md: avoid deadlock when md_set_badblocks.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
191 */
192 int i;
193 struct bio_vec *bvec;
194 int sofar = 0;
195
196 size <<= 9;
197 if (offset == 0 && size == bio->bi_size)
198 return;
199
200 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202 bio_advance(bio, offset << 9);
203
204 bio->bi_size = size;
205
206 /* avoid any complications with bi_idx being non-zero*/
207 if (bio->bi_idx) {
208 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 bio->bi_vcnt -= bio->bi_idx;
211 bio->bi_idx = 0;
212 }
213 /* Make sure vcnt and last bv are not too big */
214 bio_for_each_segment(bvec, bio, i) {
215 if (sofar + bvec->bv_len > size)
216 bvec->bv_len = size - sofar;
217 if (bvec->bv_len == 0) {
218 bio->bi_vcnt = i;
219 break;
220 }
221 sofar += bvec->bv_len;
222 }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227 * We have a system wide 'event count' that is incremented
228 * on any 'interesting' event, and readers of /proc/mdstat
229 * can use 'poll' or 'select' to find out when the event
230 * count increases.
231 *
232 * Events are:
233 * start array, stop array, error, add device, remove device,
234 * start build, activate spare
235 */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240 atomic_inc(&md_event_count);
241 wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246 * when calling sysfs_notify isn't needed.
247 */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250 atomic_inc(&md_event_count);
251 wake_up(&md_event_waiters);
252 }
253
254 /*
255 * Enables to iterate over all existing md arrays
256 * all_mddevs_lock protects this list.
257 */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263 * iterates through all used mddevs in the system.
264 * We take care to grab the all_mddevs_lock whenever navigating
265 * the list, and to always hold a refcount when unlocked.
266 * Any code which breaks out of this loop while own
267 * a reference to the current mddev and must mddev_put it.
268 */
269 #define for_each_mddev(_mddev,_tmp) \
270 \
271 for (({ spin_lock(&all_mddevs_lock); \
272 _tmp = all_mddevs.next; \
273 _mddev = NULL;}); \
274 ({ if (_tmp != &all_mddevs) \
275 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 spin_unlock(&all_mddevs_lock); \
277 if (_mddev) mddev_put(_mddev); \
278 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
279 _tmp != &all_mddevs;}); \
280 ({ spin_lock(&all_mddevs_lock); \
281 _tmp = _tmp->next;}) \
282 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286 * IO requests come here first so that we can check if the device is
287 * being suspended pending a reconfiguration.
288 * We hold a refcount over the call to ->make_request. By the time that
289 * call has finished, the bio has been linked into some internal structure
290 * and so is visible to ->quiesce(), so we don't need the refcount any more.
291 */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294 const int rw = bio_data_dir(bio);
295 struct mddev *mddev = q->queuedata;
296 int cpu;
297 unsigned int sectors;
298
299 if (mddev == NULL || mddev->pers == NULL
300 || !mddev->ready) {
301 bio_io_error(bio);
302 return;
303 }
304 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306 return;
307 }
308 smp_rmb(); /* Ensure implications of 'active' are visible */
309 rcu_read_lock();
310 if (mddev->suspended) {
311 DEFINE_WAIT(__wait);
312 for (;;) {
313 prepare_to_wait(&mddev->sb_wait, &__wait,
314 TASK_UNINTERRUPTIBLE);
315 if (!mddev->suspended)
316 break;
317 rcu_read_unlock();
318 schedule();
319 rcu_read_lock();
320 }
321 finish_wait(&mddev->sb_wait, &__wait);
322 }
323 atomic_inc(&mddev->active_io);
324 rcu_read_unlock();
325
326 /*
327 * save the sectors now since our bio can
328 * go away inside make_request
329 */
330 sectors = bio_sectors(bio);
331 mddev->pers->make_request(mddev, bio);
332
333 cpu = part_stat_lock();
334 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336 part_stat_unlock();
337
338 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343 * to the device, and that any requests that have been submitted
344 * are completely handled.
345 * Once ->stop is called and completes, the module will be completely
346 * unused.
347 */
348 void mddev_suspend(struct mddev *mddev)
349 {
350 BUG_ON(mddev->suspended);
351 mddev->suspended = 1;
352 synchronize_rcu();
353 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 mddev->pers->quiesce(mddev, 1);
355
356 del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362 mddev->suspended = 0;
363 wake_up(&mddev->sb_wait);
364 mddev->pers->quiesce(mddev, 0);
365
366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 md_wakeup_thread(mddev->thread);
368 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374 return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379 * Generic flush handling for md
380 */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384 struct md_rdev *rdev = bio->bi_private;
385 struct mddev *mddev = rdev->mddev;
386
387 rdev_dec_pending(rdev, mddev);
388
389 if (atomic_dec_and_test(&mddev->flush_pending)) {
390 /* The pre-request flush has finished */
391 queue_work(md_wq, &mddev->flush_work);
392 }
393 bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 struct md_rdev *rdev;
402
403 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 atomic_set(&mddev->flush_pending, 1);
405 rcu_read_lock();
406 rdev_for_each_rcu(rdev, mddev)
407 if (rdev->raid_disk >= 0 &&
408 !test_bit(Faulty, &rdev->flags)) {
409 /* Take two references, one is dropped
410 * when request finishes, one after
411 * we reclaim rcu_read_lock
412 */
413 struct bio *bi;
414 atomic_inc(&rdev->nr_pending);
415 atomic_inc(&rdev->nr_pending);
416 rcu_read_unlock();
417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 bi->bi_end_io = md_end_flush;
419 bi->bi_private = rdev;
420 bi->bi_bdev = rdev->bdev;
421 atomic_inc(&mddev->flush_pending);
422 submit_bio(WRITE_FLUSH, bi);
423 rcu_read_lock();
424 rdev_dec_pending(rdev, mddev);
425 }
426 rcu_read_unlock();
427 if (atomic_dec_and_test(&mddev->flush_pending))
428 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 struct bio *bio = mddev->flush_bio;
435
436 if (bio->bi_size == 0)
437 /* an empty barrier - all done */
438 bio_endio(bio, 0);
439 else {
440 bio->bi_rw &= ~REQ_FLUSH;
441 mddev->pers->make_request(mddev, bio);
442 }
443
444 mddev->flush_bio = NULL;
445 wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 spin_lock_irq(&mddev->write_lock);
451 wait_event_lock_irq(mddev->sb_wait,
452 !mddev->flush_bio,
453 mddev->write_lock);
454 mddev->flush_bio = bio;
455 spin_unlock_irq(&mddev->write_lock);
456
457 INIT_WORK(&mddev->flush_work, submit_flushes);
458 queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 struct mddev *mddev = cb->data;
465 md_wakeup_thread(mddev->thread);
466 kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 atomic_inc(&mddev->active);
473 return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480 struct bio_set *bs = NULL;
481
482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 return;
484 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 mddev->ctime == 0 && !mddev->hold_active) {
486 /* Array is not configured at all, and not held active,
487 * so destroy it */
488 list_del_init(&mddev->all_mddevs);
489 bs = mddev->bio_set;
490 mddev->bio_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509 mutex_init(&mddev->open_mutex);
510 mutex_init(&mddev->reconfig_mutex);
511 mutex_init(&mddev->bitmap_info.mutex);
512 INIT_LIST_HEAD(&mddev->disks);
513 INIT_LIST_HEAD(&mddev->all_mddevs);
514 init_timer(&mddev->safemode_timer);
515 atomic_set(&mddev->active, 1);
516 atomic_set(&mddev->openers, 0);
517 atomic_set(&mddev->active_io, 0);
518 spin_lock_init(&mddev->write_lock);
519 atomic_set(&mddev->flush_pending, 0);
520 init_waitqueue_head(&mddev->sb_wait);
521 init_waitqueue_head(&mddev->recovery_wait);
522 mddev->reshape_position = MaxSector;
523 mddev->reshape_backwards = 0;
524 mddev->resync_min = 0;
525 mddev->resync_max = MaxSector;
526 mddev->level = LEVEL_NONE;
527 }
528 EXPORT_SYMBOL_GPL(mddev_init);
529
530 static struct mddev * mddev_find(dev_t unit)
531 {
532 struct mddev *mddev, *new = NULL;
533
534 if (unit && MAJOR(unit) != MD_MAJOR)
535 unit &= ~((1<<MdpMinorShift)-1);
536
537 retry:
538 spin_lock(&all_mddevs_lock);
539
540 if (unit) {
541 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
542 if (mddev->unit == unit) {
543 mddev_get(mddev);
544 spin_unlock(&all_mddevs_lock);
545 kfree(new);
546 return mddev;
547 }
548
549 if (new) {
550 list_add(&new->all_mddevs, &all_mddevs);
551 spin_unlock(&all_mddevs_lock);
552 new->hold_active = UNTIL_IOCTL;
553 return new;
554 }
555 } else if (new) {
556 /* find an unused unit number */
557 static int next_minor = 512;
558 int start = next_minor;
559 int is_free = 0;
560 int dev = 0;
561 while (!is_free) {
562 dev = MKDEV(MD_MAJOR, next_minor);
563 next_minor++;
564 if (next_minor > MINORMASK)
565 next_minor = 0;
566 if (next_minor == start) {
567 /* Oh dear, all in use. */
568 spin_unlock(&all_mddevs_lock);
569 kfree(new);
570 return NULL;
571 }
572
573 is_free = 1;
574 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575 if (mddev->unit == dev) {
576 is_free = 0;
577 break;
578 }
579 }
580 new->unit = dev;
581 new->md_minor = MINOR(dev);
582 new->hold_active = UNTIL_STOP;
583 list_add(&new->all_mddevs, &all_mddevs);
584 spin_unlock(&all_mddevs_lock);
585 return new;
586 }
587 spin_unlock(&all_mddevs_lock);
588
589 new = kzalloc(sizeof(*new), GFP_KERNEL);
590 if (!new)
591 return NULL;
592
593 new->unit = unit;
594 if (MAJOR(unit) == MD_MAJOR)
595 new->md_minor = MINOR(unit);
596 else
597 new->md_minor = MINOR(unit) >> MdpMinorShift;
598
599 mddev_init(new);
600
601 goto retry;
602 }
603
604 static inline int mddev_lock(struct mddev * mddev)
605 {
606 return mutex_lock_interruptible(&mddev->reconfig_mutex);
607 }
608
609 static inline int mddev_is_locked(struct mddev *mddev)
610 {
611 return mutex_is_locked(&mddev->reconfig_mutex);
612 }
613
614 static inline int mddev_trylock(struct mddev * mddev)
615 {
616 return mutex_trylock(&mddev->reconfig_mutex);
617 }
618
619 static struct attribute_group md_redundancy_group;
620
621 static void mddev_unlock(struct mddev * mddev)
622 {
623 if (mddev->to_remove) {
624 /* These cannot be removed under reconfig_mutex as
625 * an access to the files will try to take reconfig_mutex
626 * while holding the file unremovable, which leads to
627 * a deadlock.
628 * So hold set sysfs_active while the remove in happeing,
629 * and anything else which might set ->to_remove or my
630 * otherwise change the sysfs namespace will fail with
631 * -EBUSY if sysfs_active is still set.
632 * We set sysfs_active under reconfig_mutex and elsewhere
633 * test it under the same mutex to ensure its correct value
634 * is seen.
635 */
636 struct attribute_group *to_remove = mddev->to_remove;
637 mddev->to_remove = NULL;
638 mddev->sysfs_active = 1;
639 mutex_unlock(&mddev->reconfig_mutex);
640
641 if (mddev->kobj.sd) {
642 if (to_remove != &md_redundancy_group)
643 sysfs_remove_group(&mddev->kobj, to_remove);
644 if (mddev->pers == NULL ||
645 mddev->pers->sync_request == NULL) {
646 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
647 if (mddev->sysfs_action)
648 sysfs_put(mddev->sysfs_action);
649 mddev->sysfs_action = NULL;
650 }
651 }
652 mddev->sysfs_active = 0;
653 } else
654 mutex_unlock(&mddev->reconfig_mutex);
655
656 /* As we've dropped the mutex we need a spinlock to
657 * make sure the thread doesn't disappear
658 */
659 spin_lock(&pers_lock);
660 md_wakeup_thread(mddev->thread);
661 spin_unlock(&pers_lock);
662 }
663
664 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
665 {
666 struct md_rdev *rdev;
667
668 rdev_for_each(rdev, mddev)
669 if (rdev->desc_nr == nr)
670 return rdev;
671
672 return NULL;
673 }
674
675 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
676 {
677 struct md_rdev *rdev;
678
679 rdev_for_each_rcu(rdev, mddev)
680 if (rdev->desc_nr == nr)
681 return rdev;
682
683 return NULL;
684 }
685
686 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
687 {
688 struct md_rdev *rdev;
689
690 rdev_for_each(rdev, mddev)
691 if (rdev->bdev->bd_dev == dev)
692 return rdev;
693
694 return NULL;
695 }
696
697 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
698 {
699 struct md_rdev *rdev;
700
701 rdev_for_each_rcu(rdev, mddev)
702 if (rdev->bdev->bd_dev == dev)
703 return rdev;
704
705 return NULL;
706 }
707
708 static struct md_personality *find_pers(int level, char *clevel)
709 {
710 struct md_personality *pers;
711 list_for_each_entry(pers, &pers_list, list) {
712 if (level != LEVEL_NONE && pers->level == level)
713 return pers;
714 if (strcmp(pers->name, clevel)==0)
715 return pers;
716 }
717 return NULL;
718 }
719
720 /* return the offset of the super block in 512byte sectors */
721 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
722 {
723 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
724 return MD_NEW_SIZE_SECTORS(num_sectors);
725 }
726
727 static int alloc_disk_sb(struct md_rdev * rdev)
728 {
729 if (rdev->sb_page)
730 MD_BUG();
731
732 rdev->sb_page = alloc_page(GFP_KERNEL);
733 if (!rdev->sb_page) {
734 printk(KERN_ALERT "md: out of memory.\n");
735 return -ENOMEM;
736 }
737
738 return 0;
739 }
740
741 void md_rdev_clear(struct md_rdev *rdev)
742 {
743 if (rdev->sb_page) {
744 put_page(rdev->sb_page);
745 rdev->sb_loaded = 0;
746 rdev->sb_page = NULL;
747 rdev->sb_start = 0;
748 rdev->sectors = 0;
749 }
750 if (rdev->bb_page) {
751 put_page(rdev->bb_page);
752 rdev->bb_page = NULL;
753 }
754 kfree(rdev->badblocks.page);
755 rdev->badblocks.page = NULL;
756 }
757 EXPORT_SYMBOL_GPL(md_rdev_clear);
758
759 static void super_written(struct bio *bio, int error)
760 {
761 struct md_rdev *rdev = bio->bi_private;
762 struct mddev *mddev = rdev->mddev;
763
764 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
765 printk("md: super_written gets error=%d, uptodate=%d\n",
766 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
767 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
768 md_error(mddev, rdev);
769 }
770
771 if (atomic_dec_and_test(&mddev->pending_writes))
772 wake_up(&mddev->sb_wait);
773 bio_put(bio);
774 }
775
776 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
777 sector_t sector, int size, struct page *page)
778 {
779 /* write first size bytes of page to sector of rdev
780 * Increment mddev->pending_writes before returning
781 * and decrement it on completion, waking up sb_wait
782 * if zero is reached.
783 * If an error occurred, call md_error
784 */
785 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
786
787 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
788 bio->bi_sector = sector;
789 bio_add_page(bio, page, size, 0);
790 bio->bi_private = rdev;
791 bio->bi_end_io = super_written;
792
793 atomic_inc(&mddev->pending_writes);
794 submit_bio(WRITE_FLUSH_FUA, bio);
795 }
796
797 void md_super_wait(struct mddev *mddev)
798 {
799 /* wait for all superblock writes that were scheduled to complete */
800 DEFINE_WAIT(wq);
801 for(;;) {
802 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
803 if (atomic_read(&mddev->pending_writes)==0)
804 break;
805 schedule();
806 }
807 finish_wait(&mddev->sb_wait, &wq);
808 }
809
810 static void bi_complete(struct bio *bio, int error)
811 {
812 complete((struct completion*)bio->bi_private);
813 }
814
815 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
816 struct page *page, int rw, bool metadata_op)
817 {
818 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
819 struct completion event;
820 int ret;
821
822 rw |= REQ_SYNC;
823
824 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
825 rdev->meta_bdev : rdev->bdev;
826 if (metadata_op)
827 bio->bi_sector = sector + rdev->sb_start;
828 else if (rdev->mddev->reshape_position != MaxSector &&
829 (rdev->mddev->reshape_backwards ==
830 (sector >= rdev->mddev->reshape_position)))
831 bio->bi_sector = sector + rdev->new_data_offset;
832 else
833 bio->bi_sector = sector + rdev->data_offset;
834 bio_add_page(bio, page, size, 0);
835 init_completion(&event);
836 bio->bi_private = &event;
837 bio->bi_end_io = bi_complete;
838 submit_bio(rw, bio);
839 wait_for_completion(&event);
840
841 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842 bio_put(bio);
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(sync_page_io);
846
847 static int read_disk_sb(struct md_rdev * rdev, int size)
848 {
849 char b[BDEVNAME_SIZE];
850 if (!rdev->sb_page) {
851 MD_BUG();
852 return -EINVAL;
853 }
854 if (rdev->sb_loaded)
855 return 0;
856
857
858 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859 goto fail;
860 rdev->sb_loaded = 1;
861 return 0;
862
863 fail:
864 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865 bdevname(rdev->bdev,b));
866 return -EINVAL;
867 }
868
869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871 return sb1->set_uuid0 == sb2->set_uuid0 &&
872 sb1->set_uuid1 == sb2->set_uuid1 &&
873 sb1->set_uuid2 == sb2->set_uuid2 &&
874 sb1->set_uuid3 == sb2->set_uuid3;
875 }
876
877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878 {
879 int ret;
880 mdp_super_t *tmp1, *tmp2;
881
882 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884
885 if (!tmp1 || !tmp2) {
886 ret = 0;
887 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888 goto abort;
889 }
890
891 *tmp1 = *sb1;
892 *tmp2 = *sb2;
893
894 /*
895 * nr_disks is not constant
896 */
897 tmp1->nr_disks = 0;
898 tmp2->nr_disks = 0;
899
900 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901 abort:
902 kfree(tmp1);
903 kfree(tmp2);
904 return ret;
905 }
906
907
908 static u32 md_csum_fold(u32 csum)
909 {
910 csum = (csum & 0xffff) + (csum >> 16);
911 return (csum & 0xffff) + (csum >> 16);
912 }
913
914 static unsigned int calc_sb_csum(mdp_super_t * sb)
915 {
916 u64 newcsum = 0;
917 u32 *sb32 = (u32*)sb;
918 int i;
919 unsigned int disk_csum, csum;
920
921 disk_csum = sb->sb_csum;
922 sb->sb_csum = 0;
923
924 for (i = 0; i < MD_SB_BYTES/4 ; i++)
925 newcsum += sb32[i];
926 csum = (newcsum & 0xffffffff) + (newcsum>>32);
927
928
929 #ifdef CONFIG_ALPHA
930 /* This used to use csum_partial, which was wrong for several
931 * reasons including that different results are returned on
932 * different architectures. It isn't critical that we get exactly
933 * the same return value as before (we always csum_fold before
934 * testing, and that removes any differences). However as we
935 * know that csum_partial always returned a 16bit value on
936 * alphas, do a fold to maximise conformity to previous behaviour.
937 */
938 sb->sb_csum = md_csum_fold(disk_csum);
939 #else
940 sb->sb_csum = disk_csum;
941 #endif
942 return csum;
943 }
944
945
946 /*
947 * Handle superblock details.
948 * We want to be able to handle multiple superblock formats
949 * so we have a common interface to them all, and an array of
950 * different handlers.
951 * We rely on user-space to write the initial superblock, and support
952 * reading and updating of superblocks.
953 * Interface methods are:
954 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
955 * loads and validates a superblock on dev.
956 * if refdev != NULL, compare superblocks on both devices
957 * Return:
958 * 0 - dev has a superblock that is compatible with refdev
959 * 1 - dev has a superblock that is compatible and newer than refdev
960 * so dev should be used as the refdev in future
961 * -EINVAL superblock incompatible or invalid
962 * -othererror e.g. -EIO
963 *
964 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
965 * Verify that dev is acceptable into mddev.
966 * The first time, mddev->raid_disks will be 0, and data from
967 * dev should be merged in. Subsequent calls check that dev
968 * is new enough. Return 0 or -EINVAL
969 *
970 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
971 * Update the superblock for rdev with data in mddev
972 * This does not write to disc.
973 *
974 */
975
976 struct super_type {
977 char *name;
978 struct module *owner;
979 int (*load_super)(struct md_rdev *rdev,
980 struct md_rdev *refdev,
981 int minor_version);
982 int (*validate_super)(struct mddev *mddev,
983 struct md_rdev *rdev);
984 void (*sync_super)(struct mddev *mddev,
985 struct md_rdev *rdev);
986 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
987 sector_t num_sectors);
988 int (*allow_new_offset)(struct md_rdev *rdev,
989 unsigned long long new_offset);
990 };
991
992 /*
993 * Check that the given mddev has no bitmap.
994 *
995 * This function is called from the run method of all personalities that do not
996 * support bitmaps. It prints an error message and returns non-zero if mddev
997 * has a bitmap. Otherwise, it returns 0.
998 *
999 */
1000 int md_check_no_bitmap(struct mddev *mddev)
1001 {
1002 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1003 return 0;
1004 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1005 mdname(mddev), mddev->pers->name);
1006 return 1;
1007 }
1008 EXPORT_SYMBOL(md_check_no_bitmap);
1009
1010 /*
1011 * load_super for 0.90.0
1012 */
1013 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1014 {
1015 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1016 mdp_super_t *sb;
1017 int ret;
1018
1019 /*
1020 * Calculate the position of the superblock (512byte sectors),
1021 * it's at the end of the disk.
1022 *
1023 * It also happens to be a multiple of 4Kb.
1024 */
1025 rdev->sb_start = calc_dev_sboffset(rdev);
1026
1027 ret = read_disk_sb(rdev, MD_SB_BYTES);
1028 if (ret) return ret;
1029
1030 ret = -EINVAL;
1031
1032 bdevname(rdev->bdev, b);
1033 sb = page_address(rdev->sb_page);
1034
1035 if (sb->md_magic != MD_SB_MAGIC) {
1036 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1037 b);
1038 goto abort;
1039 }
1040
1041 if (sb->major_version != 0 ||
1042 sb->minor_version < 90 ||
1043 sb->minor_version > 91) {
1044 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1045 sb->major_version, sb->minor_version,
1046 b);
1047 goto abort;
1048 }
1049
1050 if (sb->raid_disks <= 0)
1051 goto abort;
1052
1053 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1054 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1055 b);
1056 goto abort;
1057 }
1058
1059 rdev->preferred_minor = sb->md_minor;
1060 rdev->data_offset = 0;
1061 rdev->new_data_offset = 0;
1062 rdev->sb_size = MD_SB_BYTES;
1063 rdev->badblocks.shift = -1;
1064
1065 if (sb->level == LEVEL_MULTIPATH)
1066 rdev->desc_nr = -1;
1067 else
1068 rdev->desc_nr = sb->this_disk.number;
1069
1070 if (!refdev) {
1071 ret = 1;
1072 } else {
1073 __u64 ev1, ev2;
1074 mdp_super_t *refsb = page_address(refdev->sb_page);
1075 if (!uuid_equal(refsb, sb)) {
1076 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1077 b, bdevname(refdev->bdev,b2));
1078 goto abort;
1079 }
1080 if (!sb_equal(refsb, sb)) {
1081 printk(KERN_WARNING "md: %s has same UUID"
1082 " but different superblock to %s\n",
1083 b, bdevname(refdev->bdev, b2));
1084 goto abort;
1085 }
1086 ev1 = md_event(sb);
1087 ev2 = md_event(refsb);
1088 if (ev1 > ev2)
1089 ret = 1;
1090 else
1091 ret = 0;
1092 }
1093 rdev->sectors = rdev->sb_start;
1094 /* Limit to 4TB as metadata cannot record more than that.
1095 * (not needed for Linear and RAID0 as metadata doesn't
1096 * record this size)
1097 */
1098 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1099 rdev->sectors = (2ULL << 32) - 2;
1100
1101 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1102 /* "this cannot possibly happen" ... */
1103 ret = -EINVAL;
1104
1105 abort:
1106 return ret;
1107 }
1108
1109 /*
1110 * validate_super for 0.90.0
1111 */
1112 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1113 {
1114 mdp_disk_t *desc;
1115 mdp_super_t *sb = page_address(rdev->sb_page);
1116 __u64 ev1 = md_event(sb);
1117
1118 rdev->raid_disk = -1;
1119 clear_bit(Faulty, &rdev->flags);
1120 clear_bit(In_sync, &rdev->flags);
1121 clear_bit(WriteMostly, &rdev->flags);
1122
1123 if (mddev->raid_disks == 0) {
1124 mddev->major_version = 0;
1125 mddev->minor_version = sb->minor_version;
1126 mddev->patch_version = sb->patch_version;
1127 mddev->external = 0;
1128 mddev->chunk_sectors = sb->chunk_size >> 9;
1129 mddev->ctime = sb->ctime;
1130 mddev->utime = sb->utime;
1131 mddev->level = sb->level;
1132 mddev->clevel[0] = 0;
1133 mddev->layout = sb->layout;
1134 mddev->raid_disks = sb->raid_disks;
1135 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1136 mddev->events = ev1;
1137 mddev->bitmap_info.offset = 0;
1138 mddev->bitmap_info.space = 0;
1139 /* bitmap can use 60 K after the 4K superblocks */
1140 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1141 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1142 mddev->reshape_backwards = 0;
1143
1144 if (mddev->minor_version >= 91) {
1145 mddev->reshape_position = sb->reshape_position;
1146 mddev->delta_disks = sb->delta_disks;
1147 mddev->new_level = sb->new_level;
1148 mddev->new_layout = sb->new_layout;
1149 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1150 if (mddev->delta_disks < 0)
1151 mddev->reshape_backwards = 1;
1152 } else {
1153 mddev->reshape_position = MaxSector;
1154 mddev->delta_disks = 0;
1155 mddev->new_level = mddev->level;
1156 mddev->new_layout = mddev->layout;
1157 mddev->new_chunk_sectors = mddev->chunk_sectors;
1158 }
1159
1160 if (sb->state & (1<<MD_SB_CLEAN))
1161 mddev->recovery_cp = MaxSector;
1162 else {
1163 if (sb->events_hi == sb->cp_events_hi &&
1164 sb->events_lo == sb->cp_events_lo) {
1165 mddev->recovery_cp = sb->recovery_cp;
1166 } else
1167 mddev->recovery_cp = 0;
1168 }
1169
1170 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1171 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1172 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1173 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1174
1175 mddev->max_disks = MD_SB_DISKS;
1176
1177 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1178 mddev->bitmap_info.file == NULL) {
1179 mddev->bitmap_info.offset =
1180 mddev->bitmap_info.default_offset;
1181 mddev->bitmap_info.space =
1182 mddev->bitmap_info.space;
1183 }
1184
1185 } else if (mddev->pers == NULL) {
1186 /* Insist on good event counter while assembling, except
1187 * for spares (which don't need an event count) */
1188 ++ev1;
1189 if (sb->disks[rdev->desc_nr].state & (
1190 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1191 if (ev1 < mddev->events)
1192 return -EINVAL;
1193 } else if (mddev->bitmap) {
1194 /* if adding to array with a bitmap, then we can accept an
1195 * older device ... but not too old.
1196 */
1197 if (ev1 < mddev->bitmap->events_cleared)
1198 return 0;
1199 } else {
1200 if (ev1 < mddev->events)
1201 /* just a hot-add of a new device, leave raid_disk at -1 */
1202 return 0;
1203 }
1204
1205 if (mddev->level != LEVEL_MULTIPATH) {
1206 desc = sb->disks + rdev->desc_nr;
1207
1208 if (desc->state & (1<<MD_DISK_FAULTY))
1209 set_bit(Faulty, &rdev->flags);
1210 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1211 desc->raid_disk < mddev->raid_disks */) {
1212 set_bit(In_sync, &rdev->flags);
1213 rdev->raid_disk = desc->raid_disk;
1214 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1215 /* active but not in sync implies recovery up to
1216 * reshape position. We don't know exactly where
1217 * that is, so set to zero for now */
1218 if (mddev->minor_version >= 91) {
1219 rdev->recovery_offset = 0;
1220 rdev->raid_disk = desc->raid_disk;
1221 }
1222 }
1223 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1224 set_bit(WriteMostly, &rdev->flags);
1225 } else /* MULTIPATH are always insync */
1226 set_bit(In_sync, &rdev->flags);
1227 return 0;
1228 }
1229
1230 /*
1231 * sync_super for 0.90.0
1232 */
1233 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1234 {
1235 mdp_super_t *sb;
1236 struct md_rdev *rdev2;
1237 int next_spare = mddev->raid_disks;
1238
1239
1240 /* make rdev->sb match mddev data..
1241 *
1242 * 1/ zero out disks
1243 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1244 * 3/ any empty disks < next_spare become removed
1245 *
1246 * disks[0] gets initialised to REMOVED because
1247 * we cannot be sure from other fields if it has
1248 * been initialised or not.
1249 */
1250 int i;
1251 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1252
1253 rdev->sb_size = MD_SB_BYTES;
1254
1255 sb = page_address(rdev->sb_page);
1256
1257 memset(sb, 0, sizeof(*sb));
1258
1259 sb->md_magic = MD_SB_MAGIC;
1260 sb->major_version = mddev->major_version;
1261 sb->patch_version = mddev->patch_version;
1262 sb->gvalid_words = 0; /* ignored */
1263 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1264 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1265 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1266 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1267
1268 sb->ctime = mddev->ctime;
1269 sb->level = mddev->level;
1270 sb->size = mddev->dev_sectors / 2;
1271 sb->raid_disks = mddev->raid_disks;
1272 sb->md_minor = mddev->md_minor;
1273 sb->not_persistent = 0;
1274 sb->utime = mddev->utime;
1275 sb->state = 0;
1276 sb->events_hi = (mddev->events>>32);
1277 sb->events_lo = (u32)mddev->events;
1278
1279 if (mddev->reshape_position == MaxSector)
1280 sb->minor_version = 90;
1281 else {
1282 sb->minor_version = 91;
1283 sb->reshape_position = mddev->reshape_position;
1284 sb->new_level = mddev->new_level;
1285 sb->delta_disks = mddev->delta_disks;
1286 sb->new_layout = mddev->new_layout;
1287 sb->new_chunk = mddev->new_chunk_sectors << 9;
1288 }
1289 mddev->minor_version = sb->minor_version;
1290 if (mddev->in_sync)
1291 {
1292 sb->recovery_cp = mddev->recovery_cp;
1293 sb->cp_events_hi = (mddev->events>>32);
1294 sb->cp_events_lo = (u32)mddev->events;
1295 if (mddev->recovery_cp == MaxSector)
1296 sb->state = (1<< MD_SB_CLEAN);
1297 } else
1298 sb->recovery_cp = 0;
1299
1300 sb->layout = mddev->layout;
1301 sb->chunk_size = mddev->chunk_sectors << 9;
1302
1303 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1304 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1305
1306 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1307 rdev_for_each(rdev2, mddev) {
1308 mdp_disk_t *d;
1309 int desc_nr;
1310 int is_active = test_bit(In_sync, &rdev2->flags);
1311
1312 if (rdev2->raid_disk >= 0 &&
1313 sb->minor_version >= 91)
1314 /* we have nowhere to store the recovery_offset,
1315 * but if it is not below the reshape_position,
1316 * we can piggy-back on that.
