md: always set MD_RECOVERY_INTR when aborting a reshape or other "resync".
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
191 */
192 int i;
193 struct bio_vec *bvec;
194 int sofar = 0;
195
196 size <<= 9;
197 if (offset == 0 && size == bio->bi_size)
198 return;
199
200 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202 bio_advance(bio, offset << 9);
203
204 bio->bi_size = size;
205
206 /* avoid any complications with bi_idx being non-zero*/
207 if (bio->bi_idx) {
208 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 bio->bi_vcnt -= bio->bi_idx;
211 bio->bi_idx = 0;
212 }
213 /* Make sure vcnt and last bv are not too big */
214 bio_for_each_segment(bvec, bio, i) {
215 if (sofar + bvec->bv_len > size)
216 bvec->bv_len = size - sofar;
217 if (bvec->bv_len == 0) {
218 bio->bi_vcnt = i;
219 break;
220 }
221 sofar += bvec->bv_len;
222 }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227 * We have a system wide 'event count' that is incremented
228 * on any 'interesting' event, and readers of /proc/mdstat
229 * can use 'poll' or 'select' to find out when the event
230 * count increases.
231 *
232 * Events are:
233 * start array, stop array, error, add device, remove device,
234 * start build, activate spare
235 */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240 atomic_inc(&md_event_count);
241 wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246 * when calling sysfs_notify isn't needed.
247 */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250 atomic_inc(&md_event_count);
251 wake_up(&md_event_waiters);
252 }
253
254 /*
255 * Enables to iterate over all existing md arrays
256 * all_mddevs_lock protects this list.
257 */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263 * iterates through all used mddevs in the system.
264 * We take care to grab the all_mddevs_lock whenever navigating
265 * the list, and to always hold a refcount when unlocked.
266 * Any code which breaks out of this loop while own
267 * a reference to the current mddev and must mddev_put it.
268 */
269 #define for_each_mddev(_mddev,_tmp) \
270 \
271 for (({ spin_lock(&all_mddevs_lock); \
272 _tmp = all_mddevs.next; \
273 _mddev = NULL;}); \
274 ({ if (_tmp != &all_mddevs) \
275 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 spin_unlock(&all_mddevs_lock); \
277 if (_mddev) mddev_put(_mddev); \
278 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
279 _tmp != &all_mddevs;}); \
280 ({ spin_lock(&all_mddevs_lock); \
281 _tmp = _tmp->next;}) \
282 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286 * IO requests come here first so that we can check if the device is
287 * being suspended pending a reconfiguration.
288 * We hold a refcount over the call to ->make_request. By the time that
289 * call has finished, the bio has been linked into some internal structure
290 * and so is visible to ->quiesce(), so we don't need the refcount any more.
291 */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294 const int rw = bio_data_dir(bio);
295 struct mddev *mddev = q->queuedata;
296 int cpu;
297 unsigned int sectors;
298
299 if (mddev == NULL || mddev->pers == NULL
300 || !mddev->ready) {
301 bio_io_error(bio);
302 return;
303 }
304 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306 return;
307 }
308 smp_rmb(); /* Ensure implications of 'active' are visible */
309 rcu_read_lock();
310 if (mddev->suspended) {
311 DEFINE_WAIT(__wait);
312 for (;;) {
313 prepare_to_wait(&mddev->sb_wait, &__wait,
314 TASK_UNINTERRUPTIBLE);
315 if (!mddev->suspended)
316 break;
317 rcu_read_unlock();
318 schedule();
319 rcu_read_lock();
320 }
321 finish_wait(&mddev->sb_wait, &__wait);
322 }
323 atomic_inc(&mddev->active_io);
324 rcu_read_unlock();
325
326 /*
327 * save the sectors now since our bio can
328 * go away inside make_request
329 */
330 sectors = bio_sectors(bio);
331 mddev->pers->make_request(mddev, bio);
332
333 cpu = part_stat_lock();
334 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336 part_stat_unlock();
337
338 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343 * to the device, and that any requests that have been submitted
344 * are completely handled.
345 * Once ->stop is called and completes, the module will be completely
346 * unused.
347 */
348 void mddev_suspend(struct mddev *mddev)
349 {
350 BUG_ON(mddev->suspended);
351 mddev->suspended = 1;
352 synchronize_rcu();
353 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 mddev->pers->quiesce(mddev, 1);
355
356 del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362 mddev->suspended = 0;
363 wake_up(&mddev->sb_wait);
364 mddev->pers->quiesce(mddev, 0);
365
366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 md_wakeup_thread(mddev->thread);
368 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374 return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379 * Generic flush handling for md
380 */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384 struct md_rdev *rdev = bio->bi_private;
385 struct mddev *mddev = rdev->mddev;
386
387 rdev_dec_pending(rdev, mddev);
388
389 if (atomic_dec_and_test(&mddev->flush_pending)) {
390 /* The pre-request flush has finished */
391 queue_work(md_wq, &mddev->flush_work);
392 }
393 bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 struct md_rdev *rdev;
402
403 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 atomic_set(&mddev->flush_pending, 1);
405 rcu_read_lock();
406 rdev_for_each_rcu(rdev, mddev)
407 if (rdev->raid_disk >= 0 &&
408 !test_bit(Faulty, &rdev->flags)) {
409 /* Take two references, one is dropped
410 * when request finishes, one after
411 * we reclaim rcu_read_lock
412 */
413 struct bio *bi;
414 atomic_inc(&rdev->nr_pending);
415 atomic_inc(&rdev->nr_pending);
416 rcu_read_unlock();
417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 bi->bi_end_io = md_end_flush;
419 bi->bi_private = rdev;
420 bi->bi_bdev = rdev->bdev;
421 atomic_inc(&mddev->flush_pending);
422 submit_bio(WRITE_FLUSH, bi);
423 rcu_read_lock();
424 rdev_dec_pending(rdev, mddev);
425 }
426 rcu_read_unlock();
427 if (atomic_dec_and_test(&mddev->flush_pending))
428 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 struct bio *bio = mddev->flush_bio;
435
436 if (bio->bi_size == 0)
437 /* an empty barrier - all done */
438 bio_endio(bio, 0);
439 else {
440 bio->bi_rw &= ~REQ_FLUSH;
441 mddev->pers->make_request(mddev, bio);
442 }
443
444 mddev->flush_bio = NULL;
445 wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 spin_lock_irq(&mddev->write_lock);
451 wait_event_lock_irq(mddev->sb_wait,
452 !mddev->flush_bio,
453 mddev->write_lock);
454 mddev->flush_bio = bio;
455 spin_unlock_irq(&mddev->write_lock);
456
457 INIT_WORK(&mddev->flush_work, submit_flushes);
458 queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 struct mddev *mddev = cb->data;
465 md_wakeup_thread(mddev->thread);
466 kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 atomic_inc(&mddev->active);
473 return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480 struct bio_set *bs = NULL;
481
482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 return;
484 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 mddev->ctime == 0 && !mddev->hold_active) {
486 /* Array is not configured at all, and not held active,
487 * so destroy it */
488 list_del_init(&mddev->all_mddevs);
489 bs = mddev->bio_set;
490 mddev->bio_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509 mutex_init(&mddev->open_mutex);
510 mutex_init(&mddev->reconfig_mutex);
511 mutex_init(&mddev->bitmap_info.mutex);
512 INIT_LIST_HEAD(&mddev->disks);
513 INIT_LIST_HEAD(&mddev->all_mddevs);
514 init_timer(&mddev->safemode_timer);
515 atomic_set(&mddev->active, 1);
516 atomic_set(&mddev->openers, 0);
517 atomic_set(&mddev->active_io, 0);
518 spin_lock_init(&mddev->write_lock);
519 atomic_set(&mddev->flush_pending, 0);
520 init_waitqueue_head(&mddev->sb_wait);
521 init_waitqueue_head(&mddev->recovery_wait);
522 mddev->reshape_position = MaxSector;
523 mddev->reshape_backwards = 0;
524 mddev->resync_min = 0;
525 mddev->resync_max = MaxSector;
526 mddev->level = LEVEL_NONE;
527 }
528 EXPORT_SYMBOL_GPL(mddev_init);
529
530 static struct mddev * mddev_find(dev_t unit)
531 {
532 struct mddev *mddev, *new = NULL;
533
534 if (unit && MAJOR(unit) != MD_MAJOR)
535 unit &= ~((1<<MdpMinorShift)-1);
536
537 retry:
538 spin_lock(&all_mddevs_lock);
539
540 if (unit) {
541 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
542 if (mddev->unit == unit) {
543 mddev_get(mddev);
544 spin_unlock(&all_mddevs_lock);
545 kfree(new);
546 return mddev;
547 }
548
549 if (new) {
550 list_add(&new->all_mddevs, &all_mddevs);
551 spin_unlock(&all_mddevs_lock);
552 new->hold_active = UNTIL_IOCTL;
553 return new;
554 }
555 } else if (new) {
556 /* find an unused unit number */
557 static int next_minor = 512;
558 int start = next_minor;
559 int is_free = 0;
560 int dev = 0;
561 while (!is_free) {
562 dev = MKDEV(MD_MAJOR, next_minor);
563 next_minor++;
564 if (next_minor > MINORMASK)
565 next_minor = 0;
566 if (next_minor == start) {
567 /* Oh dear, all in use. */
568 spin_unlock(&all_mddevs_lock);
569 kfree(new);
570 return NULL;
571 }
572
573 is_free = 1;
574 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575 if (mddev->unit == dev) {
576 is_free = 0;
577 break;
578 }
579 }
580 new->unit = dev;
581 new->md_minor = MINOR(dev);
582 new->hold_active = UNTIL_STOP;
583 list_add(&new->all_mddevs, &all_mddevs);
584 spin_unlock(&all_mddevs_lock);
585 return new;
586 }
587 spin_unlock(&all_mddevs_lock);
588
589 new = kzalloc(sizeof(*new), GFP_KERNEL);
590 if (!new)
591 return NULL;
592
593 new->unit = unit;
594 if (MAJOR(unit) == MD_MAJOR)
595 new->md_minor = MINOR(unit);
596 else
597 new->md_minor = MINOR(unit) >> MdpMinorShift;
598
599 mddev_init(new);
600
601 goto retry;
602 }
603
604 static inline int mddev_lock(struct mddev * mddev)
605 {
606 return mutex_lock_interruptible(&mddev->reconfig_mutex);
607 }
608
609 static inline int mddev_is_locked(struct mddev *mddev)
610 {
611 return mutex_is_locked(&mddev->reconfig_mutex);
612 }
613
614 static inline int mddev_trylock(struct mddev * mddev)
615 {
616 return mutex_trylock(&mddev->reconfig_mutex);
617 }
618
619 static struct attribute_group md_redundancy_group;
620
621 static void mddev_unlock(struct mddev * mddev)
622 {
623 if (mddev->to_remove) {
624 /* These cannot be removed under reconfig_mutex as
625 * an access to the files will try to take reconfig_mutex
626 * while holding the file unremovable, which leads to
627 * a deadlock.
628 * So hold set sysfs_active while the remove in happeing,
629 * and anything else which might set ->to_remove or my
630 * otherwise change the sysfs namespace will fail with
631 * -EBUSY if sysfs_active is still set.
632 * We set sysfs_active under reconfig_mutex and elsewhere
633 * test it under the same mutex to ensure its correct value
634 * is seen.
635 */
636 struct attribute_group *to_remove = mddev->to_remove;
637 mddev->to_remove = NULL;
638 mddev->sysfs_active = 1;
639 mutex_unlock(&mddev->reconfig_mutex);
640
641 if (mddev->kobj.sd) {
642 if (to_remove != &md_redundancy_group)
643 sysfs_remove_group(&mddev->kobj, to_remove);
644 if (mddev->pers == NULL ||
645 mddev->pers->sync_request == NULL) {
646 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
647 if (mddev->sysfs_action)
648 sysfs_put(mddev->sysfs_action);
649 mddev->sysfs_action = NULL;
650 }
651 }
652 mddev->sysfs_active = 0;
653 } else
654 mutex_unlock(&mddev->reconfig_mutex);
655
656 /* As we've dropped the mutex we need a spinlock to
657 * make sure the thread doesn't disappear
658 */
659 spin_lock(&pers_lock);
660 md_wakeup_thread(mddev->thread);
661 spin_unlock(&pers_lock);
662 }
663
664 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
665 {
666 struct md_rdev *rdev;
667
668 rdev_for_each(rdev, mddev)
669 if (rdev->desc_nr == nr)
670 return rdev;
671
672 return NULL;
673 }
674
675 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
676 {
677 struct md_rdev *rdev;
678
679 rdev_for_each_rcu(rdev, mddev)
680 if (rdev->desc_nr == nr)
681 return rdev;
682
683 return NULL;
684 }
685
686 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
687 {
688 struct md_rdev *rdev;
689
690 rdev_for_each(rdev, mddev)
691 if (rdev->bdev->bd_dev == dev)
692 return rdev;
693
694 return NULL;
695 }
696
697 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
698 {
699 struct md_rdev *rdev;
700
701 rdev_for_each_rcu(rdev, mddev)
702 if (rdev->bdev->bd_dev == dev)
703 return rdev;
704
705 return NULL;
706 }
707
708 static struct md_personality *find_pers(int level, char *clevel)
709 {
710 struct md_personality *pers;
711 list_for_each_entry(pers, &pers_list, list) {
712 if (level != LEVEL_NONE && pers->level == level)
713 return pers;
714 if (strcmp(pers->name, clevel)==0)
715 return pers;
716 }
717 return NULL;
718 }
719
720 /* return the offset of the super block in 512byte sectors */
721 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
722 {
723 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
724 return MD_NEW_SIZE_SECTORS(num_sectors);
725 }
726
727 static int alloc_disk_sb(struct md_rdev * rdev)
728 {
729 if (rdev->sb_page)
730 MD_BUG();
731
732 rdev->sb_page = alloc_page(GFP_KERNEL);
733 if (!rdev->sb_page) {
734 printk(KERN_ALERT "md: out of memory.\n");
735 return -ENOMEM;
736 }
737
738 return 0;
739 }
740
741 void md_rdev_clear(struct md_rdev *rdev)
742 {
743 if (rdev->sb_page) {
744 put_page(rdev->sb_page);
745 rdev->sb_loaded = 0;
746 rdev->sb_page = NULL;
747 rdev->sb_start = 0;
748 rdev->sectors = 0;
749 }
750 if (rdev->bb_page) {
751 put_page(rdev->bb_page);
752 rdev->bb_page = NULL;
753 }
754 kfree(rdev->badblocks.page);
755 rdev->badblocks.page = NULL;
756 }
757 EXPORT_SYMBOL_GPL(md_rdev_clear);
758
759 static void super_written(struct bio *bio, int error)
760 {
761 struct md_rdev *rdev = bio->bi_private;
762 struct mddev *mddev = rdev->mddev;
763
764 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
765 printk("md: super_written gets error=%d, uptodate=%d\n",
766 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
767 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
768 md_error(mddev, rdev);
769 }
770
771 if (atomic_dec_and_test(&mddev->pending_writes))
772 wake_up(&mddev->sb_wait);
773 bio_put(bio);
774 }
775
776 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
777 sector_t sector, int size, struct page *page)
778 {
779 /* write first size bytes of page to sector of rdev
780 * Increment mddev->pending_writes before returning
781 * and decrement it on completion, waking up sb_wait
782 * if zero is reached.
783 * If an error occurred, call md_error
784 */
785 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
786
787 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
788 bio->bi_sector = sector;
789 bio_add_page(bio, page, size, 0);
790 bio->bi_private = rdev;
791 bio->bi_end_io = super_written;
792
793 atomic_inc(&mddev->pending_writes);
794 submit_bio(WRITE_FLUSH_FUA, bio);
795 }
796
797 void md_super_wait(struct mddev *mddev)
798 {
799 /* wait for all superblock writes that were scheduled to complete */
800 DEFINE_WAIT(wq);
801 for(;;) {
802 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
803 if (atomic_read(&mddev->pending_writes)==0)
804 break;
805 schedule();
806 }
807 finish_wait(&mddev->sb_wait, &wq);
808 }
809
810 static void bi_complete(struct bio *bio, int error)
811 {
812 complete((struct completion*)bio->bi_private);
813 }
814
815 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
816 struct page *page, int rw, bool metadata_op)
817 {
818 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
819 struct completion event;
820 int ret;
821
822 rw |= REQ_SYNC;
823
824 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
825 rdev->meta_bdev : rdev->bdev;
826 if (metadata_op)
827 bio->bi_sector = sector + rdev->sb_start;
828 else if (rdev->mddev->reshape_position != MaxSector &&
829 (rdev->mddev->reshape_backwards ==
830 (sector >= rdev->mddev->reshape_position)))
831 bio->bi_sector = sector + rdev->new_data_offset;
832 else
833 bio->bi_sector = sector + rdev->data_offset;
834 bio_add_page(bio, page, size, 0);
835 init_completion(&event);
836 bio->bi_private = &event;
837 bio->bi_end_io = bi_complete;
838 submit_bio(rw, bio);
839 wait_for_completion(&event);
840
841 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842 bio_put(bio);
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(sync_page_io);
846
847 static int read_disk_sb(struct md_rdev * rdev, int size)
848 {
849 char b[BDEVNAME_SIZE];
850 if (!rdev->sb_page) {
851 MD_BUG();
852 return -EINVAL;
853 }
854 if (rdev->sb_loaded)
855 return 0;
856
857
858 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859 goto fail;
860 rdev->sb_loaded = 1;
861 return 0;
862
863 fail:
864 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865 bdevname(rdev->bdev,b));
866 return -EINVAL;
867 }
868
869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871 return sb1->set_uuid0 == sb2->set_uuid0 &&
872 sb1->set_uuid1 == sb2->set_uuid1 &&
873 sb1->set_uuid2 == sb2->set_uuid2 &&
874 sb1->set_uuid3 == sb2->set_uuid3;
875 }
876
877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878 {
879 int ret;
880 mdp_super_t *tmp1, *tmp2;
881
882 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884
885 if (!tmp1 || !tmp2) {
886 ret = 0;
887 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888 goto abort;
889 }
890
891 *tmp1 = *sb1;
892 *tmp2 = *sb2;
893
894 /*
895 * nr_disks is not constant
896 */
897 tmp1->nr_disks = 0;
898 tmp2->nr_disks = 0;
899
900 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901 abort:
902 kfree(tmp1);
903 kfree(tmp2);
904 return ret;
905 }
906
907
908 static u32 md_csum_fold(u32 csum)
909 {
910 csum = (csum & 0xffff) + (csum >> 16);
911 return (csum & 0xffff) + (csum >> 16);
912 }
913
914 static unsigned int calc_sb_csum(mdp_super_t * sb)
915 {
916 u64 newcsum = 0;
917 u32 *sb32 = (u32*)sb;
918 int i;
919 unsigned int disk_csum, csum;
920
921 disk_csum = sb->sb_csum;
922 sb->sb_csum = 0;
923
924 for (i = 0; i < MD_SB_BYTES/4 ; i++)
925 newcsum += sb32[i];
926 csum = (newcsum & 0xffffffff) + (newcsum>>32);
927
928
929 #ifdef CONFIG_ALPHA
930 /* This used to use csum_partial, which was wrong for several
931 * reasons including that different results are returned on
932 * different architectures. It isn't critical that we get exactly
933 * the same return value as before (we always csum_fold before
934 * testing, and that removes any differences). However as we
935 * know that csum_partial always returned a 16bit value on
936 * alphas, do a fold to maximise conformity to previous behaviour.
937 */
938 sb->sb_csum = md_csum_fold(disk_csum);
939 #else
940 sb->sb_csum = disk_csum;
941 #endif
942 return csum;
943 }
944
945
946 /*
947 * Handle superblock details.
948 * We want to be able to handle multiple superblock formats
949 * so we have a common interface to them all, and an array of
950 * different handlers.
951 * We rely on user-space to write the initial superblock, and support
952 * reading and updating of superblocks.
953 * Interface methods are:
954 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
955 * loads and validates a superblock on dev.
956 * if refdev != NULL, compare superblocks on both devices
957 * Return:
958 * 0 - dev has a superblock that is compatible with refdev
959 * 1 - dev has a superblock that is compatible and newer than refdev
960 * so dev should be used as the refdev in future
961 * -EINVAL superblock incompatible or invalid
962 * -othererror e.g. -EIO
963 *
964 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
965 * Verify that dev is acceptable into mddev.
966 * The first time, mddev->raid_disks will be 0, and data from
967 * dev should be merged in. Subsequent calls check that dev
968 * is new enough. Return 0 or -EINVAL
969 *
970 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
971 * Update the superblock for rdev with data in mddev
972 * This does not write to disc.
973 *
974 */
975
976 struct super_type {
977 char *name;
978 struct module *owner;
979 int (*load_super)(struct md_rdev *rdev,
980 struct md_rdev *refdev,
981 int minor_version);
982 int (*validate_super)(struct mddev *mddev,
983 struct md_rdev *rdev);
984 void (*sync_super)(struct mddev *mddev,
985 struct md_rdev *rdev);
986 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
987 sector_t num_sectors);
988 int (*allow_new_offset)(struct md_rdev *rdev,
989 unsigned long long new_offset);
990 };
991
992 /*
993 * Check that the given mddev has no bitmap.
994 *
995 * This function is called from the run method of all personalities that do not
996 * support bitmaps. It prints an error message and returns non-zero if mddev
997 * has a bitmap. Otherwise, it returns 0.
998 *
999 */
1000 int md_check_no_bitmap(struct mddev *mddev)
1001 {
1002 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1003 return 0;
1004 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1005 mdname(mddev), mddev->pers->name);
1006 return 1;
1007 }
1008 EXPORT_SYMBOL(md_check_no_bitmap);
1009
1010 /*
1011 * load_super for 0.90.0
1012 */
1013 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1014 {
1015 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1016 mdp_super_t *sb;
1017 int ret;
1018
1019 /*
1020 * Calculate the position of the superblock (512byte sectors),
1021 * it's at the end of the disk.
1022 *
1023 * It also happens to be a multiple of 4Kb.
1024 */
1025 rdev->sb_start = calc_dev_sboffset(rdev);
1026
1027 ret = read_disk_sb(rdev, MD_SB_BYTES);
1028 if (ret) return ret;
1029
1030 ret = -EINVAL;
1031
1032 bdevname(rdev->bdev, b);
1033 sb = page_address(rdev->sb_page);
1034
1035 if (sb->md_magic != MD_SB_MAGIC) {
1036 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1037 b);
1038 goto abort;
1039 }
1040
1041 if (sb->major_version != 0 ||
1042 sb->minor_version < 90 ||
1043 sb->minor_version > 91) {
1044 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1045 sb->major_version, sb->minor_version,
1046 b);
1047 goto abort;
1048 }
1049
1050 if (sb->raid_disks <= 0)
1051 goto abort;
1052
1053 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1054 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1055 b);
1056 goto abort;
1057 }
1058
1059 rdev->preferred_minor = sb->md_minor;
1060 rdev->data_offset = 0;
1061 rdev->new_data_offset = 0;
1062 rdev->sb_size = MD_SB_BYTES;
1063 rdev->badblocks.shift = -1;
1064
1065 if (sb->level == LEVEL_MULTIPATH)
1066 rdev->desc_nr = -1;
1067 else
1068 rdev->desc_nr = sb->this_disk.number;
1069
1070 if (!refdev) {
1071 ret = 1;
1072 } else {
1073 __u64 ev1, ev2;
1074 mdp_super_t *refsb = page_address(refdev->sb_page);
1075 if (!uuid_equal(refsb, sb)) {
1076 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1077 b, bdevname(refdev->bdev,b2));
1078 goto abort;
1079 }
1080 if (!sb_equal(refsb, sb)) {
1081 printk(KERN_WARNING "md: %s has same UUID"
1082 " but different superblock to %s\n",
1083 b, bdevname(refdev->bdev, b2));
1084 goto abort;
1085 }
1086 ev1 = md_event(sb);
1087 ev2 = md_event(refsb);
1088 if (ev1 > ev2)
1089 ret = 1;
1090 else
1091 ret = 0;
1092 }
1093 rdev->sectors = rdev->sb_start;
1094 /* Limit to 4TB as metadata cannot record more than that.
1095 * (not needed for Linear and RAID0 as metadata doesn't
1096 * record this size)
1097 */
1098 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1099 rdev->sectors = (2ULL << 32) - 2;
1100
1101 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1102 /* "this cannot possibly happen" ... */
1103 ret = -EINVAL;
1104
1105 abort:
1106 return ret;
1107 }
1108
1109 /*
1110 * validate_super for 0.90.0
1111 */
1112 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1113 {
1114 mdp_disk_t *desc;
1115 mdp_super_t *sb = page_address(rdev->sb_page);
1116 __u64 ev1 = md_event(sb);
1117
1118 rdev->raid_disk = -1;
1119 clear_bit(Faulty, &rdev->flags);
1120 clear_bit(In_sync, &rdev->flags);
1121 clear_bit(Bitmap_sync, &rdev->flags);
1122 clear_bit(WriteMostly, &rdev->flags);
1123
1124 if (mddev->raid_disks == 0) {
1125 mddev->major_version = 0;
1126 mddev->minor_version = sb->minor_version;
1127 mddev->patch_version = sb->patch_version;
1128 mddev->external = 0;
1129 mddev->chunk_sectors = sb->chunk_size >> 9;
1130 mddev->ctime = sb->ctime;
1131 mddev->utime = sb->utime;
1132 mddev->level = sb->level;
1133 mddev->clevel[0] = 0;
1134 mddev->layout = sb->layout;
1135 mddev->raid_disks = sb->raid_disks;
1136 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1137 mddev->events = ev1;
1138 mddev->bitmap_info.offset = 0;
1139 mddev->bitmap_info.space = 0;
1140 /* bitmap can use 60 K after the 4K superblocks */
1141 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1142 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1143 mddev->reshape_backwards = 0;
1144
1145 if (mddev->minor_version >= 91) {
1146 mddev->reshape_position = sb->reshape_position;
1147 mddev->delta_disks = sb->delta_disks;
1148 mddev->new_level = sb->new_level;
1149 mddev->new_layout = sb->new_layout;
1150 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1151 if (mddev->delta_disks < 0)
1152 mddev->reshape_backwards = 1;
1153 } else {
1154 mddev->reshape_position = MaxSector;
1155 mddev->delta_disks = 0;
1156 mddev->new_level = mddev->level;
1157 mddev->new_layout = mddev->layout;
1158 mddev->new_chunk_sectors = mddev->chunk_sectors;
1159 }
1160
1161 if (sb->state & (1<<MD_SB_CLEAN))
1162 mddev->recovery_cp = MaxSector;
1163 else {
1164 if (sb->events_hi == sb->cp_events_hi &&
1165 sb->events_lo == sb->cp_events_lo) {
1166 mddev->recovery_cp = sb->recovery_cp;
1167 } else
1168 mddev->recovery_cp = 0;
1169 }
1170
1171 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1172 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1173 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1174 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1175
1176 mddev->max_disks = MD_SB_DISKS;
1177
1178 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1179 mddev->bitmap_info.file == NULL) {
1180 mddev->bitmap_info.offset =
1181 mddev->bitmap_info.default_offset;
1182 mddev->bitmap_info.space =
1183 mddev->bitmap_info.space;
1184 }
1185
1186 } else if (mddev->pers == NULL) {
1187 /* Insist on good event counter while assembling, except
1188 * for spares (which don't need an event count) */
1189 ++ev1;
1190 if (sb->disks[rdev->desc_nr].state & (
1191 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1192 if (ev1 < mddev->events)
1193 return -EINVAL;
1194 } else if (mddev->bitmap) {
1195 /* if adding to array with a bitmap, then we can accept an
1196 * older device ... but not too old.
1197 */
1198 if (ev1 < mddev->bitmap->events_cleared)
1199 return 0;
1200 if (ev1 < mddev->events)
1201 set_bit(Bitmap_sync, &rdev->flags);
1202 } else {
1203 if (ev1 < mddev->events)
1204 /* just a hot-add of a new device, leave raid_disk at -1 */
1205 return 0;
1206 }
1207
1208 if (mddev->level != LEVEL_MULTIPATH) {
1209 desc = sb->disks + rdev->desc_nr;
1210
1211 if (desc->state & (1<<MD_DISK_FAULTY))
1212 set_bit(Faulty, &rdev->flags);
1213 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1214 desc->raid_disk < mddev->raid_disks */) {
1215 set_bit(In_sync, &rdev->flags);
1216 rdev->raid_disk = desc->raid_disk;
1217 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1218 /* active but not in sync implies recovery up to
1219 * reshape position. We don't know exactly where
1220 * that is, so set to zero for now */
1221 if (mddev->minor_version >= 91) {
1222 rdev->recovery_offset = 0;
1223 rdev->raid_disk = desc->raid_disk;
1224 }
1225 }
1226 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1227 set_bit(WriteMostly, &rdev->flags);
1228 } else /* MULTIPATH are always insync */
1229 set_bit(In_sync, &rdev->flags);
1230 return 0;
1231 }
1232
1233 /*
1234 * sync_super for 0.90.0
1235 */
1236 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1237 {
1238 mdp_super_t *sb;
1239 struct md_rdev *rdev2;
1240 int next_spare = mddev->raid_disks;
1241
1242
1243 /* make rdev->sb match mddev data..
1244 *
1245 * 1/ zero out disks
1246 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1247 * 3/ any empty disks < next_spare become removed
1248 *
1249 * disks[0] gets initialised to REMOVED because
1250 * we cannot be sure from other fields if it has
1251 * been initialised or not.
1252 */
1253 int i;
1254 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1255
1256 rdev->sb_size = MD_SB_BYTES;
1257
1258 sb = page_address(rdev->sb_page);
1259
1260 memset(sb, 0, sizeof(*sb));
1261
1262 sb->md_magic = MD_SB_MAGIC;
1263 sb->major_version = mddev->major_version;
1264 sb->patch_version = mddev->patch_version;
1265 sb->gvalid_words = 0; /* ignored */
1266 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1267 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1268 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1269 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1270
1271 sb->ctime = mddev->ctime;
1272 sb->level = mddev->level;
1273 sb->size = mddev->dev_sectors / 2;
1274 sb->raid_disks = mddev->raid_disks;
1275 sb->md_minor = mddev->md_minor;
1276 sb->not_persistent = 0;
1277 sb->utime = mddev->utime;
1278 sb->state = 0;
1279 sb->events_hi = (mddev->events>>32);
1280 sb->events_lo = (u32)mddev->events;
1281
1282 if (mddev->reshape_position == MaxSector)
1283 sb->minor_version = 90;
1284 else {
1285 sb->minor_version = 91;
1286 sb->reshape_position = mddev->reshape_position;
1287 sb->new_level = mddev->new_level;
1288 sb->delta_disks = mddev->delta_disks;
1289 sb->new_layout = mddev->new_layout;
1290 sb->new_chunk = mddev->new_chunk_sectors << 9;
1291 }
1292 mddev->minor_version = sb->minor_version;
1293 if (mddev->in_sync)
1294 {
1295 sb->recovery_cp = mddev->recovery_cp;
1296 sb->cp_events_hi = (mddev->events>>32);
1297 sb->cp_events_lo = (u32)mddev->events;
1298 if (mddev->recovery_cp == MaxSector)
1299 sb->state = (1<< MD_SB_CLEAN);
1300 } else
1301 sb->recovery_cp = 0;
1302
1303 sb->layout = mddev->layout;
1304 sb->chunk_size = mddev->chunk_sectors << 9;
1305
1306 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1307 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1308
1309 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1310 rdev_for_each(rdev2, mddev) {
1311 mdp_disk_t *d;
1312 int desc_nr;
1313 int is_active = test_bit(In_sync, &rdev2->flags);
1314
1315 if (rdev2->raid_disk >= 0 &&
1316 sb->minor_version >= 91)
1317 /* we have nowhere to store the recovery_offset,
1318 * but if it is not below the reshape_position,
1319 * we can piggy-back on that.
