Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/freezer.h>
37 #include <linux/blkdev.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 static int remove_and_add_spares(struct mddev *mddev,
77 struct md_rdev *this);
78
79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80
81 /*
82 * Default number of read corrections we'll attempt on an rdev
83 * before ejecting it from the array. We divide the read error
84 * count by 2 for every hour elapsed between read errors.
85 */
86 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
87 /*
88 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
89 * is 1000 KB/sec, so the extra system load does not show up that much.
90 * Increase it if you want to have more _guaranteed_ speed. Note that
91 * the RAID driver will use the maximum available bandwidth if the IO
92 * subsystem is idle. There is also an 'absolute maximum' reconstruction
93 * speed limit - in case reconstruction slows down your system despite
94 * idle IO detection.
95 *
96 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
97 * or /sys/block/mdX/md/sync_speed_{min,max}
98 */
99
100 static int sysctl_speed_limit_min = 1000;
101 static int sysctl_speed_limit_max = 200000;
102 static inline int speed_min(struct mddev *mddev)
103 {
104 return mddev->sync_speed_min ?
105 mddev->sync_speed_min : sysctl_speed_limit_min;
106 }
107
108 static inline int speed_max(struct mddev *mddev)
109 {
110 return mddev->sync_speed_max ?
111 mddev->sync_speed_max : sysctl_speed_limit_max;
112 }
113
114 static struct ctl_table_header *raid_table_header;
115
116 static ctl_table raid_table[] = {
117 {
118 .procname = "speed_limit_min",
119 .data = &sysctl_speed_limit_min,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = proc_dointvec,
123 },
124 {
125 .procname = "speed_limit_max",
126 .data = &sysctl_speed_limit_max,
127 .maxlen = sizeof(int),
128 .mode = S_IRUGO|S_IWUSR,
129 .proc_handler = proc_dointvec,
130 },
131 { }
132 };
133
134 static ctl_table raid_dir_table[] = {
135 {
136 .procname = "raid",
137 .maxlen = 0,
138 .mode = S_IRUGO|S_IXUGO,
139 .child = raid_table,
140 },
141 { }
142 };
143
144 static ctl_table raid_root_table[] = {
145 {
146 .procname = "dev",
147 .maxlen = 0,
148 .mode = 0555,
149 .child = raid_dir_table,
150 },
151 { }
152 };
153
154 static const struct block_device_operations md_fops;
155
156 static int start_readonly;
157
158 /* bio_clone_mddev
159 * like bio_clone, but with a local bio set
160 */
161
162 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
163 struct mddev *mddev)
164 {
165 struct bio *b;
166
167 if (!mddev || !mddev->bio_set)
168 return bio_alloc(gfp_mask, nr_iovecs);
169
170 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
171 if (!b)
172 return NULL;
173 return b;
174 }
175 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
176
177 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
178 struct mddev *mddev)
179 {
180 if (!mddev || !mddev->bio_set)
181 return bio_clone(bio, gfp_mask);
182
183 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
184 }
185 EXPORT_SYMBOL_GPL(bio_clone_mddev);
186
187 void md_trim_bio(struct bio *bio, int offset, int size)
188 {
189 /* 'bio' is a cloned bio which we need to trim to match
190 * the given offset and size.
191 * This requires adjusting bi_sector, bi_size, and bi_io_vec
192 */
193 int i;
194 struct bio_vec *bvec;
195 int sofar = 0;
196
197 size <<= 9;
198 if (offset == 0 && size == bio->bi_size)
199 return;
200
201 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
202
203 bio_advance(bio, offset << 9);
204
205 bio->bi_size = size;
206
207 /* avoid any complications with bi_idx being non-zero*/
208 if (bio->bi_idx) {
209 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
210 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
211 bio->bi_vcnt -= bio->bi_idx;
212 bio->bi_idx = 0;
213 }
214 /* Make sure vcnt and last bv are not too big */
215 bio_for_each_segment(bvec, bio, i) {
216 if (sofar + bvec->bv_len > size)
217 bvec->bv_len = size - sofar;
218 if (bvec->bv_len == 0) {
219 bio->bi_vcnt = i;
220 break;
221 }
222 sofar += bvec->bv_len;
223 }
224 }
225 EXPORT_SYMBOL_GPL(md_trim_bio);
226
227 /*
228 * We have a system wide 'event count' that is incremented
229 * on any 'interesting' event, and readers of /proc/mdstat
230 * can use 'poll' or 'select' to find out when the event
231 * count increases.
232 *
233 * Events are:
234 * start array, stop array, error, add device, remove device,
235 * start build, activate spare
236 */
237 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
238 static atomic_t md_event_count;
239 void md_new_event(struct mddev *mddev)
240 {
241 atomic_inc(&md_event_count);
242 wake_up(&md_event_waiters);
243 }
244 EXPORT_SYMBOL_GPL(md_new_event);
245
246 /* Alternate version that can be called from interrupts
247 * when calling sysfs_notify isn't needed.
248 */
249 static void md_new_event_inintr(struct mddev *mddev)
250 {
251 atomic_inc(&md_event_count);
252 wake_up(&md_event_waiters);
253 }
254
255 /*
256 * Enables to iterate over all existing md arrays
257 * all_mddevs_lock protects this list.
258 */
259 static LIST_HEAD(all_mddevs);
260 static DEFINE_SPINLOCK(all_mddevs_lock);
261
262
263 /*
264 * iterates through all used mddevs in the system.
265 * We take care to grab the all_mddevs_lock whenever navigating
266 * the list, and to always hold a refcount when unlocked.
267 * Any code which breaks out of this loop while own
268 * a reference to the current mddev and must mddev_put it.
269 */
270 #define for_each_mddev(_mddev,_tmp) \
271 \
272 for (({ spin_lock(&all_mddevs_lock); \
273 _tmp = all_mddevs.next; \
274 _mddev = NULL;}); \
275 ({ if (_tmp != &all_mddevs) \
276 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
277 spin_unlock(&all_mddevs_lock); \
278 if (_mddev) mddev_put(_mddev); \
279 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
280 _tmp != &all_mddevs;}); \
281 ({ spin_lock(&all_mddevs_lock); \
282 _tmp = _tmp->next;}) \
283 )
284
285
286 /* Rather than calling directly into the personality make_request function,
287 * IO requests come here first so that we can check if the device is
288 * being suspended pending a reconfiguration.
289 * We hold a refcount over the call to ->make_request. By the time that
290 * call has finished, the bio has been linked into some internal structure
291 * and so is visible to ->quiesce(), so we don't need the refcount any more.
292 */
293 static void md_make_request(struct request_queue *q, struct bio *bio)
294 {
295 const int rw = bio_data_dir(bio);
296 struct mddev *mddev = q->queuedata;
297 int cpu;
298 unsigned int sectors;
299
300 if (mddev == NULL || mddev->pers == NULL
301 || !mddev->ready) {
302 bio_io_error(bio);
303 return;
304 }
305 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
306 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
307 return;
308 }
309 smp_rmb(); /* Ensure implications of 'active' are visible */
310 rcu_read_lock();
311 if (mddev->suspended) {
312 DEFINE_WAIT(__wait);
313 for (;;) {
314 prepare_to_wait(&mddev->sb_wait, &__wait,
315 TASK_UNINTERRUPTIBLE);
316 if (!mddev->suspended)
317 break;
318 rcu_read_unlock();
319 schedule();
320 rcu_read_lock();
321 }
322 finish_wait(&mddev->sb_wait, &__wait);
323 }
324 atomic_inc(&mddev->active_io);
325 rcu_read_unlock();
326
327 /*
328 * save the sectors now since our bio can
329 * go away inside make_request
330 */
331 sectors = bio_sectors(bio);
332 mddev->pers->make_request(mddev, bio);
333
334 cpu = part_stat_lock();
335 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
336 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
337 part_stat_unlock();
338
339 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
340 wake_up(&mddev->sb_wait);
341 }
342
343 /* mddev_suspend makes sure no new requests are submitted
344 * to the device, and that any requests that have been submitted
345 * are completely handled.
346 * Once ->stop is called and completes, the module will be completely
347 * unused.
348 */
349 void mddev_suspend(struct mddev *mddev)
350 {
351 BUG_ON(mddev->suspended);
352 mddev->suspended = 1;
353 synchronize_rcu();
354 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
355 mddev->pers->quiesce(mddev, 1);
356
357 del_timer_sync(&mddev->safemode_timer);
358 }
359 EXPORT_SYMBOL_GPL(mddev_suspend);
360
361 void mddev_resume(struct mddev *mddev)
362 {
363 mddev->suspended = 0;
364 wake_up(&mddev->sb_wait);
365 mddev->pers->quiesce(mddev, 0);
366
367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
368 md_wakeup_thread(mddev->thread);
369 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
370 }
371 EXPORT_SYMBOL_GPL(mddev_resume);
372
373 int mddev_congested(struct mddev *mddev, int bits)
374 {
375 return mddev->suspended;
376 }
377 EXPORT_SYMBOL(mddev_congested);
378
379 /*
380 * Generic flush handling for md
381 */
382
383 static void md_end_flush(struct bio *bio, int err)
384 {
385 struct md_rdev *rdev = bio->bi_private;
386 struct mddev *mddev = rdev->mddev;
387
388 rdev_dec_pending(rdev, mddev);
389
390 if (atomic_dec_and_test(&mddev->flush_pending)) {
391 /* The pre-request flush has finished */
392 queue_work(md_wq, &mddev->flush_work);
393 }
394 bio_put(bio);
395 }
396
397 static void md_submit_flush_data(struct work_struct *ws);
398
399 static void submit_flushes(struct work_struct *ws)
400 {
401 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
402 struct md_rdev *rdev;
403
404 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
405 atomic_set(&mddev->flush_pending, 1);
406 rcu_read_lock();
407 rdev_for_each_rcu(rdev, mddev)
408 if (rdev->raid_disk >= 0 &&
409 !test_bit(Faulty, &rdev->flags)) {
410 /* Take two references, one is dropped
411 * when request finishes, one after
412 * we reclaim rcu_read_lock
413 */
414 struct bio *bi;
415 atomic_inc(&rdev->nr_pending);
416 atomic_inc(&rdev->nr_pending);
417 rcu_read_unlock();
418 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
419 bi->bi_end_io = md_end_flush;
420 bi->bi_private = rdev;
421 bi->bi_bdev = rdev->bdev;
422 atomic_inc(&mddev->flush_pending);
423 submit_bio(WRITE_FLUSH, bi);
424 rcu_read_lock();
425 rdev_dec_pending(rdev, mddev);
426 }
427 rcu_read_unlock();
428 if (atomic_dec_and_test(&mddev->flush_pending))
429 queue_work(md_wq, &mddev->flush_work);
430 }
431
432 static void md_submit_flush_data(struct work_struct *ws)
433 {
434 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
435 struct bio *bio = mddev->flush_bio;
436
437 if (bio->bi_size == 0)
438 /* an empty barrier - all done */
439 bio_endio(bio, 0);
440 else {
441 bio->bi_rw &= ~REQ_FLUSH;
442 mddev->pers->make_request(mddev, bio);
443 }
444
445 mddev->flush_bio = NULL;
446 wake_up(&mddev->sb_wait);
447 }
448
449 void md_flush_request(struct mddev *mddev, struct bio *bio)
450 {
451 spin_lock_irq(&mddev->write_lock);
452 wait_event_lock_irq(mddev->sb_wait,
453 !mddev->flush_bio,
454 mddev->write_lock);
455 mddev->flush_bio = bio;
456 spin_unlock_irq(&mddev->write_lock);
457
458 INIT_WORK(&mddev->flush_work, submit_flushes);
459 queue_work(md_wq, &mddev->flush_work);
460 }
461 EXPORT_SYMBOL(md_flush_request);
462
463 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
464 {
465 struct mddev *mddev = cb->data;
466 md_wakeup_thread(mddev->thread);
467 kfree(cb);
468 }
469 EXPORT_SYMBOL(md_unplug);
470
471 static inline struct mddev *mddev_get(struct mddev *mddev)
472 {
473 atomic_inc(&mddev->active);
474 return mddev;
475 }
476
477 static void mddev_delayed_delete(struct work_struct *ws);
478
479 static void mddev_put(struct mddev *mddev)
480 {
481 struct bio_set *bs = NULL;
482
483 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
484 return;
485 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
486 mddev->ctime == 0 && !mddev->hold_active) {
487 /* Array is not configured at all, and not held active,
488 * so destroy it */
489 list_del_init(&mddev->all_mddevs);
490 bs = mddev->bio_set;
491 mddev->bio_set = NULL;
492 if (mddev->gendisk) {
493 /* We did a probe so need to clean up. Call
494 * queue_work inside the spinlock so that
495 * flush_workqueue() after mddev_find will
496 * succeed in waiting for the work to be done.
