_bit(R5_Insync, &dev->flags);
3079 else {
3080 /* could be in-sync depending on recovery/reshape status */
3081 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3082 set_bit(R5_Insync, &dev->flags);
3083 }
3084 if (!test_bit(R5_Insync, &dev->flags)) {
3085 /* The ReadError flag will just be confusing now */
3086 clear_bit(R5_ReadError, &dev->flags);
3087 clear_bit(R5_ReWrite, &dev->flags);
3088 }
3089 if (test_bit(R5_ReadError, &dev->flags))
3090 clear_bit(R5_Insync, &dev->flags);
3091 if (!test_bit(R5_Insync, &dev->flags)) {
3092 s.failed++;
3093 s.failed_num = i;
3094 }
3095 }
3096 rcu_read_unlock();
3097
3098 if (unlikely(blocked_rdev)) {
3099 if (s.syncing || s.expanding || s.expanded ||
3100 s.to_write || s.written) {
3101 set_bit(STRIPE_HANDLE, &sh->state);
3102 goto unlock;
3103 }
3104 /* There is nothing for the blocked_rdev to block */
3105 rdev_dec_pending(blocked_rdev, conf->mddev);
3106 blocked_rdev = NULL;
3107 }
3108
3109 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3110 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3111 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3112 }
3113
3114 pr_debug("locked=%d uptodate=%d to_read=%d"
3115 " to_write=%d failed=%d failed_num=%d\n",
3116 s.locked, s.uptodate, s.to_read, s.to_write,
3117 s.failed, s.failed_num);
3118 /* check if the array has lost two devices and, if so, some requests might
3119 * need to be failed
3120 */
3121 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3122 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3123 if (s.failed > 1 && s.syncing) {
3124 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3125 clear_bit(STRIPE_SYNCING, &sh->state);
3126 s.syncing = 0;
3127 }
3128
3129 /* might be able to return some write requests if the parity block
3130 * is safe, or on a failed drive
3131 */
3132 dev = &sh->dev[sh->pd_idx];
3133 if ( s.written &&
3134 ((test_bit(R5_Insync, &dev->flags) &&
3135 !test_bit(R5_LOCKED, &dev->flags) &&
3136 test_bit(R5_UPTODATE, &dev->flags)) ||
3137 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3138 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3139
3140 /* Now we might consider reading some blocks, either to check/generate
3141 * parity, or to satisfy requests
3142 * or to load a block that is being partially written.
3143 */
3144 if (s.to_read || s.non_overwrite ||
3145 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3146 handle_stripe_fill5(sh, &s, disks);
3147
3148 /* Now we check to see if any write operations have recently
3149 * completed
3150 */
3151 prexor = 0;
3152 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3153 prexor = 1;
3154 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3155 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3156 sh->reconstruct_state = reconstruct_state_idle;
3157
3158 /* All the 'written' buffers and the parity block are ready to
3159 * be written back to disk
3160 */
3161 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3162 for (i = disks; i--; ) {
3163 dev = &sh->dev[i];
3164 if (test_bit(R5_LOCKED, &dev->flags) &&
3165 (i == sh->pd_idx || dev->written)) {
3166 pr_debug("Writing block %d\n", i);
3167 set_bit(R5_Wantwrite, &dev->flags);
3168 if (prexor)
3169 continue;
3170 if (!test_bit(R5_Insync, &dev->flags) ||
3171 (i == sh->pd_idx && s.failed == 0))
3172 set_bit(STRIPE_INSYNC, &sh->state);
3173 }
3174 }
3175 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3176 dec_preread_active = 1;
3177 }
3178
3179 /* Now to consider new write requests and what else, if anything
3180 * should be read. We do not handle new writes when:
3181 * 1/ A 'write' operation (copy+xor) is already in flight.
3182 * 2/ A 'check' operation is in flight, as it may clobber the parity
3183 * block.
3184 */
3185 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3186 handle_stripe_dirtying5(conf, sh, &s, disks);
3187
3188 /* maybe we need to check and possibly fix the parity for this stripe
3189 * Any reads will already have been scheduled, so we just see if enough
3190 * data is available. The parity check is held off while parity
3191 * dependent operations are in flight.
3192 */
3193 if (sh->check_state ||
3194 (s.syncing && s.locked == 0 &&
3195 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3196 !test_bit(STRIPE_INSYNC, &sh->state)))
3197 handle_parity_checks5(conf, sh, &s, disks);
3198
3199 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3200 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3201 clear_bit(STRIPE_SYNCING, &sh->state);
3202 }
3203
3204 /* If the failed drive is just a ReadError, then we might need to progress
3205 * the repair/check process
3206 */
3207 if (s.failed == 1 && !conf->mddev->ro &&
3208 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3209 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3210 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3211 ) {
3212 dev = &sh->dev[s.failed_num];
3213 if (!test_bit(R5_ReWrite, &dev->flags)) {
3214 set_bit(R5_Wantwrite, &dev->flags);
3215 set_bit(R5_ReWrite, &dev->flags);
3216 set_bit(R5_LOCKED, &dev->flags);
3217 s.locked++;
3218 } else {
3219 /* let's read it back */
3220 set_bit(R5_Wantread, &dev->flags);
3221 set_bit(R5_LOCKED, &dev->flags);
3222 s.locked++;
3223 }
3224 }
3225
3226 /* Finish reconstruct operations initiated by the expansion process */
3227 if (sh->reconstruct_state == reconstruct_state_result) {
3228 struct stripe_head *sh2
3229 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3230 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3231 /* sh cannot be written until sh2 has been read.
3232 * so arrange for sh to be delayed a little
3233 */
3234 set_bit(STRIPE_DELAYED, &sh->state);
3235 set_bit(STRIPE_HANDLE, &sh->state);
3236 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3237 &sh2->state))
3238 atomic_inc(&conf->preread_active_stripes);
3239 release_stripe(sh2);
3240 goto unlock;
3241 }
3242 if (sh2)
3243 release_stripe(sh2);
3244
3245 sh->reconstruct_state = reconstruct_state_idle;
3246 clear_bit(STRIPE_EXPANDING, &sh->state);
3247 for (i = conf->raid_disks; i--; ) {
3248 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3249 set_bit(R5_LOCKED, &sh->dev[i].flags);
3250 s.locked++;
3251 }
3252 }
3253
3254 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3255 !sh->reconstruct_state) {
3256 /* Need to write out all blocks after computing parity */
3257 sh->disks = conf->raid_disks;
3258 stripe_set_idx(sh->sector, conf, 0, sh);
3259 schedule_reconstruction(sh, &s, 1, 1);
3260 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3261 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3262 atomic_dec(&conf->reshape_stripes);
3263 wake_up(&conf->wait_for_overlap);
3264 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3265 }
3266
3267 if (s.expanding && s.locked == 0 &&
3268 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3269 handle_stripe_expansion(conf, sh, NULL);
3270
3271 unlock:
3272 spin_unlock(&sh->lock);
3273
3274 /* wait for this device to become unblocked */
3275 if (unlikely(blocked_rdev))
3276 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3277
3278 if (s.ops_request)
3279 raid_run_ops(sh, s.ops_request);
3280
3281 ops_run_io(sh, &s);
3282
3283 if (dec_preread_active) {
3284 /* We delay this until after ops_run_io so that if make_request
3285 * is waiting on a barrier, it won't continue until the writes
3286 * have actually been submitted.
3287 */
3288 atomic_dec(&conf->preread_active_stripes);
3289 if (atomic_read(&conf->preread_active_stripes) <
3290 IO_THRESHOLD)
3291 md_wakeup_thread(conf->mddev->thread);
3292 }
3293 return_io(return_bi);
3294 }
3295
3296 static void handle_stripe6(struct stripe_head *sh)
3297 {
3298 raid5_conf_t *conf = sh->raid_conf;
3299 int disks = sh->disks;
3300 struct bio *return_bi = NULL;
3301 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3302 struct stripe_head_state s;
3303 struct r6_state r6s;
3304 struct r5dev *dev, *pdev, *qdev;
3305 mdk_rdev_t *blocked_rdev = NULL;
3306 int dec_preread_active = 0;
3307
3308 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3309 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3310 (unsigned long long)sh->sector, sh->state,
3311 atomic_read(&sh->count), pd_idx, qd_idx,
3312 sh->check_state, sh->reconstruct_state);
3313 memset(&s, 0, sizeof(s));
3314
3315 spin_lock(&sh->lock);
3316 clear_bit(STRIPE_HANDLE, &sh->state);
3317 clear_bit(STRIPE_DELAYED, &sh->state);
3318
3319 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3320 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3321 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3322 /* Now to look around and see what can be done */
3323
3324 rcu_read_lock();
3325 for (i=disks; i--; ) {
3326 mdk_rdev_t *rdev;
3327 dev = &sh->dev[i];
3328
3329 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3330 i, dev->flags, dev->toread, dev->towrite, dev->written);
3331 /* maybe we can reply to a read
3332 *
3333 * new wantfill requests are only permitted while
3334 * ops_complete_biofill is guaranteed to be inactive
3335 */
3336 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3337 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3338 set_bit(R5_Wantfill, &dev->flags);
3339
3340 /* now count some things */
3341 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3342 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3343 if (test_bit(R5_Wantcompute, &dev->flags)) {
3344 s.compute++;
3345 BUG_ON(s.compute > 2);
3346 }
3347
3348 if (test_bit(R5_Wantfill, &dev->flags)) {
3349 s.to_fill++;
3350 } else if (dev->toread)
3351 s.to_read++;
3352 if (dev->towrite) {
3353 s.to_write++;
3354 if (!test_bit(R5_OVERWRITE, &dev->flags))
3355 s.non_overwrite++;
3356 }
3357 if (dev->written)
3358 s.written++;
3359 rdev = rcu_dereference(conf->disks[i].rdev);
3360 if (blocked_rdev == NULL &&
3361 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3362 blocked_rdev = rdev;
3363 atomic_inc(&rdev->nr_pending);
3364 }
3365 clear_bit(R5_Insync, &dev->flags);
3366 if (!rdev)
3367 /* Not in-sync */;
3368 else if (test_bit(In_sync, &rdev->flags))
3369 set_bit(R5_Insync, &dev->flags);
3370 else {
3371 /* in sync if before recovery_offset */
3372 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3373 set_bit(R5_Insync, &dev->flags);
3374 }
3375 if (!test_bit(R5_Insync, &dev->flags)) {
3376 /* The ReadError flag will just be confusing now */
3377 clear_bit(R5_ReadError, &dev->flags);
3378 clear_bit(R5_ReWrite, &dev->flags);
3379 }
3380 if (test_bit(R5_ReadError, &dev->flags))
3381 clear_bit(R5_Insync, &dev->flags);
3382 if (!test_bit(R5_Insync, &dev->flags)) {
3383 if (s.failed < 2)
3384 r6s.failed_num[s.failed] = i;
3385 s.failed++;
3386 }
3387 }
3388 rcu_read_unlock();
3389
3390 if (unlikely(blocked_rdev)) {
3391 if (s.syncing || s.expanding || s.expanded ||
3392 s.to_write || s.written) {
3393 set_bit(STRIPE_HANDLE, &sh->state);
3394 goto unlock;
3395 }
3396 /* There is nothing for the blocked_rdev to block */
3397 rdev_dec_pending(blocked_rdev, conf->mddev);
3398 blocked_rdev = NULL;
3399 }
3400
3401 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3402 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3403 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3404 }
3405
3406 pr_debug("locked=%d uptodate=%d to_read=%d"
3407 " to_write=%d failed=%d failed_num=%d,%d\n",
3408 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3409 r6s.failed_num[0], r6s.failed_num[1]);
3410 /* check if the array has lost >2 devices and, if so, some requests
3411 * might need to be failed
3412 */
3413 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3414 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3415 if (s.failed > 2 && s.syncing) {
3416 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3417 clear_bit(STRIPE_SYNCING, &sh->state);
3418 s.syncing = 0;
3419 }
3420
3421 /*
3422 * might be able to return some write requests if the parity blocks
3423 * are safe, or on a failed drive
3424 */
3425 pdev = &sh->dev[pd_idx];
3426 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3427 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3428 qdev = &sh->dev[qd_idx];
3429 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3430 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3431
3432 if ( s.written &&
3433 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3434 && !test_bit(R5_LOCKED, &pdev->flags)
3435 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3436 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3437 && !test_bit(R5_LOCKED, &qdev->flags)
3438 && test_bit(R5_UPTODATE, &qdev->flags)))))
3439 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3440
3441 /* Now we might consider reading some blocks, either to check/generate
3442 * parity, or to satisfy requests
3443 * or to load a block that is being partially written.