1320 */
1321 is_active = 1;
1322 if (rdev2->raid_disk < 0 ||
1323 test_bit(Faulty, &rdev2->flags))
1324 is_active = 0;
1325 if (is_active)
1326 desc_nr = rdev2->raid_disk;
1327 else
1328 desc_nr = next_spare++;
1329 rdev2->desc_nr = desc_nr;
1330 d = &sb->disks[rdev2->desc_nr];
1331 nr_disks++;
1332 d->number = rdev2->desc_nr;
1333 d->major = MAJOR(rdev2->bdev->bd_dev);
1334 d->minor = MINOR(rdev2->bdev->bd_dev);
1335 if (is_active)
1336 d->raid_disk = rdev2->raid_disk;
1337 else
1338 d->raid_disk = rdev2->desc_nr; /* compatibility */
1339 if (test_bit(Faulty, &rdev2->flags))
1340 d->state = (1<<MD_DISK_FAULTY);
1341 else if (is_active) {
1342 d->state = (1<<MD_DISK_ACTIVE);
1343 if (test_bit(In_sync, &rdev2->flags))
1344 d->state |= (1<<MD_DISK_SYNC);
1345 active++;
1346 working++;
1347 } else {
1348 d->state = 0;
1349 spare++;
1350 working++;
1351 }
1352 if (test_bit(WriteMostly, &rdev2->flags))
1353 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1354 }
1355 /* now set the "removed" and "faulty" bits on any missing devices */
1356 for (i=0 ; i < mddev->raid_disks ; i++) {
1357 mdp_disk_t *d = &sb->disks[i];
1358 if (d->state == 0 && d->number == 0) {
1359 d->number = i;
1360 d->raid_disk = i;
1361 d->state = (1<<MD_DISK_REMOVED);
1362 d->state |= (1<<MD_DISK_FAULTY);
1363 failed++;
1364 }
1365 }
1366 sb->nr_disks = nr_disks;
1367 sb->active_disks = active;
1368 sb->working_disks = working;
1369 sb->failed_disks = failed;
1370 sb->spare_disks = spare;
1371
1372 sb->this_disk = sb->disks[rdev->desc_nr];
1373 sb->sb_csum = calc_sb_csum(sb);
1374 }
1375
1376 /*
1377 * rdev_size_change for 0.90.0
1378 */
1379 static unsigned long long
1380 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1381 {
1382 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1383 return 0; /* component must fit device */
1384 if (rdev->mddev->bitmap_info.offset)
1385 return 0; /* can't move bitmap */
1386 rdev->sb_start = calc_dev_sboffset(rdev);
1387 if (!num_sectors || num_sectors > rdev->sb_start)
1388 num_sectors = rdev->sb_start;
1389 /* Limit to 4TB as metadata cannot record more than that.
1390 * 4TB == 2^32 KB, or 2*2^32 sectors.
1391 */
1392 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1393 num_sectors = (2ULL << 32) - 2;
1394 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1395 rdev->sb_page);
1396 md_super_wait(rdev->mddev);
1397 return num_sectors;
1398 }
1399
1400 static int
1401 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1402 {
1403 /* non-zero offset changes not possible with v0.90 */
1404 return new_offset == 0;
1405 }
1406
1407 /*
1408 * version 1 superblock
1409 */
1410
1411 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1412 {
1413 __le32 disk_csum;
1414 u32 csum;
1415 unsigned long long newcsum;
1416 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1417 __le32 *isuper = (__le32*)sb;
1418
1419 disk_csum = sb->sb_csum;
1420 sb->sb_csum = 0;
1421 newcsum = 0;
1422 for (; size >= 4; size -= 4)
1423 newcsum += le32_to_cpu(*isuper++);
1424
1425 if (size == 2)
1426 newcsum += le16_to_cpu(*(__le16*) isuper);
1427
1428 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429 sb->sb_csum = disk_csum;
1430 return cpu_to_le32(csum);
1431 }
1432
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434 int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437 struct mdp_superblock_1 *sb;
1438 int ret;
1439 sector_t sb_start;
1440 sector_t sectors;
1441 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442 int bmask;
1443
1444 /*
1445 * Calculate the position of the superblock in 512byte sectors.
1446 * It is always aligned to a 4K boundary and
1447 * depeding on minor_version, it can be:
1448 * 0: At least 8K, but less than 12K, from end of device
1449 * 1: At start of device
1450 * 2: 4K from start of device.
1451 */
1452 switch(minor_version) {
1453 case 0:
1454 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455 sb_start -= 8*2;
1456 sb_start &= ~(sector_t)(4*2-1);
1457 break;
1458 case 1:
1459 sb_start = 0;
1460 break;
1461 case 2:
1462 sb_start = 8;
1463 break;
1464 default:
1465 return -EINVAL;
1466 }
1467 rdev->sb_start = sb_start;
1468
1469 /* superblock is rarely larger than 1K, but it can be larger,
1470 * and it is safe to read 4k, so we do that
1471 */
1472 ret = read_disk_sb(rdev, 4096);
1473 if (ret) return ret;
1474
1475
1476 sb = page_address(rdev->sb_page);
1477
1478 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479 sb->major_version != cpu_to_le32(1) ||
1480 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483 return -EINVAL;
1484
1485 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486 printk("md: invalid superblock checksum on %s\n",
1487 bdevname(rdev->bdev,b));
1488 return -EINVAL;
1489 }
1490 if (le64_to_cpu(sb->data_size) < 10) {
1491 printk("md: data_size too small on %s\n",
1492 bdevname(rdev->bdev,b));
1493 return -EINVAL;
1494 }
1495 if (sb->pad0 ||
1496 sb->pad3[0] ||
1497 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498 /* Some padding is non-zero, might be a new feature */
1499 return -EINVAL;
1500
1501 rdev->preferred_minor = 0xffff;
1502 rdev->data_offset = le64_to_cpu(sb->data_offset);
1503 rdev->new_data_offset = rdev->data_offset;
1504 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508
1509 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511 if (rdev->sb_size & bmask)
1512 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513
1514 if (minor_version
1515 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516 return -EINVAL;
1517 if (minor_version
1518 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519 return -EINVAL;
1520
1521 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522 rdev->desc_nr = -1;
1523 else
1524 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525
1526 if (!rdev->bb_page) {
1527 rdev->bb_page = alloc_page(GFP_KERNEL);
1528 if (!rdev->bb_page)
1529 return -ENOMEM;
1530 }
1531 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532 rdev->badblocks.count == 0) {
1533 /* need to load the bad block list.
1534 * Currently we limit it to one page.
1535 */
1536 s32 offset;
1537 sector_t bb_sector;
1538 u64 *bbp;
1539 int i;
1540 int sectors = le16_to_cpu(sb->bblog_size);
1541 if (sectors > (PAGE_SIZE / 512))
1542 return -EINVAL;
1543 offset = le32_to_cpu(sb->bblog_offset);
1544 if (offset == 0)
1545 return -EINVAL;
1546 bb_sector = (long long)offset;
1547 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548 rdev->bb_page, READ, true))
1549 return -EIO;
1550 bbp = (u64 *)page_address(rdev->bb_page);
1551 rdev->badblocks.shift = sb->bblog_shift;
1552 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553 u64 bb = le64_to_cpu(*bbp);
1554 int count = bb & (0x3ff);
1555 u64 sector = bb >> 10;
1556 sector <<= sb->bblog_shift;
1557 count <<= sb->bblog_shift;
1558 if (bb + 1 == 0)
1559 break;
1560 if (md_set_badblocks(&rdev->badblocks,
1561 sector, count, 1) == 0)
1562 return -EINVAL;
1563 }
1564 } else if (sb->bblog_offset != 0)
1565 rdev->badblocks.shift = 0;
1566
1567 if (!refdev) {
1568 ret = 1;
1569 } else {
1570 __u64 ev1, ev2;
1571 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572
1573 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574 sb->level != refsb->level ||
1575 sb->layout != refsb->layout ||
1576 sb->chunksize != refsb->chunksize) {
1577 printk(KERN_WARNING "md: %s has strangely different"
1578 " superblock to %s\n",
1579 bdevname(rdev->bdev,b),
1580 bdevname(refdev->bdev,b2));
1581 return -EINVAL;
1582 }
1583 ev1 = le64_to_cpu(sb->events);
1584 ev2 = le64_to_cpu(refsb->events);
1585
1586 if (ev1 > ev2)
1587 ret = 1;
1588 else
1589 ret = 0;
1590 }
1591 if (minor_version) {
1592 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593 sectors -= rdev->data_offset;
1594 } else
1595 sectors = rdev->sb_start;
1596 if (sectors < le64_to_cpu(sb->data_size))
1597 return -EINVAL;
1598 rdev->sectors = le64_to_cpu(sb->data_size);
1599 return ret;
1600 }
1601
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605 __u64 ev1 = le64_to_cpu(sb->events);
1606
1607 rdev->raid_disk = -1;
1608 clear_bit(Faulty, &rdev->flags);
1609 clear_bit(In_sync, &rdev->flags);
1610 clear_bit(Bitmap_sync, &rdev->flags);
1611 clear_bit(WriteMostly, &rdev->flags);
1612
1613 if (mddev->raid_disks == 0) {
1614 mddev->major_version = 1;
1615 mddev->patch_version = 0;
1616 mddev->external = 0;
1617 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1618 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1619 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1620 mddev->level = le32_to_cpu(sb->level);
1621 mddev->clevel[0] = 0;
1622 mddev->layout = le32_to_cpu(sb->layout);
1623 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1624 mddev->dev_sectors = le64_to_cpu(sb->size);
1625 mddev->events = ev1;
1626 mddev->bitmap_info.offset = 0;
1627 mddev->bitmap_info.space = 0;
1628 /* Default location for bitmap is 1K after superblock
1629 * using 3K - total of 4K
1630 */
1631 mddev->bitmap_info.default_offset = 1024 >> 9;
1632 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1633 mddev->reshape_backwards = 0;
1634
1635 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1636 memcpy(mddev->uuid, sb->set_uuid, 16);
1637
1638 mddev->max_disks = (4096-256)/2;
1639
1640 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1641 mddev->bitmap_info.file == NULL) {
1642 mddev->bitmap_info.offset =
1643 (__s32)le32_to_cpu(sb->bitmap_offset);
1644 /* Metadata doesn't record how much space is available.
1645 * For 1.0, we assume we can use up to the superblock
1646 * if before, else to 4K beyond superblock.
1647 * For others, assume no change is possible.
1648 */
1649 if (mddev->minor_version > 0)
1650 mddev->bitmap_info.space = 0;
1651 else if (mddev->bitmap_info.offset > 0)
1652 mddev->bitmap_info.space =
1653 8 - mddev->bitmap_info.offset;
1654 else
1655 mddev->bitmap_info.space =
1656 -mddev->bitmap_info.offset;
1657 }
1658
1659 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1660 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1661 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1662 mddev->new_level = le32_to_cpu(sb->new_level);
1663 mddev->new_layout = le32_to_cpu(sb->new_layout);
1664 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1665 if (mddev->delta_disks < 0 ||
1666 (mddev->delta_disks == 0 &&
1667 (le32_to_cpu(sb->feature_map)
1668 & MD_FEATURE_RESHAPE_BACKWARDS)))
1669 mddev->reshape_backwards = 1;
1670 } else {
1671 mddev->reshape_position = MaxSector;
1672 mddev->delta_disks = 0;
1673 mddev->new_level = mddev->level;
1674 mddev->new_layout = mddev->layout;
1675 mddev->new_chunk_sectors = mddev->chunk_sectors;
1676 }
1677
1678 } else if (mddev->pers == NULL) {
1679 /* Insist of good event counter while assembling, except for
1680 * spares (which don't need an event count) */
1681 ++ev1;
1682 if (rdev->desc_nr >= 0 &&
1683 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1684 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1685 if (ev1 < mddev->events)
1686 return -EINVAL;
1687 } else if (mddev->bitmap) {
1688 /* If adding to array with a bitmap, then we can accept an
1689 * older device, but not too old.
1690 */
1691 if (ev1 < mddev->bitmap->events_cleared)
1692 return 0;
1693 if (ev1 < mddev->events)
1694 set_bit(Bitmap_sync, &rdev->flags);
1695 } else {
1696 if (ev1 < mddev->events)
1697 /* just a hot-add of a new device, leave raid_disk at -1 */
1698 return 0;
1699 }
1700 if (mddev->level != LEVEL_MULTIPATH) {
1701 int role;
1702 if (rdev->desc_nr < 0 ||
1703 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704 role = 0xffff;
1705 rdev->desc_nr = -1;
1706 } else
1707 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708 switch(role) {
1709 case 0xffff: /* spare */
1710 break;
1711 case 0xfffe: /* faulty */
1712 set_bit(Faulty, &rdev->flags);
1713 break;
1714 default:
1715 if ((le32_to_cpu(sb->feature_map) &
1716 MD_FEATURE_RECOVERY_OFFSET))
1717 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718 else
1719 set_bit(In_sync, &rdev->flags);
1720 rdev->raid_disk = role;
1721 break;
1722 }
1723 if (sb->devflags & WriteMostly1)
1724 set_bit(WriteMostly, &rdev->flags);
1725 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726 set_bit(Replacement, &rdev->flags);
1727 } else /* MULTIPATH are always insync */
1728 set_bit(In_sync, &rdev->flags);
1729
1730 return 0;
1731 }
1732
1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735 struct mdp_superblock_1 *sb;
1736 struct md_rdev *rdev2;
1737 int max_dev, i;
1738 /* make rdev->sb match mddev and rdev data. */
1739
1740 sb = page_address(rdev->sb_page);
1741
1742 sb->feature_map = 0;
1743 sb->pad0 = 0;
1744 sb->recovery_offset = cpu_to_le64(0);
1745 memset(sb->pad3, 0, sizeof(sb->pad3));
1746
1747 sb->utime = cpu_to_le64((__u64)mddev->utime);
1748 sb->events = cpu_to_le64(mddev->events);
1749 if (mddev->in_sync)
1750 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1751 else
1752 sb->resync_offset = cpu_to_le64(0);
1753
1754 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1755
1756 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1757 sb->size = cpu_to_le64(mddev->dev_sectors);
1758 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1759 sb->level = cpu_to_le32(mddev->level);
1760 sb->layout = cpu_to_le32(mddev->layout);
1761
1762 if (test_bit(WriteMostly, &rdev->flags))
1763 sb->devflags |= WriteMostly1;
1764 else
1765 sb->devflags &= ~WriteMostly1;
1766 sb->data_offset = cpu_to_le64(rdev->data_offset);
1767 sb->data_size = cpu_to_le64(rdev->sectors);
1768
1769 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1770 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1771 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1772 }
1773
1774 if (rdev->raid_disk >= 0 &&
1775 !test_bit(In_sync, &rdev->flags)) {
1776 sb->feature_map |=
1777 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1778 sb->recovery_offset =
1779 cpu_to_le64(rdev->recovery_offset);
1780 }
1781 if (test_bit(Replacement, &rdev->flags))
1782 sb->feature_map |=
1783 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1784
1785 if (mddev->reshape_position != MaxSector) {
1786 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1787 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1788 sb->new_layout = cpu_to_le32(mddev->new_layout);
1789 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1790 sb->new_level = cpu_to_le32(mddev->new_level);
1791 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1792 if (mddev->delta_disks == 0 &&
1793 mddev->reshape_backwards)
1794 sb->feature_map
1795 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1796 if (rdev->new_data_offset != rdev->data_offset) {
1797 sb->feature_map
1798 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1799 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1800 - rdev->data_offset));
1801 }
1802 }
1803
1804 if (rdev->badblocks.count == 0)
1805 /* Nothing to do for bad blocks*/ ;
1806 else if (sb->bblog_offset == 0)
1807 /* Cannot record bad blocks on this device */
1808 md_error(mddev, rdev);
1809 else {
1810 struct badblocks *bb = &rdev->badblocks;
1811 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1812 u64 *p = bb->page;
1813 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1814 if (bb->changed) {
1815 unsigned seq;
1816
1817 retry:
1818 seq = read_seqbegin(&bb->lock);
1819
1820 memset(bbp, 0xff, PAGE_SIZE);
1821
1822 for (i = 0 ; i < bb->count ; i++) {
1823 u64 internal_bb = p[i];
1824 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1825 | BB_LEN(internal_bb));
1826 bbp[i] = cpu_to_le64(store_bb);
1827 }
1828 bb->changed = 0;
1829 if (read_seqretry(&bb->lock, seq))
1830 goto retry;
1831
1832 bb->sector = (rdev->sb_start +
1833 (int)le32_to_cpu(sb->bblog_offset));
1834 bb->size = le16_to_cpu(sb->bblog_size);
1835 }
1836 }
1837
1838 max_dev = 0;
1839 rdev_for_each(rdev2, mddev)
1840 if (rdev2->desc_nr+1 > max_dev)
1841 max_dev = rdev2->desc_nr+1;
1842
1843 if (max_dev > le32_to_cpu(sb->max_dev)) {
1844 int bmask;
1845 sb->max_dev = cpu_to_le32(max_dev);
1846 rdev->sb_size = max_dev * 2 + 256;
1847 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1848 if (rdev->sb_size & bmask)
1849 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1850 } else
1851 max_dev = le32_to_cpu(sb->max_dev);
1852
1853 for (i=0; i<max_dev;i++)
1854 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855
1856 rdev_for_each(rdev2, mddev) {
1857 i = rdev2->desc_nr;
1858 if (test_bit(Faulty, &rdev2->flags))
1859 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1860 else if (test_bit(In_sync, &rdev2->flags))
1861 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1862 else if (rdev2->raid_disk >= 0)
1863 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1864 else
1865 sb->dev_roles[i] = cpu_to_le16(0xffff);
1866 }
1867
1868 sb->sb_csum = calc_sb_1_csum(sb);
1869 }
1870
1871 static unsigned long long
1872 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1873 {
1874 struct mdp_superblock_1 *sb;
1875 sector_t max_sectors;
1876 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1877 return 0; /* component must fit device */
1878 if (rdev->data_offset != rdev->new_data_offset)
1879 return 0; /* too confusing */
1880 if (rdev->sb_start < rdev->data_offset) {
1881 /* minor versions 1 and 2; superblock before data */
1882 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1883 max_sectors -= rdev->data_offset;
1884 if (!num_sectors || num_sectors > max_sectors)
1885 num_sectors = max_sectors;
1886 } else if (rdev->mddev->bitmap_info.offset) {
1887 /* minor version 0 with bitmap we can't move */
1888 return 0;
1889 } else {
1890 /* minor version 0; superblock after data */
1891 sector_t sb_start;
1892 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1893 sb_start &= ~(sector_t)(4*2 - 1);
1894 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1895 if (!num_sectors || num_sectors > max_sectors)
1896 num_sectors = max_sectors;
1897 rdev->sb_start = sb_start;
1898 }
1899 sb = page_address(rdev->sb_page);
1900 sb->data_size = cpu_to_le64(num_sectors);
1901 sb->super_offset = rdev->sb_start;
1902 sb->sb_csum = calc_sb_1_csum(sb);
1903 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1904 rdev->sb_page);
1905 md_super_wait(rdev->mddev);
1906 return num_sectors;
1907
1908 }
1909
1910 static int
1911 super_1_allow_new_offset(struct md_rdev *rdev,
1912 unsigned long long new_offset)
1913 {
1914 /* All necessary checks on new >= old have been done */
1915 struct bitmap *bitmap;
1916 if (new_offset >= rdev->data_offset)
1917 return 1;
1918
1919 /* with 1.0 metadata, there is no metadata to tread on
1920 * so we can always move back */
1921 if (rdev->mddev->minor_version == 0)
1922 return 1;
1923
1924 /* otherwise we must be sure not to step on
1925 * any metadata, so stay:
1926 * 36K beyond start of superblock
1927 * beyond end of badblocks
1928 * beyond write-intent bitmap
1929 */
1930 if (rdev->sb_start + (32+4)*2 > new_offset)
1931 return 0;
1932 bitmap = rdev->mddev->bitmap;
1933 if (bitmap && !rdev->mddev->bitmap_info.file &&
1934 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1935 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1936 return 0;
1937 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1938 return 0;
1939
1940 return 1;
1941 }
1942
1943 static struct super_type super_types[] = {
1944 [0] = {
1945 .name = "0.90.0",
1946 .owner = THIS_MODULE,
1947 .load_super = super_90_load,
1948 .validate_super = super_90_validate,
1949 .sync_super = super_90_sync,
1950 .rdev_size_change = super_90_rdev_size_change,
1951 .allow_new_offset = super_90_allow_new_offset,
1952 },
1953 [1] = {
1954 .name = "md-1",
1955 .owner = THIS_MODULE,
1956 .load_super = super_1_load,
1957 .validate_super = super_1_validate,
1958 .sync_super = super_1_sync,
1959 .rdev_size_change = super_1_rdev_size_change,
1960 .allow_new_offset = super_1_allow_new_offset,
1961 },
1962 };
1963
1964 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1965 {
1966 if (mddev->sync_super) {
1967 mddev->sync_super(mddev, rdev);
1968 return;
1969 }
1970
1971 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1972
1973 super_types[mddev->major_version].sync_super(mddev, rdev);
1974 }
1975
1976 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1977 {
1978 struct md_rdev *rdev, *rdev2;
1979
1980 rcu_read_lock();
1981 rdev_for_each_rcu(rdev, mddev1)
1982 rdev_for_each_rcu(rdev2, mddev2)
1983 if (rdev->bdev->bd_contains ==
1984 rdev2->bdev->bd_contains) {
1985 rcu_read_unlock();
1986 return 1;
1987 }
1988 rcu_read_unlock();
1989 return 0;
1990 }
1991
1992 static LIST_HEAD(pending_raid_disks);
1993
1994 /*
1995 * Try to register data integrity profile for an mddev
1996 *
1997 * This is called when an array is started and after a disk has been kicked
1998 * from the array. It only succeeds if all working and active component devices
1999 * are integrity capable with matching profiles.
2000 */
2001 int md_integrity_register(struct mddev *mddev)
2002 {
2003 struct md_rdev *rdev, *reference = NULL;
2004
2005 if (list_empty(&mddev->disks))
2006 return 0; /* nothing to do */
2007 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2008 return 0; /* shouldn't register, or already is */
2009 rdev_for_each(rdev, mddev) {
2010 /* skip spares and non-functional disks */
2011 if (test_bit(Faulty, &rdev->flags))
2012 continue;
2013 if (rdev->raid_disk < 0)
2014 continue;
2015 if (!reference) {
2016 /* Use the first rdev as the reference */
2017 reference = rdev;
2018 continue;
2019 }
2020 /* does this rdev's profile match the reference profile? */
2021 if (blk_integrity_compare(reference->bdev->bd_disk,
2022 rdev->bdev->bd_disk) < 0)
2023 return -EINVAL;
2024 }
2025 if (!reference || !bdev_get_integrity(reference->bdev))
2026 return 0;
2027 /*
2028 * All component devices are integrity capable and have matching
2029 * profiles, register the common profile for the md device.
2030 */
2031 if (blk_integrity_register(mddev->gendisk,
2032 bdev_get_integrity(reference->bdev)) != 0) {
2033 printk(KERN_ERR "md: failed to register integrity for %s\n",
2034 mdname(mddev));
2035 return -EINVAL;
2036 }
2037 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2038 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2039 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2040 mdname(mddev));
2041 return -EINVAL;
2042 }
2043 return 0;
2044 }
2045 EXPORT_SYMBOL(md_integrity_register);
2046
2047 /* Disable data integrity if non-capable/non-matching disk is being added */
2048 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2049 {
2050 struct blk_integrity *bi_rdev;
2051 struct blk_integrity *bi_mddev;
2052
2053 if (!mddev->gendisk)
2054 return;
2055
2056 bi_rdev = bdev_get_integrity(rdev->bdev);
2057 bi_mddev = blk_get_integrity(mddev->gendisk);
2058
2059 if (!bi_mddev) /* nothing to do */
2060 return;
2061 if (rdev->raid_disk < 0) /* skip spares */
2062 return;
2063 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2064 rdev->bdev->bd_disk) >= 0)
2065 return;
2066 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2067 blk_integrity_unregister(mddev->gendisk);
2068 }
2069 EXPORT_SYMBOL(md_integrity_add_rdev);
2070
2071 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2072 {
2073 char b[BDEVNAME_SIZE];
2074 struct kobject *ko;
2075 char *s;
2076 int err;
2077
2078 if (rdev->mddev) {
2079 MD_BUG();
2080 return -EINVAL;
2081 }
2082
2083 /* prevent duplicates */
2084 if (find_rdev(mddev, rdev->bdev->bd_dev))
2085 return -EEXIST;
2086
2087 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2088 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2089 rdev->sectors < mddev->dev_sectors)) {
2090 if (mddev->pers) {
2091 /* Cannot change size, so fail
2092 * If mddev->level <= 0, then we don't care
2093 * about aligning sizes (e.g. linear)
2094 */
2095 if (mddev->level > 0)
2096 return -ENOSPC;
2097 } else
2098 mddev->dev_sectors = rdev->sectors;
2099 }
2100
2101 /* Verify rdev->desc_nr is unique.
2102 * If it is -1, assign a free number, else
2103 * check number is not in use
2104 */
2105 if (rdev->desc_nr < 0) {
2106 int choice = 0;
2107 if (mddev->pers) choice = mddev->raid_disks;
2108 while (find_rdev_nr(mddev, choice))
2109 choice++;
2110 rdev->desc_nr = choice;
2111 } else {
2112 if (find_rdev_nr(mddev, rdev->desc_nr))
2113 return -EBUSY;
2114 }
2115 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2116 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2117 mdname(mddev), mddev->max_disks);
2118 return -EBUSY;
2119 }
2120 bdevname(rdev->bdev,b);
2121 while ( (s=strchr(b, '/')) != NULL)
2122 *s = '!';
2123
2124 rdev->mddev = mddev;
2125 printk(KERN_INFO "md: bind<%s>\n", b);
2126
2127 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2128 goto fail;
2129
2130 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2131 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2132 /* failure here is OK */;
2133 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2134
2135 list_add_rcu(&rdev->same_set, &mddev->disks);
2136 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2137
2138 /* May as well allow recovery to be retried once */
2139 mddev->recovery_disabled++;
2140
2141 return 0;
2142
2143 fail:
2144 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2145 b, mdname(mddev));
2146 return err;
2147 }
2148
2149 static void md_delayed_delete(struct work_struct *ws)
2150 {
2151 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2152 kobject_del(&rdev->kobj);
2153 kobject_put(&rdev->kobj);
2154 }
2155
2156 static void unbind_rdev_from_array(struct md_rdev * rdev)
2157 {
2158 char b[BDEVNAME_SIZE];
2159 if (!rdev->mddev) {
2160 MD_BUG();
2161 return;
2162 }
2163 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2164 list_del_rcu(&rdev->same_set);
2165 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2166 rdev->mddev = NULL;
2167 sysfs_remove_link(&rdev->kobj, "block");
2168 sysfs_put(rdev->sysfs_state);
2169 rdev->sysfs_state = NULL;
2170 rdev->badblocks.count = 0;
2171 /* We need to delay this, otherwise we can deadlock when
2172 * writing to 'remove' to "dev/state". We also need
2173 * to delay it due to rcu usage.
2174 */
2175 synchronize_rcu();
2176 INIT_WORK(&rdev->del_work, md_delayed_delete);
2177 kobject_get(&rdev->kobj);
2178 queue_work(md_misc_wq, &rdev->del_work);
2179 }
2180
2181 /*
2182 * prevent the device from being mounted, repartitioned or
2183 * otherwise reused by a RAID array (or any other kernel
2184 * subsystem), by bd_claiming the device.
2185 */
2186 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2187 {
2188 int err = 0;
2189 struct block_device *bdev;
2190 char b[BDEVNAME_SIZE];
2191
2192 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2193 shared ? (struct md_rdev *)lock_rdev : rdev);
2194 if (IS_ERR(bdev)) {
2195 printk(KERN_ERR "md: could not open %s.\n",
2196 __bdevname(dev, b));
2197 return PTR_ERR(bdev);
2198 }
2199 rdev->bdev = bdev;
2200 return err;
2201 }
2202
2203 static void unlock_rdev(struct md_rdev *rdev)
2204 {
2205 struct block_device *bdev = rdev->bdev;
2206 rdev->bdev = NULL;
2207 if (!bdev)
2208 MD_BUG();
2209 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2210 }
2211
2212 void md_autodetect_dev(dev_t dev);
2213
2214 static void export_rdev(struct md_rdev * rdev)
2215 {
2216 char b[BDEVNAME_SIZE];
2217 printk(KERN_INFO "md: export_rdev(%s)\n",
2218 bdevname(rdev->bdev,b));
2219 if (rdev->mddev)
2220 MD_BUG();
2221 md_rdev_clear(rdev);
2222 #ifndef MODULE
2223 if (test_bit(AutoDetected, &rdev->flags))
2224 md_autodetect_dev(rdev->bdev->bd_dev);
2225 #endif
2226 unlock_rdev(rdev);
2227 kobject_put(&rdev->kobj);
2228 }
2229
2230 static void kick_rdev_from_array(struct md_rdev * rdev)
2231 {
2232 unbind_rdev_from_array(rdev);
2233 export_rdev(rdev);
2234 }
2235
2236 static void export_array(struct mddev *mddev)
2237 {
2238 struct md_rdev *rdev, *tmp;
2239
2240 rdev_for_each_safe(rdev, tmp, mddev) {
2241 if (!rdev->mddev) {
2242 MD_BUG();
2243 continue;
2244 }
2245 kick_rdev_from_array(rdev);
2246 }
2247 if (!list_empty(&mddev->disks))
2248 MD_BUG();
2249 mddev->raid_disks = 0;
2250 mddev->major_version = 0;
2251 }
2252
2253 static void print_desc(mdp_disk_t *desc)
2254 {
2255 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2256 desc->major,desc->minor,desc->raid_disk,desc->state);
2257 }
2258
2259 static void print_sb_90(mdp_super_t *sb)
2260 {
2261 int i;
2262
2263 printk(KERN_INFO
2264 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2265 sb->major_version, sb->minor_version, sb->patch_version,
2266 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2267 sb->ctime);
2268 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2269 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2270 sb->md_minor, sb->layout, sb->chunk_size);
2271 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2272 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2273 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2274 sb->failed_disks, sb->spare_disks,
2275 sb->sb_csum, (unsigned long)sb->events_lo);
2276
2277 printk(KERN_INFO);
2278 for (i = 0; i < MD_SB_DISKS; i++) {
2279 mdp_disk_t *desc;
2280
2281 desc = sb->disks + i;
2282 if (desc->number || desc->major || desc->minor ||
2283 desc->raid_disk || (desc->state && (desc->state != 4))) {
2284 printk(" D %2d: ", i);
2285 print_desc(desc);
2286 }
2287 }
2288 printk(KERN_INFO "md: THIS: ");
2289 print_desc(&sb->this_disk);
2290 }
2291
2292 static void print_sb_1(struct mdp_superblock_1 *sb)
2293 {
2294 __u8 *uuid;
2295
2296 uuid = sb->set_uuid;
2297 printk(KERN_INFO
2298 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2299 "md: Name: \"%s\" CT:%llu\n",
2300 le32_to_cpu(sb->major_version),
2301 le32_to_cpu(sb->feature_map),
2302 uuid,
2303 sb->set_name,
2304 (unsigned long long)le64_to_cpu(sb->ctime)
2305 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2306
2307 uuid = sb->device_uuid;
2308 printk(KERN_INFO
2309 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2310 " RO:%llu\n"
2311 "md: Dev:%08x UUID: %pU\n"
2312 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2313 "md: (MaxDev:%u) \n",
2314 le32_to_cpu(sb->level),
2315 (unsigned long long)le64_to_cpu(sb->size),
2316 le32_to_cpu(sb->raid_disks),
2317 le32_to_cpu(sb->layout),
2318 le32_to_cpu(sb->chunksize),
2319 (unsigned long long)le64_to_cpu(sb->data_offset),
2320 (unsigned long long)le64_to_cpu(sb->data_size),
2321 (unsigned long long)le64_to_cpu(sb->super_offset),
2322 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2323 le32_to_cpu(sb->dev_number),
2324 uuid,
2325 sb->devflags,
2326 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2327 (unsigned long long)le64_to_cpu(sb->events),
2328 (unsigned long long)le64_to_cpu(sb->resync_offset),
2329 le32_to_cpu(sb->sb_csum),
2330 le32_to_cpu(sb->max_dev)
2331 );
2332 }
2333
2334 static void print_rdev(struct md_rdev *rdev, int major_version)
2335 {
2336 char b[BDEVNAME_SIZE];
2337 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2338 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2339 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2340 rdev->desc_nr);
2341 if (rdev->sb_loaded) {
2342 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2343 switch (major_version) {
2344 case 0:
2345 print_sb_90(page_address(rdev->sb_page));
2346 break;
2347 case 1:
2348 print_sb_1(page_address(rdev->sb_page));
2349 break;
2350 }
2351 } else
2352 printk(KERN_INFO "md: no rdev superblock!\n");
2353 }
2354
2355 static void md_print_devices(void)
2356 {
2357 struct list_head *tmp;
2358 struct md_rdev *rdev;
2359 struct mddev *mddev;
2360 char b[BDEVNAME_SIZE];
2361
2362 printk("\n");
2363 printk("md: **********************************\n");
2364 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2365 printk("md: **********************************\n");
2366 for_each_mddev(mddev, tmp) {
2367
2368 if (mddev->bitmap)
2369 bitmap_print_sb(mddev->bitmap);
2370 else
2371 printk("%s: ", mdname(mddev));
2372 rdev_for_each(rdev, mddev)
2373 printk("<%s>", bdevname(rdev->bdev,b));
2374 printk("\n");
2375
2376 rdev_for_each(rdev, mddev)
2377 print_rdev(rdev, mddev->major_version);
2378 }
2379 printk("md: **********************************\n");
2380 printk("\n");
2381 }
2382
2383
2384 static void sync_sbs(struct mddev * mddev, int nospares)
2385 {
2386 /* Update each superblock (in-memory image), but
2387 * if we are allowed to, skip spares which already
2388 * have the right event counter, or have one earlier
2389 * (which would mean they aren't being marked as dirty
2390 * with the rest of the array)
2391 */
2392 struct md_rdev *rdev;
2393 rdev_for_each(rdev, mddev) {
2394 if (rdev->sb_events == mddev->events ||
2395 (nospares &&
2396 rdev->raid_disk < 0 &&
2397 rdev->sb_events+1 == mddev->events)) {
2398 /* Don't update this superblock */
2399 rdev->sb_loaded = 2;
2400 } else {
2401 sync_super(mddev, rdev);
2402 rdev->sb_loaded = 1;
2403 }
2404 }
2405 }
2406
2407 static void md_update_sb(struct mddev * mddev, int force_change)
2408 {
2409 struct md_rdev *rdev;
2410 int sync_req;
2411 int nospares = 0;
2412 int any_badblocks_changed = 0;
2413
2414 if (mddev->ro) {
2415 if (force_change)
2416 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2417 return;
2418 }
2419 repeat:
2420 /* First make sure individual recovery_offsets are correct */
2421 rdev_for_each(rdev, mddev) {
2422 if (rdev->raid_disk >= 0 &&
2423 mddev->delta_disks >= 0 &&
2424 !test_bit(In_sync, &rdev->flags) &&
2425 mddev->curr_resync_completed > rdev->recovery_offset)
2426 rdev->recovery_offset = mddev->curr_resync_completed;
2427
2428 }
2429 if (!mddev->persistent) {
2430 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2431 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2432 if (!mddev->external) {
2433 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2434 rdev_for_each(rdev, mddev) {
2435 if (rdev->badblocks.changed) {
2436 rdev->badblocks.changed = 0;
2437 md_ack_all_badblocks(&rdev->badblocks);
2438 md_error(mddev, rdev);
2439 }
2440 clear_bit(Blocked, &rdev->flags);
2441 clear_bit(BlockedBadBlocks, &rdev->flags);
2442 wake_up(&rdev->blocked_wait);
2443 }
2444 }
2445 wake_up(&mddev->sb_wait);
2446 return;
2447 }
2448
2449 spin_lock_irq(&mddev->write_lock);
2450
2451 mddev->utime = get_seconds();
2452
2453 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2454 force_change = 1;
2455 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2456 /* just a clean<-> dirty transition, possibly leave spares alone,
2457 * though if events isn't the right even/odd, we will have to do
2458 * spares after all
2459 */
2460 nospares = 1;
2461 if (force_change)
2462 nospares = 0;
2463 if (mddev->degraded)
2464 /* If the array is degraded, then skipping spares is both
2465 * dangerous and fairly pointless.
