Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 unsigned long flags;
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
398 uptodate = 1;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 }
401 if (uptodate) {
402 raid_end_bio_io(r10_bio);
403 rdev_dec_pending(rdev, conf->mddev);
404 } else {
405 /*
406 * oops, read error - keep the refcount on the rdev
407 */
408 char b[BDEVNAME_SIZE];
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
411 mdname(conf->mddev),
412 bdevname(rdev->bdev, b),
413 (unsigned long long)r10_bio->sector);
414 set_bit(R10BIO_ReadError, &r10_bio->state);
415 reschedule_retry(r10_bio);
416 }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 r10_bio->sectors,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
425 0);
426 md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
434 else {
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else
439 raid_end_bio_io(r10_bio);
440 }
441 }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 struct r10bio *r10_bio = bio->bi_private;
448 int dev;
449 int dec_rdev = 1;
450 struct r10conf *conf = r10_bio->mddev->private;
451 int slot, repl;
452 struct md_rdev *rdev = NULL;
453
454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
461 rdev = conf->mirrors[dev].rdev;
462 }
463 /*
464 * this branch is our 'one mirror IO has finished' event handler:
465 */
466 if (!uptodate) {
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
470 */
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
479 }
480 } else {
481 /*
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
485 *
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
489 */
490 sector_t first_bad;
491 int bad_sectors;
492
493 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
495 /* Maybe we can clear some bad blocks. */
496 if (is_badblock(rdev,
497 r10_bio->devs[slot].addr,
498 r10_bio->sectors,
499 &first_bad, &bad_sectors)) {
500 bio_put(bio);
501 if (repl)
502 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503 else
504 r10_bio->devs[slot].bio = IO_MADE_GOOD;
505 dec_rdev = 0;
506 set_bit(R10BIO_MadeGood, &r10_bio->state);
507 }
508 }
509
510 /*
511 *
512 * Let's see if all mirrored write operations have finished
513 * already.
514 */
515 one_write_done(r10_bio);
516 if (dec_rdev)
517 rdev_dec_pending(rdev, conf->mddev);
518 }
519
520 /*
521 * RAID10 layout manager
522 * As well as the chunksize and raid_disks count, there are two
523 * parameters: near_copies and far_copies.
524 * near_copies * far_copies must be <= raid_disks.
525 * Normally one of these will be 1.
526 * If both are 1, we get raid0.
527 * If near_copies == raid_disks, we get raid1.
528 *
529 * Chunks are laid out in raid0 style with near_copies copies of the
530 * first chunk, followed by near_copies copies of the next chunk and
531 * so on.
532 * If far_copies > 1, then after 1/far_copies of the array has been assigned
533 * as described above, we start again with a device offset of near_copies.
534 * So we effectively have another copy of the whole array further down all
535 * the drives, but with blocks on different drives.
536 * With this layout, and block is never stored twice on the one device.
537 *
538 * raid10_find_phys finds the sector offset of a given virtual sector
539 * on each device that it is on.
540 *
541 * raid10_find_virt does the reverse mapping, from a device and a
542 * sector offset to a virtual address
543 */
544
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547 int n,f;
548 sector_t sector;
549 sector_t chunk;
550 sector_t stripe;
551 int dev;
552 int slot = 0;
553 int last_far_set_start, last_far_set_size;
554
555 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556 last_far_set_start *= geo->far_set_size;
557
558 last_far_set_size = geo->far_set_size;
559 last_far_set_size += (geo->raid_disks % geo->far_set_size);
560
561 /* now calculate first sector/dev */
562 chunk = r10bio->sector >> geo->chunk_shift;
563 sector = r10bio->sector & geo->chunk_mask;
564
565 chunk *= geo->near_copies;
566 stripe = chunk;
567 dev = sector_div(stripe, geo->raid_disks);
568 if (geo->far_offset)
569 stripe *= geo->far_copies;
570
571 sector += stripe << geo->chunk_shift;
572
573 /* and calculate all the others */
574 for (n = 0; n < geo->near_copies; n++) {
575 int d = dev;
576 int set;
577 sector_t s = sector;
578 r10bio->devs[slot].devnum = d;
579 r10bio->devs[slot].addr = s;
580 slot++;
581
582 for (f = 1; f < geo->far_copies; f++) {
583 set = d / geo->far_set_size;
584 d += geo->near_copies;
585
586 if ((geo->raid_disks % geo->far_set_size) &&
587 (d > last_far_set_start)) {
588 d -= last_far_set_start;
589 d %= last_far_set_size;
590 d += last_far_set_start;
591 } else {
592 d %= geo->far_set_size;
593 d += geo->far_set_size * set;
594 }
595 s += geo->stride;
596 r10bio->devs[slot].devnum = d;
597 r10bio->devs[slot].addr = s;
598 slot++;
599 }
600 dev++;
601 if (dev >= geo->raid_disks) {
602 dev = 0;
603 sector += (geo->chunk_mask + 1);
604 }
605 }
606 }
607
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610 struct geom *geo = &conf->geo;
611
612 if (conf->reshape_progress != MaxSector &&
613 ((r10bio->sector >= conf->reshape_progress) !=
614 conf->mddev->reshape_backwards)) {
615 set_bit(R10BIO_Previous, &r10bio->state);
616 geo = &conf->prev;
617 } else
618 clear_bit(R10BIO_Previous, &r10bio->state);
619
620 __raid10_find_phys(geo, r10bio);
621 }
622
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625 sector_t offset, chunk, vchunk;
626 /* Never use conf->prev as this is only called during resync
627 * or recovery, so reshape isn't happening
628 */
629 struct geom *geo = &conf->geo;
630 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631 int far_set_size = geo->far_set_size;
632 int last_far_set_start;
633
634 if (geo->raid_disks % geo->far_set_size) {
635 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636 last_far_set_start *= geo->far_set_size;
637
638 if (dev >= last_far_set_start) {
639 far_set_size = geo->far_set_size;
640 far_set_size += (geo->raid_disks % geo->far_set_size);
641 far_set_start = last_far_set_start;
642 }
643 }
644
645 offset = sector & geo->chunk_mask;
646 if (geo->far_offset) {
647 int fc;
648 chunk = sector >> geo->chunk_shift;
649 fc = sector_div(chunk, geo->far_copies);
650 dev -= fc * geo->near_copies;
651 if (dev < far_set_start)
652 dev += far_set_size;
653 } else {
654 while (sector >= geo->stride) {
655 sector -= geo->stride;
656 if (dev < (geo->near_copies + far_set_start))
657 dev += far_set_size - geo->near_copies;
658 else
659 dev -= geo->near_copies;
660 }
661 chunk = sector >> geo->chunk_shift;
662 }
663 vchunk = chunk * geo->raid_disks + dev;
664 sector_div(vchunk, geo->near_copies);
665 return (vchunk << geo->chunk_shift) + offset;
666 }
667
668 /**
669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670 * @q: request queue
671 * @bvm: properties of new bio
672 * @biovec: the request that could be merged to it.
673 *
674 * Return amount of bytes we can accept at this offset
675 * This requires checking for end-of-chunk if near_copies != raid_disks,
676 * and for subordinate merge_bvec_fns if merge_check_needed.
677 */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679 struct bvec_merge_data *bvm,
680 struct bio_vec *biovec)
681 {
682 struct mddev *mddev = q->queuedata;
683 struct r10conf *conf = mddev->private;
684 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685 int max;
686 unsigned int chunk_sectors;
687 unsigned int bio_sectors = bvm->bi_size >> 9;
688 struct geom *geo = &conf->geo;
689
690 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691 if (conf->reshape_progress != MaxSector &&
692 ((sector >= conf->reshape_progress) !=
693 conf->mddev->reshape_backwards))
694 geo = &conf->prev;
695
696 if (geo->near_copies < geo->raid_disks) {
697 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698 + bio_sectors)) << 9;
699 if (max < 0)
700 /* bio_add cannot handle a negative return */
701 max = 0;
702 if (max <= biovec->bv_len && bio_sectors == 0)
703 return biovec->bv_len;
704 } else
705 max = biovec->bv_len;
706
707 if (mddev->merge_check_needed) {
708 struct {
709 struct r10bio r10_bio;
710 struct r10dev devs[conf->copies];
711 } on_stack;
712 struct r10bio *r10_bio = &on_stack.r10_bio;
713 int s;
714 if (conf->reshape_progress != MaxSector) {
715 /* Cannot give any guidance during reshape */
716 if (max <= biovec->bv_len && bio_sectors == 0)
717 return biovec->bv_len;
718 return 0;
719 }
720 r10_bio->sector = sector;
721 raid10_find_phys(conf, r10_bio);
722 rcu_read_lock();
723 for (s = 0; s < conf->copies; s++) {
724 int disk = r10_bio->devs[s].devnum;
725 struct md_rdev *rdev = rcu_dereference(
726 conf->mirrors[disk].rdev);
727 if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 struct request_queue *q =
729 bdev_get_queue(rdev->bdev);
730 if (q->merge_bvec_fn) {
731 bvm->bi_sector = r10_bio->devs[s].addr
732 + rdev->data_offset;
733 bvm->bi_bdev = rdev->bdev;
734 max = min(max, q->merge_bvec_fn(
735 q, bvm, biovec));
736 }
737 }
738 rdev = rcu_dereference(conf->mirrors[disk].replacement);
739 if (rdev && !test_bit(Faulty, &rdev->flags)) {
740 struct request_queue *q =
741 bdev_get_queue(rdev->bdev);
742 if (q->merge_bvec_fn) {
743 bvm->bi_sector = r10_bio->devs[s].addr
744 + rdev->data_offset;
745 bvm->bi_bdev = rdev->bdev;
746 max = min(max, q->merge_bvec_fn(
747 q, bvm, biovec));
748 }
749 }
750 }
751 rcu_read_unlock();
752 }
753 return max;
754 }
755
756 /*
757 * This routine returns the disk from which the requested read should
758 * be done. There is a per-array 'next expected sequential IO' sector
759 * number - if this matches on the next IO then we use the last disk.
760 * There is also a per-disk 'last know head position' sector that is
761 * maintained from IRQ contexts, both the normal and the resync IO
762 * completion handlers update this position correctly. If there is no
763 * perfect sequential match then we pick the disk whose head is closest.
764 *
765 * If there are 2 mirrors in the same 2 devices, performance degrades
766 * because position is mirror, not device based.
767 *
768 * The rdev for the device selected will have nr_pending incremented.
769 */
770
771 /*
772 * FIXME: possibly should rethink readbalancing and do it differently
773 * depending on near_copies / far_copies geometry.
774 */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776 struct r10bio *r10_bio,
777 int *max_sectors)
778 {
779 const sector_t this_sector = r10_bio->sector;
780 int disk, slot;
781 int sectors = r10_bio->sectors;
782 int best_good_sectors;
783 sector_t new_distance, best_dist;
784 struct md_rdev *best_rdev, *rdev = NULL;
785 int do_balance;
786 int best_slot;
787 struct geom *geo = &conf->geo;
788
789 raid10_find_phys(conf, r10_bio);
790 rcu_read_lock();
791 retry:
792 sectors = r10_bio->sectors;
793 best_slot = -1;
794 best_rdev = NULL;
795 best_dist = MaxSector;
796 best_good_sectors = 0;
797 do_balance = 1;
798 /*
799 * Check if we can balance. We can balance on the whole
800 * device if no resync is going on (recovery is ok), or below
801 * the resync window. We take the first readable disk when
802 * above the resync window.
803 */
804 if (conf->mddev->recovery_cp < MaxSector
805 && (this_sector + sectors >= conf->next_resync))
806 do_balance = 0;
807
808 for (slot = 0; slot < conf->copies ; slot++) {
809 sector_t first_bad;
810 int bad_sectors;
811 sector_t dev_sector;
812
813 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814 continue;
815 disk = r10_bio->devs[slot].devnum;
816 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818 test_bit(Unmerged, &rdev->flags) ||
819 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820 rdev = rcu_dereference(conf->mirrors[disk].rdev);
821 if (rdev == NULL ||
822 test_bit(Faulty, &rdev->flags) ||
823 test_bit(Unmerged, &rdev->flags))
824 continue;
825 if (!test_bit(In_sync, &rdev->flags) &&
826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 continue;
828
829 dev_sector = r10_bio->devs[slot].addr;
830 if (is_badblock(rdev, dev_sector, sectors,
831 &first_bad, &bad_sectors)) {
832 if (best_dist < MaxSector)
833 /* Already have a better slot */
834 continue;
835 if (first_bad <= dev_sector) {
836 /* Cannot read here. If this is the
837 * 'primary' device, then we must not read
838 * beyond 'bad_sectors' from another device.
839 */
840 bad_sectors -= (dev_sector - first_bad);
841 if (!do_balance && sectors > bad_sectors)
842 sectors = bad_sectors;
843 if (best_good_sectors > sectors)
844 best_good_sectors = sectors;
845 } else {
846 sector_t good_sectors =
847 first_bad - dev_sector;
848 if (good_sectors > best_good_sectors) {
849 best_good_sectors = good_sectors;
850 best_slot = slot;
851 best_rdev = rdev;
852 }
853 if (!do_balance)
854 /* Must read from here */
855 break;
856 }
857 continue;
858 } else
859 best_good_sectors = sectors;
860
861 if (!do_balance)
862 break;
863
864 /* This optimisation is debatable, and completely destroys
865 * sequential read speed for 'far copies' arrays. So only
866 * keep it for 'near' arrays, and review those later.
867 */
868 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869 break;
870
871 /* for far > 1 always use the lowest address */
872 if (geo->far_copies > 1)
873 new_distance = r10_bio->devs[slot].addr;
874 else
875 new_distance = abs(r10_bio->devs[slot].addr -
876 conf->mirrors[disk].head_position);
877 if (new_distance < best_dist) {
878 best_dist = new_distance;
879 best_slot = slot;
880 best_rdev = rdev;
881 }
882 }
883 if (slot >= conf->copies) {
884 slot = best_slot;
885 rdev = best_rdev;
886 }
887
888 if (slot >= 0) {
889 atomic_inc(&rdev->nr_pending);
890 if (test_bit(Faulty, &rdev->flags)) {
891 /* Cannot risk returning a device that failed
892 * before we inc'ed nr_pending
893 */
894 rdev_dec_pending(rdev, conf->mddev);
895 goto retry;
896 }
897 r10_bio->read_slot = slot;
898 } else
899 rdev = NULL;
900 rcu_read_unlock();
901 *max_sectors = best_good_sectors;
902
903 return rdev;
904 }
905
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908 struct r10conf *conf = mddev->private;
909 int i, ret = 0;
910
911 if ((bits & (1 << BDI_async_congested)) &&
912 conf->pending_count >= max_queued_requests)
913 return 1;
914
915 rcu_read_lock();
916 for (i = 0;
917 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918 && ret == 0;
919 i++) {
920 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922 struct request_queue *q = bdev_get_queue(rdev->bdev);
923
924 ret |= bdi_congested(&q->backing_dev_info, bits);
925 }
926 }
927 rcu_read_unlock();
928 return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932 static int raid10_congested(void *data, int bits)
933 {
934 struct mddev *mddev = data;
935
936 return mddev_congested(mddev, bits) ||
937 md_raid10_congested(mddev, bits);
938 }
939
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942 /* Any writes that have been queued but are awaiting
943 * bitmap updates get flushed here.
944 */
945 spin_lock_irq(&conf->device_lock);
946
947 if (conf->pending_bio_list.head) {
948 struct bio *bio;
949 bio = bio_list_get(&conf->pending_bio_list);
950 conf->pending_count = 0;
951 spin_unlock_irq(&conf->device_lock);
952 /* flush any pending bitmap writes to disk
953 * before proceeding w/ I/O */
954 bitmap_unplug(conf->mddev->bitmap);
955 wake_up(&conf->wait_barrier);
956
957 while (bio) { /* submit pending writes */
958 struct bio *next = bio->bi_next;
959 bio->bi_next = NULL;
960 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962 /* Just ignore it */
963 bio_endio(bio, 0);
964 else
965 generic_make_request(bio);
966 bio = next;
967 }
968 } else
969 spin_unlock_irq(&conf->device_lock);
970 }
971
972 /* Barriers....
973 * Sometimes we need to suspend IO while we do something else,
974 * either some resync/recovery, or reconfigure the array.
975 * To do this we raise a 'barrier'.
976 * The 'barrier' is a counter that can be raised multiple times
977 * to count how many activities are happening which preclude
978 * normal IO.
979 * We can only raise the barrier if there is no pending IO.
980 * i.e. if nr_pending == 0.
981 * We choose only to raise the barrier if no-one is waiting for the
982 * barrier to go down. This means that as soon as an IO request
983 * is ready, no other operations which require a barrier will start
984 * until the IO request has had a chance.
985 *
986 * So: regular IO calls 'wait_barrier'. When that returns there
987 * is no backgroup IO happening, It must arrange to call
988 * allow_barrier when it has finished its IO.
989 * backgroup IO calls must call raise_barrier. Once that returns
990 * there is no normal IO happeing. It must arrange to call
991 * lower_barrier when the particular background IO completes.
992 */
993
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996 BUG_ON(force && !conf->barrier);
997 spin_lock_irq(&conf->resync_lock);
998
999 /* Wait until no block IO is waiting (unless 'force') */
1000 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001 conf->resync_lock);
1002
1003 /* block any new IO from starting */
1004 conf->barrier++;
1005
1006 /* Now wait for all pending IO to complete */
1007 wait_event_lock_irq(conf->wait_barrier,
1008 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009 conf->resync_lock);
1010
1011 spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016 unsigned long flags;
1017 spin_lock_irqsave(&conf->resync_lock, flags);
1018 conf->barrier--;
1019 spin_unlock_irqrestore(&conf->resync_lock, flags);
1020 wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025 spin_lock_irq(&conf->resync_lock);
1026 if (conf->barrier) {
1027 conf->nr_waiting++;
1028 /* Wait for the barrier to drop.