3444 */
3445 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3446 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3447 handle_stripe_fill6(sh, &s, &r6s, disks);
3448
3449 /* Now we check to see if any write operations have recently
3450 * completed
3451 */
3452 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3453
3454 sh->reconstruct_state = reconstruct_state_idle;
3455 /* All the 'written' buffers and the parity blocks are ready to
3456 * be written back to disk
3457 */
3458 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3459 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3460 for (i = disks; i--; ) {
3461 dev = &sh->dev[i];
3462 if (test_bit(R5_LOCKED, &dev->flags) &&
3463 (i == sh->pd_idx || i == qd_idx ||
3464 dev->written)) {
3465 pr_debug("Writing block %d\n", i);
3466 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3467 set_bit(R5_Wantwrite, &dev->flags);
3468 if (!test_bit(R5_Insync, &dev->flags) ||
3469 ((i == sh->pd_idx || i == qd_idx) &&
3470 s.failed == 0))
3471 set_bit(STRIPE_INSYNC, &sh->state);
3472 }
3473 }
3474 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3475 dec_preread_active = 1;
3476 }
3477
3478 /* Now to consider new write requests and what else, if anything
3479 * should be read. We do not handle new writes when:
3480 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3481 * 2/ A 'check' operation is in flight, as it may clobber the parity
3482 * block.
3483 */
3484 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3485 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3486
3487 /* maybe we need to check and possibly fix the parity for this stripe
3488 * Any reads will already have been scheduled, so we just see if enough
3489 * data is available. The parity check is held off while parity
3490 * dependent operations are in flight.
3491 */
3492 if (sh->check_state ||
3493 (s.syncing && s.locked == 0 &&
3494 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3495 !test_bit(STRIPE_INSYNC, &sh->state)))
3496 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3497
3498 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3499 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3500 clear_bit(STRIPE_SYNCING, &sh->state);
3501 }
3502
3503 /* If the failed drives are just a ReadError, then we might need
3504 * to progress the repair/check process
3505 */
3506 if (s.failed <= 2 && !conf->mddev->ro)
3507 for (i = 0; i < s.failed; i++) {
3508 dev = &sh->dev[r6s.failed_num[i]];
3509 if (test_bit(R5_ReadError, &dev->flags)
3510 && !test_bit(R5_LOCKED, &dev->flags)
3511 && test_bit(R5_UPTODATE, &dev->flags)
3512 ) {
3513 if (!test_bit(R5_ReWrite, &dev->flags)) {
3514 set_bit(R5_Wantwrite, &dev->flags);
3515 set_bit(R5_ReWrite, &dev->flags);
3516 set_bit(R5_LOCKED, &dev->flags);
3517 s.locked++;
3518 } else {
3519 /* let's read it back */
3520 set_bit(R5_Wantread, &dev->flags);
3521 set_bit(R5_LOCKED, &dev->flags);
3522 s.locked++;
3523 }
3524 }
3525 }
3526
3527 /* Finish reconstruct operations initiated by the expansion process */
3528 if (sh->reconstruct_state == reconstruct_state_result) {
3529 sh->reconstruct_state = reconstruct_state_idle;
3530 clear_bit(STRIPE_EXPANDING, &sh->state);
3531 for (i = conf->raid_disks; i--; ) {
3532 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3533 set_bit(R5_LOCKED, &sh->dev[i].flags);
3534 s.locked++;
3535 }
3536 }
3537
3538 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3539 !sh->reconstruct_state) {
3540 struct stripe_head *sh2
3541 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3542 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3543 /* sh cannot be written until sh2 has been read.
3544 * so arrange for sh to be delayed a little
3545 */
3546 set_bit(STRIPE_DELAYED, &sh->state);
3547 set_bit(STRIPE_HANDLE, &sh->state);
3548 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3549 &sh2->state))
3550 atomic_inc(&conf->preread_active_stripes);
3551 release_stripe(sh2);
3552 goto unlock;
3553 }
3554 if (sh2)
3555 release_stripe(sh2);
3556
3557 /* Need to write out all blocks after computing P&Q */
3558 sh->disks = conf->raid_disks;
3559 stripe_set_idx(sh->sector, conf, 0, sh);
3560 schedule_reconstruction(sh, &s, 1, 1);
3561 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3562 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3563 atomic_dec(&conf->reshape_stripes);
3564 wake_up(&conf->wait_for_overlap);
3565 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3566 }
3567
3568 if (s.expanding && s.locked == 0 &&
3569 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3570 handle_stripe_expansion(conf, sh, &r6s);
3571
3572 unlock:
3573 spin_unlock(&sh->lock);
3574
3575 /* wait for this device to become unblocked */
3576 if (unlikely(blocked_rdev))
3577 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3578
3579 if (s.ops_request)
3580 raid_run_ops(sh, s.ops_request);
3581
3582 ops_run_io(sh, &s);
3583
3584
3585 if (dec_preread_active) {
3586 /* We delay this until after ops_run_io so that if make_request
3587 * is waiting on a barrier, it won't continue until the writes
3588 * have actually been submitted.
3589 */
3590 atomic_dec(&conf->preread_active_stripes);
3591 if (atomic_read(&conf->preread_active_stripes) <
3592 IO_THRESHOLD)
3593 md_wakeup_thread(conf->mddev->thread);
3594 }
3595
3596 return_io(return_bi);
3597 }
3598
3599 static void handle_stripe(struct stripe_head *sh)
3600 {
3601 if (sh->raid_conf->level == 6)
3602 handle_stripe6(sh);
3603 else
3604 handle_stripe5(sh);
3605 }
3606
3607 static void raid5_activate_delayed(raid5_conf_t *conf)
3608 {
3609 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3610 while (!list_empty(&conf->delayed_list)) {
3611 struct list_head *l = conf->delayed_list.next;
3612 struct stripe_head *sh;
3613 sh = list_entry(l, struct stripe_head, lru);
3614 list_del_init(l);
3615 clear_bit(STRIPE_DELAYED, &sh->state);
3616 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3617 atomic_inc(&conf->preread_active_stripes);
3618 list_add_tail(&sh->lru, &conf->hold_list);
3619 }
3620 } else
3621 plugger_set_plug(&conf->plug);
3622 }
3623
3624 static void activate_bit_delay(raid5_conf_t *conf)
3625 {
3626 /* device_lock is held */
3627 struct list_head head;
3628 list_add(&head, &conf->bitmap_list);
3629 list_del_init(&conf->bitmap_list);
3630 while (!list_empty(&head)) {
3631 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3632 list_del_init(&sh->lru);
3633 atomic_inc(&sh->count);
3634 __release_stripe(conf, sh);
3635 }
3636 }
3637
3638 static void unplug_slaves(mddev_t *mddev)
3639 {
3640 raid5_conf_t *conf = mddev->private;
3641 int i;
3642 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3643
3644 rcu_read_lock();
3645 for (i = 0; i < devs; i++) {
3646 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3647 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3648 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3649
3650 atomic_inc(&rdev->nr_pending);
3651 rcu_read_unlock();
3652
3653 blk_unplug(r_queue);
3654
3655 rdev_dec_pending(rdev, mddev);
3656 rcu_read_lock();
3657 }
3658 }
3659 rcu_read_unlock();
3660 }
3661
3662 static void raid5_unplug_device(raid5_conf_t *conf)
3663 {
3664 unsigned long flags;
3665
3666 spin_lock_irqsave(&conf->device_lock, flags);
3667
3668 if (plugger_remove_plug(&conf->plug)) {
3669 conf->seq_flush++;
3670 raid5_activate_delayed(conf);
3671 }
3672 md_wakeup_thread(conf->mddev->thread);
3673
3674 spin_unlock_irqrestore(&conf->device_lock, flags);
3675
3676 unplug_slaves(conf->mddev);
3677 }
3678
3679 static void raid5_unplug(struct plug_handle *plug)
3680 {
3681 raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3682 raid5_unplug_device(conf);
3683 }
3684
3685 static void raid5_unplug_queue(struct request_queue *q)
3686 {
3687 mddev_t *mddev = q->queuedata;
3688 raid5_unplug_device(mddev->private);
3689 }
3690
3691 int md_raid5_congested(mddev_t *mddev, int bits)
3692 {
3693 raid5_conf_t *conf = mddev->private;
3694
3695 /* No difference between reads and writes. Just check
3696 * how busy the stripe_cache is
3697 */
3698
3699 if (conf->inactive_blocked)
3700 return 1;
3701 if (conf->quiesce)
3702 return 1;
3703 if (list_empty_careful(&conf->inactive_list))
3704 return 1;
3705
3706 return 0;
3707 }
3708 EXPORT_SYMBOL_GPL(md_raid5_congested);
3709
3710 static int raid5_congested(void *data, int bits)
3711 {
3712 mddev_t *mddev = data;
3713
3714 return mddev_congested(mddev, bits) ||
3715 md_raid5_congested(mddev, bits);
3716 }
3717
3718 /* We want read requests to align with chunks where possible,
3719 * but write requests don't need to.
3720 */
3721 static int raid5_mergeable_bvec(struct request_queue *q,
3722 struct bvec_merge_data *bvm,
3723 struct bio_vec *biovec)
3724 {
3725 mddev_t *mddev = q->queuedata;
3726 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3727 int max;
3728 unsigned int chunk_sectors = mddev->chunk_sectors;
3729 unsigned int bio_sectors = bvm->bi_size >> 9;
3730
3731 if ((bvm->bi_rw & 1) == WRITE)
3732 return biovec->bv_len; /* always allow writes to be mergeable */
3733
3734 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3735 chunk_sectors = mddev->new_chunk_sectors;
3736 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3737 if (max < 0) max = 0;
3738 if (max <= biovec->bv_len && bio_sectors == 0)
3739 return biovec->bv_len;
3740 else
3741 return max;
3742 }
3743
3744
3745 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3746 {
3747 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3748 unsigned int chunk_sectors = mddev->chunk_sectors;
3749 unsigned int bio_sectors = bio->bi_size >> 9;
3750
3751 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3752 chunk_sectors = mddev->new_chunk_sectors;
3753 return chunk_sectors >=
3754 ((sector & (chunk_sectors - 1)) + bio_sectors);
3755 }
3756
3757 /*
3758 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3759 * later sampled by raid5d.
3760 */
3761 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3762 {
3763 unsigned long flags;
3764
3765 spin_lock_irqsave(&conf->device_lock, flags);
3766
3767 bi->bi_next = conf->retry_read_aligned_list;
3768 conf->retry_read_aligned_list = bi;
3769
3770 spin_unlock_irqrestore(&conf->device_lock, flags);
3771 md_wakeup_thread(conf->mddev->thread);
3772 }
3773
3774
3775 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3776 {
3777 struct bio *bi;
3778
3779 bi = conf->retry_read_aligned;
3780 if (bi) {
3781 conf->retry_read_aligned = NULL;
3782 return bi;
3783 }
3784 bi = conf->retry_read_aligned_list;
3785 if(bi) {
3786 conf->retry_read_aligned_list = bi->bi_next;
3787 bi->bi_next = NULL;
3788 /*
3789 * this sets the active strip count to 1 and the processed
3790 * strip count to zero (upper 8 bits)
3791 */
3792 bi->bi_phys_segments = 1; /* biased count of active stripes */
3793 }
3794
3795 return bi;
3796 }
3797
3798
3799 /*
3800 * The "raid5_align_endio" should check if the read succeeded and if it
3801 * did, call bio_endio on the original bio (having bio_put the new bio
3802 * first).
3803 * If the read failed..