2466 * Dangerous because a device that was removed from the array
2467 * might have a event_count that still looks up-to-date,
2468 * so it can be re-added without a resync.
2469 * Pointless because if there are any spares to skip,
2470 * then a recovery will happen and soon that array won't
2471 * be degraded any more and the spare can go back to sleep then.
2472 */
2473 nospares = 0;
2474
2475 sync_req = mddev->in_sync;
2476
2477 /* If this is just a dirty<->clean transition, and the array is clean
2478 * and 'events' is odd, we can roll back to the previous clean state */
2479 if (nospares
2480 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2481 && mddev->can_decrease_events
2482 && mddev->events != 1) {
2483 mddev->events--;
2484 mddev->can_decrease_events = 0;
2485 } else {
2486 /* otherwise we have to go forward and ... */
2487 mddev->events ++;
2488 mddev->can_decrease_events = nospares;
2489 }
2490
2491 if (!mddev->events) {
2492 /*
2493 * oops, this 64-bit counter should never wrap.
2494 * Either we are in around ~1 trillion A.C., assuming
2495 * 1 reboot per second, or we have a bug:
2496 */
2497 MD_BUG();
2498 mddev->events --;
2499 }
2500
2501 rdev_for_each(rdev, mddev) {
2502 if (rdev->badblocks.changed)
2503 any_badblocks_changed++;
2504 if (test_bit(Faulty, &rdev->flags))
2505 set_bit(FaultRecorded, &rdev->flags);
2506 }
2507
2508 sync_sbs(mddev, nospares);
2509 spin_unlock_irq(&mddev->write_lock);
2510
2511 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2512 mdname(mddev), mddev->in_sync);
2513
2514 bitmap_update_sb(mddev->bitmap);
2515 rdev_for_each(rdev, mddev) {
2516 char b[BDEVNAME_SIZE];
2517
2518 if (rdev->sb_loaded != 1)
2519 continue; /* no noise on spare devices */
2520
2521 if (!test_bit(Faulty, &rdev->flags) &&
2522 rdev->saved_raid_disk == -1) {
2523 md_super_write(mddev,rdev,
2524 rdev->sb_start, rdev->sb_size,
2525 rdev->sb_page);
2526 pr_debug("md: (write) %s's sb offset: %llu\n",
2527 bdevname(rdev->bdev, b),
2528 (unsigned long long)rdev->sb_start);
2529 rdev->sb_events = mddev->events;
2530 if (rdev->badblocks.size) {
2531 md_super_write(mddev, rdev,
2532 rdev->badblocks.sector,
2533 rdev->badblocks.size << 9,
2534 rdev->bb_page);
2535 rdev->badblocks.size = 0;
2536 }
2537
2538 } else if (test_bit(Faulty, &rdev->flags))
2539 pr_debug("md: %s (skipping faulty)\n",
2540 bdevname(rdev->bdev, b));
2541 else
2542 pr_debug("(skipping incremental s/r ");
2543
2544 if (mddev->level == LEVEL_MULTIPATH)
2545 /* only need to write one superblock... */
2546 break;
2547 }
2548 md_super_wait(mddev);
2549 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2550
2551 spin_lock_irq(&mddev->write_lock);
2552 if (mddev->in_sync != sync_req ||
2553 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2554 /* have to write it out again */
2555 spin_unlock_irq(&mddev->write_lock);
2556 goto repeat;
2557 }
2558 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2559 spin_unlock_irq(&mddev->write_lock);
2560 wake_up(&mddev->sb_wait);
2561 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2562 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2563
2564 rdev_for_each(rdev, mddev) {
2565 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2566 clear_bit(Blocked, &rdev->flags);
2567
2568 if (any_badblocks_changed)
2569 md_ack_all_badblocks(&rdev->badblocks);
2570 clear_bit(BlockedBadBlocks, &rdev->flags);
2571 wake_up(&rdev->blocked_wait);
2572 }
2573 }
2574
2575 /* words written to sysfs files may, or may not, be \n terminated.
2576 * We want to accept with case. For this we use cmd_match.
2577 */
2578 static int cmd_match(const char *cmd, const char *str)
2579 {
2580 /* See if cmd, written into a sysfs file, matches
2581 * str. They must either be the same, or cmd can
2582 * have a trailing newline
2583 */
2584 while (*cmd && *str && *cmd == *str) {
2585 cmd++;
2586 str++;
2587 }
2588 if (*cmd == '\n')
2589 cmd++;
2590 if (*str || *cmd)
2591 return 0;
2592 return 1;
2593 }
2594
2595 struct rdev_sysfs_entry {
2596 struct attribute attr;
2597 ssize_t (*show)(struct md_rdev *, char *);
2598 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2599 };
2600
2601 static ssize_t
2602 state_show(struct md_rdev *rdev, char *page)
2603 {
2604 char *sep = "";
2605 size_t len = 0;
2606
2607 if (test_bit(Faulty, &rdev->flags) ||
2608 rdev->badblocks.unacked_exist) {
2609 len+= sprintf(page+len, "%sfaulty",sep);
2610 sep = ",";
2611 }
2612 if (test_bit(In_sync, &rdev->flags)) {
2613 len += sprintf(page+len, "%sin_sync",sep);
2614 sep = ",";
2615 }
2616 if (test_bit(WriteMostly, &rdev->flags)) {
2617 len += sprintf(page+len, "%swrite_mostly",sep);
2618 sep = ",";
2619 }
2620 if (test_bit(Blocked, &rdev->flags) ||
2621 (rdev->badblocks.unacked_exist
2622 && !test_bit(Faulty, &rdev->flags))) {
2623 len += sprintf(page+len, "%sblocked", sep);
2624 sep = ",";
2625 }
2626 if (!test_bit(Faulty, &rdev->flags) &&
2627 !test_bit(In_sync, &rdev->flags)) {
2628 len += sprintf(page+len, "%sspare", sep);
2629 sep = ",";
2630 }
2631 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2632 len += sprintf(page+len, "%swrite_error", sep);
2633 sep = ",";
2634 }
2635 if (test_bit(WantReplacement, &rdev->flags)) {
2636 len += sprintf(page+len, "%swant_replacement", sep);
2637 sep = ",";
2638 }
2639 if (test_bit(Replacement, &rdev->flags)) {
2640 len += sprintf(page+len, "%sreplacement", sep);
2641 sep = ",";
2642 }
2643
2644 return len+sprintf(page+len, "\n");
2645 }
2646
2647 static ssize_t
2648 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2649 {
2650 /* can write
2651 * faulty - simulates an error
2652 * remove - disconnects the device
2653 * writemostly - sets write_mostly
2654 * -writemostly - clears write_mostly
2655 * blocked - sets the Blocked flags
2656 * -blocked - clears the Blocked and possibly simulates an error
2657 * insync - sets Insync providing device isn't active
2658 * write_error - sets WriteErrorSeen
2659 * -write_error - clears WriteErrorSeen
2660 */
2661 int err = -EINVAL;
2662 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2663 md_error(rdev->mddev, rdev);
2664 if (test_bit(Faulty, &rdev->flags))
2665 err = 0;
2666 else
2667 err = -EBUSY;
2668 } else if (cmd_match(buf, "remove")) {
2669 if (rdev->raid_disk >= 0)
2670 err = -EBUSY;
2671 else {
2672 struct mddev *mddev = rdev->mddev;
2673 kick_rdev_from_array(rdev);
2674 if (mddev->pers)
2675 md_update_sb(mddev, 1);
2676 md_new_event(mddev);
2677 err = 0;
2678 }
2679 } else if (cmd_match(buf, "writemostly")) {
2680 set_bit(WriteMostly, &rdev->flags);
2681 err = 0;
2682 } else if (cmd_match(buf, "-writemostly")) {
2683 clear_bit(WriteMostly, &rdev->flags);
2684 err = 0;
2685 } else if (cmd_match(buf, "blocked")) {
2686 set_bit(Blocked, &rdev->flags);
2687 err = 0;
2688 } else if (cmd_match(buf, "-blocked")) {
2689 if (!test_bit(Faulty, &rdev->flags) &&
2690 rdev->badblocks.unacked_exist) {
2691 /* metadata handler doesn't understand badblocks,
2692 * so we need to fail the device
2693 */
2694 md_error(rdev->mddev, rdev);
2695 }
2696 clear_bit(Blocked, &rdev->flags);
2697 clear_bit(BlockedBadBlocks, &rdev->flags);
2698 wake_up(&rdev->blocked_wait);
2699 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2700 md_wakeup_thread(rdev->mddev->thread);
2701
2702 err = 0;
2703 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2704 set_bit(In_sync, &rdev->flags);
2705 err = 0;
2706 } else if (cmd_match(buf, "write_error")) {
2707 set_bit(WriteErrorSeen, &rdev->flags);
2708 err = 0;
2709 } else if (cmd_match(buf, "-write_error")) {
2710 clear_bit(WriteErrorSeen, &rdev->flags);
2711 err = 0;
2712 } else if (cmd_match(buf, "want_replacement")) {
2713 /* Any non-spare device that is not a replacement can
2714 * become want_replacement at any time, but we then need to
2715 * check if recovery is needed.
2716 */
2717 if (rdev->raid_disk >= 0 &&
2718 !test_bit(Replacement, &rdev->flags))
2719 set_bit(WantReplacement, &rdev->flags);
2720 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2721 md_wakeup_thread(rdev->mddev->thread);
2722 err = 0;
2723 } else if (cmd_match(buf, "-want_replacement")) {
2724 /* Clearing 'want_replacement' is always allowed.
2725 * Once replacements starts it is too late though.
2726 */
2727 err = 0;
2728 clear_bit(WantReplacement, &rdev->flags);
2729 } else if (cmd_match(buf, "replacement")) {
2730 /* Can only set a device as a replacement when array has not
2731 * yet been started. Once running, replacement is automatic
2732 * from spares, or by assigning 'slot'.
2733 */
2734 if (rdev->mddev->pers)
2735 err = -EBUSY;
2736 else {
2737 set_bit(Replacement, &rdev->flags);
2738 err = 0;
2739 }
2740 } else if (cmd_match(buf, "-replacement")) {
2741 /* Similarly, can only clear Replacement before start */
2742 if (rdev->mddev->pers)
2743 err = -EBUSY;
2744 else {
2745 clear_bit(Replacement, &rdev->flags);
2746 err = 0;
2747 }
2748 }
2749 if (!err)
2750 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751 return err ? err : len;
2752 }
2753 static struct rdev_sysfs_entry rdev_state =
2754 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2755
2756 static ssize_t
2757 errors_show(struct md_rdev *rdev, char *page)
2758 {
2759 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2760 }
2761
2762 static ssize_t
2763 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2764 {
2765 char *e;
2766 unsigned long n = simple_strtoul(buf, &e, 10);
2767 if (*buf && (*e == 0 || *e == '\n')) {
2768 atomic_set(&rdev->corrected_errors, n);
2769 return len;
2770 }
2771 return -EINVAL;
2772 }
2773 static struct rdev_sysfs_entry rdev_errors =
2774 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2775
2776 static ssize_t
2777 slot_show(struct md_rdev *rdev, char *page)
2778 {
2779 if (rdev->raid_disk < 0)
2780 return sprintf(page, "none\n");
2781 else
2782 return sprintf(page, "%d\n", rdev->raid_disk);
2783 }
2784
2785 static ssize_t
2786 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2787 {
2788 char *e;
2789 int err;
2790 int slot = simple_strtoul(buf, &e, 10);
2791 if (strncmp(buf, "none", 4)==0)
2792 slot = -1;
2793 else if (e==buf || (*e && *e!= '\n'))
2794 return -EINVAL;
2795 if (rdev->mddev->pers && slot == -1) {
2796 /* Setting 'slot' on an active array requires also
2797 * updating the 'rd%d' link, and communicating
2798 * with the personality with ->hot_*_disk.
2799 * For now we only support removing
2800 * failed/spare devices. This normally happens automatically,
2801 * but not when the metadata is externally managed.
2802 */
2803 if (rdev->raid_disk == -1)
2804 return -EEXIST;
2805 /* personality does all needed checks */
2806 if (rdev->mddev->pers->hot_remove_disk == NULL)
2807 return -EINVAL;
2808 clear_bit(Blocked, &rdev->flags);
2809 remove_and_add_spares(rdev->mddev, rdev);
2810 if (rdev->raid_disk >= 0)
2811 return -EBUSY;
2812 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2813 md_wakeup_thread(rdev->mddev->thread);
2814 } else if (rdev->mddev->pers) {
2815 /* Activating a spare .. or possibly reactivating
2816 * if we ever get bitmaps working here.
2817 */
2818
2819 if (rdev->raid_disk != -1)
2820 return -EBUSY;
2821
2822 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2823 return -EBUSY;
2824
2825 if (rdev->mddev->pers->hot_add_disk == NULL)
2826 return -EINVAL;
2827
2828 if (slot >= rdev->mddev->raid_disks &&
2829 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2830 return -ENOSPC;
2831
2832 rdev->raid_disk = slot;
2833 if (test_bit(In_sync, &rdev->flags))
2834 rdev->saved_raid_disk = slot;
2835 else
2836 rdev->saved_raid_disk = -1;
2837 clear_bit(In_sync, &rdev->flags);
2838 clear_bit(Bitmap_sync, &rdev->flags);
2839 err = rdev->mddev->pers->
2840 hot_add_disk(rdev->mddev, rdev);
2841 if (err) {
2842 rdev->raid_disk = -1;
2843 return err;
2844 } else
2845 sysfs_notify_dirent_safe(rdev->sysfs_state);
2846 if (sysfs_link_rdev(rdev->mddev, rdev))
2847 /* failure here is OK */;
2848 /* don't wakeup anyone, leave that to userspace. */
2849 } else {
2850 if (slot >= rdev->mddev->raid_disks &&
2851 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2852 return -ENOSPC;
2853 rdev->raid_disk = slot;
2854 /* assume it is working */
2855 clear_bit(Faulty, &rdev->flags);
2856 clear_bit(WriteMostly, &rdev->flags);
2857 set_bit(In_sync, &rdev->flags);
2858 sysfs_notify_dirent_safe(rdev->sysfs_state);
2859 }
2860 return len;
2861 }
2862
2863
2864 static struct rdev_sysfs_entry rdev_slot =
2865 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2866
2867 static ssize_t
2868 offset_show(struct md_rdev *rdev, char *page)
2869 {
2870 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2871 }
2872
2873 static ssize_t
2874 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2875 {
2876 unsigned long long offset;
2877 if (strict_strtoull(buf, 10, &offset) < 0)
2878 return -EINVAL;
2879 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2880 return -EBUSY;
2881 if (rdev->sectors && rdev->mddev->external)
2882 /* Must set offset before size, so overlap checks
2883 * can be sane */
2884 return -EBUSY;
2885 rdev->data_offset = offset;
2886 rdev->new_data_offset = offset;
2887 return len;
2888 }
2889
2890 static struct rdev_sysfs_entry rdev_offset =
2891 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2892
2893 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2894 {
2895 return sprintf(page, "%llu\n",
2896 (unsigned long long)rdev->new_data_offset);
2897 }
2898
2899 static ssize_t new_offset_store(struct md_rdev *rdev,
2900 const char *buf, size_t len)
2901 {
2902 unsigned long long new_offset;
2903 struct mddev *mddev = rdev->mddev;
2904
2905 if (strict_strtoull(buf, 10, &new_offset) < 0)
2906 return -EINVAL;
2907
2908 if (mddev->sync_thread)
2909 return -EBUSY;
2910 if (new_offset == rdev->data_offset)
2911 /* reset is always permitted */
2912 ;
2913 else if (new_offset > rdev->data_offset) {
2914 /* must not push array size beyond rdev_sectors */
2915 if (new_offset - rdev->data_offset
2916 + mddev->dev_sectors > rdev->sectors)
2917 return -E2BIG;
2918 }
2919 /* Metadata worries about other space details. */
2920
2921 /* decreasing the offset is inconsistent with a backwards
2922 * reshape.
2923 */
2924 if (new_offset < rdev->data_offset &&
2925 mddev->reshape_backwards)
2926 return -EINVAL;
2927 /* Increasing offset is inconsistent with forwards
2928 * reshape. reshape_direction should be set to
2929 * 'backwards' first.
2930 */
2931 if (new_offset > rdev->data_offset &&
2932 !mddev->reshape_backwards)
2933 return -EINVAL;
2934
2935 if (mddev->pers && mddev->persistent &&
2936 !super_types[mddev->major_version]
2937 .allow_new_offset(rdev, new_offset))
2938 return -E2BIG;
2939 rdev->new_data_offset = new_offset;
2940 if (new_offset > rdev->data_offset)
2941 mddev->reshape_backwards = 1;
2942 else if (new_offset < rdev->data_offset)
2943 mddev->reshape_backwards = 0;
2944
2945 return len;
2946 }
2947 static struct rdev_sysfs_entry rdev_new_offset =
2948 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2949
2950 static ssize_t
2951 rdev_size_show(struct md_rdev *rdev, char *page)
2952 {
2953 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2954 }
2955
2956 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2957 {
2958 /* check if two start/length pairs overlap */
2959 if (s1+l1 <= s2)
2960 return 0;
2961 if (s2+l2 <= s1)
2962 return 0;
2963 return 1;
2964 }
2965
2966 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2967 {
2968 unsigned long long blocks;
2969 sector_t new;
2970
2971 if (strict_strtoull(buf, 10, &blocks) < 0)
2972 return -EINVAL;
2973
2974 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2975 return -EINVAL; /* sector conversion overflow */
2976
2977 new = blocks * 2;
2978 if (new != blocks * 2)
2979 return -EINVAL; /* unsigned long long to sector_t overflow */
2980
2981 *sectors = new;
2982 return 0;
2983 }
2984
2985 static ssize_t
2986 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2987 {
2988 struct mddev *my_mddev = rdev->mddev;
2989 sector_t oldsectors = rdev->sectors;
2990 sector_t sectors;
2991
2992 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2993 return -EINVAL;
2994 if (rdev->data_offset != rdev->new_data_offset)
2995 return -EINVAL; /* too confusing */
2996 if (my_mddev->pers && rdev->raid_disk >= 0) {
2997 if (my_mddev->persistent) {
2998 sectors = super_types[my_mddev->major_version].
2999 rdev_size_change(rdev, sectors);
3000 if (!sectors)
3001 return -EBUSY;
3002 } else if (!sectors)
3003 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3004 rdev->data_offset;
3005 if (!my_mddev->pers->resize)
3006 /* Cannot change size for RAID0 or Linear etc */
3007 return -EINVAL;
3008 }
3009 if (sectors < my_mddev->dev_sectors)
3010 return -EINVAL; /* component must fit device */
3011
3012 rdev->sectors = sectors;
3013 if (sectors > oldsectors && my_mddev->external) {
3014 /* need to check that all other rdevs with the same ->bdev
3015 * do not overlap. We need to unlock the mddev to avoid
3016 * a deadlock. We have already changed rdev->sectors, and if
3017 * we have to change it back, we will have the lock again.
3018 */
3019 struct mddev *mddev;
3020 int overlap = 0;
3021 struct list_head *tmp;
3022
3023 mddev_unlock(my_mddev);
3024 for_each_mddev(mddev, tmp) {
3025 struct md_rdev *rdev2;
3026
3027 mddev_lock(mddev);
3028 rdev_for_each(rdev2, mddev)
3029 if (rdev->bdev == rdev2->bdev &&
3030 rdev != rdev2 &&
3031 overlaps(rdev->data_offset, rdev->sectors,
3032 rdev2->data_offset,
3033 rdev2->sectors)) {
3034 overlap = 1;
3035 break;
3036 }
3037 mddev_unlock(mddev);
3038 if (overlap) {
3039 mddev_put(mddev);
3040 break;
3041 }
3042 }
3043 mddev_lock(my_mddev);
3044 if (overlap) {
3045 /* Someone else could have slipped in a size
3046 * change here, but doing so is just silly.
3047 * We put oldsectors back because we *know* it is
3048 * safe, and trust userspace not to race with
3049 * itself
3050 */
3051 rdev->sectors = oldsectors;
3052 return -EBUSY;
3053 }
3054 }
3055 return len;
3056 }
3057
3058 static struct rdev_sysfs_entry rdev_size =
3059 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3060
3061
3062 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3063 {
3064 unsigned long long recovery_start = rdev->recovery_offset;
3065
3066 if (test_bit(In_sync, &rdev->flags) ||
3067 recovery_start == MaxSector)
3068 return sprintf(page, "none\n");
3069
3070 return sprintf(page, "%llu\n", recovery_start);
3071 }
3072
3073 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3074 {
3075 unsigned long long recovery_start;
3076
3077 if (cmd_match(buf, "none"))
3078 recovery_start = MaxSector;
3079 else if (strict_strtoull(buf, 10, &recovery_start))
3080 return -EINVAL;
3081
3082 if (rdev->mddev->pers &&
3083 rdev->raid_disk >= 0)
3084 return -EBUSY;
3085
3086 rdev->recovery_offset = recovery_start;
3087 if (recovery_start == MaxSector)
3088 set_bit(In_sync, &rdev->flags);
3089 else
3090 clear_bit(In_sync, &rdev->flags);
3091 return len;
3092 }
3093
3094 static struct rdev_sysfs_entry rdev_recovery_start =
3095 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3096
3097
3098 static ssize_t
3099 badblocks_show(struct badblocks *bb, char *page, int unack);
3100 static ssize_t
3101 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3102
3103 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3104 {
3105 return badblocks_show(&rdev->badblocks, page, 0);
3106 }
3107 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3108 {
3109 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3110 /* Maybe that ack was all we needed */
3111 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3112 wake_up(&rdev->blocked_wait);
3113 return rv;
3114 }
3115 static struct rdev_sysfs_entry rdev_bad_blocks =
3116 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3117
3118
3119 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3120 {
3121 return badblocks_show(&rdev->badblocks, page, 1);
3122 }
3123 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3124 {
3125 return badblocks_store(&rdev->badblocks, page, len, 1);
3126 }
3127 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3128 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3129
3130 static struct attribute *rdev_default_attrs[] = {
3131 &rdev_state.attr,
3132 &rdev_errors.attr,
3133 &rdev_slot.attr,
3134 &rdev_offset.attr,
3135 &rdev_new_offset.attr,
3136 &rdev_size.attr,
3137 &rdev_recovery_start.attr,
3138 &rdev_bad_blocks.attr,
3139 &rdev_unack_bad_blocks.attr,
3140 NULL,
3141 };
3142 static ssize_t
3143 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3144 {
3145 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3146 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3147 struct mddev *mddev = rdev->mddev;
3148 ssize_t rv;
3149
3150 if (!entry->show)
3151 return -EIO;
3152
3153 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3154 if (!rv) {
3155 if (rdev->mddev == NULL)
3156 rv = -EBUSY;
3157 else
3158 rv = entry->show(rdev, page);
3159 mddev_unlock(mddev);
3160 }
3161 return rv;
3162 }
3163
3164 static ssize_t
3165 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3166 const char *page, size_t length)
3167 {
3168 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3169 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3170 ssize_t rv;
3171 struct mddev *mddev = rdev->mddev;
3172
3173 if (!entry->store)
3174 return -EIO;
3175 if (!capable(CAP_SYS_ADMIN))
3176 return -EACCES;
3177 rv = mddev ? mddev_lock(mddev): -EBUSY;
3178 if (!rv) {
3179 if (rdev->mddev == NULL)
3180 rv = -EBUSY;
3181 else
3182 rv = entry->store(rdev, page, length);
3183 mddev_unlock(mddev);
3184 }
3185 return rv;
3186 }
3187
3188 static void rdev_free(struct kobject *ko)
3189 {
3190 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3191 kfree(rdev);
3192 }
3193 static const struct sysfs_ops rdev_sysfs_ops = {
3194 .show = rdev_attr_show,
3195 .store = rdev_attr_store,
3196 };
3197 static struct kobj_type rdev_ktype = {
3198 .release = rdev_free,
3199 .sysfs_ops = &rdev_sysfs_ops,
3200 .default_attrs = rdev_default_attrs,
3201 };
3202
3203 int md_rdev_init(struct md_rdev *rdev)
3204 {
3205 rdev->desc_nr = -1;
3206 rdev->saved_raid_disk = -1;
3207 rdev->raid_disk = -1;
3208 rdev->flags = 0;
3209 rdev->data_offset = 0;
3210 rdev->new_data_offset = 0;
3211 rdev->sb_events = 0;
3212 rdev->last_read_error.tv_sec = 0;
3213 rdev->last_read_error.tv_nsec = 0;
3214 rdev->sb_loaded = 0;
3215 rdev->bb_page = NULL;
3216 atomic_set(&rdev->nr_pending, 0);
3217 atomic_set(&rdev->read_errors, 0);
3218 atomic_set(&rdev->corrected_errors, 0);
3219
3220 INIT_LIST_HEAD(&rdev->same_set);
3221 init_waitqueue_head(&rdev->blocked_wait);
3222
3223 /* Add space to store bad block list.
3224 * This reserves the space even on arrays where it cannot
3225 * be used - I wonder if that matters
3226 */
3227 rdev->badblocks.count = 0;
3228 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3229 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3230 seqlock_init(&rdev->badblocks.lock);
3231 if (rdev->badblocks.page == NULL)
3232 return -ENOMEM;
3233
3234 return 0;
3235 }
3236 EXPORT_SYMBOL_GPL(md_rdev_init);
3237 /*
3238 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3239 *
3240 * mark the device faulty if:
3241 *
3242 * - the device is nonexistent (zero size)
3243 * - the device has no valid superblock
3244 *
3245 * a faulty rdev _never_ has rdev->sb set.
3246 */
3247 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3248 {
3249 char b[BDEVNAME_SIZE];
3250 int err;
3251 struct md_rdev *rdev;
3252 sector_t size;
3253
3254 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3255 if (!rdev) {
3256 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3257 return ERR_PTR(-ENOMEM);
3258 }
3259
3260 err = md_rdev_init(rdev);
3261 if (err)
3262 goto abort_free;
3263 err = alloc_disk_sb(rdev);
3264 if (err)
3265 goto abort_free;
3266
3267 err = lock_rdev(rdev, newdev, super_format == -2);
3268 if (err)
3269 goto abort_free;
3270
3271 kobject_init(&rdev->kobj, &rdev_ktype);
3272
3273 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3274 if (!size) {
3275 printk(KERN_WARNING
3276 "md: %s has zero or unknown size, marking faulty!\n",
3277 bdevname(rdev->bdev,b));
3278 err = -EINVAL;
3279 goto abort_free;
3280 }
3281
3282 if (super_format >= 0) {
3283 err = super_types[super_format].
3284 load_super(rdev, NULL, super_minor);
3285 if (err == -EINVAL) {
3286 printk(KERN_WARNING
3287 "md: %s does not have a valid v%d.%d "
3288 "superblock, not importing!\n",
3289 bdevname(rdev->bdev,b),
3290 super_format, super_minor);
3291 goto abort_free;
3292 }
3293 if (err < 0) {
3294 printk(KERN_WARNING
3295 "md: could not read %s's sb, not importing!\n",
3296 bdevname(rdev->bdev,b));
3297 goto abort_free;
3298 }
3299 }
3300
3301 return rdev;
3302
3303 abort_free:
3304 if (rdev->bdev)
3305 unlock_rdev(rdev);
3306 md_rdev_clear(rdev);
3307 kfree(rdev);
3308 return ERR_PTR(err);
3309 }
3310
3311 /*
3312 * Check a full RAID array for plausibility
3313 */
3314
3315
3316 static void analyze_sbs(struct mddev * mddev)
3317 {
3318 int i;
3319 struct md_rdev *rdev, *freshest, *tmp;
3320 char b[BDEVNAME_SIZE];
3321
3322 freshest = NULL;
3323 rdev_for_each_safe(rdev, tmp, mddev)
3324 switch (super_types[mddev->major_version].
3325 load_super(rdev, freshest, mddev->minor_version)) {
3326 case 1:
3327 freshest = rdev;
3328 break;
3329 case 0:
3330 break;
3331 default:
3332 printk( KERN_ERR \
3333 "md: fatal superblock inconsistency in %s"
3334 " -- removing from array\n",
3335 bdevname(rdev->bdev,b));
3336 kick_rdev_from_array(rdev);
3337 }
3338
3339
3340 super_types[mddev->major_version].
3341 validate_super(mddev, freshest);
3342
3343 i = 0;
3344 rdev_for_each_safe(rdev, tmp, mddev) {
3345 if (mddev->max_disks &&
3346 (rdev->desc_nr >= mddev->max_disks ||
3347 i > mddev->max_disks)) {
3348 printk(KERN_WARNING
3349 "md: %s: %s: only %d devices permitted\n",
3350 mdname(mddev), bdevname(rdev->bdev, b),
3351 mddev->max_disks);
3352 kick_rdev_from_array(rdev);
3353 continue;
3354 }
3355 if (rdev != freshest)
3356 if (super_types[mddev->major_version].