1029 * However if there are already pending
1030 * requests (preventing the barrier from
1031 * rising completely), and the
1032 * pre-process bio queue isn't empty,
1033 * then don't wait, as we need to empty
1034 * that queue to get the nr_pending
1035 * count down.
1036 */
1037 wait_event_lock_irq(conf->wait_barrier,
1038 !conf->barrier ||
1039 (conf->nr_pending &&
1040 current->bio_list &&
1041 !bio_list_empty(current->bio_list)),
1042 conf->resync_lock);
1043 conf->nr_waiting--;
1044 }
1045 conf->nr_pending++;
1046 spin_unlock_irq(&conf->resync_lock);
1047 }
1048
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051 unsigned long flags;
1052 spin_lock_irqsave(&conf->resync_lock, flags);
1053 conf->nr_pending--;
1054 spin_unlock_irqrestore(&conf->resync_lock, flags);
1055 wake_up(&conf->wait_barrier);
1056 }
1057
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060 /* stop syncio and normal IO and wait for everything to
1061 * go quiet.
1062 * We increment barrier and nr_waiting, and then
1063 * wait until nr_pending match nr_queued+1
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (1)
1069 * must match the number of pending IOs (nr_pending) before
1070 * we continue.
1071 */
1072 spin_lock_irq(&conf->resync_lock);
1073 conf->barrier++;
1074 conf->nr_waiting++;
1075 wait_event_lock_irq_cmd(conf->wait_barrier,
1076 conf->nr_pending == conf->nr_queued+1,
1077 conf->resync_lock,
1078 flush_pending_writes(conf));
1079
1080 spin_unlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf->resync_lock);
1087 conf->barrier--;
1088 conf->nr_waiting--;
1089 wake_up(&conf->wait_barrier);
1090 spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094 struct md_rdev *rdev)
1095 {
1096 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097 test_bit(R10BIO_Previous, &r10_bio->state))
1098 return rdev->data_offset;
1099 else
1100 return rdev->new_data_offset;
1101 }
1102
1103 struct raid10_plug_cb {
1104 struct blk_plug_cb cb;
1105 struct bio_list pending;
1106 int pending_cnt;
1107 };
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112 cb);
1113 struct mddev *mddev = plug->cb.data;
1114 struct r10conf *conf = mddev->private;
1115 struct bio *bio;
1116
1117 if (from_schedule || current->bio_list) {
1118 spin_lock_irq(&conf->device_lock);
1119 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 conf->pending_count += plug->pending_cnt;
1121 spin_unlock_irq(&conf->device_lock);
1122 wake_up(&conf->wait_barrier);
1123 md_wakeup_thread(mddev->thread);
1124 kfree(plug);
1125 return;
1126 }
1127
1128 /* we aren't scheduling, so we can do the write-out directly. */
1129 bio = bio_list_get(&plug->pending);
1130 bitmap_unplug(mddev->bitmap);
1131 wake_up(&conf->wait_barrier);
1132
1133 while (bio) { /* submit pending writes */
1134 struct bio *next = bio->bi_next;
1135 bio->bi_next = NULL;
1136 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1137 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1138 /* Just ignore it */
1139 bio_endio(bio, 0);
1140 else
1141 generic_make_request(bio);
1142 bio = next;
1143 }
1144 kfree(plug);
1145 }
1146
1147 static void make_request(struct mddev *mddev, struct bio * bio)
1148 {
1149 struct r10conf *conf = mddev->private;
1150 struct r10bio *r10_bio;
1151 struct bio *read_bio;
1152 int i;
1153 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1154 int chunk_sects = chunk_mask + 1;
1155 const int rw = bio_data_dir(bio);
1156 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1157 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1158 const unsigned long do_discard = (bio->bi_rw
1159 & (REQ_DISCARD | REQ_SECURE));
1160 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1161 unsigned long flags;
1162 struct md_rdev *blocked_rdev;
1163 struct blk_plug_cb *cb;
1164 struct raid10_plug_cb *plug = NULL;
1165 int sectors_handled;
1166 int max_sectors;
1167 int sectors;
1168
1169 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1170 md_flush_request(mddev, bio);
1171 return;
1172 }
1173
1174 /* If this request crosses a chunk boundary, we need to
1175 * split it. This will only happen for 1 PAGE (or less) requests.
1176 */
1177 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1178 > chunk_sects
1179 && (conf->geo.near_copies < conf->geo.raid_disks
1180 || conf->prev.near_copies < conf->prev.raid_disks))) {
1181 struct bio_pair *bp;
1182 /* Sanity check -- queue functions should prevent this happening */
1183 if (bio_segments(bio) > 1)
1184 goto bad_map;
1185 /* This is a one page bio that upper layers
1186 * refuse to split for us, so we need to split it.
1187 */
1188 bp = bio_split(bio,
1189 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1190
1191 /* Each of these 'make_request' calls will call 'wait_barrier'.
1192 * If the first succeeds but the second blocks due to the resync
1193 * thread raising the barrier, we will deadlock because the
1194 * IO to the underlying device will be queued in generic_make_request
1195 * and will never complete, so will never reduce nr_pending.
1196 * So increment nr_waiting here so no new raise_barriers will
1197 * succeed, and so the second wait_barrier cannot block.
1198 */
1199 spin_lock_irq(&conf->resync_lock);
1200 conf->nr_waiting++;
1201 spin_unlock_irq(&conf->resync_lock);
1202
1203 make_request(mddev, &bp->bio1);
1204 make_request(mddev, &bp->bio2);
1205
1206 spin_lock_irq(&conf->resync_lock);
1207 conf->nr_waiting--;
1208 wake_up(&conf->wait_barrier);
1209 spin_unlock_irq(&conf->resync_lock);
1210
1211 bio_pair_release(bp);
1212 return;
1213 bad_map:
1214 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1215 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1216 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1217
1218 bio_io_error(bio);
1219 return;
1220 }
1221
1222 md_write_start(mddev, bio);
1223
1224 /*
1225 * Register the new request and wait if the reconstruction
1226 * thread has put up a bar for new requests.
1227 * Continue immediately if no resync is active currently.
1228 */
1229 wait_barrier(conf);
1230
1231 sectors = bio_sectors(bio);
1232 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1233 bio->bi_sector < conf->reshape_progress &&
1234 bio->bi_sector + sectors > conf->reshape_progress) {
1235 /* IO spans the reshape position. Need to wait for
1236 * reshape to pass
1237 */
1238 allow_barrier(conf);
1239 wait_event(conf->wait_barrier,
1240 conf->reshape_progress <= bio->bi_sector ||
1241 conf->reshape_progress >= bio->bi_sector + sectors);
1242 wait_barrier(conf);
1243 }
1244 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1245 bio_data_dir(bio) == WRITE &&
1246 (mddev->reshape_backwards
1247 ? (bio->bi_sector < conf->reshape_safe &&
1248 bio->bi_sector + sectors > conf->reshape_progress)
1249 : (bio->bi_sector + sectors > conf->reshape_safe &&
1250 bio->bi_sector < conf->reshape_progress))) {
1251 /* Need to update reshape_position in metadata */
1252 mddev->reshape_position = conf->reshape_progress;
1253 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1254 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1255 md_wakeup_thread(mddev->thread);
1256 wait_event(mddev->sb_wait,
1257 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1258
1259 conf->reshape_safe = mddev->reshape_position;
1260 }
1261
1262 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1263
1264 r10_bio->master_bio = bio;
1265 r10_bio->sectors = sectors;
1266
1267 r10_bio->mddev = mddev;
1268 r10_bio->sector = bio->bi_sector;
1269 r10_bio->state = 0;
1270
1271 /* We might need to issue multiple reads to different
1272 * devices if there are bad blocks around, so we keep
1273 * track of the number of reads in bio->bi_phys_segments.
1274 * If this is 0, there is only one r10_bio and no locking
1275 * will be needed when the request completes. If it is
1276 * non-zero, then it is the number of not-completed requests.
1277 */
1278 bio->bi_phys_segments = 0;
1279 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1280
1281 if (rw == READ) {
1282 /*
1283 * read balancing logic:
1284 */
1285 struct md_rdev *rdev;
1286 int slot;
1287
1288 read_again:
1289 rdev = read_balance(conf, r10_bio, &max_sectors);
1290 if (!rdev) {
1291 raid_end_bio_io(r10_bio);
1292 return;
1293 }
1294 slot = r10_bio->read_slot;
1295
1296 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1297 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1298 max_sectors);
1299
1300 r10_bio->devs[slot].bio = read_bio;
1301 r10_bio->devs[slot].rdev = rdev;
1302
1303 read_bio->bi_sector = r10_bio->devs[slot].addr +
1304 choose_data_offset(r10_bio, rdev);
1305 read_bio->bi_bdev = rdev->bdev;
1306 read_bio->bi_end_io = raid10_end_read_request;
1307 read_bio->bi_rw = READ | do_sync;
1308 read_bio->bi_private = r10_bio;
1309
1310 if (max_sectors < r10_bio->sectors) {
1311 /* Could not read all from this device, so we will
1312 * need another r10_bio.
1313 */
1314 sectors_handled = (r10_bio->sectors + max_sectors
1315 - bio->bi_sector);
1316 r10_bio->sectors = max_sectors;
1317 spin_lock_irq(&conf->device_lock);
1318 if (bio->bi_phys_segments == 0)
1319 bio->bi_phys_segments = 2;
1320 else
1321 bio->bi_phys_segments++;
1322 spin_unlock(&conf->device_lock);
1323 /* Cannot call generic_make_request directly
1324 * as that will be queued in __generic_make_request
1325 * and subsequent mempool_alloc might block
1326 * waiting for it. so hand bio over to raid10d.
1327 */
1328 reschedule_retry(r10_bio);
1329
1330 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1331
1332 r10_bio->master_bio = bio;
1333 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1334 r10_bio->state = 0;
1335 r10_bio->mddev = mddev;
1336 r10_bio->sector = bio->bi_sector + sectors_handled;
1337 goto read_again;
1338 } else
1339 generic_make_request(read_bio);
1340 return;
1341 }
1342
1343 /*
1344 * WRITE:
1345 */
1346 if (conf->pending_count >= max_queued_requests) {
1347 md_wakeup_thread(mddev->thread);
1348 wait_event(conf->wait_barrier,
1349 conf->pending_count < max_queued_requests);
1350 }
1351 /* first select target devices under rcu_lock and
1352 * inc refcount on their rdev. Record them by setting
1353 * bios[x] to bio
1354 * If there are known/acknowledged bad blocks on any device
1355 * on which we have seen a write error, we want to avoid
1356 * writing to those blocks. This potentially requires several
1357 * writes to write around the bad blocks. Each set of writes
1358 * gets its own r10_bio with a set of bios attached. The number
1359 * of r10_bios is recored in bio->bi_phys_segments just as with
1360 * the read case.
1361 */
1362
1363 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1364 raid10_find_phys(conf, r10_bio);
1365 retry_write:
1366 blocked_rdev = NULL;
1367 rcu_read_lock();
1368 max_sectors = r10_bio->sectors;
1369
1370 for (i = 0; i < conf->copies; i++) {
1371 int d = r10_bio->devs[i].devnum;
1372 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1373 struct md_rdev *rrdev = rcu_dereference(
1374 conf->mirrors[d].replacement);
1375 if (rdev == rrdev)
1376 rrdev = NULL;
1377 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1378 atomic_inc(&rdev->nr_pending);
1379 blocked_rdev = rdev;
1380 break;
1381 }
1382 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1383 atomic_inc(&rrdev->nr_pending);
1384 blocked_rdev = rrdev;
1385 break;
1386 }
1387 if (rdev && (test_bit(Faulty, &rdev->flags)
1388 || test_bit(Unmerged, &rdev->flags)))
1389 rdev = NULL;
1390 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1391 || test_bit(Unmerged, &rrdev->flags)))
1392 rrdev = NULL;
1393
1394 r10_bio->devs[i].bio = NULL;
1395 r10_bio->devs[i].repl_bio = NULL;
1396
1397 if (!rdev && !rrdev) {
1398 set_bit(R10BIO_Degraded, &r10_bio->state);
1399 continue;
1400 }
1401 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1402 sector_t first_bad;
1403 sector_t dev_sector = r10_bio->devs[i].addr;
1404 int bad_sectors;
1405 int is_bad;
1406
1407 is_bad = is_badblock(rdev, dev_sector,
1408 max_sectors,
1409 &first_bad, &bad_sectors);
1410 if (is_bad < 0) {
1411 /* Mustn't write here until the bad block
1412 * is acknowledged
1413 */
1414 atomic_inc(&rdev->nr_pending);
1415 set_bit(BlockedBadBlocks, &rdev->flags);
1416 blocked_rdev = rdev;
1417 break;
1418 }
1419 if (is_bad && first_bad <= dev_sector) {
1420 /* Cannot write here at all */
1421 bad_sectors -= (dev_sector - first_bad);
1422 if (bad_sectors < max_sectors)
1423 /* Mustn't write more than bad_sectors
1424 * to other devices yet
1425 */
1426 max_sectors = bad_sectors;
1427 /* We don't set R10BIO_Degraded as that
1428 * only applies if the disk is missing,
1429 * so it might be re-added, and we want to
1430 * know to recover this chunk.
1431 * In this case the device is here, and the
1432 * fact that this chunk is not in-sync is
1433 * recorded in the bad block log.
1434 */
1435 continue;
1436 }
1437 if (is_bad) {
1438 int good_sectors = first_bad - dev_sector;
1439 if (good_sectors < max_sectors)
1440 max_sectors = good_sectors;
1441 }
1442 }
1443 if (rdev) {
1444 r10_bio->devs[i].bio = bio;
1445 atomic_inc(&rdev->nr_pending);
1446 }
1447 if (rrdev) {
1448 r10_bio->devs[i].repl_bio = bio;
1449 atomic_inc(&rrdev->nr_pending);
1450 }
1451 }
1452 rcu_read_unlock();
1453
1454 if (unlikely(blocked_rdev)) {
1455 /* Have to wait for this device to get unblocked, then retry */
1456 int j;
1457 int d;
1458
1459 for (j = 0; j < i; j++) {
1460 if (r10_bio->devs[j].bio) {
1461 d = r10_bio->devs[j].devnum;
1462 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1463 }
1464 if (r10_bio->devs[j].repl_bio) {
1465 struct md_rdev *rdev;
1466 d = r10_bio->devs[j].devnum;
1467 rdev = conf->mirrors[d].replacement;
1468 if (!rdev) {
1469 /* Race with remove_disk */
1470 smp_mb();
1471 rdev = conf->mirrors[d].rdev;
1472 }
1473 rdev_dec_pending(rdev, mddev);
1474 }
1475 }
1476 allow_barrier(conf);
1477 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1478 wait_barrier(conf);
1479 goto retry_write;
1480 }
1481
1482 if (max_sectors < r10_bio->sectors) {
1483 /* We are splitting this into multiple parts, so
1484 * we need to prepare for allocating another r10_bio.
1485 */
1486 r10_bio->sectors = max_sectors;
1487 spin_lock_irq(&conf->device_lock);
1488 if (bio->bi_phys_segments == 0)
1489 bio->bi_phys_segments = 2;
1490 else
1491 bio->bi_phys_segments++;
1492 spin_unlock_irq(&conf->device_lock);
1493 }
1494 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1495
1496 atomic_set(&r10_bio->remaining, 1);
1497 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1498
1499 for (i = 0; i < conf->copies; i++) {
1500 struct bio *mbio;
1501 int d = r10_bio->devs[i].devnum;
1502 if (r10_bio->devs[i].bio) {
1503 struct md_rdev *rdev = conf->mirrors[d].rdev;
1504 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1505 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1506 max_sectors);
1507 r10_bio->devs[i].bio = mbio;
1508
1509 mbio->bi_sector = (r10_bio->devs[i].addr+
1510 choose_data_offset(r10_bio,
1511 rdev));
1512 mbio->bi_bdev = rdev->bdev;
1513 mbio->bi_end_io = raid10_end_write_request;
1514 mbio->bi_rw =
1515 WRITE | do_sync | do_fua | do_discard | do_same;
1516 mbio->bi_private = r10_bio;
1517
1518 atomic_inc(&r10_bio->remaining);
1519
1520 cb = blk_check_plugged(raid10_unplug, mddev,
1521 sizeof(*plug));
1522 if (cb)
1523 plug = container_of(cb, struct raid10_plug_cb,
1524 cb);
1525 else
1526 plug = NULL;
1527 spin_lock_irqsave(&conf->device_lock, flags);
1528 if (plug) {
1529 bio_list_add(&plug->pending, mbio);
1530 plug->pending_cnt++;
1531 } else {
1532 bio_list_add(&conf->pending_bio_list, mbio);
1533 conf->pending_count++;
1534 }
1535 spin_unlock_irqrestore(&conf->device_lock, flags);
1536 if (!plug)
1537 md_wakeup_thread(mddev->thread);
1538 }
1539
1540 if (r10_bio->devs[i].repl_bio) {
1541 struct md_rdev *rdev = conf->mirrors[d].replacement;
1542 if (rdev == NULL) {
1543 /* Replacement just got moved to main 'rdev' */
1544 smp_mb();
1545 rdev = conf->mirrors[d].rdev;
1546 }
1547 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1548 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1549 max_sectors);
1550 r10_bio->devs[i].repl_bio = mbio;
1551
1552 mbio->bi_sector = (r10_bio->devs[i].addr +
1553 choose_data_offset(
1554 r10_bio, rdev));
1555 mbio->bi_bdev = rdev->bdev;
1556 mbio->bi_end_io = raid10_end_write_request;
1557 mbio->bi_rw =
1558 WRITE | do_sync | do_fua | do_discard | do_same;
1559 mbio->bi_private = r10_bio;
1560
1561 atomic_inc(&r10_bio->remaining);
1562 spin_lock_irqsave(&conf->device_lock, flags);
1563 bio_list_add(&conf->pending_bio_list, mbio);
1564 conf->pending_count++;
1565 spin_unlock_irqrestore(&conf->device_lock, flags);
1566 if (!mddev_check_plugged(mddev))
1567 md_wakeup_thread(mddev->thread);
1568 }
1569 }
1570
1571 /* Don't remove the bias on 'remaining' (one_write_done) until
1572 * after checking if we need to go around again.