3804 */
3805 static void raid5_align_endio(struct bio *bi, int error)
3806 {
3807 struct bio* raid_bi = bi->bi_private;
3808 mddev_t *mddev;
3809 raid5_conf_t *conf;
3810 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3811 mdk_rdev_t *rdev;
3812
3813 bio_put(bi);
3814
3815 rdev = (void*)raid_bi->bi_next;
3816 raid_bi->bi_next = NULL;
3817 mddev = rdev->mddev;
3818 conf = mddev->private;
3819
3820 rdev_dec_pending(rdev, conf->mddev);
3821
3822 if (!error && uptodate) {
3823 bio_endio(raid_bi, 0);
3824 if (atomic_dec_and_test(&conf->active_aligned_reads))
3825 wake_up(&conf->wait_for_stripe);
3826 return;
3827 }
3828
3829
3830 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3831
3832 add_bio_to_retry(raid_bi, conf);
3833 }
3834
3835 static int bio_fits_rdev(struct bio *bi)
3836 {
3837 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3838
3839 if ((bi->bi_size>>9) > queue_max_sectors(q))
3840 return 0;
3841 blk_recount_segments(q, bi);
3842 if (bi->bi_phys_segments > queue_max_segments(q))
3843 return 0;
3844
3845 if (q->merge_bvec_fn)
3846 /* it's too hard to apply the merge_bvec_fn at this stage,
3847 * just just give up
3848 */
3849 return 0;
3850
3851 return 1;
3852 }
3853
3854
3855 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3856 {
3857 raid5_conf_t *conf = mddev->private;
3858 int dd_idx;
3859 struct bio* align_bi;
3860 mdk_rdev_t *rdev;
3861
3862 if (!in_chunk_boundary(mddev, raid_bio)) {
3863 pr_debug("chunk_aligned_read : non aligned\n");
3864 return 0;
3865 }
3866 /*
3867 * use bio_clone to make a copy of the bio
3868 */
3869 align_bi = bio_clone(raid_bio, GFP_NOIO);
3870 if (!align_bi)
3871 return 0;
3872 /*
3873 * set bi_end_io to a new function, and set bi_private to the
3874 * original bio.
3875 */
3876 align_bi->bi_end_io = raid5_align_endio;
3877 align_bi->bi_private = raid_bio;
3878 /*
3879 * compute position
3880 */
3881 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3882 0,
3883 &dd_idx, NULL);
3884
3885 rcu_read_lock();
3886 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3887 if (rdev && test_bit(In_sync, &rdev->flags)) {
3888 atomic_inc(&rdev->nr_pending);
3889 rcu_read_unlock();
3890 raid_bio->bi_next = (void*)rdev;
3891 align_bi->bi_bdev = rdev->bdev;
3892 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3893 align_bi->bi_sector += rdev->data_offset;
3894
3895 if (!bio_fits_rdev(align_bi)) {
3896 /* too big in some way */
3897 bio_put(align_bi);
3898 rdev_dec_pending(rdev, mddev);
3899 return 0;
3900 }
3901
3902 spin_lock_irq(&conf->device_lock);
3903 wait_event_lock_irq(conf->wait_for_stripe,
3904 conf->quiesce == 0,
3905 conf->device_lock, /* nothing */);
3906 atomic_inc(&conf->active_aligned_reads);
3907 spin_unlock_irq(&conf->device_lock);
3908
3909 generic_make_request(align_bi);
3910 return 1;
3911 } else {
3912 rcu_read_unlock();
3913 bio_put(align_bi);
3914 return 0;
3915 }
3916 }
3917
3918 /* __get_priority_stripe - get the next stripe to process
3919 *
3920 * Full stripe writes are allowed to pass preread active stripes up until
3921 * the bypass_threshold is exceeded. In general the bypass_count
3922 * increments when the handle_list is handled before the hold_list; however, it
3923 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3924 * stripe with in flight i/o. The bypass_count will be reset when the
3925 * head of the hold_list has changed, i.e. the head was promoted to the
3926 * handle_list.
3927 */
3928 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3929 {
3930 struct stripe_head *sh;
3931
3932 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3933 __func__,
3934 list_empty(&conf->handle_list) ? "empty" : "busy",
3935 list_empty(&conf->hold_list) ? "empty" : "busy",
3936 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3937
3938 if (!list_empty(&conf->handle_list)) {
3939 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3940
3941 if (list_empty(&conf->hold_list))
3942 conf->bypass_count = 0;
3943 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3944 if (conf->hold_list.next == conf->last_hold)
3945 conf->bypass_count++;
3946 else {
3947 conf->last_hold = conf->hold_list.next;
3948 conf->bypass_count -= conf->bypass_threshold;
3949 if (conf->bypass_count < 0)
3950 conf->bypass_count = 0;
3951 }
3952 }
3953 } else if (!list_empty(&conf->hold_list) &&
3954 ((conf->bypass_threshold &&
3955 conf->bypass_count > conf->bypass_threshold) ||
3956 atomic_read(&conf->pending_full_writes) == 0)) {
3957 sh = list_entry(conf->hold_list.next,
3958 typeof(*sh), lru);
3959 conf->bypass_count -= conf->bypass_threshold;
3960 if (conf->bypass_count < 0)
3961 conf->bypass_count = 0;
3962 } else
3963 return NULL;
3964
3965 list_del_init(&sh->lru);
3966 atomic_inc(&sh->count);
3967 BUG_ON(atomic_read(&sh->count) != 1);
3968 return sh;
3969 }
3970
3971 static int make_request(mddev_t *mddev, struct bio * bi)
3972 {
3973 raid5_conf_t *conf = mddev->private;
3974 int dd_idx;
3975 sector_t new_sector;
3976 sector_t logical_sector, last_sector;
3977 struct stripe_head *sh;
3978 const int rw = bio_data_dir(bi);
3979 int remaining;
3980
3981 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3982 /* Drain all pending writes. We only really need
3983 * to ensure they have been submitted, but this is
3984 * easier.
3985 */
3986 mddev->pers->quiesce(mddev, 1);
3987 mddev->pers->quiesce(mddev, 0);
3988 md_barrier_request(mddev, bi);
3989 return 0;
3990 }
3991
3992 md_write_start(mddev, bi);
3993
3994 if (rw == READ &&
3995 mddev->reshape_position == MaxSector &&
3996 chunk_aligned_read(mddev,bi))
3997 return 0;
3998
3999 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4000 last_sector = bi->bi_sector + (bi->bi_size>>9);
4001 bi->bi_next = NULL;
4002 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4003
4004 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4005 DEFINE_WAIT(w);
4006 int disks, data_disks;
4007 int previous;
4008
4009 retry:
4010 previous = 0;
4011 disks = conf->raid_disks;
4012 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4013 if (unlikely(conf->reshape_progress != MaxSector)) {
4014 /* spinlock is needed as reshape_progress may be
4015 * 64bit on a 32bit platform, and so it might be
4016 * possible to see a half-updated value
4017 * Ofcourse reshape_progress could change after
4018 * the lock is dropped, so once we get a reference
4019 * to the stripe that we think it is, we will have
4020 * to check again.
4021 */
4022 spin_lock_irq(&conf->device_lock);
4023 if (mddev->delta_disks < 0
4024 ? logical_sector < conf->reshape_progress
4025 : logical_sector >= conf->reshape_progress) {
4026 disks = conf->previous_raid_disks;
4027 previous = 1;
4028 } else {
4029 if (mddev->delta_disks < 0
4030 ? logical_sector < conf->reshape_safe
4031 : logical_sector >= conf->reshape_safe) {
4032 spin_unlock_irq(&conf->device_lock);
4033 schedule();
4034 goto retry;
4035 }
4036 }
4037 spin_unlock_irq(&conf->device_lock);
4038 }
4039 data_disks = disks - conf->max_degraded;
4040
4041 new_sector = raid5_compute_sector(conf, logical_sector,
4042 previous,
4043 &dd_idx, NULL);
4044 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4045 (unsigned long long)new_sector,
4046 (unsigned long long)logical_sector);
4047
4048 sh = get_active_stripe(conf, new_sector, previous,
4049 (bi->bi_rw&RWA_MASK), 0);
4050 if (sh) {
4051 if (unlikely(previous)) {
4052 /* expansion might have moved on while waiting for a
4053 * stripe, so we must do the range check again.
4054 * Expansion could still move past after this
4055 * test, but as we are holding a reference to
4056 * 'sh', we know that if that happens,
4057 * STRIPE_EXPANDING will get set and the expansion
4058 * won't proceed until we finish with the stripe.
4059 */
4060 int must_retry = 0;
4061 spin_lock_irq(&conf->device_lock);
4062 if (mddev->delta_disks < 0
4063 ? logical_sector >= conf->reshape_progress
4064 : logical_sector < conf->reshape_progress)
4065 /* mismatch, need to try again */
4066 must_retry = 1;
4067 spin_unlock_irq(&conf->device_lock);
4068 if (must_retry) {
4069 release_stripe(sh);
4070 schedule();
4071 goto retry;
4072 }
4073 }
4074
4075 if (bio_data_dir(bi) == WRITE &&
4076 logical_sector >= mddev->suspend_lo &&
4077 logical_sector < mddev->suspend_hi) {
4078 release_stripe(sh);
4079 /* As the suspend_* range is controlled by
4080 * userspace, we want an interruptible
4081 * wait.
4082 */
4083 flush_signals(current);
4084 prepare_to_wait(&conf->wait_for_overlap,
4085 &w, TASK_INTERRUPTIBLE);
4086 if (logical_sector >= mddev->suspend_lo &&
4087 logical_sector < mddev->suspend_hi)
4088 schedule();
4089 goto retry;
4090 }
4091
4092 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4093 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4094 /* Stripe is busy expanding or
4095 * add failed due to overlap. Flush everything
4096 * and wait a while
4097 */
4098 raid5_unplug_device(conf);
4099 release_stripe(sh);
4100 schedule();
4101 goto retry;
4102 }
4103 finish_wait(&conf->wait_for_overlap, &w);
4104 set_bit(STRIPE_HANDLE, &sh->state);
4105 clear_bit(STRIPE_DELAYED, &sh->state);
4106 if (mddev->barrier &&
4107 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4108 atomic_inc(&conf->preread_active_stripes);
4109 release_stripe(sh);
4110 } else {
4111 /* cannot get stripe for read-ahead, just give-up */
4112 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4113 finish_wait(&conf->wait_for_overlap, &w);
4114 break;
4115 }
4116
4117 }
4118 spin_lock_irq(&conf->device_lock);
4119 remaining = raid5_dec_bi_phys_segments(bi);
4120 spin_unlock_irq(&conf->device_lock);
4121 if (remaining == 0) {
4122
4123 if ( rw == WRITE )
4124 md_write_end(mddev);
4125
4126 bio_endio(bi, 0);
4127 }
4128
4129 if (mddev->barrier) {
4130 /* We need to wait for the stripes to all be handled.
4131 * So: wait for preread_active_stripes to drop to 0.
4132 */
4133 wait_event(mddev->thread->wqueue,
4134 atomic_read(&conf->preread_active_stripes) == 0);
4135 }
4136 return 0;
4137 }
4138
4139 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4140
4141 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4142 {
4143 /* reshaping is quite different to recovery/resync so it is
4144 * handled quite separately ... here.
4145 *
4146 * On each call to sync_request, we gather one chunk worth of
4147 * destination stripes and flag them as expanding.
4148 * Then we find all the source stripes and request reads.
4149 * As the reads complete, handle_stripe will copy the data
4150 * into the destination stripe and release that stripe.
4151 */
4152 raid5_conf_t *conf = mddev->private;
4153 struct stripe_head *sh;
4154 sector_t first_sector, last_sector;
4155 int raid_disks = conf->previous_raid_disks;
4156 int data_disks = raid_disks - conf->max_degraded;
4157 int new_data_disks = conf->raid_disks - conf->max_degraded;
4158 int i;
4159 int dd_idx;
4160 sector_t writepos, readpos, safepos;
4161 sector_t stripe_addr;
4162 int reshape_sectors;
4163 struct list_head stripes;
4164
4165 if (sector_nr == 0) {
4166 /* If restarting in the middle, skip the initial sectors */
4167 if (mddev->delta_disks < 0 &&
4168 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4169 sector_nr = raid5_size(mddev, 0, 0)
4170 - conf->reshape_progress;
4171 } else if (mddev->delta_disks >= 0 &&
4172 conf->reshape_progress > 0)
4173 sector_nr = conf->reshape_progress;
4174 sector_div(sector_nr, new_data_disks);
4175 if (sector_nr) {
4176 mddev->curr_resync_completed = sector_nr;
4177 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4178 *skipped = 1;
4179 return sector_nr;
4180 }
4181 }
4182
4183 /* We need to process a full chunk at a time.
4184 * If old and new chunk sizes differ, we need to process the
4185 * largest of these
4186 */
4187 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4188 reshape_sectors = mddev->new_chunk_sectors;
4189 else
4190 reshape_sectors = mddev->chunk_sectors;
4191
4192 /* we update the metadata when there is more than 3Meg
4193 * in the block range (that is rather arbitrary, should
4194 * probably be time based) or when the data about to be
4195 * copied would over-write the source of the data at
4196 * the front of the range.