497 */
498 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
499 queue_work(md_misc_wq, &mddev->del_work);
500 } else
501 kfree(mddev);
502 }
503 spin_unlock(&all_mddevs_lock);
504 if (bs)
505 bioset_free(bs);
506 }
507
508 void mddev_init(struct mddev *mddev)
509 {
510 mutex_init(&mddev->open_mutex);
511 mutex_init(&mddev->reconfig_mutex);
512 mutex_init(&mddev->bitmap_info.mutex);
513 INIT_LIST_HEAD(&mddev->disks);
514 INIT_LIST_HEAD(&mddev->all_mddevs);
515 init_timer(&mddev->safemode_timer);
516 atomic_set(&mddev->active, 1);
517 atomic_set(&mddev->openers, 0);
518 atomic_set(&mddev->active_io, 0);
519 spin_lock_init(&mddev->write_lock);
520 atomic_set(&mddev->flush_pending, 0);
521 init_waitqueue_head(&mddev->sb_wait);
522 init_waitqueue_head(&mddev->recovery_wait);
523 mddev->reshape_position = MaxSector;
524 mddev->reshape_backwards = 0;
525 mddev->resync_min = 0;
526 mddev->resync_max = MaxSector;
527 mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530
531 static struct mddev * mddev_find(dev_t unit)
532 {
533 struct mddev *mddev, *new = NULL;
534
535 if (unit && MAJOR(unit) != MD_MAJOR)
536 unit &= ~((1<<MdpMinorShift)-1);
537
538 retry:
539 spin_lock(&all_mddevs_lock);
540
541 if (unit) {
542 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 if (mddev->unit == unit) {
544 mddev_get(mddev);
545 spin_unlock(&all_mddevs_lock);
546 kfree(new);
547 return mddev;
548 }
549
550 if (new) {
551 list_add(&new->all_mddevs, &all_mddevs);
552 spin_unlock(&all_mddevs_lock);
553 new->hold_active = UNTIL_IOCTL;
554 return new;
555 }
556 } else if (new) {
557 /* find an unused unit number */
558 static int next_minor = 512;
559 int start = next_minor;
560 int is_free = 0;
561 int dev = 0;
562 while (!is_free) {
563 dev = MKDEV(MD_MAJOR, next_minor);
564 next_minor++;
565 if (next_minor > MINORMASK)
566 next_minor = 0;
567 if (next_minor == start) {
568 /* Oh dear, all in use. */
569 spin_unlock(&all_mddevs_lock);
570 kfree(new);
571 return NULL;
572 }
573
574 is_free = 1;
575 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 if (mddev->unit == dev) {
577 is_free = 0;
578 break;
579 }
580 }
581 new->unit = dev;
582 new->md_minor = MINOR(dev);
583 new->hold_active = UNTIL_STOP;
584 list_add(&new->all_mddevs, &all_mddevs);
585 spin_unlock(&all_mddevs_lock);
586 return new;
587 }
588 spin_unlock(&all_mddevs_lock);
589
590 new = kzalloc(sizeof(*new), GFP_KERNEL);
591 if (!new)
592 return NULL;
593
594 new->unit = unit;
595 if (MAJOR(unit) == MD_MAJOR)
596 new->md_minor = MINOR(unit);
597 else
598 new->md_minor = MINOR(unit) >> MdpMinorShift;
599
600 mddev_init(new);
601
602 goto retry;
603 }
604
605 static inline int mddev_lock(struct mddev * mddev)
606 {
607 return mutex_lock_interruptible(&mddev->reconfig_mutex);
608 }
609
610 static inline int mddev_is_locked(struct mddev *mddev)
611 {
612 return mutex_is_locked(&mddev->reconfig_mutex);
613 }
614
615 static inline int mddev_trylock(struct mddev * mddev)
616 {
617 return mutex_trylock(&mddev->reconfig_mutex);
618 }
619
620 static struct attribute_group md_redundancy_group;
621
622 static void mddev_unlock(struct mddev * mddev)
623 {
624 if (mddev->to_remove) {
625 /* These cannot be removed under reconfig_mutex as
626 * an access to the files will try to take reconfig_mutex
627 * while holding the file unremovable, which leads to
628 * a deadlock.
629 * So hold set sysfs_active while the remove in happeing,
630 * and anything else which might set ->to_remove or my
631 * otherwise change the sysfs namespace will fail with
632 * -EBUSY if sysfs_active is still set.
633 * We set sysfs_active under reconfig_mutex and elsewhere
634 * test it under the same mutex to ensure its correct value
635 * is seen.
636 */
637 struct attribute_group *to_remove = mddev->to_remove;
638 mddev->to_remove = NULL;
639 mddev->sysfs_active = 1;
640 mutex_unlock(&mddev->reconfig_mutex);
641
642 if (mddev->kobj.sd) {
643 if (to_remove != &md_redundancy_group)
644 sysfs_remove_group(&mddev->kobj, to_remove);
645 if (mddev->pers == NULL ||
646 mddev->pers->sync_request == NULL) {
647 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
648 if (mddev->sysfs_action)
649 sysfs_put(mddev->sysfs_action);
650 mddev->sysfs_action = NULL;
651 }
652 }
653 mddev->sysfs_active = 0;
654 } else
655 mutex_unlock(&mddev->reconfig_mutex);
656
657 /* As we've dropped the mutex we need a spinlock to
658 * make sure the thread doesn't disappear
659 */
660 spin_lock(&pers_lock);
661 md_wakeup_thread(mddev->thread);
662 spin_unlock(&pers_lock);
663 }
664
665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
666 {
667 struct md_rdev *rdev;
668
669 rdev_for_each(rdev, mddev)
670 if (rdev->desc_nr == nr)
671 return rdev;
672
673 return NULL;
674 }
675
676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
677 {
678 struct md_rdev *rdev;
679
680 rdev_for_each_rcu(rdev, mddev)
681 if (rdev->desc_nr == nr)
682 return rdev;
683
684 return NULL;
685 }
686
687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
688 {
689 struct md_rdev *rdev;
690
691 rdev_for_each(rdev, mddev)
692 if (rdev->bdev->bd_dev == dev)
693 return rdev;
694
695 return NULL;
696 }
697
698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
699 {
700 struct md_rdev *rdev;
701
702 rdev_for_each_rcu(rdev, mddev)
703 if (rdev->bdev->bd_dev == dev)
704 return rdev;
705
706 return NULL;
707 }
708
709 static struct md_personality *find_pers(int level, char *clevel)
710 {
711 struct md_personality *pers;
712 list_for_each_entry(pers, &pers_list, list) {
713 if (level != LEVEL_NONE && pers->level == level)
714 return pers;
715 if (strcmp(pers->name, clevel)==0)
716 return pers;
717 }
718 return NULL;
719 }
720
721 /* return the offset of the super block in 512byte sectors */
722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
723 {
724 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
725 return MD_NEW_SIZE_SECTORS(num_sectors);
726 }
727
728 static int alloc_disk_sb(struct md_rdev * rdev)
729 {
730 if (rdev->sb_page)
731 MD_BUG();
732
733 rdev->sb_page = alloc_page(GFP_KERNEL);
734 if (!rdev->sb_page) {
735 printk(KERN_ALERT "md: out of memory.\n");
736 return -ENOMEM;
737 }
738
739 return 0;
740 }
741
742 void md_rdev_clear(struct md_rdev *rdev)
743 {
744 if (rdev->sb_page) {
745 put_page(rdev->sb_page);
746 rdev->sb_loaded = 0;
747 rdev->sb_page = NULL;
748 rdev->sb_start = 0;
749 rdev->sectors = 0;
750 }
751 if (rdev->bb_page) {
752 put_page(rdev->bb_page);
753 rdev->bb_page = NULL;
754 }
755 kfree(rdev->badblocks.page);
756 rdev->badblocks.page = NULL;
757 }
758 EXPORT_SYMBOL_GPL(md_rdev_clear);
759
760 static void super_written(struct bio *bio, int error)
761 {
762 struct md_rdev *rdev = bio->bi_private;
763 struct mddev *mddev = rdev->mddev;
764
765 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
766 printk("md: super_written gets error=%d, uptodate=%d\n",
767 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
768 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
769 md_error(mddev, rdev);
770 }
771
772 if (atomic_dec_and_test(&mddev->pending_writes))
773 wake_up(&mddev->sb_wait);
774 bio_put(bio);
775 }
776
777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
778 sector_t sector, int size, struct page *page)
779 {
780 /* write first size bytes of page to sector of rdev
781 * Increment mddev->pending_writes before returning
782 * and decrement it on completion, waking up sb_wait
783 * if zero is reached.