1317 */
1318 is_active = 1;
1319 if (rdev2->raid_disk < 0 ||
1320 test_bit(Faulty, &rdev2->flags))
1321 is_active = 0;
1322 if (is_active)
1323 desc_nr = rdev2->raid_disk;
1324 else
1325 desc_nr = next_spare++;
1326 rdev2->desc_nr = desc_nr;
1327 d = &sb->disks[rdev2->desc_nr];
1328 nr_disks++;
1329 d->number = rdev2->desc_nr;
1330 d->major = MAJOR(rdev2->bdev->bd_dev);
1331 d->minor = MINOR(rdev2->bdev->bd_dev);
1332 if (is_active)
1333 d->raid_disk = rdev2->raid_disk;
1334 else
1335 d->raid_disk = rdev2->desc_nr; /* compatibility */
1336 if (test_bit(Faulty, &rdev2->flags))
1337 d->state = (1<<MD_DISK_FAULTY);
1338 else if (is_active) {
1339 d->state = (1<<MD_DISK_ACTIVE);
1340 if (test_bit(In_sync, &rdev2->flags))
1341 d->state |= (1<<MD_DISK_SYNC);
1342 active++;
1343 working++;
1344 } else {
1345 d->state = 0;
1346 spare++;
1347 working++;
1348 }
1349 if (test_bit(WriteMostly, &rdev2->flags))
1350 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1351 }
1352 /* now set the "removed" and "faulty" bits on any missing devices */
1353 for (i=0 ; i < mddev->raid_disks ; i++) {
1354 mdp_disk_t *d = &sb->disks[i];
1355 if (d->state == 0 && d->number == 0) {
1356 d->number = i;
1357 d->raid_disk = i;
1358 d->state = (1<<MD_DISK_REMOVED);
1359 d->state |= (1<<MD_DISK_FAULTY);
1360 failed++;
1361 }
1362 }
1363 sb->nr_disks = nr_disks;
1364 sb->active_disks = active;
1365 sb->working_disks = working;
1366 sb->failed_disks = failed;
1367 sb->spare_disks = spare;
1368
1369 sb->this_disk = sb->disks[rdev->desc_nr];
1370 sb->sb_csum = calc_sb_csum(sb);
1371 }
1372
1373 /*
1374 * rdev_size_change for 0.90.0
1375 */
1376 static unsigned long long
1377 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1378 {
1379 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1380 return 0; /* component must fit device */
1381 if (rdev->mddev->bitmap_info.offset)
1382 return 0; /* can't move bitmap */
1383 rdev->sb_start = calc_dev_sboffset(rdev);
1384 if (!num_sectors || num_sectors > rdev->sb_start)
1385 num_sectors = rdev->sb_start;
1386 /* Limit to 4TB as metadata cannot record more than that.
1387 * 4TB == 2^32 KB, or 2*2^32 sectors.
1388 */
1389 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1390 num_sectors = (2ULL << 32) - 2;
1391 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1392 rdev->sb_page);
1393 md_super_wait(rdev->mddev);
1394 return num_sectors;
1395 }
1396
1397 static int
1398 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1399 {
1400 /* non-zero offset changes not possible with v0.90 */
1401 return new_offset == 0;
1402 }
1403
1404 /*
1405 * version 1 superblock
1406 */
1407
1408 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1409 {
1410 __le32 disk_csum;
1411 u32 csum;
1412 unsigned long long newcsum;
1413 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1414 __le32 *isuper = (__le32*)sb;
1415
1416 disk_csum = sb->sb_csum;
1417 sb->sb_csum = 0;
1418 newcsum = 0;
1419 for (; size >= 4; size -= 4)
1420 newcsum += le32_to_cpu(*isuper++);
1421
1422 if (size == 2)
1423 newcsum += le16_to_cpu(*(__le16*) isuper);
1424
1425 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1426 sb->sb_csum = disk_csum;
1427 return cpu_to_le32(csum);
1428 }
1429
1430 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1431 int acknowledged);
1432 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1433 {
1434 struct mdp_superblock_1 *sb;
1435 int ret;
1436 sector_t sb_start;
1437 sector_t sectors;
1438 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1439 int bmask;
1440
1441 /*
1442 * Calculate the position of the superblock in 512byte sectors.
1443 * It is always aligned to a 4K boundary and
1444 * depeding on minor_version, it can be:
1445 * 0: At least 8K, but less than 12K, from end of device
1446 * 1: At start of device
1447 * 2: 4K from start of device.
1448 */
1449 switch(minor_version) {
1450 case 0:
1451 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1452 sb_start -= 8*2;
1453 sb_start &= ~(sector_t)(4*2-1);
1454 break;
1455 case 1:
1456 sb_start = 0;
1457 break;
1458 case 2:
1459 sb_start = 8;
1460 break;
1461 default:
1462 return -EINVAL;
1463 }
1464 rdev->sb_start = sb_start;
1465
1466 /* superblock is rarely larger than 1K, but it can be larger,
1467 * and it is safe to read 4k, so we do that
1468 */
1469 ret = read_disk_sb(rdev, 4096);
1470 if (ret) return ret;
1471
1472
1473 sb = page_address(rdev->sb_page);
1474
1475 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1476 sb->major_version != cpu_to_le32(1) ||
1477 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1478 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1479 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1480 return -EINVAL;
1481
1482 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1483 printk("md: invalid superblock checksum on %s\n",
1484 bdevname(rdev->bdev,b));
1485 return -EINVAL;
1486 }
1487 if (le64_to_cpu(sb->data_size) < 10) {
1488 printk("md: data_size too small on %s\n",
1489 bdevname(rdev->bdev,b));
1490 return -EINVAL;
1491 }
1492 if (sb->pad0 ||
1493 sb->pad3[0] ||
1494 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1495 /* Some padding is non-zero, might be a new feature */
1496 return -EINVAL;
1497
1498 rdev->preferred_minor = 0xffff;
1499 rdev->data_offset = le64_to_cpu(sb->data_offset);
1500 rdev->new_data_offset = rdev->data_offset;
1501 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1502 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1503 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1504 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1505
1506 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1507 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1508 if (rdev->sb_size & bmask)
1509 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1510
1511 if (minor_version
1512 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1513 return -EINVAL;
1514 if (minor_version
1515 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1516 return -EINVAL;
1517
1518 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1519 rdev->desc_nr = -1;
1520 else
1521 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1522
1523 if (!rdev->bb_page) {
1524 rdev->bb_page = alloc_page(GFP_KERNEL);
1525 if (!rdev->bb_page)
1526 return -ENOMEM;
1527 }
1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1529 rdev->badblocks.count == 0) {
1530 /* need to load the bad block list.
1531 * Currently we limit it to one page.
1532 */
1533 s32 offset;
1534 sector_t bb_sector;
1535 u64 *bbp;
1536 int i;
1537 int sectors = le16_to_cpu(sb->bblog_size);
1538 if (sectors > (PAGE_SIZE / 512))
1539 return -EINVAL;
1540 offset = le32_to_cpu(sb->bblog_offset);
1541 if (offset == 0)
1542 return -EINVAL;
1543 bb_sector = (long long)offset;
1544 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1545 rdev->bb_page, READ, true))
1546 return -EIO;
1547 bbp = (u64 *)page_address(rdev->bb_page);
1548 rdev->badblocks.shift = sb->bblog_shift;
1549 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1550 u64 bb = le64_to_cpu(*bbp);
1551 int count = bb & (0x3ff);
1552 u64 sector = bb >> 10;
1553 sector <<= sb->bblog_shift;
1554 count <<= sb->bblog_shift;
1555 if (bb + 1 == 0)
1556 break;
1557 if (md_set_badblocks(&rdev->badblocks,
1558 sector, count, 1) == 0)
1559 return -EINVAL;
1560 }
1561 } else if (sb->bblog_offset != 0)
1562 rdev->badblocks.shift = 0;
1563
1564 if (!refdev) {
1565 ret = 1;
1566 } else {
1567 __u64 ev1, ev2;
1568 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1569
1570 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1571 sb->level != refsb->level ||
1572 sb->layout != refsb->layout ||
1573 sb->chunksize != refsb->chunksize) {
1574 printk(KERN_WARNING "md: %s has strangely different"
1575 " superblock to %s\n",
1576 bdevname(rdev->bdev,b),
1577 bdevname(refdev->bdev,b2));
1578 return -EINVAL;
1579 }
1580 ev1 = le64_to_cpu(sb->events);
1581 ev2 = le64_to_cpu(refsb->events);
1582
1583 if (ev1 > ev2)
1584 ret = 1;
1585 else
1586 ret = 0;
1587 }
1588 if (minor_version) {
1589 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1590 sectors -= rdev->data_offset;
1591 } else
1592 sectors = rdev->sb_start;
1593 if (sectors < le64_to_cpu(sb->data_size))
1594 return -EINVAL;
1595 rdev->sectors = le64_to_cpu(sb->data_size);
1596 return ret;
1597 }
1598
1599 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1600 {
1601 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1602 __u64 ev1 = le64_to_cpu(sb->events);
1603
1604 rdev->raid_disk = -1;
1605 clear_bit(Faulty, &rdev->flags);
1606 clear_bit(In_sync, &rdev->flags);
1607 clear_bit(WriteMostly, &rdev->flags);
1608
1609 if (mddev->raid_disks == 0) {
1610 mddev->major_version = 1;
1611 mddev->patch_version = 0;
1612 mddev->external = 0;
1613 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1614 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1615 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1616 mddev->level = le32_to_cpu(sb->level);
1617 mddev->clevel[0] = 0;
1618 mddev->layout = le32_to_cpu(sb->layout);
1619 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1620 mddev->dev_sectors = le64_to_cpu(sb->size);
1621 mddev->events = ev1;
1622 mddev->bitmap_info.offset = 0;
1623 mddev->bitmap_info.space = 0;
1624 /* Default location for bitmap is 1K after superblock
1625 * using 3K - total of 4K
1626 */
1627 mddev->bitmap_info.default_offset = 1024 >> 9;
1628 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1629 mddev->reshape_backwards = 0;
1630
1631 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1632 memcpy(mddev->uuid, sb->set_uuid, 16);
1633
1634 mddev->max_disks = (4096-256)/2;
1635
1636 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1637 mddev->bitmap_info.file == NULL) {
1638 mddev->bitmap_info.offset =
1639 (__s32)le32_to_cpu(sb->bitmap_offset);
1640 /* Metadata doesn't record how much space is available.
1641 * For 1.0, we assume we can use up to the superblock
1642 * if before, else to 4K beyond superblock.
1643 * For others, assume no change is possible.
1644 */
1645 if (mddev->minor_version > 0)
1646 mddev->bitmap_info.space = 0;
1647 else if (mddev->bitmap_info.offset > 0)
1648 mddev->bitmap_info.space =
1649 8 - mddev->bitmap_info.offset;
1650 else
1651 mddev->bitmap_info.space =
1652 -mddev->bitmap_info.offset;
1653 }
1654
1655 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1656 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1657 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1658 mddev->new_level = le32_to_cpu(sb->new_level);
1659 mddev->new_layout = le32_to_cpu(sb->new_layout);
1660 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1661 if (mddev->delta_disks < 0 ||
1662 (mddev->delta_disks == 0 &&
1663 (le32_to_cpu(sb->feature_map)
1664 & MD_FEATURE_RESHAPE_BACKWARDS)))
1665 mddev->reshape_backwards = 1;
1666 } else {
1667 mddev->reshape_position = MaxSector;
1668 mddev->delta_disks = 0;
1669 mddev->new_level = mddev->level;
1670 mddev->new_layout = mddev->layout;
1671 mddev->new_chunk_sectors = mddev->chunk_sectors;
1672 }
1673
1674 } else if (mddev->pers == NULL) {
1675 /* Insist of good event counter while assembling, except for
1676 * spares (which don't need an event count) */
1677 ++ev1;
1678 if (rdev->desc_nr >= 0 &&
1679 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1680 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1681 if (ev1 < mddev->events)
1682 return -EINVAL;
1683 } else if (mddev->bitmap) {
1684 /* If adding to array with a bitmap, then we can accept an
1685 * older device, but not too old.
1686 */
1687 if (ev1 < mddev->bitmap->events_cleared)
1688 return 0;
1689 } else {
1690 if (ev1 < mddev->events)
1691 /* just a hot-add of a new device, leave raid_disk at -1 */
1692 return 0;
1693 }
1694 if (mddev->level != LEVEL_MULTIPATH) {
1695 int role;
1696 if (rdev->desc_nr < 0 ||
1697 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1698 role = 0xffff;
1699 rdev->desc_nr = -1;
1700 } else
1701 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1702 switch(role) {
1703 case 0xffff: /* spare */
1704 break;
1705 case 0xfffe: /* faulty */
1706 set_bit(Faulty, &rdev->flags);
1707 break;
1708 default:
1709 if ((le32_to_cpu(sb->feature_map) &
1710 MD_FEATURE_RECOVERY_OFFSET))
1711 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1712 else
1713 set_bit(In_sync, &rdev->flags);
1714 rdev->raid_disk = role;
1715 break;
1716 }
1717 if (sb->devflags & WriteMostly1)
1718 set_bit(WriteMostly, &rdev->flags);
1719 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1720 set_bit(Replacement, &rdev->flags);
1721 } else /* MULTIPATH are always insync */
1722 set_bit(In_sync, &rdev->flags);
1723
1724 return 0;
1725 }
1726
1727 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1728 {
1729 struct mdp_superblock_1 *sb;
1730 struct md_rdev *rdev2;
1731 int max_dev, i;
1732 /* make rdev->sb match mddev and rdev data. */
1733
1734 sb = page_address(rdev->sb_page);
1735
1736 sb->feature_map = 0;
1737 sb->pad0 = 0;
1738 sb->recovery_offset = cpu_to_le64(0);
1739 memset(sb->pad3, 0, sizeof(sb->pad3));
1740
1741 sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 sb->events = cpu_to_le64(mddev->events);
1743 if (mddev->in_sync)
1744 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 else
1746 sb->resync_offset = cpu_to_le64(0);
1747
1748 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749
1750 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 sb->size = cpu_to_le64(mddev->dev_sectors);
1752 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 sb->level = cpu_to_le32(mddev->level);
1754 sb->layout = cpu_to_le32(mddev->layout);
1755
1756 if (test_bit(WriteMostly, &rdev->flags))
1757 sb->devflags |= WriteMostly1;
1758 else
1759 sb->devflags &= ~WriteMostly1;
1760 sb->data_offset = cpu_to_le64(rdev->data_offset);
1761 sb->data_size = cpu_to_le64(rdev->sectors);
1762
1763 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1764 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1765 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1766 }
1767
1768 if (rdev->raid_disk >= 0 &&
1769 !test_bit(In_sync, &rdev->flags)) {
1770 sb->feature_map |=
1771 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1772 sb->recovery_offset =
1773 cpu_to_le64(rdev->recovery_offset);
1774 }
1775 if (test_bit(Replacement, &rdev->flags))
1776 sb->feature_map |=
1777 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1778
1779 if (mddev->reshape_position != MaxSector) {
1780 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1781 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1782 sb->new_layout = cpu_to_le32(mddev->new_layout);
1783 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1784 sb->new_level = cpu_to_le32(mddev->new_level);
1785 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1786 if (mddev->delta_disks == 0 &&
1787 mddev->reshape_backwards)
1788 sb->feature_map
1789 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1790 if (rdev->new_data_offset != rdev->data_offset) {
1791 sb->feature_map
1792 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1793 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1794 - rdev->data_offset));
1795 }
1796 }
1797
1798 if (rdev->badblocks.count == 0)
1799 /* Nothing to do for bad blocks*/ ;
1800 else if (sb->bblog_offset == 0)
1801 /* Cannot record bad blocks on this device */
1802 md_error(mddev, rdev);
1803 else {
1804 struct badblocks *bb = &rdev->badblocks;
1805 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1806 u64 *p = bb->page;
1807 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1808 if (bb->changed) {
1809 unsigned seq;
1810
1811 retry:
1812 seq = read_seqbegin(&bb->lock);
1813
1814 memset(bbp, 0xff, PAGE_SIZE);
1815
1816 for (i = 0 ; i < bb->count ; i++) {
1817 u64 internal_bb = p[i];
1818 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1819 | BB_LEN(internal_bb));
1820 bbp[i] = cpu_to_le64(store_bb);
1821 }
1822 bb->changed = 0;
1823 if (read_seqretry(&bb->lock, seq))
1824 goto retry;
1825
1826 bb->sector = (rdev->sb_start +
1827 (int)le32_to_cpu(sb->bblog_offset));
1828 bb->size = le16_to_cpu(sb->bblog_size);
1829 }
1830 }
1831
1832 max_dev = 0;
1833 rdev_for_each(rdev2, mddev)
1834 if (rdev2->desc_nr+1 > max_dev)
1835 max_dev = rdev2->desc_nr+1;
1836
1837 if (max_dev > le32_to_cpu(sb->max_dev)) {
1838 int bmask;
1839 sb->max_dev = cpu_to_le32(max_dev);
1840 rdev->sb_size = max_dev * 2 + 256;
1841 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1842 if (rdev->sb_size & bmask)
1843 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1844 } else
1845 max_dev = le32_to_cpu(sb->max_dev);
1846
1847 for (i=0; i<max_dev;i++)
1848 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1849
1850 rdev_for_each(rdev2, mddev) {
1851 i = rdev2->desc_nr;
1852 if (test_bit(Faulty, &rdev2->flags))
1853 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1854 else if (test_bit(In_sync, &rdev2->flags))
1855 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1856 else if (rdev2->raid_disk >= 0)
1857 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1858 else
1859 sb->dev_roles[i] = cpu_to_le16(0xffff);
1860 }
1861
1862 sb->sb_csum = calc_sb_1_csum(sb);
1863 }
1864
1865 static unsigned long long
1866 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1867 {
1868 struct mdp_superblock_1 *sb;
1869 sector_t max_sectors;
1870 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1871 return 0; /* component must fit device */
1872 if (rdev->data_offset != rdev->new_data_offset)
1873 return 0; /* too confusing */
1874 if (rdev->sb_start < rdev->data_offset) {
1875 /* minor versions 1 and 2; superblock before data */
1876 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1877 max_sectors -= rdev->data_offset;
1878 if (!num_sectors || num_sectors > max_sectors)
1879 num_sectors = max_sectors;
1880 } else if (rdev->mddev->bitmap_info.offset) {
1881 /* minor version 0 with bitmap we can't move */
1882 return 0;
1883 } else {
1884 /* minor version 0; superblock after data */
1885 sector_t sb_start;
1886 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1887 sb_start &= ~(sector_t)(4*2 - 1);
1888 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1889 if (!num_sectors || num_sectors > max_sectors)
1890 num_sectors = max_sectors;
1891 rdev->sb_start = sb_start;
1892 }
1893 sb = page_address(rdev->sb_page);
1894 sb->data_size = cpu_to_le64(num_sectors);
1895 sb->super_offset = rdev->sb_start;
1896 sb->sb_csum = calc_sb_1_csum(sb);
1897 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1898 rdev->sb_page);
1899 md_super_wait(rdev->mddev);
1900 return num_sectors;
1901
1902 }
1903
1904 static int
1905 super_1_allow_new_offset(struct md_rdev *rdev,
1906 unsigned long long new_offset)
1907 {
1908 /* All necessary checks on new >= old have been done */
1909 struct bitmap *bitmap;
1910 if (new_offset >= rdev->data_offset)
1911 return 1;
1912
1913 /* with 1.0 metadata, there is no metadata to tread on
1914 * so we can always move back */
1915 if (rdev->mddev->minor_version == 0)
1916 return 1;
1917
1918 /* otherwise we must be sure not to step on
1919 * any metadata, so stay:
1920 * 36K beyond start of superblock
1921 * beyond end of badblocks
1922 * beyond write-intent bitmap
1923 */
1924 if (rdev->sb_start + (32+4)*2 > new_offset)
1925 return 0;
1926 bitmap = rdev->mddev->bitmap;
1927 if (bitmap && !rdev->mddev->bitmap_info.file &&
1928 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1929 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1930 return 0;
1931 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1932 return 0;
1933
1934 return 1;
1935 }
1936
1937 static struct super_type super_types[] = {
1938 [0] = {
1939 .name = "0.90.0",
1940 .owner = THIS_MODULE,
1941 .load_super = super_90_load,
1942 .validate_super = super_90_validate,
1943 .sync_super = super_90_sync,
1944 .rdev_size_change = super_90_rdev_size_change,
1945 .allow_new_offset = super_90_allow_new_offset,
1946 },
1947 [1] = {
1948 .name = "md-1",
1949 .owner = THIS_MODULE,
1950 .load_super = super_1_load,
1951 .validate_super = super_1_validate,
1952 .sync_super = super_1_sync,
1953 .rdev_size_change = super_1_rdev_size_change,
1954 .allow_new_offset = super_1_allow_new_offset,
1955 },
1956 };
1957
1958 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1959 {
1960 if (mddev->sync_super) {
1961 mddev->sync_super(mddev, rdev);
1962 return;
1963 }
1964
1965 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1966
1967 super_types[mddev->major_version].sync_super(mddev, rdev);
1968 }
1969
1970 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1971 {
1972 struct md_rdev *rdev, *rdev2;
1973
1974 rcu_read_lock();
1975 rdev_for_each_rcu(rdev, mddev1)
1976 rdev_for_each_rcu(rdev2, mddev2)
1977 if (rdev->bdev->bd_contains ==
1978 rdev2->bdev->bd_contains) {
1979 rcu_read_unlock();
1980 return 1;
1981 }
1982 rcu_read_unlock();
1983 return 0;
1984 }
1985
1986 static LIST_HEAD(pending_raid_disks);
1987
1988 /*
1989 * Try to register data integrity profile for an mddev
1990 *
1991 * This is called when an array is started and after a disk has been kicked
1992 * from the array. It only succeeds if all working and active component devices
1993 * are integrity capable with matching profiles.
1994 */
1995 int md_integrity_register(struct mddev *mddev)
1996 {
1997 struct md_rdev *rdev, *reference = NULL;
1998
1999 if (list_empty(&mddev->disks))
2000 return 0; /* nothing to do */
2001 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2002 return 0; /* shouldn't register, or already is */
2003 rdev_for_each(rdev, mddev) {
2004 /* skip spares and non-functional disks */
2005 if (test_bit(Faulty, &rdev->flags))
2006 continue;
2007 if (rdev->raid_disk < 0)
2008 continue;
2009 if (!reference) {
2010 /* Use the first rdev as the reference */
2011 reference = rdev;
2012 continue;
2013 }
2014 /* does this rdev's profile match the reference profile? */
2015 if (blk_integrity_compare(reference->bdev->bd_disk,
2016 rdev->bdev->bd_disk) < 0)
2017 return -EINVAL;
2018 }
2019 if (!reference || !bdev_get_integrity(reference->bdev))
2020 return 0;
2021 /*
2022 * All component devices are integrity capable and have matching
2023 * profiles, register the common profile for the md device.
2024 */
2025 if (blk_integrity_register(mddev->gendisk,
2026 bdev_get_integrity(reference->bdev)) != 0) {
2027 printk(KERN_ERR "md: failed to register integrity for %s\n",
2028 mdname(mddev));
2029 return -EINVAL;
2030 }
2031 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2032 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2033 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2034 mdname(mddev));
2035 return -EINVAL;
2036 }
2037 return 0;
2038 }
2039 EXPORT_SYMBOL(md_integrity_register);
2040
2041 /* Disable data integrity if non-capable/non-matching disk is being added */
2042 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044 struct blk_integrity *bi_rdev;
2045 struct blk_integrity *bi_mddev;
2046
2047 if (!mddev->gendisk)
2048 return;
2049
2050 bi_rdev = bdev_get_integrity(rdev->bdev);
2051 bi_mddev = blk_get_integrity(mddev->gendisk);
2052
2053 if (!bi_mddev) /* nothing to do */
2054 return;
2055 if (rdev->raid_disk < 0) /* skip spares */
2056 return;
2057 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2058 rdev->bdev->bd_disk) >= 0)
2059 return;
2060 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2061 blk_integrity_unregister(mddev->gendisk);
2062 }
2063 EXPORT_SYMBOL(md_integrity_add_rdev);
2064
2065 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2066 {
2067 char b[BDEVNAME_SIZE];
2068 struct kobject *ko;
2069 char *s;
2070 int err;
2071
2072 if (rdev->mddev) {
2073 MD_BUG();
2074 return -EINVAL;
2075 }
2076
2077 /* prevent duplicates */
2078 if (find_rdev(mddev, rdev->bdev->bd_dev))
2079 return -EEXIST;
2080
2081 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2082 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2083 rdev->sectors < mddev->dev_sectors)) {
2084 if (mddev->pers) {
2085 /* Cannot change size, so fail
2086 * If mddev->level <= 0, then we don't care
2087 * about aligning sizes (e.g. linear)
2088 */
2089 if (mddev->level > 0)
2090 return -ENOSPC;
2091 } else
2092 mddev->dev_sectors = rdev->sectors;
2093 }
2094
2095 /* Verify rdev->desc_nr is unique.
2096 * If it is -1, assign a free number, else
2097 * check number is not in use
2098 */
2099 if (rdev->desc_nr < 0) {
2100 int choice = 0;
2101 if (mddev->pers) choice = mddev->raid_disks;
2102 while (find_rdev_nr(mddev, choice))
2103 choice++;
2104 rdev->desc_nr = choice;
2105 } else {
2106 if (find_rdev_nr(mddev, rdev->desc_nr))
2107 return -EBUSY;
2108 }
2109 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2110 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2111 mdname(mddev), mddev->max_disks);
2112 return -EBUSY;
2113 }
2114 bdevname(rdev->bdev,b);
2115 while ( (s=strchr(b, '/')) != NULL)
2116 *s = '!';
2117
2118 rdev->mddev = mddev;
2119 printk(KERN_INFO "md: bind<%s>\n", b);
2120
2121 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2122 goto fail;
2123
2124 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2125 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2126 /* failure here is OK */;
2127 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2128
2129 list_add_rcu(&rdev->same_set, &mddev->disks);
2130 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2131
2132 /* May as well allow recovery to be retried once */
2133 mddev->recovery_disabled++;
2134
2135 return 0;
2136
2137 fail:
2138 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2139 b, mdname(mddev));
2140 return err;
2141 }
2142
2143 static void md_delayed_delete(struct work_struct *ws)
2144 {
2145 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2146 kobject_del(&rdev->kobj);
2147 kobject_put(&rdev->kobj);
2148 }
2149
2150 static void unbind_rdev_from_array(struct md_rdev * rdev)
2151 {
2152 char b[BDEVNAME_SIZE];
2153 if (!rdev->mddev) {
2154 MD_BUG();
2155 return;
2156 }
2157 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2158 list_del_rcu(&rdev->same_set);
2159 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2160 rdev->mddev = NULL;
2161 sysfs_remove_link(&rdev->kobj, "block");
2162 sysfs_put(rdev->sysfs_state);
2163 rdev->sysfs_state = NULL;
2164 rdev->badblocks.count = 0;
2165 /* We need to delay this, otherwise we can deadlock when
2166 * writing to 'remove' to "dev/state". We also need
2167 * to delay it due to rcu usage.
2168 */
2169 synchronize_rcu();
2170 INIT_WORK(&rdev->del_work, md_delayed_delete);
2171 kobject_get(&rdev->kobj);
2172 queue_work(md_misc_wq, &rdev->del_work);
2173 }
2174
2175 /*
2176 * prevent the device from being mounted, repartitioned or
2177 * otherwise reused by a RAID array (or any other kernel
2178 * subsystem), by bd_claiming the device.
2179 */
2180 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2181 {
2182 int err = 0;
2183 struct block_device *bdev;
2184 char b[BDEVNAME_SIZE];
2185
2186 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2187 shared ? (struct md_rdev *)lock_rdev : rdev);
2188 if (IS_ERR(bdev)) {
2189 printk(KERN_ERR "md: could not open %s.\n",
2190 __bdevname(dev, b));
2191 return PTR_ERR(bdev);
2192 }
2193 rdev->bdev = bdev;
2194 return err;
2195 }
2196
2197 static void unlock_rdev(struct md_rdev *rdev)
2198 {
2199 struct block_device *bdev = rdev->bdev;
2200 rdev->bdev = NULL;
2201 if (!bdev)
2202 MD_BUG();
2203 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2204 }
2205
2206 void md_autodetect_dev(dev_t dev);
2207
2208 static void export_rdev(struct md_rdev * rdev)
2209 {
2210 char b[BDEVNAME_SIZE];
2211 printk(KERN_INFO "md: export_rdev(%s)\n",
2212 bdevname(rdev->bdev,b));
2213 if (rdev->mddev)
2214 MD_BUG();
2215 md_rdev_clear(rdev);
2216 #ifndef MODULE
2217 if (test_bit(AutoDetected, &rdev->flags))
2218 md_autodetect_dev(rdev->bdev->bd_dev);
2219 #endif
2220 unlock_rdev(rdev);
2221 kobject_put(&rdev->kobj);
2222 }
2223
2224 static void kick_rdev_from_array(struct md_rdev * rdev)
2225 {
2226 unbind_rdev_from_array(rdev);
2227 export_rdev(rdev);
2228 }
2229
2230 static void export_array(struct mddev *mddev)
2231 {
2232 struct md_rdev *rdev, *tmp;
2233
2234 rdev_for_each_safe(rdev, tmp, mddev) {
2235 if (!rdev->mddev) {
2236 MD_BUG();
2237 continue;
2238 }
2239 kick_rdev_from_array(rdev);
2240 }
2241 if (!list_empty(&mddev->disks))
2242 MD_BUG();
2243 mddev->raid_disks = 0;
2244 mddev->major_version = 0;
2245 }
2246
2247 static void print_desc(mdp_disk_t *desc)
2248 {
2249 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2250 desc->major,desc->minor,desc->raid_disk,desc->state);
2251 }
2252
2253 static void print_sb_90(mdp_super_t *sb)
2254 {
2255 int i;
2256
2257 printk(KERN_INFO
2258 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2259 sb->major_version, sb->minor_version, sb->patch_version,
2260 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2261 sb->ctime);
2262 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2263 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2264 sb->md_minor, sb->layout, sb->chunk_size);
2265 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2266 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2267 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2268 sb->failed_disks, sb->spare_disks,
2269 sb->sb_csum, (unsigned long)sb->events_lo);
2270
2271 printk(KERN_INFO);
2272 for (i = 0; i < MD_SB_DISKS; i++) {
2273 mdp_disk_t *desc;
2274
2275 desc = sb->disks + i;
2276 if (desc->number || desc->major || desc->minor ||
2277 desc->raid_disk || (desc->state && (desc->state != 4))) {
2278 printk(" D %2d: ", i);
2279 print_desc(desc);
2280 }
2281 }
2282 printk(KERN_INFO "md: THIS: ");
2283 print_desc(&sb->this_disk);
2284 }
2285
2286 static void print_sb_1(struct mdp_superblock_1 *sb)
2287 {
2288 __u8 *uuid;
2289
2290 uuid = sb->set_uuid;
2291 printk(KERN_INFO
2292 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2293 "md: Name: \"%s\" CT:%llu\n",
2294 le32_to_cpu(sb->major_version),
2295 le32_to_cpu(sb->feature_map),
2296 uuid,
2297 sb->set_name,
2298 (unsigned long long)le64_to_cpu(sb->ctime)
2299 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2300
2301 uuid = sb->device_uuid;
2302 printk(KERN_INFO
2303 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2304 " RO:%llu\n"
2305 "md: Dev:%08x UUID: %pU\n"
2306 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2307 "md: (MaxDev:%u) \n",
2308 le32_to_cpu(sb->level),
2309 (unsigned long long)le64_to_cpu(sb->size),
2310 le32_to_cpu(sb->raid_disks),
2311 le32_to_cpu(sb->layout),
2312 le32_to_cpu(sb->chunksize),
2313 (unsigned long long)le64_to_cpu(sb->data_offset),
2314 (unsigned long long)le64_to_cpu(sb->data_size),
2315 (unsigned long long)le64_to_cpu(sb->super_offset),
2316 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2317 le32_to_cpu(sb->dev_number),
2318 uuid,
2319 sb->devflags,
2320 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2321 (unsigned long long)le64_to_cpu(sb->events),
2322 (unsigned long long)le64_to_cpu(sb->resync_offset),
2323 le32_to_cpu(sb->sb_csum),
2324 le32_to_cpu(sb->max_dev)
2325 );
2326 }
2327
2328 static void print_rdev(struct md_rdev *rdev, int major_version)
2329 {
2330 char b[BDEVNAME_SIZE];
2331 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2332 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2333 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2334 rdev->desc_nr);
2335 if (rdev->sb_loaded) {
2336 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2337 switch (major_version) {
2338 case 0:
2339 print_sb_90(page_address(rdev->sb_page));
2340 break;
2341 case 1:
2342 print_sb_1(page_address(rdev->sb_page));
2343 break;
2344 }
2345 } else
2346 printk(KERN_INFO "md: no rdev superblock!\n");
2347 }
2348
2349 static void md_print_devices(void)
2350 {
2351 struct list_head *tmp;
2352 struct md_rdev *rdev;
2353 struct mddev *mddev;
2354 char b[BDEVNAME_SIZE];
2355
2356 printk("\n");
2357 printk("md: **********************************\n");
2358 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2359 printk("md: **********************************\n");
2360 for_each_mddev(mddev, tmp) {
2361
2362 if (mddev->bitmap)
2363 bitmap_print_sb(mddev->bitmap);
2364 else
2365 printk("%s: ", mdname(mddev));
2366 rdev_for_each(rdev, mddev)
2367 printk("<%s>", bdevname(rdev->bdev,b));
2368 printk("\n");
2369
2370 rdev_for_each(rdev, mddev)
2371 print_rdev(rdev, mddev->major_version);
2372 }
2373 printk("md: **********************************\n");
2374 printk("\n");
2375 }
2376
2377
2378 static void sync_sbs(struct mddev * mddev, int nospares)
2379 {
2380 /* Update each superblock (in-memory image), but
2381 * if we are allowed to, skip spares which already
2382 * have the right event counter, or have one earlier
2383 * (which would mean they aren't being marked as dirty
2384 * with the rest of the array)
2385 */
2386 struct md_rdev *rdev;
2387 rdev_for_each(rdev, mddev) {
2388 if (rdev->sb_events == mddev->events ||
2389 (nospares &&
2390 rdev->raid_disk < 0 &&
2391 rdev->sb_events+1 == mddev->events)) {
2392 /* Don't update this superblock */
2393 rdev->sb_loaded = 2;
2394 } else {
2395 sync_super(mddev, rdev);
2396 rdev->sb_loaded = 1;
2397 }
2398 }
2399 }
2400
2401 static void md_update_sb(struct mddev * mddev, int force_change)
2402 {
2403 struct md_rdev *rdev;
2404 int sync_req;
2405 int nospares = 0;
2406 int any_badblocks_changed = 0;
2407
2408 if (mddev->ro) {
2409 if (force_change)
2410 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2411 return;
2412 }
2413 repeat:
2414 /* First make sure individual recovery_offsets are correct */
2415 rdev_for_each(rdev, mddev) {
2416 if (rdev->raid_disk >= 0 &&
2417 mddev->delta_disks >= 0 &&
2418 !test_bit(In_sync, &rdev->flags) &&
2419 mddev->curr_resync_completed > rdev->recovery_offset)
2420 rdev->recovery_offset = mddev->curr_resync_completed;
2421
2422 }
2423 if (!mddev->persistent) {
2424 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2425 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2426 if (!mddev->external) {
2427 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2428 rdev_for_each(rdev, mddev) {
2429 if (rdev->badblocks.changed) {
2430 rdev->badblocks.changed = 0;
2431 md_ack_all_badblocks(&rdev->badblocks);
2432 md_error(mddev, rdev);
2433 }
2434 clear_bit(Blocked, &rdev->flags);
2435 clear_bit(BlockedBadBlocks, &rdev->flags);
2436 wake_up(&rdev->blocked_wait);
2437 }
2438 }
2439 wake_up(&mddev->sb_wait);
2440 return;
2441 }
2442
2443 spin_lock_irq(&mddev->write_lock);
2444
2445 mddev->utime = get_seconds();
2446
2447 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2448 force_change = 1;
2449 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2450 /* just a clean<-> dirty transition, possibly leave spares alone,
2451 * though if events isn't the right even/odd, we will have to do
2452 * spares after all
2453 */
2454 nospares = 1;
2455 if (force_change)
2456 nospares = 0;
2457 if (mddev->degraded)
2458 /* If the array is degraded, then skipping spares is both
2459 * dangerous and fairly pointless.
