Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 unsigned long flags;
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
398 uptodate = 1;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 }
401 if (uptodate) {
402 raid_end_bio_io(r10_bio);
403 rdev_dec_pending(rdev, conf->mddev);
404 } else {
405 /*
406 * oops, read error - keep the refcount on the rdev
407 */
408 char b[BDEVNAME_SIZE];
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
411 mdname(conf->mddev),
412 bdevname(rdev->bdev, b),
413 (unsigned long long)r10_bio->sector);
414 set_bit(R10BIO_ReadError, &r10_bio->state);
415 reschedule_retry(r10_bio);
416 }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 r10_bio->sectors,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
425 0);
426 md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
434 else {
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else
439 raid_end_bio_io(r10_bio);
440 }
441 }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 struct r10bio *r10_bio = bio->bi_private;
448 int dev;
449 int dec_rdev = 1;
450 struct r10conf *conf = r10_bio->mddev->private;
451 int slot, repl;
452 struct md_rdev *rdev = NULL;
453
454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
461 rdev = conf->mirrors[dev].rdev;
462 }
463 /*
464 * this branch is our 'one mirror IO has finished' event handler:
465 */
466 if (!uptodate) {
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
470 */
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
479 }
480 } else {
481 /*
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
485 *
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
489 */
490 sector_t first_bad;
491 int bad_sectors;
492
493 /*
494 * Do not set R10BIO_Uptodate if the current device is
495 * rebuilding or Faulty. This is because we cannot use
496 * such device for properly reading the data back (we could
497 * potentially use it, if the current write would have felt
498 * before rdev->recovery_offset, but for simplicity we don't
499 * check this here.
500 */
501 if (test_bit(In_sync, &rdev->flags) &&
502 !test_bit(Faulty, &rdev->flags))
503 set_bit(R10BIO_Uptodate, &r10_bio->state);
504
505 /* Maybe we can clear some bad blocks. */
506 if (is_badblock(rdev,
507 r10_bio->devs[slot].addr,
508 r10_bio->sectors,
509 &first_bad, &bad_sectors)) {
510 bio_put(bio);
511 if (repl)
512 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513 else
514 r10_bio->devs[slot].bio = IO_MADE_GOOD;
515 dec_rdev = 0;
516 set_bit(R10BIO_MadeGood, &r10_bio->state);
517 }
518 }
519
520 /*
521 *
522 * Let's see if all mirrored write operations have finished
523 * already.
524 */
525 one_write_done(r10_bio);
526 if (dec_rdev)
527 rdev_dec_pending(rdev, conf->mddev);
528 }
529
530 /*
531 * RAID10 layout manager
532 * As well as the chunksize and raid_disks count, there are two
533 * parameters: near_copies and far_copies.
534 * near_copies * far_copies must be <= raid_disks.
535 * Normally one of these will be 1.
536 * If both are 1, we get raid0.
537 * If near_copies == raid_disks, we get raid1.
538 *
539 * Chunks are laid out in raid0 style with near_copies copies of the
540 * first chunk, followed by near_copies copies of the next chunk and
541 * so on.
542 * If far_copies > 1, then after 1/far_copies of the array has been assigned
543 * as described above, we start again with a device offset of near_copies.
544 * So we effectively have another copy of the whole array further down all
545 * the drives, but with blocks on different drives.
546 * With this layout, and block is never stored twice on the one device.
547 *
548 * raid10_find_phys finds the sector offset of a given virtual sector
549 * on each device that it is on.
550 *
551 * raid10_find_virt does the reverse mapping, from a device and a
552 * sector offset to a virtual address
553 */
554
555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
556 {
557 int n,f;
558 sector_t sector;
559 sector_t chunk;
560 sector_t stripe;
561 int dev;
562 int slot = 0;
563 int last_far_set_start, last_far_set_size;
564
565 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566 last_far_set_start *= geo->far_set_size;
567
568 last_far_set_size = geo->far_set_size;
569 last_far_set_size += (geo->raid_disks % geo->far_set_size);
570
571 /* now calculate first sector/dev */
572 chunk = r10bio->sector >> geo->chunk_shift;
573 sector = r10bio->sector & geo->chunk_mask;
574
575 chunk *= geo->near_copies;
576 stripe = chunk;
577 dev = sector_div(stripe, geo->raid_disks);
578 if (geo->far_offset)
579 stripe *= geo->far_copies;
580
581 sector += stripe << geo->chunk_shift;
582
583 /* and calculate all the others */
584 for (n = 0; n < geo->near_copies; n++) {
585 int d = dev;
586 int set;
587 sector_t s = sector;
588 r10bio->devs[slot].devnum = d;
589 r10bio->devs[slot].addr = s;
590 slot++;
591
592 for (f = 1; f < geo->far_copies; f++) {
593 set = d / geo->far_set_size;
594 d += geo->near_copies;
595
596 if ((geo->raid_disks % geo->far_set_size) &&
597 (d > last_far_set_start)) {
598 d -= last_far_set_start;
599 d %= last_far_set_size;
600 d += last_far_set_start;
601 } else {
602 d %= geo->far_set_size;
603 d += geo->far_set_size * set;
604 }
605 s += geo->stride;
606 r10bio->devs[slot].devnum = d;
607 r10bio->devs[slot].addr = s;
608 slot++;
609 }
610 dev++;
611 if (dev >= geo->raid_disks) {
612 dev = 0;
613 sector += (geo->chunk_mask + 1);
614 }
615 }
616 }
617
618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619 {
620 struct geom *geo = &conf->geo;
621
622 if (conf->reshape_progress != MaxSector &&
623 ((r10bio->sector >= conf->reshape_progress) !=
624 conf->mddev->reshape_backwards)) {
625 set_bit(R10BIO_Previous, &r10bio->state);
626 geo = &conf->prev;
627 } else
628 clear_bit(R10BIO_Previous, &r10bio->state);
629
630 __raid10_find_phys(geo, r10bio);
631 }
632
633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
634 {
635 sector_t offset, chunk, vchunk;
636 /* Never use conf->prev as this is only called during resync
637 * or recovery, so reshape isn't happening
638 */
639 struct geom *geo = &conf->geo;
640 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641 int far_set_size = geo->far_set_size;
642 int last_far_set_start;
643
644 if (geo->raid_disks % geo->far_set_size) {
645 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646 last_far_set_start *= geo->far_set_size;
647
648 if (dev >= last_far_set_start) {
649 far_set_size = geo->far_set_size;
650 far_set_size += (geo->raid_disks % geo->far_set_size);
651 far_set_start = last_far_set_start;
652 }
653 }
654
655 offset = sector & geo->chunk_mask;
656 if (geo->far_offset) {
657 int fc;
658 chunk = sector >> geo->chunk_shift;
659 fc = sector_div(chunk, geo->far_copies);
660 dev -= fc * geo->near_copies;
661 if (dev < far_set_start)
662 dev += far_set_size;
663 } else {
664 while (sector >= geo->stride) {
665 sector -= geo->stride;
666 if (dev < (geo->near_copies + far_set_start))
667 dev += far_set_size - geo->near_copies;
668 else
669 dev -= geo->near_copies;
670 }
671 chunk = sector >> geo->chunk_shift;
672 }
673 vchunk = chunk * geo->raid_disks + dev;
674 sector_div(vchunk, geo->near_copies);
675 return (vchunk << geo->chunk_shift) + offset;
676 }
677
678 /**
679 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
680 * @q: request queue
681 * @bvm: properties of new bio
682 * @biovec: the request that could be merged to it.
683 *
684 * Return amount of bytes we can accept at this offset
685 * This requires checking for end-of-chunk if near_copies != raid_disks,
686 * and for subordinate merge_bvec_fns if merge_check_needed.
687 */
688 static int raid10_mergeable_bvec(struct request_queue *q,
689 struct bvec_merge_data *bvm,
690 struct bio_vec *biovec)
691 {
692 struct mddev *mddev = q->queuedata;
693 struct r10conf *conf = mddev->private;
694 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
695 int max;
696 unsigned int chunk_sectors;
697 unsigned int bio_sectors = bvm->bi_size >> 9;
698 struct geom *geo = &conf->geo;
699
700 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
701 if (conf->reshape_progress != MaxSector &&
702 ((sector >= conf->reshape_progress) !=
703 conf->mddev->reshape_backwards))
704 geo = &conf->prev;
705
706 if (geo->near_copies < geo->raid_disks) {
707 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
708 + bio_sectors)) << 9;
709 if (max < 0)
710 /* bio_add cannot handle a negative return */
711 max = 0;
712 if (max <= biovec->bv_len && bio_sectors == 0)
713 return biovec->bv_len;
714 } else
715 max = biovec->bv_len;
716
717 if (mddev->merge_check_needed) {
718 struct {
719 struct r10bio r10_bio;
720 struct r10dev devs[conf->copies];
721 } on_stack;
722 struct r10bio *r10_bio = &on_stack.r10_bio;
723 int s;
724 if (conf->reshape_progress != MaxSector) {
725 /* Cannot give any guidance during reshape */
726 if (max <= biovec->bv_len && bio_sectors == 0)
727 return biovec->bv_len;
728 return 0;
729 }
730 r10_bio->sector = sector;
731 raid10_find_phys(conf, r10_bio);
732 rcu_read_lock();
733 for (s = 0; s < conf->copies; s++) {
734 int disk = r10_bio->devs[s].devnum;
735 struct md_rdev *rdev = rcu_dereference(
736 conf->mirrors[disk].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q =
739 bdev_get_queue(rdev->bdev);
740 if (q->merge_bvec_fn) {
741 bvm->bi_sector = r10_bio->devs[s].addr
742 + rdev->data_offset;
743 bvm->bi_bdev = rdev->bdev;
744 max = min(max, q->merge_bvec_fn(
745 q, bvm, biovec));
746 }
747 }
748 rdev = rcu_dereference(conf->mirrors[disk].replacement);
749 if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 struct request_queue *q =
751 bdev_get_queue(rdev->bdev);
752 if (q->merge_bvec_fn) {
753 bvm->bi_sector = r10_bio->devs[s].addr
754 + rdev->data_offset;
755 bvm->bi_bdev = rdev->bdev;
756 max = min(max, q->merge_bvec_fn(
757 q, bvm, biovec));
758 }
759 }
760 }
761 rcu_read_unlock();
762 }
763 return max;
764 }
765
766 /*
767 * This routine returns the disk from which the requested read should
768 * be done. There is a per-array 'next expected sequential IO' sector
769 * number - if this matches on the next IO then we use the last disk.
770 * There is also a per-disk 'last know head position' sector that is
771 * maintained from IRQ contexts, both the normal and the resync IO
772 * completion handlers update this position correctly. If there is no
773 * perfect sequential match then we pick the disk whose head is closest.
774 *
775 * If there are 2 mirrors in the same 2 devices, performance degrades
776 * because position is mirror, not device based.
777 *
778 * The rdev for the device selected will have nr_pending incremented.
779 */
780
781 /*
782 * FIXME: possibly should rethink readbalancing and do it differently
783 * depending on near_copies / far_copies geometry.
784 */
785 static struct md_rdev *read_balance(struct r10conf *conf,
786 struct r10bio *r10_bio,
787 int *max_sectors)
788 {
789 const sector_t this_sector = r10_bio->sector;
790 int disk, slot;
791 int sectors = r10_bio->sectors;
792 int best_good_sectors;
793 sector_t new_distance, best_dist;
794 struct md_rdev *best_rdev, *rdev = NULL;
795 int do_balance;
796 int best_slot;
797 struct geom *geo = &conf->geo;
798
799 raid10_find_phys(conf, r10_bio);
800 rcu_read_lock();
801 retry:
802 sectors = r10_bio->sectors;
803 best_slot = -1;
804 best_rdev = NULL;
805 best_dist = MaxSector;
806 best_good_sectors = 0;
807 do_balance = 1;
808 /*
809 * Check if we can balance. We can balance on the whole
810 * device if no resync is going on (recovery is ok), or below
811 * the resync window. We take the first readable disk when
812 * above the resync window.
813 */
814 if (conf->mddev->recovery_cp < MaxSector
815 && (this_sector + sectors >= conf->next_resync))
816 do_balance = 0;
817
818 for (slot = 0; slot < conf->copies ; slot++) {
819 sector_t first_bad;
820 int bad_sectors;
821 sector_t dev_sector;
822
823 if (r10_bio->devs[slot].bio == IO_BLOCKED)
824 continue;
825 disk = r10_bio->devs[slot].devnum;
826 rdev = rcu_dereference(conf->mirrors[disk].replacement);
827 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
828 test_bit(Unmerged, &rdev->flags) ||
829 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
830 rdev = rcu_dereference(conf->mirrors[disk].rdev);
831 if (rdev == NULL ||
832 test_bit(Faulty, &rdev->flags) ||
833 test_bit(Unmerged, &rdev->flags))
834 continue;
835 if (!test_bit(In_sync, &rdev->flags) &&
836 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
837 continue;
838
839 dev_sector = r10_bio->devs[slot].addr;
840 if (is_badblock(rdev, dev_sector, sectors,
841 &first_bad, &bad_sectors)) {
842 if (best_dist < MaxSector)
843 /* Already have a better slot */
844 continue;
845 if (first_bad <= dev_sector) {
846 /* Cannot read here. If this is the
847 * 'primary' device, then we must not read
848 * beyond 'bad_sectors' from another device.
849 */
850 bad_sectors -= (dev_sector - first_bad);
851 if (!do_balance && sectors > bad_sectors)
852 sectors = bad_sectors;
853 if (best_good_sectors > sectors)
854 best_good_sectors = sectors;
855 } else {
856 sector_t good_sectors =
857 first_bad - dev_sector;
858 if (good_sectors > best_good_sectors) {
859 best_good_sectors = good_sectors;
860 best_slot = slot;
861 best_rdev = rdev;
862 }
863 if (!do_balance)
864 /* Must read from here */
865 break;
866 }
867 continue;
868 } else
869 best_good_sectors = sectors;
870
871 if (!do_balance)
872 break;
873
874 /* This optimisation is debatable, and completely destroys
875 * sequential read speed for 'far copies' arrays. So only
876 * keep it for 'near' arrays, and review those later.
877 */
878 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
879 break;
880
881 /* for far > 1 always use the lowest address */
882 if (geo->far_copies > 1)
883 new_distance = r10_bio->devs[slot].addr;
884 else
885 new_distance = abs(r10_bio->devs[slot].addr -
886 conf->mirrors[disk].head_position);
887 if (new_distance < best_dist) {
888 best_dist = new_distance;
889 best_slot = slot;
890 best_rdev = rdev;
891 }
892 }
893 if (slot >= conf->copies) {
894 slot = best_slot;
895 rdev = best_rdev;
896 }
897
898 if (slot >= 0) {
899 atomic_inc(&rdev->nr_pending);
900 if (test_bit(Faulty, &rdev->flags)) {
901 /* Cannot risk returning a device that failed
902 * before we inc'ed nr_pending
903 */
904 rdev_dec_pending(rdev, conf->mddev);
905 goto retry;
906 }
907 r10_bio->read_slot = slot;
908 } else
909 rdev = NULL;
910 rcu_read_unlock();
911 *max_sectors = best_good_sectors;
912
913 return rdev;
914 }
915
916 int md_raid10_congested(struct mddev *mddev, int bits)
917 {
918 struct r10conf *conf = mddev->private;
919 int i, ret = 0;
920
921 if ((bits & (1 << BDI_async_congested)) &&
922 conf->pending_count >= max_queued_requests)
923 return 1;
924
925 rcu_read_lock();
926 for (i = 0;
927 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
928 && ret == 0;
929 i++) {
930 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
931 if (rdev && !test_bit(Faulty, &rdev->flags)) {
932 struct request_queue *q = bdev_get_queue(rdev->bdev);
933
934 ret |= bdi_congested(&q->backing_dev_info, bits);
935 }
936 }
937 rcu_read_unlock();
938 return ret;
939 }
940 EXPORT_SYMBOL_GPL(md_raid10_congested);
941
942 static int raid10_congested(void *data, int bits)
943 {
944 struct mddev *mddev = data;
945
946 return mddev_congested(mddev, bits) ||
947 md_raid10_congested(mddev, bits);
948 }
949
950 static void flush_pending_writes(struct r10conf *conf)
951 {
952 /* Any writes that have been queued but are awaiting
953 * bitmap updates get flushed here.
954 */
955 spin_lock_irq(&conf->device_lock);
956
957 if (conf->pending_bio_list.head) {
958 struct bio *bio;
959 bio = bio_list_get(&conf->pending_bio_list);
960 conf->pending_count = 0;
961 spin_unlock_irq(&conf->device_lock);
962 /* flush any pending bitmap writes to disk
963 * before proceeding w/ I/O */
964 bitmap_unplug(conf->mddev->bitmap);
965 wake_up(&conf->wait_barrier);
966
967 while (bio) { /* submit pending writes */
968 struct bio *next = bio->bi_next;
969 bio->bi_next = NULL;
970 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
971 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
972 /* Just ignore it */
973 bio_endio(bio, 0);
974 else
975 generic_make_request(bio);
976 bio = next;
977 }
978 } else
979 spin_unlock_irq(&conf->device_lock);
980 }
981
982 /* Barriers....
983 * Sometimes we need to suspend IO while we do something else,
984 * either some resync/recovery, or reconfigure the array.
985 * To do this we raise a 'barrier'.
986 * The 'barrier' is a counter that can be raised multiple times
987 * to count how many activities are happening which preclude
988 * normal IO.
989 * We can only raise the barrier if there is no pending IO.
990 * i.e. if nr_pending == 0.
991 * We choose only to raise the barrier if no-one is waiting for the
992 * barrier to go down. This means that as soon as an IO request
993 * is ready, no other operations which require a barrier will start
994 * until the IO request has had a chance.