784 * If an error occurred, call md_error
785 */
786 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
787
788 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
789 bio->bi_sector = sector;
790 bio_add_page(bio, page, size, 0);
791 bio->bi_private = rdev;
792 bio->bi_end_io = super_written;
793
794 atomic_inc(&mddev->pending_writes);
795 submit_bio(WRITE_FLUSH_FUA, bio);
796 }
797
798 void md_super_wait(struct mddev *mddev)
799 {
800 /* wait for all superblock writes that were scheduled to complete */
801 DEFINE_WAIT(wq);
802 for(;;) {
803 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
804 if (atomic_read(&mddev->pending_writes)==0)
805 break;
806 schedule();
807 }
808 finish_wait(&mddev->sb_wait, &wq);
809 }
810
811 static void bi_complete(struct bio *bio, int error)
812 {
813 complete((struct completion*)bio->bi_private);
814 }
815
816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
817 struct page *page, int rw, bool metadata_op)
818 {
819 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
820 struct completion event;
821 int ret;
822
823 rw |= REQ_SYNC;
824
825 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
826 rdev->meta_bdev : rdev->bdev;
827 if (metadata_op)
828 bio->bi_sector = sector + rdev->sb_start;
829 else if (rdev->mddev->reshape_position != MaxSector &&
830 (rdev->mddev->reshape_backwards ==
831 (sector >= rdev->mddev->reshape_position)))
832 bio->bi_sector = sector + rdev->new_data_offset;
833 else
834 bio->bi_sector = sector + rdev->data_offset;
835 bio_add_page(bio, page, size, 0);
836 init_completion(&event);
837 bio->bi_private = &event;
838 bio->bi_end_io = bi_complete;
839 submit_bio(rw, bio);
840 wait_for_completion(&event);
841
842 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
843 bio_put(bio);
844 return ret;
845 }
846 EXPORT_SYMBOL_GPL(sync_page_io);
847
848 static int read_disk_sb(struct md_rdev * rdev, int size)
849 {
850 char b[BDEVNAME_SIZE];
851 if (!rdev->sb_page) {
852 MD_BUG();
853 return -EINVAL;
854 }
855 if (rdev->sb_loaded)
856 return 0;
857
858
859 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
860 goto fail;
861 rdev->sb_loaded = 1;
862 return 0;
863
864 fail:
865 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
866 bdevname(rdev->bdev,b));
867 return -EINVAL;
868 }
869
870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
871 {
872 return sb1->set_uuid0 == sb2->set_uuid0 &&
873 sb1->set_uuid1 == sb2->set_uuid1 &&
874 sb1->set_uuid2 == sb2->set_uuid2 &&
875 sb1->set_uuid3 == sb2->set_uuid3;
876 }
877
878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880 int ret;
881 mdp_super_t *tmp1, *tmp2;
882
883 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
884 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
885
886 if (!tmp1 || !tmp2) {
887 ret = 0;
888 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
889 goto abort;
890 }
891
892 *tmp1 = *sb1;
893 *tmp2 = *sb2;
894
895 /*
896 * nr_disks is not constant
897 */
898 tmp1->nr_disks = 0;
899 tmp2->nr_disks = 0;
900
901 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
902 abort:
903 kfree(tmp1);
904 kfree(tmp2);
905 return ret;
906 }
907
908
909 static u32 md_csum_fold(u32 csum)
910 {
911 csum = (csum & 0xffff) + (csum >> 16);
912 return (csum & 0xffff) + (csum >> 16);
913 }
914
915 static unsigned int calc_sb_csum(mdp_super_t * sb)
916 {
917 u64 newcsum = 0;
918 u32 *sb32 = (u32*)sb;
919 int i;
920 unsigned int disk_csum, csum;
921
922 disk_csum = sb->sb_csum;
923 sb->sb_csum = 0;
924
925 for (i = 0; i < MD_SB_BYTES/4 ; i++)
926 newcsum += sb32[i];
927 csum = (newcsum & 0xffffffff) + (newcsum>>32);
928
929
930 #ifdef CONFIG_ALPHA
931 /* This used to use csum_partial, which was wrong for several
932 * reasons including that different results are returned on
933 * different architectures. It isn't critical that we get exactly
934 * the same return value as before (we always csum_fold before
935 * testing, and that removes any differences). However as we
936 * know that csum_partial always returned a 16bit value on
937 * alphas, do a fold to maximise conformity to previous behaviour.
938 */
939 sb->sb_csum = md_csum_fold(disk_csum);
940 #else
941 sb->sb_csum = disk_csum;
942 #endif
943 return csum;
944 }
945
946
947 /*
948 * Handle superblock details.
949 * We want to be able to handle multiple superblock formats
950 * so we have a common interface to them all, and an array of
951 * different handlers.
952 * We rely on user-space to write the initial superblock, and support
953 * reading and updating of superblocks.
954 * Interface methods are:
955 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
956 * loads and validates a superblock on dev.
957 * if refdev != NULL, compare superblocks on both devices
958 * Return:
959 * 0 - dev has a superblock that is compatible with refdev
960 * 1 - dev has a superblock that is compatible and newer than refdev
961 * so dev should be used as the refdev in future
962 * -EINVAL superblock incompatible or invalid
963 * -othererror e.g. -EIO
964 *
965 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
966 * Verify that dev is acceptable into mddev.
967 * The first time, mddev->raid_disks will be 0, and data from
968 * dev should be merged in. Subsequent calls check that dev
969 * is new enough. Return 0 or -EINVAL
970 *
971 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
972 * Update the superblock for rdev with data in mddev
973 * This does not write to disc.
974 *
975 */
976
977 struct super_type {
978 char *name;
979 struct module *owner;
980 int (*load_super)(struct md_rdev *rdev,
981 struct md_rdev *refdev,
982 int minor_version);
983 int (*validate_super)(struct mddev *mddev,
984 struct md_rdev *rdev);
985 void (*sync_super)(struct mddev *mddev,
986 struct md_rdev *rdev);
987 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
988 sector_t num_sectors);
989 int (*allow_new_offset)(struct md_rdev *rdev,
990 unsigned long long new_offset);
991 };
992
993 /*
994 * Check that the given mddev has no bitmap.
995 *
996 * This function is called from the run method of all personalities that do not
997 * support bitmaps. It prints an error message and returns non-zero if mddev
998 * has a bitmap. Otherwise, it returns 0.
999 *
1000 */
1001 int md_check_no_bitmap(struct mddev *mddev)
1002 {
1003 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004 return 0;
1005 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1006 mdname(mddev), mddev->pers->name);
1007 return 1;
1008 }
1009 EXPORT_SYMBOL(md_check_no_bitmap);
1010
1011 /*
1012 * load_super for 0.90.0
1013 */
1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1015 {
1016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1017 mdp_super_t *sb;
1018 int ret;
1019
1020 /*
1021 * Calculate the position of the superblock (512byte sectors),
1022 * it's at the end of the disk.
1023 *
1024 * It also happens to be a multiple of 4Kb.
1025 */
1026 rdev->sb_start = calc_dev_sboffset(rdev);
1027
1028 ret = read_disk_sb(rdev, MD_SB_BYTES);
1029 if (ret) return ret;
1030
1031 ret = -EINVAL;
1032
1033 bdevname(rdev->bdev, b);
1034 sb = page_address(rdev->sb_page);
1035
1036 if (sb->md_magic != MD_SB_MAGIC) {
1037 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1038 b);
1039 goto abort;
1040 }
1041
1042 if (sb->major_version != 0 ||
1043 sb->minor_version < 90 ||
1044 sb->minor_version > 91) {
1045 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1046 sb->major_version, sb->minor_version,
1047 b);
1048 goto abort;
1049 }
1050
1051 if (sb->raid_disks <= 0)
1052 goto abort;
1053
1054 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1055 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1056 b);
1057 goto abort;
1058 }
1059
1060 rdev->preferred_minor = sb->md_minor;
1061 rdev->data_offset = 0;
1062 rdev->new_data_offset = 0;
1063 rdev->sb_size = MD_SB_BYTES;
1064 rdev->badblocks.shift = -1;
1065
1066 if (sb->level == LEVEL_MULTIPATH)
1067 rdev->desc_nr = -1;
1068 else
1069 rdev->desc_nr = sb->this_disk.number;
1070
1071 if (!refdev) {
1072 ret = 1;
1073 } else {
1074 __u64 ev1, ev2;
1075 mdp_super_t *refsb = page_address(refdev->sb_page);
1076 if (!uuid_equal(refsb, sb)) {
1077 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1078 b, bdevname(refdev->bdev,b2));
1079 goto abort;
1080 }
1081 if (!sb_equal(refsb, sb)) {
1082 printk(KERN_WARNING "md: %s has same UUID"
1083 " but different superblock to %s\n",
1084 b, bdevname(refdev->bdev, b2));
1085 goto abort;
1086 }
1087 ev1 = md_event(sb);
1088 ev2 = md_event(refsb);
1089 if (ev1 > ev2)
1090 ret = 1;
1091 else
1092 ret = 0;
1093 }
1094 rdev->sectors = rdev->sb_start;
1095 /* Limit to 4TB as metadata cannot record more than that.
1096 * (not needed for Linear and RAID0 as metadata doesn't
1097 * record this size)
1098 */
1099 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1100 rdev->sectors = (2ULL << 32) - 2;
1101
1102 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1103 /* "this cannot possibly happen" ... */
1104 ret = -EINVAL;
1105
1106 abort:
1107 return ret;
1108 }
1109
1110 /*
1111 * validate_super for 0.90.0
1112 */
1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1114 {
1115 mdp_disk_t *desc;
1116 mdp_super_t *sb = page_address(rdev->sb_page);
1117 __u64 ev1 = md_event(sb);
1118
1119 rdev->raid_disk = -1;
1120 clear_bit(Faulty, &rdev->flags);
1121 clear_bit(In_sync, &rdev->flags);
1122 clear_bit(Bitmap_sync, &rdev->flags);
1123 clear_bit(WriteMostly, &rdev->flags);
1124
1125 if (mddev->raid_disks == 0) {
1126 mddev->major_version = 0;
1127 mddev->minor_version = sb->minor_version;
1128 mddev->patch_version = sb->patch_version;
1129 mddev->external = 0;
1130 mddev->chunk_sectors = sb->chunk_size >> 9;
1131 mddev->ctime = sb->ctime;
1132 mddev->utime = sb->utime;
1133 mddev->level = sb->level;
1134 mddev->clevel[0] = 0;
1135 mddev->layout = sb->layout;
1136 mddev->raid_disks = sb->raid_disks;
1137 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138 mddev->events = ev1;
1139 mddev->bitmap_info.offset = 0;
1140 mddev->bitmap_info.space = 0;
1141 /* bitmap can use 60 K after the 4K superblocks */
1142 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144 mddev->reshape_backwards = 0;
1145
1146 if (mddev->minor_version >= 91) {
1147 mddev->reshape_position = sb->reshape_position;
1148 mddev->delta_disks = sb->delta_disks;
1149 mddev->new_level = sb->new_level;
1150 mddev->new_layout = sb->new_layout;
1151 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152 if (mddev->delta_disks < 0)
1153 mddev->reshape_backwards = 1;
1154 } else {
1155 mddev->reshape_position = MaxSector;
1156 mddev->delta_disks = 0;
1157 mddev->new_level = mddev->level;
1158 mddev->new_layout = mddev->layout;
1159 mddev->new_chunk_sectors = mddev->chunk_sectors;
1160 }
1161
1162 if (sb->state & (1<<MD_SB_CLEAN))
1163 mddev->recovery_cp = MaxSector;
1164 else {
1165 if (sb->events_hi == sb->cp_events_hi &&
1166 sb->events_lo == sb->cp_events_lo) {
1167 mddev->recovery_cp = sb->recovery_cp;
1168 } else
1169 mddev->recovery_cp = 0;
1170 }
1171
1172 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177 mddev->max_disks = MD_SB_DISKS;
1178
1179 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180 mddev->bitmap_info.file == NULL) {
1181 mddev->bitmap_info.offset =
1182 mddev->bitmap_info.default_offset;
1183 mddev->bitmap_info.space =
1184 mddev->bitmap_info.space;
1185 }
1186
1187 } else if (mddev->pers == NULL) {
1188 /* Insist on good event counter while assembling, except
1189 * for spares (which don't need an event count) */
1190 ++ev1;
1191 if (sb->disks[rdev->desc_nr].state & (
1192 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193 if (ev1 < mddev->events)
1194 return -EINVAL;
1195 } else if (mddev->bitmap) {
1196 /* if adding to array with a bitmap, then we can accept an
1197 * older device ... but not too old.