4197 * i.e. one new_stripe along from reshape_progress new_maps
4198 * to after where reshape_safe old_maps to
4199 */
4200 writepos = conf->reshape_progress;
4201 sector_div(writepos, new_data_disks);
4202 readpos = conf->reshape_progress;
4203 sector_div(readpos, data_disks);
4204 safepos = conf->reshape_safe;
4205 sector_div(safepos, data_disks);
4206 if (mddev->delta_disks < 0) {
4207 writepos -= min_t(sector_t, reshape_sectors, writepos);
4208 readpos += reshape_sectors;
4209 safepos += reshape_sectors;
4210 } else {
4211 writepos += reshape_sectors;
4212 readpos -= min_t(sector_t, reshape_sectors, readpos);
4213 safepos -= min_t(sector_t, reshape_sectors, safepos);
4214 }
4215
4216 /* 'writepos' is the most advanced device address we might write.
4217 * 'readpos' is the least advanced device address we might read.
4218 * 'safepos' is the least address recorded in the metadata as having
4219 * been reshaped.
4220 * If 'readpos' is behind 'writepos', then there is no way that we can
4221 * ensure safety in the face of a crash - that must be done by userspace
4222 * making a backup of the data. So in that case there is no particular
4223 * rush to update metadata.
4224 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4225 * update the metadata to advance 'safepos' to match 'readpos' so that
4226 * we can be safe in the event of a crash.
4227 * So we insist on updating metadata if safepos is behind writepos and
4228 * readpos is beyond writepos.
4229 * In any case, update the metadata every 10 seconds.
4230 * Maybe that number should be configurable, but I'm not sure it is
4231 * worth it.... maybe it could be a multiple of safemode_delay???
4232 */
4233 if ((mddev->delta_disks < 0
4234 ? (safepos > writepos && readpos < writepos)
4235 : (safepos < writepos && readpos > writepos)) ||
4236 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4237 /* Cannot proceed until we've updated the superblock... */
4238 wait_event(conf->wait_for_overlap,
4239 atomic_read(&conf->reshape_stripes)==0);
4240 mddev->reshape_position = conf->reshape_progress;
4241 mddev->curr_resync_completed = mddev->curr_resync;
4242 conf->reshape_checkpoint = jiffies;
4243 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4244 md_wakeup_thread(mddev->thread);
4245 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4246 kthread_should_stop());
4247 spin_lock_irq(&conf->device_lock);
4248 conf->reshape_safe = mddev->reshape_position;
4249 spin_unlock_irq(&conf->device_lock);
4250 wake_up(&conf->wait_for_overlap);
4251 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4252 }
4253
4254 if (mddev->delta_disks < 0) {
4255 BUG_ON(conf->reshape_progress == 0);
4256 stripe_addr = writepos;
4257 BUG_ON((mddev->dev_sectors &
4258 ~((sector_t)reshape_sectors - 1))
4259 - reshape_sectors - stripe_addr
4260 != sector_nr);
4261 } else {
4262 BUG_ON(writepos != sector_nr + reshape_sectors);
4263 stripe_addr = sector_nr;
4264 }
4265 INIT_LIST_HEAD(&stripes);
4266 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4267 int j;
4268 int skipped_disk = 0;
4269 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4270 set_bit(STRIPE_EXPANDING, &sh->state);
4271 atomic_inc(&conf->reshape_stripes);
4272 /* If any of this stripe is beyond the end of the old
4273 * array, then we need to zero those blocks
4274 */
4275 for (j=sh->disks; j--;) {
4276 sector_t s;
4277 if (j == sh->pd_idx)
4278 continue;
4279 if (conf->level == 6 &&
4280 j == sh->qd_idx)
4281 continue;
4282 s = compute_blocknr(sh, j, 0);
4283 if (s < raid5_size(mddev, 0, 0)) {
4284 skipped_disk = 1;
4285 continue;
4286 }
4287 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4288 set_bit(R5_Expanded, &sh->dev[j].flags);
4289 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4290 }
4291 if (!skipped_disk) {
4292 set_bit(STRIPE_EXPAND_READY, &sh->state);
4293 set_bit(STRIPE_HANDLE, &sh->state);
4294 }
4295 list_add(&sh->lru, &stripes);
4296 }
4297 spin_lock_irq(&conf->device_lock);
4298 if (mddev->delta_disks < 0)
4299 conf->reshape_progress -= reshape_sectors * new_data_disks;
4300 else
4301 conf->reshape_progress += reshape_sectors * new_data_disks;
4302 spin_unlock_irq(&conf->device_lock);
4303 /* Ok, those stripe are ready. We can start scheduling
4304 * reads on the source stripes.
4305 * The source stripes are determined by mapping the first and last
4306 * block on the destination stripes.
4307 */
4308 first_sector =
4309 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4310 1, &dd_idx, NULL);
4311 last_sector =
4312 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4313 * new_data_disks - 1),
4314 1, &dd_idx, NULL);
4315 if (last_sector >= mddev->dev_sectors)
4316 last_sector = mddev->dev_sectors - 1;
4317 while (first_sector <= last_sector) {
4318 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4319 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320 set_bit(STRIPE_HANDLE, &sh->state);
4321 release_stripe(sh);
4322 first_sector += STRIPE_SECTORS;
4323 }
4324 /* Now that the sources are clearly marked, we can release
4325 * the destination stripes
4326 */
4327 while (!list_empty(&stripes)) {
4328 sh = list_entry(stripes.next, struct stripe_head, lru);
4329 list_del_init(&sh->lru);
4330 release_stripe(sh);
4331 }
4332 /* If this takes us to the resync_max point where we have to pause,
4333 * then we need to write out the superblock.
4334 */
4335 sector_nr += reshape_sectors;
4336 if ((sector_nr - mddev->curr_resync_completed) * 2
4337 >= mddev->resync_max - mddev->curr_resync_completed) {
4338 /* Cannot proceed until we've updated the superblock... */
4339 wait_event(conf->wait_for_overlap,
4340 atomic_read(&conf->reshape_stripes) == 0);
4341 mddev->reshape_position = conf->reshape_progress;
4342 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4343 conf->reshape_checkpoint = jiffies;
4344 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4345 md_wakeup_thread(mddev->thread);
4346 wait_event(mddev->sb_wait,
4347 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4348 || kthread_should_stop());
4349 spin_lock_irq(&conf->device_lock);
4350 conf->reshape_safe = mddev->reshape_position;
4351 spin_unlock_irq(&conf->device_lock);
4352 wake_up(&conf->wait_for_overlap);
4353 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4354 }
4355 return reshape_sectors;
4356 }
4357
4358 /* FIXME go_faster isn't used */
4359 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4360 {
4361 raid5_conf_t *conf = mddev->private;
4362 struct stripe_head *sh;
4363 sector_t max_sector = mddev->dev_sectors;
4364 int sync_blocks;
4365 int still_degraded = 0;
4366 int i;
4367
4368 if (sector_nr >= max_sector) {
4369 /* just being told to finish up .. nothing much to do */
4370 unplug_slaves(mddev);
4371
4372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4373 end_reshape(conf);
4374 return 0;
4375 }
4376
4377 if (mddev->curr_resync < max_sector) /* aborted */
4378 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4379 &sync_blocks, 1);
4380 else /* completed sync */
4381 conf->fullsync = 0;
4382 bitmap_close_sync(mddev->bitmap);
4383
4384 return 0;
4385 }
4386
4387 /* Allow raid5_quiesce to complete */
4388 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4389
4390 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4391 return reshape_request(mddev, sector_nr, skipped);
4392
4393 /* No need to check resync_max as we never do more than one
4394 * stripe, and as resync_max will always be on a chunk boundary,
4395 * if the check in md_do_sync didn't fire, there is no chance
4396 * of overstepping resync_max here
4397 */
4398
4399 /* if there is too many failed drives and we are trying
4400 * to resync, then assert that we are finished, because there is
4401 * nothing we can do.
4402 */
4403 if (mddev->degraded >= conf->max_degraded &&
4404 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4405 sector_t rv = mddev->dev_sectors - sector_nr;
4406 *skipped = 1;
4407 return rv;
4408 }
4409 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4410 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4411 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4412 /* we can skip this block, and probably more */
4413 sync_blocks /= STRIPE_SECTORS;
4414 *skipped = 1;
4415 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4416 }
4417
4418
4419 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4420
4421 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4422 if (sh == NULL) {
4423 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4424 /* make sure we don't swamp the stripe cache if someone else
4425 * is trying to get access
4426 */
4427 schedule_timeout_uninterruptible(1);
4428 }
4429 /* Need to check if array will still be degraded after recovery/resync
4430 * We don't need to check the 'failed' flag as when that gets set,
4431 * recovery aborts.
4432 */
4433 for (i = 0; i < conf->raid_disks; i++)
4434 if (conf->disks[i].rdev == NULL)
4435 still_degraded = 1;
4436
4437 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4438
4439 spin_lock(&sh->lock);
4440 set_bit(STRIPE_SYNCING, &sh->state);
4441 clear_bit(STRIPE_INSYNC, &sh->state);
4442 spin_unlock(&sh->lock);
4443
4444 handle_stripe(sh);
4445 release_stripe(sh);
4446
4447 return STRIPE_SECTORS;
4448 }
4449
4450 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4451 {
4452 /* We may not be able to submit a whole bio at once as there
4453 * may not be enough stripe_heads available.
4454 * We cannot pre-allocate enough stripe_heads as we may need
4455 * more than exist in the cache (if we allow ever large chunks).
4456 * So we do one stripe head at a time and record in
4457 * ->bi_hw_segments how many have been done.
4458 *
4459 * We *know* that this entire raid_bio is in one chunk, so
4460 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4461 */
4462 struct stripe_head *sh;
4463 int dd_idx;
4464 sector_t sector, logical_sector, last_sector;
4465 int scnt = 0;
4466 int remaining;
4467 int handled = 0;
4468
4469 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4470 sector = raid5_compute_sector(conf, logical_sector,
4471 0, &dd_idx, NULL);
4472 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4473
4474 for (; logical_sector < last_sector;
4475 logical_sector += STRIPE_SECTORS,
4476 sector += STRIPE_SECTORS,
4477 scnt++) {
4478
4479 if (scnt < raid5_bi_hw_segments(raid_bio))
4480 /* already done this stripe */
4481 continue;
4482
4483 sh = get_active_stripe(conf, sector, 0, 1, 0);
4484
4485 if (!sh) {
4486 /* failed to get a stripe - must wait */
4487 raid5_set_bi_hw_segments(raid_bio, scnt);
4488 conf->retry_read_aligned = raid_bio;
4489 return handled;
4490 }
4491
4492 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4493 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4494 release_stripe(sh);
4495 raid5_set_bi_hw_segments(raid_bio, scnt);
4496 conf->retry_read_aligned = raid_bio;
4497 return handled;
4498 }
4499
4500 handle_stripe(sh);
4501 release_stripe(sh);
4502 handled++;
4503 }
4504 spin_lock_irq(&conf->device_lock);
4505 remaining = raid5_dec_bi_phys_segments(raid_bio);
4506 spin_unlock_irq(&conf->device_lock);
4507 if (remaining == 0)
4508 bio_endio(raid_bio, 0);
4509 if (atomic_dec_and_test(&conf->active_aligned_reads))
4510 wake_up(&conf->wait_for_stripe);
4511 return handled;
4512 }
4513
4514
4515 /*
4516 * This is our raid5 kernel thread.
4517 *
4518 * We scan the hash table for stripes which can be handled now.
4519 * During the scan, completed stripes are saved for us by the interrupt
4520 * handler, so that they will not have to wait for our next wakeup.