995 *
996 * So: regular IO calls 'wait_barrier'. When that returns there
997 * is no backgroup IO happening, It must arrange to call
998 * allow_barrier when it has finished its IO.
999 * backgroup IO calls must call raise_barrier. Once that returns
1000 * there is no normal IO happeing. It must arrange to call
1001 * lower_barrier when the particular background IO completes.
1002 */
1003
1004 static void raise_barrier(struct r10conf *conf, int force)
1005 {
1006 BUG_ON(force && !conf->barrier);
1007 spin_lock_irq(&conf->resync_lock);
1008
1009 /* Wait until no block IO is waiting (unless 'force') */
1010 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1011 conf->resync_lock);
1012
1013 /* block any new IO from starting */
1014 conf->barrier++;
1015
1016 /* Now wait for all pending IO to complete */
1017 wait_event_lock_irq(conf->wait_barrier,
1018 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1019 conf->resync_lock);
1020
1021 spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void lower_barrier(struct r10conf *conf)
1025 {
1026 unsigned long flags;
1027 spin_lock_irqsave(&conf->resync_lock, flags);
1028 conf->barrier--;
1029 spin_unlock_irqrestore(&conf->resync_lock, flags);
1030 wake_up(&conf->wait_barrier);
1031 }
1032
1033 static void wait_barrier(struct r10conf *conf)
1034 {
1035 spin_lock_irq(&conf->resync_lock);
1036 if (conf->barrier) {
1037 conf->nr_waiting++;
1038 /* Wait for the barrier to drop.
1039 * However if there are already pending
1040 * requests (preventing the barrier from
1041 * rising completely), and the
1042 * pre-process bio queue isn't empty,
1043 * then don't wait, as we need to empty
1044 * that queue to get the nr_pending
1045 * count down.
1046 */
1047 wait_event_lock_irq(conf->wait_barrier,
1048 !conf->barrier ||
1049 (conf->nr_pending &&
1050 current->bio_list &&
1051 !bio_list_empty(current->bio_list)),
1052 conf->resync_lock);
1053 conf->nr_waiting--;
1054 }
1055 conf->nr_pending++;
1056 spin_unlock_irq(&conf->resync_lock);
1057 }
1058
1059 static void allow_barrier(struct r10conf *conf)
1060 {
1061 unsigned long flags;
1062 spin_lock_irqsave(&conf->resync_lock, flags);
1063 conf->nr_pending--;
1064 spin_unlock_irqrestore(&conf->resync_lock, flags);
1065 wake_up(&conf->wait_barrier);
1066 }
1067
1068 static void freeze_array(struct r10conf *conf, int extra)
1069 {
1070 /* stop syncio and normal IO and wait for everything to
1071 * go quiet.
1072 * We increment barrier and nr_waiting, and then
1073 * wait until nr_pending match nr_queued+extra
1074 * This is called in the context of one normal IO request
1075 * that has failed. Thus any sync request that might be pending
1076 * will be blocked by nr_pending, and we need to wait for
1077 * pending IO requests to complete or be queued for re-try.
1078 * Thus the number queued (nr_queued) plus this request (extra)
1079 * must match the number of pending IOs (nr_pending) before
1080 * we continue.
1081 */
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->barrier++;
1084 conf->nr_waiting++;
1085 wait_event_lock_irq_cmd(conf->wait_barrier,
1086 conf->nr_pending == conf->nr_queued+extra,
1087 conf->resync_lock,
1088 flush_pending_writes(conf));
1089
1090 spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static void unfreeze_array(struct r10conf *conf)
1094 {
1095 /* reverse the effect of the freeze */
1096 spin_lock_irq(&conf->resync_lock);
1097 conf->barrier--;
1098 conf->nr_waiting--;
1099 wake_up(&conf->wait_barrier);
1100 spin_unlock_irq(&conf->resync_lock);
1101 }
1102
1103 static sector_t choose_data_offset(struct r10bio *r10_bio,
1104 struct md_rdev *rdev)
1105 {
1106 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1107 test_bit(R10BIO_Previous, &r10_bio->state))
1108 return rdev->data_offset;
1109 else
1110 return rdev->new_data_offset;
1111 }
1112
1113 struct raid10_plug_cb {
1114 struct blk_plug_cb cb;
1115 struct bio_list pending;
1116 int pending_cnt;
1117 };
1118
1119 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1120 {
1121 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1122 cb);
1123 struct mddev *mddev = plug->cb.data;
1124 struct r10conf *conf = mddev->private;
1125 struct bio *bio;
1126
1127 if (from_schedule || current->bio_list) {
1128 spin_lock_irq(&conf->device_lock);
1129 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130 conf->pending_count += plug->pending_cnt;
1131 spin_unlock_irq(&conf->device_lock);
1132 wake_up(&conf->wait_barrier);
1133 md_wakeup_thread(mddev->thread);
1134 kfree(plug);
1135 return;
1136 }
1137
1138 /* we aren't scheduling, so we can do the write-out directly. */
1139 bio = bio_list_get(&plug->pending);
1140 bitmap_unplug(mddev->bitmap);
1141 wake_up(&conf->wait_barrier);
1142
1143 while (bio) { /* submit pending writes */
1144 struct bio *next = bio->bi_next;
1145 bio->bi_next = NULL;
1146 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1147 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1148 /* Just ignore it */
1149 bio_endio(bio, 0);
1150 else
1151 generic_make_request(bio);
1152 bio = next;
1153 }
1154 kfree(plug);
1155 }
1156
1157 static void make_request(struct mddev *mddev, struct bio * bio)
1158 {
1159 struct r10conf *conf = mddev->private;
1160 struct r10bio *r10_bio;
1161 struct bio *read_bio;
1162 int i;
1163 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1164 int chunk_sects = chunk_mask + 1;
1165 const int rw = bio_data_dir(bio);
1166 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1167 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1168 const unsigned long do_discard = (bio->bi_rw
1169 & (REQ_DISCARD | REQ_SECURE));
1170 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1171 unsigned long flags;
1172 struct md_rdev *blocked_rdev;
1173 struct blk_plug_cb *cb;
1174 struct raid10_plug_cb *plug = NULL;
1175 int sectors_handled;
1176 int max_sectors;
1177 int sectors;
1178
1179 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1180 md_flush_request(mddev, bio);
1181 return;
1182 }
1183
1184 /* If this request crosses a chunk boundary, we need to
1185 * split it. This will only happen for 1 PAGE (or less) requests.
1186 */
1187 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1188 > chunk_sects
1189 && (conf->geo.near_copies < conf->geo.raid_disks
1190 || conf->prev.near_copies < conf->prev.raid_disks))) {
1191 struct bio_pair *bp;
1192 /* Sanity check -- queue functions should prevent this happening */
1193 if (bio_segments(bio) > 1)
1194 goto bad_map;
1195 /* This is a one page bio that upper layers
1196 * refuse to split for us, so we need to split it.
1197 */
1198 bp = bio_split(bio,
1199 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1200
1201 /* Each of these 'make_request' calls will call 'wait_barrier'.
1202 * If the first succeeds but the second blocks due to the resync
1203 * thread raising the barrier, we will deadlock because the
1204 * IO to the underlying device will be queued in generic_make_request
1205 * and will never complete, so will never reduce nr_pending.
1206 * So increment nr_waiting here so no new raise_barriers will
1207 * succeed, and so the second wait_barrier cannot block.
1208 */
1209 spin_lock_irq(&conf->resync_lock);
1210 conf->nr_waiting++;
1211 spin_unlock_irq(&conf->resync_lock);
1212
1213 make_request(mddev, &bp->bio1);
1214 make_request(mddev, &bp->bio2);
1215
1216 spin_lock_irq(&conf->resync_lock);
1217 conf->nr_waiting--;
1218 wake_up(&conf->wait_barrier);
1219 spin_unlock_irq(&conf->resync_lock);
1220
1221 bio_pair_release(bp);
1222 return;
1223 bad_map:
1224 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1225 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1226 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1227
1228 bio_io_error(bio);
1229 return;
1230 }
1231
1232 md_write_start(mddev, bio);
1233
1234 /*
1235 * Register the new request and wait if the reconstruction
1236 * thread has put up a bar for new requests.
1237 * Continue immediately if no resync is active currently.
1238 */
1239 wait_barrier(conf);
1240
1241 sectors = bio_sectors(bio);
1242 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1243 bio->bi_sector < conf->reshape_progress &&
1244 bio->bi_sector + sectors > conf->reshape_progress) {
1245 /* IO spans the reshape position. Need to wait for
1246 * reshape to pass
1247 */
1248 allow_barrier(conf);
1249 wait_event(conf->wait_barrier,
1250 conf->reshape_progress <= bio->bi_sector ||
1251 conf->reshape_progress >= bio->bi_sector + sectors);
1252 wait_barrier(conf);
1253 }
1254 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1255 bio_data_dir(bio) == WRITE &&
1256 (mddev->reshape_backwards
1257 ? (bio->bi_sector < conf->reshape_safe &&
1258 bio->bi_sector + sectors > conf->reshape_progress)
1259 : (bio->bi_sector + sectors > conf->reshape_safe &&
1260 bio->bi_sector < conf->reshape_progress))) {
1261 /* Need to update reshape_position in metadata */
1262 mddev->reshape_position = conf->reshape_progress;
1263 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1264 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1265 md_wakeup_thread(mddev->thread);
1266 wait_event(mddev->sb_wait,
1267 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1268
1269 conf->reshape_safe = mddev->reshape_position;
1270 }
1271
1272 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273
1274 r10_bio->master_bio = bio;
1275 r10_bio->sectors = sectors;
1276
1277 r10_bio->mddev = mddev;
1278 r10_bio->sector = bio->bi_sector;
1279 r10_bio->state = 0;
1280
1281 /* We might need to issue multiple reads to different
1282 * devices if there are bad blocks around, so we keep
1283 * track of the number of reads in bio->bi_phys_segments.
1284 * If this is 0, there is only one r10_bio and no locking
1285 * will be needed when the request completes. If it is
1286 * non-zero, then it is the number of not-completed requests.
1287 */
1288 bio->bi_phys_segments = 0;
1289 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1290
1291 if (rw == READ) {
1292 /*
1293 * read balancing logic:
1294 */
1295 struct md_rdev *rdev;
1296 int slot;
1297
1298 read_again:
1299 rdev = read_balance(conf, r10_bio, &max_sectors);
1300 if (!rdev) {
1301 raid_end_bio_io(r10_bio);
1302 return;
1303 }
1304 slot = r10_bio->read_slot;
1305
1306 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1307 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1308 max_sectors);
1309
1310 r10_bio->devs[slot].bio = read_bio;
1311 r10_bio->devs[slot].rdev = rdev;
1312
1313 read_bio->bi_sector = r10_bio->devs[slot].addr +
1314 choose_data_offset(r10_bio, rdev);
1315 read_bio->bi_bdev = rdev->bdev;
1316 read_bio->bi_end_io = raid10_end_read_request;
1317 read_bio->bi_rw = READ | do_sync;
1318 read_bio->bi_private = r10_bio;
1319
1320 if (max_sectors < r10_bio->sectors) {
1321 /* Could not read all from this device, so we will
1322 * need another r10_bio.
1323 */
1324 sectors_handled = (r10_bio->sectors + max_sectors
1325 - bio->bi_sector);
1326 r10_bio->sectors = max_sectors;
1327 spin_lock_irq(&conf->device_lock);
1328 if (bio->bi_phys_segments == 0)
1329 bio->bi_phys_segments = 2;
1330 else
1331 bio->bi_phys_segments++;
1332 spin_unlock(&conf->device_lock);
1333 /* Cannot call generic_make_request directly
1334 * as that will be queued in __generic_make_request
1335 * and subsequent mempool_alloc might block
1336 * waiting for it. so hand bio over to raid10d.
1337 */
1338 reschedule_retry(r10_bio);
1339
1340 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1341
1342 r10_bio->master_bio = bio;
1343 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1344 r10_bio->state = 0;
1345 r10_bio->mddev = mddev;
1346 r10_bio->sector = bio->bi_sector + sectors_handled;
1347 goto read_again;
1348 } else
1349 generic_make_request(read_bio);
1350 return;
1351 }
1352
1353 /*
1354 * WRITE:
1355 */
1356 if (conf->pending_count >= max_queued_requests) {
1357 md_wakeup_thread(mddev->thread);
1358 wait_event(conf->wait_barrier,
1359 conf->pending_count < max_queued_requests);
1360 }
1361 /* first select target devices under rcu_lock and
1362 * inc refcount on their rdev. Record them by setting
1363 * bios[x] to bio
1364 * If there are known/acknowledged bad blocks on any device
1365 * on which we have seen a write error, we want to avoid
1366 * writing to those blocks. This potentially requires several
1367 * writes to write around the bad blocks. Each set of writes
1368 * gets its own r10_bio with a set of bios attached. The number
1369 * of r10_bios is recored in bio->bi_phys_segments just as with
1370 * the read case.
1371 */
1372
1373 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1374 raid10_find_phys(conf, r10_bio);
1375 retry_write:
1376 blocked_rdev = NULL;
1377 rcu_read_lock();
1378 max_sectors = r10_bio->sectors;
1379
1380 for (i = 0; i < conf->copies; i++) {
1381 int d = r10_bio->devs[i].devnum;
1382 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1383 struct md_rdev *rrdev = rcu_dereference(
1384 conf->mirrors[d].replacement);
1385 if (rdev == rrdev)
1386 rrdev = NULL;
1387 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1388 atomic_inc(&rdev->nr_pending);
1389 blocked_rdev = rdev;
1390 break;
1391 }
1392 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1393 atomic_inc(&rrdev->nr_pending);
1394 blocked_rdev = rrdev;
1395 break;
1396 }
1397 if (rdev && (test_bit(Faulty, &rdev->flags)
1398 || test_bit(Unmerged, &rdev->flags)))
1399 rdev = NULL;
1400 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1401 || test_bit(Unmerged, &rrdev->flags)))
1402 rrdev = NULL;
1403
1404 r10_bio->devs[i].bio = NULL;
1405 r10_bio->devs[i].repl_bio = NULL;
1406
1407 if (!rdev && !rrdev) {
1408 set_bit(R10BIO_Degraded, &r10_bio->state);
1409 continue;
1410 }
1411 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1412 sector_t first_bad;
1413 sector_t dev_sector = r10_bio->devs[i].addr;
1414 int bad_sectors;
1415 int is_bad;
1416
1417 is_bad = is_badblock(rdev, dev_sector,
1418 max_sectors,
1419 &first_bad, &bad_sectors);
1420 if (is_bad < 0) {
1421 /* Mustn't write here until the bad block
1422 * is acknowledged
1423 */
1424 atomic_inc(&rdev->nr_pending);
1425 set_bit(BlockedBadBlocks, &rdev->flags);
1426 blocked_rdev = rdev;
1427 break;
1428 }
1429 if (is_bad && first_bad <= dev_sector) {
1430 /* Cannot write here at all */
1431 bad_sectors -= (dev_sector - first_bad);
1432 if (bad_sectors < max_sectors)
1433 /* Mustn't write more than bad_sectors
1434 * to other devices yet
1435 */
1436 max_sectors = bad_sectors;
1437 /* We don't set R10BIO_Degraded as that
1438 * only applies if the disk is missing,
1439 * so it might be re-added, and we want to
1440 * know to recover this chunk.
1441 * In this case the device is here, and the
1442 * fact that this chunk is not in-sync is
1443 * recorded in the bad block log.
1444 */
1445 continue;
1446 }
1447 if (is_bad) {
1448 int good_sectors = first_bad - dev_sector;
1449 if (good_sectors < max_sectors)
1450 max_sectors = good_sectors;
1451 }
1452 }
1453 if (rdev) {
1454 r10_bio->devs[i].bio = bio;
1455 atomic_inc(&rdev->nr_pending);
1456 }
1457 if (rrdev) {
1458 r10_bio->devs[i].repl_bio = bio;
1459 atomic_inc(&rrdev->nr_pending);
1460 }
1461 }
1462 rcu_read_unlock();
1463
1464 if (unlikely(blocked_rdev)) {
1465 /* Have to wait for this device to get unblocked, then retry */
1466 int j;
1467 int d;
1468
1469 for (j = 0; j < i; j++) {
1470 if (r10_bio->devs[j].bio) {
1471 d = r10_bio->devs[j].devnum;
1472 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1473 }
1474 if (r10_bio->devs[j].repl_bio) {
1475 struct md_rdev *rdev;
1476 d = r10_bio->devs[j].devnum;
1477 rdev = conf->mirrors[d].replacement;
1478 if (!rdev) {
1479 /* Race with remove_disk */
1480 smp_mb();
1481 rdev = conf->mirrors[d].rdev;
1482 }
1483 rdev_dec_pending(rdev, mddev);
1484 }
1485 }
1486 allow_barrier(conf);
1487 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488 wait_barrier(conf);
1489 goto retry_write;
1490 }
1491
1492 if (max_sectors < r10_bio->sectors) {
1493 /* We are splitting this into multiple parts, so
1494 * we need to prepare for allocating another r10_bio.