1198 */
1199 if (ev1 < mddev->bitmap->events_cleared)
1200 return 0;
1201 if (ev1 < mddev->events)
1202 set_bit(Bitmap_sync, &rdev->flags);
1203 } else {
1204 if (ev1 < mddev->events)
1205 /* just a hot-add of a new device, leave raid_disk at -1 */
1206 return 0;
1207 }
1208
1209 if (mddev->level != LEVEL_MULTIPATH) {
1210 desc = sb->disks + rdev->desc_nr;
1211
1212 if (desc->state & (1<<MD_DISK_FAULTY))
1213 set_bit(Faulty, &rdev->flags);
1214 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1215 desc->raid_disk < mddev->raid_disks */) {
1216 set_bit(In_sync, &rdev->flags);
1217 rdev->raid_disk = desc->raid_disk;
1218 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1219 /* active but not in sync implies recovery up to
1220 * reshape position. We don't know exactly where
1221 * that is, so set to zero for now */
1222 if (mddev->minor_version >= 91) {
1223 rdev->recovery_offset = 0;
1224 rdev->raid_disk = desc->raid_disk;
1225 }
1226 }
1227 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1228 set_bit(WriteMostly, &rdev->flags);
1229 } else /* MULTIPATH are always insync */
1230 set_bit(In_sync, &rdev->flags);
1231 return 0;
1232 }
1233
1234 /*
1235 * sync_super for 0.90.0
1236 */
1237 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1238 {
1239 mdp_super_t *sb;
1240 struct md_rdev *rdev2;
1241 int next_spare = mddev->raid_disks;
1242
1243
1244 /* make rdev->sb match mddev data..
1245 *
1246 * 1/ zero out disks
1247 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1248 * 3/ any empty disks < next_spare become removed
1249 *
1250 * disks[0] gets initialised to REMOVED because
1251 * we cannot be sure from other fields if it has
1252 * been initialised or not.
1253 */
1254 int i;
1255 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1256
1257 rdev->sb_size = MD_SB_BYTES;
1258
1259 sb = page_address(rdev->sb_page);
1260
1261 memset(sb, 0, sizeof(*sb));
1262
1263 sb->md_magic = MD_SB_MAGIC;
1264 sb->major_version = mddev->major_version;
1265 sb->patch_version = mddev->patch_version;
1266 sb->gvalid_words = 0; /* ignored */
1267 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1268 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1269 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1270 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1271
1272 sb->ctime = mddev->ctime;
1273 sb->level = mddev->level;
1274 sb->size = mddev->dev_sectors / 2;
1275 sb->raid_disks = mddev->raid_disks;
1276 sb->md_minor = mddev->md_minor;
1277 sb->not_persistent = 0;
1278 sb->utime = mddev->utime;
1279 sb->state = 0;
1280 sb->events_hi = (mddev->events>>32);
1281 sb->events_lo = (u32)mddev->events;
1282
1283 if (mddev->reshape_position == MaxSector)
1284 sb->minor_version = 90;
1285 else {
1286 sb->minor_version = 91;
1287 sb->reshape_position = mddev->reshape_position;
1288 sb->new_level = mddev->new_level;
1289 sb->delta_disks = mddev->delta_disks;
1290 sb->new_layout = mddev->new_layout;
1291 sb->new_chunk = mddev->new_chunk_sectors << 9;
1292 }
1293 mddev->minor_version = sb->minor_version;
1294 if (mddev->in_sync)
1295 {
1296 sb->recovery_cp = mddev->recovery_cp;
1297 sb->cp_events_hi = (mddev->events>>32);
1298 sb->cp_events_lo = (u32)mddev->events;
1299 if (mddev->recovery_cp == MaxSector)
1300 sb->state = (1<< MD_SB_CLEAN);
1301 } else
1302 sb->recovery_cp = 0;
1303
1304 sb->layout = mddev->layout;
1305 sb->chunk_size = mddev->chunk_sectors << 9;
1306
1307 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1308 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1309
1310 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1311 rdev_for_each(rdev2, mddev) {
1312 mdp_disk_t *d;
1313 int desc_nr;
1314 int is_active = test_bit(In_sync, &rdev2->flags);
1315
1316 if (rdev2->raid_disk >= 0 &&
1317 sb->minor_version >= 91)
1318 /* we have nowhere to store the recovery_offset,
1319 * but if it is not below the reshape_position,
1320 * we can piggy-back on that.
1321 */
1322 is_active = 1;
1323 if (rdev2->raid_disk < 0 ||
1324 test_bit(Faulty, &rdev2->flags))
1325 is_active = 0;
1326 if (is_active)
1327 desc_nr = rdev2->raid_disk;
1328 else
1329 desc_nr = next_spare++;
1330 rdev2->desc_nr = desc_nr;
1331 d = &sb->disks[rdev2->desc_nr];
1332 nr_disks++;
1333 d->number = rdev2->desc_nr;
1334 d->major = MAJOR(rdev2->bdev->bd_dev);
1335 d->minor = MINOR(rdev2->bdev->bd_dev);
1336 if (is_active)
1337 d->raid_disk = rdev2->raid_disk;
1338 else
1339 d->raid_disk = rdev2->desc_nr; /* compatibility */
1340 if (test_bit(Faulty, &rdev2->flags))
1341 d->state = (1<<MD_DISK_FAULTY);
1342 else if (is_active) {
1343 d->state = (1<<MD_DISK_ACTIVE);
1344 if (test_bit(In_sync, &rdev2->flags))
1345 d->state |= (1<<MD_DISK_SYNC);
1346 active++;
1347 working++;
1348 } else {
1349 d->state = 0;
1350 spare++;
1351 working++;
1352 }
1353 if (test_bit(WriteMostly, &rdev2->flags))
1354 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1355 }
1356 /* now set the "removed" and "faulty" bits on any missing devices */
1357 for (i=0 ; i < mddev->raid_disks ; i++) {
1358 mdp_disk_t *d = &sb->disks[i];
1359 if (d->state == 0 && d->number == 0) {
1360 d->number = i;
1361 d->raid_disk = i;
1362 d->state = (1<<MD_DISK_REMOVED);
1363 d->state |= (1<<MD_DISK_FAULTY);
1364 failed++;
1365 }
1366 }
1367 sb->nr_disks = nr_disks;
1368 sb->active_disks = active;
1369 sb->working_disks = working;
1370 sb->failed_disks = failed;
1371 sb->spare_disks = spare;
1372
1373 sb->this_disk = sb->disks[rdev->desc_nr];
1374 sb->sb_csum = calc_sb_csum(sb);
1375 }
1376
1377 /*
1378 * rdev_size_change for 0.90.0
1379 */
1380 static unsigned long long
1381 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1382 {
1383 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1384 return 0; /* component must fit device */
1385 if (rdev->mddev->bitmap_info.offset)
1386 return 0; /* can't move bitmap */
1387 rdev->sb_start = calc_dev_sboffset(rdev);
1388 if (!num_sectors || num_sectors > rdev->sb_start)
1389 num_sectors = rdev->sb_start;
1390 /* Limit to 4TB as metadata cannot record more than that.
1391 * 4TB == 2^32 KB, or 2*2^32 sectors.
1392 */
1393 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1394 num_sectors = (2ULL << 32) - 2;
1395 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1396 rdev->sb_page);
1397 md_super_wait(rdev->mddev);
1398 return num_sectors;
1399 }
1400
1401 static int
1402 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1403 {
1404 /* non-zero offset changes not possible with v0.90 */
1405 return new_offset == 0;
1406 }
1407
1408 /*
1409 * version 1 superblock
1410 */
1411
1412 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1413 {
1414 __le32 disk_csum;
1415 u32 csum;
1416 unsigned long long newcsum;
1417 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1418 __le32 *isuper = (__le32*)sb;
1419
1420 disk_csum = sb->sb_csum;
1421 sb->sb_csum = 0;
1422 newcsum = 0;
1423 for (; size >= 4; size -= 4)
1424 newcsum += le32_to_cpu(*isuper++);
1425
1426 if (size == 2)
1427 newcsum += le16_to_cpu(*(__le16*) isuper);
1428
1429 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1430 sb->sb_csum = disk_csum;
1431 return cpu_to_le32(csum);
1432 }
1433
1434 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1435 int acknowledged);
1436 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1437 {
1438 struct mdp_superblock_1 *sb;
1439 int ret;
1440 sector_t sb_start;
1441 sector_t sectors;
1442 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1443 int bmask;
1444
1445 /*
1446 * Calculate the position of the superblock in 512byte sectors.
1447 * It is always aligned to a 4K boundary and
1448 * depeding on minor_version, it can be:
1449 * 0: At least 8K, but less than 12K, from end of device
1450 * 1: At start of device
1451 * 2: 4K from start of device.
1452 */
1453 switch(minor_version) {
1454 case 0:
1455 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1456 sb_start -= 8*2;
1457 sb_start &= ~(sector_t)(4*2-1);
1458 break;
1459 case 1:
1460 sb_start = 0;
1461 break;
1462 case 2:
1463 sb_start = 8;
1464 break;
1465 default:
1466 return -EINVAL;
1467 }
1468 rdev->sb_start = sb_start;
1469
1470 /* superblock is rarely larger than 1K, but it can be larger,
1471 * and it is safe to read 4k, so we do that
1472 */
1473 ret = read_disk_sb(rdev, 4096);
1474 if (ret) return ret;
1475
1476
1477 sb = page_address(rdev->sb_page);
1478
1479 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1480 sb->major_version != cpu_to_le32(1) ||
1481 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1482 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1483 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1484 return -EINVAL;
1485
1486 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1487 printk("md: invalid superblock checksum on %s\n",
1488 bdevname(rdev->bdev,b));
1489 return -EINVAL;
1490 }
1491 if (le64_to_cpu(sb->data_size) < 10) {
1492 printk("md: data_size too small on %s\n",
1493 bdevname(rdev->bdev,b));
1494 return -EINVAL;
1495 }
1496 if (sb->pad0 ||
1497 sb->pad3[0] ||
1498 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1499 /* Some padding is non-zero, might be a new feature */
1500 return -EINVAL;
1501
1502 rdev->preferred_minor = 0xffff;
1503 rdev->data_offset = le64_to_cpu(sb->data_offset);
1504 rdev->new_data_offset = rdev->data_offset;
1505 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1506 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1507 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1508 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1509
1510 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1511 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1512 if (rdev->sb_size & bmask)
1513 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1514
1515 if (minor_version
1516 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1517 return -EINVAL;
1518 if (minor_version
1519 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1520 return -EINVAL;
1521
1522 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1523 rdev->desc_nr = -1;
1524 else
1525 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1526
1527 if (!rdev->bb_page) {
1528 rdev->bb_page = alloc_page(GFP_KERNEL);
1529 if (!rdev->bb_page)
1530 return -ENOMEM;
1531 }
1532 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1533 rdev->badblocks.count == 0) {
1534 /* need to load the bad block list.
1535 * Currently we limit it to one page.