3357 validate_super(mddev, rdev)) {
3358 printk(KERN_WARNING "md: kicking non-fresh %s"
3359 " from array!\n",
3360 bdevname(rdev->bdev,b));
3361 kick_rdev_from_array(rdev);
3362 continue;
3363 }
3364 if (mddev->level == LEVEL_MULTIPATH) {
3365 rdev->desc_nr = i++;
3366 rdev->raid_disk = rdev->desc_nr;
3367 set_bit(In_sync, &rdev->flags);
3368 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3369 rdev->raid_disk = -1;
3370 clear_bit(In_sync, &rdev->flags);
3371 }
3372 }
3373 }
3374
3375 /* Read a fixed-point number.
3376 * Numbers in sysfs attributes should be in "standard" units where
3377 * possible, so time should be in seconds.
3378 * However we internally use a a much smaller unit such as
3379 * milliseconds or jiffies.
3380 * This function takes a decimal number with a possible fractional
3381 * component, and produces an integer which is the result of
3382 * multiplying that number by 10^'scale'.
3383 * all without any floating-point arithmetic.
3384 */
3385 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3386 {
3387 unsigned long result = 0;
3388 long decimals = -1;
3389 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3390 if (*cp == '.')
3391 decimals = 0;
3392 else if (decimals < scale) {
3393 unsigned int value;
3394 value = *cp - '0';
3395 result = result * 10 + value;
3396 if (decimals >= 0)
3397 decimals++;
3398 }
3399 cp++;
3400 }
3401 if (*cp == '\n')
3402 cp++;
3403 if (*cp)
3404 return -EINVAL;
3405 if (decimals < 0)
3406 decimals = 0;
3407 while (decimals < scale) {
3408 result *= 10;
3409 decimals ++;
3410 }
3411 *res = result;
3412 return 0;
3413 }
3414
3415
3416 static void md_safemode_timeout(unsigned long data);
3417
3418 static ssize_t
3419 safe_delay_show(struct mddev *mddev, char *page)
3420 {
3421 int msec = (mddev->safemode_delay*1000)/HZ;
3422 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3423 }
3424 static ssize_t
3425 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3426 {
3427 unsigned long msec;
3428
3429 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3430 return -EINVAL;
3431 if (msec == 0)
3432 mddev->safemode_delay = 0;
3433 else {
3434 unsigned long old_delay = mddev->safemode_delay;
3435 mddev->safemode_delay = (msec*HZ)/1000;
3436 if (mddev->safemode_delay == 0)
3437 mddev->safemode_delay = 1;
3438 if (mddev->safemode_delay < old_delay)
3439 md_safemode_timeout((unsigned long)mddev);
3440 }
3441 return len;
3442 }
3443 static struct md_sysfs_entry md_safe_delay =
3444 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3445
3446 static ssize_t
3447 level_show(struct mddev *mddev, char *page)
3448 {
3449 struct md_personality *p = mddev->pers;
3450 if (p)
3451 return sprintf(page, "%s\n", p->name);
3452 else if (mddev->clevel[0])
3453 return sprintf(page, "%s\n", mddev->clevel);
3454 else if (mddev->level != LEVEL_NONE)
3455 return sprintf(page, "%d\n", mddev->level);
3456 else
3457 return 0;
3458 }
3459
3460 static ssize_t
3461 level_store(struct mddev *mddev, const char *buf, size_t len)
3462 {
3463 char clevel[16];
3464 ssize_t rv = len;
3465 struct md_personality *pers;
3466 long level;
3467 void *priv;
3468 struct md_rdev *rdev;
3469
3470 if (mddev->pers == NULL) {
3471 if (len == 0)
3472 return 0;
3473 if (len >= sizeof(mddev->clevel))
3474 return -ENOSPC;
3475 strncpy(mddev->clevel, buf, len);
3476 if (mddev->clevel[len-1] == '\n')
3477 len--;
3478 mddev->clevel[len] = 0;
3479 mddev->level = LEVEL_NONE;
3480 return rv;
3481 }
3482
3483 /* request to change the personality. Need to ensure:
3484 * - array is not engaged in resync/recovery/reshape
3485 * - old personality can be suspended
3486 * - new personality will access other array.
3487 */
3488
3489 if (mddev->sync_thread ||
3490 mddev->reshape_position != MaxSector ||
3491 mddev->sysfs_active)
3492 return -EBUSY;
3493
3494 if (!mddev->pers->quiesce) {
3495 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3496 mdname(mddev), mddev->pers->name);
3497 return -EINVAL;
3498 }
3499
3500 /* Now find the new personality */
3501 if (len == 0 || len >= sizeof(clevel))
3502 return -EINVAL;
3503 strncpy(clevel, buf, len);
3504 if (clevel[len-1] == '\n')
3505 len--;
3506 clevel[len] = 0;
3507 if (strict_strtol(clevel, 10, &level))
3508 level = LEVEL_NONE;
3509
3510 if (request_module("md-%s", clevel) != 0)
3511 request_module("md-level-%s", clevel);
3512 spin_lock(&pers_lock);
3513 pers = find_pers(level, clevel);
3514 if (!pers || !try_module_get(pers->owner)) {
3515 spin_unlock(&pers_lock);
3516 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3517 return -EINVAL;
3518 }
3519 spin_unlock(&pers_lock);
3520
3521 if (pers == mddev->pers) {
3522 /* Nothing to do! */
3523 module_put(pers->owner);
3524 return rv;
3525 }
3526 if (!pers->takeover) {
3527 module_put(pers->owner);
3528 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3529 mdname(mddev), clevel);
3530 return -EINVAL;
3531 }
3532
3533 rdev_for_each(rdev, mddev)
3534 rdev->new_raid_disk = rdev->raid_disk;
3535
3536 /* ->takeover must set new_* and/or delta_disks
3537 * if it succeeds, and may set them when it fails.
3538 */
3539 priv = pers->takeover(mddev);
3540 if (IS_ERR(priv)) {
3541 mddev->new_level = mddev->level;
3542 mddev->new_layout = mddev->layout;
3543 mddev->new_chunk_sectors = mddev->chunk_sectors;
3544 mddev->raid_disks -= mddev->delta_disks;
3545 mddev->delta_disks = 0;
3546 mddev->reshape_backwards = 0;
3547 module_put(pers->owner);
3548 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3549 mdname(mddev), clevel);
3550 return PTR_ERR(priv);
3551 }
3552
3553 /* Looks like we have a winner */
3554 mddev_suspend(mddev);
3555 mddev->pers->stop(mddev);
3556
3557 if (mddev->pers->sync_request == NULL &&
3558 pers->sync_request != NULL) {
3559 /* need to add the md_redundancy_group */
3560 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3561 printk(KERN_WARNING
3562 "md: cannot register extra attributes for %s\n",
3563 mdname(mddev));
3564 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3565 }
3566 if (mddev->pers->sync_request != NULL &&
3567 pers->sync_request == NULL) {
3568 /* need to remove the md_redundancy_group */
3569 if (mddev->to_remove == NULL)
3570 mddev->to_remove = &md_redundancy_group;
3571 }
3572
3573 if (mddev->pers->sync_request == NULL &&
3574 mddev->external) {
3575 /* We are converting from a no-redundancy array
3576 * to a redundancy array and metadata is managed
3577 * externally so we need to be sure that writes
3578 * won't block due to a need to transition
3579 * clean->dirty
3580 * until external management is started.
3581 */
3582 mddev->in_sync = 0;
3583 mddev->safemode_delay = 0;
3584 mddev->safemode = 0;
3585 }
3586
3587 rdev_for_each(rdev, mddev) {
3588 if (rdev->raid_disk < 0)
3589 continue;
3590 if (rdev->new_raid_disk >= mddev->raid_disks)
3591 rdev->new_raid_disk = -1;
3592 if (rdev->new_raid_disk == rdev->raid_disk)
3593 continue;
3594 sysfs_unlink_rdev(mddev, rdev);
3595 }
3596 rdev_for_each(rdev, mddev) {
3597 if (rdev->raid_disk < 0)
3598 continue;
3599 if (rdev->new_raid_disk == rdev->raid_disk)
3600 continue;
3601 rdev->raid_disk = rdev->new_raid_disk;
3602 if (rdev->raid_disk < 0)
3603 clear_bit(In_sync, &rdev->flags);
3604 else {
3605 if (sysfs_link_rdev(mddev, rdev))
3606 printk(KERN_WARNING "md: cannot register rd%d"
3607 " for %s after level change\n",
3608 rdev->raid_disk, mdname(mddev));
3609 }
3610 }
3611
3612 module_put(mddev->pers->owner);
3613 mddev->pers = pers;
3614 mddev->private = priv;
3615 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3616 mddev->level = mddev->new_level;
3617 mddev->layout = mddev->new_layout;
3618 mddev->chunk_sectors = mddev->new_chunk_sectors;
3619 mddev->delta_disks = 0;
3620 mddev->reshape_backwards = 0;
3621 mddev->degraded = 0;
3622 if (mddev->pers->sync_request == NULL) {
3623 /* this is now an array without redundancy, so
3624 * it must always be in_sync
3625 */
3626 mddev->in_sync = 1;
3627 del_timer_sync(&mddev->safemode_timer);
3628 }
3629 blk_set_stacking_limits(&mddev->queue->limits);
3630 pers->run(mddev);
3631 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3632 mddev_resume(mddev);
3633 sysfs_notify(&mddev->kobj, NULL, "level");
3634 md_new_event(mddev);
3635 return rv;
3636 }
3637
3638 static struct md_sysfs_entry md_level =
3639 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3640
3641
3642 static ssize_t
3643 layout_show(struct mddev *mddev, char *page)
3644 {
3645 /* just a number, not meaningful for all levels */
3646 if (mddev->reshape_position != MaxSector &&
3647 mddev->layout != mddev->new_layout)
3648 return sprintf(page, "%d (%d)\n",
3649 mddev->new_layout, mddev->layout);
3650 return sprintf(page, "%d\n", mddev->layout);
3651 }
3652
3653 static ssize_t
3654 layout_store(struct mddev *mddev, const char *buf, size_t len)
3655 {
3656 char *e;
3657 unsigned long n = simple_strtoul(buf, &e, 10);
3658
3659 if (!*buf || (*e && *e != '\n'))
3660 return -EINVAL;
3661
3662 if (mddev->pers) {
3663 int err;
3664 if (mddev->pers->check_reshape == NULL)
3665 return -EBUSY;
3666 mddev->new_layout = n;
3667 err = mddev->pers->check_reshape(mddev);
3668 if (err) {
3669 mddev->new_layout = mddev->layout;
3670 return err;
3671 }
3672 } else {
3673 mddev->new_layout = n;
3674 if (mddev->reshape_position == MaxSector)
3675 mddev->layout = n;
3676 }
3677 return len;
3678 }
3679 static struct md_sysfs_entry md_layout =
3680 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3681
3682
3683 static ssize_t
3684 raid_disks_show(struct mddev *mddev, char *page)
3685 {
3686 if (mddev->raid_disks == 0)
3687 return 0;
3688 if (mddev->reshape_position != MaxSector &&
3689 mddev->delta_disks != 0)
3690 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3691 mddev->raid_disks - mddev->delta_disks);
3692 return sprintf(page, "%d\n", mddev->raid_disks);
3693 }
3694
3695 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3696
3697 static ssize_t
3698 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3699 {
3700 char *e;
3701 int rv = 0;
3702 unsigned long n = simple_strtoul(buf, &e, 10);
3703
3704 if (!*buf || (*e && *e != '\n'))
3705 return -EINVAL;
3706
3707 if (mddev->pers)
3708 rv = update_raid_disks(mddev, n);
3709 else if (mddev->reshape_position != MaxSector) {
3710 struct md_rdev *rdev;
3711 int olddisks = mddev->raid_disks - mddev->delta_disks;
3712
3713 rdev_for_each(rdev, mddev) {
3714 if (olddisks < n &&
3715 rdev->data_offset < rdev->new_data_offset)
3716 return -EINVAL;
3717 if (olddisks > n &&
3718 rdev->data_offset > rdev->new_data_offset)
3719 return -EINVAL;
3720 }
3721 mddev->delta_disks = n - olddisks;
3722 mddev->raid_disks = n;
3723 mddev->reshape_backwards = (mddev->delta_disks < 0);
3724 } else
3725 mddev->raid_disks = n;
3726 return rv ? rv : len;
3727 }
3728 static struct md_sysfs_entry md_raid_disks =
3729 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3730
3731 static ssize_t
3732 chunk_size_show(struct mddev *mddev, char *page)
3733 {
3734 if (mddev->reshape_position != MaxSector &&
3735 mddev->chunk_sectors != mddev->new_chunk_sectors)
3736 return sprintf(page, "%d (%d)\n",
3737 mddev->new_chunk_sectors << 9,
3738 mddev->chunk_sectors << 9);
3739 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3740 }
3741
3742 static ssize_t
3743 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3744 {
3745 char *e;
3746 unsigned long n = simple_strtoul(buf, &e, 10);
3747
3748 if (!*buf || (*e && *e != '\n'))
3749 return -EINVAL;
3750
3751 if (mddev->pers) {
3752 int err;
3753 if (mddev->pers->check_reshape == NULL)
3754 return -EBUSY;
3755 mddev->new_chunk_sectors = n >> 9;
3756 err = mddev->pers->check_reshape(mddev);
3757 if (err) {
3758 mddev->new_chunk_sectors = mddev->chunk_sectors;
3759 return err;
3760 }
3761 } else {
3762 mddev->new_chunk_sectors = n >> 9;
3763 if (mddev->reshape_position == MaxSector)
3764 mddev->chunk_sectors = n >> 9;
3765 }
3766 return len;
3767 }
3768 static struct md_sysfs_entry md_chunk_size =
3769 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3770
3771 static ssize_t
3772 resync_start_show(struct mddev *mddev, char *page)
3773 {
3774 if (mddev->recovery_cp == MaxSector)
3775 return sprintf(page, "none\n");
3776 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3777 }
3778
3779 static ssize_t
3780 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782 char *e;
3783 unsigned long long n = simple_strtoull(buf, &e, 10);
3784
3785 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3786 return -EBUSY;
3787 if (cmd_match(buf, "none"))
3788 n = MaxSector;
3789 else if (!*buf || (*e && *e != '\n'))
3790 return -EINVAL;
3791
3792 mddev->recovery_cp = n;
3793 if (mddev->pers)
3794 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3795 return len;
3796 }
3797 static struct md_sysfs_entry md_resync_start =
3798 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3799
3800 /*
3801 * The array state can be:
3802 *
3803 * clear
3804 * No devices, no size, no level
3805 * Equivalent to STOP_ARRAY ioctl
3806 * inactive
3807 * May have some settings, but array is not active
3808 * all IO results in error
3809 * When written, doesn't tear down array, but just stops it
3810 * suspended (not supported yet)
3811 * All IO requests will block. The array can be reconfigured.
3812 * Writing this, if accepted, will block until array is quiescent
3813 * readonly
3814 * no resync can happen. no superblocks get written.
3815 * write requests fail
3816 * read-auto
3817 * like readonly, but behaves like 'clean' on a write request.
3818 *
3819 * clean - no pending writes, but otherwise active.
3820 * When written to inactive array, starts without resync
3821 * If a write request arrives then
3822 * if metadata is known, mark 'dirty' and switch to 'active'.
3823 * if not known, block and switch to write-pending
3824 * If written to an active array that has pending writes, then fails.
3825 * active
3826 * fully active: IO and resync can be happening.
3827 * When written to inactive array, starts with resync
3828 *
3829 * write-pending
3830 * clean, but writes are blocked waiting for 'active' to be written.
3831 *
3832 * active-idle
3833 * like active, but no writes have been seen for a while (100msec).
3834 *
3835 */
3836 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3837 write_pending, active_idle, bad_word};
3838 static char *array_states[] = {
3839 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3840 "write-pending", "active-idle", NULL };
3841
3842 static int match_word(const char *word, char **list)
3843 {
3844 int n;
3845 for (n=0; list[n]; n++)
3846 if (cmd_match(word, list[n]))
3847 break;
3848 return n;
3849 }
3850
3851 static ssize_t
3852 array_state_show(struct mddev *mddev, char *page)
3853 {
3854 enum array_state st = inactive;
3855
3856 if (mddev->pers)
3857 switch(mddev->ro) {
3858 case 1:
3859 st = readonly;
3860 break;
3861 case 2:
3862 st = read_auto;
3863 break;
3864 case 0:
3865 if (mddev->in_sync)
3866 st = clean;
3867 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3868 st = write_pending;
3869 else if (mddev->safemode)
3870 st = active_idle;
3871 else
3872 st = active;
3873 }
3874 else {
3875 if (list_empty(&mddev->disks) &&
3876 mddev->raid_disks == 0 &&
3877 mddev->dev_sectors == 0)
3878 st = clear;
3879 else
3880 st = inactive;
3881 }
3882 return sprintf(page, "%s\n", array_states[st]);
3883 }
3884
3885 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3886 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3887 static int do_md_run(struct mddev * mddev);
3888 static int restart_array(struct mddev *mddev);
3889
3890 static ssize_t
3891 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3892 {
3893 int err = -EINVAL;
3894 enum array_state st = match_word(buf, array_states);
3895 switch(st) {
3896 case bad_word:
3897 break;
3898 case clear:
3899 /* stopping an active array */
3900 err = do_md_stop(mddev, 0, NULL);
3901 break;
3902 case inactive:
3903 /* stopping an active array */
3904 if (mddev->pers)
3905 err = do_md_stop(mddev, 2, NULL);
3906 else
3907 err = 0; /* already inactive */
3908 break;
3909 case suspended:
3910 break; /* not supported yet */
3911 case readonly:
3912 if (mddev->pers)
3913 err = md_set_readonly(mddev, NULL);
3914 else {
3915 mddev->ro = 1;
3916 set_disk_ro(mddev->gendisk, 1);
3917 err = do_md_run(mddev);
3918 }
3919 break;
3920 case read_auto:
3921 if (mddev->pers) {
3922 if (mddev->ro == 0)
3923 err = md_set_readonly(mddev, NULL);
3924 else if (mddev->ro == 1)
3925 err = restart_array(mddev);
3926 if (err == 0) {
3927 mddev->ro = 2;
3928 set_disk_ro(mddev->gendisk, 0);
3929 }
3930 } else {
3931 mddev->ro = 2;
3932 err = do_md_run(mddev);
3933 }
3934 break;
3935 case clean:
3936 if (mddev->pers) {
3937 restart_array(mddev);
3938 spin_lock_irq(&mddev->write_lock);
3939 if (atomic_read(&mddev->writes_pending) == 0) {
3940 if (mddev->in_sync == 0) {
3941 mddev->in_sync = 1;
3942 if (mddev->safemode == 1)
3943 mddev->safemode = 0;
3944 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3945 }
3946 err = 0;
3947 } else
3948 err = -EBUSY;
3949 spin_unlock_irq(&mddev->write_lock);
3950 } else
3951 err = -EINVAL;
3952 break;
3953 case active:
3954 if (mddev->pers) {
3955 restart_array(mddev);
3956 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3957 wake_up(&mddev->sb_wait);
3958 err = 0;
3959 } else {
3960 mddev->ro = 0;
3961 set_disk_ro(mddev->gendisk, 0);
3962 err = do_md_run(mddev);
3963 }
3964 break;
3965 case write_pending:
3966 case active_idle:
3967 /* these cannot be set */
3968 break;
3969 }
3970 if (err)
3971 return err;
3972 else {
3973 if (mddev->hold_active == UNTIL_IOCTL)
3974 mddev->hold_active = 0;
3975 sysfs_notify_dirent_safe(mddev->sysfs_state);
3976 return len;
3977 }
3978 }
3979 static struct md_sysfs_entry md_array_state =
3980 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3981
3982 static ssize_t
3983 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3984 return sprintf(page, "%d\n",
3985 atomic_read(&mddev->max_corr_read_errors));
3986 }
3987
3988 static ssize_t
3989 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3990 {
3991 char *e;
3992 unsigned long n = simple_strtoul(buf, &e, 10);
3993
3994 if (*buf && (*e == 0 || *e == '\n')) {
3995 atomic_set(&mddev->max_corr_read_errors, n);
3996 return len;
3997 }
3998 return -EINVAL;
3999 }
4000
4001 static struct md_sysfs_entry max_corr_read_errors =
4002 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4003 max_corrected_read_errors_store);
4004
4005 static ssize_t
4006 null_show(struct mddev *mddev, char *page)
4007 {
4008 return -EINVAL;
4009 }
4010
4011 static ssize_t
4012 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4013 {
4014 /* buf must be %d:%d\n? giving major and minor numbers */
4015 /* The new device is added to the array.
4016 * If the array has a persistent superblock, we read the
4017 * superblock to initialise info and check validity.
4018 * Otherwise, only checking done is that in bind_rdev_to_array,
4019 * which mainly checks size.
4020 */
4021 char *e;
4022 int major = simple_strtoul(buf, &e, 10);
4023 int minor;
4024 dev_t dev;
4025 struct md_rdev *rdev;
4026 int err;
4027
4028 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4029 return -EINVAL;
4030 minor = simple_strtoul(e+1, &e, 10);
4031 if (*e && *e != '\n')
4032 return -EINVAL;
4033 dev = MKDEV(major, minor);
4034 if (major != MAJOR(dev) ||
4035 minor != MINOR(dev))
4036 return -EOVERFLOW;
4037
4038
4039 if (mddev->persistent) {
4040 rdev = md_import_device(dev, mddev->major_version,
4041 mddev->minor_version);
4042 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4043 struct md_rdev *rdev0
4044 = list_entry(mddev->disks.next,
4045 struct md_rdev, same_set);
4046 err = super_types[mddev->major_version]
4047 .load_super(rdev, rdev0, mddev->minor_version);
4048 if (err < 0)
4049 goto out;
4050 }
4051 } else if (mddev->external)
4052 rdev = md_import_device(dev, -2, -1);
4053 else
4054 rdev = md_import_device(dev, -1, -1);
4055
4056 if (IS_ERR(rdev))
4057 return PTR_ERR(rdev);
4058 err = bind_rdev_to_array(rdev, mddev);
4059 out:
4060 if (err)
4061 export_rdev(rdev);
4062 return err ? err : len;
4063 }
4064
4065 static struct md_sysfs_entry md_new_device =
4066 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4067
4068 static ssize_t
4069 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071 char *end;
4072 unsigned long chunk, end_chunk;
4073
4074 if (!mddev->bitmap)
4075 goto out;
4076 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4077 while (*buf) {
4078 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4079 if (buf == end) break;
4080 if (*end == '-') { /* range */
4081 buf = end + 1;
4082 end_chunk = simple_strtoul(buf, &end, 0);
4083 if (buf == end) break;
4084 }
4085 if (*end && !isspace(*end)) break;
4086 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4087 buf = skip_spaces(end);
4088 }
4089 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4090 out:
4091 return len;
4092 }
4093
4094 static struct md_sysfs_entry md_bitmap =
4095 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4096
4097 static ssize_t
4098 size_show(struct mddev *mddev, char *page)
4099 {
4100 return sprintf(page, "%llu\n",
4101 (unsigned long long)mddev->dev_sectors / 2);
4102 }
4103
4104 static int update_size(struct mddev *mddev, sector_t num_sectors);
4105
4106 static ssize_t
4107 size_store(struct mddev *mddev, const char *buf, size_t len)
4108 {
4109 /* If array is inactive, we can reduce the component size, but
4110 * not increase it (except from 0).
4111 * If array is active, we can try an on-line resize
4112 */
4113 sector_t sectors;
4114 int err = strict_blocks_to_sectors(buf, &sectors);
4115
4116 if (err < 0)
4117 return err;
4118 if (mddev->pers) {
4119 err = update_size(mddev, sectors);
4120 md_update_sb(mddev, 1);
4121 } else {
4122 if (mddev->dev_sectors == 0 ||
4123 mddev->dev_sectors > sectors)
4124 mddev->dev_sectors = sectors;
4125 else
4126 err = -ENOSPC;
4127 }
4128 return err ? err : len;
4129 }
4130
4131 static struct md_sysfs_entry md_size =
4132 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4133
4134
4135 /* Metadata version.
4136 * This is one of
4137 * 'none' for arrays with no metadata (good luck...)
4138 * 'external' for arrays with externally managed metadata,
4139 * or N.M for internally known formats
4140 */
4141 static ssize_t
4142 metadata_show(struct mddev *mddev, char *page)
4143 {
4144 if (mddev->persistent)
4145 return sprintf(page, "%d.%d\n",
4146 mddev->major_version, mddev->minor_version);
4147 else if (mddev->external)
4148 return sprintf(page, "external:%s\n", mddev->metadata_type);
4149 else
4150 return sprintf(page, "none\n");
4151 }
4152
4153 static ssize_t
4154 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4155 {
4156 int major, minor;
4157 char *e;
4158 /* Changing the details of 'external' metadata is
4159 * always permitted. Otherwise there must be
4160 * no devices attached to the array.
4161 */
4162 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4163 ;
4164 else if (!list_empty(&mddev->disks))
4165 return -EBUSY;
4166
4167 if (cmd_match(buf, "none")) {
4168 mddev->persistent = 0;
4169 mddev->external = 0;
4170 mddev->major_version = 0;
4171 mddev->minor_version = 90;
4172 return len;
4173 }
4174 if (strncmp(buf, "external:", 9) == 0) {
4175 size_t namelen = len-9;
4176 if (namelen >= sizeof(mddev->metadata_type))
4177 namelen = sizeof(mddev->metadata_type)-1;
4178 strncpy(mddev->metadata_type, buf+9, namelen);
4179 mddev->metadata_type[namelen] = 0;
4180 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4181 mddev->metadata_type[--namelen] = 0;
4182 mddev->persistent = 0;
4183 mddev->external = 1;
4184 mddev->major_version = 0;
4185 mddev->minor_version = 90;
4186 return len;
4187 }
4188 major = simple_strtoul(buf, &e, 10);
4189 if (e==buf || *e != '.')