1495 */
1496 r10_bio->sectors = max_sectors;
1497 spin_lock_irq(&conf->device_lock);
1498 if (bio->bi_phys_segments == 0)
1499 bio->bi_phys_segments = 2;
1500 else
1501 bio->bi_phys_segments++;
1502 spin_unlock_irq(&conf->device_lock);
1503 }
1504 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1505
1506 atomic_set(&r10_bio->remaining, 1);
1507 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1508
1509 for (i = 0; i < conf->copies; i++) {
1510 struct bio *mbio;
1511 int d = r10_bio->devs[i].devnum;
1512 if (r10_bio->devs[i].bio) {
1513 struct md_rdev *rdev = conf->mirrors[d].rdev;
1514 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1515 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1516 max_sectors);
1517 r10_bio->devs[i].bio = mbio;
1518
1519 mbio->bi_sector = (r10_bio->devs[i].addr+
1520 choose_data_offset(r10_bio,
1521 rdev));
1522 mbio->bi_bdev = rdev->bdev;
1523 mbio->bi_end_io = raid10_end_write_request;
1524 mbio->bi_rw =
1525 WRITE | do_sync | do_fua | do_discard | do_same;
1526 mbio->bi_private = r10_bio;
1527
1528 atomic_inc(&r10_bio->remaining);
1529
1530 cb = blk_check_plugged(raid10_unplug, mddev,
1531 sizeof(*plug));
1532 if (cb)
1533 plug = container_of(cb, struct raid10_plug_cb,
1534 cb);
1535 else
1536 plug = NULL;
1537 spin_lock_irqsave(&conf->device_lock, flags);
1538 if (plug) {
1539 bio_list_add(&plug->pending, mbio);
1540 plug->pending_cnt++;
1541 } else {
1542 bio_list_add(&conf->pending_bio_list, mbio);
1543 conf->pending_count++;
1544 }
1545 spin_unlock_irqrestore(&conf->device_lock, flags);
1546 if (!plug)
1547 md_wakeup_thread(mddev->thread);
1548 }
1549
1550 if (r10_bio->devs[i].repl_bio) {
1551 struct md_rdev *rdev = conf->mirrors[d].replacement;
1552 if (rdev == NULL) {
1553 /* Replacement just got moved to main 'rdev' */
1554 smp_mb();
1555 rdev = conf->mirrors[d].rdev;
1556 }
1557 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1558 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1559 max_sectors);
1560 r10_bio->devs[i].repl_bio = mbio;
1561
1562 mbio->bi_sector = (r10_bio->devs[i].addr +
1563 choose_data_offset(
1564 r10_bio, rdev));
1565 mbio->bi_bdev = rdev->bdev;
1566 mbio->bi_end_io = raid10_end_write_request;
1567 mbio->bi_rw =
1568 WRITE | do_sync | do_fua | do_discard | do_same;
1569 mbio->bi_private = r10_bio;
1570
1571 atomic_inc(&r10_bio->remaining);
1572 spin_lock_irqsave(&conf->device_lock, flags);
1573 bio_list_add(&conf->pending_bio_list, mbio);
1574 conf->pending_count++;
1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1576 if (!mddev_check_plugged(mddev))
1577 md_wakeup_thread(mddev->thread);
1578 }
1579 }
1580
1581 /* Don't remove the bias on 'remaining' (one_write_done) until
1582 * after checking if we need to go around again.
1583 */
1584
1585 if (sectors_handled < bio_sectors(bio)) {
1586 one_write_done(r10_bio);
1587 /* We need another r10_bio. It has already been counted
1588 * in bio->bi_phys_segments.
1589 */
1590 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1591
1592 r10_bio->master_bio = bio;
1593 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1594
1595 r10_bio->mddev = mddev;
1596 r10_bio->sector = bio->bi_sector + sectors_handled;
1597 r10_bio->state = 0;
1598 goto retry_write;
1599 }
1600 one_write_done(r10_bio);
1601
1602 /* In case raid10d snuck in to freeze_array */
1603 wake_up(&conf->wait_barrier);
1604 }
1605
1606 static void status(struct seq_file *seq, struct mddev *mddev)
1607 {
1608 struct r10conf *conf = mddev->private;
1609 int i;
1610
1611 if (conf->geo.near_copies < conf->geo.raid_disks)
1612 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1613 if (conf->geo.near_copies > 1)
1614 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1615 if (conf->geo.far_copies > 1) {
1616 if (conf->geo.far_offset)
1617 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1618 else
1619 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1620 }
1621 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1622 conf->geo.raid_disks - mddev->degraded);
1623 for (i = 0; i < conf->geo.raid_disks; i++)
1624 seq_printf(seq, "%s",
1625 conf->mirrors[i].rdev &&
1626 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1627 seq_printf(seq, "]");
1628 }
1629
1630 /* check if there are enough drives for
1631 * every block to appear on atleast one.
1632 * Don't consider the device numbered 'ignore'
1633 * as we might be about to remove it.
1634 */
1635 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1636 {
1637 int first = 0;
1638
1639 do {
1640 int n = conf->copies;
1641 int cnt = 0;
1642 int this = first;
1643 while (n--) {
1644 if (conf->mirrors[this].rdev &&
1645 this != ignore)
1646 cnt++;
1647 this = (this+1) % geo->raid_disks;
1648 }
1649 if (cnt == 0)
1650 return 0;
1651 first = (first + geo->near_copies) % geo->raid_disks;
1652 } while (first != 0);
1653 return 1;
1654 }
1655
1656 static int enough(struct r10conf *conf, int ignore)
1657 {
1658 return _enough(conf, &conf->geo, ignore) &&
1659 _enough(conf, &conf->prev, ignore);
1660 }
1661
1662 static void error(struct mddev *mddev, struct md_rdev *rdev)
1663 {
1664 char b[BDEVNAME_SIZE];
1665 struct r10conf *conf = mddev->private;
1666
1667 /*
1668 * If it is not operational, then we have already marked it as dead
1669 * else if it is the last working disks, ignore the error, let the
1670 * next level up know.
1671 * else mark the drive as failed
1672 */
1673 if (test_bit(In_sync, &rdev->flags)
1674 && !enough(conf, rdev->raid_disk))
1675 /*
1676 * Don't fail the drive, just return an IO error.
1677 */
1678 return;
1679 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1680 unsigned long flags;
1681 spin_lock_irqsave(&conf->device_lock, flags);
1682 mddev->degraded++;
1683 spin_unlock_irqrestore(&conf->device_lock, flags);
1684 /*
1685 * if recovery is running, make sure it aborts.
1686 */
1687 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1688 }
1689 set_bit(Blocked, &rdev->flags);
1690 set_bit(Faulty, &rdev->flags);
1691 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1692 printk(KERN_ALERT
1693 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1694 "md/raid10:%s: Operation continuing on %d devices.\n",
1695 mdname(mddev), bdevname(rdev->bdev, b),
1696 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1697 }
1698
1699 static void print_conf(struct r10conf *conf)
1700 {
1701 int i;
1702 struct raid10_info *tmp;
1703
1704 printk(KERN_DEBUG "RAID10 conf printout:\n");
1705 if (!conf) {
1706 printk(KERN_DEBUG "(!conf)\n");
1707 return;
1708 }
1709 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1710 conf->geo.raid_disks);
1711
1712 for (i = 0; i < conf->geo.raid_disks; i++) {
1713 char b[BDEVNAME_SIZE];
1714 tmp = conf->mirrors + i;
1715 if (tmp->rdev)
1716 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1717 i, !test_bit(In_sync, &tmp->rdev->flags),
1718 !test_bit(Faulty, &tmp->rdev->flags),
1719 bdevname(tmp->rdev->bdev,b));
1720 }
1721 }
1722
1723 static void close_sync(struct r10conf *conf)
1724 {
1725 wait_barrier(conf);
1726 allow_barrier(conf);
1727
1728 mempool_destroy(conf->r10buf_pool);
1729 conf->r10buf_pool = NULL;
1730 }
1731
1732 static int raid10_spare_active(struct mddev *mddev)
1733 {
1734 int i;
1735 struct r10conf *conf = mddev->private;
1736 struct raid10_info *tmp;
1737 int count = 0;
1738 unsigned long flags;
1739
1740 /*
1741 * Find all non-in_sync disks within the RAID10 configuration
1742 * and mark them in_sync
1743 */
1744 for (i = 0; i < conf->geo.raid_disks; i++) {
1745 tmp = conf->mirrors + i;
1746 if (tmp->replacement
1747 && tmp->replacement->recovery_offset == MaxSector
1748 && !test_bit(Faulty, &tmp->replacement->flags)
1749 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1750 /* Replacement has just become active */
1751 if (!tmp->rdev
1752 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1753 count++;
1754 if (tmp->rdev) {
1755 /* Replaced device not technically faulty,
1756 * but we need to be sure it gets removed
1757 * and never re-added.
1758 */
1759 set_bit(Faulty, &tmp->rdev->flags);
1760 sysfs_notify_dirent_safe(
1761 tmp->rdev->sysfs_state);
1762 }
1763 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1764 } else if (tmp->rdev
1765 && !test_bit(Faulty, &tmp->rdev->flags)
1766 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1767 count++;
1768 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1769 }
1770 }
1771 spin_lock_irqsave(&conf->device_lock, flags);
1772 mddev->degraded -= count;
1773 spin_unlock_irqrestore(&conf->device_lock, flags);
1774
1775 print_conf(conf);
1776 return count;
1777 }
1778
1779
1780 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782 struct r10conf *conf = mddev->private;
1783 int err = -EEXIST;
1784 int mirror;
1785 int first = 0;
1786 int last = conf->geo.raid_disks - 1;
1787 struct request_queue *q = bdev_get_queue(rdev->bdev);
1788
1789 if (mddev->recovery_cp < MaxSector)
1790 /* only hot-add to in-sync arrays, as recovery is
1791 * very different from resync
1792 */
1793 return -EBUSY;
1794 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1795 return -EINVAL;
1796
1797 if (rdev->raid_disk >= 0)
1798 first = last = rdev->raid_disk;
1799
1800 if (q->merge_bvec_fn) {
1801 set_bit(Unmerged, &rdev->flags);
1802 mddev->merge_check_needed = 1;
1803 }
1804
1805 if (rdev->saved_raid_disk >= first &&
1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 mirror = rdev->saved_raid_disk;
1808 else
1809 mirror = first;
1810 for ( ; mirror <= last ; mirror++) {
1811 struct raid10_info *p = &conf->mirrors[mirror];
1812 if (p->recovery_disabled == mddev->recovery_disabled)
1813 continue;
1814 if (p->rdev) {
1815 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1816 p->replacement != NULL)
1817 continue;
1818 clear_bit(In_sync, &rdev->flags);
1819 set_bit(Replacement, &rdev->flags);
1820 rdev->raid_disk = mirror;
1821 err = 0;
1822 disk_stack_limits(mddev->gendisk, rdev->bdev,
1823 rdev->data_offset << 9);
1824 conf->fullsync = 1;
1825 rcu_assign_pointer(p->replacement, rdev);
1826 break;
1827 }
1828
1829 disk_stack_limits(mddev->gendisk, rdev->bdev,
1830 rdev->data_offset << 9);
1831
1832 p->head_position = 0;
1833 p->recovery_disabled = mddev->recovery_disabled - 1;
1834 rdev->raid_disk = mirror;
1835 err = 0;
1836 if (rdev->saved_raid_disk != mirror)
1837 conf->fullsync = 1;
1838 rcu_assign_pointer(p->rdev, rdev);
1839 break;
1840 }
1841 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1842 /* Some requests might not have seen this new
1843 * merge_bvec_fn. We must wait for them to complete
1844 * before merging the device fully.
1845 * First we make sure any code which has tested
1846 * our function has submitted the request, then
1847 * we wait for all outstanding requests to complete.
1848 */
1849 synchronize_sched();
1850 freeze_array(conf, 0);
1851 unfreeze_array(conf);
1852 clear_bit(Unmerged, &rdev->flags);
1853 }
1854 md_integrity_add_rdev(rdev, mddev);
1855 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1856 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1857
1858 print_conf(conf);
1859 return err;
1860 }
1861
1862 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1863 {
1864 struct r10conf *conf = mddev->private;
1865 int err = 0;
1866 int number = rdev->raid_disk;
1867 struct md_rdev **rdevp;
1868 struct raid10_info *p = conf->mirrors + number;
1869
1870 print_conf(conf);
1871 if (rdev == p->rdev)
1872 rdevp = &p->rdev;
1873 else if (rdev == p->replacement)
1874 rdevp = &p->replacement;
1875 else
1876 return 0;
1877
1878 if (test_bit(In_sync, &rdev->flags) ||
1879 atomic_read(&rdev->nr_pending)) {
1880 err = -EBUSY;
1881 goto abort;
1882 }
1883 /* Only remove faulty devices if recovery
1884 * is not possible.
1885 */
1886 if (!test_bit(Faulty, &rdev->flags) &&
1887 mddev->recovery_disabled != p->recovery_disabled &&
1888 (!p->replacement || p->replacement == rdev) &&
1889 number < conf->geo.raid_disks &&
1890 enough(conf, -1)) {
1891 err = -EBUSY;
1892 goto abort;
1893 }
1894 *rdevp = NULL;
1895 synchronize_rcu();
1896 if (atomic_read(&rdev->nr_pending)) {
1897 /* lost the race, try later */
1898 err = -EBUSY;
1899 *rdevp = rdev;
1900 goto abort;
1901 } else if (p->replacement) {
1902 /* We must have just cleared 'rdev' */
1903 p->rdev = p->replacement;
1904 clear_bit(Replacement, &p->replacement->flags);
1905 smp_mb(); /* Make sure other CPUs may see both as identical
1906 * but will never see neither -- if they are careful.
1907 */
1908 p->replacement = NULL;
1909 clear_bit(WantReplacement, &rdev->flags);
1910 } else
1911 /* We might have just remove the Replacement as faulty
1912 * Clear the flag just in case
1913 */
1914 clear_bit(WantReplacement, &rdev->flags);
1915
1916 err = md_integrity_register(mddev);
1917
1918 abort:
1919
1920 print_conf(conf);
1921 return err;
1922 }
1923
1924
1925 static void end_sync_read(struct bio *bio, int error)
1926 {
1927 struct r10bio *r10_bio = bio->bi_private;
1928 struct r10conf *conf = r10_bio->mddev->private;
1929 int d;
1930
1931 if (bio == r10_bio->master_bio) {
1932 /* this is a reshape read */
1933 d = r10_bio->read_slot; /* really the read dev */
1934 } else
1935 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1936
1937 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1938 set_bit(R10BIO_Uptodate, &r10_bio->state);
1939 else
1940 /* The write handler will notice the lack of
1941 * R10BIO_Uptodate and record any errors etc
1942 */
1943 atomic_add(r10_bio->sectors,
1944 &conf->mirrors[d].rdev->corrected_errors);
1945
1946 /* for reconstruct, we always reschedule after a read.
1947 * for resync, only after all reads
1948 */
1949 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1950 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1951 atomic_dec_and_test(&r10_bio->remaining)) {
1952 /* we have read all the blocks,
1953 * do the comparison in process context in raid10d
1954 */
1955 reschedule_retry(r10_bio);
1956 }
1957 }
1958
1959 static void end_sync_request(struct r10bio *r10_bio)
1960 {
1961 struct mddev *mddev = r10_bio->mddev;
1962
1963 while (atomic_dec_and_test(&r10_bio->remaining)) {
1964 if (r10_bio->master_bio == NULL) {
1965 /* the primary of several recovery bios */
1966 sector_t s = r10_bio->sectors;
1967 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968 test_bit(R10BIO_WriteError, &r10_bio->state))
1969 reschedule_retry(r10_bio);
1970 else
1971 put_buf(r10_bio);
1972 md_done_sync(mddev, s, 1);
1973 break;
1974 } else {
1975 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1976 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 test_bit(R10BIO_WriteError, &r10_bio->state))
1978 reschedule_retry(r10_bio);
1979 else
1980 put_buf(r10_bio);
1981 r10_bio = r10_bio2;
1982 }
1983 }
1984 }
1985
1986 static void end_sync_write(struct bio *bio, int error)
1987 {
1988 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1989 struct r10bio *r10_bio = bio->bi_private;
1990 struct mddev *mddev = r10_bio->mddev;
1991 struct r10conf *conf = mddev->private;
1992 int d;
1993 sector_t first_bad;
1994 int bad_sectors;
1995 int slot;
1996 int repl;
1997 struct md_rdev *rdev = NULL;
1998
1999 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2000 if (repl)
2001 rdev = conf->mirrors[d].replacement;
2002 else
2003 rdev = conf->mirrors[d].rdev;
2004
2005 if (!uptodate) {
2006 if (repl)
2007 md_error(mddev, rdev);
2008 else {
2009 set_bit(WriteErrorSeen, &rdev->flags);
2010 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2011 set_bit(MD_RECOVERY_NEEDED,
2012 &rdev->mddev->recovery);
2013 set_bit(R10BIO_WriteError, &r10_bio->state);
2014 }
2015 } else if (is_badblock(rdev,
2016 r10_bio->devs[slot].addr,
2017 r10_bio->sectors,
2018 &first_bad, &bad_sectors))
2019 set_bit(R10BIO_MadeGood, &r10_bio->state);
2020
2021 rdev_dec_pending(rdev, mddev);
2022
2023 end_sync_request(r10_bio);
2024 }
2025
2026 /*
2027 * Note: sync and recover and handled very differently for raid10
2028 * This code is for resync.
2029 * For resync, we read through virtual addresses and read all blocks.
2030 * If there is any error, we schedule a write. The lowest numbered
2031 * drive is authoritative.
2032 * However requests come for physical address, so we need to map.
2033 * For every physical address there are raid_disks/copies virtual addresses,
2034 * which is always are least one, but is not necessarly an integer.
2035 * This means that a physical address can span multiple chunks, so we may
2036 * have to submit multiple io requests for a single sync request.
2037 */
2038 /*
2039 * We check if all blocks are in-sync and only write to blocks that
2040 * aren't in sync
2041 */
2042 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2043 {
2044 struct r10conf *conf = mddev->private;
2045 int i, first;
2046 struct bio *tbio, *fbio;
2047 int vcnt;
2048
2049 atomic_set(&r10_bio->remaining, 1);
2050
2051 /* find the first device with a block */
2052 for (i=0; i<conf->copies; i++)
2053 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2054 break;
2055
2056 if (i == conf->copies)
2057 goto done;
2058
2059 first = i;
2060 fbio = r10_bio->devs[i].bio;
2061
2062 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2063 /* now find blocks with errors */
2064 for (i=0 ; i < conf->copies ; i++) {
2065 int j, d;
2066
2067 tbio = r10_bio->devs[i].bio;
2068
2069 if (tbio->bi_end_io != end_sync_read)
2070 continue;
2071 if (i == first)
2072 continue;
2073 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2074 /* We know that the bi_io_vec layout is the same for
2075 * both 'first' and 'i', so we just compare them.