1536 */
1537 s32 offset;
1538 sector_t bb_sector;
1539 u64 *bbp;
1540 int i;
1541 int sectors = le16_to_cpu(sb->bblog_size);
1542 if (sectors > (PAGE_SIZE / 512))
1543 return -EINVAL;
1544 offset = le32_to_cpu(sb->bblog_offset);
1545 if (offset == 0)
1546 return -EINVAL;
1547 bb_sector = (long long)offset;
1548 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1549 rdev->bb_page, READ, true))
1550 return -EIO;
1551 bbp = (u64 *)page_address(rdev->bb_page);
1552 rdev->badblocks.shift = sb->bblog_shift;
1553 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1554 u64 bb = le64_to_cpu(*bbp);
1555 int count = bb & (0x3ff);
1556 u64 sector = bb >> 10;
1557 sector <<= sb->bblog_shift;
1558 count <<= sb->bblog_shift;
1559 if (bb + 1 == 0)
1560 break;
1561 if (md_set_badblocks(&rdev->badblocks,
1562 sector, count, 1) == 0)
1563 return -EINVAL;
1564 }
1565 } else if (sb->bblog_offset != 0)
1566 rdev->badblocks.shift = 0;
1567
1568 if (!refdev) {
1569 ret = 1;
1570 } else {
1571 __u64 ev1, ev2;
1572 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1573
1574 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1575 sb->level != refsb->level ||
1576 sb->layout != refsb->layout ||
1577 sb->chunksize != refsb->chunksize) {
1578 printk(KERN_WARNING "md: %s has strangely different"
1579 " superblock to %s\n",
1580 bdevname(rdev->bdev,b),
1581 bdevname(refdev->bdev,b2));
1582 return -EINVAL;
1583 }
1584 ev1 = le64_to_cpu(sb->events);
1585 ev2 = le64_to_cpu(refsb->events);
1586
1587 if (ev1 > ev2)
1588 ret = 1;
1589 else
1590 ret = 0;
1591 }
1592 if (minor_version) {
1593 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1594 sectors -= rdev->data_offset;
1595 } else
1596 sectors = rdev->sb_start;
1597 if (sectors < le64_to_cpu(sb->data_size))
1598 return -EINVAL;
1599 rdev->sectors = le64_to_cpu(sb->data_size);
1600 return ret;
1601 }
1602
1603 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1604 {
1605 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1606 __u64 ev1 = le64_to_cpu(sb->events);
1607
1608 rdev->raid_disk = -1;
1609 clear_bit(Faulty, &rdev->flags);
1610 clear_bit(In_sync, &rdev->flags);
1611 clear_bit(Bitmap_sync, &rdev->flags);
1612 clear_bit(WriteMostly, &rdev->flags);
1613
1614 if (mddev->raid_disks == 0) {
1615 mddev->major_version = 1;
1616 mddev->patch_version = 0;
1617 mddev->external = 0;
1618 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1619 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1620 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1621 mddev->level = le32_to_cpu(sb->level);
1622 mddev->clevel[0] = 0;
1623 mddev->layout = le32_to_cpu(sb->layout);
1624 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1625 mddev->dev_sectors = le64_to_cpu(sb->size);
1626 mddev->events = ev1;
1627 mddev->bitmap_info.offset = 0;
1628 mddev->bitmap_info.space = 0;
1629 /* Default location for bitmap is 1K after superblock
1630 * using 3K - total of 4K
1631 */
1632 mddev->bitmap_info.default_offset = 1024 >> 9;
1633 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1634 mddev->reshape_backwards = 0;
1635
1636 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1637 memcpy(mddev->uuid, sb->set_uuid, 16);
1638
1639 mddev->max_disks = (4096-256)/2;
1640
1641 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1642 mddev->bitmap_info.file == NULL) {
1643 mddev->bitmap_info.offset =
1644 (__s32)le32_to_cpu(sb->bitmap_offset);
1645 /* Metadata doesn't record how much space is available.
1646 * For 1.0, we assume we can use up to the superblock
1647 * if before, else to 4K beyond superblock.
1648 * For others, assume no change is possible.
1649 */
1650 if (mddev->minor_version > 0)
1651 mddev->bitmap_info.space = 0;
1652 else if (mddev->bitmap_info.offset > 0)
1653 mddev->bitmap_info.space =
1654 8 - mddev->bitmap_info.offset;
1655 else
1656 mddev->bitmap_info.space =
1657 -mddev->bitmap_info.offset;
1658 }
1659
1660 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1661 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1662 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1663 mddev->new_level = le32_to_cpu(sb->new_level);
1664 mddev->new_layout = le32_to_cpu(sb->new_layout);
1665 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1666 if (mddev->delta_disks < 0 ||
1667 (mddev->delta_disks == 0 &&
1668 (le32_to_cpu(sb->feature_map)
1669 & MD_FEATURE_RESHAPE_BACKWARDS)))
1670 mddev->reshape_backwards = 1;
1671 } else {
1672 mddev->reshape_position = MaxSector;
1673 mddev->delta_disks = 0;
1674 mddev->new_level = mddev->level;
1675 mddev->new_layout = mddev->layout;
1676 mddev->new_chunk_sectors = mddev->chunk_sectors;
1677 }
1678
1679 } else if (mddev->pers == NULL) {
1680 /* Insist of good event counter while assembling, except for
1681 * spares (which don't need an event count) */
1682 ++ev1;
1683 if (rdev->desc_nr >= 0 &&
1684 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1685 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1686 if (ev1 < mddev->events)
1687 return -EINVAL;
1688 } else if (mddev->bitmap) {
1689 /* If adding to array with a bitmap, then we can accept an
1690 * older device, but not too old.
1691 */
1692 if (ev1 < mddev->bitmap->events_cleared)
1693 return 0;
1694 if (ev1 < mddev->events)
1695 set_bit(Bitmap_sync, &rdev->flags);
1696 } else {
1697 if (ev1 < mddev->events)
1698 /* just a hot-add of a new device, leave raid_disk at -1 */
1699 return 0;
1700 }
1701 if (mddev->level != LEVEL_MULTIPATH) {
1702 int role;
1703 if (rdev->desc_nr < 0 ||
1704 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1705 role = 0xffff;
1706 rdev->desc_nr = -1;
1707 } else
1708 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1709 switch(role) {
1710 case 0xffff: /* spare */
1711 break;
1712 case 0xfffe: /* faulty */
1713 set_bit(Faulty, &rdev->flags);
1714 break;
1715 default:
1716 if ((le32_to_cpu(sb->feature_map) &
1717 MD_FEATURE_RECOVERY_OFFSET))
1718 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1719 else
1720 set_bit(In_sync, &rdev->flags);
1721 rdev->raid_disk = role;
1722 break;
1723 }
1724 if (sb->devflags & WriteMostly1)
1725 set_bit(WriteMostly, &rdev->flags);
1726 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1727 set_bit(Replacement, &rdev->flags);
1728 } else /* MULTIPATH are always insync */
1729 set_bit(In_sync, &rdev->flags);
1730
1731 return 0;
1732 }
1733
1734 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1735 {
1736 struct mdp_superblock_1 *sb;
1737 struct md_rdev *rdev2;
1738 int max_dev, i;
1739 /* make rdev->sb match mddev and rdev data. */
1740
1741 sb = page_address(rdev->sb_page);
1742
1743 sb->feature_map = 0;
1744 sb->pad0 = 0;
1745 sb->recovery_offset = cpu_to_le64(0);
1746 memset(sb->pad3, 0, sizeof(sb->pad3));
1747
1748 sb->utime = cpu_to_le64((__u64)mddev->utime);
1749 sb->events = cpu_to_le64(mddev->events);
1750 if (mddev->in_sync)
1751 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1752 else
1753 sb->resync_offset = cpu_to_le64(0);
1754
1755 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1756
1757 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1758 sb->size = cpu_to_le64(mddev->dev_sectors);
1759 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1760 sb->level = cpu_to_le32(mddev->level);
1761 sb->layout = cpu_to_le32(mddev->layout);
1762
1763 if (test_bit(WriteMostly, &rdev->flags))
1764 sb->devflags |= WriteMostly1;
1765 else
1766 sb->devflags &= ~WriteMostly1;
1767 sb->data_offset = cpu_to_le64(rdev->data_offset);
1768 sb->data_size = cpu_to_le64(rdev->sectors);
1769
1770 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1771 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1772 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1773 }
1774
1775 if (rdev->raid_disk >= 0 &&
1776 !test_bit(In_sync, &rdev->flags)) {
1777 sb->feature_map |=
1778 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1779 sb->recovery_offset =
1780 cpu_to_le64(rdev->recovery_offset);
1781 }
1782 if (test_bit(Replacement, &rdev->flags))
1783 sb->feature_map |=
1784 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1785
1786 if (mddev->reshape_position != MaxSector) {
1787 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1788 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1789 sb->new_layout = cpu_to_le32(mddev->new_layout);
1790 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1791 sb->new_level = cpu_to_le32(mddev->new_level);
1792 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1793 if (mddev->delta_disks == 0 &&
1794 mddev->reshape_backwards)
1795 sb->feature_map
1796 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1797 if (rdev->new_data_offset != rdev->data_offset) {
1798 sb->feature_map
1799 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1800 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1801 - rdev->data_offset));
1802 }
1803 }
1804
1805 if (rdev->badblocks.count == 0)
1806 /* Nothing to do for bad blocks*/ ;
1807 else if (sb->bblog_offset == 0)
1808 /* Cannot record bad blocks on this device */
1809 md_error(mddev, rdev);
1810 else {
1811 struct badblocks *bb = &rdev->badblocks;
1812 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1813 u64 *p = bb->page;
1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1815 if (bb->changed) {
1816 unsigned seq;
1817
1818 retry:
1819 seq = read_seqbegin(&bb->lock);
1820
1821 memset(bbp, 0xff, PAGE_SIZE);
1822
1823 for (i = 0 ; i < bb->count ; i++) {
1824 u64 internal_bb = p[i];
1825 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1826 | BB_LEN(internal_bb));
1827 bbp[i] = cpu_to_le64(store_bb);
1828 }
1829 bb->changed = 0;
1830 if (read_seqretry(&bb->lock, seq))
1831 goto retry;
1832
1833 bb->sector = (rdev->sb_start +
1834 (int)le32_to_cpu(sb->bblog_offset));
1835 bb->size = le16_to_cpu(sb->bblog_size);
1836 }
1837 }
1838
1839 max_dev = 0;
1840 rdev_for_each(rdev2, mddev)
1841 if (rdev2->desc_nr+1 > max_dev)
1842 max_dev = rdev2->desc_nr+1;
1843
1844 if (max_dev > le32_to_cpu(sb->max_dev)) {
1845 int bmask;
1846 sb->max_dev = cpu_to_le32(max_dev);
1847 rdev->sb_size = max_dev * 2 + 256;
1848 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1849 if (rdev->sb_size & bmask)
1850 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1851 } else