1573 */
1574
1575 if (sectors_handled < bio_sectors(bio)) {
1576 one_write_done(r10_bio);
1577 /* We need another r10_bio. It has already been counted
1578 * in bio->bi_phys_segments.
1579 */
1580 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1581
1582 r10_bio->master_bio = bio;
1583 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1584
1585 r10_bio->mddev = mddev;
1586 r10_bio->sector = bio->bi_sector + sectors_handled;
1587 r10_bio->state = 0;
1588 goto retry_write;
1589 }
1590 one_write_done(r10_bio);
1591
1592 /* In case raid10d snuck in to freeze_array */
1593 wake_up(&conf->wait_barrier);
1594 }
1595
1596 static void status(struct seq_file *seq, struct mddev *mddev)
1597 {
1598 struct r10conf *conf = mddev->private;
1599 int i;
1600
1601 if (conf->geo.near_copies < conf->geo.raid_disks)
1602 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1603 if (conf->geo.near_copies > 1)
1604 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1605 if (conf->geo.far_copies > 1) {
1606 if (conf->geo.far_offset)
1607 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1608 else
1609 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1610 }
1611 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1612 conf->geo.raid_disks - mddev->degraded);
1613 for (i = 0; i < conf->geo.raid_disks; i++)
1614 seq_printf(seq, "%s",
1615 conf->mirrors[i].rdev &&
1616 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1617 seq_printf(seq, "]");
1618 }
1619
1620 /* check if there are enough drives for
1621 * every block to appear on atleast one.
1622 * Don't consider the device numbered 'ignore'
1623 * as we might be about to remove it.
1624 */
1625 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1626 {
1627 int first = 0;
1628
1629 do {
1630 int n = conf->copies;
1631 int cnt = 0;
1632 int this = first;
1633 while (n--) {
1634 if (conf->mirrors[this].rdev &&
1635 this != ignore)
1636 cnt++;
1637 this = (this+1) % geo->raid_disks;
1638 }
1639 if (cnt == 0)
1640 return 0;
1641 first = (first + geo->near_copies) % geo->raid_disks;
1642 } while (first != 0);
1643 return 1;
1644 }
1645
1646 static int enough(struct r10conf *conf, int ignore)
1647 {
1648 return _enough(conf, &conf->geo, ignore) &&
1649 _enough(conf, &conf->prev, ignore);
1650 }
1651
1652 static void error(struct mddev *mddev, struct md_rdev *rdev)
1653 {
1654 char b[BDEVNAME_SIZE];
1655 struct r10conf *conf = mddev->private;
1656
1657 /*
1658 * If it is not operational, then we have already marked it as dead
1659 * else if it is the last working disks, ignore the error, let the
1660 * next level up know.
1661 * else mark the drive as failed
1662 */
1663 if (test_bit(In_sync, &rdev->flags)
1664 && !enough(conf, rdev->raid_disk))
1665 /*
1666 * Don't fail the drive, just return an IO error.
1667 */
1668 return;
1669 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1670 unsigned long flags;
1671 spin_lock_irqsave(&conf->device_lock, flags);
1672 mddev->degraded++;
1673 spin_unlock_irqrestore(&conf->device_lock, flags);
1674 /*
1675 * if recovery is running, make sure it aborts.
1676 */
1677 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1678 }
1679 set_bit(Blocked, &rdev->flags);
1680 set_bit(Faulty, &rdev->flags);
1681 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1682 printk(KERN_ALERT
1683 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1684 "md/raid10:%s: Operation continuing on %d devices.\n",
1685 mdname(mddev), bdevname(rdev->bdev, b),
1686 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1687 }
1688
1689 static void print_conf(struct r10conf *conf)
1690 {
1691 int i;
1692 struct raid10_info *tmp;
1693
1694 printk(KERN_DEBUG "RAID10 conf printout:\n");
1695 if (!conf) {
1696 printk(KERN_DEBUG "(!conf)\n");
1697 return;
1698 }
1699 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1700 conf->geo.raid_disks);
1701
1702 for (i = 0; i < conf->geo.raid_disks; i++) {
1703 char b[BDEVNAME_SIZE];
1704 tmp = conf->mirrors + i;
1705 if (tmp->rdev)
1706 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1707 i, !test_bit(In_sync, &tmp->rdev->flags),
1708 !test_bit(Faulty, &tmp->rdev->flags),
1709 bdevname(tmp->rdev->bdev,b));
1710 }
1711 }
1712
1713 static void close_sync(struct r10conf *conf)
1714 {
1715 wait_barrier(conf);
1716 allow_barrier(conf);
1717
1718 mempool_destroy(conf->r10buf_pool);
1719 conf->r10buf_pool = NULL;
1720 }
1721
1722 static int raid10_spare_active(struct mddev *mddev)
1723 {
1724 int i;
1725 struct r10conf *conf = mddev->private;
1726 struct raid10_info *tmp;
1727 int count = 0;
1728 unsigned long flags;
1729
1730 /*
1731 * Find all non-in_sync disks within the RAID10 configuration
1732 * and mark them in_sync
1733 */
1734 for (i = 0; i < conf->geo.raid_disks; i++) {
1735 tmp = conf->mirrors + i;
1736 if (tmp->replacement
1737 && tmp->replacement->recovery_offset == MaxSector
1738 && !test_bit(Faulty, &tmp->replacement->flags)
1739 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1740 /* Replacement has just become active */
1741 if (!tmp->rdev
1742 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1743 count++;
1744 if (tmp->rdev) {
1745 /* Replaced device not technically faulty,
1746 * but we need to be sure it gets removed
1747 * and never re-added.
1748 */
1749 set_bit(Faulty, &tmp->rdev->flags);
1750 sysfs_notify_dirent_safe(
1751 tmp->rdev->sysfs_state);
1752 }
1753 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1754 } else if (tmp->rdev
1755 && !test_bit(Faulty, &tmp->rdev->flags)
1756 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1757 count++;
1758 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1759 }
1760 }
1761 spin_lock_irqsave(&conf->device_lock, flags);
1762 mddev->degraded -= count;
1763 spin_unlock_irqrestore(&conf->device_lock, flags);
1764
1765 print_conf(conf);
1766 return count;
1767 }
1768
1769
1770 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1771 {
1772 struct r10conf *conf = mddev->private;
1773 int err = -EEXIST;
1774 int mirror;
1775 int first = 0;
1776 int last = conf->geo.raid_disks - 1;
1777 struct request_queue *q = bdev_get_queue(rdev->bdev);
1778
1779 if (mddev->recovery_cp < MaxSector)
1780 /* only hot-add to in-sync arrays, as recovery is
1781 * very different from resync
1782 */
1783 return -EBUSY;
1784 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1785 return -EINVAL;
1786
1787 if (rdev->raid_disk >= 0)
1788 first = last = rdev->raid_disk;
1789
1790 if (q->merge_bvec_fn) {
1791 set_bit(Unmerged, &rdev->flags);
1792 mddev->merge_check_needed = 1;
1793 }
1794
1795 if (rdev->saved_raid_disk >= first &&
1796 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1797 mirror = rdev->saved_raid_disk;
1798 else
1799 mirror = first;
1800 for ( ; mirror <= last ; mirror++) {
1801 struct raid10_info *p = &conf->mirrors[mirror];
1802 if (p->recovery_disabled == mddev->recovery_disabled)
1803 continue;
1804 if (p->rdev) {
1805 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1806 p->replacement != NULL)
1807 continue;
1808 clear_bit(In_sync, &rdev->flags);
1809 set_bit(Replacement, &rdev->flags);
1810 rdev->raid_disk = mirror;
1811 err = 0;
1812 disk_stack_limits(mddev->gendisk, rdev->bdev,
1813 rdev->data_offset << 9);
1814 conf->fullsync = 1;
1815 rcu_assign_pointer(p->replacement, rdev);
1816 break;
1817 }
1818
1819 disk_stack_limits(mddev->gendisk, rdev->bdev,
1820 rdev->data_offset << 9);
1821
1822 p->head_position = 0;
1823 p->recovery_disabled = mddev->recovery_disabled - 1;
1824 rdev->raid_disk = mirror;
1825 err = 0;
1826 if (rdev->saved_raid_disk != mirror)
1827 conf->fullsync = 1;
1828 rcu_assign_pointer(p->rdev, rdev);
1829 break;
1830 }
1831 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1832 /* Some requests might not have seen this new
1833 * merge_bvec_fn. We must wait for them to complete
1834 * before merging the device fully.
1835 * First we make sure any code which has tested
1836 * our function has submitted the request, then
1837 * we wait for all outstanding requests to complete.
1838 */
1839 synchronize_sched();
1840 raise_barrier(conf, 0);
1841 lower_barrier(conf);
1842 clear_bit(Unmerged, &rdev->flags);
1843 }
1844 md_integrity_add_rdev(rdev, mddev);
1845 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1846 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1847
1848 print_conf(conf);
1849 return err;
1850 }
1851
1852 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1853 {
1854 struct r10conf *conf = mddev->private;
1855 int err = 0;
1856 int number = rdev->raid_disk;
1857 struct md_rdev **rdevp;
1858 struct raid10_info *p = conf->mirrors + number;
1859
1860 print_conf(conf);
1861 if (rdev == p->rdev)
1862 rdevp = &p->rdev;
1863 else if (rdev == p->replacement)
1864 rdevp = &p->replacement;
1865 else
1866 return 0;
1867
1868 if (test_bit(In_sync, &rdev->flags) ||
1869 atomic_read(&rdev->nr_pending)) {
1870 err = -EBUSY;
1871 goto abort;
1872 }
1873 /* Only remove faulty devices if recovery
1874 * is not possible.
1875 */
1876 if (!test_bit(Faulty, &rdev->flags) &&
1877 mddev->recovery_disabled != p->recovery_disabled &&
1878 (!p->replacement || p->replacement == rdev) &&
1879 number < conf->geo.raid_disks &&
1880 enough(conf, -1)) {
1881 err = -EBUSY;
1882 goto abort;
1883 }
1884 *rdevp = NULL;
1885 synchronize_rcu();
1886 if (atomic_read(&rdev->nr_pending)) {
1887 /* lost the race, try later */
1888 err = -EBUSY;
1889 *rdevp = rdev;
1890 goto abort;
1891 } else if (p->replacement) {
1892 /* We must have just cleared 'rdev' */
1893 p->rdev = p->replacement;
1894 clear_bit(Replacement, &p->replacement->flags);
1895 smp_mb(); /* Make sure other CPUs may see both as identical
1896 * but will never see neither -- if they are careful.
1897 */
1898 p->replacement = NULL;
1899 clear_bit(WantReplacement, &rdev->flags);
1900 } else
1901 /* We might have just remove the Replacement as faulty
1902 * Clear the flag just in case
1903 */
1904 clear_bit(WantReplacement, &rdev->flags);
1905
1906 err = md_integrity_register(mddev);
1907
1908 abort:
1909
1910 print_conf(conf);
1911 return err;
1912 }
1913
1914
1915 static void end_sync_read(struct bio *bio, int error)
1916 {
1917 struct r10bio *r10_bio = bio->bi_private;
1918 struct r10conf *conf = r10_bio->mddev->private;
1919 int d;
1920
1921 if (bio == r10_bio->master_bio) {
1922 /* this is a reshape read */
1923 d = r10_bio->read_slot; /* really the read dev */
1924 } else
1925 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1926
1927 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1928 set_bit(R10BIO_Uptodate, &r10_bio->state);
1929 else
1930 /* The write handler will notice the lack of
1931 * R10BIO_Uptodate and record any errors etc
1932 */
1933 atomic_add(r10_bio->sectors,
1934 &conf->mirrors[d].rdev->corrected_errors);
1935
1936 /* for reconstruct, we always reschedule after a read.
1937 * for resync, only after all reads
1938 */
1939 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1940 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1941 atomic_dec_and_test(&r10_bio->remaining)) {
1942 /* we have read all the blocks,
1943 * do the comparison in process context in raid10d
1944 */
1945 reschedule_retry(r10_bio);
1946 }
1947 }
1948
1949 static void end_sync_request(struct r10bio *r10_bio)
1950 {
1951 struct mddev *mddev = r10_bio->mddev;
1952
1953 while (atomic_dec_and_test(&r10_bio->remaining)) {
1954 if (r10_bio->master_bio == NULL) {
1955 /* the primary of several recovery bios */
1956 sector_t s = r10_bio->sectors;
1957 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1958 test_bit(R10BIO_WriteError, &r10_bio->state))
1959 reschedule_retry(r10_bio);
1960 else
1961 put_buf(r10_bio);
1962 md_done_sync(mddev, s, 1);
1963 break;
1964 } else {
1965 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1966 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967 test_bit(R10BIO_WriteError, &r10_bio->state))
1968 reschedule_retry(r10_bio);
1969 else
1970 put_buf(r10_bio);
1971 r10_bio = r10_bio2;
1972 }
1973 }
1974 }
1975
1976 static void end_sync_write(struct bio *bio, int error)
1977 {
1978 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1979 struct r10bio *r10_bio = bio->bi_private;
1980 struct mddev *mddev = r10_bio->mddev;
1981 struct r10conf *conf = mddev->private;
1982 int d;
1983 sector_t first_bad;
1984 int bad_sectors;
1985 int slot;
1986 int repl;
1987 struct md_rdev *rdev = NULL;
1988
1989 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1990 if (repl)
1991 rdev = conf->mirrors[d].replacement;
1992 else
1993 rdev = conf->mirrors[d].rdev;
1994
1995 if (!uptodate) {
1996 if (repl)
1997 md_error(mddev, rdev);
1998 else {
1999 set_bit(WriteErrorSeen, &rdev->flags);
2000 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2001 set_bit(MD_RECOVERY_NEEDED,
2002 &rdev->mddev->recovery);
2003 set_bit(R10BIO_WriteError, &r10_bio->state);
2004 }
2005 } else if (is_badblock(rdev,
2006 r10_bio->devs[slot].addr,
2007 r10_bio->sectors,
2008 &first_bad, &bad_sectors))
2009 set_bit(R10BIO_MadeGood, &r10_bio->state);
2010
2011 rdev_dec_pending(rdev, mddev);
2012
2013 end_sync_request(r10_bio);
2014 }
2015
2016 /*
2017 * Note: sync and recover and handled very differently for raid10
2018 * This code is for resync.
2019 * For resync, we read through virtual addresses and read all blocks.
2020 * If there is any error, we schedule a write. The lowest numbered
2021 * drive is authoritative.
2022 * However requests come for physical address, so we need to map.
2023 * For every physical address there are raid_disks/copies virtual addresses,
2024 * which is always are least one, but is not necessarly an integer.
2025 * This means that a physical address can span multiple chunks, so we may
2026 * have to submit multiple io requests for a single sync request.
2027 */
2028 /*
2029 * We check if all blocks are in-sync and only write to blocks that
2030 * aren't in sync
2031 */
2032 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2033 {
2034 struct r10conf *conf = mddev->private;
2035 int i, first;
2036 struct bio *tbio, *fbio;
2037 int vcnt;
2038
2039 atomic_set(&r10_bio->remaining, 1);
2040
2041 /* find the first device with a block */
2042 for (i=0; i<conf->copies; i++)
2043 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2044 break;
2045
2046 if (i == conf->copies)
2047 goto done;
2048
2049 first = i;
2050 fbio = r10_bio->devs[i].bio;
2051
2052 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2053 /* now find blocks with errors */
2054 for (i=0 ; i < conf->copies ; i++) {
2055 int j, d;
2056
2057 tbio = r10_bio->devs[i].bio;
2058
2059 if (tbio->bi_end_io != end_sync_read)
2060 continue;
2061 if (i == first)
2062 continue;
2063 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2064 /* We know that the bi_io_vec layout is the same for
2065 * both 'first' and 'i', so we just compare them.
2066 * All vec entries are PAGE_SIZE;
2067 */
2068 for (j = 0; j < vcnt; j++)
2069 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2070 page_address(tbio->bi_io_vec[j].bv_page),
2071 fbio->bi_io_vec[j].bv_len))
2072 break;
2073 if (j == vcnt)
2074 continue;
2075 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2076 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2077 /* Don't fix anything. */
2078 continue;
2079 }
2080 /* Ok, we need to write this bio, either to correct an
2081 * inconsistency or to correct an unreadable block.