2076 * All vec entries are PAGE_SIZE;
2077 */
2078 for (j = 0; j < vcnt; j++)
2079 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2080 page_address(tbio->bi_io_vec[j].bv_page),
2081 fbio->bi_io_vec[j].bv_len))
2082 break;
2083 if (j == vcnt)
2084 continue;
2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087 /* Don't fix anything. */
2088 continue;
2089 }
2090 /* Ok, we need to write this bio, either to correct an
2091 * inconsistency or to correct an unreadable block.
2092 * First we need to fixup bv_offset, bv_len and
2093 * bi_vecs, as the read request might have corrupted these
2094 */
2095 bio_reset(tbio);
2096
2097 tbio->bi_vcnt = vcnt;
2098 tbio->bi_size = r10_bio->sectors << 9;
2099 tbio->bi_rw = WRITE;
2100 tbio->bi_private = r10_bio;
2101 tbio->bi_sector = r10_bio->devs[i].addr;
2102
2103 for (j=0; j < vcnt ; j++) {
2104 tbio->bi_io_vec[j].bv_offset = 0;
2105 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2106
2107 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2108 page_address(fbio->bi_io_vec[j].bv_page),
2109 PAGE_SIZE);
2110 }
2111 tbio->bi_end_io = end_sync_write;
2112
2113 d = r10_bio->devs[i].devnum;
2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115 atomic_inc(&r10_bio->remaining);
2116 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117
2118 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2119 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2120 generic_make_request(tbio);
2121 }
2122
2123 /* Now write out to any replacement devices
2124 * that are active
2125 */
2126 for (i = 0; i < conf->copies; i++) {
2127 int j, d;
2128
2129 tbio = r10_bio->devs[i].repl_bio;
2130 if (!tbio || !tbio->bi_end_io)
2131 continue;
2132 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2133 && r10_bio->devs[i].bio != fbio)
2134 for (j = 0; j < vcnt; j++)
2135 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2136 page_address(fbio->bi_io_vec[j].bv_page),
2137 PAGE_SIZE);
2138 d = r10_bio->devs[i].devnum;
2139 atomic_inc(&r10_bio->remaining);
2140 md_sync_acct(conf->mirrors[d].replacement->bdev,
2141 bio_sectors(tbio));
2142 generic_make_request(tbio);
2143 }
2144
2145 done:
2146 if (atomic_dec_and_test(&r10_bio->remaining)) {
2147 md_done_sync(mddev, r10_bio->sectors, 1);
2148 put_buf(r10_bio);
2149 }
2150 }
2151
2152 /*
2153 * Now for the recovery code.
2154 * Recovery happens across physical sectors.
2155 * We recover all non-is_sync drives by finding the virtual address of
2156 * each, and then choose a working drive that also has that virt address.
2157 * There is a separate r10_bio for each non-in_sync drive.
2158 * Only the first two slots are in use. The first for reading,
2159 * The second for writing.
2160 *
2161 */
2162 static void fix_recovery_read_error(struct r10bio *r10_bio)
2163 {
2164 /* We got a read error during recovery.
2165 * We repeat the read in smaller page-sized sections.
2166 * If a read succeeds, write it to the new device or record
2167 * a bad block if we cannot.
2168 * If a read fails, record a bad block on both old and
2169 * new devices.
2170 */
2171 struct mddev *mddev = r10_bio->mddev;
2172 struct r10conf *conf = mddev->private;
2173 struct bio *bio = r10_bio->devs[0].bio;
2174 sector_t sect = 0;
2175 int sectors = r10_bio->sectors;
2176 int idx = 0;
2177 int dr = r10_bio->devs[0].devnum;
2178 int dw = r10_bio->devs[1].devnum;
2179
2180 while (sectors) {
2181 int s = sectors;
2182 struct md_rdev *rdev;
2183 sector_t addr;
2184 int ok;
2185
2186 if (s > (PAGE_SIZE>>9))
2187 s = PAGE_SIZE >> 9;
2188
2189 rdev = conf->mirrors[dr].rdev;
2190 addr = r10_bio->devs[0].addr + sect,
2191 ok = sync_page_io(rdev,
2192 addr,
2193 s << 9,
2194 bio->bi_io_vec[idx].bv_page,
2195 READ, false);
2196 if (ok) {
2197 rdev = conf->mirrors[dw].rdev;
2198 addr = r10_bio->devs[1].addr + sect;
2199 ok = sync_page_io(rdev,
2200 addr,
2201 s << 9,
2202 bio->bi_io_vec[idx].bv_page,
2203 WRITE, false);
2204 if (!ok) {
2205 set_bit(WriteErrorSeen, &rdev->flags);
2206 if (!test_and_set_bit(WantReplacement,
2207 &rdev->flags))
2208 set_bit(MD_RECOVERY_NEEDED,
2209 &rdev->mddev->recovery);
2210 }
2211 }
2212 if (!ok) {
2213 /* We don't worry if we cannot set a bad block -
2214 * it really is bad so there is no loss in not
2215 * recording it yet
2216 */
2217 rdev_set_badblocks(rdev, addr, s, 0);
2218
2219 if (rdev != conf->mirrors[dw].rdev) {
2220 /* need bad block on destination too */
2221 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222 addr = r10_bio->devs[1].addr + sect;
2223 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224 if (!ok) {
2225 /* just abort the recovery */
2226 printk(KERN_NOTICE
2227 "md/raid10:%s: recovery aborted"
2228 " due to read error\n",
2229 mdname(mddev));
2230
2231 conf->mirrors[dw].recovery_disabled
2232 = mddev->recovery_disabled;
2233 set_bit(MD_RECOVERY_INTR,
2234 &mddev->recovery);
2235 break;
2236 }
2237 }
2238 }
2239
2240 sectors -= s;
2241 sect += s;
2242 idx++;
2243 }
2244 }
2245
2246 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2247 {
2248 struct r10conf *conf = mddev->private;
2249 int d;
2250 struct bio *wbio, *wbio2;
2251
2252 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2253 fix_recovery_read_error(r10_bio);
2254 end_sync_request(r10_bio);
2255 return;
2256 }
2257
2258 /*
2259 * share the pages with the first bio
2260 * and submit the write request
2261 */
2262 d = r10_bio->devs[1].devnum;
2263 wbio = r10_bio->devs[1].bio;
2264 wbio2 = r10_bio->devs[1].repl_bio;
2265 if (wbio->bi_end_io) {
2266 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2267 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2268 generic_make_request(wbio);
2269 }
2270 if (wbio2 && wbio2->bi_end_io) {
2271 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2272 md_sync_acct(conf->mirrors[d].replacement->bdev,
2273 bio_sectors(wbio2));
2274 generic_make_request(wbio2);
2275 }
2276 }
2277
2278
2279 /*
2280 * Used by fix_read_error() to decay the per rdev read_errors.
2281 * We halve the read error count for every hour that has elapsed
2282 * since the last recorded read error.
2283 *
2284 */
2285 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2286 {
2287 struct timespec cur_time_mon;
2288 unsigned long hours_since_last;
2289 unsigned int read_errors = atomic_read(&rdev->read_errors);
2290
2291 ktime_get_ts(&cur_time_mon);
2292
2293 if (rdev->last_read_error.tv_sec == 0 &&
2294 rdev->last_read_error.tv_nsec == 0) {
2295 /* first time we've seen a read error */
2296 rdev->last_read_error = cur_time_mon;
2297 return;
2298 }
2299
2300 hours_since_last = (cur_time_mon.tv_sec -
2301 rdev->last_read_error.tv_sec) / 3600;
2302
2303 rdev->last_read_error = cur_time_mon;
2304
2305 /*
2306 * if hours_since_last is > the number of bits in read_errors
2307 * just set read errors to 0. We do this to avoid
2308 * overflowing the shift of read_errors by hours_since_last.
2309 */
2310 if (hours_since_last >= 8 * sizeof(read_errors))
2311 atomic_set(&rdev->read_errors, 0);
2312 else
2313 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2314 }
2315
2316 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2317 int sectors, struct page *page, int rw)
2318 {
2319 sector_t first_bad;
2320 int bad_sectors;
2321
2322 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2323 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2324 return -1;
2325 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2326 /* success */
2327 return 1;
2328 if (rw == WRITE) {
2329 set_bit(WriteErrorSeen, &rdev->flags);
2330 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2331 set_bit(MD_RECOVERY_NEEDED,
2332 &rdev->mddev->recovery);
2333 }
2334 /* need to record an error - either for the block or the device */
2335 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2336 md_error(rdev->mddev, rdev);
2337 return 0;
2338 }
2339
2340 /*
2341 * This is a kernel thread which:
2342 *
2343 * 1. Retries failed read operations on working mirrors.
2344 * 2. Updates the raid superblock when problems encounter.
2345 * 3. Performs writes following reads for array synchronising.
2346 */
2347
2348 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2349 {
2350 int sect = 0; /* Offset from r10_bio->sector */
2351 int sectors = r10_bio->sectors;
2352 struct md_rdev*rdev;
2353 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2354 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2355
2356 /* still own a reference to this rdev, so it cannot
2357 * have been cleared recently.
2358 */
2359 rdev = conf->mirrors[d].rdev;
2360
2361 if (test_bit(Faulty, &rdev->flags))
2362 /* drive has already been failed, just ignore any
2363 more fix_read_error() attempts */
2364 return;
2365
2366 check_decay_read_errors(mddev, rdev);
2367 atomic_inc(&rdev->read_errors);
2368 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2369 char b[BDEVNAME_SIZE];
2370 bdevname(rdev->bdev, b);
2371
2372 printk(KERN_NOTICE
2373 "md/raid10:%s: %s: Raid device exceeded "
2374 "read_error threshold [cur %d:max %d]\n",
2375 mdname(mddev), b,
2376 atomic_read(&rdev->read_errors), max_read_errors);
2377 printk(KERN_NOTICE
2378 "md/raid10:%s: %s: Failing raid device\n",
2379 mdname(mddev), b);
2380 md_error(mddev, conf->mirrors[d].rdev);
2381 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2382 return;
2383 }
2384
2385 while(sectors) {
2386 int s = sectors;
2387 int sl = r10_bio->read_slot;
2388 int success = 0;
2389 int start;
2390
2391 if (s > (PAGE_SIZE>>9))
2392 s = PAGE_SIZE >> 9;
2393
2394 rcu_read_lock();
2395 do {
2396 sector_t first_bad;
2397 int bad_sectors;
2398
2399 d = r10_bio->devs[sl].devnum;
2400 rdev = rcu_dereference(conf->mirrors[d].rdev);
2401 if (rdev &&
2402 !test_bit(Unmerged, &rdev->flags) &&
2403 test_bit(In_sync, &rdev->flags) &&
2404 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2405 &first_bad, &bad_sectors) == 0) {
2406 atomic_inc(&rdev->nr_pending);
2407 rcu_read_unlock();
2408 success = sync_page_io(rdev,
2409 r10_bio->devs[sl].addr +
2410 sect,
2411 s<<9,
2412 conf->tmppage, READ, false);
2413 rdev_dec_pending(rdev, mddev);
2414 rcu_read_lock();
2415 if (success)
2416 break;
2417 }
2418 sl++;
2419 if (sl == conf->copies)
2420 sl = 0;
2421 } while (!success && sl != r10_bio->read_slot);
2422 rcu_read_unlock();
2423
2424 if (!success) {
2425 /* Cannot read from anywhere, just mark the block
2426 * as bad on the first device to discourage future
2427 * reads.
2428 */
2429 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2430 rdev = conf->mirrors[dn].rdev;
2431
2432 if (!rdev_set_badblocks(
2433 rdev,
2434 r10_bio->devs[r10_bio->read_slot].addr
2435 + sect,
2436 s, 0)) {
2437 md_error(mddev, rdev);
2438 r10_bio->devs[r10_bio->read_slot].bio
2439 = IO_BLOCKED;
2440 }
2441 break;
2442 }
2443
2444 start = sl;
2445 /* write it back and re-read */
2446 rcu_read_lock();
2447 while (sl != r10_bio->read_slot) {
2448 char b[BDEVNAME_SIZE];
2449
2450 if (sl==0)
2451 sl = conf->copies;
2452 sl--;
2453 d = r10_bio->devs[sl].devnum;
2454 rdev = rcu_dereference(conf->mirrors[d].rdev);
2455 if (!rdev ||
2456 test_bit(Unmerged, &rdev->flags) ||
2457 !test_bit(In_sync, &rdev->flags))
2458 continue;
2459
2460 atomic_inc(&rdev->nr_pending);
2461 rcu_read_unlock();
2462 if (r10_sync_page_io(rdev,
2463 r10_bio->devs[sl].addr +
2464 sect,
2465 s, conf->tmppage, WRITE)
2466 == 0) {
2467 /* Well, this device is dead */
2468 printk(KERN_NOTICE
2469 "md/raid10:%s: read correction "
2470 "write failed"
2471 " (%d sectors at %llu on %s)\n",
2472 mdname(mddev), s,
2473 (unsigned long long)(
2474 sect +
2475 choose_data_offset(r10_bio,
2476 rdev)),
2477 bdevname(rdev->bdev, b));
2478 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2479 "drive\n",
2480 mdname(mddev),
2481 bdevname(rdev->bdev, b));
2482 }
2483 rdev_dec_pending(rdev, mddev);
2484 rcu_read_lock();
2485 }
2486 sl = start;
2487 while (sl != r10_bio->read_slot) {
2488 char b[BDEVNAME_SIZE];
2489
2490 if (sl==0)
2491 sl = conf->copies;
2492 sl--;
2493 d = r10_bio->devs[sl].devnum;
2494 rdev = rcu_dereference(conf->mirrors[d].rdev);
2495 if (!rdev ||
2496 !test_bit(In_sync, &rdev->flags))
2497 continue;
2498
2499 atomic_inc(&rdev->nr_pending);
2500 rcu_read_unlock();
2501 switch (r10_sync_page_io(rdev,
2502 r10_bio->devs[sl].addr +
2503 sect,
2504 s, conf->tmppage,
2505 READ)) {
2506 case 0:
2507 /* Well, this device is dead */
2508 printk(KERN_NOTICE
2509 "md/raid10:%s: unable to read back "
2510 "corrected sectors"
2511 " (%d sectors at %llu on %s)\n",
2512 mdname(mddev), s,
2513 (unsigned long long)(
2514 sect +
2515 choose_data_offset(r10_bio, rdev)),
2516 bdevname(rdev->bdev, b));
2517 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2518 "drive\n",
2519 mdname(mddev),
2520 bdevname(rdev->bdev, b));
2521 break;
2522 case 1:
2523 printk(KERN_INFO
2524 "md/raid10:%s: read error corrected"
2525 " (%d sectors at %llu on %s)\n",
2526 mdname(mddev), s,
2527 (unsigned long long)(
2528 sect +
2529 choose_data_offset(r10_bio, rdev)),
2530 bdevname(rdev->bdev, b));
2531 atomic_add(s, &rdev->corrected_errors);
2532 }
2533
2534 rdev_dec_pending(rdev, mddev);
2535 rcu_read_lock();
2536 }
2537 rcu_read_unlock();
2538
2539 sectors -= s;
2540 sect += s;
2541 }
2542 }
2543
2544 static int narrow_write_error(struct r10bio *r10_bio, int i)
2545 {
2546 struct bio *bio = r10_bio->master_bio;
2547 struct mddev *mddev = r10_bio->mddev;
2548 struct r10conf *conf = mddev->private;
2549 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2550 /* bio has the data to be written to slot 'i' where
2551 * we just recently had a write error.
2552 * We repeatedly clone the bio and trim down to one block,
2553 * then try the write. Where the write fails we record
2554 * a bad block.
2555 * It is conceivable that the bio doesn't exactly align with
2556 * blocks. We must handle this.
2557 *
2558 * We currently own a reference to the rdev.
2559 */
2560
2561 int block_sectors;
2562 sector_t sector;
2563 int sectors;
2564 int sect_to_write = r10_bio->sectors;
2565 int ok = 1;
2566
2567 if (rdev->badblocks.shift < 0)
2568 return 0;
2569
2570 block_sectors = 1 << rdev->badblocks.shift;
2571 sector = r10_bio->sector;
2572 sectors = ((r10_bio->sector + block_sectors)
2573 & ~(sector_t)(block_sectors - 1))
2574 - sector;
2575
2576 while (sect_to_write) {
2577 struct bio *wbio;
2578 if (sectors > sect_to_write)
2579 sectors = sect_to_write;
2580 /* Write at 'sector' for 'sectors' */
2581 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2582 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2583 wbio->bi_sector = (r10_bio->devs[i].addr+
2584 choose_data_offset(r10_bio, rdev) +
2585 (sector - r10_bio->sector));
2586 wbio->bi_bdev = rdev->bdev;
2587 if (submit_bio_wait(WRITE, wbio) == 0)
2588 /* Failure! */
2589 ok = rdev_set_badblocks(rdev, sector,
2590 sectors, 0)
2591 && ok;
2592
2593 bio_put(wbio);
2594 sect_to_write -= sectors;
2595 sector += sectors;
2596 sectors = block_sectors;
2597 }
2598 return ok;
2599 }
2600
2601 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2602 {
2603 int slot = r10_bio->read_slot;
2604 struct bio *bio;
2605 struct r10conf *conf = mddev->private;
2606 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2607 char b[BDEVNAME_SIZE];
2608 unsigned long do_sync;
2609 int max_sectors;
2610
2611 /* we got a read error. Maybe the drive is bad. Maybe just
2612 * the block and we can fix it.