1852 max_dev = le32_to_cpu(sb->max_dev);
1853
1854 for (i=0; i<max_dev;i++)
1855 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1856
1857 rdev_for_each(rdev2, mddev) {
1858 i = rdev2->desc_nr;
1859 if (test_bit(Faulty, &rdev2->flags))
1860 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1861 else if (test_bit(In_sync, &rdev2->flags))
1862 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1863 else if (rdev2->raid_disk >= 0)
1864 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1865 else
1866 sb->dev_roles[i] = cpu_to_le16(0xffff);
1867 }
1868
1869 sb->sb_csum = calc_sb_1_csum(sb);
1870 }
1871
1872 static unsigned long long
1873 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1874 {
1875 struct mdp_superblock_1 *sb;
1876 sector_t max_sectors;
1877 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1878 return 0; /* component must fit device */
1879 if (rdev->data_offset != rdev->new_data_offset)
1880 return 0; /* too confusing */
1881 if (rdev->sb_start < rdev->data_offset) {
1882 /* minor versions 1 and 2; superblock before data */
1883 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1884 max_sectors -= rdev->data_offset;
1885 if (!num_sectors || num_sectors > max_sectors)
1886 num_sectors = max_sectors;
1887 } else if (rdev->mddev->bitmap_info.offset) {
1888 /* minor version 0 with bitmap we can't move */
1889 return 0;
1890 } else {
1891 /* minor version 0; superblock after data */
1892 sector_t sb_start;
1893 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1894 sb_start &= ~(sector_t)(4*2 - 1);
1895 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1896 if (!num_sectors || num_sectors > max_sectors)
1897 num_sectors = max_sectors;
1898 rdev->sb_start = sb_start;
1899 }
1900 sb = page_address(rdev->sb_page);
1901 sb->data_size = cpu_to_le64(num_sectors);
1902 sb->super_offset = cpu_to_le64(rdev->sb_start);
1903 sb->sb_csum = calc_sb_1_csum(sb);
1904 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1905 rdev->sb_page);
1906 md_super_wait(rdev->mddev);
1907 return num_sectors;
1908
1909 }
1910
1911 static int
1912 super_1_allow_new_offset(struct md_rdev *rdev,
1913 unsigned long long new_offset)
1914 {
1915 /* All necessary checks on new >= old have been done */
1916 struct bitmap *bitmap;
1917 if (new_offset >= rdev->data_offset)
1918 return 1;
1919
1920 /* with 1.0 metadata, there is no metadata to tread on
1921 * so we can always move back */
1922 if (rdev->mddev->minor_version == 0)
1923 return 1;
1924
1925 /* otherwise we must be sure not to step on
1926 * any metadata, so stay:
1927 * 36K beyond start of superblock
1928 * beyond end of badblocks
1929 * beyond write-intent bitmap
1930 */
1931 if (rdev->sb_start + (32+4)*2 > new_offset)
1932 return 0;
1933 bitmap = rdev->mddev->bitmap;
1934 if (bitmap && !rdev->mddev->bitmap_info.file &&
1935 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1936 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1937 return 0;
1938 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1939 return 0;
1940
1941 return 1;
1942 }
1943
1944 static struct super_type super_types[] = {
1945 [0] = {
1946 .name = "0.90.0",
1947 .owner = THIS_MODULE,
1948 .load_super = super_90_load,
1949 .validate_super = super_90_validate,
1950 .sync_super = super_90_sync,
1951 .rdev_size_change = super_90_rdev_size_change,
1952 .allow_new_offset = super_90_allow_new_offset,
1953 },
1954 [1] = {
1955 .name = "md-1",
1956 .owner = THIS_MODULE,
1957 .load_super = super_1_load,
1958 .validate_super = super_1_validate,
1959 .sync_super = super_1_sync,
1960 .rdev_size_change = super_1_rdev_size_change,
1961 .allow_new_offset = super_1_allow_new_offset,
1962 },
1963 };
1964
1965 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1966 {
1967 if (mddev->sync_super) {
1968 mddev->sync_super(mddev, rdev);
1969 return;
1970 }
1971
1972 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1973
1974 super_types[mddev->major_version].sync_super(mddev, rdev);
1975 }
1976
1977 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1978 {
1979 struct md_rdev *rdev, *rdev2;
1980
1981 rcu_read_lock();
1982 rdev_for_each_rcu(rdev, mddev1)
1983 rdev_for_each_rcu(rdev2, mddev2)
1984 if (rdev->bdev->bd_contains ==
1985 rdev2->bdev->bd_contains) {
1986 rcu_read_unlock();
1987 return 1;
1988 }
1989 rcu_read_unlock();
1990 return 0;
1991 }
1992
1993 static LIST_HEAD(pending_raid_disks);
1994
1995 /*
1996 * Try to register data integrity profile for an mddev
1997 *
1998 * This is called when an array is started and after a disk has been kicked
1999 * from the array. It only succeeds if all working and active component devices
2000 * are integrity capable with matching profiles.
2001 */
2002 int md_integrity_register(struct mddev *mddev)
2003 {
2004 struct md_rdev *rdev, *reference = NULL;
2005
2006 if (list_empty(&mddev->disks))
2007 return 0; /* nothing to do */
2008 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2009 return 0; /* shouldn't register, or already is */
2010 rdev_for_each(rdev, mddev) {
2011 /* skip spares and non-functional disks */
2012 if (test_bit(Faulty, &rdev->flags))
2013 continue;
2014 if (rdev->raid_disk < 0)
2015 continue;
2016 if (!reference) {
2017 /* Use the first rdev as the reference */
2018 reference = rdev;
2019 continue;
2020 }
2021 /* does this rdev's profile match the reference profile? */
2022 if (blk_integrity_compare(reference->bdev->bd_disk,
2023 rdev->bdev->bd_disk) < 0)
2024 return -EINVAL;
2025 }
2026 if (!reference || !bdev_get_integrity(reference->bdev))
2027 return 0;
2028 /*
2029 * All component devices are integrity capable and have matching
2030 * profiles, register the common profile for the md device.
2031 */
2032 if (blk_integrity_register(mddev->gendisk,
2033 bdev_get_integrity(reference->bdev)) != 0) {
2034 printk(KERN_ERR "md: failed to register integrity for %s\n",
2035 mdname(mddev));
2036 return -EINVAL;
2037 }
2038 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2039 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2040 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2041 mdname(mddev));
2042 return -EINVAL;
2043 }
2044 return 0;
2045 }
2046 EXPORT_SYMBOL(md_integrity_register);
2047
2048 /* Disable data integrity if non-capable/non-matching disk is being added */
2049 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2050 {
2051 struct blk_integrity *bi_rdev;
2052 struct blk_integrity *bi_mddev;
2053
2054 if (!mddev->gendisk)
2055 return;
2056
2057 bi_rdev = bdev_get_integrity(rdev->bdev);
2058 bi_mddev = blk_get_integrity(mddev->gendisk);
2059
2060 if (!bi_mddev) /* nothing to do */
2061 return;
2062 if (rdev->raid_disk < 0) /* skip spares */
2063 return;
2064 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2065 rdev->bdev->bd_disk) >= 0)
2066 return;
2067 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2068 blk_integrity_unregister(mddev->gendisk);
2069 }
2070 EXPORT_SYMBOL(md_integrity_add_rdev);
2071
2072 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2073 {
2074 char b[BDEVNAME_SIZE];
2075 struct kobject *ko;
2076 char *s;
2077 int err;
2078
2079 if (rdev->mddev) {
2080 MD_BUG();
2081 return -EINVAL;
2082 }
2083
2084 /* prevent duplicates */
2085 if (find_rdev(mddev, rdev->bdev->bd_dev))
2086 return -EEXIST;
2087
2088 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2089 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2090 rdev->sectors < mddev->dev_sectors)) {
2091 if (mddev->pers) {
2092 /* Cannot change size, so fail
2093 * If mddev->level <= 0, then we don't care
2094 * about aligning sizes (e.g. linear)
2095 */
2096 if (mddev->level > 0)
2097 return -ENOSPC;
2098 } else
2099 mddev->dev_sectors = rdev->sectors;
2100 }
2101
2102 /* Verify rdev->desc_nr is unique.
2103 * If it is -1, assign a free number, else
2104 * check number is not in use
2105 */
2106 if (rdev->desc_nr < 0) {
2107 int choice = 0;
2108 if (mddev->pers) choice = mddev->raid_disks;
2109 while (find_rdev_nr(mddev, choice))
2110 choice++;
2111 rdev->desc_nr = choice;
2112 } else {
2113 if (find_rdev_nr(mddev, rdev->desc_nr))
2114 return -EBUSY;
2115 }
2116 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2117 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2118 mdname(mddev), mddev->max_disks);
2119 return -EBUSY;
2120 }
2121 bdevname(rdev->bdev,b);
2122 while ( (s=strchr(b, '/')) != NULL)
2123 *s = '!';
2124
2125 rdev->mddev = mddev;
2126 printk(KERN_INFO "md: bind<%s>\n", b);
2127
2128 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2129 goto fail;
2130
2131 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2132 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2133 /* failure here is OK */;
2134 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2135
2136 list_add_rcu(&rdev->same_set, &mddev->disks);
2137 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2138
2139 /* May as well allow recovery to be retried once */
2140 mddev->recovery_disabled++;
2141
2142 return 0;
2143
2144 fail:
2145 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2146 b, mdname(mddev));
2147 return err;
2148 }
2149
2150 static void md_delayed_delete(struct work_struct *ws)
2151 {
2152 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2153 kobject_del(&rdev->kobj);
2154 kobject_put(&rdev->kobj);
2155 }
2156
2157 static void unbind_rdev_from_array(struct md_rdev * rdev)
2158 {
2159 char b[BDEVNAME_SIZE];
2160 if (!rdev->mddev) {
2161 MD_BUG();
2162 return;
2163 }
2164 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2165 list_del_rcu(&rdev->same_set);
2166 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2167 rdev->mddev = NULL;
2168 sysfs_remove_link(&rdev->kobj, "block");
2169 sysfs_put(rdev->sysfs_state);
2170 rdev->sysfs_state = NULL;
2171 rdev->badblocks.count = 0;
2172 /* We need to delay this, otherwise we can deadlock when
2173 * writing to 'remove' to "dev/state". We also need
2174 * to delay it due to rcu usage.
2175 */
2176 synchronize_rcu();
2177 INIT_WORK(&rdev->del_work, md_delayed_delete);
2178 kobject_get(&rdev->kobj);
2179 queue_work(md_misc_wq, &rdev->del_work);
2180 }
2181
2182 /*
2183 * prevent the device from being mounted, repartitioned or
2184 * otherwise reused by a RAID array (or any other kernel
2185 * subsystem), by bd_claiming the device.
