[PATCH] md: clean up 'page' related names in md
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24
25 /*
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 *
33 * The data to be stored is divided into chunks using chunksize.
34 * Each device is divided into far_copies sections.
35 * In each section, chunks are laid out in a style similar to raid0, but
36 * near_copies copies of each chunk is stored (each on a different drive).
37 * The starting device for each section is offset near_copies from the starting
38 * device of the previous section.
39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
40 * drive.
41 * near_copies and far_copies must be at least one, and their product is at most
42 * raid_disks.
43 */
44
45 /*
46 * Number of guaranteed r10bios in case of extreme VM load:
47 */
48 #define NR_RAID10_BIOS 256
49
50 static void unplug_slaves(mddev_t *mddev);
51
52 static void allow_barrier(conf_t *conf);
53 static void lower_barrier(conf_t *conf);
54
55 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
56 {
57 conf_t *conf = data;
58 r10bio_t *r10_bio;
59 int size = offsetof(struct r10bio_s, devs[conf->copies]);
60
61 /* allocate a r10bio with room for raid_disks entries in the bios array */
62 r10_bio = kmalloc(size, gfp_flags);
63 if (r10_bio)
64 memset(r10_bio, 0, size);
65 else
66 unplug_slaves(conf->mddev);
67
68 return r10_bio;
69 }
70
71 static void r10bio_pool_free(void *r10_bio, void *data)
72 {
73 kfree(r10_bio);
74 }
75
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81
82 /*
83 * When performing a resync, we need to read and compare, so
84 * we need as many pages are there are copies.
85 * When performing a recovery, we need 2 bios, one for read,
86 * one for write (we recover only one drive per r10buf)
87 *
88 */
89 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
90 {
91 conf_t *conf = data;
92 struct page *page;
93 r10bio_t *r10_bio;
94 struct bio *bio;
95 int i, j;
96 int nalloc;
97
98 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
99 if (!r10_bio) {
100 unplug_slaves(conf->mddev);
101 return NULL;
102 }
103
104 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
105 nalloc = conf->copies; /* resync */
106 else
107 nalloc = 2; /* recovery */
108
109 /*
110 * Allocate bios.
111 */
112 for (j = nalloc ; j-- ; ) {
113 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r10_bio->devs[j].bio = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them
120 * where needed.
121 */
122 for (j = 0 ; j < nalloc; j++) {
123 bio = r10_bio->devs[j].bio;
124 for (i = 0; i < RESYNC_PAGES; i++) {
125 page = alloc_page(gfp_flags);
126 if (unlikely(!page))
127 goto out_free_pages;
128
129 bio->bi_io_vec[i].bv_page = page;
130 }
131 }
132
133 return r10_bio;
134
135 out_free_pages:
136 for ( ; i > 0 ; i--)
137 put_page(bio->bi_io_vec[i-1].bv_page);
138 while (j--)
139 for (i = 0; i < RESYNC_PAGES ; i++)
140 put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
141 j = -1;
142 out_free_bio:
143 while ( ++j < nalloc )
144 bio_put(r10_bio->devs[j].bio);
145 r10bio_pool_free(r10_bio, conf);
146 return NULL;
147 }
148
149 static void r10buf_pool_free(void *__r10_bio, void *data)
150 {
151 int i;
152 conf_t *conf = data;
153 r10bio_t *r10bio = __r10_bio;
154 int j;
155
156 for (j=0; j < conf->copies; j++) {
157 struct bio *bio = r10bio->devs[j].bio;
158 if (bio) {
159 for (i = 0; i < RESYNC_PAGES; i++) {
160 put_page(bio->bi_io_vec[i].bv_page);
161 bio->bi_io_vec[i].bv_page = NULL;
162 }
163 bio_put(bio);
164 }
165 }
166 r10bio_pool_free(r10bio, conf);
167 }
168
169 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
170 {
171 int i;
172
173 for (i = 0; i < conf->copies; i++) {
174 struct bio **bio = & r10_bio->devs[i].bio;
175 if (*bio && *bio != IO_BLOCKED)
176 bio_put(*bio);
177 *bio = NULL;
178 }
179 }
180
181 static inline void free_r10bio(r10bio_t *r10_bio)
182 {
183 conf_t *conf = mddev_to_conf(r10_bio->mddev);
184
185 /*
186 * Wake up any possible resync thread that waits for the device
187 * to go idle.
188 */
189 allow_barrier(conf);
190
191 put_all_bios(conf, r10_bio);
192 mempool_free(r10_bio, conf->r10bio_pool);
193 }
194
195 static inline void put_buf(r10bio_t *r10_bio)
196 {
197 conf_t *conf = mddev_to_conf(r10_bio->mddev);
198
199 mempool_free(r10_bio, conf->r10buf_pool);
200
201 lower_barrier(conf);
202 }
203
204 static void reschedule_retry(r10bio_t *r10_bio)
205 {
206 unsigned long flags;
207 mddev_t *mddev = r10_bio->mddev;
208 conf_t *conf = mddev_to_conf(mddev);
209
210 spin_lock_irqsave(&conf->device_lock, flags);
211 list_add(&r10_bio->retry_list, &conf->retry_list);
212 conf->nr_queued ++;
213 spin_unlock_irqrestore(&conf->device_lock, flags);
214
215 md_wakeup_thread(mddev->thread);
216 }
217
218 /*
219 * raid_end_bio_io() is called when we have finished servicing a mirrored
220 * operation and are ready to return a success/failure code to the buffer
221 * cache layer.
222 */
223 static void raid_end_bio_io(r10bio_t *r10_bio)
224 {
225 struct bio *bio = r10_bio->master_bio;
226
227 bio_endio(bio, bio->bi_size,
228 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
229 free_r10bio(r10_bio);
230 }
231
232 /*
233 * Update disk head position estimator based on IRQ completion info.
234 */
235 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
236 {
237 conf_t *conf = mddev_to_conf(r10_bio->mddev);
238
239 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
240 r10_bio->devs[slot].addr + (r10_bio->sectors);
241 }
242
243 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
244 {
245 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
246 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
247 int slot, dev;
248 conf_t *conf = mddev_to_conf(r10_bio->mddev);
249
250 if (bio->bi_size)
251 return 1;
252
253 slot = r10_bio->read_slot;
254 dev = r10_bio->devs[slot].devnum;
255 /*
256 * this branch is our 'one mirror IO has finished' event handler:
257 */
258 update_head_pos(slot, r10_bio);
259
260 if (uptodate) {
261 /*
262 * Set R10BIO_Uptodate in our master bio, so that
263 * we will return a good error code to the higher
264 * levels even if IO on some other mirrored buffer fails.
265 *
266 * The 'master' represents the composite IO operation to
267 * user-side. So if something waits for IO, then it will
268 * wait for the 'master' bio.
269 */
270 set_bit(R10BIO_Uptodate, &r10_bio->state);
271 raid_end_bio_io(r10_bio);
272 } else {
273 /*
274 * oops, read error:
275 */
276 char b[BDEVNAME_SIZE];
277 if (printk_ratelimit())
278 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
279 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
280 reschedule_retry(r10_bio);
281 }
282
283 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
284 return 0;
285 }
286
287 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
288 {
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 int slot, dev;
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
293
294 if (bio->bi_size)
295 return 1;
296
297 for (slot = 0; slot < conf->copies; slot++)
298 if (r10_bio->devs[slot].bio == bio)
299 break;
300 dev = r10_bio->devs[slot].devnum;
301
302 /*
303 * this branch is our 'one mirror IO has finished' event handler:
304 */
305 if (!uptodate) {
306 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
307 /* an I/O failed, we can't clear the bitmap */
308 set_bit(R10BIO_Degraded, &r10_bio->state);
309 } else
310 /*
311 * Set R10BIO_Uptodate in our master bio, so that
312 * we will return a good error code for to the higher
313 * levels even if IO on some other mirrored buffer fails.
314 *
315 * The 'master' represents the composite IO operation to
316 * user-side. So if something waits for IO, then it will
317 * wait for the 'master' bio.
318 */
319 set_bit(R10BIO_Uptodate, &r10_bio->state);
320
321 update_head_pos(slot, r10_bio);
322
323 /*
324 *
325 * Let's see if all mirrored write operations have finished
326 * already.