2460 * Dangerous because a device that was removed from the array
2461 * might have a event_count that still looks up-to-date,
2462 * so it can be re-added without a resync.
2463 * Pointless because if there are any spares to skip,
2464 * then a recovery will happen and soon that array won't
2465 * be degraded any more and the spare can go back to sleep then.
2466 */
2467 nospares = 0;
2468
2469 sync_req = mddev->in_sync;
2470
2471 /* If this is just a dirty<->clean transition, and the array is clean
2472 * and 'events' is odd, we can roll back to the previous clean state */
2473 if (nospares
2474 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2475 && mddev->can_decrease_events
2476 && mddev->events != 1) {
2477 mddev->events--;
2478 mddev->can_decrease_events = 0;
2479 } else {
2480 /* otherwise we have to go forward and ... */
2481 mddev->events ++;
2482 mddev->can_decrease_events = nospares;
2483 }
2484
2485 if (!mddev->events) {
2486 /*
2487 * oops, this 64-bit counter should never wrap.
2488 * Either we are in around ~1 trillion A.C., assuming
2489 * 1 reboot per second, or we have a bug:
2490 */
2491 MD_BUG();
2492 mddev->events --;
2493 }
2494
2495 rdev_for_each(rdev, mddev) {
2496 if (rdev->badblocks.changed)
2497 any_badblocks_changed++;
2498 if (test_bit(Faulty, &rdev->flags))
2499 set_bit(FaultRecorded, &rdev->flags);
2500 }
2501
2502 sync_sbs(mddev, nospares);
2503 spin_unlock_irq(&mddev->write_lock);
2504
2505 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2506 mdname(mddev), mddev->in_sync);
2507
2508 bitmap_update_sb(mddev->bitmap);
2509 rdev_for_each(rdev, mddev) {
2510 char b[BDEVNAME_SIZE];
2511
2512 if (rdev->sb_loaded != 1)
2513 continue; /* no noise on spare devices */
2514
2515 if (!test_bit(Faulty, &rdev->flags) &&
2516 rdev->saved_raid_disk == -1) {
2517 md_super_write(mddev,rdev,
2518 rdev->sb_start, rdev->sb_size,
2519 rdev->sb_page);
2520 pr_debug("md: (write) %s's sb offset: %llu\n",
2521 bdevname(rdev->bdev, b),
2522 (unsigned long long)rdev->sb_start);
2523 rdev->sb_events = mddev->events;
2524 if (rdev->badblocks.size) {
2525 md_super_write(mddev, rdev,
2526 rdev->badblocks.sector,
2527 rdev->badblocks.size << 9,
2528 rdev->bb_page);
2529 rdev->badblocks.size = 0;
2530 }
2531
2532 } else if (test_bit(Faulty, &rdev->flags))
2533 pr_debug("md: %s (skipping faulty)\n",
2534 bdevname(rdev->bdev, b));
2535 else
2536 pr_debug("(skipping incremental s/r ");
2537
2538 if (mddev->level == LEVEL_MULTIPATH)
2539 /* only need to write one superblock... */
2540 break;
2541 }
2542 md_super_wait(mddev);
2543 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2544
2545 spin_lock_irq(&mddev->write_lock);
2546 if (mddev->in_sync != sync_req ||
2547 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2548 /* have to write it out again */
2549 spin_unlock_irq(&mddev->write_lock);
2550 goto repeat;
2551 }
2552 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2553 spin_unlock_irq(&mddev->write_lock);
2554 wake_up(&mddev->sb_wait);
2555 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2556 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2557
2558 rdev_for_each(rdev, mddev) {
2559 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2560 clear_bit(Blocked, &rdev->flags);
2561
2562 if (any_badblocks_changed)
2563 md_ack_all_badblocks(&rdev->badblocks);
2564 clear_bit(BlockedBadBlocks, &rdev->flags);
2565 wake_up(&rdev->blocked_wait);
2566 }
2567 }
2568
2569 /* words written to sysfs files may, or may not, be \n terminated.
2570 * We want to accept with case. For this we use cmd_match.
2571 */
2572 static int cmd_match(const char *cmd, const char *str)
2573 {
2574 /* See if cmd, written into a sysfs file, matches
2575 * str. They must either be the same, or cmd can
2576 * have a trailing newline
2577 */
2578 while (*cmd && *str && *cmd == *str) {
2579 cmd++;
2580 str++;
2581 }
2582 if (*cmd == '\n')
2583 cmd++;
2584 if (*str || *cmd)
2585 return 0;
2586 return 1;
2587 }
2588
2589 struct rdev_sysfs_entry {
2590 struct attribute attr;
2591 ssize_t (*show)(struct md_rdev *, char *);
2592 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2593 };
2594
2595 static ssize_t
2596 state_show(struct md_rdev *rdev, char *page)
2597 {
2598 char *sep = "";
2599 size_t len = 0;
2600
2601 if (test_bit(Faulty, &rdev->flags) ||
2602 rdev->badblocks.unacked_exist) {
2603 len+= sprintf(page+len, "%sfaulty",sep);
2604 sep = ",";
2605 }
2606 if (test_bit(In_sync, &rdev->flags)) {
2607 len += sprintf(page+len, "%sin_sync",sep);
2608 sep = ",";
2609 }
2610 if (test_bit(WriteMostly, &rdev->flags)) {
2611 len += sprintf(page+len, "%swrite_mostly",sep);
2612 sep = ",";
2613 }
2614 if (test_bit(Blocked, &rdev->flags) ||
2615 (rdev->badblocks.unacked_exist
2616 && !test_bit(Faulty, &rdev->flags))) {
2617 len += sprintf(page+len, "%sblocked", sep);
2618 sep = ",";
2619 }
2620 if (!test_bit(Faulty, &rdev->flags) &&
2621 !test_bit(In_sync, &rdev->flags)) {
2622 len += sprintf(page+len, "%sspare", sep);
2623 sep = ",";
2624 }
2625 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2626 len += sprintf(page+len, "%swrite_error", sep);
2627 sep = ",";
2628 }
2629 if (test_bit(WantReplacement, &rdev->flags)) {
2630 len += sprintf(page+len, "%swant_replacement", sep);
2631 sep = ",";
2632 }
2633 if (test_bit(Replacement, &rdev->flags)) {
2634 len += sprintf(page+len, "%sreplacement", sep);
2635 sep = ",";
2636 }
2637
2638 return len+sprintf(page+len, "\n");
2639 }
2640
2641 static ssize_t
2642 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2643 {
2644 /* can write
2645 * faulty - simulates an error
2646 * remove - disconnects the device
2647 * writemostly - sets write_mostly
2648 * -writemostly - clears write_mostly
2649 * blocked - sets the Blocked flags
2650 * -blocked - clears the Blocked and possibly simulates an error
2651 * insync - sets Insync providing device isn't active
2652 * write_error - sets WriteErrorSeen
2653 * -write_error - clears WriteErrorSeen
2654 */
2655 int err = -EINVAL;
2656 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2657 md_error(rdev->mddev, rdev);
2658 if (test_bit(Faulty, &rdev->flags))
2659 err = 0;
2660 else
2661 err = -EBUSY;
2662 } else if (cmd_match(buf, "remove")) {
2663 if (rdev->raid_disk >= 0)
2664 err = -EBUSY;
2665 else {
2666 struct mddev *mddev = rdev->mddev;
2667 kick_rdev_from_array(rdev);
2668 if (mddev->pers)
2669 md_update_sb(mddev, 1);
2670 md_new_event(mddev);
2671 err = 0;
2672 }
2673 } else if (cmd_match(buf, "writemostly")) {
2674 set_bit(WriteMostly, &rdev->flags);
2675 err = 0;
2676 } else if (cmd_match(buf, "-writemostly")) {
2677 clear_bit(WriteMostly, &rdev->flags);
2678 err = 0;
2679 } else if (cmd_match(buf, "blocked")) {
2680 set_bit(Blocked, &rdev->flags);
2681 err = 0;
2682 } else if (cmd_match(buf, "-blocked")) {
2683 if (!test_bit(Faulty, &rdev->flags) &&
2684 rdev->badblocks.unacked_exist) {
2685 /* metadata handler doesn't understand badblocks,
2686 * so we need to fail the device
2687 */
2688 md_error(rdev->mddev, rdev);
2689 }
2690 clear_bit(Blocked, &rdev->flags);
2691 clear_bit(BlockedBadBlocks, &rdev->flags);
2692 wake_up(&rdev->blocked_wait);
2693 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2694 md_wakeup_thread(rdev->mddev->thread);
2695
2696 err = 0;
2697 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2698 set_bit(In_sync, &rdev->flags);
2699 err = 0;
2700 } else if (cmd_match(buf, "write_error")) {
2701 set_bit(WriteErrorSeen, &rdev->flags);
2702 err = 0;
2703 } else if (cmd_match(buf, "-write_error")) {
2704 clear_bit(WriteErrorSeen, &rdev->flags);
2705 err = 0;
2706 } else if (cmd_match(buf, "want_replacement")) {
2707 /* Any non-spare device that is not a replacement can
2708 * become want_replacement at any time, but we then need to
2709 * check if recovery is needed.
2710 */
2711 if (rdev->raid_disk >= 0 &&
2712 !test_bit(Replacement, &rdev->flags))
2713 set_bit(WantReplacement, &rdev->flags);
2714 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2715 md_wakeup_thread(rdev->mddev->thread);
2716 err = 0;
2717 } else if (cmd_match(buf, "-want_replacement")) {
2718 /* Clearing 'want_replacement' is always allowed.
2719 * Once replacements starts it is too late though.
2720 */
2721 err = 0;
2722 clear_bit(WantReplacement, &rdev->flags);
2723 } else if (cmd_match(buf, "replacement")) {
2724 /* Can only set a device as a replacement when array has not
2725 * yet been started. Once running, replacement is automatic
2726 * from spares, or by assigning 'slot'.
2727 */
2728 if (rdev->mddev->pers)
2729 err = -EBUSY;
2730 else {
2731 set_bit(Replacement, &rdev->flags);
2732 err = 0;
2733 }
2734 } else if (cmd_match(buf, "-replacement")) {
2735 /* Similarly, can only clear Replacement before start */
2736 if (rdev->mddev->pers)
2737 err = -EBUSY;
2738 else {
2739 clear_bit(Replacement, &rdev->flags);
2740 err = 0;
2741 }
2742 }
2743 if (!err)
2744 sysfs_notify_dirent_safe(rdev->sysfs_state);
2745 return err ? err : len;
2746 }
2747 static struct rdev_sysfs_entry rdev_state =
2748 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2749
2750 static ssize_t
2751 errors_show(struct md_rdev *rdev, char *page)
2752 {
2753 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2754 }
2755
2756 static ssize_t
2757 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2758 {
2759 char *e;
2760 unsigned long n = simple_strtoul(buf, &e, 10);
2761 if (*buf && (*e == 0 || *e == '\n')) {
2762 atomic_set(&rdev->corrected_errors, n);
2763 return len;
2764 }
2765 return -EINVAL;
2766 }
2767 static struct rdev_sysfs_entry rdev_errors =
2768 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2769
2770 static ssize_t
2771 slot_show(struct md_rdev *rdev, char *page)
2772 {
2773 if (rdev->raid_disk < 0)
2774 return sprintf(page, "none\n");
2775 else
2776 return sprintf(page, "%d\n", rdev->raid_disk);
2777 }
2778
2779 static ssize_t
2780 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2781 {
2782 char *e;
2783 int err;
2784 int slot = simple_strtoul(buf, &e, 10);
2785 if (strncmp(buf, "none", 4)==0)
2786 slot = -1;
2787 else if (e==buf || (*e && *e!= '\n'))
2788 return -EINVAL;
2789 if (rdev->mddev->pers && slot == -1) {
2790 /* Setting 'slot' on an active array requires also
2791 * updating the 'rd%d' link, and communicating
2792 * with the personality with ->hot_*_disk.
2793 * For now we only support removing
2794 * failed/spare devices. This normally happens automatically,
2795 * but not when the metadata is externally managed.
2796 */
2797 if (rdev->raid_disk == -1)
2798 return -EEXIST;
2799 /* personality does all needed checks */
2800 if (rdev->mddev->pers->hot_remove_disk == NULL)
2801 return -EINVAL;
2802 clear_bit(Blocked, &rdev->flags);
2803 remove_and_add_spares(rdev->mddev, rdev);
2804 if (rdev->raid_disk >= 0)
2805 return -EBUSY;
2806 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807 md_wakeup_thread(rdev->mddev->thread);
2808 } else if (rdev->mddev->pers) {
2809 /* Activating a spare .. or possibly reactivating
2810 * if we ever get bitmaps working here.
2811 */
2812
2813 if (rdev->raid_disk != -1)
2814 return -EBUSY;
2815
2816 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817 return -EBUSY;
2818
2819 if (rdev->mddev->pers->hot_add_disk == NULL)
2820 return -EINVAL;
2821
2822 if (slot >= rdev->mddev->raid_disks &&
2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824 return -ENOSPC;
2825
2826 rdev->raid_disk = slot;
2827 if (test_bit(In_sync, &rdev->flags))
2828 rdev->saved_raid_disk = slot;
2829 else
2830 rdev->saved_raid_disk = -1;
2831 clear_bit(In_sync, &rdev->flags);
2832 err = rdev->mddev->pers->
2833 hot_add_disk(rdev->mddev, rdev);
2834 if (err) {
2835 rdev->raid_disk = -1;
2836 return err;
2837 } else
2838 sysfs_notify_dirent_safe(rdev->sysfs_state);
2839 if (sysfs_link_rdev(rdev->mddev, rdev))
2840 /* failure here is OK */;
2841 /* don't wakeup anyone, leave that to userspace. */
2842 } else {
2843 if (slot >= rdev->mddev->raid_disks &&
2844 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845 return -ENOSPC;
2846 rdev->raid_disk = slot;
2847 /* assume it is working */
2848 clear_bit(Faulty, &rdev->flags);
2849 clear_bit(WriteMostly, &rdev->flags);
2850 set_bit(In_sync, &rdev->flags);
2851 sysfs_notify_dirent_safe(rdev->sysfs_state);
2852 }
2853 return len;
2854 }
2855
2856
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869 unsigned long long offset;
2870 if (strict_strtoull(buf, 10, &offset) < 0)
2871 return -EINVAL;
2872 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873 return -EBUSY;
2874 if (rdev->sectors && rdev->mddev->external)
2875 /* Must set offset before size, so overlap checks
2876 * can be sane */
2877 return -EBUSY;
2878 rdev->data_offset = offset;
2879 rdev->new_data_offset = offset;
2880 return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888 return sprintf(page, "%llu\n",
2889 (unsigned long long)rdev->new_data_offset);
2890 }
2891
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893 const char *buf, size_t len)
2894 {
2895 unsigned long long new_offset;
2896 struct mddev *mddev = rdev->mddev;
2897
2898 if (strict_strtoull(buf, 10, &new_offset) < 0)
2899 return -EINVAL;
2900
2901 if (mddev->sync_thread)
2902 return -EBUSY;
2903 if (new_offset == rdev->data_offset)
2904 /* reset is always permitted */
2905 ;
2906 else if (new_offset > rdev->data_offset) {
2907 /* must not push array size beyond rdev_sectors */
2908 if (new_offset - rdev->data_offset
2909 + mddev->dev_sectors > rdev->sectors)
2910 return -E2BIG;
2911 }
2912 /* Metadata worries about other space details. */
2913
2914 /* decreasing the offset is inconsistent with a backwards
2915 * reshape.
2916 */
2917 if (new_offset < rdev->data_offset &&
2918 mddev->reshape_backwards)
2919 return -EINVAL;
2920 /* Increasing offset is inconsistent with forwards
2921 * reshape. reshape_direction should be set to
2922 * 'backwards' first.
2923 */
2924 if (new_offset > rdev->data_offset &&
2925 !mddev->reshape_backwards)
2926 return -EINVAL;
2927
2928 if (mddev->pers && mddev->persistent &&
2929 !super_types[mddev->major_version]
2930 .allow_new_offset(rdev, new_offset))
2931 return -E2BIG;
2932 rdev->new_data_offset = new_offset;
2933 if (new_offset > rdev->data_offset)
2934 mddev->reshape_backwards = 1;
2935 else if (new_offset < rdev->data_offset)
2936 mddev->reshape_backwards = 0;
2937
2938 return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951 /* check if two start/length pairs overlap */
2952 if (s1+l1 <= s2)
2953 return 0;
2954 if (s2+l2 <= s1)
2955 return 0;
2956 return 1;
2957 }
2958
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961 unsigned long long blocks;
2962 sector_t new;
2963
2964 if (strict_strtoull(buf, 10, &blocks) < 0)
2965 return -EINVAL;
2966
2967 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968 return -EINVAL; /* sector conversion overflow */
2969
2970 new = blocks * 2;
2971 if (new != blocks * 2)
2972 return -EINVAL; /* unsigned long long to sector_t overflow */
2973
2974 *sectors = new;
2975 return 0;
2976 }
2977
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981 struct mddev *my_mddev = rdev->mddev;
2982 sector_t oldsectors = rdev->sectors;
2983 sector_t sectors;
2984
2985 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986 return -EINVAL;
2987 if (rdev->data_offset != rdev->new_data_offset)
2988 return -EINVAL; /* too confusing */
2989 if (my_mddev->pers && rdev->raid_disk >= 0) {
2990 if (my_mddev->persistent) {
2991 sectors = super_types[my_mddev->major_version].
2992 rdev_size_change(rdev, sectors);
2993 if (!sectors)
2994 return -EBUSY;
2995 } else if (!sectors)
2996 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997 rdev->data_offset;
2998 if (!my_mddev->pers->resize)
2999 /* Cannot change size for RAID0 or Linear etc */
3000 return -EINVAL;
3001 }
3002 if (sectors < my_mddev->dev_sectors)
3003 return -EINVAL; /* component must fit device */
3004
3005 rdev->sectors = sectors;
3006 if (sectors > oldsectors && my_mddev->external) {
3007 /* need to check that all other rdevs with the same ->bdev
3008 * do not overlap. We need to unlock the mddev to avoid
3009 * a deadlock. We have already changed rdev->sectors, and if
3010 * we have to change it back, we will have the lock again.
3011 */
3012 struct mddev *mddev;
3013 int overlap = 0;
3014 struct list_head *tmp;
3015
3016 mddev_unlock(my_mddev);
3017 for_each_mddev(mddev, tmp) {
3018 struct md_rdev *rdev2;
3019
3020 mddev_lock(mddev);
3021 rdev_for_each(rdev2, mddev)
3022 if (rdev->bdev == rdev2->bdev &&
3023 rdev != rdev2 &&
3024 overlaps(rdev->data_offset, rdev->sectors,
3025 rdev2->data_offset,
3026 rdev2->sectors)) {
3027 overlap = 1;
3028 break;
3029 }
3030 mddev_unlock(mddev);
3031 if (overlap) {
3032 mddev_put(mddev);
3033 break;
3034 }
3035 }
3036 mddev_lock(my_mddev);
3037 if (overlap) {
3038 /* Someone else could have slipped in a size
3039 * change here, but doing so is just silly.
3040 * We put oldsectors back because we *know* it is
3041 * safe, and trust userspace not to race with
3042 * itself
3043 */
3044 rdev->sectors = oldsectors;
3045 return -EBUSY;
3046 }
3047 }
3048 return len;
3049 }
3050
3051 static struct rdev_sysfs_entry rdev_size =
3052 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3053
3054
3055 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3056 {
3057 unsigned long long recovery_start = rdev->recovery_offset;
3058
3059 if (test_bit(In_sync, &rdev->flags) ||
3060 recovery_start == MaxSector)
3061 return sprintf(page, "none\n");
3062
3063 return sprintf(page, "%llu\n", recovery_start);
3064 }
3065
3066 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3067 {
3068 unsigned long long recovery_start;
3069
3070 if (cmd_match(buf, "none"))
3071 recovery_start = MaxSector;
3072 else if (strict_strtoull(buf, 10, &recovery_start))
3073 return -EINVAL;
3074
3075 if (rdev->mddev->pers &&
3076 rdev->raid_disk >= 0)
3077 return -EBUSY;
3078
3079 rdev->recovery_offset = recovery_start;
3080 if (recovery_start == MaxSector)
3081 set_bit(In_sync, &rdev->flags);
3082 else
3083 clear_bit(In_sync, &rdev->flags);
3084 return len;
3085 }
3086
3087 static struct rdev_sysfs_entry rdev_recovery_start =
3088 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3089
3090
3091 static ssize_t
3092 badblocks_show(struct badblocks *bb, char *page, int unack);
3093 static ssize_t
3094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3095
3096 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3097 {
3098 return badblocks_show(&rdev->badblocks, page, 0);
3099 }
3100 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3101 {
3102 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3103 /* Maybe that ack was all we needed */
3104 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3105 wake_up(&rdev->blocked_wait);
3106 return rv;
3107 }
3108 static struct rdev_sysfs_entry rdev_bad_blocks =
3109 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3110
3111
3112 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3113 {
3114 return badblocks_show(&rdev->badblocks, page, 1);
3115 }
3116 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3117 {
3118 return badblocks_store(&rdev->badblocks, page, len, 1);
3119 }
3120 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3121 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3122
3123 static struct attribute *rdev_default_attrs[] = {
3124 &rdev_state.attr,
3125 &rdev_errors.attr,
3126 &rdev_slot.attr,
3127 &rdev_offset.attr,
3128 &rdev_new_offset.attr,
3129 &rdev_size.attr,
3130 &rdev_recovery_start.attr,
3131 &rdev_bad_blocks.attr,
3132 &rdev_unack_bad_blocks.attr,
3133 NULL,
3134 };
3135 static ssize_t
3136 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3137 {
3138 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3139 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3140 struct mddev *mddev = rdev->mddev;
3141 ssize_t rv;
3142
3143 if (!entry->show)
3144 return -EIO;
3145
3146 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3147 if (!rv) {
3148 if (rdev->mddev == NULL)
3149 rv = -EBUSY;
3150 else
3151 rv = entry->show(rdev, page);
3152 mddev_unlock(mddev);
3153 }
3154 return rv;
3155 }
3156
3157 static ssize_t
3158 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3159 const char *page, size_t length)
3160 {
3161 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3162 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3163 ssize_t rv;
3164 struct mddev *mddev = rdev->mddev;
3165
3166 if (!entry->store)
3167 return -EIO;
3168 if (!capable(CAP_SYS_ADMIN))
3169 return -EACCES;
3170 rv = mddev ? mddev_lock(mddev): -EBUSY;
3171 if (!rv) {
3172 if (rdev->mddev == NULL)
3173 rv = -EBUSY;
3174 else
3175 rv = entry->store(rdev, page, length);
3176 mddev_unlock(mddev);
3177 }
3178 return rv;
3179 }
3180
3181 static void rdev_free(struct kobject *ko)
3182 {
3183 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3184 kfree(rdev);
3185 }
3186 static const struct sysfs_ops rdev_sysfs_ops = {
3187 .show = rdev_attr_show,
3188 .store = rdev_attr_store,
3189 };
3190 static struct kobj_type rdev_ktype = {
3191 .release = rdev_free,
3192 .sysfs_ops = &rdev_sysfs_ops,
3193 .default_attrs = rdev_default_attrs,
3194 };
3195
3196 int md_rdev_init(struct md_rdev *rdev)
3197 {
3198 rdev->desc_nr = -1;
3199 rdev->saved_raid_disk = -1;
3200 rdev->raid_disk = -1;
3201 rdev->flags = 0;
3202 rdev->data_offset = 0;
3203 rdev->new_data_offset = 0;
3204 rdev->sb_events = 0;
3205 rdev->last_read_error.tv_sec = 0;
3206 rdev->last_read_error.tv_nsec = 0;
3207 rdev->sb_loaded = 0;
3208 rdev->bb_page = NULL;
3209 atomic_set(&rdev->nr_pending, 0);
3210 atomic_set(&rdev->read_errors, 0);
3211 atomic_set(&rdev->corrected_errors, 0);
3212
3213 INIT_LIST_HEAD(&rdev->same_set);
3214 init_waitqueue_head(&rdev->blocked_wait);
3215
3216 /* Add space to store bad block list.
3217 * This reserves the space even on arrays where it cannot
3218 * be used - I wonder if that matters
3219 */
3220 rdev->badblocks.count = 0;
3221 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3222 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3223 seqlock_init(&rdev->badblocks.lock);
3224 if (rdev->badblocks.page == NULL)
3225 return -ENOMEM;
3226
3227 return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(md_rdev_init);
3230 /*
3231 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3232 *
3233 * mark the device faulty if:
3234 *
3235 * - the device is nonexistent (zero size)
3236 * - the device has no valid superblock
3237 *
3238 * a faulty rdev _never_ has rdev->sb set.
3239 */
3240 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3241 {
3242 char b[BDEVNAME_SIZE];
3243 int err;
3244 struct md_rdev *rdev;
3245 sector_t size;
3246
3247 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3248 if (!rdev) {
3249 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3250 return ERR_PTR(-ENOMEM);
3251 }
3252
3253 err = md_rdev_init(rdev);
3254 if (err)
3255 goto abort_free;
3256 err = alloc_disk_sb(rdev);
3257 if (err)
3258 goto abort_free;
3259
3260 err = lock_rdev(rdev, newdev, super_format == -2);
3261 if (err)
3262 goto abort_free;
3263
3264 kobject_init(&rdev->kobj, &rdev_ktype);
3265
3266 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3267 if (!size) {
3268 printk(KERN_WARNING
3269 "md: %s has zero or unknown size, marking faulty!\n",
3270 bdevname(rdev->bdev,b));
3271 err = -EINVAL;
3272 goto abort_free;
3273 }
3274
3275 if (super_format >= 0) {
3276 err = super_types[super_format].
3277 load_super(rdev, NULL, super_minor);
3278 if (err == -EINVAL) {
3279 printk(KERN_WARNING
3280 "md: %s does not have a valid v%d.%d "
3281 "superblock, not importing!\n",
3282 bdevname(rdev->bdev,b),
3283 super_format, super_minor);
3284 goto abort_free;
3285 }
3286 if (err < 0) {
3287 printk(KERN_WARNING
3288 "md: could not read %s's sb, not importing!\n",
3289 bdevname(rdev->bdev,b));
3290 goto abort_free;
3291 }
3292 }
3293
3294 return rdev;
3295
3296 abort_free:
3297 if (rdev->bdev)
3298 unlock_rdev(rdev);
3299 md_rdev_clear(rdev);
3300 kfree(rdev);
3301 return ERR_PTR(err);
3302 }
3303
3304 /*
3305 * Check a full RAID array for plausibility
3306 */
3307
3308
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311 int i;
3312 struct md_rdev *rdev, *freshest, *tmp;
3313 char b[BDEVNAME_SIZE];
3314
3315 freshest = NULL;
3316 rdev_for_each_safe(rdev, tmp, mddev)
3317 switch (super_types[mddev->major_version].
3318 load_super(rdev, freshest, mddev->minor_version)) {
3319 case 1:
3320 freshest = rdev;
3321 break;
3322 case 0:
3323 break;
3324 default:
3325 printk( KERN_ERR \
3326 "md: fatal superblock inconsistency in %s"
3327 " -- removing from array\n",
3328 bdevname(rdev->bdev,b));
3329 kick_rdev_from_array(rdev);
3330 }
3331
3332
3333 super_types[mddev->major_version].
3334 validate_super(mddev, freshest);
3335
3336 i = 0;
3337 rdev_for_each_safe(rdev, tmp, mddev) {
3338 if (mddev->max_disks &&
3339 (rdev->desc_nr >= mddev->max_disks ||
3340 i > mddev->max_disks)) {
3341 printk(KERN_WARNING
3342 "md: %s: %s: only %d devices permitted\n",
3343 mdname(mddev), bdevname(rdev->bdev, b),
3344 mddev->max_disks);
3345 kick_rdev_from_array(rdev);
3346 continue;
3347 }
3348 if (rdev != freshest)
3349 if (super_types[mddev->major_version].
3350 validate_super(mddev, rdev)) {
3351 printk(KERN_WARNING "md: kicking non-fresh %s"
3352 " from array!\n",
3353 bdevname(rdev->bdev,b));
3354 kick_rdev_from_array(rdev);
3355 continue;
3356 }
3357 if (mddev->level == LEVEL_MULTIPATH) {
3358 rdev->desc_nr = i++;
3359 rdev->raid_disk = rdev->desc_nr;
3360 set_bit(In_sync, &rdev->flags);
3361 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362 rdev->raid_disk = -1;
3363 clear_bit(In_sync, &rdev->flags);
3364 }
3365 }
3366 }
3367
3368 /* Read a fixed-point number.
3369 * Numbers in sysfs attributes should be in "standard" units where
3370 * possible, so time should be in seconds.