2082 * First we need to fixup bv_offset, bv_len and
2083 * bi_vecs, as the read request might have corrupted these
2084 */
2085 bio_reset(tbio);
2086
2087 tbio->bi_vcnt = vcnt;
2088 tbio->bi_size = r10_bio->sectors << 9;
2089 tbio->bi_rw = WRITE;
2090 tbio->bi_private = r10_bio;
2091 tbio->bi_sector = r10_bio->devs[i].addr;
2092
2093 for (j=0; j < vcnt ; j++) {
2094 tbio->bi_io_vec[j].bv_offset = 0;
2095 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2096
2097 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2098 page_address(fbio->bi_io_vec[j].bv_page),
2099 PAGE_SIZE);
2100 }
2101 tbio->bi_end_io = end_sync_write;
2102
2103 d = r10_bio->devs[i].devnum;
2104 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2105 atomic_inc(&r10_bio->remaining);
2106 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2107
2108 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2109 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2110 generic_make_request(tbio);
2111 }
2112
2113 /* Now write out to any replacement devices
2114 * that are active
2115 */
2116 for (i = 0; i < conf->copies; i++) {
2117 int j, d;
2118
2119 tbio = r10_bio->devs[i].repl_bio;
2120 if (!tbio || !tbio->bi_end_io)
2121 continue;
2122 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2123 && r10_bio->devs[i].bio != fbio)
2124 for (j = 0; j < vcnt; j++)
2125 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2126 page_address(fbio->bi_io_vec[j].bv_page),
2127 PAGE_SIZE);
2128 d = r10_bio->devs[i].devnum;
2129 atomic_inc(&r10_bio->remaining);
2130 md_sync_acct(conf->mirrors[d].replacement->bdev,
2131 bio_sectors(tbio));
2132 generic_make_request(tbio);
2133 }
2134
2135 done:
2136 if (atomic_dec_and_test(&r10_bio->remaining)) {
2137 md_done_sync(mddev, r10_bio->sectors, 1);
2138 put_buf(r10_bio);
2139 }
2140 }
2141
2142 /*
2143 * Now for the recovery code.
2144 * Recovery happens across physical sectors.
2145 * We recover all non-is_sync drives by finding the virtual address of
2146 * each, and then choose a working drive that also has that virt address.
2147 * There is a separate r10_bio for each non-in_sync drive.
2148 * Only the first two slots are in use. The first for reading,
2149 * The second for writing.
2150 *
2151 */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154 /* We got a read error during recovery.
2155 * We repeat the read in smaller page-sized sections.
2156 * If a read succeeds, write it to the new device or record
2157 * a bad block if we cannot.
2158 * If a read fails, record a bad block on both old and
2159 * new devices.
2160 */
2161 struct mddev *mddev = r10_bio->mddev;
2162 struct r10conf *conf = mddev->private;
2163 struct bio *bio = r10_bio->devs[0].bio;
2164 sector_t sect = 0;
2165 int sectors = r10_bio->sectors;
2166 int idx = 0;
2167 int dr = r10_bio->devs[0].devnum;
2168 int dw = r10_bio->devs[1].devnum;
2169
2170 while (sectors) {
2171 int s = sectors;
2172 struct md_rdev *rdev;
2173 sector_t addr;
2174 int ok;
2175
2176 if (s > (PAGE_SIZE>>9))
2177 s = PAGE_SIZE >> 9;
2178
2179 rdev = conf->mirrors[dr].rdev;
2180 addr = r10_bio->devs[0].addr + sect,
2181 ok = sync_page_io(rdev,
2182 addr,
2183 s << 9,
2184 bio->bi_io_vec[idx].bv_page,
2185 READ, false);
2186 if (ok) {
2187 rdev = conf->mirrors[dw].rdev;
2188 addr = r10_bio->devs[1].addr + sect;
2189 ok = sync_page_io(rdev,
2190 addr,
2191 s << 9,
2192 bio->bi_io_vec[idx].bv_page,
2193 WRITE, false);
2194 if (!ok) {
2195 set_bit(WriteErrorSeen, &rdev->flags);
2196 if (!test_and_set_bit(WantReplacement,
2197 &rdev->flags))
2198 set_bit(MD_RECOVERY_NEEDED,
2199 &rdev->mddev->recovery);
2200 }
2201 }
2202 if (!ok) {
2203 /* We don't worry if we cannot set a bad block -
2204 * it really is bad so there is no loss in not
2205 * recording it yet
2206 */
2207 rdev_set_badblocks(rdev, addr, s, 0);
2208
2209 if (rdev != conf->mirrors[dw].rdev) {
2210 /* need bad block on destination too */
2211 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214 if (!ok) {
2215 /* just abort the recovery */
2216 printk(KERN_NOTICE
2217 "md/raid10:%s: recovery aborted"
2218 " due to read error\n",
2219 mdname(mddev));
2220
2221 conf->mirrors[dw].recovery_disabled
2222 = mddev->recovery_disabled;
2223 set_bit(MD_RECOVERY_INTR,
2224 &mddev->recovery);
2225 break;
2226 }
2227 }
2228 }
2229
2230 sectors -= s;
2231 sect += s;
2232 idx++;
2233 }
2234 }
2235
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238 struct r10conf *conf = mddev->private;
2239 int d;
2240 struct bio *wbio, *wbio2;
2241
2242 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243 fix_recovery_read_error(r10_bio);
2244 end_sync_request(r10_bio);
2245 return;
2246 }
2247
2248 /*
2249 * share the pages with the first bio
2250 * and submit the write request
2251 */
2252 d = r10_bio->devs[1].devnum;
2253 wbio = r10_bio->devs[1].bio;
2254 wbio2 = r10_bio->devs[1].repl_bio;
2255 if (wbio->bi_end_io) {
2256 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2258 generic_make_request(wbio);
2259 }
2260 if (wbio2 && wbio2->bi_end_io) {
2261 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262 md_sync_acct(conf->mirrors[d].replacement->bdev,
2263 bio_sectors(wbio2));
2264 generic_make_request(wbio2);
2265 }
2266 }
2267
2268
2269 /*
2270 * Used by fix_read_error() to decay the per rdev read_errors.
2271 * We halve the read error count for every hour that has elapsed
2272 * since the last recorded read error.
2273 *
2274 */
2275 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2276 {
2277 struct timespec cur_time_mon;
2278 unsigned long hours_since_last;
2279 unsigned int read_errors = atomic_read(&rdev->read_errors);
2280
2281 ktime_get_ts(&cur_time_mon);
2282
2283 if (rdev->last_read_error.tv_sec == 0 &&
2284 rdev->last_read_error.tv_nsec == 0) {
2285 /* first time we've seen a read error */
2286 rdev->last_read_error = cur_time_mon;
2287 return;
2288 }
2289
2290 hours_since_last = (cur_time_mon.tv_sec -
2291 rdev->last_read_error.tv_sec) / 3600;
2292
2293 rdev->last_read_error = cur_time_mon;
2294
2295 /*
2296 * if hours_since_last is > the number of bits in read_errors
2297 * just set read errors to 0. We do this to avoid
2298 * overflowing the shift of read_errors by hours_since_last.
2299 */
2300 if (hours_since_last >= 8 * sizeof(read_errors))
2301 atomic_set(&rdev->read_errors, 0);
2302 else
2303 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2304 }
2305
2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2307 int sectors, struct page *page, int rw)
2308 {
2309 sector_t first_bad;
2310 int bad_sectors;
2311
2312 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2313 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2314 return -1;
2315 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2316 /* success */
2317 return 1;
2318 if (rw == WRITE) {
2319 set_bit(WriteErrorSeen, &rdev->flags);
2320 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2321 set_bit(MD_RECOVERY_NEEDED,
2322 &rdev->mddev->recovery);
2323 }
2324 /* need to record an error - either for the block or the device */
2325 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2326 md_error(rdev->mddev, rdev);
2327 return 0;
2328 }
2329
2330 /*
2331 * This is a kernel thread which:
2332 *
2333 * 1. Retries failed read operations on working mirrors.
2334 * 2. Updates the raid superblock when problems encounter.
2335 * 3. Performs writes following reads for array synchronising.
2336 */
2337
2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2339 {
2340 int sect = 0; /* Offset from r10_bio->sector */
2341 int sectors = r10_bio->sectors;
2342 struct md_rdev*rdev;
2343 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2344 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2345
2346 /* still own a reference to this rdev, so it cannot
2347 * have been cleared recently.
2348 */
2349 rdev = conf->mirrors[d].rdev;
2350
2351 if (test_bit(Faulty, &rdev->flags))
2352 /* drive has already been failed, just ignore any
2353 more fix_read_error() attempts */
2354 return;
2355
2356 check_decay_read_errors(mddev, rdev);
2357 atomic_inc(&rdev->read_errors);
2358 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2359 char b[BDEVNAME_SIZE];
2360 bdevname(rdev->bdev, b);
2361
2362 printk(KERN_NOTICE
2363 "md/raid10:%s: %s: Raid device exceeded "
2364 "read_error threshold [cur %d:max %d]\n",
2365 mdname(mddev), b,
2366 atomic_read(&rdev->read_errors), max_read_errors);
2367 printk(KERN_NOTICE
2368 "md/raid10:%s: %s: Failing raid device\n",
2369 mdname(mddev), b);
2370 md_error(mddev, conf->mirrors[d].rdev);
2371 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2372 return;
2373 }
2374
2375 while(sectors) {
2376 int s = sectors;
2377 int sl = r10_bio->read_slot;
2378 int success = 0;
2379 int start;
2380
2381 if (s > (PAGE_SIZE>>9))
2382 s = PAGE_SIZE >> 9;
2383
2384 rcu_read_lock();
2385 do {
2386 sector_t first_bad;
2387 int bad_sectors;
2388
2389 d = r10_bio->devs[sl].devnum;
2390 rdev = rcu_dereference(conf->mirrors[d].rdev);
2391 if (rdev &&
2392 !test_bit(Unmerged, &rdev->flags) &&
2393 test_bit(In_sync, &rdev->flags) &&
2394 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2395 &first_bad, &bad_sectors) == 0) {
2396 atomic_inc(&rdev->nr_pending);
2397 rcu_read_unlock();
2398 success = sync_page_io(rdev,
2399 r10_bio->devs[sl].addr +
2400 sect,
2401 s<<9,
2402 conf->tmppage, READ, false);
2403 rdev_dec_pending(rdev, mddev);
2404 rcu_read_lock();
2405 if (success)
2406 break;
2407 }
2408 sl++;
2409 if (sl == conf->copies)
2410 sl = 0;
2411 } while (!success && sl != r10_bio->read_slot);
2412 rcu_read_unlock();
2413
2414 if (!success) {
2415 /* Cannot read from anywhere, just mark the block
2416 * as bad on the first device to discourage future
2417 * reads.
2418 */
2419 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2420 rdev = conf->mirrors[dn].rdev;
2421
2422 if (!rdev_set_badblocks(
2423 rdev,
2424 r10_bio->devs[r10_bio->read_slot].addr
2425 + sect,
2426 s, 0)) {
2427 md_error(mddev, rdev);
2428 r10_bio->devs[r10_bio->read_slot].bio
2429 = IO_BLOCKED;
2430 }
2431 break;
2432 }
2433
2434 start = sl;
2435 /* write it back and re-read */
2436 rcu_read_lock();
2437 while (sl != r10_bio->read_slot) {
2438 char b[BDEVNAME_SIZE];
2439
2440 if (sl==0)
2441 sl = conf->copies;
2442 sl--;
2443 d = r10_bio->devs[sl].devnum;
2444 rdev = rcu_dereference(conf->mirrors[d].rdev);
2445 if (!rdev ||
2446 test_bit(Unmerged, &rdev->flags) ||
2447 !test_bit(In_sync, &rdev->flags))
2448 continue;
2449
2450 atomic_inc(&rdev->nr_pending);
2451 rcu_read_unlock();
2452 if (r10_sync_page_io(rdev,
2453 r10_bio->devs[sl].addr +
2454 sect,
2455 s, conf->tmppage, WRITE)
2456 == 0) {
2457 /* Well, this device is dead */
2458 printk(KERN_NOTICE
2459 "md/raid10:%s: read correction "
2460 "write failed"
2461 " (%d sectors at %llu on %s)\n",
2462 mdname(mddev), s,
2463 (unsigned long long)(
2464 sect +
2465 choose_data_offset(r10_bio,
2466 rdev)),
2467 bdevname(rdev->bdev, b));
2468 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2469 "drive\n",
2470 mdname(mddev),
2471 bdevname(rdev->bdev, b));
2472 }
2473 rdev_dec_pending(rdev, mddev);
2474 rcu_read_lock();
2475 }
2476 sl = start;
2477 while (sl != r10_bio->read_slot) {
2478 char b[BDEVNAME_SIZE];
2479
2480 if (sl==0)
2481 sl = conf->copies;
2482 sl--;
2483 d = r10_bio->devs[sl].devnum;
2484 rdev = rcu_dereference(conf->mirrors[d].rdev);
2485 if (!rdev ||
2486 !test_bit(In_sync, &rdev->flags))
2487 continue;
2488
2489 atomic_inc(&rdev->nr_pending);
2490 rcu_read_unlock();
2491 switch (r10_sync_page_io(rdev,
2492 r10_bio->devs[sl].addr +
2493 sect,
2494 s, conf->tmppage,
2495 READ)) {
2496 case 0:
2497 /* Well, this device is dead */
2498 printk(KERN_NOTICE
2499 "md/raid10:%s: unable to read back "
2500 "corrected sectors"
2501 " (%d sectors at %llu on %s)\n",
2502 mdname(mddev), s,
2503 (unsigned long long)(
2504 sect +
2505 choose_data_offset(r10_bio, rdev)),
2506 bdevname(rdev->bdev, b));
2507 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2508 "drive\n",
2509 mdname(mddev),
2510 bdevname(rdev->bdev, b));
2511 break;
2512 case 1:
2513 printk(KERN_INFO
2514 "md/raid10:%s: read error corrected"
2515 " (%d sectors at %llu on %s)\n",
2516 mdname(mddev), s,
2517 (unsigned long long)(
2518 sect +
2519 choose_data_offset(r10_bio, rdev)),
2520 bdevname(rdev->bdev, b));
2521 atomic_add(s, &rdev->corrected_errors);
2522 }
2523
2524 rdev_dec_pending(rdev, mddev);
2525 rcu_read_lock();
2526 }
2527 rcu_read_unlock();
2528
2529 sectors -= s;
2530 sect += s;
2531 }
2532 }
2533
2534 static int narrow_write_error(struct r10bio *r10_bio, int i)
2535 {
2536 struct bio *bio = r10_bio->master_bio;
2537 struct mddev *mddev = r10_bio->mddev;
2538 struct r10conf *conf = mddev->private;
2539 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2540 /* bio has the data to be written to slot 'i' where
2541 * we just recently had a write error.
2542 * We repeatedly clone the bio and trim down to one block,
2543 * then try the write. Where the write fails we record
2544 * a bad block.
2545 * It is conceivable that the bio doesn't exactly align with
2546 * blocks. We must handle this.
2547 *
2548 * We currently own a reference to the rdev.
2549 */
2550
2551 int block_sectors;
2552 sector_t sector;
2553 int sectors;
2554 int sect_to_write = r10_bio->sectors;
2555 int ok = 1;
2556
2557 if (rdev->badblocks.shift < 0)
2558 return 0;
2559
2560 block_sectors = 1 << rdev->badblocks.shift;
2561 sector = r10_bio->sector;
2562 sectors = ((r10_bio->sector + block_sectors)
2563 & ~(sector_t)(block_sectors - 1))
2564 - sector;
2565
2566 while (sect_to_write) {
2567 struct bio *wbio;
2568 if (sectors > sect_to_write)
2569 sectors = sect_to_write;
2570 /* Write at 'sector' for 'sectors' */
2571 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2572 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2573 wbio->bi_sector = (r10_bio->devs[i].addr+
2574 choose_data_offset(r10_bio, rdev) +
2575 (sector - r10_bio->sector));
2576 wbio->bi_bdev = rdev->bdev;
2577 if (submit_bio_wait(WRITE, wbio) == 0)
2578 /* Failure! */
2579 ok = rdev_set_badblocks(rdev, sector,
2580 sectors, 0)
2581 && ok;
2582
2583 bio_put(wbio);
2584 sect_to_write -= sectors;
2585 sector += sectors;
2586 sectors = block_sectors;
2587 }
2588 return ok;
2589 }
2590
2591 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2592 {
2593 int slot = r10_bio->read_slot;
2594 struct bio *bio;
2595 struct r10conf *conf = mddev->private;
2596 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2597 char b[BDEVNAME_SIZE];
2598 unsigned long do_sync;
2599 int max_sectors;
2600
2601 /* we got a read error. Maybe the drive is bad. Maybe just
2602 * the block and we can fix it.
2603 * We freeze all other IO, and try reading the block from
2604 * other devices. When we find one, we re-write
2605 * and check it that fixes the read error.
2606 * This is all done synchronously while the array is
2607 * frozen.