327 */
328 if (atomic_dec_and_test(&r10_bio->remaining)) {
329 /* clear the bitmap if all writes complete successfully */
330 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
331 r10_bio->sectors,
332 !test_bit(R10BIO_Degraded, &r10_bio->state),
333 0);
334 md_write_end(r10_bio->mddev);
335 raid_end_bio_io(r10_bio);
336 }
337
338 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
339 return 0;
340 }
341
342
343 /*
344 * RAID10 layout manager
345 * Aswell as the chunksize and raid_disks count, there are two
346 * parameters: near_copies and far_copies.
347 * near_copies * far_copies must be <= raid_disks.
348 * Normally one of these will be 1.
349 * If both are 1, we get raid0.
350 * If near_copies == raid_disks, we get raid1.
351 *
352 * Chunks are layed out in raid0 style with near_copies copies of the
353 * first chunk, followed by near_copies copies of the next chunk and
354 * so on.
355 * If far_copies > 1, then after 1/far_copies of the array has been assigned
356 * as described above, we start again with a device offset of near_copies.
357 * So we effectively have another copy of the whole array further down all
358 * the drives, but with blocks on different drives.
359 * With this layout, and block is never stored twice on the one device.
360 *
361 * raid10_find_phys finds the sector offset of a given virtual sector
362 * on each device that it is on. If a block isn't on a device,
363 * that entry in the array is set to MaxSector.
364 *
365 * raid10_find_virt does the reverse mapping, from a device and a
366 * sector offset to a virtual address
367 */
368
369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
370 {
371 int n,f;
372 sector_t sector;
373 sector_t chunk;
374 sector_t stripe;
375 int dev;
376
377 int slot = 0;
378
379 /* now calculate first sector/dev */
380 chunk = r10bio->sector >> conf->chunk_shift;
381 sector = r10bio->sector & conf->chunk_mask;
382
383 chunk *= conf->near_copies;
384 stripe = chunk;
385 dev = sector_div(stripe, conf->raid_disks);
386
387 sector += stripe << conf->chunk_shift;
388
389 /* and calculate all the others */
390 for (n=0; n < conf->near_copies; n++) {
391 int d = dev;
392 sector_t s = sector;
393 r10bio->devs[slot].addr = sector;
394 r10bio->devs[slot].devnum = d;
395 slot++;
396
397 for (f = 1; f < conf->far_copies; f++) {
398 d += conf->near_copies;
399 if (d >= conf->raid_disks)
400 d -= conf->raid_disks;
401 s += conf->stride;
402 r10bio->devs[slot].devnum = d;
403 r10bio->devs[slot].addr = s;
404 slot++;
405 }
406 dev++;
407 if (dev >= conf->raid_disks) {
408 dev = 0;
409 sector += (conf->chunk_mask + 1);
410 }
411 }
412 BUG_ON(slot != conf->copies);
413 }
414
415 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
416 {
417 sector_t offset, chunk, vchunk;
418
419 while (sector > conf->stride) {
420 sector -= conf->stride;
421 if (dev < conf->near_copies)
422 dev += conf->raid_disks - conf->near_copies;
423 else
424 dev -= conf->near_copies;
425 }
426
427 offset = sector & conf->chunk_mask;
428 chunk = sector >> conf->chunk_shift;
429 vchunk = chunk * conf->raid_disks + dev;
430 sector_div(vchunk, conf->near_copies);
431 return (vchunk << conf->chunk_shift) + offset;
432 }
433
434 /**
435 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
436 * @q: request queue
437 * @bio: the buffer head that's been built up so far
438 * @biovec: the request that could be merged to it.
439 *
440 * Return amount of bytes we can accept at this offset
441 * If near_copies == raid_disk, there are no striping issues,
442 * but in that case, the function isn't called at all.
443 */
444 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
445 struct bio_vec *bio_vec)
446 {
447 mddev_t *mddev = q->queuedata;
448 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
449 int max;
450 unsigned int chunk_sectors = mddev->chunk_size >> 9;
451 unsigned int bio_sectors = bio->bi_size >> 9;
452
453 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
454 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
455 if (max <= bio_vec->bv_len && bio_sectors == 0)
456 return bio_vec->bv_len;
457 else
458 return max;
459 }
460
461 /*
462 * This routine returns the disk from which the requested read should
463 * be done. There is a per-array 'next expected sequential IO' sector
464 * number - if this matches on the next IO then we use the last disk.
465 * There is also a per-disk 'last know head position' sector that is
466 * maintained from IRQ contexts, both the normal and the resync IO
467 * completion handlers update this position correctly. If there is no
468 * perfect sequential match then we pick the disk whose head is closest.
469 *
470 * If there are 2 mirrors in the same 2 devices, performance degrades
471 * because position is mirror, not device based.
472 *
473 * The rdev for the device selected will have nr_pending incremented.
474 */
475
476 /*
477 * FIXME: possibly should rethink readbalancing and do it differently
478 * depending on near_copies / far_copies geometry.
479 */
480 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
481 {
482 const unsigned long this_sector = r10_bio->sector;
483 int disk, slot, nslot;
484 const int sectors = r10_bio->sectors;
485 sector_t new_distance, current_distance;
486 mdk_rdev_t *rdev;
487
488 raid10_find_phys(conf, r10_bio);
489 rcu_read_lock();
490 /*
491 * Check if we can balance. We can balance on the whole
492 * device if no resync is going on (recovery is ok), or below
493 * the resync window. We take the first readable disk when
494 * above the resync window.
495 */
496 if (conf->mddev->recovery_cp < MaxSector
497 && (this_sector + sectors >= conf->next_resync)) {
498 /* make sure that disk is operational */
499 slot = 0;
500 disk = r10_bio->devs[slot].devnum;
501
502 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
503 r10_bio->devs[slot].bio == IO_BLOCKED ||
504 !test_bit(In_sync, &rdev->flags)) {
505 slot++;
506 if (slot == conf->copies) {
507 slot = 0;
508 disk = -1;
509 break;
510 }
511 disk = r10_bio->devs[slot].devnum;
512 }
513 goto rb_out;
514 }
515
516
517 /* make sure the disk is operational */
518 slot = 0;
519 disk = r10_bio->devs[slot].devnum;
520 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
521 r10_bio->devs[slot].bio == IO_BLOCKED ||
522 !test_bit(In_sync, &rdev->flags)) {
523 slot ++;
524 if (slot == conf->copies) {
525 disk = -1;
526 goto rb_out;
527 }
528 disk = r10_bio->devs[slot].devnum;
529 }
530
531
532 current_distance = abs(r10_bio->devs[slot].addr -
533 conf->mirrors[disk].head_position);
534
535 /* Find the disk whose head is closest */
536
537 for (nslot = slot; nslot < conf->copies; nslot++) {
538 int ndisk = r10_bio->devs[nslot].devnum;
539
540
541 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
542 r10_bio->devs[nslot].bio == IO_BLOCKED ||
543 !test_bit(In_sync, &rdev->flags))
544 continue;
545
546 /* This optimisation is debatable, and completely destroys
547 * sequential read speed for 'far copies' arrays. So only
548 * keep it for 'near' arrays, and review those later.