3371 * However we internally use a a much smaller unit such as
3372 * milliseconds or jiffies.
3373 * This function takes a decimal number with a possible fractional
3374 * component, and produces an integer which is the result of
3375 * multiplying that number by 10^'scale'.
3376 * all without any floating-point arithmetic.
3377 */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380 unsigned long result = 0;
3381 long decimals = -1;
3382 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383 if (*cp == '.')
3384 decimals = 0;
3385 else if (decimals < scale) {
3386 unsigned int value;
3387 value = *cp - '0';
3388 result = result * 10 + value;
3389 if (decimals >= 0)
3390 decimals++;
3391 }
3392 cp++;
3393 }
3394 if (*cp == '\n')
3395 cp++;
3396 if (*cp)
3397 return -EINVAL;
3398 if (decimals < 0)
3399 decimals = 0;
3400 while (decimals < scale) {
3401 result *= 10;
3402 decimals ++;
3403 }
3404 *res = result;
3405 return 0;
3406 }
3407
3408
3409 static void md_safemode_timeout(unsigned long data);
3410
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414 int msec = (mddev->safemode_delay*1000)/HZ;
3415 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420 unsigned long msec;
3421
3422 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423 return -EINVAL;
3424 if (msec == 0)
3425 mddev->safemode_delay = 0;
3426 else {
3427 unsigned long old_delay = mddev->safemode_delay;
3428 mddev->safemode_delay = (msec*HZ)/1000;
3429 if (mddev->safemode_delay == 0)
3430 mddev->safemode_delay = 1;
3431 if (mddev->safemode_delay < old_delay)
3432 md_safemode_timeout((unsigned long)mddev);
3433 }
3434 return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442 struct md_personality *p = mddev->pers;
3443 if (p)
3444 return sprintf(page, "%s\n", p->name);
3445 else if (mddev->clevel[0])
3446 return sprintf(page, "%s\n", mddev->clevel);
3447 else if (mddev->level != LEVEL_NONE)
3448 return sprintf(page, "%d\n", mddev->level);
3449 else
3450 return 0;
3451 }
3452
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456 char clevel[16];
3457 ssize_t rv = len;
3458 struct md_personality *pers;
3459 long level;
3460 void *priv;
3461 struct md_rdev *rdev;
3462
3463 if (mddev->pers == NULL) {
3464 if (len == 0)
3465 return 0;
3466 if (len >= sizeof(mddev->clevel))
3467 return -ENOSPC;
3468 strncpy(mddev->clevel, buf, len);
3469 if (mddev->clevel[len-1] == '\n')
3470 len--;
3471 mddev->clevel[len] = 0;
3472 mddev->level = LEVEL_NONE;
3473 return rv;
3474 }
3475
3476 /* request to change the personality. Need to ensure:
3477 * - array is not engaged in resync/recovery/reshape
3478 * - old personality can be suspended
3479 * - new personality will access other array.
3480 */
3481
3482 if (mddev->sync_thread ||
3483 mddev->reshape_position != MaxSector ||
3484 mddev->sysfs_active)
3485 return -EBUSY;
3486
3487 if (!mddev->pers->quiesce) {
3488 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489 mdname(mddev), mddev->pers->name);
3490 return -EINVAL;
3491 }
3492
3493 /* Now find the new personality */
3494 if (len == 0 || len >= sizeof(clevel))
3495 return -EINVAL;
3496 strncpy(clevel, buf, len);
3497 if (clevel[len-1] == '\n')
3498 len--;
3499 clevel[len] = 0;
3500 if (strict_strtol(clevel, 10, &level))
3501 level = LEVEL_NONE;
3502
3503 if (request_module("md-%s", clevel) != 0)
3504 request_module("md-level-%s", clevel);
3505 spin_lock(&pers_lock);
3506 pers = find_pers(level, clevel);
3507 if (!pers || !try_module_get(pers->owner)) {
3508 spin_unlock(&pers_lock);
3509 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510 return -EINVAL;
3511 }
3512 spin_unlock(&pers_lock);
3513
3514 if (pers == mddev->pers) {
3515 /* Nothing to do! */
3516 module_put(pers->owner);
3517 return rv;
3518 }
3519 if (!pers->takeover) {
3520 module_put(pers->owner);
3521 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522 mdname(mddev), clevel);
3523 return -EINVAL;
3524 }
3525
3526 rdev_for_each(rdev, mddev)
3527 rdev->new_raid_disk = rdev->raid_disk;
3528
3529 /* ->takeover must set new_* and/or delta_disks
3530 * if it succeeds, and may set them when it fails.
3531 */
3532 priv = pers->takeover(mddev);
3533 if (IS_ERR(priv)) {
3534 mddev->new_level = mddev->level;
3535 mddev->new_layout = mddev->layout;
3536 mddev->new_chunk_sectors = mddev->chunk_sectors;
3537 mddev->raid_disks -= mddev->delta_disks;
3538 mddev->delta_disks = 0;
3539 mddev->reshape_backwards = 0;
3540 module_put(pers->owner);
3541 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542 mdname(mddev), clevel);
3543 return PTR_ERR(priv);
3544 }
3545
3546 /* Looks like we have a winner */
3547 mddev_suspend(mddev);
3548 mddev->pers->stop(mddev);
3549
3550 if (mddev->pers->sync_request == NULL &&
3551 pers->sync_request != NULL) {
3552 /* need to add the md_redundancy_group */
3553 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554 printk(KERN_WARNING
3555 "md: cannot register extra attributes for %s\n",
3556 mdname(mddev));
3557 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558 }
3559 if (mddev->pers->sync_request != NULL &&
3560 pers->sync_request == NULL) {
3561 /* need to remove the md_redundancy_group */
3562 if (mddev->to_remove == NULL)
3563 mddev->to_remove = &md_redundancy_group;
3564 }
3565
3566 if (mddev->pers->sync_request == NULL &&
3567 mddev->external) {
3568 /* We are converting from a no-redundancy array
3569 * to a redundancy array and metadata is managed
3570 * externally so we need to be sure that writes
3571 * won't block due to a need to transition
3572 * clean->dirty
3573 * until external management is started.
3574 */
3575 mddev->in_sync = 0;
3576 mddev->safemode_delay = 0;
3577 mddev->safemode = 0;
3578 }
3579
3580 rdev_for_each(rdev, mddev) {
3581 if (rdev->raid_disk < 0)
3582 continue;
3583 if (rdev->new_raid_disk >= mddev->raid_disks)
3584 rdev->new_raid_disk = -1;
3585 if (rdev->new_raid_disk == rdev->raid_disk)
3586 continue;
3587 sysfs_unlink_rdev(mddev, rdev);
3588 }
3589 rdev_for_each(rdev, mddev) {
3590 if (rdev->raid_disk < 0)
3591 continue;
3592 if (rdev->new_raid_disk == rdev->raid_disk)
3593 continue;
3594 rdev->raid_disk = rdev->new_raid_disk;
3595 if (rdev->raid_disk < 0)
3596 clear_bit(In_sync, &rdev->flags);
3597 else {
3598 if (sysfs_link_rdev(mddev, rdev))
3599 printk(KERN_WARNING "md: cannot register rd%d"
3600 " for %s after level change\n",
3601 rdev->raid_disk, mdname(mddev));
3602 }
3603 }
3604
3605 module_put(mddev->pers->owner);
3606 mddev->pers = pers;
3607 mddev->private = priv;
3608 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609 mddev->level = mddev->new_level;
3610 mddev->layout = mddev->new_layout;
3611 mddev->chunk_sectors = mddev->new_chunk_sectors;
3612 mddev->delta_disks = 0;
3613 mddev->reshape_backwards = 0;
3614 mddev->degraded = 0;
3615 if (mddev->pers->sync_request == NULL) {
3616 /* this is now an array without redundancy, so
3617 * it must always be in_sync
3618 */
3619 mddev->in_sync = 1;
3620 del_timer_sync(&mddev->safemode_timer);
3621 }
3622 pers->run(mddev);
3623 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624 mddev_resume(mddev);
3625 sysfs_notify(&mddev->kobj, NULL, "level");
3626 md_new_event(mddev);
3627 return rv;
3628 }
3629
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632
3633
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637 /* just a number, not meaningful for all levels */
3638 if (mddev->reshape_position != MaxSector &&
3639 mddev->layout != mddev->new_layout)
3640 return sprintf(page, "%d (%d)\n",
3641 mddev->new_layout, mddev->layout);
3642 return sprintf(page, "%d\n", mddev->layout);
3643 }
3644
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648 char *e;
3649 unsigned long n = simple_strtoul(buf, &e, 10);
3650
3651 if (!*buf || (*e && *e != '\n'))
3652 return -EINVAL;
3653
3654 if (mddev->pers) {
3655 int err;
3656 if (mddev->pers->check_reshape == NULL)
3657 return -EBUSY;
3658 mddev->new_layout = n;
3659 err = mddev->pers->check_reshape(mddev);
3660 if (err) {
3661 mddev->new_layout = mddev->layout;
3662 return err;
3663 }
3664 } else {
3665 mddev->new_layout = n;
3666 if (mddev->reshape_position == MaxSector)
3667 mddev->layout = n;
3668 }
3669 return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678 if (mddev->raid_disks == 0)
3679 return 0;
3680 if (mddev->reshape_position != MaxSector &&
3681 mddev->delta_disks != 0)
3682 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683 mddev->raid_disks - mddev->delta_disks);
3684 return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692 char *e;
3693 int rv = 0;
3694 unsigned long n = simple_strtoul(buf, &e, 10);
3695
3696 if (!*buf || (*e && *e != '\n'))
3697 return -EINVAL;
3698
3699 if (mddev->pers)
3700 rv = update_raid_disks(mddev, n);
3701 else if (mddev->reshape_position != MaxSector) {
3702 struct md_rdev *rdev;
3703 int olddisks = mddev->raid_disks - mddev->delta_disks;
3704
3705 rdev_for_each(rdev, mddev) {
3706 if (olddisks < n &&
3707 rdev->data_offset < rdev->new_data_offset)
3708 return -EINVAL;
3709 if (olddisks > n &&
3710 rdev->data_offset > rdev->new_data_offset)
3711 return -EINVAL;
3712 }
3713 mddev->delta_disks = n - olddisks;
3714 mddev->raid_disks = n;
3715 mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 } else
3717 mddev->raid_disks = n;
3718 return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726 if (mddev->reshape_position != MaxSector &&
3727 mddev->chunk_sectors != mddev->new_chunk_sectors)
3728 return sprintf(page, "%d (%d)\n",
3729 mddev->new_chunk_sectors << 9,
3730 mddev->chunk_sectors << 9);
3731 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737 char *e;
3738 unsigned long n = simple_strtoul(buf, &e, 10);
3739
3740 if (!*buf || (*e && *e != '\n'))
3741 return -EINVAL;
3742
3743 if (mddev->pers) {
3744 int err;
3745 if (mddev->pers->check_reshape == NULL)
3746 return -EBUSY;
3747 mddev->new_chunk_sectors = n >> 9;
3748 err = mddev->pers->check_reshape(mddev);
3749 if (err) {
3750 mddev->new_chunk_sectors = mddev->chunk_sectors;
3751 return err;
3752 }
3753 } else {
3754 mddev->new_chunk_sectors = n >> 9;
3755 if (mddev->reshape_position == MaxSector)
3756 mddev->chunk_sectors = n >> 9;
3757 }
3758 return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766 if (mddev->recovery_cp == MaxSector)
3767 return sprintf(page, "none\n");
3768 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774 char *e;
3775 unsigned long long n = simple_strtoull(buf, &e, 10);
3776
3777 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778 return -EBUSY;
3779 if (cmd_match(buf, "none"))
3780 n = MaxSector;
3781 else if (!*buf || (*e && *e != '\n'))
3782 return -EINVAL;
3783
3784 mddev->recovery_cp = n;
3785 if (mddev->pers)
3786 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3787 return len;
3788 }
3789 static struct md_sysfs_entry md_resync_start =
3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3791
3792 /*
3793 * The array state can be:
3794 *
3795 * clear
3796 * No devices, no size, no level
3797 * Equivalent to STOP_ARRAY ioctl
3798 * inactive
3799 * May have some settings, but array is not active
3800 * all IO results in error
3801 * When written, doesn't tear down array, but just stops it
3802 * suspended (not supported yet)
3803 * All IO requests will block. The array can be reconfigured.
3804 * Writing this, if accepted, will block until array is quiescent
3805 * readonly
3806 * no resync can happen. no superblocks get written.
3807 * write requests fail
3808 * read-auto
3809 * like readonly, but behaves like 'clean' on a write request.
3810 *
3811 * clean - no pending writes, but otherwise active.
3812 * When written to inactive array, starts without resync
3813 * If a write request arrives then
3814 * if metadata is known, mark 'dirty' and switch to 'active'.
3815 * if not known, block and switch to write-pending
3816 * If written to an active array that has pending writes, then fails.
3817 * active
3818 * fully active: IO and resync can be happening.
3819 * When written to inactive array, starts with resync
3820 *
3821 * write-pending
3822 * clean, but writes are blocked waiting for 'active' to be written.
3823 *
3824 * active-idle
3825 * like active, but no writes have been seen for a while (100msec).
3826 *
3827 */
3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3829 write_pending, active_idle, bad_word};
3830 static char *array_states[] = {
3831 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3832 "write-pending", "active-idle", NULL };
3833
3834 static int match_word(const char *word, char **list)
3835 {
3836 int n;
3837 for (n=0; list[n]; n++)
3838 if (cmd_match(word, list[n]))
3839 break;
3840 return n;
3841 }
3842
3843 static ssize_t
3844 array_state_show(struct mddev *mddev, char *page)
3845 {
3846 enum array_state st = inactive;
3847
3848 if (mddev->pers)
3849 switch(mddev->ro) {
3850 case 1:
3851 st = readonly;
3852 break;
3853 case 2:
3854 st = read_auto;
3855 break;
3856 case 0:
3857 if (mddev->in_sync)
3858 st = clean;
3859 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3860 st = write_pending;
3861 else if (mddev->safemode)
3862 st = active_idle;
3863 else
3864 st = active;
3865 }
3866 else {
3867 if (list_empty(&mddev->disks) &&
3868 mddev->raid_disks == 0 &&
3869 mddev->dev_sectors == 0)
3870 st = clear;
3871 else
3872 st = inactive;
3873 }
3874 return sprintf(page, "%s\n", array_states[st]);
3875 }
3876
3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3879 static int do_md_run(struct mddev * mddev);
3880 static int restart_array(struct mddev *mddev);
3881
3882 static ssize_t
3883 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885 int err = -EINVAL;
3886 enum array_state st = match_word(buf, array_states);
3887 switch(st) {
3888 case bad_word:
3889 break;
3890 case clear:
3891 /* stopping an active array */
3892 err = do_md_stop(mddev, 0, NULL);
3893 break;
3894 case inactive:
3895 /* stopping an active array */
3896 if (mddev->pers)
3897 err = do_md_stop(mddev, 2, NULL);
3898 else
3899 err = 0; /* already inactive */
3900 break;
3901 case suspended:
3902 break; /* not supported yet */
3903 case readonly:
3904 if (mddev->pers)
3905 err = md_set_readonly(mddev, NULL);
3906 else {
3907 mddev->ro = 1;
3908 set_disk_ro(mddev->gendisk, 1);
3909 err = do_md_run(mddev);
3910 }
3911 break;
3912 case read_auto:
3913 if (mddev->pers) {
3914 if (mddev->ro == 0)
3915 err = md_set_readonly(mddev, NULL);
3916 else if (mddev->ro == 1)
3917 err = restart_array(mddev);
3918 if (err == 0) {
3919 mddev->ro = 2;
3920 set_disk_ro(mddev->gendisk, 0);
3921 }
3922 } else {
3923 mddev->ro = 2;
3924 err = do_md_run(mddev);
3925 }
3926 break;
3927 case clean:
3928 if (mddev->pers) {
3929 restart_array(mddev);
3930 spin_lock_irq(&mddev->write_lock);
3931 if (atomic_read(&mddev->writes_pending) == 0) {
3932 if (mddev->in_sync == 0) {
3933 mddev->in_sync = 1;
3934 if (mddev->safemode == 1)
3935 mddev->safemode = 0;
3936 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3937 }
3938 err = 0;
3939 } else
3940 err = -EBUSY;
3941 spin_unlock_irq(&mddev->write_lock);
3942 } else
3943 err = -EINVAL;
3944 break;
3945 case active:
3946 if (mddev->pers) {
3947 restart_array(mddev);
3948 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3949 wake_up(&mddev->sb_wait);
3950 err = 0;
3951 } else {
3952 mddev->ro = 0;
3953 set_disk_ro(mddev->gendisk, 0);
3954 err = do_md_run(mddev);
3955 }
3956 break;
3957 case write_pending:
3958 case active_idle:
3959 /* these cannot be set */
3960 break;
3961 }
3962 if (err)
3963 return err;
3964 else {
3965 if (mddev->hold_active == UNTIL_IOCTL)
3966 mddev->hold_active = 0;
3967 sysfs_notify_dirent_safe(mddev->sysfs_state);
3968 return len;
3969 }
3970 }
3971 static struct md_sysfs_entry md_array_state =
3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3973
3974 static ssize_t
3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3976 return sprintf(page, "%d\n",
3977 atomic_read(&mddev->max_corr_read_errors));
3978 }
3979
3980 static ssize_t
3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983 char *e;
3984 unsigned long n = simple_strtoul(buf, &e, 10);
3985
3986 if (*buf && (*e == 0 || *e == '\n')) {
3987 atomic_set(&mddev->max_corr_read_errors, n);
3988 return len;
3989 }
3990 return -EINVAL;
3991 }
3992
3993 static struct md_sysfs_entry max_corr_read_errors =
3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3995 max_corrected_read_errors_store);
3996
3997 static ssize_t
3998 null_show(struct mddev *mddev, char *page)
3999 {
4000 return -EINVAL;
4001 }
4002
4003 static ssize_t
4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4005 {
4006 /* buf must be %d:%d\n? giving major and minor numbers */
4007 /* The new device is added to the array.
4008 * If the array has a persistent superblock, we read the
4009 * superblock to initialise info and check validity.
4010 * Otherwise, only checking done is that in bind_rdev_to_array,
4011 * which mainly checks size.
4012 */
4013 char *e;
4014 int major = simple_strtoul(buf, &e, 10);
4015 int minor;
4016 dev_t dev;
4017 struct md_rdev *rdev;
4018 int err;
4019
4020 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4021 return -EINVAL;
4022 minor = simple_strtoul(e+1, &e, 10);
4023 if (*e && *e != '\n')
4024 return -EINVAL;
4025 dev = MKDEV(major, minor);
4026 if (major != MAJOR(dev) ||
4027 minor != MINOR(dev))
4028 return -EOVERFLOW;
4029
4030
4031 if (mddev->persistent) {
4032 rdev = md_import_device(dev, mddev->major_version,
4033 mddev->minor_version);
4034 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4035 struct md_rdev *rdev0
4036 = list_entry(mddev->disks.next,
4037 struct md_rdev, same_set);
4038 err = super_types[mddev->major_version]
4039 .load_super(rdev, rdev0, mddev->minor_version);
4040 if (err < 0)
4041 goto out;
4042 }
4043 } else if (mddev->external)
4044 rdev = md_import_device(dev, -2, -1);
4045 else
4046 rdev = md_import_device(dev, -1, -1);
4047
4048 if (IS_ERR(rdev))
4049 return PTR_ERR(rdev);
4050 err = bind_rdev_to_array(rdev, mddev);
4051 out:
4052 if (err)
4053 export_rdev(rdev);
4054 return err ? err : len;
4055 }
4056
4057 static struct md_sysfs_entry md_new_device =
4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4059
4060 static ssize_t
4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 char *end;
4064 unsigned long chunk, end_chunk;
4065
4066 if (!mddev->bitmap)
4067 goto out;
4068 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4069 while (*buf) {
4070 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4071 if (buf == end) break;
4072 if (*end == '-') { /* range */
4073 buf = end + 1;
4074 end_chunk = simple_strtoul(buf, &end, 0);
4075 if (buf == end) break;
4076 }
4077 if (*end && !isspace(*end)) break;
4078 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4079 buf = skip_spaces(end);
4080 }
4081 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4082 out:
4083 return len;
4084 }
4085
4086 static struct md_sysfs_entry md_bitmap =
4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4088
4089 static ssize_t
4090 size_show(struct mddev *mddev, char *page)
4091 {
4092 return sprintf(page, "%llu\n",
4093 (unsigned long long)mddev->dev_sectors / 2);
4094 }
4095
4096 static int update_size(struct mddev *mddev, sector_t num_sectors);
4097
4098 static ssize_t
4099 size_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 /* If array is inactive, we can reduce the component size, but
4102 * not increase it (except from 0).
4103 * If array is active, we can try an on-line resize
4104 */
4105 sector_t sectors;
4106 int err = strict_blocks_to_sectors(buf, &sectors);
4107
4108 if (err < 0)
4109 return err;
4110 if (mddev->pers) {
4111 err = update_size(mddev, sectors);
4112 md_update_sb(mddev, 1);
4113 } else {
4114 if (mddev->dev_sectors == 0 ||
4115 mddev->dev_sectors > sectors)
4116 mddev->dev_sectors = sectors;
4117 else
4118 err = -ENOSPC;
4119 }
4120 return err ? err : len;
4121 }
4122
4123 static struct md_sysfs_entry md_size =
4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4125
4126
4127 /* Metadata version.
4128 * This is one of
4129 * 'none' for arrays with no metadata (good luck...)
4130 * 'external' for arrays with externally managed metadata,
4131 * or N.M for internally known formats
4132 */
4133 static ssize_t
4134 metadata_show(struct mddev *mddev, char *page)
4135 {
4136 if (mddev->persistent)
4137 return sprintf(page, "%d.%d\n",
4138 mddev->major_version, mddev->minor_version);
4139 else if (mddev->external)
4140 return sprintf(page, "external:%s\n", mddev->metadata_type);
4141 else
4142 return sprintf(page, "none\n");
4143 }
4144
4145 static ssize_t
4146 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148 int major, minor;
4149 char *e;
4150 /* Changing the details of 'external' metadata is
4151 * always permitted. Otherwise there must be
4152 * no devices attached to the array.
4153 */
4154 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4155 ;
4156 else if (!list_empty(&mddev->disks))
4157 return -EBUSY;
4158
4159 if (cmd_match(buf, "none")) {
4160 mddev->persistent = 0;
4161 mddev->external = 0;
4162 mddev->major_version = 0;
4163 mddev->minor_version = 90;
4164 return len;
4165 }
4166 if (strncmp(buf, "external:", 9) == 0) {
4167 size_t namelen = len-9;
4168 if (namelen >= sizeof(mddev->metadata_type))
4169 namelen = sizeof(mddev->metadata_type)-1;
4170 strncpy(mddev->metadata_type, buf+9, namelen);
4171 mddev->metadata_type[namelen] = 0;
4172 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4173 mddev->metadata_type[--namelen] = 0;
4174 mddev->persistent = 0;
4175 mddev->external = 1;
4176 mddev->major_version = 0;
4177 mddev->minor_version = 90;
4178 return len;
4179 }
4180 major = simple_strtoul(buf, &e, 10);
4181 if (e==buf || *e != '.')
4182 return -EINVAL;
4183 buf = e+1;
4184 minor = simple_strtoul(buf, &e, 10);
4185 if (e==buf || (*e && *e != '\n') )
4186 return -EINVAL;
4187 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4188 return -ENOENT;
4189 mddev->major_version = major;
4190 mddev->minor_version = minor;
4191 mddev->persistent = 1;
4192 mddev->external = 0;
4193 return len;
4194 }
4195
4196 static struct md_sysfs_entry md_metadata =
4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4198
4199 static ssize_t
4200 action_show(struct mddev *mddev, char *page)
4201 {
4202 char *type = "idle";
4203 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4204 type = "frozen";
4205 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4207 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208 type = "reshape";
4209 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4210 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4211 type = "resync";
4212 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4213 type = "check";
4214 else
4215 type = "repair";
4216 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4217 type = "recover";
4218 }
4219 return sprintf(page, "%s\n", type);
4220 }
4221
4222 static ssize_t
4223 action_store(struct mddev *mddev, const char *page, size_t len)
4224 {
4225 if (!mddev->pers || !mddev->pers->sync_request)
4226 return -EINVAL;
4227
4228 if (cmd_match(page, "frozen"))
4229 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4230 else
4231 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232
4233 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4234 if (mddev->sync_thread) {
4235 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236 md_reap_sync_thread(mddev);
4237 }
4238 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240 return -EBUSY;
4241 else if (cmd_match(page, "resync"))
4242 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4243 else if (cmd_match(page, "recover")) {
4244 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4245 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4246 } else if (cmd_match(page, "reshape")) {
4247 int err;
4248 if (mddev->pers->start_reshape == NULL)
4249 return -EINVAL;
4250 err = mddev->pers->start_reshape(mddev);
4251 if (err)
4252 return err;
4253 sysfs_notify(&mddev->kobj, NULL, "degraded");
4254 } else {
4255 if (cmd_match(page, "check"))
4256 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4257 else if (!cmd_match(page, "repair"))
4258 return -EINVAL;
4259 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4260 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4261 }
4262 if (mddev->ro == 2) {
4263 /* A write to sync_action is enough to justify
4264 * canceling read-auto mode
4265 */
4266 mddev->ro = 0;
4267 md_wakeup_thread(mddev->sync_thread);
4268 }
4269 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4270 md_wakeup_thread(mddev->thread);
4271 sysfs_notify_dirent_safe(mddev->sysfs_action);
4272 return len;
4273 }
4274
4275 static ssize_t
4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4277 {
4278 return sprintf(page, "%llu\n",
4279 (unsigned long long)
4280 atomic64_read(&mddev->resync_mismatches));
4281 }
4282
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285
4286
4287 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4288
4289 static ssize_t
4290 sync_min_show(struct mddev *mddev, char *page)
4291 {
4292 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4293 mddev->sync_speed_min ? "local": "system");
4294 }
4295
4296 static ssize_t
4297 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299 int min;
4300 char *e;
4301 if (strncmp(buf, "system", 6)==0) {
4302 mddev->sync_speed_min = 0;
4303 return len;
4304 }
4305 min = simple_strtoul(buf, &e, 10);
4306 if (buf == e || (*e && *e != '\n') || min <= 0)
4307 return -EINVAL;
4308 mddev->sync_speed_min = min;
4309 return len;
4310 }
4311
4312 static struct md_sysfs_entry md_sync_min =
4313 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4314
4315 static ssize_t
4316 sync_max_show(struct mddev *mddev, char *page)
4317 {
4318 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4319 mddev->sync_speed_max ? "local": "system");
4320 }
4321
4322 static ssize_t
4323 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4324 {
4325 int max;
4326 char *e;
4327 if (strncmp(buf, "system", 6)==0) {
4328 mddev->sync_speed_max = 0;
4329 return len;
4330 }
4331 max = simple_strtoul(buf, &e, 10);
4332 if (buf == e || (*e && *e != '\n') || max <= 0)
4333 return -EINVAL;
4334 mddev->sync_speed_max = max;
4335 return len;
4336 }
4337
4338 static struct md_sysfs_entry md_sync_max =
4339 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4340
4341 static ssize_t
4342 degraded_show(struct mddev *mddev, char *page)
4343 {
4344 return sprintf(page, "%d\n", mddev->degraded);
4345 }
4346 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4347
4348 static ssize_t
4349 sync_force_parallel_show(struct mddev *mddev, char *page)
4350 {
4351 return sprintf(page, "%d\n", mddev->parallel_resync);
4352 }
4353
4354 static ssize_t
4355 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357 long n;
4358
4359 if (strict_strtol(buf, 10, &n))
4360 return -EINVAL;
4361
4362 if (n != 0 && n != 1)
4363 return -EINVAL;
4364
4365 mddev->parallel_resync = n;
4366
4367 if (mddev->sync_thread)
4368 wake_up(&resync_wait);
4369
4370 return len;
4371 }
4372
4373 /* force parallel resync, even with shared block devices */
4374 static struct md_sysfs_entry md_sync_force_parallel =
4375 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4376 sync_force_parallel_show, sync_force_parallel_store);
4377
4378 static ssize_t
4379 sync_speed_show(struct mddev *mddev, char *page)
4380 {
4381 unsigned long resync, dt, db;
4382 if (mddev->curr_resync == 0)
4383 return sprintf(page, "none\n");
4384 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4385 dt = (jiffies - mddev->resync_mark) / HZ;
4386 if (!dt) dt++;
4387 db = resync - mddev->resync_mark_cnt;
4388 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4389 }
4390
4391 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4392
4393 static ssize_t
4394 sync_completed_show(struct mddev *mddev, char *page)
4395 {
4396 unsigned long long max_sectors, resync;
4397
4398 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4399 return sprintf(page, "none\n");
4400
4401 if (mddev->curr_resync == 1 ||
4402 mddev->curr_resync == 2)
4403 return sprintf(page, "delayed\n");
4404
4405 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4406 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4407 max_sectors = mddev->resync_max_sectors;
4408 else
4409 max_sectors = mddev->dev_sectors;
4410
4411 resync = mddev->curr_resync_completed;
4412 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4413 }
4414
4415 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4416
4417 static ssize_t
4418 min_sync_show(struct mddev *mddev, char *page)
4419 {
4420 return sprintf(page, "%llu\n",
4421 (unsigned long long)mddev->resync_min);
4422 }
4423 static ssize_t
4424 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4425 {
4426 unsigned long long min;
4427 if (strict_strtoull(buf, 10, &min))
4428 return -EINVAL;
4429 if (min > mddev->resync_max)
4430 return -EINVAL;
4431 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4432 return -EBUSY;
4433
4434 /* Must be a multiple of chunk_size */
4435 if (mddev->chunk_sectors) {
4436 sector_t temp = min;
4437 if (sector_div(temp, mddev->chunk_sectors))
4438 return -EINVAL;
4439 }
4440 mddev->resync_min = min;
4441
4442 return len;
4443 }
4444
4445 static struct md_sysfs_entry md_min_sync =
4446 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4447
4448 static ssize_t
4449 max_sync_show(struct mddev *mddev, char *page)
4450 {
4451 if (mddev->resync_max == MaxSector)
4452 return sprintf(page, "max\n");
4453 else
4454 return sprintf(page, "%llu\n",
4455 (unsigned long long)mddev->resync_max);
4456 }
4457 static ssize_t
4458 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460 if (strncmp(buf, "max", 3) == 0)
4461 mddev->resync_max = MaxSector;
4462 else {
4463 unsigned long long max;
4464 if (strict_strtoull(buf, 10, &max))
4465 return -EINVAL;
4466 if (max < mddev->resync_min)
4467 return -EINVAL;
4468 if (max < mddev->resync_max &&
4469 mddev->ro == 0 &&
4470 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4471 return -EBUSY;
4472
4473 /* Must be a multiple of chunk_size */
4474 if (mddev->chunk_sectors) {
4475 sector_t temp = max;
4476 if (sector_div(temp, mddev->chunk_sectors))
4477 return -EINVAL;
4478 }
4479 mddev->resync_max = max;
4480 }
4481 wake_up(&mddev->recovery_wait);
4482 return len;
4483 }
4484
4485 static struct md_sysfs_entry md_max_sync =
4486 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4487
4488 static ssize_t
4489 suspend_lo_show(struct mddev *mddev, char *page)
4490 {
4491 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4492 }
4493
4494 static ssize_t
4495 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4496 {
4497 char *e;
4498 unsigned long long new = simple_strtoull(buf, &e, 10);
4499 unsigned long long old = mddev->suspend_lo;
4500
4501 if (mddev->pers == NULL ||
4502 mddev->pers->quiesce == NULL)
4503 return -EINVAL;
4504 if (buf == e || (*e && *e != '\n'))
4505 return -EINVAL;
4506
4507 mddev->suspend_lo = new;
4508 if (new >= old)
4509 /* Shrinking suspended region */
4510 mddev->pers->quiesce(mddev, 2);
4511 else {
4512 /* Expanding suspended region - need to wait */
4513 mddev->pers->quiesce(mddev, 1);
4514 mddev->pers->quiesce(mddev, 0);
4515 }
4516 return len;
4517 }
4518 static struct md_sysfs_entry md_suspend_lo =
4519 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4520
4521
4522 static ssize_t
4523 suspend_hi_show(struct mddev *mddev, char *page)
4524 {
4525 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4526 }
4527
4528 static ssize_t
4529 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4530 {
4531 char *e;
4532 unsigned long long new = simple_strtoull(buf, &e, 10);
4533 unsigned long long old = mddev->suspend_hi;
4534
4535 if (mddev->pers == NULL ||
4536 mddev->pers->quiesce == NULL)
4537 return -EINVAL;
4538 if (buf == e || (*e && *e != '\n'))
4539 return -EINVAL;
4540
4541 mddev->suspend_hi = new;
4542 if (new <= old)
4543 /* Shrinking suspended region */
4544 mddev->pers->quiesce(mddev, 2);
4545 else {
4546 /* Expanding suspended region - need to wait */
4547 mddev->pers->quiesce(mddev, 1);
4548 mddev->pers->quiesce(mddev, 0);
4549 }
4550 return len;
4551 }
4552 static struct md_sysfs_entry md_suspend_hi =
4553 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4554
4555 static ssize_t
4556 reshape_position_show(struct mddev *mddev, char *page)
4557 {
4558 if (mddev->reshape_position != MaxSector)
4559 return sprintf(page, "%llu\n",
4560 (unsigned long long)mddev->reshape_position);
4561 strcpy(page, "none\n");
4562 return 5;
4563 }
4564
4565 static ssize_t
4566 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 struct md_rdev *rdev;
4569 char *e;
4570 unsigned long long new = simple_strtoull(buf, &e, 10);
4571 if (mddev->pers)
4572 return -EBUSY;
4573 if (buf == e || (*e && *e != '\n'))
4574 return -EINVAL;
4575 mddev->reshape_position = new;
4576 mddev->delta_disks = 0;
4577 mddev->reshape_backwards = 0;
4578 mddev->new_level = mddev->level;
4579 mddev->new_layout = mddev->layout;
4580 mddev->new_chunk_sectors = mddev->chunk_sectors;
4581 rdev_for_each(rdev, mddev)
4582 rdev->new_data_offset = rdev->data_offset;
4583 return len;
4584 }
4585
4586 static struct md_sysfs_entry md_reshape_position =
4587 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4588 reshape_position_store);
4589
4590 static ssize_t
4591 reshape_direction_show(struct mddev *mddev, char *page)
4592 {
4593 return sprintf(page, "%s\n",
4594 mddev->reshape_backwards ? "backwards" : "forwards");
4595 }
4596
4597 static ssize_t
4598 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4599 {
4600 int backwards = 0;
4601 if (cmd_match(buf, "forwards"))
4602 backwards = 0;
4603 else if (cmd_match(buf, "backwards"))
4604 backwards = 1;
4605 else
4606 return -EINVAL;
4607 if (mddev->reshape_backwards == backwards)
4608 return len;
4609
4610 /* check if we are allowed to change */
4611 if (mddev->delta_disks)
4612 return -EBUSY;
4613
4614 if (mddev->persistent &&
4615 mddev->major_version == 0)
4616 return -EINVAL;
4617
4618 mddev->reshape_backwards = backwards;
4619 return len;
4620 }
4621
4622 static struct md_sysfs_entry md_reshape_direction =
4623 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4624 reshape_direction_store);
4625
4626 static ssize_t
4627 array_size_show(struct mddev *mddev, char *page)
4628 {
4629 if (mddev->external_size)
4630 return sprintf(page, "%llu\n",
4631 (unsigned long long)mddev->array_sectors/2);
4632 else
4633 return sprintf(page, "default\n");
4634 }
4635
4636 static ssize_t
4637 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639 sector_t sectors;
4640
4641 if (strncmp(buf, "default", 7) == 0) {
4642 if (mddev->pers)
4643 sectors = mddev->pers->size(mddev, 0, 0);
4644 else
4645 sectors = mddev->array_sectors;
4646
4647 mddev->external_size = 0;
4648 } else {
4649 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4650 return -EINVAL;
4651 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4652 return -E2BIG;
4653
4654 mddev->external_size = 1;
4655 }
4656
4657 mddev->array_sectors = sectors;
4658 if (mddev->pers) {
4659 set_capacity(mddev->gendisk, mddev->array_sectors);
4660 revalidate_disk(mddev->gendisk);
4661 }
4662 return len;
4663 }
4664
4665 static struct md_sysfs_entry md_array_size =
4666 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4667 array_size_store);
4668
4669 static struct attribute *md_default_attrs[] = {
4670 &md_level.attr,
4671 &md_layout.attr,
4672 &md_raid_disks.attr,
4673 &md_chunk_size.attr,
4674 &md_size.attr,
4675 &md_resync_start.attr,
4676 &md_metadata.attr,
4677 &md_new_device.attr,
4678 &md_safe_delay.attr,
4679 &md_array_state.attr,
4680 &md_reshape_position.attr,
4681 &md_reshape_direction.attr,
4682 &md_array_size.attr,
4683 &max_corr_read_errors.attr,
4684 NULL,
4685 };
4686
4687 static struct attribute *md_redundancy_attrs[] = {
4688 &md_scan_mode.attr,
4689 &md_mismatches.attr,
4690 &md_sync_min.attr,
4691 &md_sync_max.attr,
4692 &md_sync_speed.attr,
4693 &md_sync_force_parallel.attr,
4694 &md_sync_completed.attr,
4695 &md_min_sync.attr,
4696 &md_max_sync.attr,
4697 &md_suspend_lo.attr,
4698 &md_suspend_hi.attr,
4699 &md_bitmap.attr,
4700 &md_degraded.attr,
4701 NULL,
4702 };
4703 static struct attribute_group md_redundancy_group = {
4704 .name = NULL,
4705 .attrs = md_redundancy_attrs,
4706 };
4707
4708
4709 static ssize_t
4710 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4711 {
4712 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4713 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4714 ssize_t rv;
4715
4716 if (!entry->show)
4717 return -EIO;
4718 spin_lock(&all_mddevs_lock);
4719 if (list_empty(&mddev->all_mddevs)) {
4720 spin_unlock(&all_mddevs_lock);
4721 return -EBUSY;
4722 }
4723 mddev_get(mddev);
4724 spin_unlock(&all_mddevs_lock);
4725
4726 rv = mddev_lock(mddev);
4727 if (!rv) {
4728 rv = entry->show(mddev, page);
4729 mddev_unlock(mddev);
4730 }
4731 mddev_put(mddev);
4732 return rv;
4733 }
4734
4735 static ssize_t
4736 md_attr_store(struct kobject *kobj, struct attribute *attr,
4737 const char *page, size_t length)
4738 {
4739 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4740 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4741 ssize_t rv;
4742
4743 if (!entry->store)
4744 return -EIO;
4745 if (!capable(CAP_SYS_ADMIN))
4746 return -EACCES;
4747 spin_lock(&all_mddevs_lock);
4748 if (list_empty(&mddev->all_mddevs)) {
4749 spin_unlock(&all_mddevs_lock);
4750 return -EBUSY;
4751 }
4752 mddev_get(mddev);
4753 spin_unlock(&all_mddevs_lock);
4754 if (entry->store == new_dev_store)
4755 flush_workqueue(md_misc_wq);
4756 rv = mddev_lock(mddev);
4757 if (!rv) {
4758 rv = entry->store(mddev, page, length);
4759 mddev_unlock(mddev);
4760 }
4761 mddev_put(mddev);
4762 return rv;
4763 }
4764
4765 static void md_free(struct kobject *ko)
4766 {
4767 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4768
4769 if (mddev->sysfs_state)
4770 sysfs_put(mddev->sysfs_state);
4771
4772 if (mddev->gendisk) {
4773 del_gendisk(mddev->gendisk);
4774 put_disk(mddev->gendisk);
4775 }
4776 if (mddev->queue)
4777 blk_cleanup_queue(mddev->queue);
4778
4779 kfree(mddev);
4780 }
4781
4782 static const struct sysfs_ops md_sysfs_ops = {
4783 .show = md_attr_show,
4784 .store = md_attr_store,
4785 };
4786 static struct kobj_type md_ktype = {
4787 .release = md_free,
4788 .sysfs_ops = &md_sysfs_ops,
4789 .default_attrs = md_default_attrs,
4790 };
4791
4792 int mdp_major = 0;
4793
4794 static void mddev_delayed_delete(struct work_struct *ws)
4795 {
4796 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4797
4798 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4799 kobject_del(&mddev->kobj);
4800 kobject_put(&mddev->kobj);
4801 }
4802
4803 static int md_alloc(dev_t dev, char *name)
4804 {
4805 static DEFINE_MUTEX(disks_mutex);
4806 struct mddev *mddev = mddev_find(dev);
4807 struct gendisk *disk;
4808 int partitioned;
4809 int shift;
4810 int unit;
4811 int error;
4812
4813 if (!mddev)
4814 return -ENODEV;
4815
4816 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4817 shift = partitioned ? MdpMinorShift : 0;
4818 unit = MINOR(mddev->unit) >> shift;
4819
4820 /* wait for any previous instance of this device to be
4821 * completely removed (mddev_delayed_delete).