2608 */
2609 bio = r10_bio->devs[slot].bio;
2610 bdevname(bio->bi_bdev, b);
2611 bio_put(bio);
2612 r10_bio->devs[slot].bio = NULL;
2613
2614 if (mddev->ro == 0) {
2615 freeze_array(conf);
2616 fix_read_error(conf, mddev, r10_bio);
2617 unfreeze_array(conf);
2618 } else
2619 r10_bio->devs[slot].bio = IO_BLOCKED;
2620
2621 rdev_dec_pending(rdev, mddev);
2622
2623 read_more:
2624 rdev = read_balance(conf, r10_bio, &max_sectors);
2625 if (rdev == NULL) {
2626 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2627 " read error for block %llu\n",
2628 mdname(mddev), b,
2629 (unsigned long long)r10_bio->sector);
2630 raid_end_bio_io(r10_bio);
2631 return;
2632 }
2633
2634 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2635 slot = r10_bio->read_slot;
2636 printk_ratelimited(
2637 KERN_ERR
2638 "md/raid10:%s: %s: redirecting "
2639 "sector %llu to another mirror\n",
2640 mdname(mddev),
2641 bdevname(rdev->bdev, b),
2642 (unsigned long long)r10_bio->sector);
2643 bio = bio_clone_mddev(r10_bio->master_bio,
2644 GFP_NOIO, mddev);
2645 md_trim_bio(bio,
2646 r10_bio->sector - bio->bi_sector,
2647 max_sectors);
2648 r10_bio->devs[slot].bio = bio;
2649 r10_bio->devs[slot].rdev = rdev;
2650 bio->bi_sector = r10_bio->devs[slot].addr
2651 + choose_data_offset(r10_bio, rdev);
2652 bio->bi_bdev = rdev->bdev;
2653 bio->bi_rw = READ | do_sync;
2654 bio->bi_private = r10_bio;
2655 bio->bi_end_io = raid10_end_read_request;
2656 if (max_sectors < r10_bio->sectors) {
2657 /* Drat - have to split this up more */
2658 struct bio *mbio = r10_bio->master_bio;
2659 int sectors_handled =
2660 r10_bio->sector + max_sectors
2661 - mbio->bi_sector;
2662 r10_bio->sectors = max_sectors;
2663 spin_lock_irq(&conf->device_lock);
2664 if (mbio->bi_phys_segments == 0)
2665 mbio->bi_phys_segments = 2;
2666 else
2667 mbio->bi_phys_segments++;
2668 spin_unlock_irq(&conf->device_lock);
2669 generic_make_request(bio);
2670
2671 r10_bio = mempool_alloc(conf->r10bio_pool,
2672 GFP_NOIO);
2673 r10_bio->master_bio = mbio;
2674 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2675 r10_bio->state = 0;
2676 set_bit(R10BIO_ReadError,
2677 &r10_bio->state);
2678 r10_bio->mddev = mddev;
2679 r10_bio->sector = mbio->bi_sector
2680 + sectors_handled;
2681
2682 goto read_more;
2683 } else
2684 generic_make_request(bio);
2685 }
2686
2687 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2688 {
2689 /* Some sort of write request has finished and it
2690 * succeeded in writing where we thought there was a
2691 * bad block. So forget the bad block.
2692 * Or possibly if failed and we need to record
2693 * a bad block.
2694 */
2695 int m;
2696 struct md_rdev *rdev;
2697
2698 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2699 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2700 for (m = 0; m < conf->copies; m++) {
2701 int dev = r10_bio->devs[m].devnum;
2702 rdev = conf->mirrors[dev].rdev;
2703 if (r10_bio->devs[m].bio == NULL)
2704 continue;
2705 if (test_bit(BIO_UPTODATE,
2706 &r10_bio->devs[m].bio->bi_flags)) {
2707 rdev_clear_badblocks(
2708 rdev,
2709 r10_bio->devs[m].addr,
2710 r10_bio->sectors, 0);
2711 } else {
2712 if (!rdev_set_badblocks(
2713 rdev,
2714 r10_bio->devs[m].addr,
2715 r10_bio->sectors, 0))
2716 md_error(conf->mddev, rdev);
2717 }
2718 rdev = conf->mirrors[dev].replacement;
2719 if (r10_bio->devs[m].repl_bio == NULL)
2720 continue;
2721 if (test_bit(BIO_UPTODATE,
2722 &r10_bio->devs[m].repl_bio->bi_flags)) {
2723 rdev_clear_badblocks(
2724 rdev,
2725 r10_bio->devs[m].addr,
2726 r10_bio->sectors, 0);
2727 } else {
2728 if (!rdev_set_badblocks(
2729 rdev,
2730 r10_bio->devs[m].addr,
2731 r10_bio->sectors, 0))
2732 md_error(conf->mddev, rdev);
2733 }
2734 }
2735 put_buf(r10_bio);
2736 } else {
2737 for (m = 0; m < conf->copies; m++) {
2738 int dev = r10_bio->devs[m].devnum;
2739 struct bio *bio = r10_bio->devs[m].bio;
2740 rdev = conf->mirrors[dev].rdev;
2741 if (bio == IO_MADE_GOOD) {
2742 rdev_clear_badblocks(
2743 rdev,
2744 r10_bio->devs[m].addr,
2745 r10_bio->sectors, 0);
2746 rdev_dec_pending(rdev, conf->mddev);
2747 } else if (bio != NULL &&
2748 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2749 if (!narrow_write_error(r10_bio, m)) {
2750 md_error(conf->mddev, rdev);
2751 set_bit(R10BIO_Degraded,
2752 &r10_bio->state);
2753 }
2754 rdev_dec_pending(rdev, conf->mddev);
2755 }
2756 bio = r10_bio->devs[m].repl_bio;
2757 rdev = conf->mirrors[dev].replacement;
2758 if (rdev && bio == IO_MADE_GOOD) {
2759 rdev_clear_badblocks(
2760 rdev,
2761 r10_bio->devs[m].addr,
2762 r10_bio->sectors, 0);
2763 rdev_dec_pending(rdev, conf->mddev);
2764 }
2765 }
2766 if (test_bit(R10BIO_WriteError,
2767 &r10_bio->state))
2768 close_write(r10_bio);
2769 raid_end_bio_io(r10_bio);
2770 }
2771 }
2772
2773 static void raid10d(struct md_thread *thread)
2774 {
2775 struct mddev *mddev = thread->mddev;
2776 struct r10bio *r10_bio;
2777 unsigned long flags;
2778 struct r10conf *conf = mddev->private;
2779 struct list_head *head = &conf->retry_list;
2780 struct blk_plug plug;
2781
2782 md_check_recovery(mddev);
2783
2784 blk_start_plug(&plug);
2785 for (;;) {
2786
2787 flush_pending_writes(conf);
2788
2789 spin_lock_irqsave(&conf->device_lock, flags);
2790 if (list_empty(head)) {
2791 spin_unlock_irqrestore(&conf->device_lock, flags);
2792 break;
2793 }
2794 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2795 list_del(head->prev);
2796 conf->nr_queued--;
2797 spin_unlock_irqrestore(&conf->device_lock, flags);
2798
2799 mddev = r10_bio->mddev;
2800 conf = mddev->private;
2801 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2802 test_bit(R10BIO_WriteError, &r10_bio->state))
2803 handle_write_completed(conf, r10_bio);
2804 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2805 reshape_request_write(mddev, r10_bio);
2806 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2807 sync_request_write(mddev, r10_bio);
2808 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2809 recovery_request_write(mddev, r10_bio);
2810 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2811 handle_read_error(mddev, r10_bio);
2812 else {
2813 /* just a partial read to be scheduled from a
2814 * separate context
2815 */
2816 int slot = r10_bio->read_slot;
2817 generic_make_request(r10_bio->devs[slot].bio);
2818 }
2819
2820 cond_resched();
2821 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2822 md_check_recovery(mddev);
2823 }
2824 blk_finish_plug(&plug);
2825 }
2826
2827
2828 static int init_resync(struct r10conf *conf)
2829 {
2830 int buffs;
2831 int i;
2832
2833 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2834 BUG_ON(conf->r10buf_pool);
2835 conf->have_replacement = 0;
2836 for (i = 0; i < conf->geo.raid_disks; i++)
2837 if (conf->mirrors[i].replacement)
2838 conf->have_replacement = 1;
2839 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2840 if (!conf->r10buf_pool)
2841 return -ENOMEM;
2842 conf->next_resync = 0;
2843 return 0;
2844 }
2845
2846 /*
2847 * perform a "sync" on one "block"
2848 *
2849 * We need to make sure that no normal I/O request - particularly write
2850 * requests - conflict with active sync requests.
2851 *
2852 * This is achieved by tracking pending requests and a 'barrier' concept
2853 * that can be installed to exclude normal IO requests.
2854 *
2855 * Resync and recovery are handled very differently.
2856 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2857 *
2858 * For resync, we iterate over virtual addresses, read all copies,
2859 * and update if there are differences. If only one copy is live,
2860 * skip it.
2861 * For recovery, we iterate over physical addresses, read a good
2862 * value for each non-in_sync drive, and over-write.
2863 *
2864 * So, for recovery we may have several outstanding complex requests for a
2865 * given address, one for each out-of-sync device. We model this by allocating
2866 * a number of r10_bio structures, one for each out-of-sync device.
2867 * As we setup these structures, we collect all bio's together into a list
2868 * which we then process collectively to add pages, and then process again
2869 * to pass to generic_make_request.
2870 *
2871 * The r10_bio structures are linked using a borrowed master_bio pointer.
2872 * This link is counted in ->remaining. When the r10_bio that points to NULL
2873 * has its remaining count decremented to 0, the whole complex operation
2874 * is complete.
2875 *
2876 */
2877
2878 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2879 int *skipped, int go_faster)
2880 {
2881 struct r10conf *conf = mddev->private;
2882 struct r10bio *r10_bio;
2883 struct bio *biolist = NULL, *bio;
2884 sector_t max_sector, nr_sectors;
2885 int i;
2886 int max_sync;
2887 sector_t sync_blocks;
2888 sector_t sectors_skipped = 0;
2889 int chunks_skipped = 0;
2890 sector_t chunk_mask = conf->geo.chunk_mask;
2891
2892 if (!conf->r10buf_pool)
2893 if (init_resync(conf))
2894 return 0;
2895
2896 /*
2897 * Allow skipping a full rebuild for incremental assembly
2898 * of a clean array, like RAID1 does.
2899 */
2900 if (mddev->bitmap == NULL &&
2901 mddev->recovery_cp == MaxSector &&
2902 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2903 conf->fullsync == 0) {
2904 *skipped = 1;
2905 max_sector = mddev->dev_sectors;
2906 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2907 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2908 max_sector = mddev->resync_max_sectors;
2909 return max_sector - sector_nr;
2910 }
2911
2912 skipped:
2913 max_sector = mddev->dev_sectors;
2914 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2915 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2916 max_sector = mddev->resync_max_sectors;
2917 if (sector_nr >= max_sector) {
2918 /* If we aborted, we need to abort the
2919 * sync on the 'current' bitmap chucks (there can
2920 * be several when recovering multiple devices).
2921 * as we may have started syncing it but not finished.
2922 * We can find the current address in
2923 * mddev->curr_resync, but for recovery,
2924 * we need to convert that to several
2925 * virtual addresses.
2926 */
2927 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2928 end_reshape(conf);
2929 return 0;
2930 }
2931
2932 if (mddev->curr_resync < max_sector) { /* aborted */
2933 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2934 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2935 &sync_blocks, 1);
2936 else for (i = 0; i < conf->geo.raid_disks; i++) {
2937 sector_t sect =
2938 raid10_find_virt(conf, mddev->curr_resync, i);
2939 bitmap_end_sync(mddev->bitmap, sect,
2940 &sync_blocks, 1);
2941 }
2942 } else {
2943 /* completed sync */
2944 if ((!mddev->bitmap || conf->fullsync)
2945 && conf->have_replacement
2946 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2947 /* Completed a full sync so the replacements
2948 * are now fully recovered.
2949 */
2950 for (i = 0; i < conf->geo.raid_disks; i++)
2951 if (conf->mirrors[i].replacement)
2952 conf->mirrors[i].replacement
2953 ->recovery_offset
2954 = MaxSector;
2955 }
2956 conf->fullsync = 0;
2957 }
2958 bitmap_close_sync(mddev->bitmap);
2959 close_sync(conf);
2960 *skipped = 1;
2961 return sectors_skipped;
2962 }
2963
2964 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2965 return reshape_request(mddev, sector_nr, skipped);
2966
2967 if (chunks_skipped >= conf->geo.raid_disks) {
2968 /* if there has been nothing to do on any drive,
2969 * then there is nothing to do at all..
2970 */
2971 *skipped = 1;
2972 return (max_sector - sector_nr) + sectors_skipped;
2973 }
2974
2975 if (max_sector > mddev->resync_max)
2976 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2977
2978 /* make sure whole request will fit in a chunk - if chunks
2979 * are meaningful
2980 */
2981 if (conf->geo.near_copies < conf->geo.raid_disks &&
2982 max_sector > (sector_nr | chunk_mask))
2983 max_sector = (sector_nr | chunk_mask) + 1;
2984 /*
2985 * If there is non-resync activity waiting for us then
2986 * put in a delay to throttle resync.
2987 */
2988 if (!go_faster && conf->nr_waiting)
2989 msleep_interruptible(1000);
2990
2991 /* Again, very different code for resync and recovery.
2992 * Both must result in an r10bio with a list of bios that
2993 * have bi_end_io, bi_sector, bi_bdev set,
2994 * and bi_private set to the r10bio.
2995 * For recovery, we may actually create several r10bios
2996 * with 2 bios in each, that correspond to the bios in the main one.
2997 * In this case, the subordinate r10bios link back through a
2998 * borrowed master_bio pointer, and the counter in the master
2999 * includes a ref from each subordinate.
3000 */
3001 /* First, we decide what to do and set ->bi_end_io
3002 * To end_sync_read if we want to read, and
3003 * end_sync_write if we will want to write.
3004 */
3005
3006 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3007 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3008 /* recovery... the complicated one */
3009 int j;
3010 r10_bio = NULL;
3011
3012 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3013 int still_degraded;
3014 struct r10bio *rb2;
3015 sector_t sect;
3016 int must_sync;
3017 int any_working;
3018 struct raid10_info *mirror = &conf->mirrors[i];
3019
3020 if ((mirror->rdev == NULL ||
3021 test_bit(In_sync, &mirror->rdev->flags))
3022 &&
3023 (mirror->replacement == NULL ||
3024 test_bit(Faulty,
3025 &mirror->replacement->flags)))
3026 continue;
3027
3028 still_degraded = 0;
3029 /* want to reconstruct this device */
3030 rb2 = r10_bio;
3031 sect = raid10_find_virt(conf, sector_nr, i);
3032 if (sect >= mddev->resync_max_sectors) {
3033 /* last stripe is not complete - don't
3034 * try to recover this sector.
3035 */
3036 continue;
3037 }
3038 /* Unless we are doing a full sync, or a replacement
3039 * we only need to recover the block if it is set in
3040 * the bitmap
3041 */
3042 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3043 &sync_blocks, 1);
3044 if (sync_blocks < max_sync)
3045 max_sync = sync_blocks;
3046 if (!must_sync &&
3047 mirror->replacement == NULL &&
3048 !conf->fullsync) {
3049 /* yep, skip the sync_blocks here, but don't assume
3050 * that there will never be anything to do here
3051 */
3052 chunks_skipped = -1;
3053 continue;
3054 }
3055
3056 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3057 raise_barrier(conf, rb2 != NULL);
3058 atomic_set(&r10_bio->remaining, 0);
3059
3060 r10_bio->master_bio = (struct bio*)rb2;
3061 if (rb2)
3062 atomic_inc(&rb2->remaining);
3063 r10_bio->mddev = mddev;
3064 set_bit(R10BIO_IsRecover, &r10_bio->state);
3065 r10_bio->sector = sect;
3066
3067 raid10_find_phys(conf, r10_bio);
3068
3069 /* Need to check if the array will still be
3070 * degraded
3071 */
3072 for (j = 0; j < conf->geo.raid_disks; j++)
3073 if (conf->mirrors[j].rdev == NULL ||
3074 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3075 still_degraded = 1;
3076 break;
3077 }
3078
3079 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3080 &sync_blocks, still_degraded);
3081
3082 any_working = 0;
3083 for (j=0; j<conf->copies;j++) {
3084 int k;
3085 int d = r10_bio->devs[j].devnum;
3086 sector_t from_addr, to_addr;
3087 struct md_rdev *rdev;
3088 sector_t sector, first_bad;
3089 int bad_sectors;
3090 if (!conf->mirrors[d].rdev ||
3091 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3092 continue;
3093 /* This is where we read from */
3094 any_working = 1;
3095 rdev = conf->mirrors[d].rdev;
3096 sector = r10_bio->devs[j].addr;
3097
3098 if (is_badblock(rdev, sector, max_sync,
3099 &first_bad, &bad_sectors)) {
3100 if (first_bad > sector)
3101 max_sync = first_bad - sector;
3102 else {
3103 bad_sectors -= (sector
3104 - first_bad);
3105 if (max_sync > bad_sectors)
3106 max_sync = bad_sectors;
3107 continue;
3108 }
3109 }
3110 bio = r10_bio->devs[0].bio;
3111 bio_reset(bio);
3112 bio->bi_next = biolist;
3113 biolist = bio;
3114 bio->bi_private = r10_bio;
3115 bio->bi_end_io = end_sync_read;
3116 bio->bi_rw = READ;
3117 from_addr = r10_bio->devs[j].addr;
3118 bio->bi_sector = from_addr + rdev->data_offset;
3119 bio->bi_bdev = rdev->bdev;
3120 atomic_inc(&rdev->nr_pending);
3121 /* and we write to 'i' (if not in_sync) */
3122
3123 for (k=0; k<conf->copies; k++)
3124 if (r10_bio->devs[k].devnum == i)
3125 break;
3126 BUG_ON(k == conf->copies);
3127 to_addr = r10_bio->devs[k].addr;
3128 r10_bio->devs[0].devnum = d;
3129 r10_bio->devs[0].addr = from_addr;
3130 r10_bio->devs[1].devnum = i;
3131 r10_bio->devs[1].addr = to_addr;
3132
3133 rdev = mirror->rdev;
3134 if (!test_bit(In_sync, &rdev->flags)) {
3135 bio = r10_bio->devs[1].bio;
3136 bio_reset(bio);
3137 bio->bi_next = biolist;
3138 biolist = bio;
3139 bio->bi_private = r10_bio;
3140 bio->bi_end_io = end_sync_write;
3141 bio->bi_rw = WRITE;
3142 bio->bi_sector = to_addr
3143 + rdev->data_offset;
3144 bio->bi_bdev = rdev->bdev;
3145 atomic_inc(&r10_bio->remaining);
3146 } else
3147 r10_bio->devs[1].bio->bi_end_io = NULL;
3148
3149 /* and maybe write to replacement */
3150 bio = r10_bio->devs[1].repl_bio;
3151 if (bio)
3152 bio->bi_end_io = NULL;
3153 rdev = mirror->replacement;
3154 /* Note: if rdev != NULL, then bio
3155 * cannot be NULL as r10buf_pool_alloc will
3156 * have allocated it.