2613 * We freeze all other IO, and try reading the block from
2614 * other devices. When we find one, we re-write
2615 * and check it that fixes the read error.
2616 * This is all done synchronously while the array is
2617 * frozen.
2618 */
2619 bio = r10_bio->devs[slot].bio;
2620 bdevname(bio->bi_bdev, b);
2621 bio_put(bio);
2622 r10_bio->devs[slot].bio = NULL;
2623
2624 if (mddev->ro == 0) {
2625 freeze_array(conf, 1);
2626 fix_read_error(conf, mddev, r10_bio);
2627 unfreeze_array(conf);
2628 } else
2629 r10_bio->devs[slot].bio = IO_BLOCKED;
2630
2631 rdev_dec_pending(rdev, mddev);
2632
2633 read_more:
2634 rdev = read_balance(conf, r10_bio, &max_sectors);
2635 if (rdev == NULL) {
2636 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2637 " read error for block %llu\n",
2638 mdname(mddev), b,
2639 (unsigned long long)r10_bio->sector);
2640 raid_end_bio_io(r10_bio);
2641 return;
2642 }
2643
2644 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2645 slot = r10_bio->read_slot;
2646 printk_ratelimited(
2647 KERN_ERR
2648 "md/raid10:%s: %s: redirecting "
2649 "sector %llu to another mirror\n",
2650 mdname(mddev),
2651 bdevname(rdev->bdev, b),
2652 (unsigned long long)r10_bio->sector);
2653 bio = bio_clone_mddev(r10_bio->master_bio,
2654 GFP_NOIO, mddev);
2655 md_trim_bio(bio,
2656 r10_bio->sector - bio->bi_sector,
2657 max_sectors);
2658 r10_bio->devs[slot].bio = bio;
2659 r10_bio->devs[slot].rdev = rdev;
2660 bio->bi_sector = r10_bio->devs[slot].addr
2661 + choose_data_offset(r10_bio, rdev);
2662 bio->bi_bdev = rdev->bdev;
2663 bio->bi_rw = READ | do_sync;
2664 bio->bi_private = r10_bio;
2665 bio->bi_end_io = raid10_end_read_request;
2666 if (max_sectors < r10_bio->sectors) {
2667 /* Drat - have to split this up more */
2668 struct bio *mbio = r10_bio->master_bio;
2669 int sectors_handled =
2670 r10_bio->sector + max_sectors
2671 - mbio->bi_sector;
2672 r10_bio->sectors = max_sectors;
2673 spin_lock_irq(&conf->device_lock);
2674 if (mbio->bi_phys_segments == 0)
2675 mbio->bi_phys_segments = 2;
2676 else
2677 mbio->bi_phys_segments++;
2678 spin_unlock_irq(&conf->device_lock);
2679 generic_make_request(bio);
2680
2681 r10_bio = mempool_alloc(conf->r10bio_pool,
2682 GFP_NOIO);
2683 r10_bio->master_bio = mbio;
2684 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2685 r10_bio->state = 0;
2686 set_bit(R10BIO_ReadError,
2687 &r10_bio->state);
2688 r10_bio->mddev = mddev;
2689 r10_bio->sector = mbio->bi_sector
2690 + sectors_handled;
2691
2692 goto read_more;
2693 } else
2694 generic_make_request(bio);
2695 }
2696
2697 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2698 {
2699 /* Some sort of write request has finished and it
2700 * succeeded in writing where we thought there was a
2701 * bad block. So forget the bad block.
2702 * Or possibly if failed and we need to record
2703 * a bad block.
2704 */
2705 int m;
2706 struct md_rdev *rdev;
2707
2708 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2709 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2710 for (m = 0; m < conf->copies; m++) {
2711 int dev = r10_bio->devs[m].devnum;
2712 rdev = conf->mirrors[dev].rdev;
2713 if (r10_bio->devs[m].bio == NULL)
2714 continue;
2715 if (test_bit(BIO_UPTODATE,
2716 &r10_bio->devs[m].bio->bi_flags)) {
2717 rdev_clear_badblocks(
2718 rdev,
2719 r10_bio->devs[m].addr,
2720 r10_bio->sectors, 0);
2721 } else {
2722 if (!rdev_set_badblocks(
2723 rdev,
2724 r10_bio->devs[m].addr,
2725 r10_bio->sectors, 0))
2726 md_error(conf->mddev, rdev);
2727 }
2728 rdev = conf->mirrors[dev].replacement;
2729 if (r10_bio->devs[m].repl_bio == NULL)
2730 continue;
2731 if (test_bit(BIO_UPTODATE,
2732 &r10_bio->devs[m].repl_bio->bi_flags)) {
2733 rdev_clear_badblocks(
2734 rdev,
2735 r10_bio->devs[m].addr,
2736 r10_bio->sectors, 0);
2737 } else {
2738 if (!rdev_set_badblocks(
2739 rdev,
2740 r10_bio->devs[m].addr,
2741 r10_bio->sectors, 0))
2742 md_error(conf->mddev, rdev);
2743 }
2744 }
2745 put_buf(r10_bio);
2746 } else {
2747 for (m = 0; m < conf->copies; m++) {
2748 int dev = r10_bio->devs[m].devnum;
2749 struct bio *bio = r10_bio->devs[m].bio;
2750 rdev = conf->mirrors[dev].rdev;
2751 if (bio == IO_MADE_GOOD) {
2752 rdev_clear_badblocks(
2753 rdev,
2754 r10_bio->devs[m].addr,
2755 r10_bio->sectors, 0);
2756 rdev_dec_pending(rdev, conf->mddev);
2757 } else if (bio != NULL &&
2758 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2759 if (!narrow_write_error(r10_bio, m)) {
2760 md_error(conf->mddev, rdev);
2761 set_bit(R10BIO_Degraded,
2762 &r10_bio->state);
2763 }
2764 rdev_dec_pending(rdev, conf->mddev);
2765 }
2766 bio = r10_bio->devs[m].repl_bio;
2767 rdev = conf->mirrors[dev].replacement;
2768 if (rdev && bio == IO_MADE_GOOD) {
2769 rdev_clear_badblocks(
2770 rdev,
2771 r10_bio->devs[m].addr,
2772 r10_bio->sectors, 0);
2773 rdev_dec_pending(rdev, conf->mddev);
2774 }
2775 }
2776 if (test_bit(R10BIO_WriteError,
2777 &r10_bio->state))
2778 close_write(r10_bio);
2779 raid_end_bio_io(r10_bio);
2780 }
2781 }
2782
2783 static void raid10d(struct md_thread *thread)
2784 {
2785 struct mddev *mddev = thread->mddev;
2786 struct r10bio *r10_bio;
2787 unsigned long flags;
2788 struct r10conf *conf = mddev->private;
2789 struct list_head *head = &conf->retry_list;
2790 struct blk_plug plug;
2791
2792 md_check_recovery(mddev);
2793
2794 blk_start_plug(&plug);
2795 for (;;) {
2796
2797 flush_pending_writes(conf);
2798
2799 spin_lock_irqsave(&conf->device_lock, flags);
2800 if (list_empty(head)) {
2801 spin_unlock_irqrestore(&conf->device_lock, flags);
2802 break;
2803 }
2804 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2805 list_del(head->prev);
2806 conf->nr_queued--;
2807 spin_unlock_irqrestore(&conf->device_lock, flags);
2808
2809 mddev = r10_bio->mddev;
2810 conf = mddev->private;
2811 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2812 test_bit(R10BIO_WriteError, &r10_bio->state))
2813 handle_write_completed(conf, r10_bio);
2814 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2815 reshape_request_write(mddev, r10_bio);
2816 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2817 sync_request_write(mddev, r10_bio);
2818 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2819 recovery_request_write(mddev, r10_bio);
2820 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2821 handle_read_error(mddev, r10_bio);
2822 else {
2823 /* just a partial read to be scheduled from a
2824 * separate context
2825 */
2826 int slot = r10_bio->read_slot;
2827 generic_make_request(r10_bio->devs[slot].bio);
2828 }
2829
2830 cond_resched();
2831 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2832 md_check_recovery(mddev);
2833 }
2834 blk_finish_plug(&plug);
2835 }
2836
2837
2838 static int init_resync(struct r10conf *conf)
2839 {
2840 int buffs;
2841 int i;
2842
2843 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2844 BUG_ON(conf->r10buf_pool);
2845 conf->have_replacement = 0;
2846 for (i = 0; i < conf->geo.raid_disks; i++)
2847 if (conf->mirrors[i].replacement)
2848 conf->have_replacement = 1;
2849 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2850 if (!conf->r10buf_pool)
2851 return -ENOMEM;
2852 conf->next_resync = 0;
2853 return 0;
2854 }
2855
2856 /*
2857 * perform a "sync" on one "block"
2858 *
2859 * We need to make sure that no normal I/O request - particularly write
2860 * requests - conflict with active sync requests.
2861 *
2862 * This is achieved by tracking pending requests and a 'barrier' concept
2863 * that can be installed to exclude normal IO requests.
2864 *
2865 * Resync and recovery are handled very differently.
2866 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2867 *
2868 * For resync, we iterate over virtual addresses, read all copies,
2869 * and update if there are differences. If only one copy is live,
2870 * skip it.
2871 * For recovery, we iterate over physical addresses, read a good
2872 * value for each non-in_sync drive, and over-write.
2873 *
2874 * So, for recovery we may have several outstanding complex requests for a
2875 * given address, one for each out-of-sync device. We model this by allocating
2876 * a number of r10_bio structures, one for each out-of-sync device.
2877 * As we setup these structures, we collect all bio's together into a list
2878 * which we then process collectively to add pages, and then process again
2879 * to pass to generic_make_request.
2880 *
2881 * The r10_bio structures are linked using a borrowed master_bio pointer.
2882 * This link is counted in ->remaining. When the r10_bio that points to NULL
2883 * has its remaining count decremented to 0, the whole complex operation
2884 * is complete.
2885 *
2886 */
2887
2888 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2889 int *skipped, int go_faster)
2890 {
2891 struct r10conf *conf = mddev->private;
2892 struct r10bio *r10_bio;
2893 struct bio *biolist = NULL, *bio;
2894 sector_t max_sector, nr_sectors;
2895 int i;
2896 int max_sync;
2897 sector_t sync_blocks;
2898 sector_t sectors_skipped = 0;
2899 int chunks_skipped = 0;
2900 sector_t chunk_mask = conf->geo.chunk_mask;
2901
2902 if (!conf->r10buf_pool)
2903 if (init_resync(conf))
2904 return 0;
2905
2906 /*
2907 * Allow skipping a full rebuild for incremental assembly
2908 * of a clean array, like RAID1 does.
2909 */
2910 if (mddev->bitmap == NULL &&
2911 mddev->recovery_cp == MaxSector &&
2912 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2913 conf->fullsync == 0) {
2914 *skipped = 1;
2915 max_sector = mddev->dev_sectors;
2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2918 max_sector = mddev->resync_max_sectors;
2919 return max_sector - sector_nr;
2920 }
2921
2922 skipped:
2923 max_sector = mddev->dev_sectors;
2924 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2925 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2926 max_sector = mddev->resync_max_sectors;
2927 if (sector_nr >= max_sector) {
2928 /* If we aborted, we need to abort the
2929 * sync on the 'current' bitmap chucks (there can
2930 * be several when recovering multiple devices).
2931 * as we may have started syncing it but not finished.
2932 * We can find the current address in
2933 * mddev->curr_resync, but for recovery,
2934 * we need to convert that to several
2935 * virtual addresses.
2936 */
2937 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2938 end_reshape(conf);
2939 return 0;
2940 }
2941
2942 if (mddev->curr_resync < max_sector) { /* aborted */
2943 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945 &sync_blocks, 1);
2946 else for (i = 0; i < conf->geo.raid_disks; i++) {
2947 sector_t sect =
2948 raid10_find_virt(conf, mddev->curr_resync, i);
2949 bitmap_end_sync(mddev->bitmap, sect,
2950 &sync_blocks, 1);
2951 }
2952 } else {
2953 /* completed sync */
2954 if ((!mddev->bitmap || conf->fullsync)
2955 && conf->have_replacement
2956 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957 /* Completed a full sync so the replacements
2958 * are now fully recovered.
2959 */
2960 for (i = 0; i < conf->geo.raid_disks; i++)
2961 if (conf->mirrors[i].replacement)
2962 conf->mirrors[i].replacement
2963 ->recovery_offset
2964 = MaxSector;
2965 }
2966 conf->fullsync = 0;
2967 }
2968 bitmap_close_sync(mddev->bitmap);
2969 close_sync(conf);
2970 *skipped = 1;
2971 return sectors_skipped;
2972 }
2973
2974 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2975 return reshape_request(mddev, sector_nr, skipped);
2976
2977 if (chunks_skipped >= conf->geo.raid_disks) {
2978 /* if there has been nothing to do on any drive,
2979 * then there is nothing to do at all..
2980 */
2981 *skipped = 1;
2982 return (max_sector - sector_nr) + sectors_skipped;
2983 }
2984
2985 if (max_sector > mddev->resync_max)
2986 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2987
2988 /* make sure whole request will fit in a chunk - if chunks
2989 * are meaningful
2990 */
2991 if (conf->geo.near_copies < conf->geo.raid_disks &&
2992 max_sector > (sector_nr | chunk_mask))
2993 max_sector = (sector_nr | chunk_mask) + 1;
2994 /*
2995 * If there is non-resync activity waiting for us then
2996 * put in a delay to throttle resync.
2997 */
2998 if (!go_faster && conf->nr_waiting)
2999 msleep_interruptible(1000);
3000
3001 /* Again, very different code for resync and recovery.
3002 * Both must result in an r10bio with a list of bios that
3003 * have bi_end_io, bi_sector, bi_bdev set,
3004 * and bi_private set to the r10bio.
3005 * For recovery, we may actually create several r10bios
3006 * with 2 bios in each, that correspond to the bios in the main one.
3007 * In this case, the subordinate r10bios link back through a
3008 * borrowed master_bio pointer, and the counter in the master
3009 * includes a ref from each subordinate.
3010 */
3011 /* First, we decide what to do and set ->bi_end_io
3012 * To end_sync_read if we want to read, and
3013 * end_sync_write if we will want to write.
3014 */
3015
3016 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3017 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3018 /* recovery... the complicated one */
3019 int j;
3020 r10_bio = NULL;
3021
3022 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3023 int still_degraded;
3024 struct r10bio *rb2;
3025 sector_t sect;
3026 int must_sync;
3027 int any_working;
3028 struct raid10_info *mirror = &conf->mirrors[i];
3029
3030 if ((mirror->rdev == NULL ||
3031 test_bit(In_sync, &mirror->rdev->flags))
3032 &&
3033 (mirror->replacement == NULL ||
3034 test_bit(Faulty,
3035 &mirror->replacement->flags)))
3036 continue;
3037
3038 still_degraded = 0;
3039 /* want to reconstruct this device */
3040 rb2 = r10_bio;
3041 sect = raid10_find_virt(conf, sector_nr, i);
3042 if (sect >= mddev->resync_max_sectors) {
3043 /* last stripe is not complete - don't
3044 * try to recover this sector.
3045 */
3046 continue;
3047 }
3048 /* Unless we are doing a full sync, or a replacement
3049 * we only need to recover the block if it is set in
3050 * the bitmap
3051 */
3052 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3053 &sync_blocks, 1);
3054 if (sync_blocks < max_sync)
3055 max_sync = sync_blocks;
3056 if (!must_sync &&
3057 mirror->replacement == NULL &&
3058 !conf->fullsync) {
3059 /* yep, skip the sync_blocks here, but don't assume
3060 * that there will never be anything to do here
3061 */
3062 chunks_skipped = -1;
3063 continue;
3064 }
3065
3066 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3067 raise_barrier(conf, rb2 != NULL);
3068 atomic_set(&r10_bio->remaining, 0);
3069
3070 r10_bio->master_bio = (struct bio*)rb2;
3071 if (rb2)
3072 atomic_inc(&rb2->remaining);
3073 r10_bio->mddev = mddev;
3074 set_bit(R10BIO_IsRecover, &r10_bio->state);
3075 r10_bio->sector = sect;
3076
3077 raid10_find_phys(conf, r10_bio);
3078
3079 /* Need to check if the array will still be
3080 * degraded
3081 */
3082 for (j = 0; j < conf->geo.raid_disks; j++)
3083 if (conf->mirrors[j].rdev == NULL ||
3084 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3085 still_degraded = 1;
3086 break;
3087 }
3088
3089 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3090 &sync_blocks, still_degraded);
3091
3092 any_working = 0;
3093 for (j=0; j<conf->copies;j++) {
3094 int k;
3095 int d = r10_bio->devs[j].devnum;
3096 sector_t from_addr, to_addr;
3097 struct md_rdev *rdev;
3098 sector_t sector, first_bad;
3099 int bad_sectors;
3100 if (!conf->mirrors[d].rdev ||
3101 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3102 continue;
3103 /* This is where we read from */
3104 any_working = 1;
3105 rdev = conf->mirrors[d].rdev;
3106 sector = r10_bio->devs[j].addr;
3107
3108 if (is_badblock(rdev, sector, max_sync,
3109 &first_bad, &bad_sectors)) {
3110 if (first_bad > sector)
3111 max_sync = first_bad - sector;
3112 else {
3113 bad_sectors -= (sector
3114 - first_bad);
3115 if (max_sync > bad_sectors)
3116 max_sync = bad_sectors;
3117 continue;
3118 }
3119 }
3120 bio = r10_bio->devs[0].bio;
3121 bio_reset(bio);
3122 bio->bi_next = biolist;
3123 biolist = bio;
3124 bio->bi_private = r10_bio;
3125 bio->bi_end_io = end_sync_read;
3126 bio->bi_rw = READ;
3127 from_addr = r10_bio->devs[j].addr;
3128 bio->bi_sector = from_addr + rdev->data_offset;
3129 bio->bi_bdev = rdev->bdev;
3130 atomic_inc(&rdev->nr_pending);
3131 /* and we write to 'i' (if not in_sync) */
3132
3133 for (k=0; k<conf->copies; k++)
3134 if (r10_bio->devs[k].devnum == i)
3135 break;
3136 BUG_ON(k == conf->copies);
3137 to_addr = r10_bio->devs[k].addr;
3138 r10_bio->devs[0].devnum = d;
3139 r10_bio->devs[0].addr = from_addr;
3140 r10_bio->devs[1].devnum = i;
3141 r10_bio->devs[1].addr = to_addr;
3142
3143 rdev = mirror->rdev;
3144 if (!test_bit(In_sync, &rdev->flags)) {
3145 bio = r10_bio->devs[1].bio;
3146 bio_reset(bio);
3147 bio->bi_next = biolist;
3148 biolist = bio;
3149 bio->bi_private = r10_bio;
3150 bio->bi_end_io = end_sync_write;
3151 bio->bi_rw = WRITE;
3152 bio->bi_sector = to_addr
3153 + rdev->data_offset;
3154 bio->bi_bdev = rdev->bdev;
3155 atomic_inc(&r10_bio->remaining);
3156 } else
3157 r10_bio->devs[1].bio->bi_end_io = NULL;
3158
3159 /* and maybe write to replacement */
3160 bio = r10_bio->devs[1].repl_bio;
3161 if (bio)
3162 bio->bi_end_io = NULL;
3163 rdev = mirror->replacement;
3164 /* Note: if rdev != NULL, then bio
3165 * cannot be NULL as r10buf_pool_alloc will
3166 * have allocated it.