549 */
550 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
551 disk = ndisk;
552 slot = nslot;
553 break;
554 }
555 new_distance = abs(r10_bio->devs[nslot].addr -
556 conf->mirrors[ndisk].head_position);
557 if (new_distance < current_distance) {
558 current_distance = new_distance;
559 disk = ndisk;
560 slot = nslot;
561 }
562 }
563
564 rb_out:
565 r10_bio->read_slot = slot;
566 /* conf->next_seq_sect = this_sector + sectors;*/
567
568 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
569 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
570 rcu_read_unlock();
571
572 return disk;
573 }
574
575 static void unplug_slaves(mddev_t *mddev)
576 {
577 conf_t *conf = mddev_to_conf(mddev);
578 int i;
579
580 rcu_read_lock();
581 for (i=0; i<mddev->raid_disks; i++) {
582 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
583 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
584 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
585
586 atomic_inc(&rdev->nr_pending);
587 rcu_read_unlock();
588
589 if (r_queue->unplug_fn)
590 r_queue->unplug_fn(r_queue);
591
592 rdev_dec_pending(rdev, mddev);
593 rcu_read_lock();
594 }
595 }
596 rcu_read_unlock();
597 }
598
599 static void raid10_unplug(request_queue_t *q)
600 {
601 mddev_t *mddev = q->queuedata;
602
603 unplug_slaves(q->queuedata);
604 md_wakeup_thread(mddev->thread);
605 }
606
607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
608 sector_t *error_sector)
609 {
610 mddev_t *mddev = q->queuedata;
611 conf_t *conf = mddev_to_conf(mddev);
612 int i, ret = 0;
613
614 rcu_read_lock();
615 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
616 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
617 if (rdev && !test_bit(Faulty, &rdev->flags)) {
618 struct block_device *bdev = rdev->bdev;
619 request_queue_t *r_queue = bdev_get_queue(bdev);
620
621 if (!r_queue->issue_flush_fn)
622 ret = -EOPNOTSUPP;
623 else {
624 atomic_inc(&rdev->nr_pending);
625 rcu_read_unlock();
626 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
627 error_sector);
628 rdev_dec_pending(rdev, mddev);
629 rcu_read_lock();
630 }
631 }
632 }
633 rcu_read_unlock();
634 return ret;
635 }
636
637 /* Barriers....
638 * Sometimes we need to suspend IO while we do something else,
639 * either some resync/recovery, or reconfigure the array.
640 * To do this we raise a 'barrier'.
641 * The 'barrier' is a counter that can be raised multiple times
642 * to count how many activities are happening which preclude
643 * normal IO.
644 * We can only raise the barrier if there is no pending IO.
645 * i.e. if nr_pending == 0.
646 * We choose only to raise the barrier if no-one is waiting for the
647 * barrier to go down. This means that as soon as an IO request
648 * is ready, no other operations which require a barrier will start
649 * until the IO request has had a chance.
650 *
651 * So: regular IO calls 'wait_barrier'. When that returns there
652 * is no backgroup IO happening, It must arrange to call
653 * allow_barrier when it has finished its IO.
654 * backgroup IO calls must call raise_barrier. Once that returns
655 * there is no normal IO happeing. It must arrange to call
656 * lower_barrier when the particular background IO completes.
657 */
658 #define RESYNC_DEPTH 32
659
660 static void raise_barrier(conf_t *conf, int force)
661 {
662 BUG_ON(force && !conf->barrier);
663 spin_lock_irq(&conf->resync_lock);
664
665 /* Wait until no block IO is waiting (unless 'force') */
666 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
667 conf->resync_lock,
668 raid10_unplug(conf->mddev->queue));
669
670 /* block any new IO from starting */
671 conf->barrier++;
672
673 /* No wait for all pending IO to complete */
674 wait_event_lock_irq(conf->wait_barrier,
675 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
676 conf->resync_lock,
677 raid10_unplug(conf->mddev->queue));
678
679 spin_unlock_irq(&conf->resync_lock);
680 }
681
682 static void lower_barrier(conf_t *conf)
683 {
684 unsigned long flags;
685 spin_lock_irqsave(&conf->resync_lock, flags);
686 conf->barrier--;
687 spin_unlock_irqrestore(&conf->resync_lock, flags);
688 wake_up(&conf->wait_barrier);
689 }
690
691 static void wait_barrier(conf_t *conf)
692 {
693 spin_lock_irq(&conf->resync_lock);
694 if (conf->barrier) {
695 conf->nr_waiting++;
696 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
697 conf->resync_lock,
698 raid10_unplug(conf->mddev->queue));
699 conf->nr_waiting--;
700 }
701 conf->nr_pending++;
702 spin_unlock_irq(&conf->resync_lock);
703 }
704
705 static void allow_barrier(conf_t *conf)
706 {
707 unsigned long flags;
708 spin_lock_irqsave(&conf->resync_lock, flags);
709 conf->nr_pending--;
710 spin_unlock_irqrestore(&conf->resync_lock, flags);
711 wake_up(&conf->wait_barrier);
712 }
713
714 static void freeze_array(conf_t *conf)
715 {
716 /* stop syncio and normal IO and wait for everything to
717 * go quite.
718 * We increment barrier and nr_waiting, and then
719 * wait until barrier+nr_pending match nr_queued+2
720 */
721 spin_lock_irq(&conf->resync_lock);
722 conf->barrier++;
723 conf->nr_waiting++;
724 wait_event_lock_irq(conf->wait_barrier,
725 conf->barrier+conf->nr_pending == conf->nr_queued+2,
726 conf->resync_lock,
727 raid10_unplug(conf->mddev->queue));
728 spin_unlock_irq(&conf->resync_lock);
729 }
730
731 static void unfreeze_array(conf_t *conf)
732 {
733 /* reverse the effect of the freeze */
734 spin_lock_irq(&conf->resync_lock);
735 conf->barrier--;
736 conf->nr_waiting--;
737 wake_up(&conf->wait_barrier);
738 spin_unlock_irq(&conf->resync_lock);
739 }
740
741 static int make_request(request_queue_t *q, struct bio * bio)
742 {
743 mddev_t *mddev = q->queuedata;
744 conf_t *conf = mddev_to_conf(mddev);
745 mirror_info_t *mirror;
746 r10bio_t *r10_bio;
747 struct bio *read_bio;
748 int i;
749 int chunk_sects = conf->chunk_mask + 1;
750 const int rw = bio_data_dir(bio);
751 struct bio_list bl;
752 unsigned long flags;
753
754 if (unlikely(bio_barrier(bio))) {
755 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
756 return 0;
757 }
758
759 /* If this request crosses a chunk boundary, we need to
760 * split it. This will only happen for 1 PAGE (or less) requests.
761 */
762 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
763 > chunk_sects &&
764 conf->near_copies < conf->raid_disks)) {
765 struct bio_pair *bp;
766 /* Sanity check -- queue functions should prevent this happening */
767 if (bio->bi_vcnt != 1 ||
768 bio->bi_idx != 0)
769 goto bad_map;
770 /* This is a one page bio that upper layers
771 * refuse to split for us, so we need to split it.
772 */
773 bp = bio_split(bio, bio_split_pool,
774 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
775 if (make_request(q, &bp->bio1))
776 generic_make_request(&bp->bio1);
777 if (make_request(q, &bp->bio2))
778 generic_make_request(&bp->bio2);
779
780 bio_pair_release(bp);
781 return 0;
782 bad_map:
783 printk("raid10_make_request bug: can't convert block across chunks"
784 " or bigger than %dk %llu %d\n", chunk_sects/2,
785 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
786
787 bio_io_error(bio, bio->bi_size);
788 return 0;
789 }
790
791 md_write_start(mddev, bio);
792
793 /*
794 * Register the new request and wait if the reconstruction
795 * thread has put up a bar for new requests.
796 * Continue immediately if no resync is active currently.