4190 return -EINVAL;
4191 buf = e+1;
4192 minor = simple_strtoul(buf, &e, 10);
4193 if (e==buf || (*e && *e != '\n') )
4194 return -EINVAL;
4195 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4196 return -ENOENT;
4197 mddev->major_version = major;
4198 mddev->minor_version = minor;
4199 mddev->persistent = 1;
4200 mddev->external = 0;
4201 return len;
4202 }
4203
4204 static struct md_sysfs_entry md_metadata =
4205 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4206
4207 static ssize_t
4208 action_show(struct mddev *mddev, char *page)
4209 {
4210 char *type = "idle";
4211 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4212 type = "frozen";
4213 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4214 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4215 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4216 type = "reshape";
4217 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4218 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4219 type = "resync";
4220 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4221 type = "check";
4222 else
4223 type = "repair";
4224 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4225 type = "recover";
4226 }
4227 return sprintf(page, "%s\n", type);
4228 }
4229
4230 static ssize_t
4231 action_store(struct mddev *mddev, const char *page, size_t len)
4232 {
4233 if (!mddev->pers || !mddev->pers->sync_request)
4234 return -EINVAL;
4235
4236 if (cmd_match(page, "frozen"))
4237 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4238 else
4239 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240
4241 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4242 if (mddev->sync_thread) {
4243 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4244 md_reap_sync_thread(mddev);
4245 }
4246 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4247 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4248 return -EBUSY;
4249 else if (cmd_match(page, "resync"))
4250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4251 else if (cmd_match(page, "recover")) {
4252 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4253 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4254 } else if (cmd_match(page, "reshape")) {
4255 int err;
4256 if (mddev->pers->start_reshape == NULL)
4257 return -EINVAL;
4258 err = mddev->pers->start_reshape(mddev);
4259 if (err)
4260 return err;
4261 sysfs_notify(&mddev->kobj, NULL, "degraded");
4262 } else {
4263 if (cmd_match(page, "check"))
4264 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4265 else if (!cmd_match(page, "repair"))
4266 return -EINVAL;
4267 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269 }
4270 if (mddev->ro == 2) {
4271 /* A write to sync_action is enough to justify
4272 * canceling read-auto mode
4273 */
4274 mddev->ro = 0;
4275 md_wakeup_thread(mddev->sync_thread);
4276 }
4277 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278 md_wakeup_thread(mddev->thread);
4279 sysfs_notify_dirent_safe(mddev->sysfs_action);
4280 return len;
4281 }
4282
4283 static ssize_t
4284 mismatch_cnt_show(struct mddev *mddev, char *page)
4285 {
4286 return sprintf(page, "%llu\n",
4287 (unsigned long long)
4288 atomic64_read(&mddev->resync_mismatches));
4289 }
4290
4291 static struct md_sysfs_entry md_scan_mode =
4292 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4293
4294
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301 mddev->sync_speed_min ? "local": "system");
4302 }
4303
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307 int min;
4308 char *e;
4309 if (strncmp(buf, "system", 6)==0) {
4310 mddev->sync_speed_min = 0;
4311 return len;
4312 }
4313 min = simple_strtoul(buf, &e, 10);
4314 if (buf == e || (*e && *e != '\n') || min <= 0)
4315 return -EINVAL;
4316 mddev->sync_speed_min = min;
4317 return len;
4318 }
4319
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327 mddev->sync_speed_max ? "local": "system");
4328 }
4329
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333 int max;
4334 char *e;
4335 if (strncmp(buf, "system", 6)==0) {
4336 mddev->sync_speed_max = 0;
4337 return len;
4338 }
4339 max = simple_strtoul(buf, &e, 10);
4340 if (buf == e || (*e && *e != '\n') || max <= 0)
4341 return -EINVAL;
4342 mddev->sync_speed_max = max;
4343 return len;
4344 }
4345
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352 return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359 return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365 long n;
4366
4367 if (strict_strtol(buf, 10, &n))
4368 return -EINVAL;
4369
4370 if (n != 0 && n != 1)
4371 return -EINVAL;
4372
4373 mddev->parallel_resync = n;
4374
4375 if (mddev->sync_thread)
4376 wake_up(&resync_wait);
4377
4378 return len;
4379 }
4380
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384 sync_force_parallel_show, sync_force_parallel_store);
4385
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389 unsigned long resync, dt, db;
4390 if (mddev->curr_resync == 0)
4391 return sprintf(page, "none\n");
4392 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393 dt = (jiffies - mddev->resync_mark) / HZ;
4394 if (!dt) dt++;
4395 db = resync - mddev->resync_mark_cnt;
4396 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404 unsigned long long max_sectors, resync;
4405
4406 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407 return sprintf(page, "none\n");
4408
4409 if (mddev->curr_resync == 1 ||
4410 mddev->curr_resync == 2)
4411 return sprintf(page, "delayed\n");
4412
4413 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415 max_sectors = mddev->resync_max_sectors;
4416 else
4417 max_sectors = mddev->dev_sectors;
4418
4419 resync = mddev->curr_resync_completed;
4420 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428 return sprintf(page, "%llu\n",
4429 (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434 unsigned long long min;
4435 if (strict_strtoull(buf, 10, &min))
4436 return -EINVAL;
4437 if (min > mddev->resync_max)
4438 return -EINVAL;
4439 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440 return -EBUSY;
4441
4442 /* Must be a multiple of chunk_size */
4443 if (mddev->chunk_sectors) {
4444 sector_t temp = min;
4445 if (sector_div(temp, mddev->chunk_sectors))
4446 return -EINVAL;
4447 }
4448 mddev->resync_min = min;
4449
4450 return len;
4451 }
4452
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459 if (mddev->resync_max == MaxSector)
4460 return sprintf(page, "max\n");
4461 else
4462 return sprintf(page, "%llu\n",
4463 (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468 if (strncmp(buf, "max", 3) == 0)
4469 mddev->resync_max = MaxSector;
4470 else {
4471 unsigned long long max;
4472 if (strict_strtoull(buf, 10, &max))
4473 return -EINVAL;
4474 if (max < mddev->resync_min)
4475 return -EINVAL;
4476 if (max < mddev->resync_max &&
4477 mddev->ro == 0 &&
4478 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479 return -EBUSY;
4480
4481 /* Must be a multiple of chunk_size */
4482 if (mddev->chunk_sectors) {
4483 sector_t temp = max;
4484 if (sector_div(temp, mddev->chunk_sectors))
4485 return -EINVAL;
4486 }
4487 mddev->resync_max = max;
4488 }
4489 wake_up(&mddev->recovery_wait);
4490 return len;
4491 }
4492
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505 char *e;
4506 unsigned long long new = simple_strtoull(buf, &e, 10);
4507 unsigned long long old = mddev->suspend_lo;
4508
4509 if (mddev->pers == NULL ||
4510 mddev->pers->quiesce == NULL)
4511 return -EINVAL;
4512 if (buf == e || (*e && *e != '\n'))
4513 return -EINVAL;
4514
4515 mddev->suspend_lo = new;
4516 if (new >= old)
4517 /* Shrinking suspended region */
4518 mddev->pers->quiesce(mddev, 2);
4519 else {
4520 /* Expanding suspended region - need to wait */
4521 mddev->pers->quiesce(mddev, 1);
4522 mddev->pers->quiesce(mddev, 0);
4523 }
4524 return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528
4529
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539 char *e;
4540 unsigned long long new = simple_strtoull(buf, &e, 10);
4541 unsigned long long old = mddev->suspend_hi;
4542
4543 if (mddev->pers == NULL ||
4544 mddev->pers->quiesce == NULL)
4545 return -EINVAL;
4546 if (buf == e || (*e && *e != '\n'))
4547 return -EINVAL;
4548
4549 mddev->suspend_hi = new;
4550 if (new <= old)
4551 /* Shrinking suspended region */
4552 mddev->pers->quiesce(mddev, 2);
4553 else {
4554 /* Expanding suspended region - need to wait */
4555 mddev->pers->quiesce(mddev, 1);
4556 mddev->pers->quiesce(mddev, 0);
4557 }
4558 return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566 if (mddev->reshape_position != MaxSector)
4567 return sprintf(page, "%llu\n",
4568 (unsigned long long)mddev->reshape_position);
4569 strcpy(page, "none\n");
4570 return 5;
4571 }
4572
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 struct md_rdev *rdev;
4577 char *e;
4578 unsigned long long new = simple_strtoull(buf, &e, 10);
4579 if (mddev->pers)
4580 return -EBUSY;
4581 if (buf == e || (*e && *e != '\n'))
4582 return -EINVAL;
4583 mddev->reshape_position = new;
4584 mddev->delta_disks = 0;
4585 mddev->reshape_backwards = 0;
4586 mddev->new_level = mddev->level;
4587 mddev->new_layout = mddev->layout;
4588 mddev->new_chunk_sectors = mddev->chunk_sectors;
4589 rdev_for_each(rdev, mddev)
4590 rdev->new_data_offset = rdev->data_offset;
4591 return len;
4592 }
4593
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596 reshape_position_store);
4597
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601 return sprintf(page, "%s\n",
4602 mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608 int backwards = 0;
4609 if (cmd_match(buf, "forwards"))
4610 backwards = 0;
4611 else if (cmd_match(buf, "backwards"))
4612 backwards = 1;
4613 else
4614 return -EINVAL;
4615 if (mddev->reshape_backwards == backwards)
4616 return len;
4617
4618 /* check if we are allowed to change */
4619 if (mddev->delta_disks)
4620 return -EBUSY;
4621
4622 if (mddev->persistent &&
4623 mddev->major_version == 0)
4624 return -EINVAL;
4625
4626 mddev->reshape_backwards = backwards;
4627 return len;
4628 }
4629
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632 reshape_direction_store);
4633
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637 if (mddev->external_size)
4638 return sprintf(page, "%llu\n",
4639 (unsigned long long)mddev->array_sectors/2);
4640 else
4641 return sprintf(page, "default\n");
4642 }
4643
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 sector_t sectors;
4648
4649 if (strncmp(buf, "default", 7) == 0) {
4650 if (mddev->pers)
4651 sectors = mddev->pers->size(mddev, 0, 0);
4652 else
4653 sectors = mddev->array_sectors;
4654
4655 mddev->external_size = 0;
4656 } else {
4657 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658 return -EINVAL;
4659 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660 return -E2BIG;
4661
4662 mddev->external_size = 1;
4663 }
4664
4665 mddev->array_sectors = sectors;
4666 if (mddev->pers) {
4667 set_capacity(mddev->gendisk, mddev->array_sectors);
4668 revalidate_disk(mddev->gendisk);
4669 }
4670 return len;
4671 }
4672
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675 array_size_store);
4676
4677 static struct attribute *md_default_attrs[] = {
4678 &md_level.attr,
4679 &md_layout.attr,
4680 &md_raid_disks.attr,
4681 &md_chunk_size.attr,
4682 &md_size.attr,
4683 &md_resync_start.attr,
4684 &md_metadata.attr,
4685 &md_new_device.attr,
4686 &md_safe_delay.attr,
4687 &md_array_state.attr,
4688 &md_reshape_position.attr,
4689 &md_reshape_direction.attr,
4690 &md_array_size.attr,
4691 &max_corr_read_errors.attr,
4692 NULL,
4693 };
4694
4695 static struct attribute *md_redundancy_attrs[] = {
4696 &md_scan_mode.attr,
4697 &md_mismatches.attr,
4698 &md_sync_min.attr,
4699 &md_sync_max.attr,
4700 &md_sync_speed.attr,
4701 &md_sync_force_parallel.attr,
4702 &md_sync_completed.attr,
4703 &md_min_sync.attr,
4704 &md_max_sync.attr,
4705 &md_suspend_lo.attr,
4706 &md_suspend_hi.attr,
4707 &md_bitmap.attr,
4708 &md_degraded.attr,
4709 NULL,
4710 };
4711 static struct attribute_group md_redundancy_group = {
4712 .name = NULL,
4713 .attrs = md_redundancy_attrs,
4714 };
4715
4716
4717 static ssize_t
4718 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4719 {
4720 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4721 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4722 ssize_t rv;
4723
4724 if (!entry->show)
4725 return -EIO;
4726 spin_lock(&all_mddevs_lock);
4727 if (list_empty(&mddev->all_mddevs)) {
4728 spin_unlock(&all_mddevs_lock);
4729 return -EBUSY;
4730 }
4731 mddev_get(mddev);
4732 spin_unlock(&all_mddevs_lock);
4733
4734 rv = mddev_lock(mddev);
4735 if (!rv) {
4736 rv = entry->show(mddev, page);
4737 mddev_unlock(mddev);
4738 }
4739 mddev_put(mddev);
4740 return rv;
4741 }
4742
4743 static ssize_t
4744 md_attr_store(struct kobject *kobj, struct attribute *attr,
4745 const char *page, size_t length)
4746 {
4747 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4748 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4749 ssize_t rv;
4750
4751 if (!entry->store)
4752 return -EIO;
4753 if (!capable(CAP_SYS_ADMIN))
4754 return -EACCES;
4755 spin_lock(&all_mddevs_lock);
4756 if (list_empty(&mddev->all_mddevs)) {
4757 spin_unlock(&all_mddevs_lock);
4758 return -EBUSY;
4759 }
4760 mddev_get(mddev);
4761 spin_unlock(&all_mddevs_lock);
4762 if (entry->store == new_dev_store)
4763 flush_workqueue(md_misc_wq);
4764 rv = mddev_lock(mddev);
4765 if (!rv) {
4766 rv = entry->store(mddev, page, length);
4767 mddev_unlock(mddev);
4768 }
4769 mddev_put(mddev);
4770 return rv;
4771 }
4772
4773 static void md_free(struct kobject *ko)
4774 {
4775 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4776
4777 if (mddev->sysfs_state)
4778 sysfs_put(mddev->sysfs_state);
4779
4780 if (mddev->gendisk) {
4781 del_gendisk(mddev->gendisk);
4782 put_disk(mddev->gendisk);
4783 }
4784 if (mddev->queue)
4785 blk_cleanup_queue(mddev->queue);
4786
4787 kfree(mddev);
4788 }
4789
4790 static const struct sysfs_ops md_sysfs_ops = {
4791 .show = md_attr_show,
4792 .store = md_attr_store,
4793 };
4794 static struct kobj_type md_ktype = {
4795 .release = md_free,
4796 .sysfs_ops = &md_sysfs_ops,
4797 .default_attrs = md_default_attrs,
4798 };
4799
4800 int mdp_major = 0;
4801
4802 static void mddev_delayed_delete(struct work_struct *ws)
4803 {
4804 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4805
4806 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4807 kobject_del(&mddev->kobj);
4808 kobject_put(&mddev->kobj);
4809 }
4810
4811 static int md_alloc(dev_t dev, char *name)
4812 {
4813 static DEFINE_MUTEX(disks_mutex);
4814 struct mddev *mddev = mddev_find(dev);
4815 struct gendisk *disk;
4816 int partitioned;
4817 int shift;
4818 int unit;
4819 int error;
4820
4821 if (!mddev)
4822 return -ENODEV;
4823
4824 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4825 shift = partitioned ? MdpMinorShift : 0;
4826 unit = MINOR(mddev->unit) >> shift;
4827
4828 /* wait for any previous instance of this device to be
4829 * completely removed (mddev_delayed_delete).
4830 */
4831 flush_workqueue(md_misc_wq);
4832
4833 mutex_lock(&disks_mutex);
4834 error = -EEXIST;
4835 if (mddev->gendisk)
4836 goto abort;
4837
4838 if (name) {
4839 /* Need to ensure that 'name' is not a duplicate.
4840 */
4841 struct mddev *mddev2;
4842 spin_lock(&all_mddevs_lock);
4843
4844 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4845 if (mddev2->gendisk &&
4846 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4847 spin_unlock(&all_mddevs_lock);
4848 goto abort;
4849 }
4850 spin_unlock(&all_mddevs_lock);
4851 }
4852
4853 error = -ENOMEM;
4854 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4855 if (!mddev->queue)
4856 goto abort;
4857 mddev->queue->queuedata = mddev;
4858
4859 blk_queue_make_request(mddev->queue, md_make_request);
4860 blk_set_stacking_limits(&mddev->queue->limits);
4861
4862 disk = alloc_disk(1 << shift);
4863 if (!disk) {
4864 blk_cleanup_queue(mddev->queue);
4865 mddev->queue = NULL;
4866 goto abort;
4867 }
4868 disk->major = MAJOR(mddev->unit);
4869 disk->first_minor = unit << shift;
4870 if (name)
4871 strcpy(disk->disk_name, name);
4872 else if (partitioned)
4873 sprintf(disk->disk_name, "md_d%d", unit);
4874 else
4875 sprintf(disk->disk_name, "md%d", unit);
4876 disk->fops = &md_fops;
4877 disk->private_data = mddev;
4878 disk->queue = mddev->queue;
4879 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4880 /* Allow extended partitions. This makes the
4881 * 'mdp' device redundant, but we can't really
4882 * remove it now.
4883 */
4884 disk->flags |= GENHD_FL_EXT_DEVT;
4885 mddev->gendisk = disk;
4886 /* As soon as we call add_disk(), another thread could get
4887 * through to md_open, so make sure it doesn't get too far
4888 */
4889 mutex_lock(&mddev->open_mutex);
4890 add_disk(disk);
4891
4892 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4893 &disk_to_dev(disk)->kobj, "%s", "md");
4894 if (error) {
4895 /* This isn't possible, but as kobject_init_and_add is marked
4896 * __must_check, we must do something with the result
4897 */
4898 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4899 disk->disk_name);
4900 error = 0;
4901 }
4902 if (mddev->kobj.sd &&
4903 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4904 printk(KERN_DEBUG "pointless warning\n");
4905 mutex_unlock(&mddev->open_mutex);
4906 abort:
4907 mutex_unlock(&disks_mutex);
4908 if (!error && mddev->kobj.sd) {
4909 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4910 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4911 }
4912 mddev_put(mddev);
4913 return error;
4914 }
4915
4916 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4917 {
4918 md_alloc(dev, NULL);
4919 return NULL;
4920 }
4921
4922 static int add_named_array(const char *val, struct kernel_param *kp)
4923 {
4924 /* val must be "md_*" where * is not all digits.
4925 * We allocate an array with a large free minor number, and
4926 * set the name to val. val must not already be an active name.
4927 */
4928 int len = strlen(val);
4929 char buf[DISK_NAME_LEN];
4930
4931 while (len && val[len-1] == '\n')
4932 len--;
4933 if (len >= DISK_NAME_LEN)
4934 return -E2BIG;
4935 strlcpy(buf, val, len+1);
4936 if (strncmp(buf, "md_", 3) != 0)
4937 return -EINVAL;
4938 return md_alloc(0, buf);
4939 }
4940
4941 static void md_safemode_timeout(unsigned long data)
4942 {
4943 struct mddev *mddev = (struct mddev *) data;
4944
4945 if (!atomic_read(&mddev->writes_pending)) {
4946 mddev->safemode = 1;
4947 if (mddev->external)
4948 sysfs_notify_dirent_safe(mddev->sysfs_state);
4949 }
4950 md_wakeup_thread(mddev->thread);
4951 }
4952
4953 static int start_dirty_degraded;
4954
4955 int md_run(struct mddev *mddev)
4956 {
4957 int err;
4958 struct md_rdev *rdev;
4959 struct md_personality *pers;
4960
4961 if (list_empty(&mddev->disks))
4962 /* cannot run an array with no devices.. */
4963 return -EINVAL;
4964
4965 if (mddev->pers)
4966 return -EBUSY;
4967 /* Cannot run until previous stop completes properly */
4968 if (mddev->sysfs_active)
4969 return -EBUSY;
4970
4971 /*
4972 * Analyze all RAID superblock(s)
4973 */
4974 if (!mddev->raid_disks) {
4975 if (!mddev->persistent)
4976 return -EINVAL;
4977 analyze_sbs(mddev);
4978 }
4979
4980 if (mddev->level != LEVEL_NONE)
4981 request_module("md-level-%d", mddev->level);
4982 else if (mddev->clevel[0])
4983 request_module("md-%s", mddev->clevel);
4984
4985 /*
4986 * Drop all container device buffers, from now on
4987 * the only valid external interface is through the md
4988 * device.
4989 */
4990 rdev_for_each(rdev, mddev) {
4991 if (test_bit(Faulty, &rdev->flags))
4992 continue;
4993 sync_blockdev(rdev->bdev);
4994 invalidate_bdev(rdev->bdev);
4995
4996 /* perform some consistency tests on the device.
4997 * We don't want the data to overlap the metadata,
4998 * Internal Bitmap issues have been handled elsewhere.
4999 */
5000 if (rdev->meta_bdev) {
5001 /* Nothing to check */;
5002 } else if (rdev->data_offset < rdev->sb_start) {
5003 if (mddev->dev_sectors &&
5004 rdev->data_offset + mddev->dev_sectors
5005 > rdev->sb_start) {
5006 printk("md: %s: data overlaps metadata\n",
5007 mdname(mddev));
5008 return -EINVAL;
5009 }
5010 } else {
5011 if (rdev->sb_start + rdev->sb_size/512
5012 > rdev->data_offset) {
5013 printk("md: %s: metadata overlaps data\n",
5014 mdname(mddev));
5015 return -EINVAL;
5016 }
5017 }
5018 sysfs_notify_dirent_safe(rdev->sysfs_state);
5019 }
5020
5021 if (mddev->bio_set == NULL)
5022 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5023
5024 spin_lock(&pers_lock);
5025 pers = find_pers(mddev->level, mddev->clevel);
5026 if (!pers || !try_module_get(pers->owner)) {
5027 spin_unlock(&pers_lock);
5028 if (mddev->level != LEVEL_NONE)
5029 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5030 mddev->level);
5031 else
5032 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5033 mddev->clevel);
5034 return -EINVAL;
5035 }
5036 mddev->pers = pers;
5037 spin_unlock(&pers_lock);
5038 if (mddev->level != pers->level) {
5039 mddev->level = pers->level;
5040 mddev->new_level = pers->level;
5041 }
5042 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5043
5044 if (mddev->reshape_position != MaxSector &&
5045 pers->start_reshape == NULL) {
5046 /* This personality cannot handle reshaping... */
5047 mddev->pers = NULL;
5048 module_put(pers->owner);
5049 return -EINVAL;
5050 }
5051
5052 if (pers->sync_request) {
5053 /* Warn if this is a potentially silly
5054 * configuration.
5055 */
5056 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5057 struct md_rdev *rdev2;
5058 int warned = 0;
5059
5060 rdev_for_each(rdev, mddev)
5061 rdev_for_each(rdev2, mddev) {
5062 if (rdev < rdev2 &&
5063 rdev->bdev->bd_contains ==
5064 rdev2->bdev->bd_contains) {
5065 printk(KERN_WARNING
5066 "%s: WARNING: %s appears to be"
5067 " on the same physical disk as"
5068 " %s.\n",
5069 mdname(mddev),
5070 bdevname(rdev->bdev,b),
5071 bdevname(rdev2->bdev,b2));
5072 warned = 1;
5073 }
5074 }
5075
5076 if (warned)
5077 printk(KERN_WARNING
5078 "True protection against single-disk"
5079 " failure might be compromised.\n");
5080 }
5081
5082 mddev->recovery = 0;
5083 /* may be over-ridden by personality */
5084 mddev->resync_max_sectors = mddev->dev_sectors;
5085
5086 mddev->ok_start_degraded = start_dirty_degraded;
5087
5088 if (start_readonly && mddev->ro == 0)
5089 mddev->ro = 2; /* read-only, but switch on first write */
5090
5091 err = mddev->pers->run(mddev);
5092 if (err)
5093 printk(KERN_ERR "md: pers->run() failed ...\n");
5094 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5095 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5096 " but 'external_size' not in effect?\n", __func__);
5097 printk(KERN_ERR
5098 "md: invalid array_size %llu > default size %llu\n",
5099 (unsigned long long)mddev->array_sectors / 2,
5100 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5101 err = -EINVAL;
5102 mddev->pers->stop(mddev);
5103 }
5104 if (err == 0 && mddev->pers->sync_request &&
5105 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5106 err = bitmap_create(mddev);
5107 if (err) {
5108 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5109 mdname(mddev), err);
5110 mddev->pers->stop(mddev);
5111 }
5112 }
5113 if (err) {
5114 module_put(mddev->pers->owner);
5115 mddev->pers = NULL;
5116 bitmap_destroy(mddev);
5117 return err;
5118 }
5119 if (mddev->pers->sync_request) {
5120 if (mddev->kobj.sd &&
5121 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5122 printk(KERN_WARNING
5123 "md: cannot register extra attributes for %s\n",
5124 mdname(mddev));
5125 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5126 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5127 mddev->ro = 0;
5128
5129 atomic_set(&mddev->writes_pending,0);
5130 atomic_set(&mddev->max_corr_read_errors,
5131 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5132 mddev->safemode = 0;
5133 mddev->safemode_timer.function = md_safemode_timeout;
5134 mddev->safemode_timer.data = (unsigned long) mddev;
5135 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5136 mddev->in_sync = 1;
5137 smp_wmb();
5138 mddev->ready = 1;
5139 rdev_for_each(rdev, mddev)
5140 if (rdev->raid_disk >= 0)
5141 if (sysfs_link_rdev(mddev, rdev))
5142 /* failure here is OK */;
5143
5144 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5145
5146 if (mddev->flags)
5147 md_update_sb(mddev, 0);
5148
5149 md_new_event(mddev);
5150 sysfs_notify_dirent_safe(mddev->sysfs_state);
5151 sysfs_notify_dirent_safe(mddev->sysfs_action);
5152 sysfs_notify(&mddev->kobj, NULL, "degraded");
5153 return 0;
5154 }
5155 EXPORT_SYMBOL_GPL(md_run);
5156
5157 static int do_md_run(struct mddev *mddev)
5158 {
5159 int err;
5160
5161 err = md_run(mddev);
5162 if (err)
5163 goto out;
5164 err = bitmap_load(mddev);
5165 if (err) {
5166 bitmap_destroy(mddev);
5167 goto out;
5168 }
5169
5170 md_wakeup_thread(mddev->thread);
5171 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5172
5173 set_capacity(mddev->gendisk, mddev->array_sectors);
5174 revalidate_disk(mddev->gendisk);
5175 mddev->changed = 1;
5176 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5177 out:
5178 return err;
5179 }
5180
5181 static int restart_array(struct mddev *mddev)
5182 {
5183 struct gendisk *disk = mddev->gendisk;
5184
5185 /* Complain if it has no devices */
5186 if (list_empty(&mddev->disks))
5187 return -ENXIO;
5188 if (!mddev->pers)
5189 return -EINVAL;
5190 if (!mddev->ro)
5191 return -EBUSY;
5192 mddev->safemode = 0;
5193 mddev->ro = 0;
5194 set_disk_ro(disk, 0);
5195 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5196 mdname(mddev));
5197 /* Kick recovery or resync if necessary */
5198 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5199 md_wakeup_thread(mddev->thread);
5200 md_wakeup_thread(mddev->sync_thread);
5201 sysfs_notify_dirent_safe(mddev->sysfs_state);
5202 return 0;
5203 }
5204
5205 /* similar to deny_write_access, but accounts for our holding a reference
5206 * to the file ourselves */
5207 static int deny_bitmap_write_access(struct file * file)
5208 {
5209 struct inode *inode = file->f_mapping->host;
5210
5211 spin_lock(&inode->i_lock);
5212 if (atomic_read(&inode->i_writecount) > 1) {
5213 spin_unlock(&inode->i_lock);
5214 return -ETXTBSY;
5215 }
5216 atomic_set(&inode->i_writecount, -1);
5217 spin_unlock(&inode->i_lock);
5218
5219 return 0;
5220 }
5221
5222 void restore_bitmap_write_access(struct file *file)
5223 {
5224 struct inode *inode = file->f_mapping->host;
5225
5226 spin_lock(&inode->i_lock);
5227 atomic_set(&inode->i_writecount, 1);
5228 spin_unlock(&inode->i_lock);
5229 }
5230
5231 static void md_clean(struct mddev *mddev)
5232 {
5233 mddev->array_sectors = 0;
5234 mddev->external_size = 0;
5235 mddev->dev_sectors = 0;
5236 mddev->raid_disks = 0;
5237 mddev->recovery_cp = 0;
5238 mddev->resync_min = 0;
5239 mddev->resync_max = MaxSector;
5240 mddev->reshape_position = MaxSector;
5241 mddev->external = 0;
5242 mddev->persistent = 0;
5243 mddev->level = LEVEL_NONE;
5244 mddev->clevel[0] = 0;
5245 mddev->flags = 0;
5246 mddev->ro = 0;
5247 mddev->metadata_type[0] = 0;
5248 mddev->chunk_sectors = 0;
5249 mddev->ctime = mddev->utime = 0;
5250 mddev->layout = 0;
5251 mddev->max_disks = 0;
5252 mddev->events = 0;
5253 mddev->can_decrease_events = 0;
5254 mddev->delta_disks = 0;
5255 mddev->reshape_backwards = 0;
5256 mddev->new_level = LEVEL_NONE;
5257 mddev->new_layout = 0;
5258 mddev->new_chunk_sectors = 0;
5259 mddev->curr_resync = 0;
5260 atomic64_set(&mddev->resync_mismatches, 0);
5261 mddev->suspend_lo = mddev->suspend_hi = 0;
5262 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5263 mddev->recovery = 0;
5264 mddev->in_sync = 0;
5265 mddev->changed = 0;
5266 mddev->degraded = 0;
5267 mddev->safemode = 0;
5268 mddev->merge_check_needed = 0;
5269 mddev->bitmap_info.offset = 0;
5270 mddev->bitmap_info.default_offset = 0;
5271 mddev->bitmap_info.default_space = 0;
5272 mddev->bitmap_info.chunksize = 0;
5273 mddev->bitmap_info.daemon_sleep = 0;
5274 mddev->bitmap_info.max_write_behind = 0;
5275 }
5276
5277 static void __md_stop_writes(struct mddev *mddev)
5278 {
5279 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5280 if (mddev->sync_thread) {
5281 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5282 md_reap_sync_thread(mddev);
5283 }
5284
5285 del_timer_sync(&mddev->safemode_timer);
5286
5287 bitmap_flush(mddev);
5288 md_super_wait(mddev);
5289
5290 if (mddev->ro == 0 &&
5291 (!mddev->in_sync || mddev->flags)) {
5292 /* mark array as shutdown cleanly */
5293 mddev->in_sync = 1;
5294 md_update_sb(mddev, 1);
5295 }
5296 }
5297
5298 void md_stop_writes(struct mddev *mddev)
5299 {
5300 mddev_lock(mddev);
5301 __md_stop_writes(mddev);
5302 mddev_unlock(mddev);
5303 }
5304 EXPORT_SYMBOL_GPL(md_stop_writes);
5305
5306 static void __md_stop(struct mddev *mddev)
5307 {
5308 mddev->ready = 0;
5309 mddev->pers->stop(mddev);
5310 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5311 mddev->to_remove = &md_redundancy_group;
5312 module_put(mddev->pers->owner);
5313 mddev->pers = NULL;
5314 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5315 }
5316
5317 void md_stop(struct mddev *mddev)
5318 {
5319 /* stop the array and free an attached data structures.
5320 * This is called from dm-raid
5321 */
5322 __md_stop(mddev);
5323 bitmap_destroy(mddev);
5324 if (mddev->bio_set)
5325 bioset_free(mddev->bio_set);
5326 }
5327
5328 EXPORT_SYMBOL_GPL(md_stop);
5329
5330 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5331 {
5332 int err = 0;
5333 mutex_lock(&mddev->open_mutex);
5334 if (atomic_read(&mddev->openers) > !!bdev) {
5335 printk("md: %s still in use.\n",mdname(mddev));
5336 err = -EBUSY;
5337 goto out;
5338 }
5339 if (bdev)
5340 sync_blockdev(bdev);
5341 if (mddev->pers) {
5342 __md_stop_writes(mddev);
5343
5344 err = -ENXIO;
5345 if (mddev->ro==1)
5346 goto out;
5347 mddev->ro = 1;
5348 set_disk_ro(mddev->gendisk, 1);
5349 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5350 sysfs_notify_dirent_safe(mddev->sysfs_state);
5351 err = 0;
5352 }
5353 out:
5354 mutex_unlock(&mddev->open_mutex);
5355 return err;
5356 }
5357
5358 /* mode:
5359 * 0 - completely stop and dis-assemble array
5360 * 2 - stop but do not disassemble array
5361 */
5362 static int do_md_stop(struct mddev * mddev, int mode,
5363 struct block_device *bdev)
5364 {
5365 struct gendisk *disk = mddev->gendisk;
5366 struct md_rdev *rdev;
5367
5368 mutex_lock(&mddev->open_mutex);
5369 if (atomic_read(&mddev->openers) > !!bdev ||
5370 mddev->sysfs_active) {
5371 printk("md: %s still in use.\n",mdname(mddev));
5372 mutex_unlock(&mddev->open_mutex);
5373 return -EBUSY;
5374 }
5375 if (bdev)
5376 /* It is possible IO was issued on some other
5377 * open file which was closed before we took ->open_mutex.
5378 * As that was not the last close __blkdev_put will not
5379 * have called sync_blockdev, so we must.
5380 */
5381 sync_blockdev(bdev);
5382
5383 if (mddev->pers) {
5384 if (mddev->ro)
5385 set_disk_ro(disk, 0);
5386
5387 __md_stop_writes(mddev);
5388 __md_stop(mddev);
5389 mddev->queue->merge_bvec_fn = NULL;
5390 mddev->queue->backing_dev_info.congested_fn = NULL;
5391
5392 /* tell userspace to handle 'inactive' */
5393 sysfs_notify_dirent_safe(mddev->sysfs_state);
5394
5395 rdev_for_each(rdev, mddev)
5396 if (rdev->raid_disk >= 0)
5397 sysfs_unlink_rdev(mddev, rdev);
5398
5399 set_capacity(disk, 0);
5400 mutex_unlock(&mddev->open_mutex);
5401 mddev->changed = 1;
5402 revalidate_disk(disk);
5403
5404 if (mddev->ro)
5405 mddev->ro = 0;
5406 } else
5407 mutex_unlock(&mddev->open_mutex);
5408 /*
5409 * Free resources if final stop
5410 */
5411 if (mode == 0) {
5412 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5413
5414 bitmap_destroy(mddev);
5415 if (mddev->bitmap_info.file) {
5416 restore_bitmap_write_access(mddev->bitmap_info.file);
5417 fput(mddev->bitmap_info.file);
5418 mddev->bitmap_info.file = NULL;
5419 }
5420 mddev->bitmap_info.offset = 0;
5421
5422 export_array(mddev);
5423
5424 md_clean(mddev);
5425 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5426 if (mddev->hold_active == UNTIL_STOP)
5427 mddev->hold_active = 0;
5428 }
5429 blk_integrity_unregister(disk);
5430 md_new_event(mddev);
5431 sysfs_notify_dirent_safe(mddev->sysfs_state);
5432 return 0;
5433 }
5434
5435 #ifndef MODULE
5436 static void autorun_array(struct mddev *mddev)
5437 {
5438 struct md_rdev *rdev;
5439 int err;
5440
5441 if (list_empty(&mddev->disks))
5442 return;
5443
5444 printk(KERN_INFO "md: running: ");
5445
5446 rdev_for_each(rdev, mddev) {
5447 char b[BDEVNAME_SIZE];
5448 printk("<%s>", bdevname(rdev->bdev,b));
5449 }
5450 printk("\n");
5451
5452 err = do_md_run(mddev);
5453 if (err) {
5454 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5455 do_md_stop(mddev, 0, NULL);
5456 }
5457 }
5458
5459 /*
5460 * lets try to run arrays based on all disks that have arrived
5461 * until now. (those are in pending_raid_disks)
5462 *
5463 * the method: pick the first pending disk, collect all disks with
5464 * the same UUID, remove all from the pending list and put them into
5465 * the 'same_array' list. Then order this list based on superblock
5466 * update time (freshest comes first), kick out 'old' disks and
5467 * compare superblocks. If everything's fine then run it.
5468 *
5469 * If "unit" is allocated, then bump its reference count
5470 */
5471 static void autorun_devices(int part)
5472 {
5473 struct md_rdev *rdev0, *rdev, *tmp;
5474 struct mddev *mddev;
5475 char b[BDEVNAME_SIZE];
5476
5477 printk(KERN_INFO "md: autorun ...\n");
5478 while (!list_empty(&pending_raid_disks)) {
5479 int unit;
5480 dev_t dev;
5481 LIST_HEAD(candidates);
5482 rdev0 = list_entry(pending_raid_disks.next,
5483 struct md_rdev, same_set);
5484
5485 printk(KERN_INFO "md: considering %s ...\n",
5486 bdevname(rdev0->bdev,b));
5487 INIT_LIST_HEAD(&candidates);
5488 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5489 if (super_90_load(rdev, rdev0, 0) >= 0) {
5490 printk(KERN_INFO "md: adding %s ...\n",
5491 bdevname(rdev->bdev,b));
5492 list_move(&rdev->same_set, &candidates);
5493 }
5494 /*
5495 * now we have a set of devices, with all of them having
5496 * mostly sane superblocks. It's time to allocate the
5497 * mddev.
5498 */
5499 if (part) {
5500 dev = MKDEV(mdp_major,
5501 rdev0->preferred_minor << MdpMinorShift);
5502 unit = MINOR(dev) >> MdpMinorShift;
5503 } else {
5504 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5505 unit = MINOR(dev);
5506 }
5507 if (rdev0->preferred_minor != unit) {
5508 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5509 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5510 break;
5511 }
5512
5513 md_probe(dev, NULL, NULL);
5514 mddev = mddev_find(dev);
5515 if (!mddev || !mddev->gendisk) {
5516 if (mddev)
5517 mddev_put(mddev);
5518 printk(KERN_ERR
5519 "md: cannot allocate memory for md drive.\n");
5520 break;
5521 }
5522 if (mddev_lock(mddev))
5523 printk(KERN_WARNING "md: %s locked, cannot run\n",
5524 mdname(mddev));
5525 else if (mddev->raid_disks || mddev->major_version
5526 || !list_empty(&mddev->disks)) {
5527 printk(KERN_WARNING
5528 "md: %s already running, cannot run %s\n",
5529 mdname(mddev), bdevname(rdev0->bdev,b));
5530 mddev_unlock(mddev);
5531 } else {
5532 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5533 mddev->persistent = 1;
5534 rdev_for_each_list(rdev, tmp, &candidates) {
5535 list_del_init(&rdev->same_set);
5536 if (bind_rdev_to_array(rdev, mddev))
5537 export_rdev(rdev);
5538 }
5539 autorun_array(mddev);
5540 mddev_unlock(mddev);
5541 }
5542 /* on success, candidates will be empty, on error
5543 * it won't...