3167 * So the second test here is pointless.
3168 * But it keeps semantic-checkers happy, and
3169 * this comment keeps human reviewers
3170 * happy.
3171 */
3172 if (rdev == NULL || bio == NULL ||
3173 test_bit(Faulty, &rdev->flags))
3174 break;
3175 bio_reset(bio);
3176 bio->bi_next = biolist;
3177 biolist = bio;
3178 bio->bi_private = r10_bio;
3179 bio->bi_end_io = end_sync_write;
3180 bio->bi_rw = WRITE;
3181 bio->bi_sector = to_addr + rdev->data_offset;
3182 bio->bi_bdev = rdev->bdev;
3183 atomic_inc(&r10_bio->remaining);
3184 break;
3185 }
3186 if (j == conf->copies) {
3187 /* Cannot recover, so abort the recovery or
3188 * record a bad block */
3189 put_buf(r10_bio);
3190 if (rb2)
3191 atomic_dec(&rb2->remaining);
3192 r10_bio = rb2;
3193 if (any_working) {
3194 /* problem is that there are bad blocks
3195 * on other device(s)
3196 */
3197 int k;
3198 for (k = 0; k < conf->copies; k++)
3199 if (r10_bio->devs[k].devnum == i)
3200 break;
3201 if (!test_bit(In_sync,
3202 &mirror->rdev->flags)
3203 && !rdev_set_badblocks(
3204 mirror->rdev,
3205 r10_bio->devs[k].addr,
3206 max_sync, 0))
3207 any_working = 0;
3208 if (mirror->replacement &&
3209 !rdev_set_badblocks(
3210 mirror->replacement,
3211 r10_bio->devs[k].addr,
3212 max_sync, 0))
3213 any_working = 0;
3214 }
3215 if (!any_working) {
3216 if (!test_and_set_bit(MD_RECOVERY_INTR,
3217 &mddev->recovery))
3218 printk(KERN_INFO "md/raid10:%s: insufficient "
3219 "working devices for recovery.\n",
3220 mdname(mddev));
3221 mirror->recovery_disabled
3222 = mddev->recovery_disabled;
3223 }
3224 break;
3225 }
3226 }
3227 if (biolist == NULL) {
3228 while (r10_bio) {
3229 struct r10bio *rb2 = r10_bio;
3230 r10_bio = (struct r10bio*) rb2->master_bio;
3231 rb2->master_bio = NULL;
3232 put_buf(rb2);
3233 }
3234 goto giveup;
3235 }
3236 } else {
3237 /* resync. Schedule a read for every block at this virt offset */
3238 int count = 0;
3239
3240 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3241
3242 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3243 &sync_blocks, mddev->degraded) &&
3244 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3245 &mddev->recovery)) {
3246 /* We can skip this block */
3247 *skipped = 1;
3248 return sync_blocks + sectors_skipped;
3249 }
3250 if (sync_blocks < max_sync)
3251 max_sync = sync_blocks;
3252 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3253
3254 r10_bio->mddev = mddev;
3255 atomic_set(&r10_bio->remaining, 0);
3256 raise_barrier(conf, 0);
3257 conf->next_resync = sector_nr;
3258
3259 r10_bio->master_bio = NULL;
3260 r10_bio->sector = sector_nr;
3261 set_bit(R10BIO_IsSync, &r10_bio->state);
3262 raid10_find_phys(conf, r10_bio);
3263 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3264
3265 for (i = 0; i < conf->copies; i++) {
3266 int d = r10_bio->devs[i].devnum;
3267 sector_t first_bad, sector;
3268 int bad_sectors;
3269
3270 if (r10_bio->devs[i].repl_bio)
3271 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3272
3273 bio = r10_bio->devs[i].bio;
3274 bio_reset(bio);
3275 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3276 if (conf->mirrors[d].rdev == NULL ||
3277 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3278 continue;
3279 sector = r10_bio->devs[i].addr;
3280 if (is_badblock(conf->mirrors[d].rdev,
3281 sector, max_sync,
3282 &first_bad, &bad_sectors)) {
3283 if (first_bad > sector)
3284 max_sync = first_bad - sector;
3285 else {
3286 bad_sectors -= (sector - first_bad);
3287 if (max_sync > bad_sectors)
3288 max_sync = bad_sectors;
3289 continue;
3290 }
3291 }
3292 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3293 atomic_inc(&r10_bio->remaining);
3294 bio->bi_next = biolist;
3295 biolist = bio;
3296 bio->bi_private = r10_bio;
3297 bio->bi_end_io = end_sync_read;
3298 bio->bi_rw = READ;
3299 bio->bi_sector = sector +
3300 conf->mirrors[d].rdev->data_offset;
3301 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3302 count++;
3303
3304 if (conf->mirrors[d].replacement == NULL ||
3305 test_bit(Faulty,
3306 &conf->mirrors[d].replacement->flags))
3307 continue;
3308
3309 /* Need to set up for writing to the replacement */
3310 bio = r10_bio->devs[i].repl_bio;
3311 bio_reset(bio);
3312 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3313
3314 sector = r10_bio->devs[i].addr;
3315 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3316 bio->bi_next = biolist;
3317 biolist = bio;
3318 bio->bi_private = r10_bio;
3319 bio->bi_end_io = end_sync_write;
3320 bio->bi_rw = WRITE;
3321 bio->bi_sector = sector +
3322 conf->mirrors[d].replacement->data_offset;
3323 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3324 count++;
3325 }
3326
3327 if (count < 2) {
3328 for (i=0; i<conf->copies; i++) {
3329 int d = r10_bio->devs[i].devnum;
3330 if (r10_bio->devs[i].bio->bi_end_io)
3331 rdev_dec_pending(conf->mirrors[d].rdev,
3332 mddev);
3333 if (r10_bio->devs[i].repl_bio &&
3334 r10_bio->devs[i].repl_bio->bi_end_io)
3335 rdev_dec_pending(
3336 conf->mirrors[d].replacement,
3337 mddev);
3338 }
3339 put_buf(r10_bio);
3340 biolist = NULL;
3341 goto giveup;
3342 }
3343 }
3344
3345 nr_sectors = 0;
3346 if (sector_nr + max_sync < max_sector)
3347 max_sector = sector_nr + max_sync;
3348 do {
3349 struct page *page;
3350 int len = PAGE_SIZE;
3351 if (sector_nr + (len>>9) > max_sector)
3352 len = (max_sector - sector_nr) << 9;
3353 if (len == 0)
3354 break;
3355 for (bio= biolist ; bio ; bio=bio->bi_next) {
3356 struct bio *bio2;
3357 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3358 if (bio_add_page(bio, page, len, 0))
3359 continue;
3360
3361 /* stop here */
3362 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3363 for (bio2 = biolist;
3364 bio2 && bio2 != bio;
3365 bio2 = bio2->bi_next) {
3366 /* remove last page from this bio */
3367 bio2->bi_vcnt--;
3368 bio2->bi_size -= len;
3369 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3370 }
3371 goto bio_full;
3372 }
3373 nr_sectors += len>>9;
3374 sector_nr += len>>9;
3375 } while (biolist->bi_vcnt < RESYNC_PAGES);
3376 bio_full:
3377 r10_bio->sectors = nr_sectors;
3378
3379 while (biolist) {
3380 bio = biolist;
3381 biolist = biolist->bi_next;
3382
3383 bio->bi_next = NULL;
3384 r10_bio = bio->bi_private;
3385 r10_bio->sectors = nr_sectors;
3386
3387 if (bio->bi_end_io == end_sync_read) {
3388 md_sync_acct(bio->bi_bdev, nr_sectors);
3389 generic_make_request(bio);
3390 }
3391 }
3392
3393 if (sectors_skipped)
3394 /* pretend they weren't skipped, it makes
3395 * no important difference in this case
3396 */
3397 md_done_sync(mddev, sectors_skipped, 1);
3398
3399 return sectors_skipped + nr_sectors;
3400 giveup:
3401 /* There is nowhere to write, so all non-sync
3402 * drives must be failed or in resync, all drives
3403 * have a bad block, so try the next chunk...
3404 */
3405 if (sector_nr + max_sync < max_sector)
3406 max_sector = sector_nr + max_sync;
3407
3408 sectors_skipped += (max_sector - sector_nr);
3409 chunks_skipped ++;
3410 sector_nr = max_sector;
3411 goto skipped;
3412 }
3413
3414 static sector_t
3415 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3416 {
3417 sector_t size;
3418 struct r10conf *conf = mddev->private;
3419
3420 if (!raid_disks)
3421 raid_disks = min(conf->geo.raid_disks,
3422 conf->prev.raid_disks);
3423 if (!sectors)
3424 sectors = conf->dev_sectors;
3425
3426 size = sectors >> conf->geo.chunk_shift;
3427 sector_div(size, conf->geo.far_copies);
3428 size = size * raid_disks;
3429 sector_div(size, conf->geo.near_copies);
3430
3431 return size << conf->geo.chunk_shift;
3432 }
3433
3434 static void calc_sectors(struct r10conf *conf, sector_t size)
3435 {
3436 /* Calculate the number of sectors-per-device that will
3437 * actually be used, and set conf->dev_sectors and
3438 * conf->stride
3439 */
3440
3441 size = size >> conf->geo.chunk_shift;
3442 sector_div(size, conf->geo.far_copies);
3443 size = size * conf->geo.raid_disks;
3444 sector_div(size, conf->geo.near_copies);
3445 /* 'size' is now the number of chunks in the array */
3446 /* calculate "used chunks per device" */
3447 size = size * conf->copies;
3448
3449 /* We need to round up when dividing by raid_disks to
3450 * get the stride size.
3451 */
3452 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3453
3454 conf->dev_sectors = size << conf->geo.chunk_shift;
3455
3456 if (conf->geo.far_offset)
3457 conf->geo.stride = 1 << conf->geo.chunk_shift;
3458 else {
3459 sector_div(size, conf->geo.far_copies);
3460 conf->geo.stride = size << conf->geo.chunk_shift;
3461 }
3462 }
3463
3464 enum geo_type {geo_new, geo_old, geo_start};
3465 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3466 {
3467 int nc, fc, fo;
3468 int layout, chunk, disks;
3469 switch (new) {
3470 case geo_old:
3471 layout = mddev->layout;
3472 chunk = mddev->chunk_sectors;
3473 disks = mddev->raid_disks - mddev->delta_disks;
3474 break;
3475 case geo_new:
3476 layout = mddev->new_layout;
3477 chunk = mddev->new_chunk_sectors;
3478 disks = mddev->raid_disks;
3479 break;
3480 default: /* avoid 'may be unused' warnings */
3481 case geo_start: /* new when starting reshape - raid_disks not
3482 * updated yet. */
3483 layout = mddev->new_layout;
3484 chunk = mddev->new_chunk_sectors;
3485 disks = mddev->raid_disks + mddev->delta_disks;
3486 break;
3487 }
3488 if (layout >> 18)
3489 return -1;
3490 if (chunk < (PAGE_SIZE >> 9) ||
3491 !is_power_of_2(chunk))
3492 return -2;
3493 nc = layout & 255;
3494 fc = (layout >> 8) & 255;
3495 fo = layout & (1<<16);
3496 geo->raid_disks = disks;
3497 geo->near_copies = nc;
3498 geo->far_copies = fc;
3499 geo->far_offset = fo;
3500 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3501 geo->chunk_mask = chunk - 1;
3502 geo->chunk_shift = ffz(~chunk);
3503 return nc*fc;
3504 }
3505
3506 static struct r10conf *setup_conf(struct mddev *mddev)
3507 {
3508 struct r10conf *conf = NULL;
3509 int err = -EINVAL;
3510 struct geom geo;
3511 int copies;
3512
3513 copies = setup_geo(&geo, mddev, geo_new);
3514
3515 if (copies == -2) {
3516 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3517 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3518 mdname(mddev), PAGE_SIZE);
3519 goto out;
3520 }
3521
3522 if (copies < 2 || copies > mddev->raid_disks) {
3523 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3524 mdname(mddev), mddev->new_layout);
3525 goto out;
3526 }
3527
3528 err = -ENOMEM;
3529 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3530 if (!conf)
3531 goto out;
3532
3533 /* FIXME calc properly */
3534 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3535 max(0,mddev->delta_disks)),
3536 GFP_KERNEL);
3537 if (!conf->mirrors)
3538 goto out;
3539
3540 conf->tmppage = alloc_page(GFP_KERNEL);
3541 if (!conf->tmppage)
3542 goto out;
3543
3544 conf->geo = geo;
3545 conf->copies = copies;
3546 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3547 r10bio_pool_free, conf);
3548 if (!conf->r10bio_pool)
3549 goto out;
3550
3551 calc_sectors(conf, mddev->dev_sectors);
3552 if (mddev->reshape_position == MaxSector) {
3553 conf->prev = conf->geo;
3554 conf->reshape_progress = MaxSector;
3555 } else {
3556 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3557 err = -EINVAL;
3558 goto out;
3559 }
3560 conf->reshape_progress = mddev->reshape_position;
3561 if (conf->prev.far_offset)
3562 conf->prev.stride = 1 << conf->prev.chunk_shift;
3563 else
3564 /* far_copies must be 1 */
3565 conf->prev.stride = conf->dev_sectors;
3566 }
3567 spin_lock_init(&conf->device_lock);
3568 INIT_LIST_HEAD(&conf->retry_list);
3569
3570 spin_lock_init(&conf->resync_lock);
3571 init_waitqueue_head(&conf->wait_barrier);
3572
3573 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3574 if (!conf->thread)
3575 goto out;
3576
3577 conf->mddev = mddev;
3578 return conf;
3579
3580 out:
3581 if (err == -ENOMEM)
3582 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3583 mdname(mddev));
3584 if (conf) {
3585 if (conf->r10bio_pool)
3586 mempool_destroy(conf->r10bio_pool);
3587 kfree(conf->mirrors);
3588 safe_put_page(conf->tmppage);
3589 kfree(conf);
3590 }
3591 return ERR_PTR(err);
3592 }
3593
3594 static int run(struct mddev *mddev)
3595 {
3596 struct r10conf *conf;
3597 int i, disk_idx, chunk_size;
3598 struct raid10_info *disk;
3599 struct md_rdev *rdev;
3600 sector_t size;
3601 sector_t min_offset_diff = 0;
3602 int first = 1;
3603 bool discard_supported = false;
3604
3605 if (mddev->private == NULL) {
3606 conf = setup_conf(mddev);
3607 if (IS_ERR(conf))
3608 return PTR_ERR(conf);
3609 mddev->private = conf;
3610 }
3611 conf = mddev->private;
3612 if (!conf)
3613 goto out;
3614
3615 mddev->thread = conf->thread;
3616 conf->thread = NULL;
3617
3618 chunk_size = mddev->chunk_sectors << 9;
3619 if (mddev->queue) {
3620 blk_queue_max_discard_sectors(mddev->queue,
3621 mddev->chunk_sectors);
3622 blk_queue_max_write_same_sectors(mddev->queue, 0);
3623 blk_queue_io_min(mddev->queue, chunk_size);
3624 if (conf->geo.raid_disks % conf->geo.near_copies)
3625 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3626 else
3627 blk_queue_io_opt(mddev->queue, chunk_size *
3628 (conf->geo.raid_disks / conf->geo.near_copies));
3629 }
3630
3631 rdev_for_each(rdev, mddev) {
3632 long long diff;
3633 struct request_queue *q;
3634
3635 disk_idx = rdev->raid_disk;
3636 if (disk_idx < 0)
3637 continue;
3638 if (disk_idx >= conf->geo.raid_disks &&
3639 disk_idx >= conf->prev.raid_disks)
3640 continue;
3641 disk = conf->mirrors + disk_idx;
3642
3643 if (test_bit(Replacement, &rdev->flags)) {
3644 if (disk->replacement)
3645 goto out_free_conf;
3646 disk->replacement = rdev;
3647 } else {
3648 if (disk->rdev)
3649 goto out_free_conf;
3650 disk->rdev = rdev;
3651 }
3652 q = bdev_get_queue(rdev->bdev);
3653 if (q->merge_bvec_fn)
3654 mddev->merge_check_needed = 1;
3655 diff = (rdev->new_data_offset - rdev->data_offset);
3656 if (!mddev->reshape_backwards)
3657 diff = -diff;
3658 if (diff < 0)
3659 diff = 0;
3660 if (first || diff < min_offset_diff)
3661 min_offset_diff = diff;
3662
3663 if (mddev->gendisk)
3664 disk_stack_limits(mddev->gendisk, rdev->bdev,
3665 rdev->data_offset << 9);
3666
3667 disk->head_position = 0;
3668
3669 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3670 discard_supported = true;
3671 }
3672
3673 if (mddev->queue) {
3674 if (discard_supported)
3675 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3676 mddev->queue);
3677 else
3678 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3679 mddev->queue);
3680 }
3681 /* need to check that every block has at least one working mirror */
3682 if (!enough(conf, -1)) {
3683 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3684 mdname(mddev));
3685 goto out_free_conf;
3686 }
3687
3688 if (conf->reshape_progress != MaxSector) {
3689 /* must ensure that shape change is supported */
3690 if (conf->geo.far_copies != 1 &&
3691 conf->geo.far_offset == 0)
3692 goto out_free_conf;
3693 if (conf->prev.far_copies != 1 &&
3694 conf->geo.far_offset == 0)
3695 goto out_free_conf;
3696 }
3697
3698 mddev->degraded = 0;
3699 for (i = 0;
3700 i < conf->geo.raid_disks
3701 || i < conf->prev.raid_disks;
3702 i++) {
3703
3704 disk = conf->mirrors + i;
3705
3706 if (!disk->rdev && disk->replacement) {
3707 /* The replacement is all we have - use it */
3708 disk->rdev = disk->replacement;
3709 disk->replacement = NULL;
3710 clear_bit(Replacement, &disk->rdev->flags);
3711 }
3712
3713 if (!disk->rdev ||
3714 !test_bit(In_sync, &disk->rdev->flags)) {
3715 disk->head_position = 0;
3716 mddev->degraded++;
3717 if (disk->rdev)
3718 conf->fullsync = 1;
3719 }
3720 disk->recovery_disabled = mddev->recovery_disabled - 1;
3721 }
3722
3723 if (mddev->recovery_cp != MaxSector)
3724 printk(KERN_NOTICE "md/raid10:%s: not clean"
3725 " -- starting background reconstruction\n",
3726 mdname(mddev));
3727 printk(KERN_INFO
3728 "md/raid10:%s: active with %d out of %d devices\n",
3729 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3730 conf->geo.raid_disks);
3731 /*
3732 * Ok, everything is just fine now
3733 */
3734 mddev->dev_sectors = conf->dev_sectors;
3735 size = raid10_size(mddev, 0, 0);
3736 md_set_array_sectors(mddev, size);
3737 mddev->resync_max_sectors = size;
3738
3739 if (mddev->queue) {
3740 int stripe = conf->geo.raid_disks *
3741 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3742 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3743 mddev->queue->backing_dev_info.congested_data = mddev;
3744
3745 /* Calculate max read-ahead size.