4822 */
4823 flush_workqueue(md_misc_wq);
4824
4825 mutex_lock(&disks_mutex);
4826 error = -EEXIST;
4827 if (mddev->gendisk)
4828 goto abort;
4829
4830 if (name) {
4831 /* Need to ensure that 'name' is not a duplicate.
4832 */
4833 struct mddev *mddev2;
4834 spin_lock(&all_mddevs_lock);
4835
4836 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4837 if (mddev2->gendisk &&
4838 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4839 spin_unlock(&all_mddevs_lock);
4840 goto abort;
4841 }
4842 spin_unlock(&all_mddevs_lock);
4843 }
4844
4845 error = -ENOMEM;
4846 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4847 if (!mddev->queue)
4848 goto abort;
4849 mddev->queue->queuedata = mddev;
4850
4851 blk_queue_make_request(mddev->queue, md_make_request);
4852 blk_set_stacking_limits(&mddev->queue->limits);
4853
4854 disk = alloc_disk(1 << shift);
4855 if (!disk) {
4856 blk_cleanup_queue(mddev->queue);
4857 mddev->queue = NULL;
4858 goto abort;
4859 }
4860 disk->major = MAJOR(mddev->unit);
4861 disk->first_minor = unit << shift;
4862 if (name)
4863 strcpy(disk->disk_name, name);
4864 else if (partitioned)
4865 sprintf(disk->disk_name, "md_d%d", unit);
4866 else
4867 sprintf(disk->disk_name, "md%d", unit);
4868 disk->fops = &md_fops;
4869 disk->private_data = mddev;
4870 disk->queue = mddev->queue;
4871 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4872 /* Allow extended partitions. This makes the
4873 * 'mdp' device redundant, but we can't really
4874 * remove it now.
4875 */
4876 disk->flags |= GENHD_FL_EXT_DEVT;
4877 mddev->gendisk = disk;
4878 /* As soon as we call add_disk(), another thread could get
4879 * through to md_open, so make sure it doesn't get too far
4880 */
4881 mutex_lock(&mddev->open_mutex);
4882 add_disk(disk);
4883
4884 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4885 &disk_to_dev(disk)->kobj, "%s", "md");
4886 if (error) {
4887 /* This isn't possible, but as kobject_init_and_add is marked
4888 * __must_check, we must do something with the result
4889 */
4890 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891 disk->disk_name);
4892 error = 0;
4893 }
4894 if (mddev->kobj.sd &&
4895 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4896 printk(KERN_DEBUG "pointless warning\n");
4897 mutex_unlock(&mddev->open_mutex);
4898 abort:
4899 mutex_unlock(&disks_mutex);
4900 if (!error && mddev->kobj.sd) {
4901 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4902 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4903 }
4904 mddev_put(mddev);
4905 return error;
4906 }
4907
4908 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4909 {
4910 md_alloc(dev, NULL);
4911 return NULL;
4912 }
4913
4914 static int add_named_array(const char *val, struct kernel_param *kp)
4915 {
4916 /* val must be "md_*" where * is not all digits.
4917 * We allocate an array with a large free minor number, and
4918 * set the name to val. val must not already be an active name.
4919 */
4920 int len = strlen(val);
4921 char buf[DISK_NAME_LEN];
4922
4923 while (len && val[len-1] == '\n')
4924 len--;
4925 if (len >= DISK_NAME_LEN)
4926 return -E2BIG;
4927 strlcpy(buf, val, len+1);
4928 if (strncmp(buf, "md_", 3) != 0)
4929 return -EINVAL;
4930 return md_alloc(0, buf);
4931 }
4932
4933 static void md_safemode_timeout(unsigned long data)
4934 {
4935 struct mddev *mddev = (struct mddev *) data;
4936
4937 if (!atomic_read(&mddev->writes_pending)) {
4938 mddev->safemode = 1;
4939 if (mddev->external)
4940 sysfs_notify_dirent_safe(mddev->sysfs_state);
4941 }
4942 md_wakeup_thread(mddev->thread);
4943 }
4944
4945 static int start_dirty_degraded;
4946
4947 int md_run(struct mddev *mddev)
4948 {
4949 int err;
4950 struct md_rdev *rdev;
4951 struct md_personality *pers;
4952
4953 if (list_empty(&mddev->disks))
4954 /* cannot run an array with no devices.. */
4955 return -EINVAL;
4956
4957 if (mddev->pers)
4958 return -EBUSY;
4959 /* Cannot run until previous stop completes properly */
4960 if (mddev->sysfs_active)
4961 return -EBUSY;
4962
4963 /*
4964 * Analyze all RAID superblock(s)
4965 */
4966 if (!mddev->raid_disks) {
4967 if (!mddev->persistent)
4968 return -EINVAL;
4969 analyze_sbs(mddev);
4970 }
4971
4972 if (mddev->level != LEVEL_NONE)
4973 request_module("md-level-%d", mddev->level);
4974 else if (mddev->clevel[0])
4975 request_module("md-%s", mddev->clevel);
4976
4977 /*
4978 * Drop all container device buffers, from now on
4979 * the only valid external interface is through the md
4980 * device.
4981 */
4982 rdev_for_each(rdev, mddev) {
4983 if (test_bit(Faulty, &rdev->flags))
4984 continue;
4985 sync_blockdev(rdev->bdev);
4986 invalidate_bdev(rdev->bdev);
4987
4988 /* perform some consistency tests on the device.
4989 * We don't want the data to overlap the metadata,
4990 * Internal Bitmap issues have been handled elsewhere.
4991 */
4992 if (rdev->meta_bdev) {
4993 /* Nothing to check */;
4994 } else if (rdev->data_offset < rdev->sb_start) {
4995 if (mddev->dev_sectors &&
4996 rdev->data_offset + mddev->dev_sectors
4997 > rdev->sb_start) {
4998 printk("md: %s: data overlaps metadata\n",
4999 mdname(mddev));
5000 return -EINVAL;
5001 }
5002 } else {
5003 if (rdev->sb_start + rdev->sb_size/512
5004 > rdev->data_offset) {
5005 printk("md: %s: metadata overlaps data\n",
5006 mdname(mddev));
5007 return -EINVAL;
5008 }
5009 }
5010 sysfs_notify_dirent_safe(rdev->sysfs_state);
5011 }
5012
5013 if (mddev->bio_set == NULL)
5014 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5015
5016 spin_lock(&pers_lock);
5017 pers = find_pers(mddev->level, mddev->clevel);
5018 if (!pers || !try_module_get(pers->owner)) {
5019 spin_unlock(&pers_lock);
5020 if (mddev->level != LEVEL_NONE)
5021 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5022 mddev->level);
5023 else
5024 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5025 mddev->clevel);
5026 return -EINVAL;
5027 }
5028 mddev->pers = pers;
5029 spin_unlock(&pers_lock);
5030 if (mddev->level != pers->level) {
5031 mddev->level = pers->level;
5032 mddev->new_level = pers->level;
5033 }
5034 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5035
5036 if (mddev->reshape_position != MaxSector &&
5037 pers->start_reshape == NULL) {
5038 /* This personality cannot handle reshaping... */
5039 mddev->pers = NULL;
5040 module_put(pers->owner);
5041 return -EINVAL;
5042 }
5043
5044 if (pers->sync_request) {
5045 /* Warn if this is a potentially silly
5046 * configuration.
5047 */
5048 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5049 struct md_rdev *rdev2;
5050 int warned = 0;
5051
5052 rdev_for_each(rdev, mddev)
5053 rdev_for_each(rdev2, mddev) {
5054 if (rdev < rdev2 &&
5055 rdev->bdev->bd_contains ==
5056 rdev2->bdev->bd_contains) {
5057 printk(KERN_WARNING
5058 "%s: WARNING: %s appears to be"
5059 " on the same physical disk as"
5060 " %s.\n",
5061 mdname(mddev),
5062 bdevname(rdev->bdev,b),
5063 bdevname(rdev2->bdev,b2));
5064 warned = 1;
5065 }
5066 }
5067
5068 if (warned)
5069 printk(KERN_WARNING
5070 "True protection against single-disk"
5071 " failure might be compromised.\n");
5072 }
5073
5074 mddev->recovery = 0;
5075 /* may be over-ridden by personality */
5076 mddev->resync_max_sectors = mddev->dev_sectors;
5077
5078 mddev->ok_start_degraded = start_dirty_degraded;
5079
5080 if (start_readonly && mddev->ro == 0)
5081 mddev->ro = 2; /* read-only, but switch on first write */
5082
5083 err = mddev->pers->run(mddev);
5084 if (err)
5085 printk(KERN_ERR "md: pers->run() failed ...\n");
5086 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5087 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5088 " but 'external_size' not in effect?\n", __func__);
5089 printk(KERN_ERR
5090 "md: invalid array_size %llu > default size %llu\n",
5091 (unsigned long long)mddev->array_sectors / 2,
5092 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5093 err = -EINVAL;
5094 mddev->pers->stop(mddev);
5095 }
5096 if (err == 0 && mddev->pers->sync_request &&
5097 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5098 err = bitmap_create(mddev);
5099 if (err) {
5100 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5101 mdname(mddev), err);
5102 mddev->pers->stop(mddev);
5103 }
5104 }
5105 if (err) {
5106 module_put(mddev->pers->owner);
5107 mddev->pers = NULL;
5108 bitmap_destroy(mddev);
5109 return err;
5110 }
5111 if (mddev->pers->sync_request) {
5112 if (mddev->kobj.sd &&
5113 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5114 printk(KERN_WARNING
5115 "md: cannot register extra attributes for %s\n",
5116 mdname(mddev));
5117 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5118 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5119 mddev->ro = 0;
5120
5121 atomic_set(&mddev->writes_pending,0);
5122 atomic_set(&mddev->max_corr_read_errors,
5123 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5124 mddev->safemode = 0;
5125 mddev->safemode_timer.function = md_safemode_timeout;
5126 mddev->safemode_timer.data = (unsigned long) mddev;
5127 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128 mddev->in_sync = 1;
5129 smp_wmb();
5130 mddev->ready = 1;
5131 rdev_for_each(rdev, mddev)
5132 if (rdev->raid_disk >= 0)
5133 if (sysfs_link_rdev(mddev, rdev))
5134 /* failure here is OK */;
5135
5136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5137
5138 if (mddev->flags)
5139 md_update_sb(mddev, 0);
5140
5141 md_new_event(mddev);
5142 sysfs_notify_dirent_safe(mddev->sysfs_state);
5143 sysfs_notify_dirent_safe(mddev->sysfs_action);
5144 sysfs_notify(&mddev->kobj, NULL, "degraded");
5145 return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(md_run);
5148
5149 static int do_md_run(struct mddev *mddev)
5150 {
5151 int err;
5152
5153 err = md_run(mddev);
5154 if (err)
5155 goto out;
5156 err = bitmap_load(mddev);
5157 if (err) {
5158 bitmap_destroy(mddev);
5159 goto out;
5160 }
5161
5162 md_wakeup_thread(mddev->thread);
5163 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5164
5165 set_capacity(mddev->gendisk, mddev->array_sectors);
5166 revalidate_disk(mddev->gendisk);
5167 mddev->changed = 1;
5168 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5169 out:
5170 return err;
5171 }
5172
5173 static int restart_array(struct mddev *mddev)
5174 {
5175 struct gendisk *disk = mddev->gendisk;
5176
5177 /* Complain if it has no devices */
5178 if (list_empty(&mddev->disks))
5179 return -ENXIO;
5180 if (!mddev->pers)
5181 return -EINVAL;
5182 if (!mddev->ro)
5183 return -EBUSY;
5184 mddev->safemode = 0;
5185 mddev->ro = 0;
5186 set_disk_ro(disk, 0);
5187 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5188 mdname(mddev));
5189 /* Kick recovery or resync if necessary */
5190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191 md_wakeup_thread(mddev->thread);
5192 md_wakeup_thread(mddev->sync_thread);
5193 sysfs_notify_dirent_safe(mddev->sysfs_state);
5194 return 0;
5195 }
5196
5197 /* similar to deny_write_access, but accounts for our holding a reference
5198 * to the file ourselves */
5199 static int deny_bitmap_write_access(struct file * file)
5200 {
5201 struct inode *inode = file->f_mapping->host;
5202
5203 spin_lock(&inode->i_lock);
5204 if (atomic_read(&inode->i_writecount) > 1) {
5205 spin_unlock(&inode->i_lock);
5206 return -ETXTBSY;
5207 }
5208 atomic_set(&inode->i_writecount, -1);
5209 spin_unlock(&inode->i_lock);
5210
5211 return 0;
5212 }
5213
5214 void restore_bitmap_write_access(struct file *file)
5215 {
5216 struct inode *inode = file->f_mapping->host;
5217
5218 spin_lock(&inode->i_lock);
5219 atomic_set(&inode->i_writecount, 1);
5220 spin_unlock(&inode->i_lock);
5221 }
5222
5223 static void md_clean(struct mddev *mddev)
5224 {
5225 mddev->array_sectors = 0;
5226 mddev->external_size = 0;
5227 mddev->dev_sectors = 0;
5228 mddev->raid_disks = 0;
5229 mddev->recovery_cp = 0;
5230 mddev->resync_min = 0;
5231 mddev->resync_max = MaxSector;
5232 mddev->reshape_position = MaxSector;
5233 mddev->external = 0;
5234 mddev->persistent = 0;
5235 mddev->level = LEVEL_NONE;
5236 mddev->clevel[0] = 0;
5237 mddev->flags = 0;
5238 mddev->ro = 0;
5239 mddev->metadata_type[0] = 0;
5240 mddev->chunk_sectors = 0;
5241 mddev->ctime = mddev->utime = 0;
5242 mddev->layout = 0;
5243 mddev->max_disks = 0;
5244 mddev->events = 0;
5245 mddev->can_decrease_events = 0;
5246 mddev->delta_disks = 0;
5247 mddev->reshape_backwards = 0;
5248 mddev->new_level = LEVEL_NONE;
5249 mddev->new_layout = 0;
5250 mddev->new_chunk_sectors = 0;
5251 mddev->curr_resync = 0;
5252 atomic64_set(&mddev->resync_mismatches, 0);
5253 mddev->suspend_lo = mddev->suspend_hi = 0;
5254 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5255 mddev->recovery = 0;
5256 mddev->in_sync = 0;
5257 mddev->changed = 0;
5258 mddev->degraded = 0;
5259 mddev->safemode = 0;
5260 mddev->merge_check_needed = 0;
5261 mddev->bitmap_info.offset = 0;
5262 mddev->bitmap_info.default_offset = 0;
5263 mddev->bitmap_info.default_space = 0;
5264 mddev->bitmap_info.chunksize = 0;
5265 mddev->bitmap_info.daemon_sleep = 0;
5266 mddev->bitmap_info.max_write_behind = 0;
5267 }
5268
5269 static void __md_stop_writes(struct mddev *mddev)
5270 {
5271 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5272 if (mddev->sync_thread) {
5273 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274 md_reap_sync_thread(mddev);
5275 }
5276
5277 del_timer_sync(&mddev->safemode_timer);
5278
5279 bitmap_flush(mddev);
5280 md_super_wait(mddev);
5281
5282 if (mddev->ro == 0 &&
5283 (!mddev->in_sync || mddev->flags)) {
5284 /* mark array as shutdown cleanly */
5285 mddev->in_sync = 1;
5286 md_update_sb(mddev, 1);
5287 }
5288 }
5289
5290 void md_stop_writes(struct mddev *mddev)
5291 {
5292 mddev_lock(mddev);
5293 __md_stop_writes(mddev);
5294 mddev_unlock(mddev);
5295 }
5296 EXPORT_SYMBOL_GPL(md_stop_writes);
5297
5298 static void __md_stop(struct mddev *mddev)
5299 {
5300 mddev->ready = 0;
5301 mddev->pers->stop(mddev);
5302 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5303 mddev->to_remove = &md_redundancy_group;
5304 module_put(mddev->pers->owner);
5305 mddev->pers = NULL;
5306 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5307 }
5308
5309 void md_stop(struct mddev *mddev)
5310 {
5311 /* stop the array and free an attached data structures.
5312 * This is called from dm-raid
5313 */
5314 __md_stop(mddev);
5315 bitmap_destroy(mddev);
5316 if (mddev->bio_set)
5317 bioset_free(mddev->bio_set);
5318 }
5319
5320 EXPORT_SYMBOL_GPL(md_stop);
5321
5322 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5323 {
5324 int err = 0;
5325 mutex_lock(&mddev->open_mutex);
5326 if (atomic_read(&mddev->openers) > !!bdev) {
5327 printk("md: %s still in use.\n",mdname(mddev));
5328 err = -EBUSY;
5329 goto out;
5330 }
5331 if (bdev)
5332 sync_blockdev(bdev);
5333 if (mddev->pers) {
5334 __md_stop_writes(mddev);
5335
5336 err = -ENXIO;
5337 if (mddev->ro==1)
5338 goto out;
5339 mddev->ro = 1;
5340 set_disk_ro(mddev->gendisk, 1);
5341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5342 sysfs_notify_dirent_safe(mddev->sysfs_state);
5343 err = 0;
5344 }
5345 out:
5346 mutex_unlock(&mddev->open_mutex);
5347 return err;
5348 }
5349
5350 /* mode:
5351 * 0 - completely stop and dis-assemble array
5352 * 2 - stop but do not disassemble array
5353 */
5354 static int do_md_stop(struct mddev * mddev, int mode,
5355 struct block_device *bdev)
5356 {
5357 struct gendisk *disk = mddev->gendisk;
5358 struct md_rdev *rdev;
5359
5360 mutex_lock(&mddev->open_mutex);
5361 if (atomic_read(&mddev->openers) > !!bdev ||
5362 mddev->sysfs_active) {
5363 printk("md: %s still in use.\n",mdname(mddev));
5364 mutex_unlock(&mddev->open_mutex);
5365 return -EBUSY;
5366 }
5367 if (bdev)
5368 /* It is possible IO was issued on some other
5369 * open file which was closed before we took ->open_mutex.
5370 * As that was not the last close __blkdev_put will not
5371 * have called sync_blockdev, so we must.
5372 */
5373 sync_blockdev(bdev);
5374
5375 if (mddev->pers) {
5376 if (mddev->ro)
5377 set_disk_ro(disk, 0);
5378
5379 __md_stop_writes(mddev);
5380 __md_stop(mddev);
5381 mddev->queue->merge_bvec_fn = NULL;
5382 mddev->queue->backing_dev_info.congested_fn = NULL;
5383
5384 /* tell userspace to handle 'inactive' */
5385 sysfs_notify_dirent_safe(mddev->sysfs_state);
5386
5387 rdev_for_each(rdev, mddev)
5388 if (rdev->raid_disk >= 0)
5389 sysfs_unlink_rdev(mddev, rdev);
5390
5391 set_capacity(disk, 0);
5392 mutex_unlock(&mddev->open_mutex);
5393 mddev->changed = 1;
5394 revalidate_disk(disk);
5395
5396 if (mddev->ro)
5397 mddev->ro = 0;
5398 } else
5399 mutex_unlock(&mddev->open_mutex);
5400 /*
5401 * Free resources if final stop
5402 */
5403 if (mode == 0) {
5404 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5405
5406 bitmap_destroy(mddev);
5407 if (mddev->bitmap_info.file) {
5408 restore_bitmap_write_access(mddev->bitmap_info.file);
5409 fput(mddev->bitmap_info.file);
5410 mddev->bitmap_info.file = NULL;
5411 }
5412 mddev->bitmap_info.offset = 0;
5413
5414 export_array(mddev);
5415
5416 md_clean(mddev);
5417 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5418 if (mddev->hold_active == UNTIL_STOP)
5419 mddev->hold_active = 0;
5420 }
5421 blk_integrity_unregister(disk);
5422 md_new_event(mddev);
5423 sysfs_notify_dirent_safe(mddev->sysfs_state);
5424 return 0;
5425 }
5426
5427 #ifndef MODULE
5428 static void autorun_array(struct mddev *mddev)
5429 {
5430 struct md_rdev *rdev;
5431 int err;
5432
5433 if (list_empty(&mddev->disks))
5434 return;
5435
5436 printk(KERN_INFO "md: running: ");
5437
5438 rdev_for_each(rdev, mddev) {
5439 char b[BDEVNAME_SIZE];
5440 printk("<%s>", bdevname(rdev->bdev,b));
5441 }
5442 printk("\n");
5443
5444 err = do_md_run(mddev);
5445 if (err) {
5446 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5447 do_md_stop(mddev, 0, NULL);
5448 }
5449 }
5450
5451 /*
5452 * lets try to run arrays based on all disks that have arrived
5453 * until now. (those are in pending_raid_disks)
5454 *
5455 * the method: pick the first pending disk, collect all disks with
5456 * the same UUID, remove all from the pending list and put them into
5457 * the 'same_array' list. Then order this list based on superblock
5458 * update time (freshest comes first), kick out 'old' disks and
5459 * compare superblocks. If everything's fine then run it.
5460 *
5461 * If "unit" is allocated, then bump its reference count
5462 */
5463 static void autorun_devices(int part)
5464 {
5465 struct md_rdev *rdev0, *rdev, *tmp;
5466 struct mddev *mddev;
5467 char b[BDEVNAME_SIZE];
5468
5469 printk(KERN_INFO "md: autorun ...\n");
5470 while (!list_empty(&pending_raid_disks)) {
5471 int unit;
5472 dev_t dev;
5473 LIST_HEAD(candidates);
5474 rdev0 = list_entry(pending_raid_disks.next,
5475 struct md_rdev, same_set);
5476
5477 printk(KERN_INFO "md: considering %s ...\n",
5478 bdevname(rdev0->bdev,b));
5479 INIT_LIST_HEAD(&candidates);
5480 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5481 if (super_90_load(rdev, rdev0, 0) >= 0) {
5482 printk(KERN_INFO "md: adding %s ...\n",
5483 bdevname(rdev->bdev,b));
5484 list_move(&rdev->same_set, &candidates);
5485 }
5486 /*
5487 * now we have a set of devices, with all of them having
5488 * mostly sane superblocks. It's time to allocate the
5489 * mddev.
5490 */
5491 if (part) {
5492 dev = MKDEV(mdp_major,
5493 rdev0->preferred_minor << MdpMinorShift);
5494 unit = MINOR(dev) >> MdpMinorShift;
5495 } else {
5496 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5497 unit = MINOR(dev);
5498 }
5499 if (rdev0->preferred_minor != unit) {
5500 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5501 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5502 break;
5503 }
5504
5505 md_probe(dev, NULL, NULL);
5506 mddev = mddev_find(dev);
5507 if (!mddev || !mddev->gendisk) {
5508 if (mddev)
5509 mddev_put(mddev);
5510 printk(KERN_ERR
5511 "md: cannot allocate memory for md drive.\n");
5512 break;
5513 }
5514 if (mddev_lock(mddev))
5515 printk(KERN_WARNING "md: %s locked, cannot run\n",
5516 mdname(mddev));
5517 else if (mddev->raid_disks || mddev->major_version
5518 || !list_empty(&mddev->disks)) {
5519 printk(KERN_WARNING
5520 "md: %s already running, cannot run %s\n",
5521 mdname(mddev), bdevname(rdev0->bdev,b));
5522 mddev_unlock(mddev);
5523 } else {
5524 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5525 mddev->persistent = 1;
5526 rdev_for_each_list(rdev, tmp, &candidates) {
5527 list_del_init(&rdev->same_set);
5528 if (bind_rdev_to_array(rdev, mddev))
5529 export_rdev(rdev);
5530 }
5531 autorun_array(mddev);
5532 mddev_unlock(mddev);
5533 }
5534 /* on success, candidates will be empty, on error
5535 * it won't...