5544 */
5545 rdev_for_each_list(rdev, tmp, &candidates) {
5546 list_del_init(&rdev->same_set);
5547 export_rdev(rdev);
5548 }
5549 mddev_put(mddev);
5550 }
5551 printk(KERN_INFO "md: ... autorun DONE.\n");
5552 }
5553 #endif /* !MODULE */
5554
5555 static int get_version(void __user * arg)
5556 {
5557 mdu_version_t ver;
5558
5559 ver.major = MD_MAJOR_VERSION;
5560 ver.minor = MD_MINOR_VERSION;
5561 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5562
5563 if (copy_to_user(arg, &ver, sizeof(ver)))
5564 return -EFAULT;
5565
5566 return 0;
5567 }
5568
5569 static int get_array_info(struct mddev * mddev, void __user * arg)
5570 {
5571 mdu_array_info_t info;
5572 int nr,working,insync,failed,spare;
5573 struct md_rdev *rdev;
5574
5575 nr = working = insync = failed = spare = 0;
5576 rcu_read_lock();
5577 rdev_for_each_rcu(rdev, mddev) {
5578 nr++;
5579 if (test_bit(Faulty, &rdev->flags))
5580 failed++;
5581 else {
5582 working++;
5583 if (test_bit(In_sync, &rdev->flags))
5584 insync++;
5585 else
5586 spare++;
5587 }
5588 }
5589 rcu_read_unlock();
5590
5591 info.major_version = mddev->major_version;
5592 info.minor_version = mddev->minor_version;
5593 info.patch_version = MD_PATCHLEVEL_VERSION;
5594 info.ctime = mddev->ctime;
5595 info.level = mddev->level;
5596 info.size = mddev->dev_sectors / 2;
5597 if (info.size != mddev->dev_sectors / 2) /* overflow */
5598 info.size = -1;
5599 info.nr_disks = nr;
5600 info.raid_disks = mddev->raid_disks;
5601 info.md_minor = mddev->md_minor;
5602 info.not_persistent= !mddev->persistent;
5603
5604 info.utime = mddev->utime;
5605 info.state = 0;
5606 if (mddev->in_sync)
5607 info.state = (1<<MD_SB_CLEAN);
5608 if (mddev->bitmap && mddev->bitmap_info.offset)
5609 info.state = (1<<MD_SB_BITMAP_PRESENT);
5610 info.active_disks = insync;
5611 info.working_disks = working;
5612 info.failed_disks = failed;
5613 info.spare_disks = spare;
5614
5615 info.layout = mddev->layout;
5616 info.chunk_size = mddev->chunk_sectors << 9;
5617
5618 if (copy_to_user(arg, &info, sizeof(info)))
5619 return -EFAULT;
5620
5621 return 0;
5622 }
5623
5624 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5625 {
5626 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5627 char *ptr, *buf = NULL;
5628 int err = -ENOMEM;
5629
5630 if (md_allow_write(mddev))
5631 file = kmalloc(sizeof(*file), GFP_NOIO);
5632 else
5633 file = kmalloc(sizeof(*file), GFP_KERNEL);
5634
5635 if (!file)
5636 goto out;
5637
5638 /* bitmap disabled, zero the first byte and copy out */
5639 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5640 file->pathname[0] = '\0';
5641 goto copy_out;
5642 }
5643
5644 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5645 if (!buf)
5646 goto out;
5647
5648 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5649 buf, sizeof(file->pathname));
5650 if (IS_ERR(ptr))
5651 goto out;
5652
5653 strcpy(file->pathname, ptr);
5654
5655 copy_out:
5656 err = 0;
5657 if (copy_to_user(arg, file, sizeof(*file)))
5658 err = -EFAULT;
5659 out:
5660 kfree(buf);
5661 kfree(file);
5662 return err;
5663 }
5664
5665 static int get_disk_info(struct mddev * mddev, void __user * arg)
5666 {
5667 mdu_disk_info_t info;
5668 struct md_rdev *rdev;
5669
5670 if (copy_from_user(&info, arg, sizeof(info)))
5671 return -EFAULT;
5672
5673 rcu_read_lock();
5674 rdev = find_rdev_nr_rcu(mddev, info.number);
5675 if (rdev) {
5676 info.major = MAJOR(rdev->bdev->bd_dev);
5677 info.minor = MINOR(rdev->bdev->bd_dev);
5678 info.raid_disk = rdev->raid_disk;
5679 info.state = 0;
5680 if (test_bit(Faulty, &rdev->flags))
5681 info.state |= (1<<MD_DISK_FAULTY);
5682 else if (test_bit(In_sync, &rdev->flags)) {
5683 info.state |= (1<<MD_DISK_ACTIVE);
5684 info.state |= (1<<MD_DISK_SYNC);
5685 }
5686 if (test_bit(WriteMostly, &rdev->flags))
5687 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5688 } else {
5689 info.major = info.minor = 0;
5690 info.raid_disk = -1;
5691 info.state = (1<<MD_DISK_REMOVED);
5692 }
5693 rcu_read_unlock();
5694
5695 if (copy_to_user(arg, &info, sizeof(info)))
5696 return -EFAULT;
5697
5698 return 0;
5699 }
5700
5701 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5702 {
5703 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5704 struct md_rdev *rdev;
5705 dev_t dev = MKDEV(info->major,info->minor);
5706
5707 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5708 return -EOVERFLOW;
5709
5710 if (!mddev->raid_disks) {
5711 int err;
5712 /* expecting a device which has a superblock */
5713 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5714 if (IS_ERR(rdev)) {
5715 printk(KERN_WARNING
5716 "md: md_import_device returned %ld\n",
5717 PTR_ERR(rdev));
5718 return PTR_ERR(rdev);
5719 }
5720 if (!list_empty(&mddev->disks)) {
5721 struct md_rdev *rdev0
5722 = list_entry(mddev->disks.next,
5723 struct md_rdev, same_set);
5724 err = super_types[mddev->major_version]
5725 .load_super(rdev, rdev0, mddev->minor_version);
5726 if (err < 0) {
5727 printk(KERN_WARNING
5728 "md: %s has different UUID to %s\n",
5729 bdevname(rdev->bdev,b),
5730 bdevname(rdev0->bdev,b2));
5731 export_rdev(rdev);
5732 return -EINVAL;
5733 }
5734 }
5735 err = bind_rdev_to_array(rdev, mddev);
5736 if (err)
5737 export_rdev(rdev);
5738 return err;
5739 }
5740
5741 /*
5742 * add_new_disk can be used once the array is assembled
5743 * to add "hot spares". They must already have a superblock
5744 * written
5745 */
5746 if (mddev->pers) {
5747 int err;
5748 if (!mddev->pers->hot_add_disk) {
5749 printk(KERN_WARNING
5750 "%s: personality does not support diskops!\n",
5751 mdname(mddev));
5752 return -EINVAL;
5753 }
5754 if (mddev->persistent)
5755 rdev = md_import_device(dev, mddev->major_version,
5756 mddev->minor_version);
5757 else
5758 rdev = md_import_device(dev, -1, -1);
5759 if (IS_ERR(rdev)) {
5760 printk(KERN_WARNING
5761 "md: md_import_device returned %ld\n",
5762 PTR_ERR(rdev));
5763 return PTR_ERR(rdev);
5764 }
5765 /* set saved_raid_disk if appropriate */
5766 if (!mddev->persistent) {
5767 if (info->state & (1<<MD_DISK_SYNC) &&
5768 info->raid_disk < mddev->raid_disks) {
5769 rdev->raid_disk = info->raid_disk;
5770 set_bit(In_sync, &rdev->flags);
5771 clear_bit(Bitmap_sync, &rdev->flags);
5772 } else
5773 rdev->raid_disk = -1;
5774 } else
5775 super_types[mddev->major_version].
5776 validate_super(mddev, rdev);
5777 if ((info->state & (1<<MD_DISK_SYNC)) &&
5778 rdev->raid_disk != info->raid_disk) {
5779 /* This was a hot-add request, but events doesn't
5780 * match, so reject it.
5781 */
5782 export_rdev(rdev);
5783 return -EINVAL;
5784 }
5785
5786 if (test_bit(In_sync, &rdev->flags))
5787 rdev->saved_raid_disk = rdev->raid_disk;
5788 else
5789 rdev->saved_raid_disk = -1;
5790
5791 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5792 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5793 set_bit(WriteMostly, &rdev->flags);
5794 else
5795 clear_bit(WriteMostly, &rdev->flags);
5796
5797 rdev->raid_disk = -1;
5798 err = bind_rdev_to_array(rdev, mddev);
5799 if (!err && !mddev->pers->hot_remove_disk) {
5800 /* If there is hot_add_disk but no hot_remove_disk
5801 * then added disks for geometry changes,
5802 * and should be added immediately.
5803 */
5804 super_types[mddev->major_version].
5805 validate_super(mddev, rdev);
5806 err = mddev->pers->hot_add_disk(mddev, rdev);
5807 if (err)
5808 unbind_rdev_from_array(rdev);
5809 }
5810 if (err)
5811 export_rdev(rdev);
5812 else
5813 sysfs_notify_dirent_safe(rdev->sysfs_state);
5814
5815 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5816 if (mddev->degraded)
5817 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5818 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5819 if (!err)
5820 md_new_event(mddev);
5821 md_wakeup_thread(mddev->thread);
5822 return err;
5823 }
5824
5825 /* otherwise, add_new_disk is only allowed
5826 * for major_version==0 superblocks
5827 */
5828 if (mddev->major_version != 0) {
5829 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5830 mdname(mddev));
5831 return -EINVAL;
5832 }
5833
5834 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5835 int err;
5836 rdev = md_import_device(dev, -1, 0);
5837 if (IS_ERR(rdev)) {
5838 printk(KERN_WARNING
5839 "md: error, md_import_device() returned %ld\n",
5840 PTR_ERR(rdev));
5841 return PTR_ERR(rdev);
5842 }
5843 rdev->desc_nr = info->number;
5844 if (info->raid_disk < mddev->raid_disks)
5845 rdev->raid_disk = info->raid_disk;
5846 else
5847 rdev->raid_disk = -1;
5848
5849 if (rdev->raid_disk < mddev->raid_disks)
5850 if (info->state & (1<<MD_DISK_SYNC))
5851 set_bit(In_sync, &rdev->flags);
5852
5853 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5854 set_bit(WriteMostly, &rdev->flags);
5855
5856 if (!mddev->persistent) {
5857 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5858 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5859 } else
5860 rdev->sb_start = calc_dev_sboffset(rdev);
5861 rdev->sectors = rdev->sb_start;
5862
5863 err = bind_rdev_to_array(rdev, mddev);
5864 if (err) {
5865 export_rdev(rdev);
5866 return err;
5867 }
5868 }
5869
5870 return 0;
5871 }
5872
5873 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5874 {
5875 char b[BDEVNAME_SIZE];
5876 struct md_rdev *rdev;
5877
5878 rdev = find_rdev(mddev, dev);
5879 if (!rdev)
5880 return -ENXIO;
5881
5882 clear_bit(Blocked, &rdev->flags);
5883 remove_and_add_spares(mddev, rdev);
5884
5885 if (rdev->raid_disk >= 0)
5886 goto busy;
5887
5888 kick_rdev_from_array(rdev);
5889 md_update_sb(mddev, 1);
5890 md_new_event(mddev);
5891
5892 return 0;
5893 busy:
5894 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5895 bdevname(rdev->bdev,b), mdname(mddev));
5896 return -EBUSY;
5897 }
5898
5899 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5900 {
5901 char b[BDEVNAME_SIZE];
5902 int err;
5903 struct md_rdev *rdev;
5904
5905 if (!mddev->pers)
5906 return -ENODEV;
5907
5908 if (mddev->major_version != 0) {
5909 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5910 " version-0 superblocks.\n",
5911 mdname(mddev));
5912 return -EINVAL;
5913 }
5914 if (!mddev->pers->hot_add_disk) {
5915 printk(KERN_WARNING
5916 "%s: personality does not support diskops!\n",
5917 mdname(mddev));
5918 return -EINVAL;
5919 }
5920
5921 rdev = md_import_device(dev, -1, 0);
5922 if (IS_ERR(rdev)) {
5923 printk(KERN_WARNING
5924 "md: error, md_import_device() returned %ld\n",
5925 PTR_ERR(rdev));
5926 return -EINVAL;
5927 }
5928
5929 if (mddev->persistent)
5930 rdev->sb_start = calc_dev_sboffset(rdev);
5931 else
5932 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5933
5934 rdev->sectors = rdev->sb_start;
5935
5936 if (test_bit(Faulty, &rdev->flags)) {
5937 printk(KERN_WARNING
5938 "md: can not hot-add faulty %s disk to %s!\n",
5939 bdevname(rdev->bdev,b), mdname(mddev));
5940 err = -EINVAL;
5941 goto abort_export;
5942 }
5943 clear_bit(In_sync, &rdev->flags);
5944 rdev->desc_nr = -1;
5945 rdev->saved_raid_disk = -1;
5946 err = bind_rdev_to_array(rdev, mddev);
5947 if (err)
5948 goto abort_export;
5949
5950 /*
5951 * The rest should better be atomic, we can have disk failures
5952 * noticed in interrupt contexts ...
5953 */
5954
5955 rdev->raid_disk = -1;
5956
5957 md_update_sb(mddev, 1);
5958
5959 /*
5960 * Kick recovery, maybe this spare has to be added to the
5961 * array immediately.
5962 */
5963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5964 md_wakeup_thread(mddev->thread);
5965 md_new_event(mddev);
5966 return 0;
5967
5968 abort_export:
5969 export_rdev(rdev);
5970 return err;
5971 }
5972
5973 static int set_bitmap_file(struct mddev *mddev, int fd)
5974 {
5975 int err;
5976
5977 if (mddev->pers) {
5978 if (!mddev->pers->quiesce)
5979 return -EBUSY;
5980 if (mddev->recovery || mddev->sync_thread)
5981 return -EBUSY;
5982 /* we should be able to change the bitmap.. */
5983 }
5984
5985
5986 if (fd >= 0) {
5987 if (mddev->bitmap)
5988 return -EEXIST; /* cannot add when bitmap is present */
5989 mddev->bitmap_info.file = fget(fd);
5990
5991 if (mddev->bitmap_info.file == NULL) {
5992 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5993 mdname(mddev));
5994 return -EBADF;
5995 }
5996
5997 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5998 if (err) {
5999 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6000 mdname(mddev));
6001 fput(mddev->bitmap_info.file);
6002 mddev->bitmap_info.file = NULL;
6003 return err;
6004 }
6005 mddev->bitmap_info.offset = 0; /* file overrides offset */
6006 } else if (mddev->bitmap == NULL)
6007 return -ENOENT; /* cannot remove what isn't there */
6008 err = 0;
6009 if (mddev->pers) {
6010 mddev->pers->quiesce(mddev, 1);
6011 if (fd >= 0) {
6012 err = bitmap_create(mddev);
6013 if (!err)
6014 err = bitmap_load(mddev);
6015 }
6016 if (fd < 0 || err) {
6017 bitmap_destroy(mddev);
6018 fd = -1; /* make sure to put the file */
6019 }
6020 mddev->pers->quiesce(mddev, 0);
6021 }
6022 if (fd < 0) {
6023 if (mddev->bitmap_info.file) {
6024 restore_bitmap_write_access(mddev->bitmap_info.file);
6025 fput(mddev->bitmap_info.file);
6026 }
6027 mddev->bitmap_info.file = NULL;
6028 }
6029
6030 return err;
6031 }
6032
6033 /*
6034 * set_array_info is used two different ways
6035 * The original usage is when creating a new array.
6036 * In this usage, raid_disks is > 0 and it together with
6037 * level, size, not_persistent,layout,chunksize determine the
6038 * shape of the array.
6039 * This will always create an array with a type-0.90.0 superblock.
6040 * The newer usage is when assembling an array.
6041 * In this case raid_disks will be 0, and the major_version field is
6042 * use to determine which style super-blocks are to be found on the devices.
6043 * The minor and patch _version numbers are also kept incase the
6044 * super_block handler wishes to interpret them.
6045 */
6046 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6047 {
6048
6049 if (info->raid_disks == 0) {
6050 /* just setting version number for superblock loading */
6051 if (info->major_version < 0 ||
6052 info->major_version >= ARRAY_SIZE(super_types) ||
6053 super_types[info->major_version].name == NULL) {
6054 /* maybe try to auto-load a module? */
6055 printk(KERN_INFO
6056 "md: superblock version %d not known\n",
6057 info->major_version);
6058 return -EINVAL;
6059 }
6060 mddev->major_version = info->major_version;
6061 mddev->minor_version = info->minor_version;
6062 mddev->patch_version = info->patch_version;
6063 mddev->persistent = !info->not_persistent;
6064 /* ensure mddev_put doesn't delete this now that there
6065 * is some minimal configuration.
6066 */
6067 mddev->ctime = get_seconds();
6068 return 0;
6069 }
6070 mddev->major_version = MD_MAJOR_VERSION;
6071 mddev->minor_version = MD_MINOR_VERSION;
6072 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6073 mddev->ctime = get_seconds();
6074
6075 mddev->level = info->level;
6076 mddev->clevel[0] = 0;
6077 mddev->dev_sectors = 2 * (sector_t)info->size;
6078 mddev->raid_disks = info->raid_disks;
6079 /* don't set md_minor, it is determined by which /dev/md* was
6080 * openned
6081 */
6082 if (info->state & (1<<MD_SB_CLEAN))
6083 mddev->recovery_cp = MaxSector;
6084 else
6085 mddev->recovery_cp = 0;
6086 mddev->persistent = ! info->not_persistent;
6087 mddev->external = 0;
6088
6089 mddev->layout = info->layout;
6090 mddev->chunk_sectors = info->chunk_size >> 9;
6091
6092 mddev->max_disks = MD_SB_DISKS;
6093
6094 if (mddev->persistent)
6095 mddev->flags = 0;
6096 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6097
6098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6100 mddev->bitmap_info.offset = 0;
6101
6102 mddev->reshape_position = MaxSector;
6103
6104 /*
6105 * Generate a 128 bit UUID
6106 */
6107 get_random_bytes(mddev->uuid, 16);
6108
6109 mddev->new_level = mddev->level;
6110 mddev->new_chunk_sectors = mddev->chunk_sectors;
6111 mddev->new_layout = mddev->layout;
6112 mddev->delta_disks = 0;
6113 mddev->reshape_backwards = 0;
6114
6115 return 0;
6116 }
6117
6118 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6119 {
6120 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6121
6122 if (mddev->external_size)
6123 return;
6124
6125 mddev->array_sectors = array_sectors;
6126 }
6127 EXPORT_SYMBOL(md_set_array_sectors);
6128
6129 static int update_size(struct mddev *mddev, sector_t num_sectors)
6130 {
6131 struct md_rdev *rdev;
6132 int rv;
6133 int fit = (num_sectors == 0);
6134
6135 if (mddev->pers->resize == NULL)
6136 return -EINVAL;
6137 /* The "num_sectors" is the number of sectors of each device that
6138 * is used. This can only make sense for arrays with redundancy.
6139 * linear and raid0 always use whatever space is available. We can only
6140 * consider changing this number if no resync or reconstruction is
6141 * happening, and if the new size is acceptable. It must fit before the
6142 * sb_start or, if that is <data_offset, it must fit before the size
6143 * of each device. If num_sectors is zero, we find the largest size
6144 * that fits.
6145 */
6146 if (mddev->sync_thread)
6147 return -EBUSY;
6148
6149 rdev_for_each(rdev, mddev) {
6150 sector_t avail = rdev->sectors;
6151
6152 if (fit && (num_sectors == 0 || num_sectors > avail))
6153 num_sectors = avail;
6154 if (avail < num_sectors)
6155 return -ENOSPC;
6156 }
6157 rv = mddev->pers->resize(mddev, num_sectors);
6158 if (!rv)
6159 revalidate_disk(mddev->gendisk);
6160 return rv;
6161 }
6162
6163 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6164 {
6165 int rv;
6166 struct md_rdev *rdev;
6167 /* change the number of raid disks */
6168 if (mddev->pers->check_reshape == NULL)
6169 return -EINVAL;
6170 if (raid_disks <= 0 ||
6171 (mddev->max_disks && raid_disks >= mddev->max_disks))
6172 return -EINVAL;
6173 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6174 return -EBUSY;
6175
6176 rdev_for_each(rdev, mddev) {
6177 if (mddev->raid_disks < raid_disks &&
6178 rdev->data_offset < rdev->new_data_offset)
6179 return -EINVAL;
6180 if (mddev->raid_disks > raid_disks &&
6181 rdev->data_offset > rdev->new_data_offset)
6182 return -EINVAL;
6183 }
6184
6185 mddev->delta_disks = raid_disks - mddev->raid_disks;
6186 if (mddev->delta_disks < 0)
6187 mddev->reshape_backwards = 1;
6188 else if (mddev->delta_disks > 0)
6189 mddev->reshape_backwards = 0;
6190
6191 rv = mddev->pers->check_reshape(mddev);
6192 if (rv < 0) {
6193 mddev->delta_disks = 0;
6194 mddev->reshape_backwards = 0;
6195 }
6196 return rv;
6197 }
6198
6199
6200 /*
6201 * update_array_info is used to change the configuration of an
6202 * on-line array.
6203 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6204 * fields in the info are checked against the array.
6205 * Any differences that cannot be handled will cause an error.
6206 * Normally, only one change can be managed at a time.
6207 */
6208 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6209 {
6210 int rv = 0;
6211 int cnt = 0;
6212 int state = 0;
6213
6214 /* calculate expected state,ignoring low bits */
6215 if (mddev->bitmap && mddev->bitmap_info.offset)
6216 state |= (1 << MD_SB_BITMAP_PRESENT);
6217
6218 if (mddev->major_version != info->major_version ||
6219 mddev->minor_version != info->minor_version ||
6220 /* mddev->patch_version != info->patch_version || */
6221 mddev->ctime != info->ctime ||
6222 mddev->level != info->level ||
6223 /* mddev->layout != info->layout || */
6224 !mddev->persistent != info->not_persistent||
6225 mddev->chunk_sectors != info->chunk_size >> 9 ||
6226 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6227 ((state^info->state) & 0xfffffe00)
6228 )
6229 return -EINVAL;
6230 /* Check there is only one change */
6231 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6232 cnt++;
6233 if (mddev->raid_disks != info->raid_disks)
6234 cnt++;
6235 if (mddev->layout != info->layout)
6236 cnt++;
6237 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6238 cnt++;
6239 if (cnt == 0)
6240 return 0;
6241 if (cnt > 1)
6242 return -EINVAL;
6243
6244 if (mddev->layout != info->layout) {
6245 /* Change layout
6246 * we don't need to do anything at the md level, the
6247 * personality will take care of it all.
6248 */
6249 if (mddev->pers->check_reshape == NULL)
6250 return -EINVAL;
6251 else {
6252 mddev->new_layout = info->layout;
6253 rv = mddev->pers->check_reshape(mddev);
6254 if (rv)
6255 mddev->new_layout = mddev->layout;
6256 return rv;
6257 }
6258 }
6259 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6260 rv = update_size(mddev, (sector_t)info->size * 2);
6261
6262 if (mddev->raid_disks != info->raid_disks)
6263 rv = update_raid_disks(mddev, info->raid_disks);
6264
6265 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6266 if (mddev->pers->quiesce == NULL)
6267 return -EINVAL;
6268 if (mddev->recovery || mddev->sync_thread)
6269 return -EBUSY;
6270 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6271 /* add the bitmap */
6272 if (mddev->bitmap)
6273 return -EEXIST;
6274 if (mddev->bitmap_info.default_offset == 0)
6275 return -EINVAL;
6276 mddev->bitmap_info.offset =
6277 mddev->bitmap_info.default_offset;
6278 mddev->bitmap_info.space =
6279 mddev->bitmap_info.default_space;
6280 mddev->pers->quiesce(mddev, 1);
6281 rv = bitmap_create(mddev);
6282 if (!rv)
6283 rv = bitmap_load(mddev);
6284 if (rv)
6285 bitmap_destroy(mddev);
6286 mddev->pers->quiesce(mddev, 0);
6287 } else {
6288 /* remove the bitmap */
6289 if (!mddev->bitmap)
6290 return -ENOENT;
6291 if (mddev->bitmap->storage.file)
6292 return -EINVAL;
6293 mddev->pers->quiesce(mddev, 1);
6294 bitmap_destroy(mddev);
6295 mddev->pers->quiesce(mddev, 0);
6296 mddev->bitmap_info.offset = 0;
6297 }
6298 }
6299 md_update_sb(mddev, 1);
6300 return rv;
6301 }
6302
6303 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6304 {
6305 struct md_rdev *rdev;
6306 int err = 0;
6307
6308 if (mddev->pers == NULL)
6309 return -ENODEV;
6310
6311 rcu_read_lock();
6312 rdev = find_rdev_rcu(mddev, dev);
6313 if (!rdev)
6314 err = -ENODEV;
6315 else {
6316 md_error(mddev, rdev);
6317 if (!test_bit(Faulty, &rdev->flags))
6318 err = -EBUSY;
6319 }
6320 rcu_read_unlock();
6321 return err;
6322 }
6323
6324 /*
6325 * We have a problem here : there is no easy way to give a CHS
6326 * virtual geometry. We currently pretend that we have a 2 heads
6327 * 4 sectors (with a BIG number of cylinders...). This drives
6328 * dosfs just mad... ;-)
6329 */
6330 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6331 {
6332 struct mddev *mddev = bdev->bd_disk->private_data;
6333
6334 geo->heads = 2;
6335 geo->sectors = 4;
6336 geo->cylinders = mddev->array_sectors / 8;
6337 return 0;
6338 }
6339
6340 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6341 unsigned int cmd, unsigned long arg)
6342 {
6343 int err = 0;
6344 void __user *argp = (void __user *)arg;
6345 struct mddev *mddev = NULL;
6346 int ro;
6347
6348 switch (cmd) {
6349 case RAID_VERSION:
6350 case GET_ARRAY_INFO:
6351 case GET_DISK_INFO:
6352 break;
6353 default:
6354 if (!capable(CAP_SYS_ADMIN))
6355 return -EACCES;
6356 }
6357
6358 /*
6359 * Commands dealing with the RAID driver but not any
6360 * particular array:
6361 */
6362 switch (cmd) {
6363 case RAID_VERSION:
6364 err = get_version(argp);
6365 goto done;
6366
6367 case PRINT_RAID_DEBUG:
6368 err = 0;
6369 md_print_devices();
6370 goto done;
6371
6372 #ifndef MODULE
6373 case RAID_AUTORUN:
6374 err = 0;
6375 autostart_arrays(arg);
6376 goto done;
6377 #endif
6378 default:;
6379 }
6380
6381 /*
6382 * Commands creating/starting a new array:
6383 */
6384
6385 mddev = bdev->bd_disk->private_data;
6386
6387 if (!mddev) {
6388 BUG();
6389 goto abort;
6390 }
6391
6392 /* Some actions do not requires the mutex */
6393 switch (cmd) {
6394 case GET_ARRAY_INFO:
6395 if (!mddev->raid_disks && !mddev->external)
6396 err = -ENODEV;
6397 else
6398 err = get_array_info(mddev, argp);
6399 goto abort;
6400
6401 case GET_DISK_INFO:
6402 if (!mddev->raid_disks && !mddev->external)
6403 err = -ENODEV;
6404 else
6405 err = get_disk_info(mddev, argp);
6406 goto abort;
6407
6408 case SET_DISK_FAULTY:
6409 err = set_disk_faulty(mddev, new_decode_dev(arg));
6410 goto abort;
6411 }
6412
6413 if (cmd == ADD_NEW_DISK)
6414 /* need to ensure md_delayed_delete() has completed */
6415 flush_workqueue(md_misc_wq);
6416
6417 err = mddev_lock(mddev);
6418 if (err) {
6419 printk(KERN_INFO
6420 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6421 err, cmd);
6422 goto abort;
6423 }
6424
6425 if (cmd == SET_ARRAY_INFO) {
6426 mdu_array_info_t info;
6427 if (!arg)
6428 memset(&info, 0, sizeof(info));
6429 else if (copy_from_user(&info, argp, sizeof(info))) {
6430 err = -EFAULT;
6431 goto abort_unlock;
6432 }
6433 if (mddev->pers) {
6434 err = update_array_info(mddev, &info);
6435 if (err) {
6436 printk(KERN_WARNING "md: couldn't update"
6437 " array info. %d\n", err);
6438 goto abort_unlock;
6439 }
6440 goto done_unlock;
6441 }
6442 if (!list_empty(&mddev->disks)) {
6443 printk(KERN_WARNING
6444 "md: array %s already has disks!\n",
6445 mdname(mddev));
6446 err = -EBUSY;
6447 goto abort_unlock;
6448 }
6449 if (mddev->raid_disks) {
6450 printk(KERN_WARNING
6451 "md: array %s already initialised!\n",
6452 mdname(mddev));
6453 err = -EBUSY;
6454 goto abort_unlock;
6455 }
6456 err = set_array_info(mddev, &info);
6457 if (err) {
6458 printk(KERN_WARNING "md: couldn't set"
6459 " array info. %d\n", err);
6460 goto abort_unlock;
6461 }
6462 goto done_unlock;
6463 }
6464
6465 /*
6466 * Commands querying/configuring an existing array:
6467 */
6468 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6469 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6470 if ((!mddev->raid_disks && !mddev->external)
6471 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6472 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6473 && cmd != GET_BITMAP_FILE) {
6474 err = -ENODEV;
6475 goto abort_unlock;
6476 }
6477
6478 /*
6479 * Commands even a read-only array can execute:
6480 */
6481 switch (cmd) {
6482 case GET_BITMAP_FILE:
6483 err = get_bitmap_file(mddev, argp);
6484 goto done_unlock;
6485
6486 case RESTART_ARRAY_RW:
6487 err = restart_array(mddev);
6488 goto done_unlock;
6489
6490 case STOP_ARRAY:
6491 err = do_md_stop(mddev, 0, bdev);
6492 goto done_unlock;
6493
6494 case STOP_ARRAY_RO:
6495 err = md_set_readonly(mddev, bdev);
6496 goto done_unlock;
6497
6498 case HOT_REMOVE_DISK:
6499 err = hot_remove_disk(mddev, new_decode_dev(arg));
6500 goto done_unlock;
6501
6502 case ADD_NEW_DISK:
6503 /* We can support ADD_NEW_DISK on read-only arrays
6504 * on if we are re-adding a preexisting device.
6505 * So require mddev->pers and MD_DISK_SYNC.
6506 */
6507 if (mddev->pers) {
6508 mdu_disk_info_t info;
6509 if (copy_from_user(&info, argp, sizeof(info)))
6510 err = -EFAULT;
6511 else if (!(info.state & (1<<MD_DISK_SYNC)))
6512 /* Need to clear read-only for this */
6513 break;
6514 else
6515 err = add_new_disk(mddev, &info);
6516 goto done_unlock;
6517 }
6518 break;
6519
6520 case BLKROSET:
6521 if (get_user(ro, (int __user *)(arg))) {
6522 err = -EFAULT;
6523 goto done_unlock;
6524 }
6525 err = -EINVAL;
6526
6527 /* if the bdev is going readonly the value of mddev->ro
6528 * does not matter, no writes are coming
6529 */
6530 if (ro)
6531 goto done_unlock;
6532
6533 /* are we are already prepared for writes? */
6534 if (mddev->ro != 1)
6535 goto done_unlock;
6536
6537 /* transitioning to readauto need only happen for
6538 * arrays that call md_write_start
6539 */
6540 if (mddev->pers) {
6541 err = restart_array(mddev);
6542 if (err == 0) {
6543 mddev->ro = 2;
6544 set_disk_ro(mddev->gendisk, 0);
6545 }
6546 }
6547 goto done_unlock;
6548 }
6549
6550 /*
6551 * The remaining ioctls are changing the state of the
6552 * superblock, so we do not allow them on read-only arrays.
6553 * However non-MD ioctls (e.g. get-size) will still come through
6554 * here and hit the 'default' below, so only disallow
6555 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6556 */
6557 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6558 if (mddev->ro == 2) {
6559 mddev->ro = 0;
6560 sysfs_notify_dirent_safe(mddev->sysfs_state);
6561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6562 /* mddev_unlock will wake thread */
6563 /* If a device failed while we were read-only, we
6564 * need to make sure the metadata is updated now.