3746 * We need to readahead at least twice a whole stripe....
3747 * maybe...
3748 */
3749 stripe /= conf->geo.near_copies;
3750 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3751 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3752 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3753 }
3754
3755
3756 if (md_integrity_register(mddev))
3757 goto out_free_conf;
3758
3759 if (conf->reshape_progress != MaxSector) {
3760 unsigned long before_length, after_length;
3761
3762 before_length = ((1 << conf->prev.chunk_shift) *
3763 conf->prev.far_copies);
3764 after_length = ((1 << conf->geo.chunk_shift) *
3765 conf->geo.far_copies);
3766
3767 if (max(before_length, after_length) > min_offset_diff) {
3768 /* This cannot work */
3769 printk("md/raid10: offset difference not enough to continue reshape\n");
3770 goto out_free_conf;
3771 }
3772 conf->offset_diff = min_offset_diff;
3773
3774 conf->reshape_safe = conf->reshape_progress;
3775 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3776 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3777 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3778 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3779 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3780 "reshape");
3781 }
3782
3783 return 0;
3784
3785 out_free_conf:
3786 md_unregister_thread(&mddev->thread);
3787 if (conf->r10bio_pool)
3788 mempool_destroy(conf->r10bio_pool);
3789 safe_put_page(conf->tmppage);
3790 kfree(conf->mirrors);
3791 kfree(conf);
3792 mddev->private = NULL;
3793 out:
3794 return -EIO;
3795 }
3796
3797 static int stop(struct mddev *mddev)
3798 {
3799 struct r10conf *conf = mddev->private;
3800
3801 raise_barrier(conf, 0);
3802 lower_barrier(conf);
3803
3804 md_unregister_thread(&mddev->thread);
3805 if (mddev->queue)
3806 /* the unplug fn references 'conf'*/
3807 blk_sync_queue(mddev->queue);
3808
3809 if (conf->r10bio_pool)
3810 mempool_destroy(conf->r10bio_pool);
3811 safe_put_page(conf->tmppage);
3812 kfree(conf->mirrors);
3813 kfree(conf);
3814 mddev->private = NULL;
3815 return 0;
3816 }
3817
3818 static void raid10_quiesce(struct mddev *mddev, int state)
3819 {
3820 struct r10conf *conf = mddev->private;
3821
3822 switch(state) {
3823 case 1:
3824 raise_barrier(conf, 0);
3825 break;
3826 case 0:
3827 lower_barrier(conf);
3828 break;
3829 }
3830 }
3831
3832 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3833 {
3834 /* Resize of 'far' arrays is not supported.
3835 * For 'near' and 'offset' arrays we can set the
3836 * number of sectors used to be an appropriate multiple
3837 * of the chunk size.
3838 * For 'offset', this is far_copies*chunksize.
3839 * For 'near' the multiplier is the LCM of
3840 * near_copies and raid_disks.
3841 * So if far_copies > 1 && !far_offset, fail.
3842 * Else find LCM(raid_disks, near_copy)*far_copies and
3843 * multiply by chunk_size. Then round to this number.
3844 * This is mostly done by raid10_size()
3845 */
3846 struct r10conf *conf = mddev->private;
3847 sector_t oldsize, size;
3848
3849 if (mddev->reshape_position != MaxSector)
3850 return -EBUSY;
3851
3852 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3853 return -EINVAL;
3854
3855 oldsize = raid10_size(mddev, 0, 0);
3856 size = raid10_size(mddev, sectors, 0);
3857 if (mddev->external_size &&
3858 mddev->array_sectors > size)
3859 return -EINVAL;
3860 if (mddev->bitmap) {
3861 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3862 if (ret)
3863 return ret;
3864 }
3865 md_set_array_sectors(mddev, size);
3866 set_capacity(mddev->gendisk, mddev->array_sectors);
3867 revalidate_disk(mddev->gendisk);
3868 if (sectors > mddev->dev_sectors &&
3869 mddev->recovery_cp > oldsize) {
3870 mddev->recovery_cp = oldsize;
3871 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3872 }
3873 calc_sectors(conf, sectors);
3874 mddev->dev_sectors = conf->dev_sectors;
3875 mddev->resync_max_sectors = size;
3876 return 0;
3877 }
3878
3879 static void *raid10_takeover_raid0(struct mddev *mddev)
3880 {
3881 struct md_rdev *rdev;
3882 struct r10conf *conf;
3883
3884 if (mddev->degraded > 0) {
3885 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3886 mdname(mddev));
3887 return ERR_PTR(-EINVAL);
3888 }
3889
3890 /* Set new parameters */
3891 mddev->new_level = 10;
3892 /* new layout: far_copies = 1, near_copies = 2 */
3893 mddev->new_layout = (1<<8) + 2;
3894 mddev->new_chunk_sectors = mddev->chunk_sectors;
3895 mddev->delta_disks = mddev->raid_disks;
3896 mddev->raid_disks *= 2;
3897 /* make sure it will be not marked as dirty */
3898 mddev->recovery_cp = MaxSector;
3899
3900 conf = setup_conf(mddev);
3901 if (!IS_ERR(conf)) {
3902 rdev_for_each(rdev, mddev)
3903 if (rdev->raid_disk >= 0)
3904 rdev->new_raid_disk = rdev->raid_disk * 2;
3905 conf->barrier = 1;
3906 }
3907
3908 return conf;
3909 }
3910
3911 static void *raid10_takeover(struct mddev *mddev)
3912 {
3913 struct r0conf *raid0_conf;
3914
3915 /* raid10 can take over:
3916 * raid0 - providing it has only two drives
3917 */
3918 if (mddev->level == 0) {
3919 /* for raid0 takeover only one zone is supported */
3920 raid0_conf = mddev->private;
3921 if (raid0_conf->nr_strip_zones > 1) {
3922 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3923 " with more than one zone.\n",
3924 mdname(mddev));
3925 return ERR_PTR(-EINVAL);
3926 }
3927 return raid10_takeover_raid0(mddev);
3928 }
3929 return ERR_PTR(-EINVAL);
3930 }
3931
3932 static int raid10_check_reshape(struct mddev *mddev)
3933 {
3934 /* Called when there is a request to change
3935 * - layout (to ->new_layout)
3936 * - chunk size (to ->new_chunk_sectors)
3937 * - raid_disks (by delta_disks)
3938 * or when trying to restart a reshape that was ongoing.
3939 *
3940 * We need to validate the request and possibly allocate
3941 * space if that might be an issue later.
3942 *
3943 * Currently we reject any reshape of a 'far' mode array,
3944 * allow chunk size to change if new is generally acceptable,
3945 * allow raid_disks to increase, and allow
3946 * a switch between 'near' mode and 'offset' mode.
3947 */
3948 struct r10conf *conf = mddev->private;
3949 struct geom geo;
3950
3951 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3952 return -EINVAL;
3953
3954 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3955 /* mustn't change number of copies */
3956 return -EINVAL;
3957 if (geo.far_copies > 1 && !geo.far_offset)
3958 /* Cannot switch to 'far' mode */
3959 return -EINVAL;
3960
3961 if (mddev->array_sectors & geo.chunk_mask)
3962 /* not factor of array size */
3963 return -EINVAL;
3964
3965 if (!enough(conf, -1))
3966 return -EINVAL;
3967
3968 kfree(conf->mirrors_new);
3969 conf->mirrors_new = NULL;
3970 if (mddev->delta_disks > 0) {
3971 /* allocate new 'mirrors' list */
3972 conf->mirrors_new = kzalloc(
3973 sizeof(struct raid10_info)
3974 *(mddev->raid_disks +
3975 mddev->delta_disks),
3976 GFP_KERNEL);
3977 if (!conf->mirrors_new)
3978 return -ENOMEM;
3979 }
3980 return 0;
3981 }
3982
3983 /*
3984 * Need to check if array has failed when deciding whether to:
3985 * - start an array
3986 * - remove non-faulty devices
3987 * - add a spare
3988 * - allow a reshape
3989 * This determination is simple when no reshape is happening.
3990 * However if there is a reshape, we need to carefully check
3991 * both the before and after sections.
3992 * This is because some failed devices may only affect one
3993 * of the two sections, and some non-in_sync devices may
3994 * be insync in the section most affected by failed devices.
3995 */
3996 static int calc_degraded(struct r10conf *conf)
3997 {
3998 int degraded, degraded2;
3999 int i;
4000
4001 rcu_read_lock();
4002 degraded = 0;
4003 /* 'prev' section first */
4004 for (i = 0; i < conf->prev.raid_disks; i++) {
4005 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4006 if (!rdev || test_bit(Faulty, &rdev->flags))
4007 degraded++;
4008 else if (!test_bit(In_sync, &rdev->flags))
4009 /* When we can reduce the number of devices in
4010 * an array, this might not contribute to
4011 * 'degraded'. It does now.
4012 */
4013 degraded++;
4014 }
4015 rcu_read_unlock();
4016 if (conf->geo.raid_disks == conf->prev.raid_disks)
4017 return degraded;
4018 rcu_read_lock();
4019 degraded2 = 0;
4020 for (i = 0; i < conf->geo.raid_disks; i++) {
4021 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4022 if (!rdev || test_bit(Faulty, &rdev->flags))
4023 degraded2++;
4024 else if (!test_bit(In_sync, &rdev->flags)) {
4025 /* If reshape is increasing the number of devices,
4026 * this section has already been recovered, so
4027 * it doesn't contribute to degraded.
4028 * else it does.
4029 */
4030 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4031 degraded2++;
4032 }
4033 }
4034 rcu_read_unlock();
4035 if (degraded2 > degraded)
4036 return degraded2;
4037 return degraded;
4038 }
4039
4040 static int raid10_start_reshape(struct mddev *mddev)
4041 {
4042 /* A 'reshape' has been requested. This commits
4043 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4044 * This also checks if there are enough spares and adds them
4045 * to the array.
4046 * We currently require enough spares to make the final
4047 * array non-degraded. We also require that the difference
4048 * between old and new data_offset - on each device - is
4049 * enough that we never risk over-writing.
4050 */
4051
4052 unsigned long before_length, after_length;
4053 sector_t min_offset_diff = 0;
4054 int first = 1;
4055 struct geom new;
4056 struct r10conf *conf = mddev->private;
4057 struct md_rdev *rdev;
4058 int spares = 0;
4059 int ret;
4060
4061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4062 return -EBUSY;
4063
4064 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4065 return -EINVAL;
4066
4067 before_length = ((1 << conf->prev.chunk_shift) *
4068 conf->prev.far_copies);
4069 after_length = ((1 << conf->geo.chunk_shift) *
4070 conf->geo.far_copies);
4071
4072 rdev_for_each(rdev, mddev) {
4073 if (!test_bit(In_sync, &rdev->flags)
4074 && !test_bit(Faulty, &rdev->flags))
4075 spares++;
4076 if (rdev->raid_disk >= 0) {
4077 long long diff = (rdev->new_data_offset
4078 - rdev->data_offset);
4079 if (!mddev->reshape_backwards)
4080 diff = -diff;
4081 if (diff < 0)
4082 diff = 0;
4083 if (first || diff < min_offset_diff)
4084 min_offset_diff = diff;
4085 }
4086 }
4087
4088 if (max(before_length, after_length) > min_offset_diff)
4089 return -EINVAL;
4090
4091 if (spares < mddev->delta_disks)
4092 return -EINVAL;
4093
4094 conf->offset_diff = min_offset_diff;
4095 spin_lock_irq(&conf->device_lock);
4096 if (conf->mirrors_new) {
4097 memcpy(conf->mirrors_new, conf->mirrors,
4098 sizeof(struct raid10_info)*conf->prev.raid_disks);
4099 smp_mb();
4100 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4101 conf->mirrors_old = conf->mirrors;
4102 conf->mirrors = conf->mirrors_new;
4103 conf->mirrors_new = NULL;
4104 }
4105 setup_geo(&conf->geo, mddev, geo_start);
4106 smp_mb();
4107 if (mddev->reshape_backwards) {
4108 sector_t size = raid10_size(mddev, 0, 0);
4109 if (size < mddev->array_sectors) {
4110 spin_unlock_irq(&conf->device_lock);
4111 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4112 mdname(mddev));
4113 return -EINVAL;
4114 }
4115 mddev->resync_max_sectors = size;
4116 conf->reshape_progress = size;
4117 } else
4118 conf->reshape_progress = 0;
4119 spin_unlock_irq(&conf->device_lock);
4120
4121 if (mddev->delta_disks && mddev->bitmap) {
4122 ret = bitmap_resize(mddev->bitmap,
4123 raid10_size(mddev, 0,
4124 conf->geo.raid_disks),
4125 0, 0);
4126 if (ret)
4127 goto abort;
4128 }
4129 if (mddev->delta_disks > 0) {
4130 rdev_for_each(rdev, mddev)
4131 if (rdev->raid_disk < 0 &&
4132 !test_bit(Faulty, &rdev->flags)) {
4133 if (raid10_add_disk(mddev, rdev) == 0) {
4134 if (rdev->raid_disk >=
4135 conf->prev.raid_disks)
4136 set_bit(In_sync, &rdev->flags);
4137 else
4138 rdev->recovery_offset = 0;
4139
4140 if (sysfs_link_rdev(mddev, rdev))
4141 /* Failure here is OK */;
4142 }
4143 } else if (rdev->raid_disk >= conf->prev.raid_disks
4144 && !test_bit(Faulty, &rdev->flags)) {
4145 /* This is a spare that was manually added */
4146 set_bit(In_sync, &rdev->flags);
4147 }
4148 }
4149 /* When a reshape changes the number of devices,
4150 * ->degraded is measured against the larger of the
4151 * pre and post numbers.
4152 */
4153 spin_lock_irq(&conf->device_lock);
4154 mddev->degraded = calc_degraded(conf);
4155 spin_unlock_irq(&conf->device_lock);
4156 mddev->raid_disks = conf->geo.raid_disks;
4157 mddev->reshape_position = conf->reshape_progress;
4158 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4159
4160 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4161 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4162 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4163 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4164
4165 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4166 "reshape");
4167 if (!mddev->sync_thread) {
4168 ret = -EAGAIN;
4169 goto abort;
4170 }
4171 conf->reshape_checkpoint = jiffies;
4172 md_wakeup_thread(mddev->sync_thread);
4173 md_new_event(mddev);
4174 return 0;
4175
4176 abort:
4177 mddev->recovery = 0;
4178 spin_lock_irq(&conf->device_lock);
4179 conf->geo = conf->prev;
4180 mddev->raid_disks = conf->geo.raid_disks;
4181 rdev_for_each(rdev, mddev)
4182 rdev->new_data_offset = rdev->data_offset;
4183 smp_wmb();
4184 conf->reshape_progress = MaxSector;
4185 mddev->reshape_position = MaxSector;
4186 spin_unlock_irq(&conf->device_lock);
4187 return ret;
4188 }
4189
4190 /* Calculate the last device-address that could contain
4191 * any block from the chunk that includes the array-address 's'
4192 * and report the next address.