4521 */
4522 static void raid5d(mddev_t *mddev)
4523 {
4524 struct stripe_head *sh;
4525 raid5_conf_t *conf = mddev->private;
4526 int handled;
4527
4528 pr_debug("+++ raid5d active\n");
4529
4530 md_check_recovery(mddev);
4531
4532 handled = 0;
4533 spin_lock_irq(&conf->device_lock);
4534 while (1) {
4535 struct bio *bio;
4536
4537 if (conf->seq_flush != conf->seq_write) {
4538 int seq = conf->seq_flush;
4539 spin_unlock_irq(&conf->device_lock);
4540 bitmap_unplug(mddev->bitmap);
4541 spin_lock_irq(&conf->device_lock);
4542 conf->seq_write = seq;
4543 activate_bit_delay(conf);
4544 }
4545
4546 while ((bio = remove_bio_from_retry(conf))) {
4547 int ok;
4548 spin_unlock_irq(&conf->device_lock);
4549 ok = retry_aligned_read(conf, bio);
4550 spin_lock_irq(&conf->device_lock);
4551 if (!ok)
4552 break;
4553 handled++;
4554 }
4555
4556 sh = __get_priority_stripe(conf);
4557
4558 if (!sh)
4559 break;
4560 spin_unlock_irq(&conf->device_lock);
4561
4562 handled++;
4563 handle_stripe(sh);
4564 release_stripe(sh);
4565 cond_resched();
4566
4567 spin_lock_irq(&conf->device_lock);
4568 }
4569 pr_debug("%d stripes handled\n", handled);
4570
4571 spin_unlock_irq(&conf->device_lock);
4572
4573 async_tx_issue_pending_all();
4574 unplug_slaves(mddev);
4575
4576 pr_debug("--- raid5d inactive\n");
4577 }
4578
4579 static ssize_t
4580 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4581 {
4582 raid5_conf_t *conf = mddev->private;
4583 if (conf)
4584 return sprintf(page, "%d\n", conf->max_nr_stripes);
4585 else
4586 return 0;
4587 }
4588
4589 int
4590 raid5_set_cache_size(mddev_t *mddev, int size)
4591 {
4592 raid5_conf_t *conf = mddev->private;
4593 int err;
4594
4595 if (size <= 16 || size > 32768)
4596 return -EINVAL;
4597 while (size < conf->max_nr_stripes) {
4598 if (drop_one_stripe(conf))
4599 conf->max_nr_stripes--;
4600 else
4601 break;
4602 }
4603 err = md_allow_write(mddev);
4604 if (err)
4605 return err;
4606 while (size > conf->max_nr_stripes) {
4607 if (grow_one_stripe(conf))
4608 conf->max_nr_stripes++;
4609 else break;
4610 }
4611 return 0;
4612 }
4613 EXPORT_SYMBOL(raid5_set_cache_size);
4614
4615 static ssize_t
4616 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4617 {
4618 raid5_conf_t *conf = mddev->private;
4619 unsigned long new;
4620 int err;
4621
4622 if (len >= PAGE_SIZE)
4623 return -EINVAL;
4624 if (!conf)
4625 return -ENODEV;
4626
4627 if (strict_strtoul(page, 10, &new))
4628 return -EINVAL;
4629 err = raid5_set_cache_size(mddev, new);
4630 if (err)
4631 return err;
4632 return len;
4633 }
4634
4635 static struct md_sysfs_entry
4636 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4637 raid5_show_stripe_cache_size,
4638 raid5_store_stripe_cache_size);
4639
4640 static ssize_t
4641 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4642 {
4643 raid5_conf_t *conf = mddev->private;
4644 if (conf)
4645 return sprintf(page, "%d\n", conf->bypass_threshold);
4646 else
4647 return 0;
4648 }
4649
4650 static ssize_t
4651 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4652 {
4653 raid5_conf_t *conf = mddev->private;
4654 unsigned long new;
4655 if (len >= PAGE_SIZE)
4656 return -EINVAL;
4657 if (!conf)
4658 return -ENODEV;
4659
4660 if (strict_strtoul(page, 10, &new))
4661 return -EINVAL;
4662 if (new > conf->max_nr_stripes)
4663 return -EINVAL;
4664 conf->bypass_threshold = new;
4665 return len;
4666 }
4667
4668 static struct md_sysfs_entry
4669 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4670 S_IRUGO | S_IWUSR,
4671 raid5_show_preread_threshold,
4672 raid5_store_preread_threshold);
4673
4674 static ssize_t
4675 stripe_cache_active_show(mddev_t *mddev, char *page)
4676 {
4677 raid5_conf_t *conf = mddev->private;
4678 if (conf)
4679 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4680 else
4681 return 0;
4682 }
4683
4684 static struct md_sysfs_entry
4685 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4686
4687 static struct attribute *raid5_attrs[] = {
4688 &raid5_stripecache_size.attr,
4689 &raid5_stripecache_active.attr,
4690 &raid5_preread_bypass_threshold.attr,
4691 NULL,
4692 };
4693 static struct attribute_group raid5_attrs_group = {
4694 .name = NULL,
4695 .attrs = raid5_attrs,
4696 };
4697
4698 static sector_t
4699 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4700 {
4701 raid5_conf_t *conf = mddev->private;
4702
4703 if (!sectors)
4704 sectors = mddev->dev_sectors;
4705 if (!raid_disks)
4706 /* size is defined by the smallest of previous and new size */
4707 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4708
4709 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4710 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4711 return sectors * (raid_disks - conf->max_degraded);
4712 }
4713
4714 static void raid5_free_percpu(raid5_conf_t *conf)
4715 {
4716 struct raid5_percpu *percpu;
4717 unsigned long cpu;
4718
4719 if (!conf->percpu)
4720 return;
4721
4722 get_online_cpus();
4723 for_each_possible_cpu(cpu) {
4724 percpu = per_cpu_ptr(conf->percpu, cpu);
4725 safe_put_page(percpu->spare_page);
4726 kfree(percpu->scribble);
4727 }
4728 #ifdef CONFIG_HOTPLUG_CPU
4729 unregister_cpu_notifier(&conf->cpu_notify);
4730 #endif
4731 put_online_cpus();
4732
4733 free_percpu(conf->percpu);
4734 }
4735
4736 static void free_conf(raid5_conf_t *conf)
4737 {
4738 shrink_stripes(conf);
4739 raid5_free_percpu(conf);
4740 kfree(conf->disks);
4741 kfree(conf->stripe_hashtbl);
4742 kfree(conf);
4743 }
4744
4745 #ifdef CONFIG_HOTPLUG_CPU
4746 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4747 void *hcpu)
4748 {
4749 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4750 long cpu = (long)hcpu;
4751 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4752
4753 switch (action) {
4754 case CPU_UP_PREPARE:
4755 case CPU_UP_PREPARE_FROZEN:
4756 if (conf->level == 6 && !percpu->spare_page)
4757 percpu->spare_page = alloc_page(GFP_KERNEL);
4758 if (!percpu->scribble)
4759 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4760
4761 if (!percpu->scribble ||
4762 (conf->level == 6 && !percpu->spare_page)) {
4763 safe_put_page(percpu->spare_page);
4764 kfree(percpu->scribble);
4765 pr_err("%s: failed memory allocation for cpu%ld\n",
4766 __func__, cpu);
4767 return notifier_from_errno(-ENOMEM);
4768 }
4769 break;
4770 case CPU_DEAD:
4771 case CPU_DEAD_FROZEN:
4772 safe_put_page(percpu->spare_page);
4773 kfree(percpu->scribble);
4774 percpu->spare_page = NULL;
4775 percpu->scribble = NULL;
4776 break;
4777 default:
4778 break;
4779 }
4780 return NOTIFY_OK;
4781 }
4782 #endif
4783
4784 static int raid5_alloc_percpu(raid5_conf_t *conf)
4785 {
4786 unsigned long cpu;
4787 struct page *spare_page;
4788 struct raid5_percpu __percpu *allcpus;
4789 void *scribble;
4790 int err;
4791
4792 allcpus = alloc_percpu(struct raid5_percpu);
4793 if (!allcpus)
4794 return -ENOMEM;
4795 conf->percpu = allcpus;
4796
4797 get_online_cpus();
4798 err = 0;
4799 for_each_present_cpu(cpu) {
4800 if (conf->level == 6) {
4801 spare_page = alloc_page(GFP_KERNEL);
4802 if (!spare_page) {
4803 err = -ENOMEM;
4804 break;
4805 }
4806 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4807 }
4808 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4809 if (!scribble) {
4810 err = -ENOMEM;
4811 break;
4812 }
4813 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4814 }
4815 #ifdef CONFIG_HOTPLUG_CPU
4816 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4817 conf->cpu_notify.priority = 0;
4818 if (err == 0)
4819 err = register_cpu_notifier(&conf->cpu_notify);
4820 #endif
4821 put_online_cpus();
4822
4823 return err;
4824 }
4825
4826 static raid5_conf_t *setup_conf(mddev_t *mddev)
4827 {
4828 raid5_conf_t *conf;
4829 int raid_disk, memory, max_disks;
4830 mdk_rdev_t *rdev;
4831 struct disk_info *disk;
4832
4833 if (mddev->new_level != 5
4834 && mddev->new_level != 4
4835 && mddev->new_level != 6) {
4836 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4837 mdname(mddev), mddev->new_level);
4838 return ERR_PTR(-EIO);
4839 }
4840 if ((mddev->new_level == 5
4841 && !algorithm_valid_raid5(mddev->new_layout)) ||
4842 (mddev->new_level == 6
4843 && !algorithm_valid_raid6(mddev->new_layout))) {
4844 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4845 mdname(mddev), mddev->new_layout);
4846 return ERR_PTR(-EIO);
4847 }
4848 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4849 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4850 mdname(mddev), mddev->raid_disks);
4851 return ERR_PTR(-EINVAL);
4852 }
4853
4854 if (!mddev->new_chunk_sectors ||
4855 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4856 !is_power_of_2(mddev->new_chunk_sectors)) {
4857 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4858 mdname(mddev), mddev->new_chunk_sectors << 9);
4859 return ERR_PTR(-EINVAL);
4860 }
4861
4862 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4863 if (conf == NULL)
4864 goto abort;
4865 spin_lock_init(&conf->device_lock);
4866 init_waitqueue_head(&conf->wait_for_stripe);
4867 init_waitqueue_head(&conf->wait_for_overlap);
4868 INIT_LIST_HEAD(&conf->handle_list);
4869 INIT_LIST_HEAD(&conf->hold_list);
4870 INIT_LIST_HEAD(&conf->delayed_list);
4871 INIT_LIST_HEAD(&conf->bitmap_list);
4872 INIT_LIST_HEAD(&conf->inactive_list);
4873 atomic_set(&conf->active_stripes, 0);
4874 atomic_set(&conf->preread_active_stripes, 0);
4875 atomic_set(&conf->active_aligned_reads, 0);
4876 conf->bypass_threshold = BYPASS_THRESHOLD;
4877
4878 conf->raid_disks = mddev->raid_disks;
4879 if (mddev->reshape_position == MaxSector)
4880 conf->previous_raid_disks = mddev->raid_disks;
4881 else
4882 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4883 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4884 conf->scribble_len = scribble_len(max_disks);
4885
4886 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4887 GFP_KERNEL);
4888 if (!conf->disks)
4889 goto abort;
4890
4891 conf->mddev = mddev;
4892
4893 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4894 goto abort;
4895
4896 conf->level = mddev->new_level;
4897 if (raid5_alloc_percpu(conf) != 0)
4898 goto abort;
4899
4900 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4901
4902 list_for_each_entry(rdev, &mddev->disks, same_set) {
4903 raid_disk = rdev->raid_disk;
4904 if (raid_disk >= max_disks
4905 || raid_disk < 0)
4906 continue;
4907 disk = conf->disks + raid_disk;
4908
4909 disk->rdev = rdev;
4910
4911 if (test_bit(In_sync, &rdev->flags)) {
4912 char b[BDEVNAME_SIZE];
4913 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4914 " disk %d\n",
4915 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4916 } else
4917 /* Cannot rely on bitmap to complete recovery */
4918 conf->fullsync = 1;
4919 }
4920
4921 conf->chunk_sectors = mddev->new_chunk_sectors;
4922 conf->level = mddev->new_level;
4923 if (conf->level == 6)
4924 conf->max_degraded = 2;
4925 else
4926 conf->max_degraded = 1;
4927 conf->algorithm = mddev->new_layout;
4928 conf->max_nr_stripes = NR_STRIPES;
4929 conf->reshape_progress = mddev->reshape_position;
4930 if (conf->reshape_progress != MaxSector) {
4931 conf->prev_chunk_sectors = mddev->chunk_sectors;
4932 conf->prev_algo = mddev->layout;
4933 }
4934
4935 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4936 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4937 if (grow_stripes(conf, conf->max_nr_stripes)) {
4938 printk(KERN_ERR
4939 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4940 mdname(mddev), memory);
4941 goto abort;
4942 } else
4943 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4944 mdname(mddev), memory);
4945
4946 conf->thread = md_register_thread(raid5d, mddev, NULL);
4947 if (!conf->thread) {
4948 printk(KERN_ERR
4949 "md/raid:%s: couldn't allocate thread.\n",
4950 mdname(mddev));
4951 goto abort;
4952 }
4953
4954 return conf;
4955
4956 abort:
4957 if (conf) {
4958 free_conf(conf);
4959 return ERR_PTR(-EIO);
4960 } else
4961 return ERR_PTR(-ENOMEM);
4962 }
4963
4964
4965 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4966 {
4967 switch (algo) {
4968 case ALGORITHM_PARITY_0:
4969 if (raid_disk < max_degraded)
4970 return 1;
4971 break;
4972 case ALGORITHM_PARITY_N:
4973 if (raid_disk >= raid_disks - max_degraded)
4974 return 1;
4975 break;
4976 case ALGORITHM_PARITY_0_6:
4977 if (raid_disk == 0 ||
4978 raid_disk == raid_disks - 1)
4979 return 1;
4980 break;
4981 case ALGORITHM_LEFT_ASYMMETRIC_6:
4982 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4983 case ALGORITHM_LEFT_SYMMETRIC_6:
4984 case ALGORITHM_RIGHT_SYMMETRIC_6:
4985 if (raid_disk == raid_disks - 1)
4986 return 1;
4987 }
4988 return 0;
4989 }
4990
4991 static int run(mddev_t *mddev)
4992 {
4993 raid5_conf_t *conf;
4994 int working_disks = 0, chunk_size;
4995 int dirty_parity_disks = 0;
4996 mdk_rdev_t *rdev;
4997 sector_t reshape_offset = 0;
4998
4999 if (mddev->recovery_cp != MaxSector)
5000 printk(KERN_NOTICE "md/raid:%s: not clean"
5001 " -- starting background reconstruction\n",
5002 mdname(mddev));
5003 if (mddev->reshape_position != MaxSector) {
5004 /* Check that we can continue the reshape.