6565 */
6566 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6567 mddev_unlock(mddev);
6568 wait_event(mddev->sb_wait,
6569 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6570 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6571 mddev_lock(mddev);
6572 }
6573 } else {
6574 err = -EROFS;
6575 goto abort_unlock;
6576 }
6577 }
6578
6579 switch (cmd) {
6580 case ADD_NEW_DISK:
6581 {
6582 mdu_disk_info_t info;
6583 if (copy_from_user(&info, argp, sizeof(info)))
6584 err = -EFAULT;
6585 else
6586 err = add_new_disk(mddev, &info);
6587 goto done_unlock;
6588 }
6589
6590 case HOT_ADD_DISK:
6591 err = hot_add_disk(mddev, new_decode_dev(arg));
6592 goto done_unlock;
6593
6594 case RUN_ARRAY:
6595 err = do_md_run(mddev);
6596 goto done_unlock;
6597
6598 case SET_BITMAP_FILE:
6599 err = set_bitmap_file(mddev, (int)arg);
6600 goto done_unlock;
6601
6602 default:
6603 err = -EINVAL;
6604 goto abort_unlock;
6605 }
6606
6607 done_unlock:
6608 abort_unlock:
6609 if (mddev->hold_active == UNTIL_IOCTL &&
6610 err != -EINVAL)
6611 mddev->hold_active = 0;
6612 mddev_unlock(mddev);
6613
6614 return err;
6615 done:
6616 if (err)
6617 MD_BUG();
6618 abort:
6619 return err;
6620 }
6621 #ifdef CONFIG_COMPAT
6622 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6623 unsigned int cmd, unsigned long arg)
6624 {
6625 switch (cmd) {
6626 case HOT_REMOVE_DISK:
6627 case HOT_ADD_DISK:
6628 case SET_DISK_FAULTY:
6629 case SET_BITMAP_FILE:
6630 /* These take in integer arg, do not convert */
6631 break;
6632 default:
6633 arg = (unsigned long)compat_ptr(arg);
6634 break;
6635 }
6636
6637 return md_ioctl(bdev, mode, cmd, arg);
6638 }
6639 #endif /* CONFIG_COMPAT */
6640
6641 static int md_open(struct block_device *bdev, fmode_t mode)
6642 {
6643 /*
6644 * Succeed if we can lock the mddev, which confirms that
6645 * it isn't being stopped right now.
6646 */
6647 struct mddev *mddev = mddev_find(bdev->bd_dev);
6648 int err;
6649
6650 if (!mddev)
6651 return -ENODEV;
6652
6653 if (mddev->gendisk != bdev->bd_disk) {
6654 /* we are racing with mddev_put which is discarding this
6655 * bd_disk.
6656 */
6657 mddev_put(mddev);
6658 /* Wait until bdev->bd_disk is definitely gone */
6659 flush_workqueue(md_misc_wq);
6660 /* Then retry the open from the top */
6661 return -ERESTARTSYS;
6662 }
6663 BUG_ON(mddev != bdev->bd_disk->private_data);
6664
6665 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6666 goto out;
6667
6668 err = 0;
6669 atomic_inc(&mddev->openers);
6670 mutex_unlock(&mddev->open_mutex);
6671
6672 check_disk_change(bdev);
6673 out:
6674 return err;
6675 }
6676
6677 static void md_release(struct gendisk *disk, fmode_t mode)
6678 {
6679 struct mddev *mddev = disk->private_data;
6680
6681 BUG_ON(!mddev);
6682 atomic_dec(&mddev->openers);
6683 mddev_put(mddev);
6684 }
6685
6686 static int md_media_changed(struct gendisk *disk)
6687 {
6688 struct mddev *mddev = disk->private_data;
6689
6690 return mddev->changed;
6691 }
6692
6693 static int md_revalidate(struct gendisk *disk)
6694 {
6695 struct mddev *mddev = disk->private_data;
6696
6697 mddev->changed = 0;
6698 return 0;
6699 }
6700 static const struct block_device_operations md_fops =
6701 {
6702 .owner = THIS_MODULE,
6703 .open = md_open,
6704 .release = md_release,
6705 .ioctl = md_ioctl,
6706 #ifdef CONFIG_COMPAT
6707 .compat_ioctl = md_compat_ioctl,
6708 #endif
6709 .getgeo = md_getgeo,
6710 .media_changed = md_media_changed,
6711 .revalidate_disk= md_revalidate,
6712 };
6713
6714 static int md_thread(void * arg)
6715 {
6716 struct md_thread *thread = arg;
6717
6718 /*
6719 * md_thread is a 'system-thread', it's priority should be very
6720 * high. We avoid resource deadlocks individually in each
6721 * raid personality. (RAID5 does preallocation) We also use RR and
6722 * the very same RT priority as kswapd, thus we will never get
6723 * into a priority inversion deadlock.
6724 *
6725 * we definitely have to have equal or higher priority than
6726 * bdflush, otherwise bdflush will deadlock if there are too
6727 * many dirty RAID5 blocks.
6728 */
6729
6730 allow_signal(SIGKILL);
6731 while (!kthread_should_stop()) {
6732
6733 /* We need to wait INTERRUPTIBLE so that
6734 * we don't add to the load-average.
6735 * That means we need to be sure no signals are
6736 * pending
6737 */
6738 if (signal_pending(current))
6739 flush_signals(current);
6740
6741 wait_event_interruptible_timeout
6742 (thread->wqueue,
6743 test_bit(THREAD_WAKEUP, &thread->flags)
6744 || kthread_should_stop(),
6745 thread->timeout);
6746
6747 clear_bit(THREAD_WAKEUP, &thread->flags);
6748 if (!kthread_should_stop())
6749 thread->run(thread);
6750 }
6751
6752 return 0;
6753 }
6754
6755 void md_wakeup_thread(struct md_thread *thread)
6756 {
6757 if (thread) {
6758 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6759 set_bit(THREAD_WAKEUP, &thread->flags);
6760 wake_up(&thread->wqueue);
6761 }
6762 }
6763
6764 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6765 struct mddev *mddev, const char *name)
6766 {
6767 struct md_thread *thread;
6768
6769 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6770 if (!thread)
6771 return NULL;
6772
6773 init_waitqueue_head(&thread->wqueue);
6774
6775 thread->run = run;
6776 thread->mddev = mddev;
6777 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6778 thread->tsk = kthread_run(md_thread, thread,
6779 "%s_%s",
6780 mdname(thread->mddev),
6781 name);
6782 if (IS_ERR(thread->tsk)) {
6783 kfree(thread);
6784 return NULL;
6785 }
6786 return thread;
6787 }
6788
6789 void md_unregister_thread(struct md_thread **threadp)
6790 {
6791 struct md_thread *thread = *threadp;
6792 if (!thread)
6793 return;
6794 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6795 /* Locking ensures that mddev_unlock does not wake_up a
6796 * non-existent thread
6797 */
6798 spin_lock(&pers_lock);
6799 *threadp = NULL;
6800 spin_unlock(&pers_lock);
6801
6802 kthread_stop(thread->tsk);
6803 kfree(thread);
6804 }
6805
6806 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6807 {
6808 if (!mddev) {
6809 MD_BUG();
6810 return;
6811 }
6812
6813 if (!rdev || test_bit(Faulty, &rdev->flags))
6814 return;
6815
6816 if (!mddev->pers || !mddev->pers->error_handler)
6817 return;
6818 mddev->pers->error_handler(mddev,rdev);
6819 if (mddev->degraded)
6820 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6821 sysfs_notify_dirent_safe(rdev->sysfs_state);
6822 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6823 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6824 md_wakeup_thread(mddev->thread);
6825 if (mddev->event_work.func)
6826 queue_work(md_misc_wq, &mddev->event_work);
6827 md_new_event_inintr(mddev);
6828 }
6829
6830 /* seq_file implementation /proc/mdstat */
6831
6832 static void status_unused(struct seq_file *seq)
6833 {
6834 int i = 0;
6835 struct md_rdev *rdev;
6836
6837 seq_printf(seq, "unused devices: ");
6838
6839 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6840 char b[BDEVNAME_SIZE];
6841 i++;
6842 seq_printf(seq, "%s ",
6843 bdevname(rdev->bdev,b));
6844 }
6845 if (!i)
6846 seq_printf(seq, "<none>");
6847
6848 seq_printf(seq, "\n");
6849 }
6850
6851
6852 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6853 {
6854 sector_t max_sectors, resync, res;
6855 unsigned long dt, db;
6856 sector_t rt;
6857 int scale;
6858 unsigned int per_milli;
6859
6860 if (mddev->curr_resync <= 3)
6861 resync = 0;
6862 else
6863 resync = mddev->curr_resync
6864 - atomic_read(&mddev->recovery_active);
6865
6866 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6867 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6868 max_sectors = mddev->resync_max_sectors;
6869 else
6870 max_sectors = mddev->dev_sectors;
6871
6872 /*
6873 * Should not happen.
6874 */
6875 if (!max_sectors) {
6876 MD_BUG();
6877 return;
6878 }
6879 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6880 * in a sector_t, and (max_sectors>>scale) will fit in a
6881 * u32, as those are the requirements for sector_div.
6882 * Thus 'scale' must be at least 10
6883 */
6884 scale = 10;
6885 if (sizeof(sector_t) > sizeof(unsigned long)) {
6886 while ( max_sectors/2 > (1ULL<<(scale+32)))
6887 scale++;
6888 }
6889 res = (resync>>scale)*1000;
6890 sector_div(res, (u32)((max_sectors>>scale)+1));
6891
6892 per_milli = res;
6893 {
6894 int i, x = per_milli/50, y = 20-x;
6895 seq_printf(seq, "[");
6896 for (i = 0; i < x; i++)
6897 seq_printf(seq, "=");
6898 seq_printf(seq, ">");
6899 for (i = 0; i < y; i++)
6900 seq_printf(seq, ".");
6901 seq_printf(seq, "] ");
6902 }
6903 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6904 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6905 "reshape" :
6906 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6907 "check" :
6908 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6909 "resync" : "recovery"))),
6910 per_milli/10, per_milli % 10,
6911 (unsigned long long) resync/2,
6912 (unsigned long long) max_sectors/2);
6913
6914 /*
6915 * dt: time from mark until now
6916 * db: blocks written from mark until now
6917 * rt: remaining time
6918 *
6919 * rt is a sector_t, so could be 32bit or 64bit.
6920 * So we divide before multiply in case it is 32bit and close
6921 * to the limit.
6922 * We scale the divisor (db) by 32 to avoid losing precision
6923 * near the end of resync when the number of remaining sectors
6924 * is close to 'db'.
6925 * We then divide rt by 32 after multiplying by db to compensate.
6926 * The '+1' avoids division by zero if db is very small.
6927 */
6928 dt = ((jiffies - mddev->resync_mark) / HZ);
6929 if (!dt) dt++;
6930 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6931 - mddev->resync_mark_cnt;
6932
6933 rt = max_sectors - resync; /* number of remaining sectors */
6934 sector_div(rt, db/32+1);
6935 rt *= dt;
6936 rt >>= 5;
6937
6938 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6939 ((unsigned long)rt % 60)/6);
6940
6941 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6942 }
6943
6944 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6945 {
6946 struct list_head *tmp;
6947 loff_t l = *pos;
6948 struct mddev *mddev;
6949
6950 if (l >= 0x10000)
6951 return NULL;
6952 if (!l--)
6953 /* header */
6954 return (void*)1;
6955
6956 spin_lock(&all_mddevs_lock);
6957 list_for_each(tmp,&all_mddevs)
6958 if (!l--) {
6959 mddev = list_entry(tmp, struct mddev, all_mddevs);
6960 mddev_get(mddev);
6961 spin_unlock(&all_mddevs_lock);
6962 return mddev;
6963 }
6964 spin_unlock(&all_mddevs_lock);
6965 if (!l--)
6966 return (void*)2;/* tail */
6967 return NULL;
6968 }
6969
6970 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6971 {
6972 struct list_head *tmp;
6973 struct mddev *next_mddev, *mddev = v;
6974
6975 ++*pos;
6976 if (v == (void*)2)
6977 return NULL;
6978
6979 spin_lock(&all_mddevs_lock);
6980 if (v == (void*)1)
6981 tmp = all_mddevs.next;
6982 else
6983 tmp = mddev->all_mddevs.next;
6984 if (tmp != &all_mddevs)
6985 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6986 else {
6987 next_mddev = (void*)2;
6988 *pos = 0x10000;
6989 }
6990 spin_unlock(&all_mddevs_lock);
6991
6992 if (v != (void*)1)
6993 mddev_put(mddev);
6994 return next_mddev;
6995
6996 }
6997
6998 static void md_seq_stop(struct seq_file *seq, void *v)
6999 {
7000 struct mddev *mddev = v;
7001
7002 if (mddev && v != (void*)1 && v != (void*)2)
7003 mddev_put(mddev);
7004 }
7005
7006 static int md_seq_show(struct seq_file *seq, void *v)
7007 {
7008 struct mddev *mddev = v;
7009 sector_t sectors;
7010 struct md_rdev *rdev;
7011
7012 if (v == (void*)1) {
7013 struct md_personality *pers;
7014 seq_printf(seq, "Personalities : ");
7015 spin_lock(&pers_lock);
7016 list_for_each_entry(pers, &pers_list, list)
7017 seq_printf(seq, "[%s] ", pers->name);
7018
7019 spin_unlock(&pers_lock);
7020 seq_printf(seq, "\n");
7021 seq->poll_event = atomic_read(&md_event_count);
7022 return 0;
7023 }
7024 if (v == (void*)2) {
7025 status_unused(seq);
7026 return 0;
7027 }
7028
7029 if (mddev_lock(mddev) < 0)
7030 return -EINTR;
7031
7032 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7033 seq_printf(seq, "%s : %sactive", mdname(mddev),
7034 mddev->pers ? "" : "in");
7035 if (mddev->pers) {
7036 if (mddev->ro==1)
7037 seq_printf(seq, " (read-only)");
7038 if (mddev->ro==2)
7039 seq_printf(seq, " (auto-read-only)");
7040 seq_printf(seq, " %s", mddev->pers->name);
7041 }
7042
7043 sectors = 0;
7044 rdev_for_each(rdev, mddev) {
7045 char b[BDEVNAME_SIZE];
7046 seq_printf(seq, " %s[%d]",
7047 bdevname(rdev->bdev,b), rdev->desc_nr);
7048 if (test_bit(WriteMostly, &rdev->flags))
7049 seq_printf(seq, "(W)");
7050 if (test_bit(Faulty, &rdev->flags)) {
7051 seq_printf(seq, "(F)");
7052 continue;
7053 }
7054 if (rdev->raid_disk < 0)
7055 seq_printf(seq, "(S)"); /* spare */
7056 if (test_bit(Replacement, &rdev->flags))
7057 seq_printf(seq, "(R)");
7058 sectors += rdev->sectors;
7059 }
7060
7061 if (!list_empty(&mddev->disks)) {
7062 if (mddev->pers)
7063 seq_printf(seq, "\n %llu blocks",
7064 (unsigned long long)
7065 mddev->array_sectors / 2);
7066 else
7067 seq_printf(seq, "\n %llu blocks",
7068 (unsigned long long)sectors / 2);
7069 }
7070 if (mddev->persistent) {
7071 if (mddev->major_version != 0 ||
7072 mddev->minor_version != 90) {
7073 seq_printf(seq," super %d.%d",
7074 mddev->major_version,
7075 mddev->minor_version);
7076 }
7077 } else if (mddev->external)
7078 seq_printf(seq, " super external:%s",
7079 mddev->metadata_type);
7080 else
7081 seq_printf(seq, " super non-persistent");
7082
7083 if (mddev->pers) {
7084 mddev->pers->status(seq, mddev);
7085 seq_printf(seq, "\n ");
7086 if (mddev->pers->sync_request) {
7087 if (mddev->curr_resync > 2) {
7088 status_resync(seq, mddev);
7089 seq_printf(seq, "\n ");
7090 } else if (mddev->curr_resync >= 1)
7091 seq_printf(seq, "\tresync=DELAYED\n ");
7092 else if (mddev->recovery_cp < MaxSector)
7093 seq_printf(seq, "\tresync=PENDING\n ");
7094 }
7095 } else
7096 seq_printf(seq, "\n ");
7097
7098 bitmap_status(seq, mddev->bitmap);
7099
7100 seq_printf(seq, "\n");
7101 }
7102 mddev_unlock(mddev);
7103
7104 return 0;
7105 }
7106
7107 static const struct seq_operations md_seq_ops = {
7108 .start = md_seq_start,
7109 .next = md_seq_next,
7110 .stop = md_seq_stop,
7111 .show = md_seq_show,
7112 };
7113
7114 static int md_seq_open(struct inode *inode, struct file *file)
7115 {
7116 struct seq_file *seq;
7117 int error;
7118
7119 error = seq_open(file, &md_seq_ops);
7120 if (error)
7121 return error;
7122
7123 seq = file->private_data;
7124 seq->poll_event = atomic_read(&md_event_count);
7125 return error;
7126 }
7127
7128 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7129 {
7130 struct seq_file *seq = filp->private_data;
7131 int mask;
7132
7133 poll_wait(filp, &md_event_waiters, wait);
7134
7135 /* always allow read */
7136 mask = POLLIN | POLLRDNORM;
7137
7138 if (seq->poll_event != atomic_read(&md_event_count))
7139 mask |= POLLERR | POLLPRI;
7140 return mask;
7141 }
7142
7143 static const struct file_operations md_seq_fops = {
7144 .owner = THIS_MODULE,
7145 .open = md_seq_open,
7146 .read = seq_read,
7147 .llseek = seq_lseek,
7148 .release = seq_release_private,
7149 .poll = mdstat_poll,
7150 };
7151
7152 int register_md_personality(struct md_personality *p)
7153 {
7154 spin_lock(&pers_lock);
7155 list_add_tail(&p->list, &pers_list);
7156 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7157 spin_unlock(&pers_lock);
7158 return 0;
7159 }
7160
7161 int unregister_md_personality(struct md_personality *p)
7162 {
7163 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7164 spin_lock(&pers_lock);
7165 list_del_init(&p->list);
7166 spin_unlock(&pers_lock);
7167 return 0;
7168 }
7169
7170 static int is_mddev_idle(struct mddev *mddev, int init)
7171 {
7172 struct md_rdev * rdev;
7173 int idle;
7174 int curr_events;
7175
7176 idle = 1;
7177 rcu_read_lock();
7178 rdev_for_each_rcu(rdev, mddev) {
7179 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7180 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7181 (int)part_stat_read(&disk->part0, sectors[1]) -
7182 atomic_read(&disk->sync_io);
7183 /* sync IO will cause sync_io to increase before the disk_stats
7184 * as sync_io is counted when a request starts, and
7185 * disk_stats is counted when it completes.
7186 * So resync activity will cause curr_events to be smaller than
7187 * when there was no such activity.
7188 * non-sync IO will cause disk_stat to increase without
7189 * increasing sync_io so curr_events will (eventually)
7190 * be larger than it was before. Once it becomes
7191 * substantially larger, the test below will cause
7192 * the array to appear non-idle, and resync will slow
7193 * down.
7194 * If there is a lot of outstanding resync activity when
7195 * we set last_event to curr_events, then all that activity
7196 * completing might cause the array to appear non-idle
7197 * and resync will be slowed down even though there might
7198 * not have been non-resync activity. This will only
7199 * happen once though. 'last_events' will soon reflect
7200 * the state where there is little or no outstanding
7201 * resync requests, and further resync activity will
7202 * always make curr_events less than last_events.
7203 *
7204 */
7205 if (init || curr_events - rdev->last_events > 64) {
7206 rdev->last_events = curr_events;
7207 idle = 0;
7208 }
7209 }
7210 rcu_read_unlock();
7211 return idle;
7212 }
7213
7214 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7215 {
7216 /* another "blocks" (512byte) blocks have been synced */
7217 atomic_sub(blocks, &mddev->recovery_active);
7218 wake_up(&mddev->recovery_wait);
7219 if (!ok) {
7220 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7221 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7222 md_wakeup_thread(mddev->thread);
7223 // stop recovery, signal do_sync ....
7224 }
7225 }
7226
7227
7228 /* md_write_start(mddev, bi)
7229 * If we need to update some array metadata (e.g. 'active' flag
7230 * in superblock) before writing, schedule a superblock update
7231 * and wait for it to complete.
7232 */
7233 void md_write_start(struct mddev *mddev, struct bio *bi)
7234 {
7235 int did_change = 0;
7236 if (bio_data_dir(bi) != WRITE)
7237 return;
7238
7239 BUG_ON(mddev->ro == 1);
7240 if (mddev->ro == 2) {
7241 /* need to switch to read/write */
7242 mddev->ro = 0;
7243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7244 md_wakeup_thread(mddev->thread);
7245 md_wakeup_thread(mddev->sync_thread);
7246 did_change = 1;
7247 }
7248 atomic_inc(&mddev->writes_pending);
7249 if (mddev->safemode == 1)
7250 mddev->safemode = 0;
7251 if (mddev->in_sync) {
7252 spin_lock_irq(&mddev->write_lock);
7253 if (mddev->in_sync) {
7254 mddev->in_sync = 0;
7255 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7256 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7257 md_wakeup_thread(mddev->thread);
7258 did_change = 1;
7259 }
7260 spin_unlock_irq(&mddev->write_lock);
7261 }
7262 if (did_change)
7263 sysfs_notify_dirent_safe(mddev->sysfs_state);
7264 wait_event(mddev->sb_wait,
7265 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7266 }
7267
7268 void md_write_end(struct mddev *mddev)
7269 {
7270 if (atomic_dec_and_test(&mddev->writes_pending)) {
7271 if (mddev->safemode == 2)
7272 md_wakeup_thread(mddev->thread);
7273 else if (mddev->safemode_delay)
7274 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7275 }
7276 }
7277
7278 /* md_allow_write(mddev)
7279 * Calling this ensures that the array is marked 'active' so that writes
7280 * may proceed without blocking. It is important to call this before
7281 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7282 * Must be called with mddev_lock held.
7283 *
7284 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7285 * is dropped, so return -EAGAIN after notifying userspace.
7286 */
7287 int md_allow_write(struct mddev *mddev)
7288 {
7289 if (!mddev->pers)
7290 return 0;
7291 if (mddev->ro)
7292 return 0;
7293 if (!mddev->pers->sync_request)
7294 return 0;
7295
7296 spin_lock_irq(&mddev->write_lock);
7297 if (mddev->in_sync) {
7298 mddev->in_sync = 0;
7299 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7300 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7301 if (mddev->safemode_delay &&
7302 mddev->safemode == 0)
7303 mddev->safemode = 1;
7304 spin_unlock_irq(&mddev->write_lock);
7305 md_update_sb(mddev, 0);
7306 sysfs_notify_dirent_safe(mddev->sysfs_state);
7307 } else
7308 spin_unlock_irq(&mddev->write_lock);
7309
7310 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7311 return -EAGAIN;
7312 else
7313 return 0;
7314 }
7315 EXPORT_SYMBOL_GPL(md_allow_write);
7316
7317 #define SYNC_MARKS 10
7318 #define SYNC_MARK_STEP (3*HZ)
7319 #define UPDATE_FREQUENCY (5*60*HZ)
7320 void md_do_sync(struct md_thread *thread)
7321 {
7322 struct mddev *mddev = thread->mddev;
7323 struct mddev *mddev2;
7324 unsigned int currspeed = 0,
7325 window;
7326 sector_t max_sectors,j, io_sectors;
7327 unsigned long mark[SYNC_MARKS];
7328 unsigned long update_time;
7329 sector_t mark_cnt[SYNC_MARKS];
7330 int last_mark,m;
7331 struct list_head *tmp;
7332 sector_t last_check;
7333 int skipped = 0;
7334 struct md_rdev *rdev;
7335 char *desc;
7336 struct blk_plug plug;
7337
7338 /* just incase thread restarts... */
7339 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7340 return;
7341 if (mddev->ro) {/* never try to sync a read-only array */
7342 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7343 return;
7344 }
7345
7346 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7347 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7348 desc = "data-check";
7349 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7350 desc = "requested-resync";
7351 else
7352 desc = "resync";
7353 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7354 desc = "reshape";
7355 else
7356 desc = "recovery";
7357
7358 /* we overload curr_resync somewhat here.
7359 * 0 == not engaged in resync at all
7360 * 2 == checking that there is no conflict with another sync
7361 * 1 == like 2, but have yielded to allow conflicting resync to
7362 * commense
7363 * other == active in resync - this many blocks
7364 *
7365 * Before starting a resync we must have set curr_resync to
7366 * 2, and then checked that every "conflicting" array has curr_resync
7367 * less than ours. When we find one that is the same or higher
7368 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7369 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7370 * This will mean we have to start checking from the beginning again.
7371 *
7372 */
7373
7374 do {
7375 mddev->curr_resync = 2;
7376
7377 try_again:
7378 if (kthread_should_stop())
7379 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7380
7381 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7382 goto skip;
7383 for_each_mddev(mddev2, tmp) {
7384 if (mddev2 == mddev)
7385 continue;
7386 if (!mddev->parallel_resync
7387 && mddev2->curr_resync
7388 && match_mddev_units(mddev, mddev2)) {
7389 DEFINE_WAIT(wq);
7390 if (mddev < mddev2 && mddev->curr_resync == 2) {
7391 /* arbitrarily yield */
7392 mddev->curr_resync = 1;
7393 wake_up(&resync_wait);
7394 }
7395 if (mddev > mddev2 && mddev->curr_resync == 1)
7396 /* no need to wait here, we can wait the next
7397 * time 'round when curr_resync == 2
7398 */
7399 continue;
7400 /* We need to wait 'interruptible' so as not to
7401 * contribute to the load average, and not to
7402 * be caught by 'softlockup'
7403 */
7404 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7405 if (!kthread_should_stop() &&
7406 mddev2->curr_resync >= mddev->curr_resync) {
7407 printk(KERN_INFO "md: delaying %s of %s"
7408 " until %s has finished (they"
7409 " share one or more physical units)\n",
7410 desc, mdname(mddev), mdname(mddev2));
7411 mddev_put(mddev2);
7412 if (signal_pending(current))
7413 flush_signals(current);
7414 schedule();
7415 finish_wait(&resync_wait, &wq);
7416 goto try_again;
7417 }
7418 finish_wait(&resync_wait, &wq);
7419 }
7420 }
7421 } while (mddev->curr_resync < 2);
7422
7423 j = 0;
7424 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7425 /* resync follows the size requested by the personality,
7426 * which defaults to physical size, but can be virtual size
7427 */
7428 max_sectors = mddev->resync_max_sectors;
7429 atomic64_set(&mddev->resync_mismatches, 0);
7430 /* we don't use the checkpoint if there's a bitmap */
7431 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7432 j = mddev->resync_min;
7433 else if (!mddev->bitmap)
7434 j = mddev->recovery_cp;
7435
7436 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7437 max_sectors = mddev->resync_max_sectors;
7438 else {
7439 /* recovery follows the physical size of devices */
7440 max_sectors = mddev->dev_sectors;
7441 j = MaxSector;
7442 rcu_read_lock();
7443 rdev_for_each_rcu(rdev, mddev)
7444 if (rdev->raid_disk >= 0 &&
7445 !test_bit(Faulty, &rdev->flags) &&
7446 !test_bit(In_sync, &rdev->flags) &&
7447 rdev->recovery_offset < j)
7448 j = rdev->recovery_offset;
7449 rcu_read_unlock();
7450 }
7451
7452 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7453 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7454 " %d KB/sec/disk.\n", speed_min(mddev));
7455 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7456 "(but not more than %d KB/sec) for %s.\n",
7457 speed_max(mddev), desc);
7458
7459 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7460
7461 io_sectors = 0;
7462 for (m = 0; m < SYNC_MARKS; m++) {
7463 mark[m] = jiffies;
7464 mark_cnt[m] = io_sectors;
7465 }
7466 last_mark = 0;
7467 mddev->resync_mark = mark[last_mark];
7468 mddev->resync_mark_cnt = mark_cnt[last_mark];
7469
7470 /*
7471 * Tune reconstruction:
7472 */
7473 window = 32*(PAGE_SIZE/512);
7474 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7475 window/2, (unsigned long long)max_sectors/2);
7476
7477 atomic_set(&mddev->recovery_active, 0);
7478 last_check = 0;
7479
7480 if (j>2) {
7481 printk(KERN_INFO
7482 "md: resuming %s of %s from checkpoint.\n",
7483 desc, mdname(mddev));
7484 mddev->curr_resync = j;
7485 } else
7486 mddev->curr_resync = 3; /* no longer delayed */
7487 mddev->curr_resync_completed = j;
7488 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7489 md_new_event(mddev);
7490 update_time = jiffies;
7491
7492 blk_start_plug(&plug);
7493 while (j < max_sectors) {
7494 sector_t sectors;
7495
7496 skipped = 0;
7497
7498 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7499 ((mddev->curr_resync > mddev->curr_resync_completed &&
7500 (mddev->curr_resync - mddev->curr_resync_completed)
7501 > (max_sectors >> 4)) ||
7502 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7503 (j - mddev->curr_resync_completed)*2
7504 >= mddev->resync_max - mddev->curr_resync_completed
7505 )) {
7506 /* time to update curr_resync_completed */
7507 wait_event(mddev->recovery_wait,
7508 atomic_read(&mddev->recovery_active) == 0);
7509 mddev->curr_resync_completed = j;
7510 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7511 j > mddev->recovery_cp)
7512 mddev->recovery_cp = j;
7513 update_time = jiffies;
7514 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7515 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7516 }
7517
7518 while (j >= mddev->resync_max && !kthread_should_stop()) {
7519 /* As this condition is controlled by user-space,
7520 * we can block indefinitely, so use '_interruptible'
7521 * to avoid triggering warnings.
7522 */
7523 flush_signals(current); /* just in case */
7524 wait_event_interruptible(mddev->recovery_wait,
7525 mddev->resync_max > j
7526 || kthread_should_stop());
7527 }
7528
7529 if (kthread_should_stop())
7530 goto interrupted;
7531
7532 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7533 currspeed < speed_min(mddev));
7534 if (sectors == 0) {
7535 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7536 goto out;
7537 }
7538
7539 if (!skipped) { /* actual IO requested */
7540 io_sectors += sectors;
7541 atomic_add(sectors, &mddev->recovery_active);
7542 }
7543
7544 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7545 break;
7546
7547 j += sectors;
7548 if (j > 2)
7549 mddev->curr_resync = j;
7550 mddev->curr_mark_cnt = io_sectors;
7551 if (last_check == 0)
7552 /* this is the earliest that rebuild will be
7553 * visible in /proc/mdstat
7554 */
7555 md_new_event(mddev);
7556
7557 if (last_check + window > io_sectors || j == max_sectors)
7558 continue;
7559
7560 last_check = io_sectors;
7561 repeat:
7562 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7563 /* step marks */
7564 int next = (last_mark+1) % SYNC_MARKS;
7565
7566 mddev->resync_mark = mark[next];
7567 mddev->resync_mark_cnt = mark_cnt[next];
7568 mark[next] = jiffies;
7569 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7570 last_mark = next;
7571 }
7572
7573
7574 if (kthread_should_stop())
7575 goto interrupted;
7576
7577
7578 /*
7579 * this loop exits only if either when we are slower than
7580 * the 'hard' speed limit, or the system was IO-idle for
7581 * a jiffy.
7582 * the system might be non-idle CPU-wise, but we only care
7583 * about not overloading the IO subsystem. (things like an
7584 * e2fsck being done on the RAID array should execute fast)
7585 */
7586 cond_resched();
7587
7588 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7589 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7590
7591 if (currspeed > speed_min(mddev)) {
7592 if ((currspeed > speed_max(mddev)) ||
7593 !is_mddev_idle(mddev, 0)) {
7594 msleep(500);
7595 goto repeat;
7596 }
7597 }
7598 }
7599 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7600 /*
7601 * this also signals 'finished resyncing' to md_stop
7602 */
7603 out:
7604 blk_finish_plug(&plug);
7605 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7606
7607 /* tell personality that we are finished */
7608 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7609
7610 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7611 mddev->curr_resync > 2) {
7612 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7613 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7614 if (mddev->curr_resync >= mddev->recovery_cp) {
7615 printk(KERN_INFO
7616 "md: checkpointing %s of %s.\n",
7617 desc, mdname(mddev));
7618 if (test_bit(MD_RECOVERY_ERROR,
7619 &mddev->recovery))
7620 mddev->recovery_cp =
7621 mddev->curr_resync_completed;
7622 else
7623 mddev->recovery_cp =
7624 mddev->curr_resync;
7625 }
7626 } else
7627 mddev->recovery_cp = MaxSector;
7628 } else {
7629 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7630 mddev->curr_resync = MaxSector;
7631 rcu_read_lock();
7632 rdev_for_each_rcu(rdev, mddev)
7633 if (rdev->raid_disk >= 0 &&
7634 mddev->delta_disks >= 0 &&
7635 !test_bit(Faulty, &rdev->flags) &&
7636 !test_bit(In_sync, &rdev->flags) &&
7637 rdev->recovery_offset < mddev->curr_resync)
7638 rdev->recovery_offset = mddev->curr_resync;
7639 rcu_read_unlock();
7640 }
7641 }
7642 skip:
7643 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7644
7645 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7646 /* We completed so min/max setting can be forgotten if used. */
7647 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7648 mddev->resync_min = 0;
7649 mddev->resync_max = MaxSector;
7650 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7651 mddev->resync_min = mddev->curr_resync_completed;
7652 mddev->curr_resync = 0;
7653 wake_up(&resync_wait);
7654 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7655 md_wakeup_thread(mddev->thread);
7656 return;
7657
7658 interrupted:
7659 /*
7660 * got a signal, exit.