4193 * i.e. the address returned will be chunk-aligned and after
4194 * any data that is in the chunk containing 's'.
4195 */
4196 static sector_t last_dev_address(sector_t s, struct geom *geo)
4197 {
4198 s = (s | geo->chunk_mask) + 1;
4199 s >>= geo->chunk_shift;
4200 s *= geo->near_copies;
4201 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4202 s *= geo->far_copies;
4203 s <<= geo->chunk_shift;
4204 return s;
4205 }
4206
4207 /* Calculate the first device-address that could contain
4208 * any block from the chunk that includes the array-address 's'.
4209 * This too will be the start of a chunk
4210 */
4211 static sector_t first_dev_address(sector_t s, struct geom *geo)
4212 {
4213 s >>= geo->chunk_shift;
4214 s *= geo->near_copies;
4215 sector_div(s, geo->raid_disks);
4216 s *= geo->far_copies;
4217 s <<= geo->chunk_shift;
4218 return s;
4219 }
4220
4221 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4222 int *skipped)
4223 {
4224 /* We simply copy at most one chunk (smallest of old and new)
4225 * at a time, possibly less if that exceeds RESYNC_PAGES,
4226 * or we hit a bad block or something.
4227 * This might mean we pause for normal IO in the middle of
4228 * a chunk, but that is not a problem was mddev->reshape_position
4229 * can record any location.
4230 *
4231 * If we will want to write to a location that isn't
4232 * yet recorded as 'safe' (i.e. in metadata on disk) then
4233 * we need to flush all reshape requests and update the metadata.
4234 *
4235 * When reshaping forwards (e.g. to more devices), we interpret
4236 * 'safe' as the earliest block which might not have been copied
4237 * down yet. We divide this by previous stripe size and multiply
4238 * by previous stripe length to get lowest device offset that we
4239 * cannot write to yet.
4240 * We interpret 'sector_nr' as an address that we want to write to.
4241 * From this we use last_device_address() to find where we might
4242 * write to, and first_device_address on the 'safe' position.
4243 * If this 'next' write position is after the 'safe' position,
4244 * we must update the metadata to increase the 'safe' position.
4245 *
4246 * When reshaping backwards, we round in the opposite direction
4247 * and perform the reverse test: next write position must not be
4248 * less than current safe position.
4249 *
4250 * In all this the minimum difference in data offsets
4251 * (conf->offset_diff - always positive) allows a bit of slack,
4252 * so next can be after 'safe', but not by more than offset_disk
4253 *
4254 * We need to prepare all the bios here before we start any IO
4255 * to ensure the size we choose is acceptable to all devices.
4256 * The means one for each copy for write-out and an extra one for
4257 * read-in.
4258 * We store the read-in bio in ->master_bio and the others in
4259 * ->devs[x].bio and ->devs[x].repl_bio.
4260 */
4261 struct r10conf *conf = mddev->private;
4262 struct r10bio *r10_bio;
4263 sector_t next, safe, last;
4264 int max_sectors;
4265 int nr_sectors;
4266 int s;
4267 struct md_rdev *rdev;
4268 int need_flush = 0;
4269 struct bio *blist;
4270 struct bio *bio, *read_bio;
4271 int sectors_done = 0;
4272
4273 if (sector_nr == 0) {
4274 /* If restarting in the middle, skip the initial sectors */
4275 if (mddev->reshape_backwards &&
4276 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4277 sector_nr = (raid10_size(mddev, 0, 0)
4278 - conf->reshape_progress);
4279 } else if (!mddev->reshape_backwards &&
4280 conf->reshape_progress > 0)
4281 sector_nr = conf->reshape_progress;
4282 if (sector_nr) {
4283 mddev->curr_resync_completed = sector_nr;
4284 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4285 *skipped = 1;
4286 return sector_nr;
4287 }
4288 }
4289
4290 /* We don't use sector_nr to track where we are up to
4291 * as that doesn't work well for ->reshape_backwards.
4292 * So just use ->reshape_progress.
4293 */
4294 if (mddev->reshape_backwards) {
4295 /* 'next' is the earliest device address that we might
4296 * write to for this chunk in the new layout
4297 */
4298 next = first_dev_address(conf->reshape_progress - 1,
4299 &conf->geo);
4300
4301 /* 'safe' is the last device address that we might read from
4302 * in the old layout after a restart
4303 */
4304 safe = last_dev_address(conf->reshape_safe - 1,
4305 &conf->prev);
4306
4307 if (next + conf->offset_diff < safe)
4308 need_flush = 1;
4309
4310 last = conf->reshape_progress - 1;
4311 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4312 & conf->prev.chunk_mask);
4313 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4314 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4315 } else {
4316 /* 'next' is after the last device address that we
4317 * might write to for this chunk in the new layout
4318 */
4319 next = last_dev_address(conf->reshape_progress, &conf->geo);
4320
4321 /* 'safe' is the earliest device address that we might
4322 * read from in the old layout after a restart
4323 */
4324 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4325
4326 /* Need to update metadata if 'next' might be beyond 'safe'
4327 * as that would possibly corrupt data
4328 */
4329 if (next > safe + conf->offset_diff)
4330 need_flush = 1;
4331
4332 sector_nr = conf->reshape_progress;
4333 last = sector_nr | (conf->geo.chunk_mask
4334 & conf->prev.chunk_mask);
4335
4336 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4337 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4338 }
4339
4340 if (need_flush ||
4341 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4342 /* Need to update reshape_position in metadata */
4343 wait_barrier(conf);
4344 mddev->reshape_position = conf->reshape_progress;
4345 if (mddev->reshape_backwards)
4346 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4347 - conf->reshape_progress;
4348 else
4349 mddev->curr_resync_completed = conf->reshape_progress;
4350 conf->reshape_checkpoint = jiffies;
4351 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4352 md_wakeup_thread(mddev->thread);
4353 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4354 kthread_should_stop());
4355 conf->reshape_safe = mddev->reshape_position;
4356 allow_barrier(conf);
4357 }
4358
4359 read_more:
4360 /* Now schedule reads for blocks from sector_nr to last */
4361 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4362 raise_barrier(conf, sectors_done != 0);
4363 atomic_set(&r10_bio->remaining, 0);
4364 r10_bio->mddev = mddev;
4365 r10_bio->sector = sector_nr;
4366 set_bit(R10BIO_IsReshape, &r10_bio->state);
4367 r10_bio->sectors = last - sector_nr + 1;
4368 rdev = read_balance(conf, r10_bio, &max_sectors);
4369 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4370
4371 if (!rdev) {
4372 /* Cannot read from here, so need to record bad blocks
4373 * on all the target devices.
4374 */
4375 // FIXME
4376 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4377 return sectors_done;
4378 }
4379
4380 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4381
4382 read_bio->bi_bdev = rdev->bdev;
4383 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4384 + rdev->data_offset);
4385 read_bio->bi_private = r10_bio;
4386 read_bio->bi_end_io = end_sync_read;
4387 read_bio->bi_rw = READ;
4388 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4389 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4390 read_bio->bi_vcnt = 0;
4391 read_bio->bi_size = 0;
4392 r10_bio->master_bio = read_bio;
4393 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4394
4395 /* Now find the locations in the new layout */
4396 __raid10_find_phys(&conf->geo, r10_bio);
4397
4398 blist = read_bio;
4399 read_bio->bi_next = NULL;
4400
4401 for (s = 0; s < conf->copies*2; s++) {
4402 struct bio *b;
4403 int d = r10_bio->devs[s/2].devnum;
4404 struct md_rdev *rdev2;
4405 if (s&1) {
4406 rdev2 = conf->mirrors[d].replacement;
4407 b = r10_bio->devs[s/2].repl_bio;
4408 } else {
4409 rdev2 = conf->mirrors[d].rdev;
4410 b = r10_bio->devs[s/2].bio;
4411 }
4412 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4413 continue;
4414
4415 bio_reset(b);
4416 b->bi_bdev = rdev2->bdev;
4417 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4418 b->bi_private = r10_bio;
4419 b->bi_end_io = end_reshape_write;
4420 b->bi_rw = WRITE;
4421 b->bi_next = blist;
4422 blist = b;
4423 }
4424
4425 /* Now add as many pages as possible to all of these bios. */
4426
4427 nr_sectors = 0;
4428 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4429 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4430 int len = (max_sectors - s) << 9;
4431 if (len > PAGE_SIZE)
4432 len = PAGE_SIZE;
4433 for (bio = blist; bio ; bio = bio->bi_next) {
4434 struct bio *bio2;
4435 if (bio_add_page(bio, page, len, 0))
4436 continue;
4437
4438 /* Didn't fit, must stop */
4439 for (bio2 = blist;
4440 bio2 && bio2 != bio;
4441 bio2 = bio2->bi_next) {
4442 /* Remove last page from this bio */
4443 bio2->bi_vcnt--;
4444 bio2->bi_size -= len;
4445 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4446 }
4447 goto bio_full;
4448 }
4449 sector_nr += len >> 9;
4450 nr_sectors += len >> 9;
4451 }
4452 bio_full:
4453 r10_bio->sectors = nr_sectors;
4454
4455 /* Now submit the read */
4456 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4457 atomic_inc(&r10_bio->remaining);
4458 read_bio->bi_next = NULL;
4459 generic_make_request(read_bio);
4460 sector_nr += nr_sectors;
4461 sectors_done += nr_sectors;
4462 if (sector_nr <= last)
4463 goto read_more;
4464
4465 /* Now that we have done the whole section we can
4466 * update reshape_progress
4467 */
4468 if (mddev->reshape_backwards)
4469 conf->reshape_progress -= sectors_done;
4470 else
4471 conf->reshape_progress += sectors_done;
4472
4473 return sectors_done;
4474 }
4475
4476 static void end_reshape_request(struct r10bio *r10_bio);
4477 static int handle_reshape_read_error(struct mddev *mddev,
4478 struct r10bio *r10_bio);
4479 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4480 {
4481 /* Reshape read completed. Hopefully we have a block
4482 * to write out.
4483 * If we got a read error then we do sync 1-page reads from
4484 * elsewhere until we find the data - or give up.
4485 */
4486 struct r10conf *conf = mddev->private;
4487 int s;
4488
4489 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4490 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4491 /* Reshape has been aborted */
4492 md_done_sync(mddev, r10_bio->sectors, 0);
4493 return;
4494 }
4495
4496 /* We definitely have the data in the pages, schedule the
4497 * writes.
4498 */
4499 atomic_set(&r10_bio->remaining, 1);
4500 for (s = 0; s < conf->copies*2; s++) {
4501 struct bio *b;
4502 int d = r10_bio->devs[s/2].devnum;
4503 struct md_rdev *rdev;
4504 if (s&1) {
4505 rdev = conf->mirrors[d].replacement;
4506 b = r10_bio->devs[s/2].repl_bio;
4507 } else {
4508 rdev = conf->mirrors[d].rdev;
4509 b = r10_bio->devs[s/2].bio;
4510 }
4511 if (!rdev || test_bit(Faulty, &rdev->flags))
4512 continue;
4513 atomic_inc(&rdev->nr_pending);
4514 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4515 atomic_inc(&r10_bio->remaining);
4516 b->bi_next = NULL;
4517 generic_make_request(b);
4518 }
4519 end_reshape_request(r10_bio);
4520 }
4521
4522 static void end_reshape(struct r10conf *conf)
4523 {
4524 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4525 return;
4526
4527 spin_lock_irq(&conf->device_lock);
4528 conf->prev = conf->geo;
4529 md_finish_reshape(conf->mddev);
4530 smp_wmb();
4531 conf->reshape_progress = MaxSector;
4532 spin_unlock_irq(&conf->device_lock);
4533
4534 /* read-ahead size must cover two whole stripes, which is
4535 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4536 */
4537 if (conf->mddev->queue) {
4538 int stripe = conf->geo.raid_disks *
4539 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4540 stripe /= conf->geo.near_copies;
4541 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4542 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4543 }
4544 conf->fullsync = 0;
4545 }
4546
4547
4548 static int handle_reshape_read_error(struct mddev *mddev,
4549 struct r10bio *r10_bio)
4550 {
4551 /* Use sync reads to get the blocks from somewhere else */
4552 int sectors = r10_bio->sectors;
4553 struct r10conf *conf = mddev->private;
4554 struct {
4555 struct r10bio r10_bio;
4556 struct r10dev devs[conf->copies];
4557 } on_stack;
4558 struct r10bio *r10b = &on_stack.r10_bio;
4559 int slot = 0;
4560 int idx = 0;
4561 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4562
4563 r10b->sector = r10_bio->sector;
4564 __raid10_find_phys(&conf->prev, r10b);
4565
4566 while (sectors) {
4567 int s = sectors;
4568 int success = 0;
4569 int first_slot = slot;
4570
4571 if (s > (PAGE_SIZE >> 9))
4572 s = PAGE_SIZE >> 9;
4573
4574 while (!success) {
4575 int d = r10b->devs[slot].devnum;
4576 struct md_rdev *rdev = conf->mirrors[d].rdev;
4577 sector_t addr;
4578 if (rdev == NULL ||
4579 test_bit(Faulty, &rdev->flags) ||
4580 !test_bit(In_sync, &rdev->flags))
4581 goto failed;
4582
4583 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4584 success = sync_page_io(rdev,
4585 addr,
4586 s << 9,
4587 bvec[idx].bv_page,
4588 READ, false);
4589 if (success)
4590 break;
4591 failed:
4592 slot++;
4593 if (slot >= conf->copies)
4594 slot = 0;
4595 if (slot == first_slot)
4596 break;
4597 }
4598 if (!success) {
4599 /* couldn't read this block, must give up */
4600 set_bit(MD_RECOVERY_INTR,
4601 &mddev->recovery);
4602 return -EIO;
4603 }
4604 sectors -= s;
4605 idx++;
4606 }
4607 return 0;
4608 }
4609
4610 static void end_reshape_write(struct bio *bio, int error)
4611 {
4612 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4613 struct r10bio *r10_bio = bio->bi_private;
4614 struct mddev *mddev = r10_bio->mddev;
4615 struct r10conf *conf = mddev->private;
4616 int d;
4617 int slot;
4618 int repl;
4619 struct md_rdev *rdev = NULL;
4620
4621 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4622 if (repl)
4623 rdev = conf->mirrors[d].replacement;
4624 if (!rdev) {
4625 smp_mb();
4626 rdev = conf->mirrors[d].rdev;
4627 }
4628
4629 if (!uptodate) {
4630 /* FIXME should record badblock */
4631 md_error(mddev, rdev);
4632 }
4633
4634 rdev_dec_pending(rdev, mddev);
4635 end_reshape_request(r10_bio);
4636 }
4637
4638 static void end_reshape_request(struct r10bio *r10_bio)
4639 {
4640 if (!atomic_dec_and_test(&r10_bio->remaining))
4641 return;
4642 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4643 bio_put(r10_bio->master_bio);
4644 put_buf(r10_bio);
4645 }
4646
4647 static void raid10_finish_reshape(struct mddev *mddev)
4648 {
4649 struct r10conf *conf = mddev->private;
4650
4651 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4652 return;
4653
4654 if (mddev->delta_disks > 0) {
4655 sector_t size = raid10_size(mddev, 0, 0);
4656 md_set_array_sectors(mddev, size);
4657 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4658 mddev->recovery_cp = mddev->resync_max_sectors;
4659 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4660 }
4661 mddev->resync_max_sectors = size;
4662 set_capacity(mddev->gendisk, mddev->array_sectors);
4663 revalidate_disk(mddev->gendisk);
4664 } else {
4665 int d;
4666 for (d = conf->geo.raid_disks ;
4667 d < conf->geo.raid_disks - mddev->delta_disks;
4668 d++) {
4669 struct md_rdev *rdev = conf->mirrors[d].rdev;
4670 if (rdev)
4671 clear_bit(In_sync, &rdev->flags);
4672 rdev = conf->mirrors[d].replacement;
4673 if (rdev)
4674 clear_bit(In_sync, &rdev->flags);
4675 }
4676 }
4677 mddev->layout = mddev->new_layout;
4678 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4679 mddev->reshape_position = MaxSector;
4680 mddev->delta_disks = 0;
4681 mddev->reshape_backwards = 0;
4682 }
4683
4684 static struct md_personality raid10_personality =
4685 {
4686 .name = "raid10",
4687 .level = 10,
4688 .owner = THIS_MODULE,
4689 .make_request = make_request,
4690 .run = run,
4691 .stop = stop,
4692 .status = status,
4693 .error_handler = error,
4694 .hot_add_disk = raid10_add_disk,
4695 .hot_remove_disk= raid10_remove_disk,
4696 .spare_active = raid10_spare_active,
4697 .sync_request = sync_request,
4698 .quiesce = raid10_quiesce,
4699 .size = raid10_size,
4700 .resize = raid10_resize,
4701 .takeover = raid10_takeover,
4702 .check_reshape = raid10_check_reshape,
4703 .start_reshape = raid10_start_reshape,
4704 .finish_reshape = raid10_finish_reshape,
4705 };
4706
4707 static int __init raid_init(void)
4708 {
4709 return register_md_personality(&raid10_personality);
4710 }
4711
4712 static void raid_exit(void)
4713 {
4714 unregister_md_personality(&raid10_personality);
4715 }
4716
4717 module_init(raid_init);
4718 module_exit(raid_exit);
4719 MODULE_LICENSE("GPL");
4720 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4721 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4722 MODULE_ALIAS("md-raid10");
4723 MODULE_ALIAS("md-level-10");
4724
4725 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);