5005 * Currently only disks can change, it must
5006 * increase, and we must be past the point where
5007 * a stripe over-writes itself
5008 */
5009 sector_t here_new, here_old;
5010 int old_disks;
5011 int max_degraded = (mddev->level == 6 ? 2 : 1);
5012
5013 if (mddev->new_level != mddev->level) {
5014 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5015 "required - aborting.\n",
5016 mdname(mddev));
5017 return -EINVAL;
5018 }
5019 old_disks = mddev->raid_disks - mddev->delta_disks;
5020 /* reshape_position must be on a new-stripe boundary, and one
5021 * further up in new geometry must map after here in old
5022 * geometry.
5023 */
5024 here_new = mddev->reshape_position;
5025 if (sector_div(here_new, mddev->new_chunk_sectors *
5026 (mddev->raid_disks - max_degraded))) {
5027 printk(KERN_ERR "md/raid:%s: reshape_position not "
5028 "on a stripe boundary\n", mdname(mddev));
5029 return -EINVAL;
5030 }
5031 reshape_offset = here_new * mddev->new_chunk_sectors;
5032 /* here_new is the stripe we will write to */
5033 here_old = mddev->reshape_position;
5034 sector_div(here_old, mddev->chunk_sectors *
5035 (old_disks-max_degraded));
5036 /* here_old is the first stripe that we might need to read
5037 * from */
5038 if (mddev->delta_disks == 0) {
5039 /* We cannot be sure it is safe to start an in-place
5040 * reshape. It is only safe if user-space if monitoring
5041 * and taking constant backups.
5042 * mdadm always starts a situation like this in
5043 * readonly mode so it can take control before
5044 * allowing any writes. So just check for that.
5045 */
5046 if ((here_new * mddev->new_chunk_sectors !=
5047 here_old * mddev->chunk_sectors) ||
5048 mddev->ro == 0) {
5049 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5050 " in read-only mode - aborting\n",
5051 mdname(mddev));
5052 return -EINVAL;
5053 }
5054 } else if (mddev->delta_disks < 0
5055 ? (here_new * mddev->new_chunk_sectors <=
5056 here_old * mddev->chunk_sectors)
5057 : (here_new * mddev->new_chunk_sectors >=
5058 here_old * mddev->chunk_sectors)) {
5059 /* Reading from the same stripe as writing to - bad */
5060 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5061 "auto-recovery - aborting.\n",
5062 mdname(mddev));
5063 return -EINVAL;
5064 }
5065 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5066 mdname(mddev));
5067 /* OK, we should be able to continue; */
5068 } else {
5069 BUG_ON(mddev->level != mddev->new_level);
5070 BUG_ON(mddev->layout != mddev->new_layout);
5071 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5072 BUG_ON(mddev->delta_disks != 0);
5073 }
5074
5075 if (mddev->private == NULL)
5076 conf = setup_conf(mddev);
5077 else
5078 conf = mddev->private;
5079
5080 if (IS_ERR(conf))
5081 return PTR_ERR(conf);
5082
5083 mddev->thread = conf->thread;
5084 conf->thread = NULL;
5085 mddev->private = conf;
5086
5087 /*
5088 * 0 for a fully functional array, 1 or 2 for a degraded array.
5089 */
5090 list_for_each_entry(rdev, &mddev->disks, same_set) {
5091 if (rdev->raid_disk < 0)
5092 continue;
5093 if (test_bit(In_sync, &rdev->flags)) {
5094 working_disks++;
5095 continue;
5096 }
5097 /* This disc is not fully in-sync. However if it
5098 * just stored parity (beyond the recovery_offset),
5099 * when we don't need to be concerned about the
5100 * array being dirty.
5101 * When reshape goes 'backwards', we never have
5102 * partially completed devices, so we only need
5103 * to worry about reshape going forwards.
5104 */
5105 /* Hack because v0.91 doesn't store recovery_offset properly. */
5106 if (mddev->major_version == 0 &&
5107 mddev->minor_version > 90)
5108 rdev->recovery_offset = reshape_offset;
5109
5110 if (rdev->recovery_offset < reshape_offset) {
5111 /* We need to check old and new layout */
5112 if (!only_parity(rdev->raid_disk,
5113 conf->algorithm,
5114 conf->raid_disks,
5115 conf->max_degraded))
5116 continue;
5117 }
5118 if (!only_parity(rdev->raid_disk,
5119 conf->prev_algo,
5120 conf->previous_raid_disks,
5121 conf->max_degraded))
5122 continue;
5123 dirty_parity_disks++;
5124 }
5125
5126 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5127 - working_disks);
5128
5129 if (has_failed(conf)) {
5130 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5131 " (%d/%d failed)\n",
5132 mdname(mddev), mddev->degraded, conf->raid_disks);
5133 goto abort;
5134 }
5135
5136 /* device size must be a multiple of chunk size */
5137 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5138 mddev->resync_max_sectors = mddev->dev_sectors;
5139
5140 if (mddev->degraded > dirty_parity_disks &&
5141 mddev->recovery_cp != MaxSector) {
5142 if (mddev->ok_start_degraded)
5143 printk(KERN_WARNING
5144 "md/raid:%s: starting dirty degraded array"
5145 " - data corruption possible.\n",
5146 mdname(mddev));
5147 else {
5148 printk(KERN_ERR
5149 "md/raid:%s: cannot start dirty degraded array.\n",
5150 mdname(mddev));
5151 goto abort;
5152 }
5153 }
5154
5155 if (mddev->degraded == 0)
5156 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5157 " devices, algorithm %d\n", mdname(mddev), conf->level,
5158 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5159 mddev->new_layout);
5160 else
5161 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5162 " out of %d devices, algorithm %d\n",
5163 mdname(mddev), conf->level,
5164 mddev->raid_disks - mddev->degraded,
5165 mddev->raid_disks, mddev->new_layout);
5166
5167 print_raid5_conf(conf);
5168
5169 if (conf->reshape_progress != MaxSector) {
5170 conf->reshape_safe = conf->reshape_progress;
5171 atomic_set(&conf->reshape_stripes, 0);
5172 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5173 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5174 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5175 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5176 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5177 "reshape");
5178 }
5179
5180
5181 /* Ok, everything is just fine now */
5182 if (mddev->to_remove == &raid5_attrs_group)
5183 mddev->to_remove = NULL;
5184 else if (mddev->kobj.sd &&
5185 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5186 printk(KERN_WARNING
5187 "raid5: failed to create sysfs attributes for %s\n",
5188 mdname(mddev));
5189 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5190
5191 plugger_init(&conf->plug, raid5_unplug);
5192 if (mddev->queue) {
5193 /* read-ahead size must cover two whole stripes, which
5194 * is 2 * (datadisks) * chunksize where 'n' is the
5195 * number of raid devices
5196 */
5197 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5198 int stripe = data_disks *
5199 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5200 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5201 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5202
5203 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5204
5205 mddev->queue->backing_dev_info.congested_data = mddev;
5206 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5207 }
5208
5209 mddev->queue->queue_lock = &conf->device_lock;
5210
5211 mddev->queue->unplug_fn = raid5_unplug_queue;
5212
5213 chunk_size = mddev->chunk_sectors << 9;
5214 blk_queue_io_min(mddev->queue, chunk_size);
5215 blk_queue_io_opt(mddev->queue, chunk_size *
5216 (conf->raid_disks - conf->max_degraded));
5217
5218 list_for_each_entry(rdev, &mddev->disks, same_set)
5219 disk_stack_limits(mddev->gendisk, rdev->bdev,
5220 rdev->data_offset << 9);
5221
5222 return 0;
5223 abort:
5224 md_unregister_thread(mddev->thread);
5225 mddev->thread = NULL;
5226 if (conf) {
5227 print_raid5_conf(conf);
5228 free_conf(conf);
5229 }
5230 mddev->private = NULL;
5231 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5232 return -EIO;
5233 }
5234
5235 static int stop(mddev_t *mddev)
5236 {
5237 raid5_conf_t *conf = mddev->private;
5238
5239 md_unregister_thread(mddev->thread);
5240 mddev->thread = NULL;
5241 if (mddev->queue)
5242 mddev->queue->backing_dev_info.congested_fn = NULL;
5243 plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5244 free_conf(conf);
5245 mddev->private = NULL;
5246 mddev->to_remove = &raid5_attrs_group;
5247 return 0;
5248 }
5249
5250 #ifdef DEBUG
5251 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5252 {
5253 int i;
5254
5255 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5256 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5257 seq_printf(seq, "sh %llu, count %d.\n",
5258 (unsigned long long)sh->sector, atomic_read(&sh->count));
5259 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5260 for (i = 0; i < sh->disks; i++) {
5261 seq_printf(seq, "(cache%d: %p %ld) ",
5262 i, sh->dev[i].page, sh->dev[i].flags);
5263 }
5264 seq_printf(seq, "\n");
5265 }
5266
5267 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5268 {
5269 struct stripe_head *sh;
5270 struct hlist_node *hn;
5271 int i;
5272
5273 spin_lock_irq(&conf->device_lock);
5274 for (i = 0; i < NR_HASH; i++) {
5275 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5276 if (sh->raid_conf != conf)
5277 continue;
5278 print_sh(seq, sh);
5279 }
5280 }
5281 spin_unlock_irq(&conf->device_lock);
5282 }
5283 #endif
5284
5285 static void status(struct seq_file *seq, mddev_t *mddev)
5286 {
5287 raid5_conf_t *conf = mddev->private;
5288 int i;
5289
5290 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5291 mddev->chunk_sectors / 2, mddev->layout);
5292 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5293 for (i = 0; i < conf->raid_disks; i++)
5294 seq_printf (seq, "%s",
5295 conf->disks[i].rdev &&
5296 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5297 seq_printf (seq, "]");
5298 #ifdef DEBUG
5299 seq_printf (seq, "\n");
5300 printall(seq, conf);
5301 #endif
5302 }
5303
5304 static void print_raid5_conf (raid5_conf_t *conf)
5305 {
5306 int i;
5307 struct disk_info *tmp;
5308
5309 printk(KERN_DEBUG "RAID conf printout:\n");
5310 if (!conf) {
5311 printk("(conf==NULL)\n");
5312 return;
5313 }
5314 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5315 conf->raid_disks,
5316 conf->raid_disks - conf->mddev->degraded);
5317
5318 for (i = 0; i < conf->raid_disks; i++) {
5319 char b[BDEVNAME_SIZE];
5320 tmp = conf->disks + i;
5321 if (tmp->rdev)
5322 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5323 i, !test_bit(Faulty, &tmp->rdev->flags),
5324 bdevname(tmp->rdev->bdev, b));
5325 }
5326 }
5327
5328 static int raid5_spare_active(mddev_t *mddev)
5329 {
5330 int i;
5331 raid5_conf_t *conf = mddev->private;
5332 struct disk_info *tmp;
5333
5334 for (i = 0; i < conf->raid_disks; i++) {
5335 tmp = conf->disks + i;
5336 if (tmp->rdev
5337 && tmp->rdev->recovery_offset == MaxSector
5338 && !test_bit(Faulty, &tmp->rdev->flags)
5339 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5340 unsigned long flags;
5341 spin_lock_irqsave(&conf->device_lock, flags);
5342 mddev->degraded--;
5343 spin_unlock_irqrestore(&conf->device_lock, flags);
5344 }
5345 }
5346 print_raid5_conf(conf);
5347 return 0;
5348 }
5349
5350 static int raid5_remove_disk(mddev_t *mddev, int number)
5351 {
5352 raid5_conf_t *conf = mddev->private;
5353 int err = 0;
5354 mdk_rdev_t *rdev;
5355 struct disk_info *p = conf->disks + number;
5356
5357 print_raid5_conf(conf);
5358 rdev = p->rdev;
5359 if (rdev) {
5360 if (number >= conf->raid_disks &&
5361 conf->reshape_progress == MaxSector)
5362 clear_bit(In_sync, &rdev->flags);
5363
5364 if (test_bit(In_sync, &rdev->flags) ||
5365 atomic_read(&rdev->nr_pending)) {
5366 err = -EBUSY;
5367 goto abort;
5368 }
5369 /* Only remove non-faulty devices if recovery
5370 * isn't possible.