2186 */
2187 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2188 {
2189 int err = 0;
2190 struct block_device *bdev;
2191 char b[BDEVNAME_SIZE];
2192
2193 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2194 shared ? (struct md_rdev *)lock_rdev : rdev);
2195 if (IS_ERR(bdev)) {
2196 printk(KERN_ERR "md: could not open %s.\n",
2197 __bdevname(dev, b));
2198 return PTR_ERR(bdev);
2199 }
2200 rdev->bdev = bdev;
2201 return err;
2202 }
2203
2204 static void unlock_rdev(struct md_rdev *rdev)
2205 {
2206 struct block_device *bdev = rdev->bdev;
2207 rdev->bdev = NULL;
2208 if (!bdev)
2209 MD_BUG();
2210 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2211 }
2212
2213 void md_autodetect_dev(dev_t dev);
2214
2215 static void export_rdev(struct md_rdev * rdev)
2216 {
2217 char b[BDEVNAME_SIZE];
2218 printk(KERN_INFO "md: export_rdev(%s)\n",
2219 bdevname(rdev->bdev,b));
2220 if (rdev->mddev)
2221 MD_BUG();
2222 md_rdev_clear(rdev);
2223 #ifndef MODULE
2224 if (test_bit(AutoDetected, &rdev->flags))
2225 md_autodetect_dev(rdev->bdev->bd_dev);
2226 #endif
2227 unlock_rdev(rdev);
2228 kobject_put(&rdev->kobj);
2229 }
2230
2231 static void kick_rdev_from_array(struct md_rdev * rdev)
2232 {
2233 unbind_rdev_from_array(rdev);
2234 export_rdev(rdev);
2235 }
2236
2237 static void export_array(struct mddev *mddev)
2238 {
2239 struct md_rdev *rdev, *tmp;
2240
2241 rdev_for_each_safe(rdev, tmp, mddev) {
2242 if (!rdev->mddev) {
2243 MD_BUG();
2244 continue;
2245 }
2246 kick_rdev_from_array(rdev);
2247 }
2248 if (!list_empty(&mddev->disks))
2249 MD_BUG();
2250 mddev->raid_disks = 0;
2251 mddev->major_version = 0;
2252 }
2253
2254 static void print_desc(mdp_disk_t *desc)
2255 {
2256 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2257 desc->major,desc->minor,desc->raid_disk,desc->state);
2258 }
2259
2260 static void print_sb_90(mdp_super_t *sb)
2261 {
2262 int i;
2263
2264 printk(KERN_INFO
2265 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2266 sb->major_version, sb->minor_version, sb->patch_version,
2267 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2268 sb->ctime);
2269 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2270 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2271 sb->md_minor, sb->layout, sb->chunk_size);
2272 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2273 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2274 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2275 sb->failed_disks, sb->spare_disks,
2276 sb->sb_csum, (unsigned long)sb->events_lo);
2277
2278 printk(KERN_INFO);
2279 for (i = 0; i < MD_SB_DISKS; i++) {
2280 mdp_disk_t *desc;
2281
2282 desc = sb->disks + i;
2283 if (desc->number || desc->major || desc->minor ||
2284 desc->raid_disk || (desc->state && (desc->state != 4))) {
2285 printk(" D %2d: ", i);
2286 print_desc(desc);
2287 }
2288 }
2289 printk(KERN_INFO "md: THIS: ");
2290 print_desc(&sb->this_disk);
2291 }
2292
2293 static void print_sb_1(struct mdp_superblock_1 *sb)
2294 {
2295 __u8 *uuid;
2296
2297 uuid = sb->set_uuid;
2298 printk(KERN_INFO
2299 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2300 "md: Name: \"%s\" CT:%llu\n",
2301 le32_to_cpu(sb->major_version),
2302 le32_to_cpu(sb->feature_map),
2303 uuid,
2304 sb->set_name,
2305 (unsigned long long)le64_to_cpu(sb->ctime)
2306 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2307
2308 uuid = sb->device_uuid;
2309 printk(KERN_INFO
2310 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2311 " RO:%llu\n"
2312 "md: Dev:%08x UUID: %pU\n"
2313 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2314 "md: (MaxDev:%u) \n",
2315 le32_to_cpu(sb->level),
2316 (unsigned long long)le64_to_cpu(sb->size),
2317 le32_to_cpu(sb->raid_disks),
2318 le32_to_cpu(sb->layout),
2319 le32_to_cpu(sb->chunksize),
2320 (unsigned long long)le64_to_cpu(sb->data_offset),
2321 (unsigned long long)le64_to_cpu(sb->data_size),
2322 (unsigned long long)le64_to_cpu(sb->super_offset),
2323 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2324 le32_to_cpu(sb->dev_number),
2325 uuid,
2326 sb->devflags,
2327 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2328 (unsigned long long)le64_to_cpu(sb->events),
2329 (unsigned long long)le64_to_cpu(sb->resync_offset),
2330 le32_to_cpu(sb->sb_csum),
2331 le32_to_cpu(sb->max_dev)
2332 );
2333 }
2334
2335 static void print_rdev(struct md_rdev *rdev, int major_version)
2336 {
2337 char b[BDEVNAME_SIZE];
2338 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2339 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2340 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2341 rdev->desc_nr);
2342 if (rdev->sb_loaded) {
2343 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2344 switch (major_version) {
2345 case 0:
2346 print_sb_90(page_address(rdev->sb_page));
2347 break;
2348 case 1:
2349 print_sb_1(page_address(rdev->sb_page));
2350 break;
2351 }
2352 } else
2353 printk(KERN_INFO "md: no rdev superblock!\n");
2354 }
2355
2356 static void md_print_devices(void)
2357 {
2358 struct list_head *tmp;
2359 struct md_rdev *rdev;
2360 struct mddev *mddev;
2361 char b[BDEVNAME_SIZE];
2362
2363 printk("\n");
2364 printk("md: **********************************\n");
2365 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2366 printk("md: **********************************\n");
2367 for_each_mddev(mddev, tmp) {
2368
2369 if (mddev->bitmap)
2370 bitmap_print_sb(mddev->bitmap);
2371 else
2372 printk("%s: ", mdname(mddev));
2373 rdev_for_each(rdev, mddev)
2374 printk("<%s>", bdevname(rdev->bdev,b));
2375 printk("\n");
2376
2377 rdev_for_each(rdev, mddev)
2378 print_rdev(rdev, mddev->major_version);
2379 }
2380 printk("md: **********************************\n");
2381 printk("\n");
2382 }
2383
2384
2385 static void sync_sbs(struct mddev * mddev, int nospares)
2386 {
2387 /* Update each superblock (in-memory image), but
2388 * if we are allowed to, skip spares which already
2389 * have the right event counter, or have one earlier
2390 * (which would mean they aren't being marked as dirty
2391 * with the rest of the array)
2392 */
2393 struct md_rdev *rdev;
2394 rdev_for_each(rdev, mddev) {
2395 if (rdev->sb_events == mddev->events ||
2396 (nospares &&
2397 rdev->raid_disk < 0 &&
2398 rdev->sb_events+1 == mddev->events)) {
2399 /* Don't update this superblock */
2400 rdev->sb_loaded = 2;
2401 } else {
2402 sync_super(mddev, rdev);
2403 rdev->sb_loaded = 1;
2404 }
2405 }
2406 }
2407
2408 static void md_update_sb(struct mddev * mddev, int force_change)
2409 {
2410 struct md_rdev *rdev;
2411 int sync_req;
2412 int nospares = 0;
2413 int any_badblocks_changed = 0;
2414
2415 if (mddev->ro) {
2416 if (force_change)
2417 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2418 return;
2419 }
2420 repeat:
2421 /* First make sure individual recovery_offsets are correct */
2422 rdev_for_each(rdev, mddev) {
2423 if (rdev->raid_disk >= 0 &&
2424 mddev->delta_disks >= 0 &&
2425 !test_bit(In_sync, &rdev->flags) &&
2426 mddev->curr_resync_completed > rdev->recovery_offset)
2427 rdev->recovery_offset = mddev->curr_resync_completed;
2428
2429 }
2430 if (!mddev->persistent) {
2431 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2432 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2433 if (!mddev->external) {
2434 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2435 rdev_for_each(rdev, mddev) {
2436 if (rdev->badblocks.changed) {
2437 rdev->badblocks.changed = 0;
2438 md_ack_all_badblocks(&rdev->badblocks);
2439 md_error(mddev, rdev);
2440 }
2441 clear_bit(Blocked, &rdev->flags);
2442 clear_bit(BlockedBadBlocks, &rdev->flags);
2443 wake_up(&rdev->blocked_wait);
2444 }
2445 }
2446 wake_up(&mddev->sb_wait);
2447 return;
2448 }
2449
2450 spin_lock_irq(&mddev->write_lock);
2451
2452 mddev->utime = get_seconds();
2453
2454 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2455 force_change = 1;
2456 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2457 /* just a clean<-> dirty transition, possibly leave spares alone,
2458 * though if events isn't the right even/odd, we will have to do
2459 * spares after all
2460 */
2461 nospares = 1;
2462 if (force_change)
2463 nospares = 0;
2464 if (mddev->degraded)
2465 /* If the array is degraded, then skipping spares is both
2466 * dangerous and fairly pointless.
2467 * Dangerous because a device that was removed from the array
2468 * might have a event_count that still looks up-to-date,
2469 * so it can be re-added without a resync.
2470 * Pointless because if there are any spares to skip,
2471 * then a recovery will happen and soon that array won't
2472 * be degraded any more and the spare can go back to sleep then.
2473 */
2474 nospares = 0;
2475
2476 sync_req = mddev->in_sync;
2477
2478 /* If this is just a dirty<->clean transition, and the array is clean
2479 * and 'events' is odd, we can roll back to the previous clean state */
2480 if (nospares
2481 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2482 && mddev->can_decrease_events
2483 && mddev->events != 1) {
2484 mddev->events--;
2485 mddev->can_decrease_events = 0;
2486 } else {
2487 /* otherwise we have to go forward and ... */
2488 mddev->events ++;
2489 mddev->can_decrease_events = nospares;
2490 }
2491
2492 if (!mddev->events) {
2493 /*
2494 * oops, this 64-bit counter should never wrap.
2495 * Either we are in around ~1 trillion A.C., assuming
2496 * 1 reboot per second, or we have a bug:
2497 */
2498 MD_BUG();
2499 mddev->events --;
2500 }
2501
2502 rdev_for_each(rdev, mddev) {
2503 if (rdev->badblocks.changed)
2504 any_badblocks_changed++;
2505 if (test_bit(Faulty, &rdev->flags))
2506 set_bit(FaultRecorded, &rdev->flags);
2507 }
2508
2509 sync_sbs(mddev, nospares);
2510 spin_unlock_irq(&mddev->write_lock);
2511
2512 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2513 mdname(mddev), mddev->in_sync);
2514
2515 bitmap_update_sb(mddev->bitmap);
2516 rdev_for_each(rdev, mddev) {
2517 char b[BDEVNAME_SIZE];
2518
2519 if (rdev->sb_loaded != 1)
2520 continue; /* no noise on spare devices */
2521
2522 if (!test_bit(Faulty, &rdev->flags) &&
2523 rdev->saved_raid_disk == -1) {
2524 md_super_write(mddev,rdev,
2525 rdev->sb_start, rdev->sb_size,
2526 rdev->sb_page);
2527 pr_debug("md: (write) %s's sb offset: %llu\n",
2528 bdevname(rdev->bdev, b),
2529 (unsigned long long)rdev->sb_start);
2530 rdev->sb_events = mddev->events;
2531 if (rdev->badblocks.size) {
2532 md_super_write(mddev, rdev,
2533 rdev->badblocks.sector,
2534 rdev->badblocks.size << 9,
2535 rdev->bb_page);
2536 rdev->badblocks.size = 0;
2537 }
2538
2539 } else if (test_bit(Faulty, &rdev->flags))
2540 pr_debug("md: %s (skipping faulty)\n",
2541 bdevname(rdev->bdev, b));
2542 else
2543 pr_debug("(skipping incremental s/r ");
2544
2545 if (mddev->level == LEVEL_MULTIPATH)
2546 /* only need to write one superblock... */
2547 break;
2548 }
2549 md_super_wait(mddev);
2550 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2551
2552 spin_lock_irq(&mddev->write_lock);
2553 if (mddev->in_sync != sync_req ||
2554 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2555 /* have to write it out again */
2556 spin_unlock_irq(&mddev->write_lock);
2557 goto repeat;
2558 }
2559 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2560 spin_unlock_irq(&mddev->write_lock);
2561 wake_up(&mddev->sb_wait);
2562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2563 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2564
2565 rdev_for_each(rdev, mddev) {
2566 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2567 clear_bit(Blocked, &rdev->flags);
2568
2569 if (any_badblocks_changed)
2570 md_ack_all_badblocks(&rdev->badblocks);
2571 clear_bit(BlockedBadBlocks, &rdev->flags);
2572 wake_up(&rdev->blocked_wait);
2573 }
2574 }
2575
2576 /* words written to sysfs files may, or may not, be \n terminated.