5536 */
5537 rdev_for_each_list(rdev, tmp, &candidates) {
5538 list_del_init(&rdev->same_set);
5539 export_rdev(rdev);
5540 }
5541 mddev_put(mddev);
5542 }
5543 printk(KERN_INFO "md: ... autorun DONE.\n");
5544 }
5545 #endif /* !MODULE */
5546
5547 static int get_version(void __user * arg)
5548 {
5549 mdu_version_t ver;
5550
5551 ver.major = MD_MAJOR_VERSION;
5552 ver.minor = MD_MINOR_VERSION;
5553 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5554
5555 if (copy_to_user(arg, &ver, sizeof(ver)))
5556 return -EFAULT;
5557
5558 return 0;
5559 }
5560
5561 static int get_array_info(struct mddev * mddev, void __user * arg)
5562 {
5563 mdu_array_info_t info;
5564 int nr,working,insync,failed,spare;
5565 struct md_rdev *rdev;
5566
5567 nr = working = insync = failed = spare = 0;
5568 rcu_read_lock();
5569 rdev_for_each_rcu(rdev, mddev) {
5570 nr++;
5571 if (test_bit(Faulty, &rdev->flags))
5572 failed++;
5573 else {
5574 working++;
5575 if (test_bit(In_sync, &rdev->flags))
5576 insync++;
5577 else
5578 spare++;
5579 }
5580 }
5581 rcu_read_unlock();
5582
5583 info.major_version = mddev->major_version;
5584 info.minor_version = mddev->minor_version;
5585 info.patch_version = MD_PATCHLEVEL_VERSION;
5586 info.ctime = mddev->ctime;
5587 info.level = mddev->level;
5588 info.size = mddev->dev_sectors / 2;
5589 if (info.size != mddev->dev_sectors / 2) /* overflow */
5590 info.size = -1;
5591 info.nr_disks = nr;
5592 info.raid_disks = mddev->raid_disks;
5593 info.md_minor = mddev->md_minor;
5594 info.not_persistent= !mddev->persistent;
5595
5596 info.utime = mddev->utime;
5597 info.state = 0;
5598 if (mddev->in_sync)
5599 info.state = (1<<MD_SB_CLEAN);
5600 if (mddev->bitmap && mddev->bitmap_info.offset)
5601 info.state = (1<<MD_SB_BITMAP_PRESENT);
5602 info.active_disks = insync;
5603 info.working_disks = working;
5604 info.failed_disks = failed;
5605 info.spare_disks = spare;
5606
5607 info.layout = mddev->layout;
5608 info.chunk_size = mddev->chunk_sectors << 9;
5609
5610 if (copy_to_user(arg, &info, sizeof(info)))
5611 return -EFAULT;
5612
5613 return 0;
5614 }
5615
5616 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5617 {
5618 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5619 char *ptr, *buf = NULL;
5620 int err = -ENOMEM;
5621
5622 if (md_allow_write(mddev))
5623 file = kmalloc(sizeof(*file), GFP_NOIO);
5624 else
5625 file = kmalloc(sizeof(*file), GFP_KERNEL);
5626
5627 if (!file)
5628 goto out;
5629
5630 /* bitmap disabled, zero the first byte and copy out */
5631 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632 file->pathname[0] = '\0';
5633 goto copy_out;
5634 }
5635
5636 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637 if (!buf)
5638 goto out;
5639
5640 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641 buf, sizeof(file->pathname));
5642 if (IS_ERR(ptr))
5643 goto out;
5644
5645 strcpy(file->pathname, ptr);
5646
5647 copy_out:
5648 err = 0;
5649 if (copy_to_user(arg, file, sizeof(*file)))
5650 err = -EFAULT;
5651 out:
5652 kfree(buf);
5653 kfree(file);
5654 return err;
5655 }
5656
5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659 mdu_disk_info_t info;
5660 struct md_rdev *rdev;
5661
5662 if (copy_from_user(&info, arg, sizeof(info)))
5663 return -EFAULT;
5664
5665 rcu_read_lock();
5666 rdev = find_rdev_nr_rcu(mddev, info.number);
5667 if (rdev) {
5668 info.major = MAJOR(rdev->bdev->bd_dev);
5669 info.minor = MINOR(rdev->bdev->bd_dev);
5670 info.raid_disk = rdev->raid_disk;
5671 info.state = 0;
5672 if (test_bit(Faulty, &rdev->flags))
5673 info.state |= (1<<MD_DISK_FAULTY);
5674 else if (test_bit(In_sync, &rdev->flags)) {
5675 info.state |= (1<<MD_DISK_ACTIVE);
5676 info.state |= (1<<MD_DISK_SYNC);
5677 }
5678 if (test_bit(WriteMostly, &rdev->flags))
5679 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680 } else {
5681 info.major = info.minor = 0;
5682 info.raid_disk = -1;
5683 info.state = (1<<MD_DISK_REMOVED);
5684 }
5685 rcu_read_unlock();
5686
5687 if (copy_to_user(arg, &info, sizeof(info)))
5688 return -EFAULT;
5689
5690 return 0;
5691 }
5692
5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696 struct md_rdev *rdev;
5697 dev_t dev = MKDEV(info->major,info->minor);
5698
5699 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700 return -EOVERFLOW;
5701
5702 if (!mddev->raid_disks) {
5703 int err;
5704 /* expecting a device which has a superblock */
5705 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706 if (IS_ERR(rdev)) {
5707 printk(KERN_WARNING
5708 "md: md_import_device returned %ld\n",
5709 PTR_ERR(rdev));
5710 return PTR_ERR(rdev);
5711 }
5712 if (!list_empty(&mddev->disks)) {
5713 struct md_rdev *rdev0
5714 = list_entry(mddev->disks.next,
5715 struct md_rdev, same_set);
5716 err = super_types[mddev->major_version]
5717 .load_super(rdev, rdev0, mddev->minor_version);
5718 if (err < 0) {
5719 printk(KERN_WARNING
5720 "md: %s has different UUID to %s\n",
5721 bdevname(rdev->bdev,b),
5722 bdevname(rdev0->bdev,b2));
5723 export_rdev(rdev);
5724 return -EINVAL;
5725 }
5726 }
5727 err = bind_rdev_to_array(rdev, mddev);
5728 if (err)
5729 export_rdev(rdev);
5730 return err;
5731 }
5732
5733 /*
5734 * add_new_disk can be used once the array is assembled
5735 * to add "hot spares". They must already have a superblock
5736 * written
5737 */
5738 if (mddev->pers) {
5739 int err;
5740 if (!mddev->pers->hot_add_disk) {
5741 printk(KERN_WARNING
5742 "%s: personality does not support diskops!\n",
5743 mdname(mddev));
5744 return -EINVAL;
5745 }
5746 if (mddev->persistent)
5747 rdev = md_import_device(dev, mddev->major_version,
5748 mddev->minor_version);
5749 else
5750 rdev = md_import_device(dev, -1, -1);
5751 if (IS_ERR(rdev)) {
5752 printk(KERN_WARNING
5753 "md: md_import_device returned %ld\n",
5754 PTR_ERR(rdev));
5755 return PTR_ERR(rdev);
5756 }
5757 /* set saved_raid_disk if appropriate */
5758 if (!mddev->persistent) {
5759 if (info->state & (1<<MD_DISK_SYNC) &&
5760 info->raid_disk < mddev->raid_disks) {
5761 rdev->raid_disk = info->raid_disk;
5762 set_bit(In_sync, &rdev->flags);
5763 } else
5764 rdev->raid_disk = -1;
5765 } else
5766 super_types[mddev->major_version].
5767 validate_super(mddev, rdev);
5768 if ((info->state & (1<<MD_DISK_SYNC)) &&
5769 rdev->raid_disk != info->raid_disk) {
5770 /* This was a hot-add request, but events doesn't
5771 * match, so reject it.
5772 */
5773 export_rdev(rdev);
5774 return -EINVAL;
5775 }
5776
5777 if (test_bit(In_sync, &rdev->flags))
5778 rdev->saved_raid_disk = rdev->raid_disk;
5779 else
5780 rdev->saved_raid_disk = -1;
5781
5782 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784 set_bit(WriteMostly, &rdev->flags);
5785 else
5786 clear_bit(WriteMostly, &rdev->flags);
5787
5788 rdev->raid_disk = -1;
5789 err = bind_rdev_to_array(rdev, mddev);
5790 if (!err && !mddev->pers->hot_remove_disk) {
5791 /* If there is hot_add_disk but no hot_remove_disk
5792 * then added disks for geometry changes,
5793 * and should be added immediately.
5794 */
5795 super_types[mddev->major_version].
5796 validate_super(mddev, rdev);
5797 err = mddev->pers->hot_add_disk(mddev, rdev);
5798 if (err)
5799 unbind_rdev_from_array(rdev);
5800 }
5801 if (err)
5802 export_rdev(rdev);
5803 else
5804 sysfs_notify_dirent_safe(rdev->sysfs_state);
5805
5806 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807 if (mddev->degraded)
5808 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810 if (!err)
5811 md_new_event(mddev);
5812 md_wakeup_thread(mddev->thread);
5813 return err;
5814 }
5815
5816 /* otherwise, add_new_disk is only allowed
5817 * for major_version==0 superblocks
5818 */
5819 if (mddev->major_version != 0) {
5820 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821 mdname(mddev));
5822 return -EINVAL;
5823 }
5824
5825 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826 int err;
5827 rdev = md_import_device(dev, -1, 0);
5828 if (IS_ERR(rdev)) {
5829 printk(KERN_WARNING
5830 "md: error, md_import_device() returned %ld\n",
5831 PTR_ERR(rdev));
5832 return PTR_ERR(rdev);
5833 }
5834 rdev->desc_nr = info->number;
5835 if (info->raid_disk < mddev->raid_disks)
5836 rdev->raid_disk = info->raid_disk;
5837 else
5838 rdev->raid_disk = -1;
5839
5840 if (rdev->raid_disk < mddev->raid_disks)
5841 if (info->state & (1<<MD_DISK_SYNC))
5842 set_bit(In_sync, &rdev->flags);
5843
5844 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845 set_bit(WriteMostly, &rdev->flags);
5846
5847 if (!mddev->persistent) {
5848 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850 } else
5851 rdev->sb_start = calc_dev_sboffset(rdev);
5852 rdev->sectors = rdev->sb_start;
5853
5854 err = bind_rdev_to_array(rdev, mddev);
5855 if (err) {
5856 export_rdev(rdev);
5857 return err;
5858 }
5859 }
5860
5861 return 0;
5862 }
5863
5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866 char b[BDEVNAME_SIZE];
5867 struct md_rdev *rdev;
5868
5869 rdev = find_rdev(mddev, dev);
5870 if (!rdev)
5871 return -ENXIO;
5872
5873 clear_bit(Blocked, &rdev->flags);
5874 remove_and_add_spares(mddev, rdev);
5875
5876 if (rdev->raid_disk >= 0)
5877 goto busy;
5878
5879 kick_rdev_from_array(rdev);
5880 md_update_sb(mddev, 1);
5881 md_new_event(mddev);
5882
5883 return 0;
5884 busy:
5885 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5886 bdevname(rdev->bdev,b), mdname(mddev));
5887 return -EBUSY;
5888 }
5889
5890 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5891 {
5892 char b[BDEVNAME_SIZE];
5893 int err;
5894 struct md_rdev *rdev;
5895
5896 if (!mddev->pers)
5897 return -ENODEV;
5898
5899 if (mddev->major_version != 0) {
5900 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5901 " version-0 superblocks.\n",
5902 mdname(mddev));
5903 return -EINVAL;
5904 }
5905 if (!mddev->pers->hot_add_disk) {
5906 printk(KERN_WARNING
5907 "%s: personality does not support diskops!\n",
5908 mdname(mddev));
5909 return -EINVAL;
5910 }
5911
5912 rdev = md_import_device(dev, -1, 0);
5913 if (IS_ERR(rdev)) {
5914 printk(KERN_WARNING
5915 "md: error, md_import_device() returned %ld\n",
5916 PTR_ERR(rdev));
5917 return -EINVAL;
5918 }
5919
5920 if (mddev->persistent)
5921 rdev->sb_start = calc_dev_sboffset(rdev);
5922 else
5923 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5924
5925 rdev->sectors = rdev->sb_start;
5926
5927 if (test_bit(Faulty, &rdev->flags)) {
5928 printk(KERN_WARNING
5929 "md: can not hot-add faulty %s disk to %s!\n",
5930 bdevname(rdev->bdev,b), mdname(mddev));
5931 err = -EINVAL;
5932 goto abort_export;
5933 }
5934 clear_bit(In_sync, &rdev->flags);
5935 rdev->desc_nr = -1;
5936 rdev->saved_raid_disk = -1;
5937 err = bind_rdev_to_array(rdev, mddev);
5938 if (err)
5939 goto abort_export;
5940
5941 /*
5942 * The rest should better be atomic, we can have disk failures
5943 * noticed in interrupt contexts ...
5944 */
5945
5946 rdev->raid_disk = -1;
5947
5948 md_update_sb(mddev, 1);
5949
5950 /*
5951 * Kick recovery, maybe this spare has to be added to the
5952 * array immediately.
5953 */
5954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5955 md_wakeup_thread(mddev->thread);
5956 md_new_event(mddev);
5957 return 0;
5958
5959 abort_export:
5960 export_rdev(rdev);
5961 return err;
5962 }
5963
5964 static int set_bitmap_file(struct mddev *mddev, int fd)
5965 {
5966 int err;
5967
5968 if (mddev->pers) {
5969 if (!mddev->pers->quiesce)
5970 return -EBUSY;
5971 if (mddev->recovery || mddev->sync_thread)
5972 return -EBUSY;
5973 /* we should be able to change the bitmap.. */
5974 }
5975
5976
5977 if (fd >= 0) {
5978 if (mddev->bitmap)
5979 return -EEXIST; /* cannot add when bitmap is present */
5980 mddev->bitmap_info.file = fget(fd);
5981
5982 if (mddev->bitmap_info.file == NULL) {
5983 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5984 mdname(mddev));
5985 return -EBADF;
5986 }
5987
5988 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5989 if (err) {
5990 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5991 mdname(mddev));
5992 fput(mddev->bitmap_info.file);
5993 mddev->bitmap_info.file = NULL;
5994 return err;
5995 }
5996 mddev->bitmap_info.offset = 0; /* file overrides offset */
5997 } else if (mddev->bitmap == NULL)
5998 return -ENOENT; /* cannot remove what isn't there */
5999 err = 0;
6000 if (mddev->pers) {
6001 mddev->pers->quiesce(mddev, 1);
6002 if (fd >= 0) {
6003 err = bitmap_create(mddev);
6004 if (!err)
6005 err = bitmap_load(mddev);
6006 }
6007 if (fd < 0 || err) {
6008 bitmap_destroy(mddev);
6009 fd = -1; /* make sure to put the file */
6010 }
6011 mddev->pers->quiesce(mddev, 0);
6012 }
6013 if (fd < 0) {
6014 if (mddev->bitmap_info.file) {
6015 restore_bitmap_write_access(mddev->bitmap_info.file);
6016 fput(mddev->bitmap_info.file);
6017 }
6018 mddev->bitmap_info.file = NULL;
6019 }
6020
6021 return err;
6022 }
6023
6024 /*
6025 * set_array_info is used two different ways
6026 * The original usage is when creating a new array.
6027 * In this usage, raid_disks is > 0 and it together with
6028 * level, size, not_persistent,layout,chunksize determine the
6029 * shape of the array.
6030 * This will always create an array with a type-0.90.0 superblock.
6031 * The newer usage is when assembling an array.
6032 * In this case raid_disks will be 0, and the major_version field is
6033 * use to determine which style super-blocks are to be found on the devices.
6034 * The minor and patch _version numbers are also kept incase the
6035 * super_block handler wishes to interpret them.
6036 */
6037 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6038 {
6039
6040 if (info->raid_disks == 0) {
6041 /* just setting version number for superblock loading */
6042 if (info->major_version < 0 ||
6043 info->major_version >= ARRAY_SIZE(super_types) ||
6044 super_types[info->major_version].name == NULL) {
6045 /* maybe try to auto-load a module? */
6046 printk(KERN_INFO
6047 "md: superblock version %d not known\n",
6048 info->major_version);
6049 return -EINVAL;
6050 }
6051 mddev->major_version = info->major_version;
6052 mddev->minor_version = info->minor_version;
6053 mddev->patch_version = info->patch_version;
6054 mddev->persistent = !info->not_persistent;
6055 /* ensure mddev_put doesn't delete this now that there
6056 * is some minimal configuration.
6057 */
6058 mddev->ctime = get_seconds();
6059 return 0;
6060 }
6061 mddev->major_version = MD_MAJOR_VERSION;
6062 mddev->minor_version = MD_MINOR_VERSION;
6063 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6064 mddev->ctime = get_seconds();
6065
6066 mddev->level = info->level;
6067 mddev->clevel[0] = 0;
6068 mddev->dev_sectors = 2 * (sector_t)info->size;
6069 mddev->raid_disks = info->raid_disks;
6070 /* don't set md_minor, it is determined by which /dev/md* was
6071 * openned
6072 */
6073 if (info->state & (1<<MD_SB_CLEAN))
6074 mddev->recovery_cp = MaxSector;
6075 else
6076 mddev->recovery_cp = 0;
6077 mddev->persistent = ! info->not_persistent;
6078 mddev->external = 0;
6079
6080 mddev->layout = info->layout;
6081 mddev->chunk_sectors = info->chunk_size >> 9;
6082
6083 mddev->max_disks = MD_SB_DISKS;
6084
6085 if (mddev->persistent)
6086 mddev->flags = 0;
6087 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6088
6089 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6090 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6091 mddev->bitmap_info.offset = 0;
6092
6093 mddev->reshape_position = MaxSector;
6094
6095 /*
6096 * Generate a 128 bit UUID
6097 */
6098 get_random_bytes(mddev->uuid, 16);
6099
6100 mddev->new_level = mddev->level;
6101 mddev->new_chunk_sectors = mddev->chunk_sectors;
6102 mddev->new_layout = mddev->layout;
6103 mddev->delta_disks = 0;
6104 mddev->reshape_backwards = 0;
6105
6106 return 0;
6107 }
6108
6109 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6110 {
6111 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6112
6113 if (mddev->external_size)
6114 return;
6115
6116 mddev->array_sectors = array_sectors;
6117 }
6118 EXPORT_SYMBOL(md_set_array_sectors);
6119
6120 static int update_size(struct mddev *mddev, sector_t num_sectors)
6121 {
6122 struct md_rdev *rdev;
6123 int rv;
6124 int fit = (num_sectors == 0);
6125
6126 if (mddev->pers->resize == NULL)
6127 return -EINVAL;
6128 /* The "num_sectors" is the number of sectors of each device that
6129 * is used. This can only make sense for arrays with redundancy.
6130 * linear and raid0 always use whatever space is available. We can only
6131 * consider changing this number if no resync or reconstruction is
6132 * happening, and if the new size is acceptable. It must fit before the
6133 * sb_start or, if that is <data_offset, it must fit before the size
6134 * of each device. If num_sectors is zero, we find the largest size
6135 * that fits.
6136 */
6137 if (mddev->sync_thread)
6138 return -EBUSY;
6139
6140 rdev_for_each(rdev, mddev) {
6141 sector_t avail = rdev->sectors;
6142
6143 if (fit && (num_sectors == 0 || num_sectors > avail))
6144 num_sectors = avail;
6145 if (avail < num_sectors)
6146 return -ENOSPC;
6147 }
6148 rv = mddev->pers->resize(mddev, num_sectors);
6149 if (!rv)
6150 revalidate_disk(mddev->gendisk);
6151 return rv;
6152 }
6153
6154 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6155 {
6156 int rv;
6157 struct md_rdev *rdev;
6158 /* change the number of raid disks */
6159 if (mddev->pers->check_reshape == NULL)
6160 return -EINVAL;
6161 if (raid_disks <= 0 ||
6162 (mddev->max_disks && raid_disks >= mddev->max_disks))
6163 return -EINVAL;
6164 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6165 return -EBUSY;
6166
6167 rdev_for_each(rdev, mddev) {
6168 if (mddev->raid_disks < raid_disks &&
6169 rdev->data_offset < rdev->new_data_offset)
6170 return -EINVAL;
6171 if (mddev->raid_disks > raid_disks &&
6172 rdev->data_offset > rdev->new_data_offset)
6173 return -EINVAL;
6174 }
6175
6176 mddev->delta_disks = raid_disks - mddev->raid_disks;
6177 if (mddev->delta_disks < 0)
6178 mddev->reshape_backwards = 1;
6179 else if (mddev->delta_disks > 0)
6180 mddev->reshape_backwards = 0;
6181
6182 rv = mddev->pers->check_reshape(mddev);
6183 if (rv < 0) {
6184 mddev->delta_disks = 0;
6185 mddev->reshape_backwards = 0;
6186 }
6187 return rv;
6188 }
6189
6190
6191 /*
6192 * update_array_info is used to change the configuration of an
6193 * on-line array.
6194 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6195 * fields in the info are checked against the array.
6196 * Any differences that cannot be handled will cause an error.
6197 * Normally, only one change can be managed at a time.
6198 */
6199 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6200 {
6201 int rv = 0;
6202 int cnt = 0;
6203 int state = 0;
6204
6205 /* calculate expected state,ignoring low bits */
6206 if (mddev->bitmap && mddev->bitmap_info.offset)
6207 state |= (1 << MD_SB_BITMAP_PRESENT);
6208
6209 if (mddev->major_version != info->major_version ||
6210 mddev->minor_version != info->minor_version ||
6211 /* mddev->patch_version != info->patch_version || */
6212 mddev->ctime != info->ctime ||
6213 mddev->level != info->level ||
6214 /* mddev->layout != info->layout || */
6215 !mddev->persistent != info->not_persistent||
6216 mddev->chunk_sectors != info->chunk_size >> 9 ||
6217 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6218 ((state^info->state) & 0xfffffe00)
6219 )
6220 return -EINVAL;
6221 /* Check there is only one change */
6222 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6223 cnt++;
6224 if (mddev->raid_disks != info->raid_disks)
6225 cnt++;
6226 if (mddev->layout != info->layout)
6227 cnt++;
6228 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6229 cnt++;
6230 if (cnt == 0)
6231 return 0;
6232 if (cnt > 1)
6233 return -EINVAL;
6234
6235 if (mddev->layout != info->layout) {
6236 /* Change layout
6237 * we don't need to do anything at the md level, the
6238 * personality will take care of it all.
6239 */
6240 if (mddev->pers->check_reshape == NULL)
6241 return -EINVAL;
6242 else {
6243 mddev->new_layout = info->layout;
6244 rv = mddev->pers->check_reshape(mddev);
6245 if (rv)
6246 mddev->new_layout = mddev->layout;
6247 return rv;
6248 }
6249 }
6250 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6251 rv = update_size(mddev, (sector_t)info->size * 2);
6252
6253 if (mddev->raid_disks != info->raid_disks)
6254 rv = update_raid_disks(mddev, info->raid_disks);
6255
6256 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6257 if (mddev->pers->quiesce == NULL)
6258 return -EINVAL;
6259 if (mddev->recovery || mddev->sync_thread)
6260 return -EBUSY;
6261 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6262 /* add the bitmap */
6263 if (mddev->bitmap)
6264 return -EEXIST;
6265 if (mddev->bitmap_info.default_offset == 0)
6266 return -EINVAL;
6267 mddev->bitmap_info.offset =
6268 mddev->bitmap_info.default_offset;
6269 mddev->bitmap_info.space =
6270 mddev->bitmap_info.default_space;
6271 mddev->pers->quiesce(mddev, 1);
6272 rv = bitmap_create(mddev);
6273 if (!rv)
6274 rv = bitmap_load(mddev);
6275 if (rv)
6276 bitmap_destroy(mddev);
6277 mddev->pers->quiesce(mddev, 0);
6278 } else {
6279 /* remove the bitmap */
6280 if (!mddev->bitmap)
6281 return -ENOENT;
6282 if (mddev->bitmap->storage.file)
6283 return -EINVAL;
6284 mddev->pers->quiesce(mddev, 1);
6285 bitmap_destroy(mddev);
6286 mddev->pers->quiesce(mddev, 0);
6287 mddev->bitmap_info.offset = 0;
6288 }
6289 }
6290 md_update_sb(mddev, 1);
6291 return rv;
6292 }
6293
6294 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6295 {
6296 struct md_rdev *rdev;
6297 int err = 0;
6298
6299 if (mddev->pers == NULL)
6300 return -ENODEV;
6301
6302 rcu_read_lock();
6303 rdev = find_rdev_rcu(mddev, dev);
6304 if (!rdev)
6305 err = -ENODEV;
6306 else {
6307 md_error(mddev, rdev);
6308 if (!test_bit(Faulty, &rdev->flags))
6309 err = -EBUSY;
6310 }
6311 rcu_read_unlock();
6312 return err;
6313 }
6314
6315 /*
6316 * We have a problem here : there is no easy way to give a CHS
6317 * virtual geometry. We currently pretend that we have a 2 heads
6318 * 4 sectors (with a BIG number of cylinders...). This drives
6319 * dosfs just mad... ;-)
6320 */
6321 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6322 {
6323 struct mddev *mddev = bdev->bd_disk->private_data;
6324
6325 geo->heads = 2;
6326 geo->sectors = 4;
6327 geo->cylinders = mddev->array_sectors / 8;
6328 return 0;
6329 }
6330
6331 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6332 unsigned int cmd, unsigned long arg)
6333 {
6334 int err = 0;
6335 void __user *argp = (void __user *)arg;
6336 struct mddev *mddev = NULL;
6337 int ro;
6338
6339 switch (cmd) {
6340 case RAID_VERSION:
6341 case GET_ARRAY_INFO:
6342 case GET_DISK_INFO:
6343 break;
6344 default:
6345 if (!capable(CAP_SYS_ADMIN))
6346 return -EACCES;
6347 }
6348
6349 /*
6350 * Commands dealing with the RAID driver but not any
6351 * particular array:
6352 */
6353 switch (cmd) {
6354 case RAID_VERSION:
6355 err = get_version(argp);
6356 goto done;
6357
6358 case PRINT_RAID_DEBUG:
6359 err = 0;
6360 md_print_devices();
6361 goto done;
6362
6363 #ifndef MODULE
6364 case RAID_AUTORUN:
6365 err = 0;
6366 autostart_arrays(arg);
6367 goto done;
6368 #endif
6369 default:;
6370 }
6371
6372 /*
6373 * Commands creating/starting a new array:
6374 */
6375
6376 mddev = bdev->bd_disk->private_data;
6377
6378 if (!mddev) {
6379 BUG();
6380 goto abort;
6381 }
6382
6383 /* Some actions do not requires the mutex */
6384 switch (cmd) {
6385 case GET_ARRAY_INFO:
6386 if (!mddev->raid_disks && !mddev->external)
6387 err = -ENODEV;
6388 else
6389 err = get_array_info(mddev, argp);
6390 goto abort;
6391
6392 case GET_DISK_INFO:
6393 if (!mddev->raid_disks && !mddev->external)
6394 err = -ENODEV;
6395 else
6396 err = get_disk_info(mddev, argp);
6397 goto abort;
6398
6399 case SET_DISK_FAULTY:
6400 err = set_disk_faulty(mddev, new_decode_dev(arg));
6401 goto abort;
6402 }
6403
6404 if (cmd == ADD_NEW_DISK)
6405 /* need to ensure md_delayed_delete() has completed */
6406 flush_workqueue(md_misc_wq);
6407
6408 err = mddev_lock(mddev);
6409 if (err) {
6410 printk(KERN_INFO
6411 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6412 err, cmd);
6413 goto abort;
6414 }
6415
6416 if (cmd == SET_ARRAY_INFO) {
6417 mdu_array_info_t info;
6418 if (!arg)
6419 memset(&info, 0, sizeof(info));
6420 else if (copy_from_user(&info, argp, sizeof(info))) {
6421 err = -EFAULT;
6422 goto abort_unlock;
6423 }
6424 if (mddev->pers) {
6425 err = update_array_info(mddev, &info);
6426 if (err) {
6427 printk(KERN_WARNING "md: couldn't update"
6428 " array info. %d\n", err);
6429 goto abort_unlock;
6430 }
6431 goto done_unlock;
6432 }
6433 if (!list_empty(&mddev->disks)) {
6434 printk(KERN_WARNING
6435 "md: array %s already has disks!\n",
6436 mdname(mddev));
6437 err = -EBUSY;
6438 goto abort_unlock;
6439 }
6440 if (mddev->raid_disks) {
6441 printk(KERN_WARNING
6442 "md: array %s already initialised!\n",
6443 mdname(mddev));
6444 err = -EBUSY;
6445 goto abort_unlock;
6446 }
6447 err = set_array_info(mddev, &info);
6448 if (err) {
6449 printk(KERN_WARNING "md: couldn't set"
6450 " array info. %d\n", err);
6451 goto abort_unlock;
6452 }
6453 goto done_unlock;
6454 }
6455
6456 /*
6457 * Commands querying/configuring an existing array:
6458 */
6459 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6460 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6461 if ((!mddev->raid_disks && !mddev->external)
6462 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6463 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6464 && cmd != GET_BITMAP_FILE) {
6465 err = -ENODEV;
6466 goto abort_unlock;
6467 }
6468
6469 /*
6470 * Commands even a read-only array can execute:
6471 */
6472 switch (cmd) {
6473 case GET_BITMAP_FILE:
6474 err = get_bitmap_file(mddev, argp);
6475 goto done_unlock;
6476
6477 case RESTART_ARRAY_RW:
6478 err = restart_array(mddev);
6479 goto done_unlock;
6480
6481 case STOP_ARRAY:
6482 err = do_md_stop(mddev, 0, bdev);
6483 goto done_unlock;
6484
6485 case STOP_ARRAY_RO:
6486 err = md_set_readonly(mddev, bdev);
6487 goto done_unlock;
6488
6489 case HOT_REMOVE_DISK:
6490 err = hot_remove_disk(mddev, new_decode_dev(arg));
6491 goto done_unlock;
6492
6493 case ADD_NEW_DISK:
6494 /* We can support ADD_NEW_DISK on read-only arrays
6495 * on if we are re-adding a preexisting device.
6496 * So require mddev->pers and MD_DISK_SYNC.
6497 */
6498 if (mddev->pers) {
6499 mdu_disk_info_t info;
6500 if (copy_from_user(&info, argp, sizeof(info)))
6501 err = -EFAULT;
6502 else if (!(info.state & (1<<MD_DISK_SYNC)))
6503 /* Need to clear read-only for this */
6504 break;
6505 else
6506 err = add_new_disk(mddev, &info);
6507 goto done_unlock;
6508 }
6509 break;
6510
6511 case BLKROSET:
6512 if (get_user(ro, (int __user *)(arg))) {
6513 err = -EFAULT;
6514 goto done_unlock;
6515 }
6516 err = -EINVAL;
6517
6518 /* if the bdev is going readonly the value of mddev->ro
6519 * does not matter, no writes are coming
6520 */
6521 if (ro)
6522 goto done_unlock;
6523
6524 /* are we are already prepared for writes? */
6525 if (mddev->ro != 1)
6526 goto done_unlock;
6527
6528 /* transitioning to readauto need only happen for
6529 * arrays that call md_write_start
6530 */
6531 if (mddev->pers) {
6532 err = restart_array(mddev);
6533 if (err == 0) {
6534 mddev->ro = 2;
6535 set_disk_ro(mddev->gendisk, 0);
6536 }
6537 }
6538 goto done_unlock;
6539 }
6540
6541 /*
6542 * The remaining ioctls are changing the state of the
6543 * superblock, so we do not allow them on read-only arrays.
6544 * However non-MD ioctls (e.g. get-size) will still come through
6545 * here and hit the 'default' below, so only disallow
6546 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6547 */
6548 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6549 if (mddev->ro == 2) {
6550 mddev->ro = 0;
6551 sysfs_notify_dirent_safe(mddev->sysfs_state);
6552 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6553 /* mddev_unlock will wake thread */
6554 /* If a device failed while we were read-only, we
6555 * need to make sure the metadata is updated now.