5371 */
5372 if (!test_bit(Faulty, &rdev->flags) &&
5373 !has_failed(conf) &&
5374 number < conf->raid_disks) {
5375 err = -EBUSY;
5376 goto abort;
5377 }
5378 p->rdev = NULL;
5379 synchronize_rcu();
5380 if (atomic_read(&rdev->nr_pending)) {
5381 /* lost the race, try later */
5382 err = -EBUSY;
5383 p->rdev = rdev;
5384 }
5385 }
5386 abort:
5387
5388 print_raid5_conf(conf);
5389 return err;
5390 }
5391
5392 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5393 {
5394 raid5_conf_t *conf = mddev->private;
5395 int err = -EEXIST;
5396 int disk;
5397 struct disk_info *p;
5398 int first = 0;
5399 int last = conf->raid_disks - 1;
5400
5401 if (has_failed(conf))
5402 /* no point adding a device */
5403 return -EINVAL;
5404
5405 if (rdev->raid_disk >= 0)
5406 first = last = rdev->raid_disk;
5407
5408 /*
5409 * find the disk ... but prefer rdev->saved_raid_disk
5410 * if possible.
5411 */
5412 if (rdev->saved_raid_disk >= 0 &&
5413 rdev->saved_raid_disk >= first &&
5414 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5415 disk = rdev->saved_raid_disk;
5416 else
5417 disk = first;
5418 for ( ; disk <= last ; disk++)
5419 if ((p=conf->disks + disk)->rdev == NULL) {
5420 clear_bit(In_sync, &rdev->flags);
5421 rdev->raid_disk = disk;
5422 err = 0;
5423 if (rdev->saved_raid_disk != disk)
5424 conf->fullsync = 1;
5425 rcu_assign_pointer(p->rdev, rdev);
5426 break;
5427 }
5428 print_raid5_conf(conf);
5429 return err;
5430 }
5431
5432 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5433 {
5434 /* no resync is happening, and there is enough space
5435 * on all devices, so we can resize.
5436 * We need to make sure resync covers any new space.
5437 * If the array is shrinking we should possibly wait until
5438 * any io in the removed space completes, but it hardly seems
5439 * worth it.
5440 */
5441 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5442 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5443 mddev->raid_disks));
5444 if (mddev->array_sectors >
5445 raid5_size(mddev, sectors, mddev->raid_disks))
5446 return -EINVAL;
5447 set_capacity(mddev->gendisk, mddev->array_sectors);
5448 revalidate_disk(mddev->gendisk);
5449 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5450 mddev->recovery_cp = mddev->dev_sectors;
5451 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5452 }
5453 mddev->dev_sectors = sectors;
5454 mddev->resync_max_sectors = sectors;
5455 return 0;
5456 }
5457
5458 static int check_stripe_cache(mddev_t *mddev)
5459 {
5460 /* Can only proceed if there are plenty of stripe_heads.
5461 * We need a minimum of one full stripe,, and for sensible progress
5462 * it is best to have about 4 times that.
5463 * If we require 4 times, then the default 256 4K stripe_heads will
5464 * allow for chunk sizes up to 256K, which is probably OK.
5465 * If the chunk size is greater, user-space should request more
5466 * stripe_heads first.
5467 */
5468 raid5_conf_t *conf = mddev->private;
5469 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5470 > conf->max_nr_stripes ||
5471 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5472 > conf->max_nr_stripes) {
5473 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5474 mdname(mddev),
5475 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5476 / STRIPE_SIZE)*4);
5477 return 0;
5478 }
5479 return 1;
5480 }
5481
5482 static int check_reshape(mddev_t *mddev)
5483 {
5484 raid5_conf_t *conf = mddev->private;
5485
5486 if (mddev->delta_disks == 0 &&
5487 mddev->new_layout == mddev->layout &&
5488 mddev->new_chunk_sectors == mddev->chunk_sectors)
5489 return 0; /* nothing to do */
5490 if (mddev->bitmap)
5491 /* Cannot grow a bitmap yet */
5492 return -EBUSY;
5493 if (has_failed(conf))
5494 return -EINVAL;
5495 if (mddev->delta_disks < 0) {
5496 /* We might be able to shrink, but the devices must
5497 * be made bigger first.
5498 * For raid6, 4 is the minimum size.
5499 * Otherwise 2 is the minimum
5500 */
5501 int min = 2;
5502 if (mddev->level == 6)
5503 min = 4;
5504 if (mddev->raid_disks + mddev->delta_disks < min)
5505 return -EINVAL;
5506 }
5507
5508 if (!check_stripe_cache(mddev))
5509 return -ENOSPC;
5510
5511 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5512 }
5513
5514 static int raid5_start_reshape(mddev_t *mddev)
5515 {
5516 raid5_conf_t *conf = mddev->private;
5517 mdk_rdev_t *rdev;
5518 int spares = 0;
5519 int added_devices = 0;
5520 unsigned long flags;
5521
5522 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5523 return -EBUSY;
5524
5525 if (!check_stripe_cache(mddev))
5526 return -ENOSPC;
5527
5528 list_for_each_entry(rdev, &mddev->disks, same_set)
5529 if (rdev->raid_disk < 0 &&
5530 !test_bit(Faulty, &rdev->flags))
5531 spares++;
5532
5533 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5534 /* Not enough devices even to make a degraded array
5535 * of that size
5536 */
5537 return -EINVAL;
5538
5539 /* Refuse to reduce size of the array. Any reductions in
5540 * array size must be through explicit setting of array_size
5541 * attribute.
5542 */
5543 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5544 < mddev->array_sectors) {
5545 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5546 "before number of disks\n", mdname(mddev));
5547 return -EINVAL;
5548 }
5549
5550 atomic_set(&conf->reshape_stripes, 0);
5551 spin_lock_irq(&conf->device_lock);
5552 conf->previous_raid_disks = conf->raid_disks;
5553 conf->raid_disks += mddev->delta_disks;
5554 conf->prev_chunk_sectors = conf->chunk_sectors;
5555 conf->chunk_sectors = mddev->new_chunk_sectors;
5556 conf->prev_algo = conf->algorithm;
5557 conf->algorithm = mddev->new_layout;
5558 if (mddev->delta_disks < 0)
5559 conf->reshape_progress = raid5_size(mddev, 0, 0);
5560 else
5561 conf->reshape_progress = 0;
5562 conf->reshape_safe = conf->reshape_progress;
5563 conf->generation++;
5564 spin_unlock_irq(&conf->device_lock);
5565
5566 /* Add some new drives, as many as will fit.
5567 * We know there are enough to make the newly sized array work.
5568 * Don't add devices if we are reducing the number of
5569 * devices in the array. This is because it is not possible
5570 * to correctly record the "partially reconstructed" state of
5571 * such devices during the reshape and confusion could result.
5572 */
5573 if (mddev->delta_disks >= 0)
5574 list_for_each_entry(rdev, &mddev->disks, same_set)
5575 if (rdev->raid_disk < 0 &&
5576 !test_bit(Faulty, &rdev->flags)) {
5577 if (raid5_add_disk(mddev, rdev) == 0) {
5578 char nm[20];
5579 if (rdev->raid_disk >= conf->previous_raid_disks) {
5580 set_bit(In_sync, &rdev->flags);
5581 added_devices++;
5582 } else
5583 rdev->recovery_offset = 0;
5584 sprintf(nm, "rd%d", rdev->raid_disk);
5585 if (sysfs_create_link(&mddev->kobj,
5586 &rdev->kobj, nm))
5587 /* Failure here is OK */;
5588 } else
5589 break;
5590 }
5591
5592 /* When a reshape changes the number of devices, ->degraded
5593 * is measured against the larger of the pre and post number of
5594 * devices.*/
5595 if (mddev->delta_disks > 0) {
5596 spin_lock_irqsave(&conf->device_lock, flags);
5597 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5598 - added_devices;
5599 spin_unlock_irqrestore(&conf->device_lock, flags);
5600 }
5601 mddev->raid_disks = conf->raid_disks;
5602 mddev->reshape_position = conf->reshape_progress;
5603 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5604
5605 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5606 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5607 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5608 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5609 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5610 "reshape");
5611 if (!mddev->sync_thread) {
5612 mddev->recovery = 0;
5613 spin_lock_irq(&conf->device_lock);
5614 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5615 conf->reshape_progress = MaxSector;
5616 spin_unlock_irq(&conf->device_lock);
5617 return -EAGAIN;
5618 }
5619 conf->reshape_checkpoint = jiffies;
5620 md_wakeup_thread(mddev->sync_thread);
5621 md_new_event(mddev);
5622 return 0;
5623 }
5624
5625 /* This is called from the reshape thread and should make any
5626 * changes needed in 'conf'
5627 */
5628 static void end_reshape(raid5_conf_t *conf)
5629 {
5630
5631 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5632
5633 spin_lock_irq(&conf->device_lock);
5634 conf->previous_raid_disks = conf->raid_disks;
5635 conf->reshape_progress = MaxSector;
5636 spin_unlock_irq(&conf->device_lock);
5637 wake_up(&conf->wait_for_overlap);
5638
5639 /* read-ahead size must cover two whole stripes, which is
5640 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5641 */
5642 if (conf->mddev->queue) {
5643 int data_disks = conf->raid_disks - conf->max_degraded;
5644 int stripe = data_disks * ((conf->chunk_sectors << 9)
5645 / PAGE_SIZE);
5646 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5647 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5648 }
5649 }
5650 }
5651
5652 /* This is called from the raid5d thread with mddev_lock held.
5653 * It makes config changes to the device.