797 */
798 wait_barrier(conf);
799
800 disk_stat_inc(mddev->gendisk, ios[rw]);
801 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
802
803 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
804
805 r10_bio->master_bio = bio;
806 r10_bio->sectors = bio->bi_size >> 9;
807
808 r10_bio->mddev = mddev;
809 r10_bio->sector = bio->bi_sector;
810 r10_bio->state = 0;
811
812 if (rw == READ) {
813 /*
814 * read balancing logic:
815 */
816 int disk = read_balance(conf, r10_bio);
817 int slot = r10_bio->read_slot;
818 if (disk < 0) {
819 raid_end_bio_io(r10_bio);
820 return 0;
821 }
822 mirror = conf->mirrors + disk;
823
824 read_bio = bio_clone(bio, GFP_NOIO);
825
826 r10_bio->devs[slot].bio = read_bio;
827
828 read_bio->bi_sector = r10_bio->devs[slot].addr +
829 mirror->rdev->data_offset;
830 read_bio->bi_bdev = mirror->rdev->bdev;
831 read_bio->bi_end_io = raid10_end_read_request;
832 read_bio->bi_rw = READ;
833 read_bio->bi_private = r10_bio;
834
835 generic_make_request(read_bio);
836 return 0;
837 }
838
839 /*
840 * WRITE:
841 */
842 /* first select target devices under spinlock and
843 * inc refcount on their rdev. Record them by setting
844 * bios[x] to bio
845 */
846 raid10_find_phys(conf, r10_bio);
847 rcu_read_lock();
848 for (i = 0; i < conf->copies; i++) {
849 int d = r10_bio->devs[i].devnum;
850 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
851 if (rdev &&
852 !test_bit(Faulty, &rdev->flags)) {
853 atomic_inc(&rdev->nr_pending);
854 r10_bio->devs[i].bio = bio;
855 } else {
856 r10_bio->devs[i].bio = NULL;
857 set_bit(R10BIO_Degraded, &r10_bio->state);
858 }
859 }
860 rcu_read_unlock();
861
862 atomic_set(&r10_bio->remaining, 0);
863
864 bio_list_init(&bl);
865 for (i = 0; i < conf->copies; i++) {
866 struct bio *mbio;
867 int d = r10_bio->devs[i].devnum;
868 if (!r10_bio->devs[i].bio)
869 continue;
870
871 mbio = bio_clone(bio, GFP_NOIO);
872 r10_bio->devs[i].bio = mbio;
873
874 mbio->bi_sector = r10_bio->devs[i].addr+
875 conf->mirrors[d].rdev->data_offset;
876 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
877 mbio->bi_end_io = raid10_end_write_request;
878 mbio->bi_rw = WRITE;
879 mbio->bi_private = r10_bio;
880
881 atomic_inc(&r10_bio->remaining);
882 bio_list_add(&bl, mbio);
883 }
884
885 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
886 spin_lock_irqsave(&conf->device_lock, flags);
887 bio_list_merge(&conf->pending_bio_list, &bl);
888 blk_plug_device(mddev->queue);
889 spin_unlock_irqrestore(&conf->device_lock, flags);
890
891 return 0;
892 }
893
894 static void status(struct seq_file *seq, mddev_t *mddev)
895 {
896 conf_t *conf = mddev_to_conf(mddev);
897 int i;
898
899 if (conf->near_copies < conf->raid_disks)
900 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
901 if (conf->near_copies > 1)
902 seq_printf(seq, " %d near-copies", conf->near_copies);
903 if (conf->far_copies > 1)
904 seq_printf(seq, " %d far-copies", conf->far_copies);
905
906 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
907 conf->working_disks);
908 for (i = 0; i < conf->raid_disks; i++)
909 seq_printf(seq, "%s",
910 conf->mirrors[i].rdev &&
911 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
912 seq_printf(seq, "]");
913 }
914
915 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
916 {
917 char b[BDEVNAME_SIZE];
918 conf_t *conf = mddev_to_conf(mddev);
919
920 /*
921 * If it is not operational, then we have already marked it as dead
922 * else if it is the last working disks, ignore the error, let the
923 * next level up know.
924 * else mark the drive as failed
925 */
926 if (test_bit(In_sync, &rdev->flags)
927 && conf->working_disks == 1)
928 /*
929 * Don't fail the drive, just return an IO error.
930 * The test should really be more sophisticated than
931 * "working_disks == 1", but it isn't critical, and
932 * can wait until we do more sophisticated "is the drive
933 * really dead" tests...
934 */
935 return;
936 if (test_bit(In_sync, &rdev->flags)) {
937 mddev->degraded++;
938 conf->working_disks--;
939 /*
940 * if recovery is running, make sure it aborts.
941 */
942 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
943 }
944 clear_bit(In_sync, &rdev->flags);
945 set_bit(Faulty, &rdev->flags);
946 mddev->sb_dirty = 1;
947 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
948 " Operation continuing on %d devices\n",
949 bdevname(rdev->bdev,b), conf->working_disks);
950 }
951
952 static void print_conf(conf_t *conf)
953 {
954 int i;
955 mirror_info_t *tmp;
956
957 printk("RAID10 conf printout:\n");
958 if (!conf) {
959 printk("(!conf)\n");
960 return;
961 }
962 printk(" --- wd:%d rd:%d\n", conf->working_disks,
963 conf->raid_disks);
964
965 for (i = 0; i < conf->raid_disks; i++) {
966 char b[BDEVNAME_SIZE];
967 tmp = conf->mirrors + i;
968 if (tmp->rdev)
969 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
970 i, !test_bit(In_sync, &tmp->rdev->flags),
971 !test_bit(Faulty, &tmp->rdev->flags),
972 bdevname(tmp->rdev->bdev,b));
973 }
974 }
975
976 static void close_sync(conf_t *conf)
977 {
978 wait_barrier(conf);
979 allow_barrier(conf);
980
981 mempool_destroy(conf->r10buf_pool);
982 conf->r10buf_pool = NULL;
983 }
984
985 /* check if there are enough drives for
986 * every block to appear on atleast one
987 */
988 static int enough(conf_t *conf)
989 {
990 int first = 0;
991
992 do {
993 int n = conf->copies;
994 int cnt = 0;
995 while (n--) {
996 if (conf->mirrors[first].rdev)
997 cnt++;
998 first = (first+1) % conf->raid_disks;
999 }
1000 if (cnt == 0)
1001 return 0;
1002 } while (first != 0);
1003 return 1;
1004 }
1005
1006 static int raid10_spare_active(mddev_t *mddev)
1007 {
1008 int i;
1009 conf_t *conf = mddev->private;
1010 mirror_info_t *tmp;
1011
1012 /*
1013 * Find all non-in_sync disks within the RAID10 configuration
1014 * and mark them in_sync
1015 */
1016 for (i = 0; i < conf->raid_disks; i++) {
1017 tmp = conf->mirrors + i;
1018 if (tmp->rdev
1019 && !test_bit(Faulty, &tmp->rdev->flags)
1020 && !test_bit(In_sync, &tmp->rdev->flags)) {
1021 conf->working_disks++;
1022 mddev->degraded--;
1023 set_bit(In_sync, &tmp->rdev->flags);
1024 }
1025 }
1026
1027 print_conf(conf);
1028 return 0;
1029 }
1030
1031
1032 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1033 {
1034 conf_t *conf = mddev->private;
1035 int found = 0;
1036 int mirror;
1037 mirror_info_t *p;
1038
1039 if (mddev->recovery_cp < MaxSector)
1040 /* only hot-add to in-sync arrays, as recovery is
1041 * very different from resync
1042 */
1043 return 0;
1044 if (!enough(conf))
1045 return 0;
1046
1047 if (rdev->saved_raid_disk >= 0 &&
1048 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1049 mirror = rdev->saved_raid_disk;
1050 else
1051 mirror = 0;
1052 for ( ; mirror < mddev->raid_disks; mirror++)
1053 if ( !(p=conf->mirrors+mirror)->rdev) {
1054
1055 blk_queue_stack_limits(mddev->queue,
1056 rdev->bdev->bd_disk->queue);
1057 /* as we don't honour merge_bvec_fn, we must never risk
1058 * violating it, so limit ->max_sector to one PAGE, as
1059 * a one page request is never in violation.
1060 */
1061 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1062 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1063 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1064
1065 p->head_position = 0;
1066 rdev->raid_disk = mirror;
1067 found = 1;
1068 if (rdev->saved_raid_disk != mirror)
1069 conf->fullsync = 1;
1070 rcu_assign_pointer(p->rdev, rdev);
1071 break;
1072 }
1073
1074 print_conf(conf);
1075 return found;
1076 }
1077
1078 static int raid10_remove_disk(mddev_t *mddev, int number)
1079 {
1080 conf_t *conf = mddev->private;
1081 int err = 0;
1082 mdk_rdev_t *rdev;
1083 mirror_info_t *p = conf->mirrors+ number;
1084
1085 print_conf(conf);
1086 rdev = p->rdev;
1087 if (rdev) {
1088 if (test_bit(In_sync, &rdev->flags) ||
1089 atomic_read(&rdev->nr_pending)) {
1090 err = -EBUSY;
1091 goto abort;
1092 }
1093 p->rdev = NULL;
1094 synchronize_rcu();
1095 if (atomic_read(&rdev->nr_pending)) {
1096 /* lost the race, try later */
1097 err = -EBUSY;
1098 p->rdev = rdev;
1099 }
1100 }
1101 abort:
1102
1103 print_conf(conf);
1104 return err;
1105 }
1106
1107
1108 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1109 {
1110 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1111 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1112 int i,d;
1113
1114 if (bio->bi_size)
1115 return 1;
1116
1117 for (i=0; i<conf->copies; i++)
1118 if (r10_bio->devs[i].bio == bio)
1119 break;
1120 if (i == conf->copies)
1121 BUG();
1122 update_head_pos(i, r10_bio);
1123 d = r10_bio->devs[i].devnum;
1124
1125 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1126 set_bit(R10BIO_Uptodate, &r10_bio->state);
1127 else if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1128 md_error(r10_bio->mddev,
1129 conf->mirrors[d].rdev);
1130
1131 /* for reconstruct, we always reschedule after a read.