3157 * So the second test here is pointless.
3158 * But it keeps semantic-checkers happy, and
3159 * this comment keeps human reviewers
3160 * happy.
3161 */
3162 if (rdev == NULL || bio == NULL ||
3163 test_bit(Faulty, &rdev->flags))
3164 break;
3165 bio_reset(bio);
3166 bio->bi_next = biolist;
3167 biolist = bio;
3168 bio->bi_private = r10_bio;
3169 bio->bi_end_io = end_sync_write;
3170 bio->bi_rw = WRITE;
3171 bio->bi_sector = to_addr + rdev->data_offset;
3172 bio->bi_bdev = rdev->bdev;
3173 atomic_inc(&r10_bio->remaining);
3174 break;
3175 }
3176 if (j == conf->copies) {
3177 /* Cannot recover, so abort the recovery or
3178 * record a bad block */
3179 put_buf(r10_bio);
3180 if (rb2)
3181 atomic_dec(&rb2->remaining);
3182 r10_bio = rb2;
3183 if (any_working) {
3184 /* problem is that there are bad blocks
3185 * on other device(s)
3186 */
3187 int k;
3188 for (k = 0; k < conf->copies; k++)
3189 if (r10_bio->devs[k].devnum == i)
3190 break;
3191 if (!test_bit(In_sync,
3192 &mirror->rdev->flags)
3193 && !rdev_set_badblocks(
3194 mirror->rdev,
3195 r10_bio->devs[k].addr,
3196 max_sync, 0))
3197 any_working = 0;
3198 if (mirror->replacement &&
3199 !rdev_set_badblocks(
3200 mirror->replacement,
3201 r10_bio->devs[k].addr,
3202 max_sync, 0))
3203 any_working = 0;
3204 }
3205 if (!any_working) {
3206 if (!test_and_set_bit(MD_RECOVERY_INTR,
3207 &mddev->recovery))
3208 printk(KERN_INFO "md/raid10:%s: insufficient "
3209 "working devices for recovery.\n",
3210 mdname(mddev));
3211 mirror->recovery_disabled
3212 = mddev->recovery_disabled;
3213 }
3214 break;
3215 }
3216 }
3217 if (biolist == NULL) {
3218 while (r10_bio) {
3219 struct r10bio *rb2 = r10_bio;
3220 r10_bio = (struct r10bio*) rb2->master_bio;
3221 rb2->master_bio = NULL;
3222 put_buf(rb2);
3223 }
3224 goto giveup;
3225 }
3226 } else {
3227 /* resync. Schedule a read for every block at this virt offset */
3228 int count = 0;
3229
3230 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3231
3232 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3233 &sync_blocks, mddev->degraded) &&
3234 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3235 &mddev->recovery)) {
3236 /* We can skip this block */
3237 *skipped = 1;
3238 return sync_blocks + sectors_skipped;
3239 }
3240 if (sync_blocks < max_sync)
3241 max_sync = sync_blocks;
3242 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3243
3244 r10_bio->mddev = mddev;
3245 atomic_set(&r10_bio->remaining, 0);
3246 raise_barrier(conf, 0);
3247 conf->next_resync = sector_nr;
3248
3249 r10_bio->master_bio = NULL;
3250 r10_bio->sector = sector_nr;
3251 set_bit(R10BIO_IsSync, &r10_bio->state);
3252 raid10_find_phys(conf, r10_bio);
3253 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3254
3255 for (i = 0; i < conf->copies; i++) {
3256 int d = r10_bio->devs[i].devnum;
3257 sector_t first_bad, sector;
3258 int bad_sectors;
3259
3260 if (r10_bio->devs[i].repl_bio)
3261 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3262
3263 bio = r10_bio->devs[i].bio;
3264 bio_reset(bio);
3265 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3266 if (conf->mirrors[d].rdev == NULL ||
3267 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3268 continue;
3269 sector = r10_bio->devs[i].addr;
3270 if (is_badblock(conf->mirrors[d].rdev,
3271 sector, max_sync,
3272 &first_bad, &bad_sectors)) {
3273 if (first_bad > sector)
3274 max_sync = first_bad - sector;
3275 else {
3276 bad_sectors -= (sector - first_bad);
3277 if (max_sync > bad_sectors)
3278 max_sync = bad_sectors;
3279 continue;
3280 }
3281 }
3282 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3283 atomic_inc(&r10_bio->remaining);
3284 bio->bi_next = biolist;
3285 biolist = bio;
3286 bio->bi_private = r10_bio;
3287 bio->bi_end_io = end_sync_read;
3288 bio->bi_rw = READ;
3289 bio->bi_sector = sector +
3290 conf->mirrors[d].rdev->data_offset;
3291 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3292 count++;
3293
3294 if (conf->mirrors[d].replacement == NULL ||
3295 test_bit(Faulty,
3296 &conf->mirrors[d].replacement->flags))
3297 continue;
3298
3299 /* Need to set up for writing to the replacement */
3300 bio = r10_bio->devs[i].repl_bio;
3301 bio_reset(bio);
3302 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3303
3304 sector = r10_bio->devs[i].addr;
3305 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3306 bio->bi_next = biolist;
3307 biolist = bio;
3308 bio->bi_private = r10_bio;
3309 bio->bi_end_io = end_sync_write;
3310 bio->bi_rw = WRITE;
3311 bio->bi_sector = sector +
3312 conf->mirrors[d].replacement->data_offset;
3313 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3314 count++;
3315 }
3316
3317 if (count < 2) {
3318 for (i=0; i<conf->copies; i++) {
3319 int d = r10_bio->devs[i].devnum;
3320 if (r10_bio->devs[i].bio->bi_end_io)
3321 rdev_dec_pending(conf->mirrors[d].rdev,
3322 mddev);
3323 if (r10_bio->devs[i].repl_bio &&
3324 r10_bio->devs[i].repl_bio->bi_end_io)
3325 rdev_dec_pending(
3326 conf->mirrors[d].replacement,
3327 mddev);
3328 }
3329 put_buf(r10_bio);
3330 biolist = NULL;
3331 goto giveup;
3332 }
3333 }
3334
3335 nr_sectors = 0;
3336 if (sector_nr + max_sync < max_sector)
3337 max_sector = sector_nr + max_sync;
3338 do {
3339 struct page *page;
3340 int len = PAGE_SIZE;
3341 if (sector_nr + (len>>9) > max_sector)
3342 len = (max_sector - sector_nr) << 9;
3343 if (len == 0)
3344 break;
3345 for (bio= biolist ; bio ; bio=bio->bi_next) {
3346 struct bio *bio2;
3347 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3348 if (bio_add_page(bio, page, len, 0))
3349 continue;
3350
3351 /* stop here */
3352 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3353 for (bio2 = biolist;
3354 bio2 && bio2 != bio;
3355 bio2 = bio2->bi_next) {
3356 /* remove last page from this bio */
3357 bio2->bi_vcnt--;
3358 bio2->bi_size -= len;
3359 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3360 }
3361 goto bio_full;
3362 }
3363 nr_sectors += len>>9;
3364 sector_nr += len>>9;
3365 } while (biolist->bi_vcnt < RESYNC_PAGES);
3366 bio_full:
3367 r10_bio->sectors = nr_sectors;
3368
3369 while (biolist) {
3370 bio = biolist;
3371 biolist = biolist->bi_next;
3372
3373 bio->bi_next = NULL;
3374 r10_bio = bio->bi_private;
3375 r10_bio->sectors = nr_sectors;
3376
3377 if (bio->bi_end_io == end_sync_read) {
3378 md_sync_acct(bio->bi_bdev, nr_sectors);
3379 generic_make_request(bio);
3380 }
3381 }
3382
3383 if (sectors_skipped)
3384 /* pretend they weren't skipped, it makes
3385 * no important difference in this case
3386 */
3387 md_done_sync(mddev, sectors_skipped, 1);
3388
3389 return sectors_skipped + nr_sectors;
3390 giveup:
3391 /* There is nowhere to write, so all non-sync
3392 * drives must be failed or in resync, all drives
3393 * have a bad block, so try the next chunk...
3394 */
3395 if (sector_nr + max_sync < max_sector)
3396 max_sector = sector_nr + max_sync;
3397
3398 sectors_skipped += (max_sector - sector_nr);
3399 chunks_skipped ++;
3400 sector_nr = max_sector;
3401 goto skipped;
3402 }
3403
3404 static sector_t
3405 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3406 {
3407 sector_t size;
3408 struct r10conf *conf = mddev->private;
3409
3410 if (!raid_disks)
3411 raid_disks = min(conf->geo.raid_disks,
3412 conf->prev.raid_disks);
3413 if (!sectors)
3414 sectors = conf->dev_sectors;
3415
3416 size = sectors >> conf->geo.chunk_shift;
3417 sector_div(size, conf->geo.far_copies);
3418 size = size * raid_disks;
3419 sector_div(size, conf->geo.near_copies);
3420
3421 return size << conf->geo.chunk_shift;
3422 }
3423
3424 static void calc_sectors(struct r10conf *conf, sector_t size)
3425 {
3426 /* Calculate the number of sectors-per-device that will
3427 * actually be used, and set conf->dev_sectors and
3428 * conf->stride
3429 */
3430
3431 size = size >> conf->geo.chunk_shift;
3432 sector_div(size, conf->geo.far_copies);
3433 size = size * conf->geo.raid_disks;
3434 sector_div(size, conf->geo.near_copies);
3435 /* 'size' is now the number of chunks in the array */
3436 /* calculate "used chunks per device" */
3437 size = size * conf->copies;
3438
3439 /* We need to round up when dividing by raid_disks to
3440 * get the stride size.
3441 */
3442 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3443
3444 conf->dev_sectors = size << conf->geo.chunk_shift;
3445
3446 if (conf->geo.far_offset)
3447 conf->geo.stride = 1 << conf->geo.chunk_shift;
3448 else {
3449 sector_div(size, conf->geo.far_copies);
3450 conf->geo.stride = size << conf->geo.chunk_shift;
3451 }
3452 }
3453
3454 enum geo_type {geo_new, geo_old, geo_start};
3455 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3456 {
3457 int nc, fc, fo;
3458 int layout, chunk, disks;
3459 switch (new) {
3460 case geo_old:
3461 layout = mddev->layout;
3462 chunk = mddev->chunk_sectors;
3463 disks = mddev->raid_disks - mddev->delta_disks;
3464 break;
3465 case geo_new:
3466 layout = mddev->new_layout;
3467 chunk = mddev->new_chunk_sectors;
3468 disks = mddev->raid_disks;
3469 break;
3470 default: /* avoid 'may be unused' warnings */
3471 case geo_start: /* new when starting reshape - raid_disks not
3472 * updated yet. */
3473 layout = mddev->new_layout;
3474 chunk = mddev->new_chunk_sectors;
3475 disks = mddev->raid_disks + mddev->delta_disks;
3476 break;
3477 }
3478 if (layout >> 18)
3479 return -1;
3480 if (chunk < (PAGE_SIZE >> 9) ||
3481 !is_power_of_2(chunk))
3482 return -2;
3483 nc = layout & 255;
3484 fc = (layout >> 8) & 255;
3485 fo = layout & (1<<16);
3486 geo->raid_disks = disks;
3487 geo->near_copies = nc;
3488 geo->far_copies = fc;
3489 geo->far_offset = fo;
3490 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3491 geo->chunk_mask = chunk - 1;
3492 geo->chunk_shift = ffz(~chunk);
3493 return nc*fc;
3494 }
3495
3496 static struct r10conf *setup_conf(struct mddev *mddev)
3497 {
3498 struct r10conf *conf = NULL;
3499 int err = -EINVAL;
3500 struct geom geo;
3501 int copies;
3502
3503 copies = setup_geo(&geo, mddev, geo_new);
3504
3505 if (copies == -2) {
3506 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3507 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3508 mdname(mddev), PAGE_SIZE);
3509 goto out;
3510 }
3511
3512 if (copies < 2 || copies > mddev->raid_disks) {
3513 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3514 mdname(mddev), mddev->new_layout);
3515 goto out;
3516 }
3517
3518 err = -ENOMEM;
3519 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3520 if (!conf)
3521 goto out;
3522
3523 /* FIXME calc properly */
3524 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3525 max(0,mddev->delta_disks)),
3526 GFP_KERNEL);
3527 if (!conf->mirrors)
3528 goto out;
3529
3530 conf->tmppage = alloc_page(GFP_KERNEL);
3531 if (!conf->tmppage)
3532 goto out;
3533
3534 conf->geo = geo;
3535 conf->copies = copies;
3536 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3537 r10bio_pool_free, conf);
3538 if (!conf->r10bio_pool)
3539 goto out;
3540
3541 calc_sectors(conf, mddev->dev_sectors);
3542 if (mddev->reshape_position == MaxSector) {
3543 conf->prev = conf->geo;
3544 conf->reshape_progress = MaxSector;
3545 } else {
3546 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3547 err = -EINVAL;
3548 goto out;
3549 }
3550 conf->reshape_progress = mddev->reshape_position;
3551 if (conf->prev.far_offset)
3552 conf->prev.stride = 1 << conf->prev.chunk_shift;
3553 else
3554 /* far_copies must be 1 */
3555 conf->prev.stride = conf->dev_sectors;
3556 }
3557 spin_lock_init(&conf->device_lock);
3558 INIT_LIST_HEAD(&conf->retry_list);
3559
3560 spin_lock_init(&conf->resync_lock);
3561 init_waitqueue_head(&conf->wait_barrier);
3562
3563 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3564 if (!conf->thread)
3565 goto out;
3566
3567 conf->mddev = mddev;
3568 return conf;
3569
3570 out:
3571 if (err == -ENOMEM)
3572 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3573 mdname(mddev));
3574 if (conf) {
3575 if (conf->r10bio_pool)
3576 mempool_destroy(conf->r10bio_pool);
3577 kfree(conf->mirrors);
3578 safe_put_page(conf->tmppage);
3579 kfree(conf);
3580 }
3581 return ERR_PTR(err);
3582 }
3583
3584 static int run(struct mddev *mddev)
3585 {
3586 struct r10conf *conf;
3587 int i, disk_idx, chunk_size;
3588 struct raid10_info *disk;
3589 struct md_rdev *rdev;
3590 sector_t size;
3591 sector_t min_offset_diff = 0;
3592 int first = 1;
3593 bool discard_supported = false;
3594
3595 if (mddev->private == NULL) {
3596 conf = setup_conf(mddev);
3597 if (IS_ERR(conf))
3598 return PTR_ERR(conf);
3599 mddev->private = conf;
3600 }
3601 conf = mddev->private;
3602 if (!conf)
3603 goto out;
3604
3605 mddev->thread = conf->thread;
3606 conf->thread = NULL;
3607
3608 chunk_size = mddev->chunk_sectors << 9;
3609 if (mddev->queue) {
3610 blk_queue_max_discard_sectors(mddev->queue,
3611 mddev->chunk_sectors);
3612 blk_queue_max_write_same_sectors(mddev->queue,
3613 mddev->chunk_sectors);
3614 blk_queue_io_min(mddev->queue, chunk_size);
3615 if (conf->geo.raid_disks % conf->geo.near_copies)
3616 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3617 else
3618 blk_queue_io_opt(mddev->queue, chunk_size *
3619 (conf->geo.raid_disks / conf->geo.near_copies));
3620 }
3621
3622 rdev_for_each(rdev, mddev) {
3623 long long diff;
3624 struct request_queue *q;
3625
3626 disk_idx = rdev->raid_disk;
3627 if (disk_idx < 0)
3628 continue;
3629 if (disk_idx >= conf->geo.raid_disks &&
3630 disk_idx >= conf->prev.raid_disks)
3631 continue;
3632 disk = conf->mirrors + disk_idx;
3633
3634 if (test_bit(Replacement, &rdev->flags)) {
3635 if (disk->replacement)
3636 goto out_free_conf;
3637 disk->replacement = rdev;
3638 } else {
3639 if (disk->rdev)
3640 goto out_free_conf;
3641 disk->rdev = rdev;
3642 }
3643 q = bdev_get_queue(rdev->bdev);
3644 if (q->merge_bvec_fn)
3645 mddev->merge_check_needed = 1;
3646 diff = (rdev->new_data_offset - rdev->data_offset);
3647 if (!mddev->reshape_backwards)
3648 diff = -diff;
3649 if (diff < 0)
3650 diff = 0;
3651 if (first || diff < min_offset_diff)
3652 min_offset_diff = diff;
3653
3654 if (mddev->gendisk)
3655 disk_stack_limits(mddev->gendisk, rdev->bdev,
3656 rdev->data_offset << 9);
3657
3658 disk->head_position = 0;
3659
3660 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3661 discard_supported = true;
3662 }
3663
3664 if (mddev->queue) {
3665 if (discard_supported)
3666 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3667 mddev->queue);
3668 else
3669 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3670 mddev->queue);
3671 }
3672 /* need to check that every block has at least one working mirror */
3673 if (!enough(conf, -1)) {
3674 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3675 mdname(mddev));
3676 goto out_free_conf;
3677 }
3678
3679 if (conf->reshape_progress != MaxSector) {
3680 /* must ensure that shape change is supported */
3681 if (conf->geo.far_copies != 1 &&
3682 conf->geo.far_offset == 0)
3683 goto out_free_conf;
3684 if (conf->prev.far_copies != 1 &&
3685 conf->geo.far_offset == 0)
3686 goto out_free_conf;
3687 }
3688
3689 mddev->degraded = 0;
3690 for (i = 0;
3691 i < conf->geo.raid_disks
3692 || i < conf->prev.raid_disks;
3693 i++) {
3694
3695 disk = conf->mirrors + i;
3696
3697 if (!disk->rdev && disk->replacement) {
3698 /* The replacement is all we have - use it */
3699 disk->rdev = disk->replacement;
3700 disk->replacement = NULL;
3701 clear_bit(Replacement, &disk->rdev->flags);
3702 }
3703
3704 if (!disk->rdev ||
3705 !test_bit(In_sync, &disk->rdev->flags)) {
3706 disk->head_position = 0;
3707 mddev->degraded++;
3708 if (disk->rdev)
3709 conf->fullsync = 1;
3710 }
3711 disk->recovery_disabled = mddev->recovery_disabled - 1;
3712 }
3713
3714 if (mddev->recovery_cp != MaxSector)
3715 printk(KERN_NOTICE "md/raid10:%s: not clean"
3716 " -- starting background reconstruction\n",
3717 mdname(mddev));
3718 printk(KERN_INFO
3719 "md/raid10:%s: active with %d out of %d devices\n",
3720 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3721 conf->geo.raid_disks);
3722 /*
3723 * Ok, everything is just fine now
3724 */
3725 mddev->dev_sectors = conf->dev_sectors;
3726 size = raid10_size(mddev, 0, 0);
3727 md_set_array_sectors(mddev, size);
3728 mddev->resync_max_sectors = size;
3729
3730 if (mddev->queue) {
3731 int stripe = conf->geo.raid_disks *
3732 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3733 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3734 mddev->queue->backing_dev_info.congested_data = mddev;
3735
3736 /* Calculate max read-ahead size.