5654 */
5655 static void raid5_finish_reshape(mddev_t *mddev)
5656 {
5657 raid5_conf_t *conf = mddev->private;
5658
5659 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5660
5661 if (mddev->delta_disks > 0) {
5662 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5663 set_capacity(mddev->gendisk, mddev->array_sectors);
5664 revalidate_disk(mddev->gendisk);
5665 } else {
5666 int d;
5667 mddev->degraded = conf->raid_disks;
5668 for (d = 0; d < conf->raid_disks ; d++)
5669 if (conf->disks[d].rdev &&
5670 test_bit(In_sync,
5671 &conf->disks[d].rdev->flags))
5672 mddev->degraded--;
5673 for (d = conf->raid_disks ;
5674 d < conf->raid_disks - mddev->delta_disks;
5675 d++) {
5676 mdk_rdev_t *rdev = conf->disks[d].rdev;
5677 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5678 char nm[20];
5679 sprintf(nm, "rd%d", rdev->raid_disk);
5680 sysfs_remove_link(&mddev->kobj, nm);
5681 rdev->raid_disk = -1;
5682 }
5683 }
5684 }
5685 mddev->layout = conf->algorithm;
5686 mddev->chunk_sectors = conf->chunk_sectors;
5687 mddev->reshape_position = MaxSector;
5688 mddev->delta_disks = 0;
5689 }
5690 }
5691
5692 static void raid5_quiesce(mddev_t *mddev, int state)
5693 {
5694 raid5_conf_t *conf = mddev->private;
5695
5696 switch(state) {
5697 case 2: /* resume for a suspend */
5698 wake_up(&conf->wait_for_overlap);
5699 break;
5700
5701 case 1: /* stop all writes */
5702 spin_lock_irq(&conf->device_lock);
5703 /* '2' tells resync/reshape to pause so that all
5704 * active stripes can drain
5705 */
5706 conf->quiesce = 2;
5707 wait_event_lock_irq(conf->wait_for_stripe,
5708 atomic_read(&conf->active_stripes) == 0 &&
5709 atomic_read(&conf->active_aligned_reads) == 0,
5710 conf->device_lock, /* nothing */);
5711 conf->quiesce = 1;
5712 spin_unlock_irq(&conf->device_lock);
5713 /* allow reshape to continue */
5714 wake_up(&conf->wait_for_overlap);
5715 break;
5716
5717 case 0: /* re-enable writes */
5718 spin_lock_irq(&conf->device_lock);
5719 conf->quiesce = 0;
5720 wake_up(&conf->wait_for_stripe);
5721 wake_up(&conf->wait_for_overlap);
5722 spin_unlock_irq(&conf->device_lock);
5723 break;
5724 }
5725 }
5726
5727
5728 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5729 {
5730 struct raid0_private_data *raid0_priv = mddev->private;
5731
5732 /* for raid0 takeover only one zone is supported */
5733 if (raid0_priv->nr_strip_zones > 1) {
5734 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5735 mdname(mddev));
5736 return ERR_PTR(-EINVAL);
5737 }
5738
5739 mddev->new_level = level;
5740 mddev->new_layout = ALGORITHM_PARITY_N;
5741 mddev->new_chunk_sectors = mddev->chunk_sectors;
5742 mddev->raid_disks += 1;
5743 mddev->delta_disks = 1;
5744 /* make sure it will be not marked as dirty */
5745 mddev->recovery_cp = MaxSector;
5746
5747 return setup_conf(mddev);
5748 }
5749
5750
5751 static void *raid5_takeover_raid1(mddev_t *mddev)
5752 {
5753 int chunksect;
5754
5755 if (mddev->raid_disks != 2 ||
5756 mddev->degraded > 1)
5757 return ERR_PTR(-EINVAL);
5758
5759 /* Should check if there are write-behind devices? */
5760
5761 chunksect = 64*2; /* 64K by default */
5762
5763 /* The array must be an exact multiple of chunksize */
5764 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5765 chunksect >>= 1;
5766
5767 if ((chunksect<<9) < STRIPE_SIZE)
5768 /* array size does not allow a suitable chunk size */
5769 return ERR_PTR(-EINVAL);
5770
5771 mddev->new_level = 5;
5772 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5773 mddev->new_chunk_sectors = chunksect;
5774
5775 return setup_conf(mddev);
5776 }
5777
5778 static void *raid5_takeover_raid6(mddev_t *mddev)
5779 {
5780 int new_layout;
5781
5782 switch (mddev->layout) {
5783 case ALGORITHM_LEFT_ASYMMETRIC_6:
5784 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5785 break;
5786 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5787 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5788 break;
5789 case ALGORITHM_LEFT_SYMMETRIC_6:
5790 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5791 break;
5792 case ALGORITHM_RIGHT_SYMMETRIC_6:
5793 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5794 break;
5795 case ALGORITHM_PARITY_0_6:
5796 new_layout = ALGORITHM_PARITY_0;
5797 break;
5798 case ALGORITHM_PARITY_N:
5799 new_layout = ALGORITHM_PARITY_N;
5800 break;
5801 default:
5802 return ERR_PTR(-EINVAL);
5803 }
5804 mddev->new_level = 5;
5805 mddev->new_layout = new_layout;
5806 mddev->delta_disks = -1;
5807 mddev->raid_disks -= 1;
5808 return setup_conf(mddev);
5809 }
5810
5811
5812 static int raid5_check_reshape(mddev_t *mddev)
5813 {
5814 /* For a 2-drive array, the layout and chunk size can be changed
5815 * immediately as not restriping is needed.
5816 * For larger arrays we record the new value - after validation
5817 * to be used by a reshape pass.
5818 */
5819 raid5_conf_t *conf = mddev->private;
5820 int new_chunk = mddev->new_chunk_sectors;
5821
5822 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5823 return -EINVAL;
5824 if (new_chunk > 0) {
5825 if (!is_power_of_2(new_chunk))
5826 return -EINVAL;
5827 if (new_chunk < (PAGE_SIZE>>9))
5828 return -EINVAL;
5829 if (mddev->array_sectors & (new_chunk-1))
5830 /* not factor of array size */
5831 return -EINVAL;
5832 }
5833
5834 /* They look valid */
5835
5836 if (mddev->raid_disks == 2) {
5837 /* can make the change immediately */
5838 if (mddev->new_layout >= 0) {
5839 conf->algorithm = mddev->new_layout;
5840 mddev->layout = mddev->new_layout;
5841 }
5842 if (new_chunk > 0) {
5843 conf->chunk_sectors = new_chunk ;
5844 mddev->chunk_sectors = new_chunk;
5845 }
5846 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5847 md_wakeup_thread(mddev->thread);
5848 }
5849 return check_reshape(mddev);
5850 }
5851
5852 static int raid6_check_reshape(mddev_t *mddev)
5853 {
5854 int new_chunk = mddev->new_chunk_sectors;
5855
5856 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5857 return -EINVAL;
5858 if (new_chunk > 0) {
5859 if (!is_power_of_2(new_chunk))
5860 return -EINVAL;
5861 if (new_chunk < (PAGE_SIZE >> 9))
5862 return -EINVAL;
5863 if (mddev->array_sectors & (new_chunk-1))
5864 /* not factor of array size */
5865 return -EINVAL;
5866 }
5867
5868 /* They look valid */
5869 return check_reshape(mddev);
5870 }
5871
5872 static void *raid5_takeover(mddev_t *mddev)
5873 {
5874 /* raid5 can take over:
5875 * raid0 - if there is only one strip zone - make it a raid4 layout
5876 * raid1 - if there are two drives. We need to know the chunk size
5877 * raid4 - trivial - just use a raid4 layout.
5878 * raid6 - Providing it is a *_6 layout
5879 */
5880 if (mddev->level == 0)
5881 return raid45_takeover_raid0(mddev, 5);
5882 if (mddev->level == 1)
5883 return raid5_takeover_raid1(mddev);
5884 if (mddev->level == 4) {
5885 mddev->new_layout = ALGORITHM_PARITY_N;
5886 mddev->new_level = 5;
5887 return setup_conf(mddev);
5888 }
5889 if (mddev->level == 6)
5890 return raid5_takeover_raid6(mddev);
5891
5892 return ERR_PTR(-EINVAL);
5893 }
5894
5895 static void *raid4_takeover(mddev_t *mddev)
5896 {
5897 /* raid4 can take over:
5898 * raid0 - if there is only one strip zone
5899 * raid5 - if layout is right
5900 */
5901 if (mddev->level == 0)
5902 return raid45_takeover_raid0(mddev, 4);
5903 if (mddev->level == 5 &&
5904 mddev->layout == ALGORITHM_PARITY_N) {
5905 mddev->new_layout = 0;
5906 mddev->new_level = 4;
5907 return setup_conf(mddev);
5908 }
5909 return ERR_PTR(-EINVAL);
5910 }
5911
5912 static struct mdk_personality raid5_personality;
5913
5914 static void *raid6_takeover(mddev_t *mddev)
5915 {
5916 /* Currently can only take over a raid5. We map the
5917 * personality to an equivalent raid6 personality
5918 * with the Q block at the end.
5919 */
5920 int new_layout;
5921
5922 if (mddev->pers != &raid5_personality)
5923 return ERR_PTR(-EINVAL);
5924 if (mddev->degraded > 1)
5925 return ERR_PTR(-EINVAL);
5926 if (mddev->raid_disks > 253)
5927 return ERR_PTR(-EINVAL);
5928 if (mddev->raid_disks < 3)
5929 return ERR_PTR(-EINVAL);
5930
5931 switch (mddev->layout) {
5932 case ALGORITHM_LEFT_ASYMMETRIC:
5933 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5934 break;
5935 case ALGORITHM_RIGHT_ASYMMETRIC:
5936 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5937 break;
5938 case ALGORITHM_LEFT_SYMMETRIC:
5939 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5940 break;
5941 case ALGORITHM_RIGHT_SYMMETRIC:
5942 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5943 break;
5944 case ALGORITHM_PARITY_0:
5945 new_layout = ALGORITHM_PARITY_0_6;
5946 break;
5947 case ALGORITHM_PARITY_N:
5948 new_layout = ALGORITHM_PARITY_N;
5949 break;
5950 default:
5951 return ERR_PTR(-EINVAL);
5952 }
5953 mddev->new_level = 6;
5954 mddev->new_layout = new_layout;
5955 mddev->delta_disks = 1;
5956 mddev->raid_disks += 1;
5957 return setup_conf(mddev);
5958 }
5959
5960
5961 static struct mdk_personality raid6_personality =
5962 {
5963 .name = "raid6",
5964 .level = 6,
5965 .owner = THIS_MODULE,
5966 .make_request = make_request,
5967 .run = run,
5968 .stop = stop,
5969 .status = status,
5970 .error_handler = error,
5971 .hot_add_disk = raid5_add_disk,
5972 .hot_remove_disk= raid5_remove_disk,
5973 .spare_active = raid5_spare_active,
5974 .sync_request = sync_request,
5975 .resize = raid5_resize,
5976 .size = raid5_size,
5977 .check_reshape = raid6_check_reshape,
5978 .start_reshape = raid5_start_reshape,
5979 .finish_reshape = raid5_finish_reshape,
5980 .quiesce = raid5_quiesce,
5981 .takeover = raid6_takeover,
5982 };
5983 static struct mdk_personality raid5_personality =
5984 {
5985 .name = "raid5",
5986 .level = 5,
5987 .owner = THIS_MODULE,
5988 .make_request = make_request,
5989 .run = run,
5990 .stop = stop,
5991 .status = status,
5992 .error_handler = error,
5993 .hot_add_disk = raid5_add_disk,
5994 .hot_remove_disk= raid5_remove_disk,
5995 .spare_active = raid5_spare_active,
5996 .sync_request = sync_request,
5997 .resize = raid5_resize,
5998 .size = raid5_size,
5999 .check_reshape = raid5_check_reshape,
6000 .start_reshape = raid5_start_reshape,
6001 .finish_reshape = raid5_finish_reshape,
6002 .quiesce = raid5_quiesce,
6003 .takeover = raid5_takeover,
6004 };
6005
6006 static struct mdk_personality raid4_personality =
6007 {
6008 .name = "raid4",
6009 .level = 4,
6010 .owner = THIS_MODULE,
6011 .make_request = make_request,
6012 .run = run,
6013 .stop = stop,
6014 .status = status,
6015 .error_handler = error,
6016 .hot_add_disk = raid5_add_disk,
6017 .hot_remove_disk= raid5_remove_disk,
6018 .spare_active = raid5_spare_active,
6019 .sync_request = sync_request,
6020 .resize = raid5_resize,
6021 .size = raid5_size,
6022 .check_reshape = raid5_check_reshape,
6023 .start_reshape = raid5_start_reshape,
6024 .finish_reshape = raid5_finish_reshape,
6025 .quiesce = raid5_quiesce,
6026 .takeover = raid4_takeover,
6027 };
6028
6029 static int __init raid5_init(void)
6030 {
6031 register_md_personality(&raid6_personality);
6032 register_md_personality(&raid5_personality);
6033 register_md_personality(&raid4_personality);
6034 return 0;
6035 }
6036
6037 static void raid5_exit(void)
6038 {
6039 unregister_md_personality(&raid6_personality);
6040 unregister_md_personality(&raid5_personality);
6041 unregister_md_personality(&raid4_personality);
6042 }
6043
6044 module_init(raid5_init);
6045 module_exit(raid5_exit);
6046 MODULE_LICENSE("GPL");
6047 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6048 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6049 MODULE_ALIAS("md-raid5");
6050 MODULE_ALIAS("md-raid4");
6051 MODULE_ALIAS("md-level-5");
6052 MODULE_ALIAS("md-level-4");
6053 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6054 MODULE_ALIAS("md-raid6");
6055 MODULE_ALIAS("md-level-6");
6056
6057 /* This used to be two separate modules, they were: */
6058 MODULE_ALIAS("raid5");
6059 MODULE_ALIAS("raid6");