6556 */
6557 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6558 mddev_unlock(mddev);
6559 wait_event(mddev->sb_wait,
6560 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6561 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6562 mddev_lock(mddev);
6563 }
6564 } else {
6565 err = -EROFS;
6566 goto abort_unlock;
6567 }
6568 }
6569
6570 switch (cmd) {
6571 case ADD_NEW_DISK:
6572 {
6573 mdu_disk_info_t info;
6574 if (copy_from_user(&info, argp, sizeof(info)))
6575 err = -EFAULT;
6576 else
6577 err = add_new_disk(mddev, &info);
6578 goto done_unlock;
6579 }
6580
6581 case HOT_ADD_DISK:
6582 err = hot_add_disk(mddev, new_decode_dev(arg));
6583 goto done_unlock;
6584
6585 case RUN_ARRAY:
6586 err = do_md_run(mddev);
6587 goto done_unlock;
6588
6589 case SET_BITMAP_FILE:
6590 err = set_bitmap_file(mddev, (int)arg);
6591 goto done_unlock;
6592
6593 default:
6594 err = -EINVAL;
6595 goto abort_unlock;
6596 }
6597
6598 done_unlock:
6599 abort_unlock:
6600 if (mddev->hold_active == UNTIL_IOCTL &&
6601 err != -EINVAL)
6602 mddev->hold_active = 0;
6603 mddev_unlock(mddev);
6604
6605 return err;
6606 done:
6607 if (err)
6608 MD_BUG();
6609 abort:
6610 return err;
6611 }
6612 #ifdef CONFIG_COMPAT
6613 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6614 unsigned int cmd, unsigned long arg)
6615 {
6616 switch (cmd) {
6617 case HOT_REMOVE_DISK:
6618 case HOT_ADD_DISK:
6619 case SET_DISK_FAULTY:
6620 case SET_BITMAP_FILE:
6621 /* These take in integer arg, do not convert */
6622 break;
6623 default:
6624 arg = (unsigned long)compat_ptr(arg);
6625 break;
6626 }
6627
6628 return md_ioctl(bdev, mode, cmd, arg);
6629 }
6630 #endif /* CONFIG_COMPAT */
6631
6632 static int md_open(struct block_device *bdev, fmode_t mode)
6633 {
6634 /*
6635 * Succeed if we can lock the mddev, which confirms that
6636 * it isn't being stopped right now.
6637 */
6638 struct mddev *mddev = mddev_find(bdev->bd_dev);
6639 int err;
6640
6641 if (!mddev)
6642 return -ENODEV;
6643
6644 if (mddev->gendisk != bdev->bd_disk) {
6645 /* we are racing with mddev_put which is discarding this
6646 * bd_disk.
6647 */
6648 mddev_put(mddev);
6649 /* Wait until bdev->bd_disk is definitely gone */
6650 flush_workqueue(md_misc_wq);
6651 /* Then retry the open from the top */
6652 return -ERESTARTSYS;
6653 }
6654 BUG_ON(mddev != bdev->bd_disk->private_data);
6655
6656 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6657 goto out;
6658
6659 err = 0;
6660 atomic_inc(&mddev->openers);
6661 mutex_unlock(&mddev->open_mutex);
6662
6663 check_disk_change(bdev);
6664 out:
6665 return err;
6666 }
6667
6668 static void md_release(struct gendisk *disk, fmode_t mode)
6669 {
6670 struct mddev *mddev = disk->private_data;
6671
6672 BUG_ON(!mddev);
6673 atomic_dec(&mddev->openers);
6674 mddev_put(mddev);
6675 }
6676
6677 static int md_media_changed(struct gendisk *disk)
6678 {
6679 struct mddev *mddev = disk->private_data;
6680
6681 return mddev->changed;
6682 }
6683
6684 static int md_revalidate(struct gendisk *disk)
6685 {
6686 struct mddev *mddev = disk->private_data;
6687
6688 mddev->changed = 0;
6689 return 0;
6690 }
6691 static const struct block_device_operations md_fops =
6692 {
6693 .owner = THIS_MODULE,
6694 .open = md_open,
6695 .release = md_release,
6696 .ioctl = md_ioctl,
6697 #ifdef CONFIG_COMPAT
6698 .compat_ioctl = md_compat_ioctl,
6699 #endif
6700 .getgeo = md_getgeo,
6701 .media_changed = md_media_changed,
6702 .revalidate_disk= md_revalidate,
6703 };
6704
6705 static int md_thread(void * arg)
6706 {
6707 struct md_thread *thread = arg;
6708
6709 /*
6710 * md_thread is a 'system-thread', it's priority should be very
6711 * high. We avoid resource deadlocks individually in each
6712 * raid personality. (RAID5 does preallocation) We also use RR and
6713 * the very same RT priority as kswapd, thus we will never get
6714 * into a priority inversion deadlock.
6715 *
6716 * we definitely have to have equal or higher priority than
6717 * bdflush, otherwise bdflush will deadlock if there are too
6718 * many dirty RAID5 blocks.
6719 */
6720
6721 allow_signal(SIGKILL);
6722 while (!kthread_should_stop()) {
6723
6724 /* We need to wait INTERRUPTIBLE so that
6725 * we don't add to the load-average.
6726 * That means we need to be sure no signals are
6727 * pending
6728 */
6729 if (signal_pending(current))
6730 flush_signals(current);
6731
6732 wait_event_interruptible_timeout
6733 (thread->wqueue,
6734 test_bit(THREAD_WAKEUP, &thread->flags)
6735 || kthread_should_stop(),
6736 thread->timeout);
6737
6738 clear_bit(THREAD_WAKEUP, &thread->flags);
6739 if (!kthread_should_stop())
6740 thread->run(thread);
6741 }
6742
6743 return 0;
6744 }
6745
6746 void md_wakeup_thread(struct md_thread *thread)
6747 {
6748 if (thread) {
6749 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6750 set_bit(THREAD_WAKEUP, &thread->flags);
6751 wake_up(&thread->wqueue);
6752 }
6753 }
6754
6755 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6756 struct mddev *mddev, const char *name)
6757 {
6758 struct md_thread *thread;
6759
6760 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6761 if (!thread)
6762 return NULL;
6763
6764 init_waitqueue_head(&thread->wqueue);
6765
6766 thread->run = run;
6767 thread->mddev = mddev;
6768 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6769 thread->tsk = kthread_run(md_thread, thread,
6770 "%s_%s",
6771 mdname(thread->mddev),
6772 name);
6773 if (IS_ERR(thread->tsk)) {
6774 kfree(thread);
6775 return NULL;
6776 }
6777 return thread;
6778 }
6779
6780 void md_unregister_thread(struct md_thread **threadp)
6781 {
6782 struct md_thread *thread = *threadp;
6783 if (!thread)
6784 return;
6785 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6786 /* Locking ensures that mddev_unlock does not wake_up a
6787 * non-existent thread
6788 */
6789 spin_lock(&pers_lock);
6790 *threadp = NULL;
6791 spin_unlock(&pers_lock);
6792
6793 kthread_stop(thread->tsk);
6794 kfree(thread);
6795 }
6796
6797 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6798 {
6799 if (!mddev) {
6800 MD_BUG();
6801 return;
6802 }
6803
6804 if (!rdev || test_bit(Faulty, &rdev->flags))
6805 return;
6806
6807 if (!mddev->pers || !mddev->pers->error_handler)
6808 return;
6809 mddev->pers->error_handler(mddev,rdev);
6810 if (mddev->degraded)
6811 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6812 sysfs_notify_dirent_safe(rdev->sysfs_state);
6813 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6814 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6815 md_wakeup_thread(mddev->thread);
6816 if (mddev->event_work.func)
6817 queue_work(md_misc_wq, &mddev->event_work);
6818 md_new_event_inintr(mddev);
6819 }
6820
6821 /* seq_file implementation /proc/mdstat */
6822
6823 static void status_unused(struct seq_file *seq)
6824 {
6825 int i = 0;
6826 struct md_rdev *rdev;
6827
6828 seq_printf(seq, "unused devices: ");
6829
6830 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6831 char b[BDEVNAME_SIZE];
6832 i++;
6833 seq_printf(seq, "%s ",
6834 bdevname(rdev->bdev,b));
6835 }
6836 if (!i)
6837 seq_printf(seq, "<none>");
6838
6839 seq_printf(seq, "\n");
6840 }
6841
6842
6843 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6844 {
6845 sector_t max_sectors, resync, res;
6846 unsigned long dt, db;
6847 sector_t rt;
6848 int scale;
6849 unsigned int per_milli;
6850
6851 if (mddev->curr_resync <= 3)
6852 resync = 0;
6853 else
6854 resync = mddev->curr_resync
6855 - atomic_read(&mddev->recovery_active);
6856
6857 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6858 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6859 max_sectors = mddev->resync_max_sectors;
6860 else
6861 max_sectors = mddev->dev_sectors;
6862
6863 /*
6864 * Should not happen.
6865 */
6866 if (!max_sectors) {
6867 MD_BUG();
6868 return;
6869 }
6870 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6871 * in a sector_t, and (max_sectors>>scale) will fit in a
6872 * u32, as those are the requirements for sector_div.
6873 * Thus 'scale' must be at least 10
6874 */
6875 scale = 10;
6876 if (sizeof(sector_t) > sizeof(unsigned long)) {
6877 while ( max_sectors/2 > (1ULL<<(scale+32)))
6878 scale++;
6879 }
6880 res = (resync>>scale)*1000;
6881 sector_div(res, (u32)((max_sectors>>scale)+1));
6882
6883 per_milli = res;
6884 {
6885 int i, x = per_milli/50, y = 20-x;
6886 seq_printf(seq, "[");
6887 for (i = 0; i < x; i++)
6888 seq_printf(seq, "=");
6889 seq_printf(seq, ">");
6890 for (i = 0; i < y; i++)
6891 seq_printf(seq, ".");
6892 seq_printf(seq, "] ");
6893 }
6894 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6895 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6896 "reshape" :
6897 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6898 "check" :
6899 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6900 "resync" : "recovery"))),
6901 per_milli/10, per_milli % 10,
6902 (unsigned long long) resync/2,
6903 (unsigned long long) max_sectors/2);
6904
6905 /*
6906 * dt: time from mark until now
6907 * db: blocks written from mark until now
6908 * rt: remaining time
6909 *
6910 * rt is a sector_t, so could be 32bit or 64bit.
6911 * So we divide before multiply in case it is 32bit and close
6912 * to the limit.
6913 * We scale the divisor (db) by 32 to avoid losing precision
6914 * near the end of resync when the number of remaining sectors
6915 * is close to 'db'.
6916 * We then divide rt by 32 after multiplying by db to compensate.
6917 * The '+1' avoids division by zero if db is very small.
6918 */
6919 dt = ((jiffies - mddev->resync_mark) / HZ);
6920 if (!dt) dt++;
6921 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6922 - mddev->resync_mark_cnt;
6923
6924 rt = max_sectors - resync; /* number of remaining sectors */
6925 sector_div(rt, db/32+1);
6926 rt *= dt;
6927 rt >>= 5;
6928
6929 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6930 ((unsigned long)rt % 60)/6);
6931
6932 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6933 }
6934
6935 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6936 {
6937 struct list_head *tmp;
6938 loff_t l = *pos;
6939 struct mddev *mddev;
6940
6941 if (l >= 0x10000)
6942 return NULL;
6943 if (!l--)
6944 /* header */
6945 return (void*)1;
6946
6947 spin_lock(&all_mddevs_lock);
6948 list_for_each(tmp,&all_mddevs)
6949 if (!l--) {
6950 mddev = list_entry(tmp, struct mddev, all_mddevs);
6951 mddev_get(mddev);
6952 spin_unlock(&all_mddevs_lock);
6953 return mddev;
6954 }
6955 spin_unlock(&all_mddevs_lock);
6956 if (!l--)
6957 return (void*)2;/* tail */
6958 return NULL;
6959 }
6960
6961 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6962 {
6963 struct list_head *tmp;
6964 struct mddev *next_mddev, *mddev = v;
6965
6966 ++*pos;
6967 if (v == (void*)2)
6968 return NULL;
6969
6970 spin_lock(&all_mddevs_lock);
6971 if (v == (void*)1)
6972 tmp = all_mddevs.next;
6973 else
6974 tmp = mddev->all_mddevs.next;
6975 if (tmp != &all_mddevs)
6976 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6977 else {
6978 next_mddev = (void*)2;
6979 *pos = 0x10000;
6980 }
6981 spin_unlock(&all_mddevs_lock);
6982
6983 if (v != (void*)1)
6984 mddev_put(mddev);
6985 return next_mddev;
6986
6987 }
6988
6989 static void md_seq_stop(struct seq_file *seq, void *v)
6990 {
6991 struct mddev *mddev = v;
6992
6993 if (mddev && v != (void*)1 && v != (void*)2)
6994 mddev_put(mddev);
6995 }
6996
6997 static int md_seq_show(struct seq_file *seq, void *v)
6998 {
6999 struct mddev *mddev = v;
7000 sector_t sectors;
7001 struct md_rdev *rdev;
7002
7003 if (v == (void*)1) {
7004 struct md_personality *pers;
7005 seq_printf(seq, "Personalities : ");
7006 spin_lock(&pers_lock);
7007 list_for_each_entry(pers, &pers_list, list)
7008 seq_printf(seq, "[%s] ", pers->name);
7009
7010 spin_unlock(&pers_lock);
7011 seq_printf(seq, "\n");
7012 seq->poll_event = atomic_read(&md_event_count);
7013 return 0;
7014 }
7015 if (v == (void*)2) {
7016 status_unused(seq);
7017 return 0;
7018 }
7019
7020 if (mddev_lock(mddev) < 0)
7021 return -EINTR;
7022
7023 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7024 seq_printf(seq, "%s : %sactive", mdname(mddev),
7025 mddev->pers ? "" : "in");
7026 if (mddev->pers) {
7027 if (mddev->ro==1)
7028 seq_printf(seq, " (read-only)");
7029 if (mddev->ro==2)
7030 seq_printf(seq, " (auto-read-only)");
7031 seq_printf(seq, " %s", mddev->pers->name);
7032 }
7033
7034 sectors = 0;
7035 rdev_for_each(rdev, mddev) {
7036 char b[BDEVNAME_SIZE];
7037 seq_printf(seq, " %s[%d]",
7038 bdevname(rdev->bdev,b), rdev->desc_nr);
7039 if (test_bit(WriteMostly, &rdev->flags))
7040 seq_printf(seq, "(W)");
7041 if (test_bit(Faulty, &rdev->flags)) {
7042 seq_printf(seq, "(F)");
7043 continue;
7044 }
7045 if (rdev->raid_disk < 0)
7046 seq_printf(seq, "(S)"); /* spare */
7047 if (test_bit(Replacement, &rdev->flags))
7048 seq_printf(seq, "(R)");
7049 sectors += rdev->sectors;
7050 }
7051
7052 if (!list_empty(&mddev->disks)) {
7053 if (mddev->pers)
7054 seq_printf(seq, "\n %llu blocks",
7055 (unsigned long long)
7056 mddev->array_sectors / 2);
7057 else
7058 seq_printf(seq, "\n %llu blocks",
7059 (unsigned long long)sectors / 2);
7060 }
7061 if (mddev->persistent) {
7062 if (mddev->major_version != 0 ||
7063 mddev->minor_version != 90) {
7064 seq_printf(seq," super %d.%d",
7065 mddev->major_version,
7066 mddev->minor_version);
7067 }
7068 } else if (mddev->external)
7069 seq_printf(seq, " super external:%s",
7070 mddev->metadata_type);
7071 else
7072 seq_printf(seq, " super non-persistent");
7073
7074 if (mddev->pers) {
7075 mddev->pers->status(seq, mddev);
7076 seq_printf(seq, "\n ");
7077 if (mddev->pers->sync_request) {
7078 if (mddev->curr_resync > 2) {
7079 status_resync(seq, mddev);
7080 seq_printf(seq, "\n ");
7081 } else if (mddev->curr_resync >= 1)
7082 seq_printf(seq, "\tresync=DELAYED\n ");
7083 else if (mddev->recovery_cp < MaxSector)
7084 seq_printf(seq, "\tresync=PENDING\n ");
7085 }
7086 } else
7087 seq_printf(seq, "\n ");
7088
7089 bitmap_status(seq, mddev->bitmap);
7090
7091 seq_printf(seq, "\n");
7092 }
7093 mddev_unlock(mddev);
7094
7095 return 0;
7096 }
7097
7098 static const struct seq_operations md_seq_ops = {
7099 .start = md_seq_start,
7100 .next = md_seq_next,
7101 .stop = md_seq_stop,
7102 .show = md_seq_show,
7103 };
7104
7105 static int md_seq_open(struct inode *inode, struct file *file)
7106 {
7107 struct seq_file *seq;
7108 int error;
7109
7110 error = seq_open(file, &md_seq_ops);
7111 if (error)
7112 return error;
7113
7114 seq = file->private_data;
7115 seq->poll_event = atomic_read(&md_event_count);
7116 return error;
7117 }
7118
7119 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7120 {
7121 struct seq_file *seq = filp->private_data;
7122 int mask;
7123
7124 poll_wait(filp, &md_event_waiters, wait);
7125
7126 /* always allow read */
7127 mask = POLLIN | POLLRDNORM;
7128
7129 if (seq->poll_event != atomic_read(&md_event_count))
7130 mask |= POLLERR | POLLPRI;
7131 return mask;
7132 }
7133
7134 static const struct file_operations md_seq_fops = {
7135 .owner = THIS_MODULE,
7136 .open = md_seq_open,
7137 .read = seq_read,
7138 .llseek = seq_lseek,
7139 .release = seq_release_private,
7140 .poll = mdstat_poll,
7141 };
7142
7143 int register_md_personality(struct md_personality *p)
7144 {
7145 spin_lock(&pers_lock);
7146 list_add_tail(&p->list, &pers_list);
7147 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7148 spin_unlock(&pers_lock);
7149 return 0;
7150 }
7151
7152 int unregister_md_personality(struct md_personality *p)
7153 {
7154 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7155 spin_lock(&pers_lock);
7156 list_del_init(&p->list);
7157 spin_unlock(&pers_lock);
7158 return 0;
7159 }
7160
7161 static int is_mddev_idle(struct mddev *mddev, int init)
7162 {
7163 struct md_rdev * rdev;
7164 int idle;
7165 int curr_events;
7166
7167 idle = 1;
7168 rcu_read_lock();
7169 rdev_for_each_rcu(rdev, mddev) {
7170 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7171 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7172 (int)part_stat_read(&disk->part0, sectors[1]) -
7173 atomic_read(&disk->sync_io);
7174 /* sync IO will cause sync_io to increase before the disk_stats
7175 * as sync_io is counted when a request starts, and
7176 * disk_stats is counted when it completes.
7177 * So resync activity will cause curr_events to be smaller than
7178 * when there was no such activity.
7179 * non-sync IO will cause disk_stat to increase without
7180 * increasing sync_io so curr_events will (eventually)
7181 * be larger than it was before. Once it becomes
7182 * substantially larger, the test below will cause
7183 * the array to appear non-idle, and resync will slow
7184 * down.
7185 * If there is a lot of outstanding resync activity when
7186 * we set last_event to curr_events, then all that activity
7187 * completing might cause the array to appear non-idle
7188 * and resync will be slowed down even though there might
7189 * not have been non-resync activity. This will only
7190 * happen once though. 'last_events' will soon reflect
7191 * the state where there is little or no outstanding
7192 * resync requests, and further resync activity will
7193 * always make curr_events less than last_events.
7194 *
7195 */
7196 if (init || curr_events - rdev->last_events > 64) {
7197 rdev->last_events = curr_events;
7198 idle = 0;
7199 }
7200 }
7201 rcu_read_unlock();
7202 return idle;
7203 }
7204
7205 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7206 {
7207 /* another "blocks" (512byte) blocks have been synced */
7208 atomic_sub(blocks, &mddev->recovery_active);
7209 wake_up(&mddev->recovery_wait);
7210 if (!ok) {
7211 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7212 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7213 md_wakeup_thread(mddev->thread);
7214 // stop recovery, signal do_sync ....
7215 }
7216 }
7217
7218
7219 /* md_write_start(mddev, bi)
7220 * If we need to update some array metadata (e.g. 'active' flag
7221 * in superblock) before writing, schedule a superblock update
7222 * and wait for it to complete.
7223 */
7224 void md_write_start(struct mddev *mddev, struct bio *bi)
7225 {
7226 int did_change = 0;
7227 if (bio_data_dir(bi) != WRITE)
7228 return;
7229
7230 BUG_ON(mddev->ro == 1);
7231 if (mddev->ro == 2) {
7232 /* need to switch to read/write */
7233 mddev->ro = 0;
7234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7235 md_wakeup_thread(mddev->thread);
7236 md_wakeup_thread(mddev->sync_thread);
7237 did_change = 1;
7238 }
7239 atomic_inc(&mddev->writes_pending);
7240 if (mddev->safemode == 1)
7241 mddev->safemode = 0;
7242 if (mddev->in_sync) {
7243 spin_lock_irq(&mddev->write_lock);
7244 if (mddev->in_sync) {
7245 mddev->in_sync = 0;
7246 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7247 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7248 md_wakeup_thread(mddev->thread);
7249 did_change = 1;
7250 }
7251 spin_unlock_irq(&mddev->write_lock);
7252 }
7253 if (did_change)
7254 sysfs_notify_dirent_safe(mddev->sysfs_state);
7255 wait_event(mddev->sb_wait,
7256 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7257 }
7258
7259 void md_write_end(struct mddev *mddev)
7260 {
7261 if (atomic_dec_and_test(&mddev->writes_pending)) {
7262 if (mddev->safemode == 2)
7263 md_wakeup_thread(mddev->thread);
7264 else if (mddev->safemode_delay)
7265 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7266 }
7267 }
7268
7269 /* md_allow_write(mddev)
7270 * Calling this ensures that the array is marked 'active' so that writes
7271 * may proceed without blocking. It is important to call this before
7272 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7273 * Must be called with mddev_lock held.
7274 *
7275 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7276 * is dropped, so return -EAGAIN after notifying userspace.
7277 */
7278 int md_allow_write(struct mddev *mddev)
7279 {
7280 if (!mddev->pers)
7281 return 0;
7282 if (mddev->ro)
7283 return 0;
7284 if (!mddev->pers->sync_request)
7285 return 0;
7286
7287 spin_lock_irq(&mddev->write_lock);
7288 if (mddev->in_sync) {
7289 mddev->in_sync = 0;
7290 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7291 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7292 if (mddev->safemode_delay &&
7293 mddev->safemode == 0)
7294 mddev->safemode = 1;
7295 spin_unlock_irq(&mddev->write_lock);
7296 md_update_sb(mddev, 0);
7297 sysfs_notify_dirent_safe(mddev->sysfs_state);
7298 } else
7299 spin_unlock_irq(&mddev->write_lock);
7300
7301 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7302 return -EAGAIN;
7303 else
7304 return 0;
7305 }
7306 EXPORT_SYMBOL_GPL(md_allow_write);
7307
7308 #define SYNC_MARKS 10
7309 #define SYNC_MARK_STEP (3*HZ)
7310 #define UPDATE_FREQUENCY (5*60*HZ)
7311 void md_do_sync(struct md_thread *thread)
7312 {
7313 struct mddev *mddev = thread->mddev;
7314 struct mddev *mddev2;
7315 unsigned int currspeed = 0,
7316 window;
7317 sector_t max_sectors,j, io_sectors;
7318 unsigned long mark[SYNC_MARKS];
7319 unsigned long update_time;
7320 sector_t mark_cnt[SYNC_MARKS];
7321 int last_mark,m;
7322 struct list_head *tmp;
7323 sector_t last_check;
7324 int skipped = 0;
7325 struct md_rdev *rdev;
7326 char *desc;
7327 struct blk_plug plug;
7328
7329 /* just incase thread restarts... */
7330 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7331 return;
7332 if (mddev->ro) /* never try to sync a read-only array */
7333 return;
7334
7335 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7336 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7337 desc = "data-check";
7338 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7339 desc = "requested-resync";
7340 else
7341 desc = "resync";
7342 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7343 desc = "reshape";
7344 else
7345 desc = "recovery";
7346
7347 /* we overload curr_resync somewhat here.
7348 * 0 == not engaged in resync at all
7349 * 2 == checking that there is no conflict with another sync
7350 * 1 == like 2, but have yielded to allow conflicting resync to
7351 * commense
7352 * other == active in resync - this many blocks
7353 *
7354 * Before starting a resync we must have set curr_resync to
7355 * 2, and then checked that every "conflicting" array has curr_resync
7356 * less than ours. When we find one that is the same or higher
7357 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7358 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7359 * This will mean we have to start checking from the beginning again.
7360 *
7361 */
7362
7363 do {
7364 mddev->curr_resync = 2;
7365
7366 try_again:
7367 if (kthread_should_stop())
7368 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7369
7370 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7371 goto skip;
7372 for_each_mddev(mddev2, tmp) {
7373 if (mddev2 == mddev)
7374 continue;
7375 if (!mddev->parallel_resync
7376 && mddev2->curr_resync
7377 && match_mddev_units(mddev, mddev2)) {
7378 DEFINE_WAIT(wq);
7379 if (mddev < mddev2 && mddev->curr_resync == 2) {
7380 /* arbitrarily yield */
7381 mddev->curr_resync = 1;
7382 wake_up(&resync_wait);
7383 }
7384 if (mddev > mddev2 && mddev->curr_resync == 1)
7385 /* no need to wait here, we can wait the next
7386 * time 'round when curr_resync == 2
7387 */
7388 continue;
7389 /* We need to wait 'interruptible' so as not to
7390 * contribute to the load average, and not to
7391 * be caught by 'softlockup'
7392 */
7393 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7394 if (!kthread_should_stop() &&
7395 mddev2->curr_resync >= mddev->curr_resync) {
7396 printk(KERN_INFO "md: delaying %s of %s"
7397 " until %s has finished (they"
7398 " share one or more physical units)\n",
7399 desc, mdname(mddev), mdname(mddev2));
7400 mddev_put(mddev2);
7401 if (signal_pending(current))
7402 flush_signals(current);
7403 schedule();
7404 finish_wait(&resync_wait, &wq);
7405 goto try_again;
7406 }
7407 finish_wait(&resync_wait, &wq);
7408 }
7409 }
7410 } while (mddev->curr_resync < 2);
7411
7412 j = 0;
7413 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7414 /* resync follows the size requested by the personality,
7415 * which defaults to physical size, but can be virtual size
7416 */
7417 max_sectors = mddev->resync_max_sectors;
7418 atomic64_set(&mddev->resync_mismatches, 0);
7419 /* we don't use the checkpoint if there's a bitmap */
7420 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7421 j = mddev->resync_min;
7422 else if (!mddev->bitmap)
7423 j = mddev->recovery_cp;
7424
7425 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7426 max_sectors = mddev->resync_max_sectors;
7427 else {
7428 /* recovery follows the physical size of devices */
7429 max_sectors = mddev->dev_sectors;
7430 j = MaxSector;
7431 rcu_read_lock();
7432 rdev_for_each_rcu(rdev, mddev)
7433 if (rdev->raid_disk >= 0 &&
7434 !test_bit(Faulty, &rdev->flags) &&
7435 !test_bit(In_sync, &rdev->flags) &&
7436 rdev->recovery_offset < j)
7437 j = rdev->recovery_offset;
7438 rcu_read_unlock();
7439 }
7440
7441 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7442 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7443 " %d KB/sec/disk.\n", speed_min(mddev));
7444 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7445 "(but not more than %d KB/sec) for %s.\n",
7446 speed_max(mddev), desc);
7447
7448 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7449
7450 io_sectors = 0;
7451 for (m = 0; m < SYNC_MARKS; m++) {
7452 mark[m] = jiffies;
7453 mark_cnt[m] = io_sectors;
7454 }
7455 last_mark = 0;
7456 mddev->resync_mark = mark[last_mark];
7457 mddev->resync_mark_cnt = mark_cnt[last_mark];
7458
7459 /*
7460 * Tune reconstruction:
7461 */
7462 window = 32*(PAGE_SIZE/512);
7463 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7464 window/2, (unsigned long long)max_sectors/2);
7465
7466 atomic_set(&mddev->recovery_active, 0);
7467 last_check = 0;
7468
7469 if (j>2) {
7470 printk(KERN_INFO
7471 "md: resuming %s of %s from checkpoint.\n",
7472 desc, mdname(mddev));
7473 mddev->curr_resync = j;
7474 } else
7475 mddev->curr_resync = 3; /* no longer delayed */
7476 mddev->curr_resync_completed = j;
7477 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7478 md_new_event(mddev);
7479 update_time = jiffies;
7480
7481 blk_start_plug(&plug);
7482 while (j < max_sectors) {
7483 sector_t sectors;
7484
7485 skipped = 0;
7486
7487 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7488 ((mddev->curr_resync > mddev->curr_resync_completed &&
7489 (mddev->curr_resync - mddev->curr_resync_completed)
7490 > (max_sectors >> 4)) ||
7491 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7492 (j - mddev->curr_resync_completed)*2
7493 >= mddev->resync_max - mddev->curr_resync_completed
7494 )) {
7495 /* time to update curr_resync_completed */
7496 wait_event(mddev->recovery_wait,
7497 atomic_read(&mddev->recovery_active) == 0);
7498 mddev->curr_resync_completed = j;
7499 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7500 j > mddev->recovery_cp)
7501 mddev->recovery_cp = j;
7502 update_time = jiffies;
7503 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7504 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7505 }
7506
7507 while (j >= mddev->resync_max && !kthread_should_stop()) {
7508 /* As this condition is controlled by user-space,
7509 * we can block indefinitely, so use '_interruptible'
7510 * to avoid triggering warnings.
7511 */
7512 flush_signals(current); /* just in case */
7513 wait_event_interruptible(mddev->recovery_wait,
7514 mddev->resync_max > j
7515 || kthread_should_stop());
7516 }
7517
7518 if (kthread_should_stop())
7519 goto interrupted;
7520
7521 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7522 currspeed < speed_min(mddev));
7523 if (sectors == 0) {
7524 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7525 goto out;
7526 }
7527
7528 if (!skipped) { /* actual IO requested */
7529 io_sectors += sectors;
7530 atomic_add(sectors, &mddev->recovery_active);
7531 }
7532
7533 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7534 break;
7535
7536 j += sectors;
7537 if (j > 2)
7538 mddev->curr_resync = j;
7539 mddev->curr_mark_cnt = io_sectors;
7540 if (last_check == 0)
7541 /* this is the earliest that rebuild will be
7542 * visible in /proc/mdstat
7543 */
7544 md_new_event(mddev);
7545
7546 if (last_check + window > io_sectors || j == max_sectors)
7547 continue;
7548
7549 last_check = io_sectors;
7550 repeat:
7551 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7552 /* step marks */
7553 int next = (last_mark+1) % SYNC_MARKS;
7554
7555 mddev->resync_mark = mark[next];
7556 mddev->resync_mark_cnt = mark_cnt[next];
7557 mark[next] = jiffies;
7558 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7559 last_mark = next;
7560 }
7561
7562
7563 if (kthread_should_stop())
7564 goto interrupted;
7565
7566
7567 /*
7568 * this loop exits only if either when we are slower than
7569 * the 'hard' speed limit, or the system was IO-idle for
7570 * a jiffy.