1132 * for resync, only after all reads
1133 */
1134 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1135 atomic_dec_and_test(&r10_bio->remaining)) {
1136 /* we have read all the blocks,
1137 * do the comparison in process context in raid10d
1138 */
1139 reschedule_retry(r10_bio);
1140 }
1141 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1142 return 0;
1143 }
1144
1145 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1146 {
1147 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1148 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1149 mddev_t *mddev = r10_bio->mddev;
1150 conf_t *conf = mddev_to_conf(mddev);
1151 int i,d;
1152
1153 if (bio->bi_size)
1154 return 1;
1155
1156 for (i = 0; i < conf->copies; i++)
1157 if (r10_bio->devs[i].bio == bio)
1158 break;
1159 d = r10_bio->devs[i].devnum;
1160
1161 if (!uptodate)
1162 md_error(mddev, conf->mirrors[d].rdev);
1163 update_head_pos(i, r10_bio);
1164
1165 while (atomic_dec_and_test(&r10_bio->remaining)) {
1166 if (r10_bio->master_bio == NULL) {
1167 /* the primary of several recovery bios */
1168 md_done_sync(mddev, r10_bio->sectors, 1);
1169 put_buf(r10_bio);
1170 break;
1171 } else {
1172 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1173 put_buf(r10_bio);
1174 r10_bio = r10_bio2;
1175 }
1176 }
1177 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1178 return 0;
1179 }
1180
1181 /*
1182 * Note: sync and recover and handled very differently for raid10
1183 * This code is for resync.
1184 * For resync, we read through virtual addresses and read all blocks.
1185 * If there is any error, we schedule a write. The lowest numbered
1186 * drive is authoritative.
1187 * However requests come for physical address, so we need to map.
1188 * For every physical address there are raid_disks/copies virtual addresses,
1189 * which is always are least one, but is not necessarly an integer.
1190 * This means that a physical address can span multiple chunks, so we may
1191 * have to submit multiple io requests for a single sync request.
1192 */
1193 /*
1194 * We check if all blocks are in-sync and only write to blocks that
1195 * aren't in sync
1196 */
1197 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1198 {
1199 conf_t *conf = mddev_to_conf(mddev);
1200 int i, first;
1201 struct bio *tbio, *fbio;
1202
1203 atomic_set(&r10_bio->remaining, 1);
1204
1205 /* find the first device with a block */
1206 for (i=0; i<conf->copies; i++)
1207 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1208 break;
1209
1210 if (i == conf->copies)
1211 goto done;
1212
1213 first = i;
1214 fbio = r10_bio->devs[i].bio;
1215
1216 /* now find blocks with errors */
1217 for (i=0 ; i < conf->copies ; i++) {
1218 int j, d;
1219 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1220
1221 tbio = r10_bio->devs[i].bio;
1222
1223 if (tbio->bi_end_io != end_sync_read)
1224 continue;
1225 if (i == first)
1226 continue;
1227 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1228 /* We know that the bi_io_vec layout is the same for
1229 * both 'first' and 'i', so we just compare them.
1230 * All vec entries are PAGE_SIZE;
1231 */
1232 for (j = 0; j < vcnt; j++)
1233 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1234 page_address(tbio->bi_io_vec[j].bv_page),
1235 PAGE_SIZE))
1236 break;
1237 if (j == vcnt)
1238 continue;
1239 mddev->resync_mismatches += r10_bio->sectors;
1240 }
1241 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1242 /* Don't fix anything. */
1243 continue;
1244 /* Ok, we need to write this bio
1245 * First we need to fixup bv_offset, bv_len and
1246 * bi_vecs, as the read request might have corrupted these
1247 */
1248 tbio->bi_vcnt = vcnt;
1249 tbio->bi_size = r10_bio->sectors << 9;
1250 tbio->bi_idx = 0;
1251 tbio->bi_phys_segments = 0;
1252 tbio->bi_hw_segments = 0;
1253 tbio->bi_hw_front_size = 0;
1254 tbio->bi_hw_back_size = 0;
1255 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1256 tbio->bi_flags |= 1 << BIO_UPTODATE;
1257 tbio->bi_next = NULL;
1258 tbio->bi_rw = WRITE;
1259 tbio->bi_private = r10_bio;
1260 tbio->bi_sector = r10_bio->devs[i].addr;
1261
1262 for (j=0; j < vcnt ; j++) {
1263 tbio->bi_io_vec[j].bv_offset = 0;
1264 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1265
1266 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1267 page_address(fbio->bi_io_vec[j].bv_page),
1268 PAGE_SIZE);
1269 }
1270 tbio->bi_end_io = end_sync_write;
1271
1272 d = r10_bio->devs[i].devnum;
1273 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1274 atomic_inc(&r10_bio->remaining);
1275 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1276
1277 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1278 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1279 generic_make_request(tbio);
1280 }
1281
1282 done:
1283 if (atomic_dec_and_test(&r10_bio->remaining)) {
1284 md_done_sync(mddev, r10_bio->sectors, 1);
1285 put_buf(r10_bio);
1286 }
1287 }
1288
1289 /*
1290 * Now for the recovery code.
1291 * Recovery happens across physical sectors.
1292 * We recover all non-is_sync drives by finding the virtual address of
1293 * each, and then choose a working drive that also has that virt address.
1294 * There is a separate r10_bio for each non-in_sync drive.
1295 * Only the first two slots are in use. The first for reading,
1296 * The second for writing.
1297 *
1298 */
1299
1300 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1301 {
1302 conf_t *conf = mddev_to_conf(mddev);
1303 int i, d;
1304 struct bio *bio, *wbio;
1305
1306
1307 /* move the pages across to the second bio
1308 * and submit the write request
1309 */
1310 bio = r10_bio->devs[0].bio;
1311 wbio = r10_bio->devs[1].bio;
1312 for (i=0; i < wbio->bi_vcnt; i++) {
1313 struct page *p = bio->bi_io_vec[i].bv_page;
1314 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1315 wbio->bi_io_vec[i].bv_page = p;
1316 }
1317 d = r10_bio->devs[1].devnum;
1318
1319 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1320 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1321 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1322 generic_make_request(wbio);
1323 else
1324 bio_endio(wbio, wbio->bi_size, -EIO);
1325 }
1326
1327
1328 /*
1329 * This is a kernel thread which:
1330 *
1331 * 1. Retries failed read operations on working mirrors.
1332 * 2. Updates the raid superblock when problems encounter.
1333 * 3. Performs writes following reads for array syncronising.
1334 */
1335
1336 static void raid10d(mddev_t *mddev)
1337 {
1338 r10bio_t *r10_bio;
1339 struct bio *bio;
1340 unsigned long flags;
1341 conf_t *conf = mddev_to_conf(mddev);
1342 struct list_head *head = &conf->retry_list;
1343 int unplug=0;
1344 mdk_rdev_t *rdev;
1345
1346 md_check_recovery(mddev);
1347
1348 for (;;) {
1349 char b[BDEVNAME_SIZE];
1350 spin_lock_irqsave(&conf->device_lock, flags);
1351
1352 if (conf->pending_bio_list.head) {
1353 bio = bio_list_get(&conf->pending_bio_list);
1354 blk_remove_plug(mddev->queue);
1355 spin_unlock_irqrestore(&conf->device_lock, flags);
1356 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1357 if (bitmap_unplug(mddev->bitmap) != 0)
1358 printk("%s: bitmap file write failed!\n", mdname(mddev));
1359
1360 while (bio) { /* submit pending writes */
1361 struct bio *next = bio->bi_next;
1362 bio->bi_next = NULL;
1363 generic_make_request(bio);
1364 bio = next;
1365 }
1366 unplug = 1;
1367
1368 continue;
1369 }
1370
1371 if (list_empty(head))
1372 break;
1373 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1374 list_del(head->prev);
1375 conf->nr_queued--;
1376 spin_unlock_irqrestore(&conf->device_lock, flags);
1377
1378 mddev = r10_bio->mddev;
1379 conf = mddev_to_conf(mddev);
1380 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1381 sync_request_write(mddev, r10_bio);
1382 unplug = 1;
1383 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1384 recovery_request_write(mddev, r10_bio);
1385 unplug = 1;
1386 } else {
1387 int mirror;
1388 /* we got a read error. Maybe the drive is bad. Maybe just
1389 * the block and we can fix it.