3737 * We need to readahead at least twice a whole stripe....
3738 * maybe...
3739 */
3740 stripe /= conf->geo.near_copies;
3741 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3742 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3743 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3744 }
3745
3746
3747 if (md_integrity_register(mddev))
3748 goto out_free_conf;
3749
3750 if (conf->reshape_progress != MaxSector) {
3751 unsigned long before_length, after_length;
3752
3753 before_length = ((1 << conf->prev.chunk_shift) *
3754 conf->prev.far_copies);
3755 after_length = ((1 << conf->geo.chunk_shift) *
3756 conf->geo.far_copies);
3757
3758 if (max(before_length, after_length) > min_offset_diff) {
3759 /* This cannot work */
3760 printk("md/raid10: offset difference not enough to continue reshape\n");
3761 goto out_free_conf;
3762 }
3763 conf->offset_diff = min_offset_diff;
3764
3765 conf->reshape_safe = conf->reshape_progress;
3766 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3767 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3768 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3769 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3770 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3771 "reshape");
3772 }
3773
3774 return 0;
3775
3776 out_free_conf:
3777 md_unregister_thread(&mddev->thread);
3778 if (conf->r10bio_pool)
3779 mempool_destroy(conf->r10bio_pool);
3780 safe_put_page(conf->tmppage);
3781 kfree(conf->mirrors);
3782 kfree(conf);
3783 mddev->private = NULL;
3784 out:
3785 return -EIO;
3786 }
3787
3788 static int stop(struct mddev *mddev)
3789 {
3790 struct r10conf *conf = mddev->private;
3791
3792 raise_barrier(conf, 0);
3793 lower_barrier(conf);
3794
3795 md_unregister_thread(&mddev->thread);
3796 if (mddev->queue)
3797 /* the unplug fn references 'conf'*/
3798 blk_sync_queue(mddev->queue);
3799
3800 if (conf->r10bio_pool)
3801 mempool_destroy(conf->r10bio_pool);
3802 safe_put_page(conf->tmppage);
3803 kfree(conf->mirrors);
3804 kfree(conf);
3805 mddev->private = NULL;
3806 return 0;
3807 }
3808
3809 static void raid10_quiesce(struct mddev *mddev, int state)
3810 {
3811 struct r10conf *conf = mddev->private;
3812
3813 switch(state) {
3814 case 1:
3815 raise_barrier(conf, 0);
3816 break;
3817 case 0:
3818 lower_barrier(conf);
3819 break;
3820 }
3821 }
3822
3823 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3824 {
3825 /* Resize of 'far' arrays is not supported.
3826 * For 'near' and 'offset' arrays we can set the
3827 * number of sectors used to be an appropriate multiple
3828 * of the chunk size.
3829 * For 'offset', this is far_copies*chunksize.
3830 * For 'near' the multiplier is the LCM of
3831 * near_copies and raid_disks.
3832 * So if far_copies > 1 && !far_offset, fail.
3833 * Else find LCM(raid_disks, near_copy)*far_copies and
3834 * multiply by chunk_size. Then round to this number.
3835 * This is mostly done by raid10_size()
3836 */
3837 struct r10conf *conf = mddev->private;
3838 sector_t oldsize, size;
3839
3840 if (mddev->reshape_position != MaxSector)
3841 return -EBUSY;
3842
3843 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3844 return -EINVAL;
3845
3846 oldsize = raid10_size(mddev, 0, 0);
3847 size = raid10_size(mddev, sectors, 0);
3848 if (mddev->external_size &&
3849 mddev->array_sectors > size)
3850 return -EINVAL;
3851 if (mddev->bitmap) {
3852 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3853 if (ret)
3854 return ret;
3855 }
3856 md_set_array_sectors(mddev, size);
3857 set_capacity(mddev->gendisk, mddev->array_sectors);
3858 revalidate_disk(mddev->gendisk);
3859 if (sectors > mddev->dev_sectors &&
3860 mddev->recovery_cp > oldsize) {
3861 mddev->recovery_cp = oldsize;
3862 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3863 }
3864 calc_sectors(conf, sectors);
3865 mddev->dev_sectors = conf->dev_sectors;
3866 mddev->resync_max_sectors = size;
3867 return 0;
3868 }
3869
3870 static void *raid10_takeover_raid0(struct mddev *mddev)
3871 {
3872 struct md_rdev *rdev;
3873 struct r10conf *conf;
3874
3875 if (mddev->degraded > 0) {
3876 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3877 mdname(mddev));
3878 return ERR_PTR(-EINVAL);
3879 }
3880
3881 /* Set new parameters */
3882 mddev->new_level = 10;
3883 /* new layout: far_copies = 1, near_copies = 2 */
3884 mddev->new_layout = (1<<8) + 2;
3885 mddev->new_chunk_sectors = mddev->chunk_sectors;
3886 mddev->delta_disks = mddev->raid_disks;
3887 mddev->raid_disks *= 2;
3888 /* make sure it will be not marked as dirty */
3889 mddev->recovery_cp = MaxSector;
3890
3891 conf = setup_conf(mddev);
3892 if (!IS_ERR(conf)) {
3893 rdev_for_each(rdev, mddev)
3894 if (rdev->raid_disk >= 0)
3895 rdev->new_raid_disk = rdev->raid_disk * 2;
3896 conf->barrier = 1;
3897 }
3898
3899 return conf;
3900 }
3901
3902 static void *raid10_takeover(struct mddev *mddev)
3903 {
3904 struct r0conf *raid0_conf;
3905
3906 /* raid10 can take over:
3907 * raid0 - providing it has only two drives
3908 */
3909 if (mddev->level == 0) {
3910 /* for raid0 takeover only one zone is supported */
3911 raid0_conf = mddev->private;
3912 if (raid0_conf->nr_strip_zones > 1) {
3913 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3914 " with more than one zone.\n",
3915 mdname(mddev));
3916 return ERR_PTR(-EINVAL);
3917 }
3918 return raid10_takeover_raid0(mddev);
3919 }
3920 return ERR_PTR(-EINVAL);
3921 }
3922
3923 static int raid10_check_reshape(struct mddev *mddev)
3924 {
3925 /* Called when there is a request to change
3926 * - layout (to ->new_layout)
3927 * - chunk size (to ->new_chunk_sectors)
3928 * - raid_disks (by delta_disks)
3929 * or when trying to restart a reshape that was ongoing.
3930 *
3931 * We need to validate the request and possibly allocate
3932 * space if that might be an issue later.
3933 *
3934 * Currently we reject any reshape of a 'far' mode array,
3935 * allow chunk size to change if new is generally acceptable,
3936 * allow raid_disks to increase, and allow
3937 * a switch between 'near' mode and 'offset' mode.
3938 */
3939 struct r10conf *conf = mddev->private;
3940 struct geom geo;
3941
3942 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3943 return -EINVAL;
3944
3945 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3946 /* mustn't change number of copies */
3947 return -EINVAL;
3948 if (geo.far_copies > 1 && !geo.far_offset)
3949 /* Cannot switch to 'far' mode */
3950 return -EINVAL;
3951
3952 if (mddev->array_sectors & geo.chunk_mask)
3953 /* not factor of array size */
3954 return -EINVAL;
3955
3956 if (!enough(conf, -1))
3957 return -EINVAL;
3958
3959 kfree(conf->mirrors_new);
3960 conf->mirrors_new = NULL;
3961 if (mddev->delta_disks > 0) {
3962 /* allocate new 'mirrors' list */
3963 conf->mirrors_new = kzalloc(
3964 sizeof(struct raid10_info)
3965 *(mddev->raid_disks +
3966 mddev->delta_disks),
3967 GFP_KERNEL);
3968 if (!conf->mirrors_new)
3969 return -ENOMEM;
3970 }
3971 return 0;
3972 }
3973
3974 /*
3975 * Need to check if array has failed when deciding whether to:
3976 * - start an array
3977 * - remove non-faulty devices
3978 * - add a spare
3979 * - allow a reshape
3980 * This determination is simple when no reshape is happening.
3981 * However if there is a reshape, we need to carefully check
3982 * both the before and after sections.
3983 * This is because some failed devices may only affect one
3984 * of the two sections, and some non-in_sync devices may
3985 * be insync in the section most affected by failed devices.
3986 */
3987 static int calc_degraded(struct r10conf *conf)
3988 {
3989 int degraded, degraded2;
3990 int i;
3991
3992 rcu_read_lock();
3993 degraded = 0;
3994 /* 'prev' section first */
3995 for (i = 0; i < conf->prev.raid_disks; i++) {
3996 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3997 if (!rdev || test_bit(Faulty, &rdev->flags))
3998 degraded++;
3999 else if (!test_bit(In_sync, &rdev->flags))
4000 /* When we can reduce the number of devices in
4001 * an array, this might not contribute to
4002 * 'degraded'. It does now.
4003 */
4004 degraded++;
4005 }
4006 rcu_read_unlock();
4007 if (conf->geo.raid_disks == conf->prev.raid_disks)
4008 return degraded;
4009 rcu_read_lock();
4010 degraded2 = 0;
4011 for (i = 0; i < conf->geo.raid_disks; i++) {
4012 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4013 if (!rdev || test_bit(Faulty, &rdev->flags))
4014 degraded2++;
4015 else if (!test_bit(In_sync, &rdev->flags)) {
4016 /* If reshape is increasing the number of devices,
4017 * this section has already been recovered, so
4018 * it doesn't contribute to degraded.
4019 * else it does.
4020 */
4021 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4022 degraded2++;
4023 }
4024 }
4025 rcu_read_unlock();
4026 if (degraded2 > degraded)
4027 return degraded2;
4028 return degraded;
4029 }
4030
4031 static int raid10_start_reshape(struct mddev *mddev)
4032 {
4033 /* A 'reshape' has been requested. This commits
4034 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4035 * This also checks if there are enough spares and adds them
4036 * to the array.
4037 * We currently require enough spares to make the final
4038 * array non-degraded. We also require that the difference
4039 * between old and new data_offset - on each device - is
4040 * enough that we never risk over-writing.
4041 */
4042
4043 unsigned long before_length, after_length;
4044 sector_t min_offset_diff = 0;
4045 int first = 1;
4046 struct geom new;
4047 struct r10conf *conf = mddev->private;
4048 struct md_rdev *rdev;
4049 int spares = 0;
4050 int ret;
4051
4052 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4053 return -EBUSY;
4054
4055 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4056 return -EINVAL;
4057
4058 before_length = ((1 << conf->prev.chunk_shift) *
4059 conf->prev.far_copies);
4060 after_length = ((1 << conf->geo.chunk_shift) *
4061 conf->geo.far_copies);
4062
4063 rdev_for_each(rdev, mddev) {
4064 if (!test_bit(In_sync, &rdev->flags)
4065 && !test_bit(Faulty, &rdev->flags))
4066 spares++;
4067 if (rdev->raid_disk >= 0) {
4068 long long diff = (rdev->new_data_offset
4069 - rdev->data_offset);
4070 if (!mddev->reshape_backwards)
4071 diff = -diff;
4072 if (diff < 0)
4073 diff = 0;
4074 if (first || diff < min_offset_diff)
4075 min_offset_diff = diff;
4076 }
4077 }
4078
4079 if (max(before_length, after_length) > min_offset_diff)
4080 return -EINVAL;
4081
4082 if (spares < mddev->delta_disks)
4083 return -EINVAL;
4084
4085 conf->offset_diff = min_offset_diff;
4086 spin_lock_irq(&conf->device_lock);
4087 if (conf->mirrors_new) {
4088 memcpy(conf->mirrors_new, conf->mirrors,
4089 sizeof(struct raid10_info)*conf->prev.raid_disks);
4090 smp_mb();
4091 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4092 conf->mirrors_old = conf->mirrors;
4093 conf->mirrors = conf->mirrors_new;
4094 conf->mirrors_new = NULL;
4095 }
4096 setup_geo(&conf->geo, mddev, geo_start);
4097 smp_mb();
4098 if (mddev->reshape_backwards) {
4099 sector_t size = raid10_size(mddev, 0, 0);
4100 if (size < mddev->array_sectors) {
4101 spin_unlock_irq(&conf->device_lock);
4102 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4103 mdname(mddev));
4104 return -EINVAL;
4105 }
4106 mddev->resync_max_sectors = size;
4107 conf->reshape_progress = size;
4108 } else
4109 conf->reshape_progress = 0;
4110 spin_unlock_irq(&conf->device_lock);
4111
4112 if (mddev->delta_disks && mddev->bitmap) {
4113 ret = bitmap_resize(mddev->bitmap,
4114 raid10_size(mddev, 0,
4115 conf->geo.raid_disks),
4116 0, 0);
4117 if (ret)
4118 goto abort;
4119 }
4120 if (mddev->delta_disks > 0) {
4121 rdev_for_each(rdev, mddev)
4122 if (rdev->raid_disk < 0 &&
4123 !test_bit(Faulty, &rdev->flags)) {
4124 if (raid10_add_disk(mddev, rdev) == 0) {
4125 if (rdev->raid_disk >=
4126 conf->prev.raid_disks)
4127 set_bit(In_sync, &rdev->flags);
4128 else
4129 rdev->recovery_offset = 0;
4130
4131 if (sysfs_link_rdev(mddev, rdev))
4132 /* Failure here is OK */;
4133 }
4134 } else if (rdev->raid_disk >= conf->prev.raid_disks
4135 && !test_bit(Faulty, &rdev->flags)) {
4136 /* This is a spare that was manually added */
4137 set_bit(In_sync, &rdev->flags);
4138 }
4139 }
4140 /* When a reshape changes the number of devices,
4141 * ->degraded is measured against the larger of the
4142 * pre and post numbers.
4143 */
4144 spin_lock_irq(&conf->device_lock);
4145 mddev->degraded = calc_degraded(conf);
4146 spin_unlock_irq(&conf->device_lock);
4147 mddev->raid_disks = conf->geo.raid_disks;
4148 mddev->reshape_position = conf->reshape_progress;
4149 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4150
4151 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4152 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4153 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4154 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4155
4156 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4157 "reshape");
4158 if (!mddev->sync_thread) {
4159 ret = -EAGAIN;
4160 goto abort;
4161 }
4162 conf->reshape_checkpoint = jiffies;
4163 md_wakeup_thread(mddev->sync_thread);
4164 md_new_event(mddev);
4165 return 0;
4166
4167 abort:
4168 mddev->recovery = 0;
4169 spin_lock_irq(&conf->device_lock);
4170 conf->geo = conf->prev;
4171 mddev->raid_disks = conf->geo.raid_disks;
4172 rdev_for_each(rdev, mddev)
4173 rdev->new_data_offset = rdev->data_offset;
4174 smp_wmb();
4175 conf->reshape_progress = MaxSector;
4176 mddev->reshape_position = MaxSector;
4177 spin_unlock_irq(&conf->device_lock);
4178 return ret;
4179 }
4180
4181 /* Calculate the last device-address that could contain
4182 * any block from the chunk that includes the array-address 's'
4183 * and report the next address.