7571 * the system might be non-idle CPU-wise, but we only care
7572 * about not overloading the IO subsystem. (things like an
7573 * e2fsck being done on the RAID array should execute fast)
7574 */
7575 cond_resched();
7576
7577 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7578 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7579
7580 if (currspeed > speed_min(mddev)) {
7581 if ((currspeed > speed_max(mddev)) ||
7582 !is_mddev_idle(mddev, 0)) {
7583 msleep(500);
7584 goto repeat;
7585 }
7586 }
7587 }
7588 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7589 /*
7590 * this also signals 'finished resyncing' to md_stop
7591 */
7592 out:
7593 blk_finish_plug(&plug);
7594 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7595
7596 /* tell personality that we are finished */
7597 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7598
7599 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7600 mddev->curr_resync > 2) {
7601 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7602 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7603 if (mddev->curr_resync >= mddev->recovery_cp) {
7604 printk(KERN_INFO
7605 "md: checkpointing %s of %s.\n",
7606 desc, mdname(mddev));
7607 if (test_bit(MD_RECOVERY_ERROR,
7608 &mddev->recovery))
7609 mddev->recovery_cp =
7610 mddev->curr_resync_completed;
7611 else
7612 mddev->recovery_cp =
7613 mddev->curr_resync;
7614 }
7615 } else
7616 mddev->recovery_cp = MaxSector;
7617 } else {
7618 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7619 mddev->curr_resync = MaxSector;
7620 rcu_read_lock();
7621 rdev_for_each_rcu(rdev, mddev)
7622 if (rdev->raid_disk >= 0 &&
7623 mddev->delta_disks >= 0 &&
7624 !test_bit(Faulty, &rdev->flags) &&
7625 !test_bit(In_sync, &rdev->flags) &&
7626 rdev->recovery_offset < mddev->curr_resync)
7627 rdev->recovery_offset = mddev->curr_resync;
7628 rcu_read_unlock();
7629 }
7630 }
7631 skip:
7632 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7633
7634 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7635 /* We completed so min/max setting can be forgotten if used. */
7636 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7637 mddev->resync_min = 0;
7638 mddev->resync_max = MaxSector;
7639 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7640 mddev->resync_min = mddev->curr_resync_completed;
7641 mddev->curr_resync = 0;
7642 wake_up(&resync_wait);
7643 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7644 md_wakeup_thread(mddev->thread);
7645 return;
7646
7647 interrupted:
7648 /*
7649 * got a signal, exit.
7650 */
7651 printk(KERN_INFO
7652 "md: md_do_sync() got signal ... exiting\n");
7653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7654 goto out;
7655
7656 }
7657 EXPORT_SYMBOL_GPL(md_do_sync);
7658
7659 static int remove_and_add_spares(struct mddev *mddev,
7660 struct md_rdev *this)
7661 {
7662 struct md_rdev *rdev;
7663 int spares = 0;
7664 int removed = 0;
7665
7666 rdev_for_each(rdev, mddev)
7667 if ((this == NULL || rdev == this) &&
7668 rdev->raid_disk >= 0 &&
7669 !test_bit(Blocked, &rdev->flags) &&
7670 (test_bit(Faulty, &rdev->flags) ||
7671 ! test_bit(In_sync, &rdev->flags)) &&
7672 atomic_read(&rdev->nr_pending)==0) {
7673 if (mddev->pers->hot_remove_disk(
7674 mddev, rdev) == 0) {
7675 sysfs_unlink_rdev(mddev, rdev);
7676 rdev->raid_disk = -1;
7677 removed++;
7678 }
7679 }
7680 if (removed && mddev->kobj.sd)
7681 sysfs_notify(&mddev->kobj, NULL, "degraded");
7682
7683 if (this)
7684 goto no_add;
7685
7686 rdev_for_each(rdev, mddev) {
7687 if (rdev->raid_disk >= 0 &&
7688 !test_bit(In_sync, &rdev->flags) &&
7689 !test_bit(Faulty, &rdev->flags))
7690 spares++;
7691 if (rdev->raid_disk >= 0)
7692 continue;
7693 if (test_bit(Faulty, &rdev->flags))
7694 continue;
7695 if (mddev->ro &&
7696 rdev->saved_raid_disk < 0)
7697 continue;
7698
7699 rdev->recovery_offset = 0;
7700 if (mddev->pers->
7701 hot_add_disk(mddev, rdev) == 0) {
7702 if (sysfs_link_rdev(mddev, rdev))
7703 /* failure here is OK */;
7704 spares++;
7705 md_new_event(mddev);
7706 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7707 }
7708 }
7709 no_add:
7710 if (removed)
7711 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7712 return spares;
7713 }
7714
7715 /*
7716 * This routine is regularly called by all per-raid-array threads to
7717 * deal with generic issues like resync and super-block update.
7718 * Raid personalities that don't have a thread (linear/raid0) do not
7719 * need this as they never do any recovery or update the superblock.
7720 *
7721 * It does not do any resync itself, but rather "forks" off other threads
7722 * to do that as needed.
7723 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7724 * "->recovery" and create a thread at ->sync_thread.
7725 * When the thread finishes it sets MD_RECOVERY_DONE
7726 * and wakeups up this thread which will reap the thread and finish up.
7727 * This thread also removes any faulty devices (with nr_pending == 0).
7728 *
7729 * The overall approach is:
7730 * 1/ if the superblock needs updating, update it.
7731 * 2/ If a recovery thread is running, don't do anything else.
7732 * 3/ If recovery has finished, clean up, possibly marking spares active.
7733 * 4/ If there are any faulty devices, remove them.
7734 * 5/ If array is degraded, try to add spares devices
7735 * 6/ If array has spares or is not in-sync, start a resync thread.
7736 */
7737 void md_check_recovery(struct mddev *mddev)
7738 {
7739 if (mddev->suspended)
7740 return;
7741
7742 if (mddev->bitmap)
7743 bitmap_daemon_work(mddev);
7744
7745 if (signal_pending(current)) {
7746 if (mddev->pers->sync_request && !mddev->external) {
7747 printk(KERN_INFO "md: %s in immediate safe mode\n",
7748 mdname(mddev));
7749 mddev->safemode = 2;
7750 }
7751 flush_signals(current);
7752 }
7753
7754 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7755 return;
7756 if ( ! (
7757 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7758 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7759 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7760 (mddev->external == 0 && mddev->safemode == 1) ||
7761 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7762 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7763 ))
7764 return;
7765
7766 if (mddev_trylock(mddev)) {
7767 int spares = 0;
7768
7769 if (mddev->ro) {
7770 /* On a read-only array we can:
7771 * - remove failed devices
7772 * - add already-in_sync devices if the array itself
7773 * is in-sync.
7774 * As we only add devices that are already in-sync,
7775 * we can activate the spares immediately.
7776 */
7777 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7778 remove_and_add_spares(mddev, NULL);
7779 mddev->pers->spare_active(mddev);
7780 goto unlock;
7781 }
7782
7783 if (!mddev->external) {
7784 int did_change = 0;
7785 spin_lock_irq(&mddev->write_lock);
7786 if (mddev->safemode &&
7787 !atomic_read(&mddev->writes_pending) &&
7788 !mddev->in_sync &&
7789 mddev->recovery_cp == MaxSector) {
7790 mddev->in_sync = 1;
7791 did_change = 1;
7792 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7793 }
7794 if (mddev->safemode == 1)
7795 mddev->safemode = 0;
7796 spin_unlock_irq(&mddev->write_lock);
7797 if (did_change)
7798 sysfs_notify_dirent_safe(mddev->sysfs_state);
7799 }
7800
7801 if (mddev->flags)
7802 md_update_sb(mddev, 0);
7803
7804 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7805 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7806 /* resync/recovery still happening */
7807 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7808 goto unlock;
7809 }
7810 if (mddev->sync_thread) {
7811 md_reap_sync_thread(mddev);
7812 goto unlock;
7813 }
7814 /* Set RUNNING before clearing NEEDED to avoid
7815 * any transients in the value of "sync_action".
7816 */
7817 mddev->curr_resync_completed = 0;
7818 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7819 /* Clear some bits that don't mean anything, but
7820 * might be left set
7821 */
7822 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7823 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7824
7825 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7826 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7827 goto unlock;
7828 /* no recovery is running.
7829 * remove any failed drives, then
7830 * add spares if possible.
7831 * Spares are also removed and re-added, to allow
7832 * the personality to fail the re-add.
7833 */
7834
7835 if (mddev->reshape_position != MaxSector) {
7836 if (mddev->pers->check_reshape == NULL ||
7837 mddev->pers->check_reshape(mddev) != 0)
7838 /* Cannot proceed */
7839 goto unlock;
7840 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7841 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7842 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7843 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7844 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7845 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7846 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7847 } else if (mddev->recovery_cp < MaxSector) {
7848 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7849 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7850 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7851 /* nothing to be done ... */
7852 goto unlock;
7853
7854 if (mddev->pers->sync_request) {
7855 if (spares) {
7856 /* We are adding a device or devices to an array
7857 * which has the bitmap stored on all devices.
7858 * So make sure all bitmap pages get written
7859 */
7860 bitmap_write_all(mddev->bitmap);
7861 }
7862 mddev->sync_thread = md_register_thread(md_do_sync,
7863 mddev,
7864 "resync");
7865 if (!mddev->sync_thread) {
7866 printk(KERN_ERR "%s: could not start resync"
7867 " thread...\n",
7868 mdname(mddev));
7869 /* leave the spares where they are, it shouldn't hurt */
7870 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7871 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7872 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7873 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7874 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7875 } else
7876 md_wakeup_thread(mddev->sync_thread);
7877 sysfs_notify_dirent_safe(mddev->sysfs_action);
7878 md_new_event(mddev);
7879 }
7880 unlock:
7881 if (!mddev->sync_thread) {
7882 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7883 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7884 &mddev->recovery))
7885 if (mddev->sysfs_action)
7886 sysfs_notify_dirent_safe(mddev->sysfs_action);
7887 }
7888 mddev_unlock(mddev);
7889 }
7890 }
7891
7892 void md_reap_sync_thread(struct mddev *mddev)
7893 {
7894 struct md_rdev *rdev;
7895
7896 /* resync has finished, collect result */
7897 md_unregister_thread(&mddev->sync_thread);
7898 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7899 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7900 /* success...*/
7901 /* activate any spares */
7902 if (mddev->pers->spare_active(mddev)) {
7903 sysfs_notify(&mddev->kobj, NULL,
7904 "degraded");
7905 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7906 }
7907 }
7908 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7909 mddev->pers->finish_reshape)
7910 mddev->pers->finish_reshape(mddev);
7911
7912 /* If array is no-longer degraded, then any saved_raid_disk
7913 * information must be scrapped. Also if any device is now
7914 * In_sync we must scrape the saved_raid_disk for that device
7915 * do the superblock for an incrementally recovered device
7916 * written out.
7917 */
7918 rdev_for_each(rdev, mddev)
7919 if (!mddev->degraded ||
7920 test_bit(In_sync, &rdev->flags))
7921 rdev->saved_raid_disk = -1;
7922
7923 md_update_sb(mddev, 1);
7924 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7925 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7926 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7927 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7928 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7929 /* flag recovery needed just to double check */
7930 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7931 sysfs_notify_dirent_safe(mddev->sysfs_action);
7932 md_new_event(mddev);
7933 if (mddev->event_work.func)
7934 queue_work(md_misc_wq, &mddev->event_work);
7935 }
7936
7937 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7938 {
7939 sysfs_notify_dirent_safe(rdev->sysfs_state);
7940 wait_event_timeout(rdev->blocked_wait,
7941 !test_bit(Blocked, &rdev->flags) &&
7942 !test_bit(BlockedBadBlocks, &rdev->flags),
7943 msecs_to_jiffies(5000));
7944 rdev_dec_pending(rdev, mddev);
7945 }
7946 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7947
7948 void md_finish_reshape(struct mddev *mddev)
7949 {
7950 /* called be personality module when reshape completes. */
7951 struct md_rdev *rdev;
7952
7953 rdev_for_each(rdev, mddev) {
7954 if (rdev->data_offset > rdev->new_data_offset)
7955 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7956 else
7957 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7958 rdev->data_offset = rdev->new_data_offset;
7959 }
7960 }
7961 EXPORT_SYMBOL(md_finish_reshape);
7962
7963 /* Bad block management.
7964 * We can record which blocks on each device are 'bad' and so just
7965 * fail those blocks, or that stripe, rather than the whole device.
7966 * Entries in the bad-block table are 64bits wide. This comprises:
7967 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7968 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7969 * A 'shift' can be set so that larger blocks are tracked and
7970 * consequently larger devices can be covered.
7971 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7972 *
7973 * Locking of the bad-block table uses a seqlock so md_is_badblock
7974 * might need to retry if it is very unlucky.
7975 * We will sometimes want to check for bad blocks in a bi_end_io function,
7976 * so we use the write_seqlock_irq variant.
7977 *
7978 * When looking for a bad block we specify a range and want to
7979 * know if any block in the range is bad. So we binary-search
7980 * to the last range that starts at-or-before the given endpoint,
7981 * (or "before the sector after the target range")
7982 * then see if it ends after the given start.
7983 * We return
7984 * 0 if there are no known bad blocks in the range
7985 * 1 if there are known bad block which are all acknowledged
7986 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7987 * plus the start/length of the first bad section we overlap.
7988 */
7989 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7990 sector_t *first_bad, int *bad_sectors)
7991 {
7992 int hi;
7993 int lo;
7994 u64 *p = bb->page;
7995 int rv;
7996 sector_t target = s + sectors;
7997 unsigned seq;
7998
7999 if (bb->shift > 0) {
8000 /* round the start down, and the end up */
8001 s >>= bb->shift;
8002 target += (1<<bb->shift) - 1;
8003 target >>= bb->shift;
8004 sectors = target - s;
8005 }
8006 /* 'target' is now the first block after the bad range */
8007
8008 retry:
8009 seq = read_seqbegin(&bb->lock);
8010 lo = 0;
8011 rv = 0;
8012 hi = bb->count;
8013
8014 /* Binary search between lo and hi for 'target'
8015 * i.e. for the last range that starts before 'target'
8016 */
8017 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8018 * are known not to be the last range before target.
8019 * VARIANT: hi-lo is the number of possible
8020 * ranges, and decreases until it reaches 1
8021 */
8022 while (hi - lo > 1) {
8023 int mid = (lo + hi) / 2;
8024 sector_t a = BB_OFFSET(p[mid]);
8025 if (a < target)
8026 /* This could still be the one, earlier ranges
8027 * could not. */
8028 lo = mid;
8029 else
8030 /* This and later ranges are definitely out. */
8031 hi = mid;
8032 }
8033 /* 'lo' might be the last that started before target, but 'hi' isn't */
8034 if (hi > lo) {
8035 /* need to check all range that end after 's' to see if
8036 * any are unacknowledged.
8037 */
8038 while (lo >= 0 &&
8039 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8040 if (BB_OFFSET(p[lo]) < target) {
8041 /* starts before the end, and finishes after
8042 * the start, so they must overlap
8043 */
8044 if (rv != -1 && BB_ACK(p[lo]))
8045 rv = 1;
8046 else
8047 rv = -1;
8048 *first_bad = BB_OFFSET(p[lo]);
8049 *bad_sectors = BB_LEN(p[lo]);
8050 }
8051 lo--;
8052 }
8053 }
8054
8055 if (read_seqretry(&bb->lock, seq))
8056 goto retry;
8057
8058 return rv;
8059 }
8060 EXPORT_SYMBOL_GPL(md_is_badblock);
8061
8062 /*
8063 * Add a range of bad blocks to the table.
8064 * This might extend the table, or might contract it
8065 * if two adjacent ranges can be merged.
8066 * We binary-search to find the 'insertion' point, then
8067 * decide how best to handle it.
8068 */
8069 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8070 int acknowledged)
8071 {
8072 u64 *p;
8073 int lo, hi;
8074 int rv = 1;
8075 unsigned long flags;
8076
8077 if (bb->shift < 0)
8078 /* badblocks are disabled */
8079 return 0;
8080
8081 if (bb->shift) {
8082 /* round the start down, and the end up */
8083 sector_t next = s + sectors;
8084 s >>= bb->shift;
8085 next += (1<<bb->shift) - 1;
8086 next >>= bb->shift;
8087 sectors = next - s;
8088 }
8089
8090 write_seqlock_irqsave(&bb->lock, flags);
8091
8092 p = bb->page;
8093 lo = 0;
8094 hi = bb->count;
8095 /* Find the last range that starts at-or-before 's' */
8096 while (hi - lo > 1) {
8097 int mid = (lo + hi) / 2;
8098 sector_t a = BB_OFFSET(p[mid]);
8099 if (a <= s)
8100 lo = mid;
8101 else
8102 hi = mid;
8103 }
8104 if (hi > lo && BB_OFFSET(p[lo]) > s)
8105 hi = lo;
8106
8107 if (hi > lo) {
8108 /* we found a range that might merge with the start
8109 * of our new range
8110 */
8111 sector_t a = BB_OFFSET(p[lo]);
8112 sector_t e = a + BB_LEN(p[lo]);
8113 int ack = BB_ACK(p[lo]);
8114 if (e >= s) {
8115 /* Yes, we can merge with a previous range */
8116 if (s == a && s + sectors >= e)
8117 /* new range covers old */
8118 ack = acknowledged;
8119 else
8120 ack = ack && acknowledged;
8121
8122 if (e < s + sectors)
8123 e = s + sectors;
8124 if (e - a <= BB_MAX_LEN) {
8125 p[lo] = BB_MAKE(a, e-a, ack);
8126 s = e;
8127 } else {
8128 /* does not all fit in one range,
8129 * make p[lo] maximal
8130 */
8131 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8132 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8133 s = a + BB_MAX_LEN;
8134 }
8135 sectors = e - s;
8136 }
8137 }
8138 if (sectors && hi < bb->count) {
8139 /* 'hi' points to the first range that starts after 's'.
8140 * Maybe we can merge with the start of that range */
8141 sector_t a = BB_OFFSET(p[hi]);
8142 sector_t e = a + BB_LEN(p[hi]);
8143 int ack = BB_ACK(p[hi]);
8144 if (a <= s + sectors) {
8145 /* merging is possible */
8146 if (e <= s + sectors) {
8147 /* full overlap */
8148 e = s + sectors;
8149 ack = acknowledged;
8150 } else
8151 ack = ack && acknowledged;
8152
8153 a = s;
8154 if (e - a <= BB_MAX_LEN) {
8155 p[hi] = BB_MAKE(a, e-a, ack);
8156 s = e;
8157 } else {
8158 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8159 s = a + BB_MAX_LEN;
8160 }
8161 sectors = e - s;
8162 lo = hi;
8163 hi++;
8164 }
8165 }
8166 if (sectors == 0 && hi < bb->count) {
8167 /* we might be able to combine lo and hi */
8168 /* Note: 's' is at the end of 'lo' */
8169 sector_t a = BB_OFFSET(p[hi]);
8170 int lolen = BB_LEN(p[lo]);
8171 int hilen = BB_LEN(p[hi]);
8172 int newlen = lolen + hilen - (s - a);
8173 if (s >= a && newlen < BB_MAX_LEN) {
8174 /* yes, we can combine them */
8175 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8176 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8177 memmove(p + hi, p + hi + 1,
8178 (bb->count - hi - 1) * 8);
8179 bb->count--;
8180 }
8181 }
8182 while (sectors) {
8183 /* didn't merge (it all).
8184 * Need to add a range just before 'hi' */
8185 if (bb->count >= MD_MAX_BADBLOCKS) {
8186 /* No room for more */
8187 rv = 0;
8188 break;
8189 } else {
8190 int this_sectors = sectors;
8191 memmove(p + hi + 1, p + hi,
8192 (bb->count - hi) * 8);
8193 bb->count++;
8194
8195 if (this_sectors > BB_MAX_LEN)
8196 this_sectors = BB_MAX_LEN;
8197 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8198 sectors -= this_sectors;
8199 s += this_sectors;
8200 }
8201 }
8202
8203 bb->changed = 1;
8204 if (!acknowledged)
8205 bb->unacked_exist = 1;
8206 write_sequnlock_irqrestore(&bb->lock, flags);
8207
8208 return rv;
8209 }
8210
8211 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8212 int is_new)
8213 {
8214 int rv;
8215 if (is_new)
8216 s += rdev->new_data_offset;
8217 else
8218 s += rdev->data_offset;
8219 rv = md_set_badblocks(&rdev->badblocks,
8220 s, sectors, 0);
8221 if (rv) {
8222 /* Make sure they get written out promptly */
8223 sysfs_notify_dirent_safe(rdev->sysfs_state);
8224 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8225 md_wakeup_thread(rdev->mddev->thread);
8226 }
8227 return rv;
8228 }
8229 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8230
8231 /*
8232 * Remove a range of bad blocks from the table.
8233 * This may involve extending the table if we spilt a region,
8234 * but it must not fail. So if the table becomes full, we just
8235 * drop the remove request.
8236 */
8237 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8238 {
8239 u64 *p;
8240 int lo, hi;
8241 sector_t target = s + sectors;
8242 int rv = 0;
8243
8244 if (bb->shift > 0) {
8245 /* When clearing we round the start up and the end down.
8246 * This should not matter as the shift should align with
8247 * the block size and no rounding should ever be needed.
8248 * However it is better the think a block is bad when it
8249 * isn't than to think a block is not bad when it is.
8250 */
8251 s += (1<<bb->shift) - 1;
8252 s >>= bb->shift;
8253 target >>= bb->shift;
8254 sectors = target - s;
8255 }
8256
8257 write_seqlock_irq(&bb->lock);
8258
8259 p = bb->page;
8260 lo = 0;
8261 hi = bb->count;
8262 /* Find the last range that starts before 'target' */
8263 while (hi - lo > 1) {
8264 int mid = (lo + hi) / 2;
8265 sector_t a = BB_OFFSET(p[mid]);
8266 if (a < target)
8267 lo = mid;
8268 else
8269 hi = mid;
8270 }
8271 if (hi > lo) {
8272 /* p[lo] is the last range that could overlap the
8273 * current range. Earlier ranges could also overlap,
8274 * but only this one can overlap the end of the range.
8275 */
8276 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8277 /* Partial overlap, leave the tail of this range */
8278 int ack = BB_ACK(p[lo]);
8279 sector_t a = BB_OFFSET(p[lo]);
8280 sector_t end = a + BB_LEN(p[lo]);
8281
8282 if (a < s) {
8283 /* we need to split this range */
8284 if (bb->count >= MD_MAX_BADBLOCKS) {
8285 rv = 0;
8286 goto out;
8287 }
8288 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8289 bb->count++;
8290 p[lo] = BB_MAKE(a, s-a, ack);
8291 lo++;
8292 }
8293 p[lo] = BB_MAKE(target, end - target, ack);
8294 /* there is no longer an overlap */
8295 hi = lo;
8296 lo--;
8297 }
8298 while (lo >= 0 &&
8299 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8300 /* This range does overlap */
8301 if (BB_OFFSET(p[lo]) < s) {
8302 /* Keep the early parts of this range. */
8303 int ack = BB_ACK(p[lo]);
8304 sector_t start = BB_OFFSET(p[lo]);
8305 p[lo] = BB_MAKE(start, s - start, ack);
8306 /* now low doesn't overlap, so.. */
8307 break;
8308 }
8309 lo--;
8310 }
8311 /* 'lo' is strictly before, 'hi' is strictly after,
8312 * anything between needs to be discarded
8313 */
8314 if (hi - lo > 1) {
8315 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8316 bb->count -= (hi - lo - 1);
8317 }
8318 }
8319
8320 bb->changed = 1;
8321 out:
8322 write_sequnlock_irq(&bb->lock);
8323 return rv;
8324 }
8325
8326 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8327 int is_new)
8328 {
8329 if (is_new)
8330 s += rdev->new_data_offset;
8331 else
8332 s += rdev->data_offset;
8333 return md_clear_badblocks(&rdev->badblocks,
8334 s, sectors);
8335 }
8336 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8337
8338 /*
8339 * Acknowledge all bad blocks in a list.
8340 * This only succeeds if ->changed is clear. It is used by
8341 * in-kernel metadata updates
8342 */
8343 void md_ack_all_badblocks(struct badblocks *bb)
8344 {
8345 if (bb->page == NULL || bb->changed)
8346 /* no point even trying */
8347 return;
8348 write_seqlock_irq(&bb->lock);
8349
8350 if (bb->changed == 0 && bb->unacked_exist) {
8351 u64 *p = bb->page;
8352 int i;
8353 for (i = 0; i < bb->count ; i++) {
8354 if (!BB_ACK(p[i])) {
8355 sector_t start = BB_OFFSET(p[i]);
8356 int len = BB_LEN(p[i]);
8357 p[i] = BB_MAKE(start, len, 1);
8358 }
8359 }
8360 bb->unacked_exist = 0;
8361 }
8362 write_sequnlock_irq(&bb->lock);
8363 }
8364 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8365
8366 /* sysfs access to bad-blocks list.
8367 * We present two files.
8368 * 'bad-blocks' lists sector numbers and lengths of ranges that
8369 * are recorded as bad. The list is truncated to fit within
8370 * the one-page limit of sysfs.
8371 * Writing "sector length" to this file adds an acknowledged
8372 * bad block list.
8373 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8374 * been acknowledged. Writing to this file adds bad blocks
8375 * without acknowledging them. This is largely for testing.
8376 */
8377
8378 static ssize_t
8379 badblocks_show(struct badblocks *bb, char *page, int unack)
8380 {
8381 size_t len;
8382 int i;
8383 u64 *p = bb->page;
8384 unsigned seq;
8385
8386 if (bb->shift < 0)
8387 return 0;
8388
8389 retry:
8390 seq = read_seqbegin(&bb->lock);
8391
8392 len = 0;
8393 i = 0;
8394
8395 while (len < PAGE_SIZE && i < bb->count) {
8396 sector_t s = BB_OFFSET(p[i]);
8397 unsigned int length = BB_LEN(p[i]);
8398 int ack = BB_ACK(p[i]);
8399 i++;
8400
8401 if (unack && ack)
8402 continue;
8403
8404 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8405 (unsigned long long)s << bb->shift,
8406 length << bb->shift);
8407 }
8408 if (unack && len == 0)
8409 bb->unacked_exist = 0;
8410
8411 if (read_seqretry(&bb->lock, seq))
8412 goto retry;
8413
8414 return len;
8415 }
8416
8417 #define DO_DEBUG 1
8418
8419 static ssize_t
8420 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8421 {
8422 unsigned long long sector;
8423 int length;
8424 char newline;
8425 #ifdef DO_DEBUG
8426 /* Allow clearing via sysfs *only* for testing/debugging.
8427 * Normally only a successful write may clear a badblock
8428 */
8429 int clear = 0;
8430 if (page[0] == '-') {
8431 clear = 1;
8432 page++;
8433 }
8434 #endif /* DO_DEBUG */
8435
8436 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8437 case 3:
8438 if (newline != '\n')
8439 return -EINVAL;
8440 case 2:
8441 if (length <= 0)
8442 return -EINVAL;
8443 break;
8444 default:
8445 return -EINVAL;
8446 }
8447
8448 #ifdef DO_DEBUG
8449 if (clear) {
8450 md_clear_badblocks(bb, sector, length);
8451 return len;
8452 }
8453 #endif /* DO_DEBUG */
8454 if (md_set_badblocks(bb, sector, length, !unack))
8455 return len;
8456 else
8457 return -ENOSPC;
8458 }
8459
8460 static int md_notify_reboot(struct notifier_block *this,
8461 unsigned long code, void *x)
8462 {
8463 struct list_head *tmp;
8464 struct mddev *mddev;
8465 int need_delay = 0;
8466
8467 for_each_mddev(mddev, tmp) {
8468 if (mddev_trylock(mddev)) {
8469 if (mddev->pers)
8470 __md_stop_writes(mddev);
8471 mddev->safemode = 2;
8472 mddev_unlock(mddev);
8473 }
8474 need_delay = 1;
8475 }
8476 /*
8477 * certain more exotic SCSI devices are known to be
8478 * volatile wrt too early system reboots. While the
8479 * right place to handle this issue is the given
8480 * driver, we do want to have a safe RAID driver ...
8481 */
8482 if (need_delay)
8483 mdelay(1000*1);
8484
8485 return NOTIFY_DONE;
8486 }
8487
8488 static struct notifier_block md_notifier = {
8489 .notifier_call = md_notify_reboot,
8490 .next = NULL,
8491 .priority = INT_MAX, /* before any real devices */
8492 };
8493
8494 static void md_geninit(void)
8495 {
8496 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8497
8498 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8499 }
8500
8501 static int __init md_init(void)
8502 {
8503 int ret = -ENOMEM;
8504
8505 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8506 if (!md_wq)
8507 goto err_wq;
8508
8509 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8510 if (!md_misc_wq)
8511 goto err_misc_wq;
8512
8513 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8514 goto err_md;
8515
8516 if ((ret = register_blkdev(0, "mdp")) < 0)
8517 goto err_mdp;
8518 mdp_major = ret;
8519
8520 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8521 md_probe, NULL, NULL);
8522 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8523 md_probe, NULL, NULL);
8524
8525 register_reboot_notifier(&md_notifier);
8526 raid_table_header = register_sysctl_table(raid_root_table);
8527
8528 md_geninit();
8529 return 0;
8530
8531 err_mdp:
8532 unregister_blkdev(MD_MAJOR, "md");
8533 err_md:
8534 destroy_workqueue(md_misc_wq);
8535 err_misc_wq:
8536 destroy_workqueue(md_wq);
8537 err_wq:
8538 return ret;
8539 }
8540
8541 #ifndef MODULE
8542
8543 /*
8544 * Searches all registered partitions for autorun RAID arrays
8545 * at boot time.
8546 */
8547
8548 static LIST_HEAD(all_detected_devices);
8549 struct detected_devices_node {
8550 struct list_head list;
8551 dev_t dev;
8552 };
8553
8554 void md_autodetect_dev(dev_t dev)
8555 {
8556 struct detected_devices_node *node_detected_dev;
8557
8558 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8559 if (node_detected_dev) {
8560 node_detected_dev->dev = dev;
8561 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8562 } else {
8563 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8564 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8565 }
8566 }
8567
8568
8569 static void autostart_arrays(int part)
8570 {
8571 struct md_rdev *rdev;
8572 struct detected_devices_node *node_detected_dev;
8573 dev_t dev;
8574 int i_scanned, i_passed;
8575
8576 i_scanned = 0;
8577 i_passed = 0;
8578
8579 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8580
8581 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8582 i_scanned++;
8583 node_detected_dev = list_entry(all_detected_devices.next,
8584 struct detected_devices_node, list);
8585 list_del(&node_detected_dev->list);
8586 dev = node_detected_dev->dev;
8587 kfree(node_detected_dev);
8588 rdev = md_import_device(dev,0, 90);
8589 if (IS_ERR(rdev))
8590 continue;
8591
8592 if (test_bit(Faulty, &rdev->flags)) {
8593 MD_BUG();
8594 continue;
8595 }
8596 set_bit(AutoDetected, &rdev->flags);
8597 list_add(&rdev->same_set, &pending_raid_disks);
8598 i_passed++;
8599 }
8600
8601 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8602 i_scanned, i_passed);
8603
8604 autorun_devices(part);
8605 }
8606
8607 #endif /* !MODULE */
8608
8609 static __exit void md_exit(void)
8610 {
8611 struct mddev *mddev;
8612 struct list_head *tmp;
8613
8614 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8615 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8616
8617 unregister_blkdev(MD_MAJOR,"md");
8618 unregister_blkdev(mdp_major, "mdp");
8619 unregister_reboot_notifier(&md_notifier);
8620 unregister_sysctl_table(raid_table_header);
8621 remove_proc_entry("mdstat", NULL);
8622 for_each_mddev(mddev, tmp) {
8623 export_array(mddev);
8624 mddev->hold_active = 0;
8625 }
8626 destroy_workqueue(md_misc_wq);
8627 destroy_workqueue(md_wq);
8628 }
8629
8630 subsys_initcall(md_init);
8631 module_exit(md_exit)
8632
8633 static int get_ro(char *buffer, struct kernel_param *kp)
8634 {
8635 return sprintf(buffer, "%d", start_readonly);
8636 }
8637 static int set_ro(const char *val, struct kernel_param *kp)
8638 {
8639 char *e;
8640 int num = simple_strtoul(val, &e, 10);
8641 if (*val && (*e == '\0' || *e == '\n')) {
8642 start_readonly = num;
8643 return 0;
8644 }
8645 return -EINVAL;
8646 }
8647
8648 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8649 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8650
8651 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8652
8653 EXPORT_SYMBOL(register_md_personality);
8654 EXPORT_SYMBOL(unregister_md_personality);
8655 EXPORT_SYMBOL(md_error);
8656 EXPORT_SYMBOL(md_done_sync);
8657 EXPORT_SYMBOL(md_write_start);
8658 EXPORT_SYMBOL(md_write_end);
8659 EXPORT_SYMBOL(md_register_thread);
8660 EXPORT_SYMBOL(md_unregister_thread);
8661 EXPORT_SYMBOL(md_wakeup_thread);
8662 EXPORT_SYMBOL(md_check_recovery);
8663 EXPORT_SYMBOL(md_reap_sync_thread);
8664 MODULE_LICENSE("GPL");
8665 MODULE_DESCRIPTION("MD RAID framework");
8666 MODULE_ALIAS("md");
8667 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);