1390 * We freeze all other IO, and try reading the block from
1391 * other devices. When we find one, we re-write
1392 * and check it that fixes the read error.
1393 * This is all done synchronously while the array is
1394 * frozen.
1395 */
1396 int sect = 0; /* Offset from r10_bio->sector */
1397 int sectors = r10_bio->sectors;
1398 freeze_array(conf);
1399 if (mddev->ro == 0) while(sectors) {
1400 int s = sectors;
1401 int sl = r10_bio->read_slot;
1402 int success = 0;
1403
1404 if (s > (PAGE_SIZE>>9))
1405 s = PAGE_SIZE >> 9;
1406
1407 do {
1408 int d = r10_bio->devs[sl].devnum;
1409 rdev = conf->mirrors[d].rdev;
1410 if (rdev &&
1411 test_bit(In_sync, &rdev->flags) &&
1412 sync_page_io(rdev->bdev,
1413 r10_bio->devs[sl].addr +
1414 sect + rdev->data_offset,
1415 s<<9,
1416 conf->tmppage, READ))
1417 success = 1;
1418 else {
1419 sl++;
1420 if (sl == conf->copies)
1421 sl = 0;
1422 }
1423 } while (!success && sl != r10_bio->read_slot);
1424
1425 if (success) {
1426 /* write it back and re-read */
1427 while (sl != r10_bio->read_slot) {
1428 int d;
1429 if (sl==0)
1430 sl = conf->copies;
1431 sl--;
1432 d = r10_bio->devs[sl].devnum;
1433 rdev = conf->mirrors[d].rdev;
1434 if (rdev &&
1435 test_bit(In_sync, &rdev->flags)) {
1436 if (sync_page_io(rdev->bdev,
1437 r10_bio->devs[sl].addr +
1438 sect + rdev->data_offset,
1439 s<<9, conf->tmppage, WRITE) == 0 ||
1440 sync_page_io(rdev->bdev,
1441 r10_bio->devs[sl].addr +
1442 sect + rdev->data_offset,
1443 s<<9, conf->tmppage, READ) == 0) {
1444 /* Well, this device is dead */
1445 md_error(mddev, rdev);
1446 }
1447 }
1448 }
1449 } else {
1450 /* Cannot read from anywhere -- bye bye array */
1451 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev);
1452 break;
1453 }
1454 sectors -= s;
1455 sect += s;
1456 }
1457
1458 unfreeze_array(conf);
1459
1460 bio = r10_bio->devs[r10_bio->read_slot].bio;
1461 r10_bio->devs[r10_bio->read_slot].bio =
1462 mddev->ro ? IO_BLOCKED : NULL;
1463 bio_put(bio);
1464 mirror = read_balance(conf, r10_bio);
1465 if (mirror == -1) {
1466 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1467 " read error for block %llu\n",
1468 bdevname(bio->bi_bdev,b),
1469 (unsigned long long)r10_bio->sector);
1470 raid_end_bio_io(r10_bio);
1471 } else {
1472 rdev = conf->mirrors[mirror].rdev;
1473 if (printk_ratelimit())
1474 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1475 " another mirror\n",
1476 bdevname(rdev->bdev,b),
1477 (unsigned long long)r10_bio->sector);
1478 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1479 r10_bio->devs[r10_bio->read_slot].bio = bio;
1480 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1481 + rdev->data_offset;
1482 bio->bi_bdev = rdev->bdev;
1483 bio->bi_rw = READ;
1484 bio->bi_private = r10_bio;
1485 bio->bi_end_io = raid10_end_read_request;
1486 unplug = 1;
1487 generic_make_request(bio);
1488 }
1489 }
1490 }
1491 spin_unlock_irqrestore(&conf->device_lock, flags);
1492 if (unplug)
1493 unplug_slaves(mddev);
1494 }
1495
1496
1497 static int init_resync(conf_t *conf)
1498 {
1499 int buffs;
1500
1501 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1502 if (conf->r10buf_pool)
1503 BUG();
1504 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1505 if (!conf->r10buf_pool)
1506 return -ENOMEM;
1507 conf->next_resync = 0;
1508 return 0;
1509 }
1510
1511 /*
1512 * perform a "sync" on one "block"
1513 *
1514 * We need to make sure that no normal I/O request - particularly write
1515 * requests - conflict with active sync requests.
1516 *
1517 * This is achieved by tracking pending requests and a 'barrier' concept
1518 * that can be installed to exclude normal IO requests.
1519 *
1520 * Resync and recovery are handled very differently.
1521 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1522 *
1523 * For resync, we iterate over virtual addresses, read all copies,
1524 * and update if there are differences. If only one copy is live,
1525 * skip it.
1526 * For recovery, we iterate over physical addresses, read a good
1527 * value for each non-in_sync drive, and over-write.
1528 *
1529 * So, for recovery we may have several outstanding complex requests for a
1530 * given address, one for each out-of-sync device. We model this by allocating
1531 * a number of r10_bio structures, one for each out-of-sync device.
1532 * As we setup these structures, we collect all bio's together into a list
1533 * which we then process collectively to add pages, and then process again
1534 * to pass to generic_make_request.
1535 *
1536 * The r10_bio structures are linked using a borrowed master_bio pointer.
1537 * This link is counted in ->remaining. When the r10_bio that points to NULL
1538 * has its remaining count decremented to 0, the whole complex operation
1539 * is complete.
1540 *
1541 */
1542
1543 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1544 {
1545 conf_t *conf = mddev_to_conf(mddev);
1546 r10bio_t *r10_bio;
1547 struct bio *biolist = NULL, *bio;
1548 sector_t max_sector, nr_sectors;
1549 int disk;
1550 int i;
1551 int max_sync;
1552 int sync_blocks;
1553
1554 sector_t sectors_skipped = 0;
1555 int chunks_skipped = 0;
1556
1557 if (!conf->r10buf_pool)
1558 if (init_resync(conf))
1559 return 0;
1560
1561 skipped:
1562 max_sector = mddev->size << 1;
1563 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1564 max_sector = mddev->resync_max_sectors;
1565 if (sector_nr >= max_sector) {
1566 /* If we aborted, we need to abort the
1567 * sync on the 'current' bitmap chucks (there can
1568 * be several when recovering multiple devices).
1569 * as we may have started syncing it but not finished.
1570 * We can find the current address in
1571 * mddev->curr_resync, but for recovery,
1572 * we need to convert that to several
1573 * virtual addresses.
1574 */
1575 if (mddev->curr_resync < max_sector) { /* aborted */
1576 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1577 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1578 &sync_blocks, 1);
1579 else for (i=0; i<conf->raid_disks; i++) {
1580 sector_t sect =
1581 raid10_find_virt(conf, mddev->curr_resync, i);
1582 bitmap_end_sync(mddev->bitmap, sect,
1583 &sync_blocks, 1);
1584 }
1585 } else /* completed sync */
1586 conf->fullsync = 0;
1587
1588 bitmap_close_sync(mddev->bitmap);
1589 close_sync(conf);
1590 *skipped = 1;
1591 return sectors_skipped;
1592 }
1593 if (chunks_skipped >= conf->raid_disks) {
1594 /* if there has been nothing to do on any drive,
1595 * then there is nothing to do at all..