4184 * i.e. the address returned will be chunk-aligned and after
4185 * any data that is in the chunk containing 's'.
4186 */
4187 static sector_t last_dev_address(sector_t s, struct geom *geo)
4188 {
4189 s = (s | geo->chunk_mask) + 1;
4190 s >>= geo->chunk_shift;
4191 s *= geo->near_copies;
4192 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4193 s *= geo->far_copies;
4194 s <<= geo->chunk_shift;
4195 return s;
4196 }
4197
4198 /* Calculate the first device-address that could contain
4199 * any block from the chunk that includes the array-address 's'.
4200 * This too will be the start of a chunk
4201 */
4202 static sector_t first_dev_address(sector_t s, struct geom *geo)
4203 {
4204 s >>= geo->chunk_shift;
4205 s *= geo->near_copies;
4206 sector_div(s, geo->raid_disks);
4207 s *= geo->far_copies;
4208 s <<= geo->chunk_shift;
4209 return s;
4210 }
4211
4212 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4213 int *skipped)
4214 {
4215 /* We simply copy at most one chunk (smallest of old and new)
4216 * at a time, possibly less if that exceeds RESYNC_PAGES,
4217 * or we hit a bad block or something.
4218 * This might mean we pause for normal IO in the middle of
4219 * a chunk, but that is not a problem was mddev->reshape_position
4220 * can record any location.
4221 *
4222 * If we will want to write to a location that isn't
4223 * yet recorded as 'safe' (i.e. in metadata on disk) then
4224 * we need to flush all reshape requests and update the metadata.
4225 *
4226 * When reshaping forwards (e.g. to more devices), we interpret
4227 * 'safe' as the earliest block which might not have been copied
4228 * down yet. We divide this by previous stripe size and multiply
4229 * by previous stripe length to get lowest device offset that we
4230 * cannot write to yet.
4231 * We interpret 'sector_nr' as an address that we want to write to.
4232 * From this we use last_device_address() to find where we might
4233 * write to, and first_device_address on the 'safe' position.
4234 * If this 'next' write position is after the 'safe' position,
4235 * we must update the metadata to increase the 'safe' position.
4236 *
4237 * When reshaping backwards, we round in the opposite direction
4238 * and perform the reverse test: next write position must not be
4239 * less than current safe position.
4240 *
4241 * In all this the minimum difference in data offsets
4242 * (conf->offset_diff - always positive) allows a bit of slack,
4243 * so next can be after 'safe', but not by more than offset_disk
4244 *
4245 * We need to prepare all the bios here before we start any IO
4246 * to ensure the size we choose is acceptable to all devices.
4247 * The means one for each copy for write-out and an extra one for
4248 * read-in.
4249 * We store the read-in bio in ->master_bio and the others in
4250 * ->devs[x].bio and ->devs[x].repl_bio.
4251 */
4252 struct r10conf *conf = mddev->private;
4253 struct r10bio *r10_bio;
4254 sector_t next, safe, last;
4255 int max_sectors;
4256 int nr_sectors;
4257 int s;
4258 struct md_rdev *rdev;
4259 int need_flush = 0;
4260 struct bio *blist;
4261 struct bio *bio, *read_bio;
4262 int sectors_done = 0;
4263
4264 if (sector_nr == 0) {
4265 /* If restarting in the middle, skip the initial sectors */
4266 if (mddev->reshape_backwards &&
4267 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4268 sector_nr = (raid10_size(mddev, 0, 0)
4269 - conf->reshape_progress);
4270 } else if (!mddev->reshape_backwards &&
4271 conf->reshape_progress > 0)
4272 sector_nr = conf->reshape_progress;
4273 if (sector_nr) {
4274 mddev->curr_resync_completed = sector_nr;
4275 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4276 *skipped = 1;
4277 return sector_nr;
4278 }
4279 }
4280
4281 /* We don't use sector_nr to track where we are up to
4282 * as that doesn't work well for ->reshape_backwards.
4283 * So just use ->reshape_progress.
4284 */
4285 if (mddev->reshape_backwards) {
4286 /* 'next' is the earliest device address that we might
4287 * write to for this chunk in the new layout
4288 */
4289 next = first_dev_address(conf->reshape_progress - 1,
4290 &conf->geo);
4291
4292 /* 'safe' is the last device address that we might read from
4293 * in the old layout after a restart
4294 */
4295 safe = last_dev_address(conf->reshape_safe - 1,
4296 &conf->prev);
4297
4298 if (next + conf->offset_diff < safe)
4299 need_flush = 1;
4300
4301 last = conf->reshape_progress - 1;
4302 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4303 & conf->prev.chunk_mask);
4304 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4305 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4306 } else {
4307 /* 'next' is after the last device address that we
4308 * might write to for this chunk in the new layout
4309 */
4310 next = last_dev_address(conf->reshape_progress, &conf->geo);
4311
4312 /* 'safe' is the earliest device address that we might
4313 * read from in the old layout after a restart
4314 */
4315 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4316
4317 /* Need to update metadata if 'next' might be beyond 'safe'
4318 * as that would possibly corrupt data
4319 */
4320 if (next > safe + conf->offset_diff)
4321 need_flush = 1;
4322
4323 sector_nr = conf->reshape_progress;
4324 last = sector_nr | (conf->geo.chunk_mask
4325 & conf->prev.chunk_mask);
4326
4327 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4328 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4329 }
4330
4331 if (need_flush ||
4332 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4333 /* Need to update reshape_position in metadata */
4334 wait_barrier(conf);
4335 mddev->reshape_position = conf->reshape_progress;
4336 if (mddev->reshape_backwards)
4337 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4338 - conf->reshape_progress;
4339 else
4340 mddev->curr_resync_completed = conf->reshape_progress;
4341 conf->reshape_checkpoint = jiffies;
4342 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4343 md_wakeup_thread(mddev->thread);
4344 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4345 kthread_should_stop());
4346 conf->reshape_safe = mddev->reshape_position;
4347 allow_barrier(conf);
4348 }
4349
4350 read_more:
4351 /* Now schedule reads for blocks from sector_nr to last */
4352 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4353 raise_barrier(conf, sectors_done != 0);
4354 atomic_set(&r10_bio->remaining, 0);
4355 r10_bio->mddev = mddev;
4356 r10_bio->sector = sector_nr;
4357 set_bit(R10BIO_IsReshape, &r10_bio->state);
4358 r10_bio->sectors = last - sector_nr + 1;
4359 rdev = read_balance(conf, r10_bio, &max_sectors);
4360 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4361
4362 if (!rdev) {
4363 /* Cannot read from here, so need to record bad blocks
4364 * on all the target devices.
4365 */
4366 // FIXME
4367 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4368 return sectors_done;
4369 }
4370
4371 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4372
4373 read_bio->bi_bdev = rdev->bdev;
4374 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4375 + rdev->data_offset);
4376 read_bio->bi_private = r10_bio;
4377 read_bio->bi_end_io = end_sync_read;
4378 read_bio->bi_rw = READ;
4379 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4380 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4381 read_bio->bi_vcnt = 0;
4382 read_bio->bi_size = 0;
4383 r10_bio->master_bio = read_bio;
4384 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4385
4386 /* Now find the locations in the new layout */
4387 __raid10_find_phys(&conf->geo, r10_bio);
4388
4389 blist = read_bio;
4390 read_bio->bi_next = NULL;
4391
4392 for (s = 0; s < conf->copies*2; s++) {
4393 struct bio *b;
4394 int d = r10_bio->devs[s/2].devnum;
4395 struct md_rdev *rdev2;
4396 if (s&1) {
4397 rdev2 = conf->mirrors[d].replacement;
4398 b = r10_bio->devs[s/2].repl_bio;
4399 } else {
4400 rdev2 = conf->mirrors[d].rdev;
4401 b = r10_bio->devs[s/2].bio;
4402 }
4403 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4404 continue;
4405
4406 bio_reset(b);
4407 b->bi_bdev = rdev2->bdev;
4408 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4409 b->bi_private = r10_bio;
4410 b->bi_end_io = end_reshape_write;
4411 b->bi_rw = WRITE;
4412 b->bi_next = blist;
4413 blist = b;
4414 }
4415
4416 /* Now add as many pages as possible to all of these bios. */
4417
4418 nr_sectors = 0;
4419 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4420 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4421 int len = (max_sectors - s) << 9;
4422 if (len > PAGE_SIZE)
4423 len = PAGE_SIZE;
4424 for (bio = blist; bio ; bio = bio->bi_next) {
4425 struct bio *bio2;
4426 if (bio_add_page(bio, page, len, 0))
4427 continue;
4428
4429 /* Didn't fit, must stop */
4430 for (bio2 = blist;
4431 bio2 && bio2 != bio;
4432 bio2 = bio2->bi_next) {
4433 /* Remove last page from this bio */
4434 bio2->bi_vcnt--;
4435 bio2->bi_size -= len;
4436 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4437 }
4438 goto bio_full;
4439 }
4440 sector_nr += len >> 9;
4441 nr_sectors += len >> 9;
4442 }
4443 bio_full:
4444 r10_bio->sectors = nr_sectors;
4445
4446 /* Now submit the read */
4447 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4448 atomic_inc(&r10_bio->remaining);
4449 read_bio->bi_next = NULL;
4450 generic_make_request(read_bio);
4451 sector_nr += nr_sectors;
4452 sectors_done += nr_sectors;
4453 if (sector_nr <= last)
4454 goto read_more;
4455
4456 /* Now that we have done the whole section we can
4457 * update reshape_progress
4458 */
4459 if (mddev->reshape_backwards)
4460 conf->reshape_progress -= sectors_done;
4461 else
4462 conf->reshape_progress += sectors_done;
4463
4464 return sectors_done;
4465 }
4466
4467 static void end_reshape_request(struct r10bio *r10_bio);
4468 static int handle_reshape_read_error(struct mddev *mddev,
4469 struct r10bio *r10_bio);
4470 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4471 {
4472 /* Reshape read completed. Hopefully we have a block
4473 * to write out.
4474 * If we got a read error then we do sync 1-page reads from
4475 * elsewhere until we find the data - or give up.
4476 */
4477 struct r10conf *conf = mddev->private;
4478 int s;
4479
4480 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4481 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4482 /* Reshape has been aborted */
4483 md_done_sync(mddev, r10_bio->sectors, 0);
4484 return;
4485 }
4486
4487 /* We definitely have the data in the pages, schedule the
4488 * writes.
4489 */
4490 atomic_set(&r10_bio->remaining, 1);
4491 for (s = 0; s < conf->copies*2; s++) {
4492 struct bio *b;
4493 int d = r10_bio->devs[s/2].devnum;
4494 struct md_rdev *rdev;
4495 if (s&1) {
4496 rdev = conf->mirrors[d].replacement;
4497 b = r10_bio->devs[s/2].repl_bio;
4498 } else {
4499 rdev = conf->mirrors[d].rdev;
4500 b = r10_bio->devs[s/2].bio;
4501 }
4502 if (!rdev || test_bit(Faulty, &rdev->flags))
4503 continue;
4504 atomic_inc(&rdev->nr_pending);
4505 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4506 atomic_inc(&r10_bio->remaining);
4507 b->bi_next = NULL;
4508 generic_make_request(b);
4509 }
4510 end_reshape_request(r10_bio);
4511 }
4512
4513 static void end_reshape(struct r10conf *conf)
4514 {
4515 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4516 return;
4517
4518 spin_lock_irq(&conf->device_lock);
4519 conf->prev = conf->geo;
4520 md_finish_reshape(conf->mddev);
4521 smp_wmb();
4522 conf->reshape_progress = MaxSector;
4523 spin_unlock_irq(&conf->device_lock);
4524
4525 /* read-ahead size must cover two whole stripes, which is
4526 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4527 */
4528 if (conf->mddev->queue) {
4529 int stripe = conf->geo.raid_disks *
4530 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4531 stripe /= conf->geo.near_copies;
4532 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4533 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4534 }
4535 conf->fullsync = 0;
4536 }
4537
4538
4539 static int handle_reshape_read_error(struct mddev *mddev,
4540 struct r10bio *r10_bio)
4541 {
4542 /* Use sync reads to get the blocks from somewhere else */
4543 int sectors = r10_bio->sectors;
4544 struct r10conf *conf = mddev->private;
4545 struct {
4546 struct r10bio r10_bio;
4547 struct r10dev devs[conf->copies];
4548 } on_stack;
4549 struct r10bio *r10b = &on_stack.r10_bio;
4550 int slot = 0;
4551 int idx = 0;
4552 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4553
4554 r10b->sector = r10_bio->sector;
4555 __raid10_find_phys(&conf->prev, r10b);
4556
4557 while (sectors) {
4558 int s = sectors;
4559 int success = 0;
4560 int first_slot = slot;
4561
4562 if (s > (PAGE_SIZE >> 9))
4563 s = PAGE_SIZE >> 9;
4564
4565 while (!success) {
4566 int d = r10b->devs[slot].devnum;
4567 struct md_rdev *rdev = conf->mirrors[d].rdev;
4568 sector_t addr;
4569 if (rdev == NULL ||
4570 test_bit(Faulty, &rdev->flags) ||
4571 !test_bit(In_sync, &rdev->flags))
4572 goto failed;
4573
4574 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4575 success = sync_page_io(rdev,
4576 addr,
4577 s << 9,
4578 bvec[idx].bv_page,
4579 READ, false);
4580 if (success)
4581 break;
4582 failed:
4583 slot++;
4584 if (slot >= conf->copies)
4585 slot = 0;
4586 if (slot == first_slot)
4587 break;
4588 }
4589 if (!success) {
4590 /* couldn't read this block, must give up */
4591 set_bit(MD_RECOVERY_INTR,
4592 &mddev->recovery);
4593 return -EIO;
4594 }
4595 sectors -= s;
4596 idx++;
4597 }
4598 return 0;
4599 }
4600
4601 static void end_reshape_write(struct bio *bio, int error)
4602 {
4603 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4604 struct r10bio *r10_bio = bio->bi_private;
4605 struct mddev *mddev = r10_bio->mddev;
4606 struct r10conf *conf = mddev->private;
4607 int d;
4608 int slot;
4609 int repl;
4610 struct md_rdev *rdev = NULL;
4611
4612 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4613 if (repl)
4614 rdev = conf->mirrors[d].replacement;
4615 if (!rdev) {
4616 smp_mb();
4617 rdev = conf->mirrors[d].rdev;
4618 }
4619
4620 if (!uptodate) {
4621 /* FIXME should record badblock */
4622 md_error(mddev, rdev);
4623 }
4624
4625 rdev_dec_pending(rdev, mddev);
4626 end_reshape_request(r10_bio);
4627 }
4628
4629 static void end_reshape_request(struct r10bio *r10_bio)
4630 {
4631 if (!atomic_dec_and_test(&r10_bio->remaining))
4632 return;
4633 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4634 bio_put(r10_bio->master_bio);
4635 put_buf(r10_bio);
4636 }
4637
4638 static void raid10_finish_reshape(struct mddev *mddev)
4639 {
4640 struct r10conf *conf = mddev->private;
4641
4642 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4643 return;
4644
4645 if (mddev->delta_disks > 0) {
4646 sector_t size = raid10_size(mddev, 0, 0);
4647 md_set_array_sectors(mddev, size);
4648 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4649 mddev->recovery_cp = mddev->resync_max_sectors;
4650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4651 }
4652 mddev->resync_max_sectors = size;
4653 set_capacity(mddev->gendisk, mddev->array_sectors);
4654 revalidate_disk(mddev->gendisk);
4655 } else {
4656 int d;
4657 for (d = conf->geo.raid_disks ;
4658 d < conf->geo.raid_disks - mddev->delta_disks;
4659 d++) {
4660 struct md_rdev *rdev = conf->mirrors[d].rdev;
4661 if (rdev)
4662 clear_bit(In_sync, &rdev->flags);
4663 rdev = conf->mirrors[d].replacement;
4664 if (rdev)
4665 clear_bit(In_sync, &rdev->flags);
4666 }
4667 }
4668 mddev->layout = mddev->new_layout;
4669 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4670 mddev->reshape_position = MaxSector;
4671 mddev->delta_disks = 0;
4672 mddev->reshape_backwards = 0;
4673 }
4674
4675 static struct md_personality raid10_personality =
4676 {
4677 .name = "raid10",
4678 .level = 10,
4679 .owner = THIS_MODULE,
4680 .make_request = make_request,
4681 .run = run,
4682 .stop = stop,
4683 .status = status,
4684 .error_handler = error,
4685 .hot_add_disk = raid10_add_disk,
4686 .hot_remove_disk= raid10_remove_disk,
4687 .spare_active = raid10_spare_active,
4688 .sync_request = sync_request,
4689 .quiesce = raid10_quiesce,
4690 .size = raid10_size,
4691 .resize = raid10_resize,
4692 .takeover = raid10_takeover,
4693 .check_reshape = raid10_check_reshape,
4694 .start_reshape = raid10_start_reshape,
4695 .finish_reshape = raid10_finish_reshape,
4696 };
4697
4698 static int __init raid_init(void)
4699 {
4700 return register_md_personality(&raid10_personality);
4701 }
4702
4703 static void raid_exit(void)
4704 {
4705 unregister_md_personality(&raid10_personality);
4706 }
4707
4708 module_init(raid_init);
4709 module_exit(raid_exit);
4710 MODULE_LICENSE("GPL");
4711 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4712 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4713 MODULE_ALIAS("md-raid10");
4714 MODULE_ALIAS("md-level-10");
4715
4716 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);