7661 */
7662 printk(KERN_INFO
7663 "md: md_do_sync() got signal ... exiting\n");
7664 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7665 goto out;
7666
7667 }
7668 EXPORT_SYMBOL_GPL(md_do_sync);
7669
7670 static int remove_and_add_spares(struct mddev *mddev,
7671 struct md_rdev *this)
7672 {
7673 struct md_rdev *rdev;
7674 int spares = 0;
7675 int removed = 0;
7676
7677 rdev_for_each(rdev, mddev)
7678 if ((this == NULL || rdev == this) &&
7679 rdev->raid_disk >= 0 &&
7680 !test_bit(Blocked, &rdev->flags) &&
7681 (test_bit(Faulty, &rdev->flags) ||
7682 ! test_bit(In_sync, &rdev->flags)) &&
7683 atomic_read(&rdev->nr_pending)==0) {
7684 if (mddev->pers->hot_remove_disk(
7685 mddev, rdev) == 0) {
7686 sysfs_unlink_rdev(mddev, rdev);
7687 rdev->raid_disk = -1;
7688 removed++;
7689 }
7690 }
7691 if (removed && mddev->kobj.sd)
7692 sysfs_notify(&mddev->kobj, NULL, "degraded");
7693
7694 if (this)
7695 goto no_add;
7696
7697 rdev_for_each(rdev, mddev) {
7698 if (rdev->raid_disk >= 0 &&
7699 !test_bit(In_sync, &rdev->flags) &&
7700 !test_bit(Faulty, &rdev->flags))
7701 spares++;
7702 if (rdev->raid_disk >= 0)
7703 continue;
7704 if (test_bit(Faulty, &rdev->flags))
7705 continue;
7706 if (mddev->ro &&
7707 ! (rdev->saved_raid_disk >= 0 &&
7708 !test_bit(Bitmap_sync, &rdev->flags)))
7709 continue;
7710
7711 rdev->recovery_offset = 0;
7712 if (mddev->pers->
7713 hot_add_disk(mddev, rdev) == 0) {
7714 if (sysfs_link_rdev(mddev, rdev))
7715 /* failure here is OK */;
7716 spares++;
7717 md_new_event(mddev);
7718 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7719 }
7720 }
7721 no_add:
7722 if (removed)
7723 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7724 return spares;
7725 }
7726
7727 /*
7728 * This routine is regularly called by all per-raid-array threads to
7729 * deal with generic issues like resync and super-block update.
7730 * Raid personalities that don't have a thread (linear/raid0) do not
7731 * need this as they never do any recovery or update the superblock.
7732 *
7733 * It does not do any resync itself, but rather "forks" off other threads
7734 * to do that as needed.
7735 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7736 * "->recovery" and create a thread at ->sync_thread.
7737 * When the thread finishes it sets MD_RECOVERY_DONE
7738 * and wakeups up this thread which will reap the thread and finish up.
7739 * This thread also removes any faulty devices (with nr_pending == 0).
7740 *
7741 * The overall approach is:
7742 * 1/ if the superblock needs updating, update it.
7743 * 2/ If a recovery thread is running, don't do anything else.
7744 * 3/ If recovery has finished, clean up, possibly marking spares active.
7745 * 4/ If there are any faulty devices, remove them.
7746 * 5/ If array is degraded, try to add spares devices
7747 * 6/ If array has spares or is not in-sync, start a resync thread.
7748 */
7749 void md_check_recovery(struct mddev *mddev)
7750 {
7751 if (mddev->suspended)
7752 return;
7753
7754 if (mddev->bitmap)
7755 bitmap_daemon_work(mddev);
7756
7757 if (signal_pending(current)) {
7758 if (mddev->pers->sync_request && !mddev->external) {
7759 printk(KERN_INFO "md: %s in immediate safe mode\n",
7760 mdname(mddev));
7761 mddev->safemode = 2;
7762 }
7763 flush_signals(current);
7764 }
7765
7766 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7767 return;
7768 if ( ! (
7769 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7770 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7771 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7772 (mddev->external == 0 && mddev->safemode == 1) ||
7773 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7774 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7775 ))
7776 return;
7777
7778 if (mddev_trylock(mddev)) {
7779 int spares = 0;
7780
7781 if (mddev->ro) {
7782 /* On a read-only array we can:
7783 * - remove failed devices
7784 * - add already-in_sync devices if the array itself
7785 * is in-sync.
7786 * As we only add devices that are already in-sync,
7787 * we can activate the spares immediately.
7788 */
7789 remove_and_add_spares(mddev, NULL);
7790 /* There is no thread, but we need to call
7791 * ->spare_active and clear saved_raid_disk
7792 */
7793 md_reap_sync_thread(mddev);
7794 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7795 goto unlock;
7796 }
7797
7798 if (!mddev->external) {
7799 int did_change = 0;
7800 spin_lock_irq(&mddev->write_lock);
7801 if (mddev->safemode &&
7802 !atomic_read(&mddev->writes_pending) &&
7803 !mddev->in_sync &&
7804 mddev->recovery_cp == MaxSector) {
7805 mddev->in_sync = 1;
7806 did_change = 1;
7807 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7808 }
7809 if (mddev->safemode == 1)
7810 mddev->safemode = 0;
7811 spin_unlock_irq(&mddev->write_lock);
7812 if (did_change)
7813 sysfs_notify_dirent_safe(mddev->sysfs_state);
7814 }
7815
7816 if (mddev->flags)
7817 md_update_sb(mddev, 0);
7818
7819 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7820 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7821 /* resync/recovery still happening */
7822 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7823 goto unlock;
7824 }
7825 if (mddev->sync_thread) {
7826 md_reap_sync_thread(mddev);
7827 goto unlock;
7828 }
7829 /* Set RUNNING before clearing NEEDED to avoid
7830 * any transients in the value of "sync_action".
7831 */
7832 mddev->curr_resync_completed = 0;
7833 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7834 /* Clear some bits that don't mean anything, but
7835 * might be left set
7836 */
7837 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7838 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7839
7840 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7841 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7842 goto unlock;
7843 /* no recovery is running.
7844 * remove any failed drives, then
7845 * add spares if possible.
7846 * Spares are also removed and re-added, to allow
7847 * the personality to fail the re-add.
7848 */
7849
7850 if (mddev->reshape_position != MaxSector) {
7851 if (mddev->pers->check_reshape == NULL ||
7852 mddev->pers->check_reshape(mddev) != 0)
7853 /* Cannot proceed */
7854 goto unlock;
7855 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7856 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7857 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7858 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7859 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7860 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7862 } else if (mddev->recovery_cp < MaxSector) {
7863 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7864 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7865 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7866 /* nothing to be done ... */
7867 goto unlock;
7868
7869 if (mddev->pers->sync_request) {
7870 if (spares) {
7871 /* We are adding a device or devices to an array
7872 * which has the bitmap stored on all devices.
7873 * So make sure all bitmap pages get written
7874 */
7875 bitmap_write_all(mddev->bitmap);
7876 }
7877 mddev->sync_thread = md_register_thread(md_do_sync,
7878 mddev,
7879 "resync");
7880 if (!mddev->sync_thread) {
7881 printk(KERN_ERR "%s: could not start resync"
7882 " thread...\n",
7883 mdname(mddev));
7884 /* leave the spares where they are, it shouldn't hurt */
7885 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7886 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7887 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7888 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7889 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7890 } else
7891 md_wakeup_thread(mddev->sync_thread);
7892 sysfs_notify_dirent_safe(mddev->sysfs_action);
7893 md_new_event(mddev);
7894 }
7895 unlock:
7896 if (!mddev->sync_thread) {
7897 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7898 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7899 &mddev->recovery))
7900 if (mddev->sysfs_action)
7901 sysfs_notify_dirent_safe(mddev->sysfs_action);
7902 }
7903 mddev_unlock(mddev);
7904 }
7905 }
7906
7907 void md_reap_sync_thread(struct mddev *mddev)
7908 {
7909 struct md_rdev *rdev;
7910
7911 /* resync has finished, collect result */
7912 md_unregister_thread(&mddev->sync_thread);
7913 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7914 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7915 /* success...*/
7916 /* activate any spares */
7917 if (mddev->pers->spare_active(mddev)) {
7918 sysfs_notify(&mddev->kobj, NULL,
7919 "degraded");
7920 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7921 }
7922 }
7923 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7924 mddev->pers->finish_reshape)
7925 mddev->pers->finish_reshape(mddev);
7926
7927 /* If array is no-longer degraded, then any saved_raid_disk
7928 * information must be scrapped. Also if any device is now
7929 * In_sync we must scrape the saved_raid_disk for that device
7930 * do the superblock for an incrementally recovered device
7931 * written out.
7932 */
7933 rdev_for_each(rdev, mddev)
7934 if (!mddev->degraded ||
7935 test_bit(In_sync, &rdev->flags))
7936 rdev->saved_raid_disk = -1;
7937
7938 md_update_sb(mddev, 1);
7939 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7940 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7941 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7942 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7943 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7944 /* flag recovery needed just to double check */
7945 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7946 sysfs_notify_dirent_safe(mddev->sysfs_action);
7947 md_new_event(mddev);
7948 if (mddev->event_work.func)
7949 queue_work(md_misc_wq, &mddev->event_work);
7950 }
7951
7952 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7953 {
7954 sysfs_notify_dirent_safe(rdev->sysfs_state);
7955 wait_event_timeout(rdev->blocked_wait,
7956 !test_bit(Blocked, &rdev->flags) &&
7957 !test_bit(BlockedBadBlocks, &rdev->flags),
7958 msecs_to_jiffies(5000));
7959 rdev_dec_pending(rdev, mddev);
7960 }
7961 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7962
7963 void md_finish_reshape(struct mddev *mddev)
7964 {
7965 /* called be personality module when reshape completes. */
7966 struct md_rdev *rdev;
7967
7968 rdev_for_each(rdev, mddev) {
7969 if (rdev->data_offset > rdev->new_data_offset)
7970 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7971 else
7972 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7973 rdev->data_offset = rdev->new_data_offset;
7974 }
7975 }
7976 EXPORT_SYMBOL(md_finish_reshape);
7977
7978 /* Bad block management.
7979 * We can record which blocks on each device are 'bad' and so just
7980 * fail those blocks, or that stripe, rather than the whole device.
7981 * Entries in the bad-block table are 64bits wide. This comprises:
7982 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7983 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7984 * A 'shift' can be set so that larger blocks are tracked and
7985 * consequently larger devices can be covered.
7986 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7987 *
7988 * Locking of the bad-block table uses a seqlock so md_is_badblock
7989 * might need to retry if it is very unlucky.
7990 * We will sometimes want to check for bad blocks in a bi_end_io function,
7991 * so we use the write_seqlock_irq variant.
7992 *
7993 * When looking for a bad block we specify a range and want to
7994 * know if any block in the range is bad. So we binary-search
7995 * to the last range that starts at-or-before the given endpoint,
7996 * (or "before the sector after the target range")
7997 * then see if it ends after the given start.
7998 * We return
7999 * 0 if there are no known bad blocks in the range
8000 * 1 if there are known bad block which are all acknowledged
8001 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8002 * plus the start/length of the first bad section we overlap.
8003 */
8004 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8005 sector_t *first_bad, int *bad_sectors)
8006 {
8007 int hi;
8008 int lo;
8009 u64 *p = bb->page;
8010 int rv;
8011 sector_t target = s + sectors;
8012 unsigned seq;
8013
8014 if (bb->shift > 0) {
8015 /* round the start down, and the end up */
8016 s >>= bb->shift;
8017 target += (1<<bb->shift) - 1;
8018 target >>= bb->shift;
8019 sectors = target - s;
8020 }
8021 /* 'target' is now the first block after the bad range */
8022
8023 retry:
8024 seq = read_seqbegin(&bb->lock);
8025 lo = 0;
8026 rv = 0;
8027 hi = bb->count;
8028
8029 /* Binary search between lo and hi for 'target'
8030 * i.e. for the last range that starts before 'target'
8031 */
8032 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8033 * are known not to be the last range before target.
8034 * VARIANT: hi-lo is the number of possible
8035 * ranges, and decreases until it reaches 1
8036 */
8037 while (hi - lo > 1) {
8038 int mid = (lo + hi) / 2;
8039 sector_t a = BB_OFFSET(p[mid]);
8040 if (a < target)
8041 /* This could still be the one, earlier ranges
8042 * could not. */
8043 lo = mid;
8044 else
8045 /* This and later ranges are definitely out. */
8046 hi = mid;
8047 }
8048 /* 'lo' might be the last that started before target, but 'hi' isn't */
8049 if (hi > lo) {
8050 /* need to check all range that end after 's' to see if
8051 * any are unacknowledged.
8052 */
8053 while (lo >= 0 &&
8054 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8055 if (BB_OFFSET(p[lo]) < target) {
8056 /* starts before the end, and finishes after
8057 * the start, so they must overlap
8058 */
8059 if (rv != -1 && BB_ACK(p[lo]))
8060 rv = 1;
8061 else
8062 rv = -1;
8063 *first_bad = BB_OFFSET(p[lo]);
8064 *bad_sectors = BB_LEN(p[lo]);
8065 }
8066 lo--;
8067 }
8068 }
8069
8070 if (read_seqretry(&bb->lock, seq))
8071 goto retry;
8072
8073 return rv;
8074 }
8075 EXPORT_SYMBOL_GPL(md_is_badblock);
8076
8077 /*
8078 * Add a range of bad blocks to the table.
8079 * This might extend the table, or might contract it
8080 * if two adjacent ranges can be merged.
8081 * We binary-search to find the 'insertion' point, then
8082 * decide how best to handle it.
8083 */
8084 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8085 int acknowledged)
8086 {
8087 u64 *p;
8088 int lo, hi;
8089 int rv = 1;
8090 unsigned long flags;
8091
8092 if (bb->shift < 0)
8093 /* badblocks are disabled */
8094 return 0;
8095
8096 if (bb->shift) {
8097 /* round the start down, and the end up */
8098 sector_t next = s + sectors;
8099 s >>= bb->shift;
8100 next += (1<<bb->shift) - 1;
8101 next >>= bb->shift;
8102 sectors = next - s;
8103 }
8104
8105 write_seqlock_irqsave(&bb->lock, flags);
8106
8107 p = bb->page;
8108 lo = 0;
8109 hi = bb->count;
8110 /* Find the last range that starts at-or-before 's' */
8111 while (hi - lo > 1) {
8112 int mid = (lo + hi) / 2;
8113 sector_t a = BB_OFFSET(p[mid]);
8114 if (a <= s)
8115 lo = mid;
8116 else
8117 hi = mid;
8118 }
8119 if (hi > lo && BB_OFFSET(p[lo]) > s)
8120 hi = lo;
8121
8122 if (hi > lo) {
8123 /* we found a range that might merge with the start
8124 * of our new range
8125 */
8126 sector_t a = BB_OFFSET(p[lo]);
8127 sector_t e = a + BB_LEN(p[lo]);
8128 int ack = BB_ACK(p[lo]);
8129 if (e >= s) {
8130 /* Yes, we can merge with a previous range */
8131 if (s == a && s + sectors >= e)
8132 /* new range covers old */
8133 ack = acknowledged;
8134 else
8135 ack = ack && acknowledged;
8136
8137 if (e < s + sectors)
8138 e = s + sectors;
8139 if (e - a <= BB_MAX_LEN) {
8140 p[lo] = BB_MAKE(a, e-a, ack);
8141 s = e;
8142 } else {
8143 /* does not all fit in one range,
8144 * make p[lo] maximal
8145 */
8146 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8147 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8148 s = a + BB_MAX_LEN;
8149 }
8150 sectors = e - s;
8151 }
8152 }
8153 if (sectors && hi < bb->count) {
8154 /* 'hi' points to the first range that starts after 's'.
8155 * Maybe we can merge with the start of that range */
8156 sector_t a = BB_OFFSET(p[hi]);
8157 sector_t e = a + BB_LEN(p[hi]);
8158 int ack = BB_ACK(p[hi]);
8159 if (a <= s + sectors) {
8160 /* merging is possible */
8161 if (e <= s + sectors) {
8162 /* full overlap */
8163 e = s + sectors;
8164 ack = acknowledged;
8165 } else
8166 ack = ack && acknowledged;
8167
8168 a = s;
8169 if (e - a <= BB_MAX_LEN) {
8170 p[hi] = BB_MAKE(a, e-a, ack);
8171 s = e;
8172 } else {
8173 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8174 s = a + BB_MAX_LEN;
8175 }
8176 sectors = e - s;
8177 lo = hi;
8178 hi++;
8179 }
8180 }
8181 if (sectors == 0 && hi < bb->count) {
8182 /* we might be able to combine lo and hi */
8183 /* Note: 's' is at the end of 'lo' */
8184 sector_t a = BB_OFFSET(p[hi]);
8185 int lolen = BB_LEN(p[lo]);
8186 int hilen = BB_LEN(p[hi]);
8187 int newlen = lolen + hilen - (s - a);
8188 if (s >= a && newlen < BB_MAX_LEN) {
8189 /* yes, we can combine them */
8190 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8191 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8192 memmove(p + hi, p + hi + 1,
8193 (bb->count - hi - 1) * 8);
8194 bb->count--;
8195 }
8196 }
8197 while (sectors) {
8198 /* didn't merge (it all).
8199 * Need to add a range just before 'hi' */
8200 if (bb->count >= MD_MAX_BADBLOCKS) {
8201 /* No room for more */
8202 rv = 0;
8203 break;
8204 } else {
8205 int this_sectors = sectors;
8206 memmove(p + hi + 1, p + hi,
8207 (bb->count - hi) * 8);
8208 bb->count++;
8209
8210 if (this_sectors > BB_MAX_LEN)
8211 this_sectors = BB_MAX_LEN;
8212 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8213 sectors -= this_sectors;
8214 s += this_sectors;
8215 }
8216 }
8217
8218 bb->changed = 1;
8219 if (!acknowledged)
8220 bb->unacked_exist = 1;
8221 write_sequnlock_irqrestore(&bb->lock, flags);
8222
8223 return rv;
8224 }
8225
8226 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8227 int is_new)
8228 {
8229 int rv;
8230 if (is_new)
8231 s += rdev->new_data_offset;
8232 else
8233 s += rdev->data_offset;
8234 rv = md_set_badblocks(&rdev->badblocks,
8235 s, sectors, 0);
8236 if (rv) {
8237 /* Make sure they get written out promptly */
8238 sysfs_notify_dirent_safe(rdev->sysfs_state);
8239 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8240 md_wakeup_thread(rdev->mddev->thread);
8241 }
8242 return rv;
8243 }
8244 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8245
8246 /*
8247 * Remove a range of bad blocks from the table.
8248 * This may involve extending the table if we spilt a region,
8249 * but it must not fail. So if the table becomes full, we just
8250 * drop the remove request.
8251 */
8252 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8253 {
8254 u64 *p;
8255 int lo, hi;
8256 sector_t target = s + sectors;
8257 int rv = 0;
8258
8259 if (bb->shift > 0) {
8260 /* When clearing we round the start up and the end down.
8261 * This should not matter as the shift should align with
8262 * the block size and no rounding should ever be needed.
8263 * However it is better the think a block is bad when it
8264 * isn't than to think a block is not bad when it is.
8265 */
8266 s += (1<<bb->shift) - 1;
8267 s >>= bb->shift;
8268 target >>= bb->shift;
8269 sectors = target - s;
8270 }
8271
8272 write_seqlock_irq(&bb->lock);
8273
8274 p = bb->page;
8275 lo = 0;
8276 hi = bb->count;
8277 /* Find the last range that starts before 'target' */
8278 while (hi - lo > 1) {
8279 int mid = (lo + hi) / 2;
8280 sector_t a = BB_OFFSET(p[mid]);
8281 if (a < target)
8282 lo = mid;
8283 else
8284 hi = mid;
8285 }
8286 if (hi > lo) {
8287 /* p[lo] is the last range that could overlap the
8288 * current range. Earlier ranges could also overlap,
8289 * but only this one can overlap the end of the range.
8290 */
8291 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8292 /* Partial overlap, leave the tail of this range */
8293 int ack = BB_ACK(p[lo]);
8294 sector_t a = BB_OFFSET(p[lo]);
8295 sector_t end = a + BB_LEN(p[lo]);
8296
8297 if (a < s) {
8298 /* we need to split this range */
8299 if (bb->count >= MD_MAX_BADBLOCKS) {
8300 rv = 0;
8301 goto out;
8302 }
8303 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8304 bb->count++;
8305 p[lo] = BB_MAKE(a, s-a, ack);
8306 lo++;
8307 }
8308 p[lo] = BB_MAKE(target, end - target, ack);
8309 /* there is no longer an overlap */
8310 hi = lo;
8311 lo--;
8312 }
8313 while (lo >= 0 &&
8314 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8315 /* This range does overlap */
8316 if (BB_OFFSET(p[lo]) < s) {
8317 /* Keep the early parts of this range. */
8318 int ack = BB_ACK(p[lo]);
8319 sector_t start = BB_OFFSET(p[lo]);
8320 p[lo] = BB_MAKE(start, s - start, ack);
8321 /* now low doesn't overlap, so.. */
8322 break;
8323 }
8324 lo--;
8325 }
8326 /* 'lo' is strictly before, 'hi' is strictly after,
8327 * anything between needs to be discarded
8328 */
8329 if (hi - lo > 1) {
8330 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8331 bb->count -= (hi - lo - 1);
8332 }
8333 }
8334
8335 bb->changed = 1;
8336 out:
8337 write_sequnlock_irq(&bb->lock);
8338 return rv;
8339 }
8340
8341 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8342 int is_new)
8343 {
8344 if (is_new)
8345 s += rdev->new_data_offset;
8346 else
8347 s += rdev->data_offset;
8348 return md_clear_badblocks(&rdev->badblocks,
8349 s, sectors);
8350 }
8351 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8352
8353 /*
8354 * Acknowledge all bad blocks in a list.
8355 * This only succeeds if ->changed is clear. It is used by
8356 * in-kernel metadata updates
8357 */
8358 void md_ack_all_badblocks(struct badblocks *bb)
8359 {
8360 if (bb->page == NULL || bb->changed)
8361 /* no point even trying */
8362 return;
8363 write_seqlock_irq(&bb->lock);
8364
8365 if (bb->changed == 0 && bb->unacked_exist) {
8366 u64 *p = bb->page;
8367 int i;
8368 for (i = 0; i < bb->count ; i++) {
8369 if (!BB_ACK(p[i])) {
8370 sector_t start = BB_OFFSET(p[i]);
8371 int len = BB_LEN(p[i]);
8372 p[i] = BB_MAKE(start, len, 1);
8373 }
8374 }
8375 bb->unacked_exist = 0;
8376 }
8377 write_sequnlock_irq(&bb->lock);
8378 }
8379 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8380
8381 /* sysfs access to bad-blocks list.
8382 * We present two files.
8383 * 'bad-blocks' lists sector numbers and lengths of ranges that
8384 * are recorded as bad. The list is truncated to fit within
8385 * the one-page limit of sysfs.
8386 * Writing "sector length" to this file adds an acknowledged
8387 * bad block list.
8388 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8389 * been acknowledged. Writing to this file adds bad blocks
8390 * without acknowledging them. This is largely for testing.
8391 */
8392
8393 static ssize_t
8394 badblocks_show(struct badblocks *bb, char *page, int unack)
8395 {
8396 size_t len;
8397 int i;
8398 u64 *p = bb->page;
8399 unsigned seq;
8400
8401 if (bb->shift < 0)
8402 return 0;
8403
8404 retry:
8405 seq = read_seqbegin(&bb->lock);
8406
8407 len = 0;
8408 i = 0;
8409
8410 while (len < PAGE_SIZE && i < bb->count) {
8411 sector_t s = BB_OFFSET(p[i]);
8412 unsigned int length = BB_LEN(p[i]);
8413 int ack = BB_ACK(p[i]);
8414 i++;
8415
8416 if (unack && ack)
8417 continue;
8418
8419 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8420 (unsigned long long)s << bb->shift,
8421 length << bb->shift);
8422 }
8423 if (unack && len == 0)
8424 bb->unacked_exist = 0;
8425
8426 if (read_seqretry(&bb->lock, seq))
8427 goto retry;
8428
8429 return len;
8430 }
8431
8432 #define DO_DEBUG 1
8433
8434 static ssize_t
8435 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8436 {
8437 unsigned long long sector;
8438 int length;
8439 char newline;
8440 #ifdef DO_DEBUG
8441 /* Allow clearing via sysfs *only* for testing/debugging.
8442 * Normally only a successful write may clear a badblock
8443 */
8444 int clear = 0;
8445 if (page[0] == '-') {
8446 clear = 1;
8447 page++;
8448 }
8449 #endif /* DO_DEBUG */
8450
8451 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8452 case 3:
8453 if (newline != '\n')
8454 return -EINVAL;
8455 case 2:
8456 if (length <= 0)
8457 return -EINVAL;
8458 break;
8459 default:
8460 return -EINVAL;
8461 }
8462
8463 #ifdef DO_DEBUG
8464 if (clear) {
8465 md_clear_badblocks(bb, sector, length);
8466 return len;
8467 }
8468 #endif /* DO_DEBUG */
8469 if (md_set_badblocks(bb, sector, length, !unack))
8470 return len;
8471 else
8472 return -ENOSPC;
8473 }
8474
8475 static int md_notify_reboot(struct notifier_block *this,
8476 unsigned long code, void *x)
8477 {
8478 struct list_head *tmp;
8479 struct mddev *mddev;
8480 int need_delay = 0;
8481
8482 for_each_mddev(mddev, tmp) {
8483 if (mddev_trylock(mddev)) {
8484 if (mddev->pers)
8485 __md_stop_writes(mddev);
8486 if (mddev->persistent)
8487 mddev->safemode = 2;
8488 mddev_unlock(mddev);
8489 }
8490 need_delay = 1;
8491 }
8492 /*
8493 * certain more exotic SCSI devices are known to be
8494 * volatile wrt too early system reboots. While the
8495 * right place to handle this issue is the given
8496 * driver, we do want to have a safe RAID driver ...
8497 */
8498 if (need_delay)
8499 mdelay(1000*1);
8500
8501 return NOTIFY_DONE;
8502 }
8503
8504 static struct notifier_block md_notifier = {
8505 .notifier_call = md_notify_reboot,
8506 .next = NULL,
8507 .priority = INT_MAX, /* before any real devices */
8508 };
8509
8510 static void md_geninit(void)
8511 {
8512 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8513
8514 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8515 }
8516
8517 static int __init md_init(void)
8518 {
8519 int ret = -ENOMEM;
8520
8521 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8522 if (!md_wq)
8523 goto err_wq;
8524
8525 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8526 if (!md_misc_wq)
8527 goto err_misc_wq;
8528
8529 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8530 goto err_md;
8531
8532 if ((ret = register_blkdev(0, "mdp")) < 0)
8533 goto err_mdp;
8534 mdp_major = ret;
8535
8536 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8537 md_probe, NULL, NULL);
8538 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8539 md_probe, NULL, NULL);
8540
8541 register_reboot_notifier(&md_notifier);
8542 raid_table_header = register_sysctl_table(raid_root_table);
8543
8544 md_geninit();
8545 return 0;
8546
8547 err_mdp:
8548 unregister_blkdev(MD_MAJOR, "md");
8549 err_md:
8550 destroy_workqueue(md_misc_wq);
8551 err_misc_wq:
8552 destroy_workqueue(md_wq);
8553 err_wq:
8554 return ret;
8555 }
8556
8557 #ifndef MODULE
8558
8559 /*
8560 * Searches all registered partitions for autorun RAID arrays
8561 * at boot time.
8562 */
8563
8564 static LIST_HEAD(all_detected_devices);
8565 struct detected_devices_node {
8566 struct list_head list;
8567 dev_t dev;
8568 };
8569
8570 void md_autodetect_dev(dev_t dev)
8571 {
8572 struct detected_devices_node *node_detected_dev;
8573
8574 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8575 if (node_detected_dev) {
8576 node_detected_dev->dev = dev;
8577 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8578 } else {
8579 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8580 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8581 }
8582 }
8583
8584
8585 static void autostart_arrays(int part)
8586 {
8587 struct md_rdev *rdev;
8588 struct detected_devices_node *node_detected_dev;
8589 dev_t dev;
8590 int i_scanned, i_passed;
8591
8592 i_scanned = 0;
8593 i_passed = 0;
8594
8595 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8596
8597 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8598 i_scanned++;
8599 node_detected_dev = list_entry(all_detected_devices.next,
8600 struct detected_devices_node, list);
8601 list_del(&node_detected_dev->list);
8602 dev = node_detected_dev->dev;
8603 kfree(node_detected_dev);
8604 rdev = md_import_device(dev,0, 90);
8605 if (IS_ERR(rdev))
8606 continue;
8607
8608 if (test_bit(Faulty, &rdev->flags)) {
8609 MD_BUG();
8610 continue;
8611 }
8612 set_bit(AutoDetected, &rdev->flags);
8613 list_add(&rdev->same_set, &pending_raid_disks);
8614 i_passed++;
8615 }
8616
8617 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8618 i_scanned, i_passed);
8619
8620 autorun_devices(part);
8621 }
8622
8623 #endif /* !MODULE */
8624
8625 static __exit void md_exit(void)
8626 {
8627 struct mddev *mddev;
8628 struct list_head *tmp;
8629
8630 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8631 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8632
8633 unregister_blkdev(MD_MAJOR,"md");
8634 unregister_blkdev(mdp_major, "mdp");
8635 unregister_reboot_notifier(&md_notifier);
8636 unregister_sysctl_table(raid_table_header);
8637 remove_proc_entry("mdstat", NULL);
8638 for_each_mddev(mddev, tmp) {
8639 export_array(mddev);
8640 mddev->hold_active = 0;
8641 }
8642 destroy_workqueue(md_misc_wq);
8643 destroy_workqueue(md_wq);
8644 }
8645
8646 subsys_initcall(md_init);
8647 module_exit(md_exit)
8648
8649 static int get_ro(char *buffer, struct kernel_param *kp)
8650 {
8651 return sprintf(buffer, "%d", start_readonly);
8652 }
8653 static int set_ro(const char *val, struct kernel_param *kp)
8654 {
8655 char *e;
8656 int num = simple_strtoul(val, &e, 10);
8657 if (*val && (*e == '\0' || *e == '\n')) {
8658 start_readonly = num;
8659 return 0;
8660 }
8661 return -EINVAL;
8662 }
8663
8664 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8665 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8666
8667 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8668
8669 EXPORT_SYMBOL(register_md_personality);
8670 EXPORT_SYMBOL(unregister_md_personality);
8671 EXPORT_SYMBOL(md_error);
8672 EXPORT_SYMBOL(md_done_sync);
8673 EXPORT_SYMBOL(md_write_start);
8674 EXPORT_SYMBOL(md_write_end);
8675 EXPORT_SYMBOL(md_register_thread);
8676 EXPORT_SYMBOL(md_unregister_thread);
8677 EXPORT_SYMBOL(md_wakeup_thread);
8678 EXPORT_SYMBOL(md_check_recovery);
8679 EXPORT_SYMBOL(md_reap_sync_thread);
8680 MODULE_LICENSE("GPL");
8681 MODULE_DESCRIPTION("MD RAID framework");
8682 MODULE_ALIAS("md");
8683 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);