1596 */
1597 *skipped = 1;
1598 return (max_sector - sector_nr) + sectors_skipped;
1599 }
1600
1601 /* make sure whole request will fit in a chunk - if chunks
1602 * are meaningful
1603 */
1604 if (conf->near_copies < conf->raid_disks &&
1605 max_sector > (sector_nr | conf->chunk_mask))
1606 max_sector = (sector_nr | conf->chunk_mask) + 1;
1607 /*
1608 * If there is non-resync activity waiting for us then
1609 * put in a delay to throttle resync.
1610 */
1611 if (!go_faster && conf->nr_waiting)
1612 msleep_interruptible(1000);
1613
1614 /* Again, very different code for resync and recovery.
1615 * Both must result in an r10bio with a list of bios that
1616 * have bi_end_io, bi_sector, bi_bdev set,
1617 * and bi_private set to the r10bio.
1618 * For recovery, we may actually create several r10bios
1619 * with 2 bios in each, that correspond to the bios in the main one.
1620 * In this case, the subordinate r10bios link back through a
1621 * borrowed master_bio pointer, and the counter in the master
1622 * includes a ref from each subordinate.
1623 */
1624 /* First, we decide what to do and set ->bi_end_io
1625 * To end_sync_read if we want to read, and
1626 * end_sync_write if we will want to write.
1627 */
1628
1629 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1630 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1631 /* recovery... the complicated one */
1632 int i, j, k;
1633 r10_bio = NULL;
1634
1635 for (i=0 ; i<conf->raid_disks; i++)
1636 if (conf->mirrors[i].rdev &&
1637 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1638 int still_degraded = 0;
1639 /* want to reconstruct this device */
1640 r10bio_t *rb2 = r10_bio;
1641 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1642 int must_sync;
1643 /* Unless we are doing a full sync, we only need
1644 * to recover the block if it is set in the bitmap
1645 */
1646 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1647 &sync_blocks, 1);
1648 if (sync_blocks < max_sync)
1649 max_sync = sync_blocks;
1650 if (!must_sync &&
1651 !conf->fullsync) {
1652 /* yep, skip the sync_blocks here, but don't assume
1653 * that there will never be anything to do here
1654 */
1655 chunks_skipped = -1;
1656 continue;
1657 }
1658
1659 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1660 raise_barrier(conf, rb2 != NULL);
1661 atomic_set(&r10_bio->remaining, 0);
1662
1663 r10_bio->master_bio = (struct bio*)rb2;
1664 if (rb2)
1665 atomic_inc(&rb2->remaining);
1666 r10_bio->mddev = mddev;
1667 set_bit(R10BIO_IsRecover, &r10_bio->state);
1668 r10_bio->sector = sect;
1669
1670 raid10_find_phys(conf, r10_bio);
1671 /* Need to check if this section will still be
1672 * degraded
1673 */
1674 for (j=0; j<conf->copies;j++) {
1675 int d = r10_bio->devs[j].devnum;
1676 if (conf->mirrors[d].rdev == NULL ||
1677 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1678 still_degraded = 1;
1679 }
1680 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1681 &sync_blocks, still_degraded);
1682
1683 for (j=0; j<conf->copies;j++) {
1684 int d = r10_bio->devs[j].devnum;
1685 if (conf->mirrors[d].rdev &&
1686 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1687 /* This is where we read from */
1688 bio = r10_bio->devs[0].bio;
1689 bio->bi_next = biolist;
1690 biolist = bio;
1691 bio->bi_private = r10_bio;
1692 bio->bi_end_io = end_sync_read;
1693 bio->bi_rw = 0;
1694 bio->bi_sector = r10_bio->devs[j].addr +
1695 conf->mirrors[d].rdev->data_offset;
1696 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1697 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1698 atomic_inc(&r10_bio->remaining);
1699 /* and we write to 'i' */
1700
1701 for (k=0; k<conf->copies; k++)
1702 if (r10_bio->devs[k].devnum == i)
1703 break;
1704 bio = r10_bio->devs[1].bio;
1705 bio->bi_next = biolist;
1706 biolist = bio;
1707 bio->bi_private = r10_bio;
1708 bio->bi_end_io = end_sync_write;
1709 bio->bi_rw = 1;
1710 bio->bi_sector = r10_bio->devs[k].addr +
1711 conf->mirrors[i].rdev->data_offset;
1712 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1713
1714 r10_bio->devs[0].devnum = d;
1715 r10_bio->devs[1].devnum = i;
1716
1717 break;
1718 }
1719 }
1720 if (j == conf->copies) {
1721 /* Cannot recover, so abort the recovery */
1722 put_buf(r10_bio);
1723 r10_bio = rb2;
1724 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1725 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1726 mdname(mddev));
1727 break;
1728 }
1729 }
1730 if (biolist == NULL) {
1731 while (r10_bio) {
1732 r10bio_t *rb2 = r10_bio;
1733 r10_bio = (r10bio_t*) rb2->master_bio;
1734 rb2->master_bio = NULL;
1735 put_buf(rb2);
1736 }
1737 goto giveup;
1738 }
1739 } else {
1740 /* resync. Schedule a read for every block at this virt offset */
1741 int count = 0;
1742
1743 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1744 &sync_blocks, mddev->degraded) &&
1745 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1746 /* We can skip this block */
1747 *skipped = 1;
1748 return sync_blocks + sectors_skipped;
1749 }
1750 if (sync_blocks < max_sync)
1751 max_sync = sync_blocks;
1752 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1753
1754 r10_bio->mddev = mddev;
1755 atomic_set(&r10_bio->remaining, 0);
1756 raise_barrier(conf, 0);
1757 conf->next_resync = sector_nr;
1758
1759 r10_bio->master_bio = NULL;
1760 r10_bio->sector = sector_nr;
1761 set_bit(R10BIO_IsSync, &r10_bio->state);
1762 raid10_find_phys(conf, r10_bio);
1763 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1764
1765 for (i=0; i<conf->copies; i++) {
1766 int d = r10_bio->devs[i].devnum;
1767 bio = r10_bio->devs[i].bio;
1768 bio->bi_end_io = NULL;
1769 if (conf->mirrors[d].rdev == NULL ||
1770 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1771 continue;
1772 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1773 atomic_inc(&r10_bio->remaining);
1774 bio->bi_next = biolist;
1775 biolist = bio;
1776 bio->bi_private = r10_bio;
1777 bio->bi_end_io = end_sync_read;
1778 bio->bi_rw = 0;
1779 bio->bi_sector = r10_bio->devs[i].addr +
1780 conf->mirrors[d].rdev->data_offset;
1781 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1782 count++;
1783 }
1784
1785 if (count < 2) {
1786 for (i=0; i<conf->copies; i++) {
1787 int d = r10_bio->devs[i].devnum;
1788 if (r10_bio->devs[i].bio->bi_end_io)
1789 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1790 }
1791 put_buf(r10_bio);
1792 biolist = NULL;
1793 goto giveup;
1794 }
1795 }
1796
1797 for (bio = biolist; bio ; bio=bio->bi_next) {
1798
1799 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1800 if (bio->bi_end_io)
1801 bio->bi_flags |= 1 << BIO_UPTODATE;
1802 bio->bi_vcnt = 0;
1803 bio->bi_idx = 0;
1804 bio->bi_phys_segments = 0;
1805 bio->bi_hw_segments = 0;
1806 bio->bi_size = 0;
1807 }
1808
1809 nr_sectors = 0;
1810 if (sector_nr + max_sync < max_sector)
1811 max_sector = sector_nr + max_sync;
1812 do {
1813 struct page *page;
1814 int len = PAGE_SIZE;
1815 disk = 0;
1816 if (sector_nr + (len>>9) > max_sector)
1817 len = (max_sector - sector_nr) << 9;
1818 if (len == 0)
1819 break;
1820 for (bio= biolist ; bio ; bio=bio->bi_next) {
1821 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1822 if (bio_add_page(bio, page, len, 0) == 0) {
1823 /* stop here */
1824 struct bio *bio2;
1825 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1826 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1827 /* remove last page from this bio */
1828 bio2->bi_vcnt--;
1829 bio2->bi_size -= len;
1830 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1831 }
1832 goto bio_full;
1833 }
1834 disk = i;
1835 }
1836 nr_sectors += len>>9;
1837 sector_nr += len>>9;
1838 } while (biolist->bi_vcnt < RESYNC_PAGES);
1839 bio_full:
1840 r10_bio->sectors = nr_sectors;
1841
1842 while (biolist) {
1843 bio = biolist;
1844 biolist = biolist->bi_next;
1845
1846 bio->bi_next = NULL;
1847 r10_bio = bio->bi_private;
1848 r10_bio->sectors = nr_sectors;
1849
1850 if (bio->bi_end_io == end_sync_read) {
1851 md_sync_acct(bio->bi_bdev, nr_sectors);
1852 generic_make_request(bio);
1853 }
1854 }
1855
1856 if (sectors_skipped)
1857 /* pretend they weren't skipped, it makes
1858 * no important difference in this case
1859 */
1860 md_done_sync(mddev, sectors_skipped, 1);
1861
1862 return sectors_skipped + nr_sectors;
1863 giveup:
1864 /* There is nowhere to write, so all non-sync
1865 * drives must be failed, so try the next chunk...
1866 */
1867 {
1868 sector_t sec = max_sector - sector_nr;
1869 sectors_skipped += sec;
1870 chunks_skipped ++;
1871 sector_nr = max_sector;
1872 goto skipped;
1873 }
1874 }
1875
1876 static int run(mddev_t *mddev)
1877 {
1878 conf_t *conf;
1879 int i, disk_idx;
1880 mirror_info_t *disk;
1881 mdk_rdev_t *rdev;
1882 struct list_head *tmp;
1883 int nc, fc;
1884 sector_t stride, size;
1885
1886 if (mddev->level != 10) {
1887 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1888 mdname(mddev), mddev->level);
1889 goto out;
1890 }
1891 nc = mddev->layout & 255;
1892 fc = (mddev->layout >> 8) & 255;
1893 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1894 (mddev->layout >> 16)) {
1895 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1896 mdname(mddev), mddev->layout);
1897 goto out;
1898 }
1899 /*
1900 * copy the already verified devices into our private RAID10
1901 * bookkeeping area. [whatever we allocate in run(),
1902 * should be freed in stop()]
1903 */
1904 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1905 mddev->private = conf;
1906 if (!conf) {
1907 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1908 mdname(mddev));
1909 goto out;
1910 }
1911 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1912 GFP_KERNEL);
1913 if (!conf->mirrors) {
1914 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1915 mdname(mddev));
1916 goto out_free_conf;
1917 }
1918
1919 conf->tmppage = alloc_page(GFP_KERNEL);
1920 if (!conf->tmppage)
1921 goto out_free_conf;
1922
1923 conf->near_copies = nc;
1924 conf->far_copies = fc;
1925 conf->copies = nc*fc;
1926 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1927 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1928 stride = mddev->size >> (conf->chunk_shift-1);
1929 sector_div(stride, fc);
1930 conf->stride = stride << conf->chunk_shift;
1931
1932 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1933 r10bio_pool_free, conf);
1934 if (!conf->r10bio_pool) {
1935 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1936 mdname(mddev));
1937 goto out_free_conf;
1938 }
1939
1940 ITERATE_RDEV(mddev, rdev, tmp) {
1941 disk_idx = rdev->raid_disk;
1942 if (disk_idx >= mddev->raid_disks
1943 || disk_idx < 0)
1944 continue;
1945 disk = conf->mirrors + disk_idx;
1946
1947 disk->rdev = rdev;
1948
1949 blk_queue_stack_limits(mddev->queue,
1950 rdev->bdev->bd_disk->queue);
1951 /* as we don't honour merge_bvec_fn, we must never risk
1952 * violating it, so limit ->max_sector to one PAGE, as
1953 * a one page request is never in violation.
1954 */
1955 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1956 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1957 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1958
1959 disk->head_position = 0;
1960 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1961 conf->working_disks++;
1962 }
1963 conf->raid_disks = mddev->raid_disks;
1964 conf->mddev = mddev;
1965 spin_lock_init(&conf->device_lock);
1966 INIT_LIST_HEAD(&conf->retry_list);
1967
1968 spin_lock_init(&conf->resync_lock);
1969 init_waitqueue_head(&conf->wait_barrier);
1970
1971 /* need to check that every block has at least one working mirror */
1972 if (!enough(conf)) {
1973 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1974 mdname(mddev));
1975 goto out_free_conf;
1976 }
1977
1978 mddev->degraded = 0;
1979 for (i = 0; i < conf->raid_disks; i++) {
1980
1981 disk = conf->mirrors + i;
1982
1983 if (!disk->rdev) {
1984 disk->head_position = 0;
1985 mddev->degraded++;
1986 }
1987 }
1988
1989
1990 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1991 if (!mddev->thread) {
1992 printk(KERN_ERR
1993 "raid10: couldn't allocate thread for %s\n",
1994 mdname(mddev));
1995 goto out_free_conf;
1996 }
1997
1998 printk(KERN_INFO
1999 "raid10: raid set %s active with %d out of %d devices\n",
2000 mdname(mddev), mddev->raid_disks - mddev->degraded,
2001 mddev->raid_disks);
2002 /*
2003 * Ok, everything is just fine now
2004 */
2005 size = conf->stride * conf->raid_disks;
2006 sector_div(size, conf->near_copies);
2007 mddev->array_size = size/2;
2008 mddev->resync_max_sectors = size;
2009
2010 mddev->queue->unplug_fn = raid10_unplug;
2011 mddev->queue->issue_flush_fn = raid10_issue_flush;
2012
2013 /* Calculate max read-ahead size.
2014 * We need to readahead at least twice a whole stripe....
2015 * maybe...
2016 */
2017 {
2018 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_SIZE;
2019 stripe /= conf->near_copies;
2020 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2021 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2022 }
2023
2024 if (conf->near_copies < mddev->raid_disks)
2025 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2026 return 0;
2027
2028 out_free_conf:
2029 if (conf->r10bio_pool)
2030 mempool_destroy(conf->r10bio_pool);
2031 put_page(conf->tmppage);
2032 kfree(conf->mirrors);
2033 kfree(conf);
2034 mddev->private = NULL;
2035 out:
2036 return -EIO;
2037 }
2038
2039 static int stop(mddev_t *mddev)
2040 {
2041 conf_t *conf = mddev_to_conf(mddev);
2042
2043 md_unregister_thread(mddev->thread);
2044 mddev->thread = NULL;
2045 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2046 if (conf->r10bio_pool)
2047 mempool_destroy(conf->r10bio_pool);
2048 kfree(conf->mirrors);
2049 kfree(conf);
2050 mddev->private = NULL;
2051 return 0;
2052 }
2053
2054 static void raid10_quiesce(mddev_t *mddev, int state)
2055 {
2056 conf_t *conf = mddev_to_conf(mddev);
2057
2058 switch(state) {
2059 case 1:
2060 raise_barrier(conf, 0);
2061 break;
2062 case 0:
2063 lower_barrier(conf);
2064 break;
2065 }
2066 if (mddev->thread) {
2067 if (mddev->bitmap)
2068 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2069 else
2070 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2071 md_wakeup_thread(mddev->thread);
2072 }
2073 }
2074
2075 static mdk_personality_t raid10_personality =
2076 {
2077 .name = "raid10",
2078 .owner = THIS_MODULE,
2079 .make_request = make_request,
2080 .run = run,
2081 .stop = stop,
2082 .status = status,
2083 .error_handler = error,
2084 .hot_add_disk = raid10_add_disk,
2085 .hot_remove_disk= raid10_remove_disk,
2086 .spare_active = raid10_spare_active,
2087 .sync_request = sync_request,
2088 .quiesce = raid10_quiesce,
2089 };
2090
2091 static int __init raid_init(void)
2092 {
2093 return register_md_personality(RAID10, &raid10_personality);
2094 }
2095
2096 static void raid_exit(void)
2097 {
2098 unregister_md_personality(RAID10);
2099 }
2100
2101 module_init(raid_init);
2102 module_exit(raid_exit);
2103 MODULE_LICENSE("GPL");
2104 MODULE_ALIAS("md-personality-9"); /* RAID10 */