2577 * We want to accept with case. For this we use cmd_match.
2578 */
2579 static int cmd_match(const char *cmd, const char *str)
2580 {
2581 /* See if cmd, written into a sysfs file, matches
2582 * str. They must either be the same, or cmd can
2583 * have a trailing newline
2584 */
2585 while (*cmd && *str && *cmd == *str) {
2586 cmd++;
2587 str++;
2588 }
2589 if (*cmd == '\n')
2590 cmd++;
2591 if (*str || *cmd)
2592 return 0;
2593 return 1;
2594 }
2595
2596 struct rdev_sysfs_entry {
2597 struct attribute attr;
2598 ssize_t (*show)(struct md_rdev *, char *);
2599 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2600 };
2601
2602 static ssize_t
2603 state_show(struct md_rdev *rdev, char *page)
2604 {
2605 char *sep = "";
2606 size_t len = 0;
2607
2608 if (test_bit(Faulty, &rdev->flags) ||
2609 rdev->badblocks.unacked_exist) {
2610 len+= sprintf(page+len, "%sfaulty",sep);
2611 sep = ",";
2612 }
2613 if (test_bit(In_sync, &rdev->flags)) {
2614 len += sprintf(page+len, "%sin_sync",sep);
2615 sep = ",";
2616 }
2617 if (test_bit(WriteMostly, &rdev->flags)) {
2618 len += sprintf(page+len, "%swrite_mostly",sep);
2619 sep = ",";
2620 }
2621 if (test_bit(Blocked, &rdev->flags) ||
2622 (rdev->badblocks.unacked_exist
2623 && !test_bit(Faulty, &rdev->flags))) {
2624 len += sprintf(page+len, "%sblocked", sep);
2625 sep = ",";
2626 }
2627 if (!test_bit(Faulty, &rdev->flags) &&
2628 !test_bit(In_sync, &rdev->flags)) {
2629 len += sprintf(page+len, "%sspare", sep);
2630 sep = ",";
2631 }
2632 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2633 len += sprintf(page+len, "%swrite_error", sep);
2634 sep = ",";
2635 }
2636 if (test_bit(WantReplacement, &rdev->flags)) {
2637 len += sprintf(page+len, "%swant_replacement", sep);
2638 sep = ",";
2639 }
2640 if (test_bit(Replacement, &rdev->flags)) {
2641 len += sprintf(page+len, "%sreplacement", sep);
2642 sep = ",";
2643 }
2644
2645 return len+sprintf(page+len, "\n");
2646 }
2647
2648 static ssize_t
2649 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651 /* can write
2652 * faulty - simulates an error
2653 * remove - disconnects the device
2654 * writemostly - sets write_mostly
2655 * -writemostly - clears write_mostly
2656 * blocked - sets the Blocked flags
2657 * -blocked - clears the Blocked and possibly simulates an error
2658 * insync - sets Insync providing device isn't active
2659 * write_error - sets WriteErrorSeen
2660 * -write_error - clears WriteErrorSeen
2661 */
2662 int err = -EINVAL;
2663 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2664 md_error(rdev->mddev, rdev);
2665 if (test_bit(Faulty, &rdev->flags))
2666 err = 0;
2667 else
2668 err = -EBUSY;
2669 } else if (cmd_match(buf, "remove")) {
2670 if (rdev->raid_disk >= 0)
2671 err = -EBUSY;
2672 else {
2673 struct mddev *mddev = rdev->mddev;
2674 kick_rdev_from_array(rdev);
2675 if (mddev->pers)
2676 md_update_sb(mddev, 1);
2677 md_new_event(mddev);
2678 err = 0;
2679 }
2680 } else if (cmd_match(buf, "writemostly")) {
2681 set_bit(WriteMostly, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "-writemostly")) {
2684 clear_bit(WriteMostly, &rdev->flags);
2685 err = 0;
2686 } else if (cmd_match(buf, "blocked")) {
2687 set_bit(Blocked, &rdev->flags);
2688 err = 0;
2689 } else if (cmd_match(buf, "-blocked")) {
2690 if (!test_bit(Faulty, &rdev->flags) &&
2691 rdev->badblocks.unacked_exist) {
2692 /* metadata handler doesn't understand badblocks,
2693 * so we need to fail the device
2694 */
2695 md_error(rdev->mddev, rdev);
2696 }
2697 clear_bit(Blocked, &rdev->flags);
2698 clear_bit(BlockedBadBlocks, &rdev->flags);
2699 wake_up(&rdev->blocked_wait);
2700 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701 md_wakeup_thread(rdev->mddev->thread);
2702
2703 err = 0;
2704 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2705 set_bit(In_sync, &rdev->flags);
2706 err = 0;
2707 } else if (cmd_match(buf, "write_error")) {
2708 set_bit(WriteErrorSeen, &rdev->flags);
2709 err = 0;
2710 } else if (cmd_match(buf, "-write_error")) {
2711 clear_bit(WriteErrorSeen, &rdev->flags);
2712 err = 0;
2713 } else if (cmd_match(buf, "want_replacement")) {
2714 /* Any non-spare device that is not a replacement can
2715 * become want_replacement at any time, but we then need to
2716 * check if recovery is needed.
2717 */
2718 if (rdev->raid_disk >= 0 &&
2719 !test_bit(Replacement, &rdev->flags))
2720 set_bit(WantReplacement, &rdev->flags);
2721 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2722 md_wakeup_thread(rdev->mddev->thread);
2723 err = 0;
2724 } else if (cmd_match(buf, "-want_replacement")) {
2725 /* Clearing 'want_replacement' is always allowed.
2726 * Once replacements starts it is too late though.
2727 */
2728 err = 0;
2729 clear_bit(WantReplacement, &rdev->flags);
2730 } else if (cmd_match(buf, "replacement")) {
2731 /* Can only set a device as a replacement when array has not
2732 * yet been started. Once running, replacement is automatic
2733 * from spares, or by assigning 'slot'.
2734 */
2735 if (rdev->mddev->pers)
2736 err = -EBUSY;
2737 else {
2738 set_bit(Replacement, &rdev->flags);
2739 err = 0;
2740 }
2741 } else if (cmd_match(buf, "-replacement")) {
2742 /* Similarly, can only clear Replacement before start */
2743 if (rdev->mddev->pers)
2744 err = -EBUSY;
2745 else {
2746 clear_bit(Replacement, &rdev->flags);
2747 err = 0;
2748 }
2749 }
2750 if (!err)
2751 sysfs_notify_dirent_safe(rdev->sysfs_state);
2752 return err ? err : len;
2753 }
2754 static struct rdev_sysfs_entry rdev_state =
2755 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2756
2757 static ssize_t
2758 errors_show(struct md_rdev *rdev, char *page)
2759 {
2760 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2761 }
2762
2763 static ssize_t
2764 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766 char *e;
2767 unsigned long n = simple_strtoul(buf, &e, 10);
2768 if (*buf && (*e == 0 || *e == '\n')) {
2769 atomic_set(&rdev->corrected_errors, n);
2770 return len;
2771 }
2772 return -EINVAL;
2773 }
2774 static struct rdev_sysfs_entry rdev_errors =
2775 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2776
2777 static ssize_t
2778 slot_show(struct md_rdev *rdev, char *page)
2779 {
2780 if (rdev->raid_disk < 0)
2781 return sprintf(page, "none\n");
2782 else
2783 return sprintf(page, "%d\n", rdev->raid_disk);
2784 }
2785
2786 static ssize_t
2787 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2788 {
2789 char *e;
2790 int err;
2791 int slot = simple_strtoul(buf, &e, 10);
2792 if (strncmp(buf, "none", 4)==0)
2793 slot = -1;
2794 else if (e==buf || (*e && *e!= '\n'))
2795 return -EINVAL;
2796 if (rdev->mddev->pers && slot == -1) {
2797 /* Setting 'slot' on an active array requires also
2798 * updating the 'rd%d' link, and communicating
2799 * with the personality with ->hot_*_disk.
2800 * For now we only support removing
2801 * failed/spare devices. This normally happens automatically,
2802 * but not when the metadata is externally managed.
2803 */
2804 if (rdev->raid_disk == -1)
2805 return -EEXIST;
2806 /* personality does all needed checks */
2807 if (rdev->mddev->pers->hot_remove_disk == NULL)
2808 return -EINVAL;
2809 clear_bit(Blocked, &rdev->flags);
2810 remove_and_add_spares(rdev->mddev, rdev);
2811 if (rdev->raid_disk >= 0)
2812 return -EBUSY;
2813 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2814 md_wakeup_thread(rdev->mddev->thread);
2815 } else if (rdev->mddev->pers) {
2816 /* Activating a spare .. or possibly reactivating
2817 * if we ever get bitmaps working here.
2818 */
2819
2820 if (rdev->raid_disk != -1)
2821 return -EBUSY;
2822
2823 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2824 return -EBUSY;
2825
2826 if (rdev->mddev->pers->hot_add_disk == NULL)
2827 return -EINVAL;
2828
2829 if (slot >= rdev->mddev->raid_disks &&
2830 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2831 return -ENOSPC;
2832
2833 rdev->raid_disk = slot;
2834 if (test_bit(In_sync, &rdev->flags))
2835 rdev->saved_raid_disk = slot;
2836 else
2837 rdev->saved_raid_disk = -1;
2838 clear_bit(In_sync, &rdev->flags);
2839 clear_bit(Bitmap_sync, &rdev->flags);
2840 err = rdev->mddev->pers->
2841 hot_add_disk(rdev->mddev, rdev);
2842 if (err) {
2843 rdev->raid_disk = -1;
2844 return err;
2845 } else
2846 sysfs_notify_dirent_safe(rdev->sysfs_state);
2847 if (sysfs_link_rdev(rdev->mddev, rdev))
2848 /* failure here is OK */;
2849 /* don't wakeup anyone, leave that to userspace. */
2850 } else {
2851 if (slot >= rdev->mddev->raid_disks &&
2852 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2853 return -ENOSPC;
2854 rdev->raid_disk = slot;
2855 /* assume it is working */
2856 clear_bit(Faulty, &rdev->flags);
2857 clear_bit(WriteMostly, &rdev->flags);
2858 set_bit(In_sync, &rdev->flags);
2859 sysfs_notify_dirent_safe(rdev->sysfs_state);
2860 }
2861 return len;
2862 }
2863
2864
2865 static struct rdev_sysfs_entry rdev_slot =
2866 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2867
2868 static ssize_t
2869 offset_show(struct md_rdev *rdev, char *page)
2870 {
2871 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2872 }
2873
2874 static ssize_t
2875 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2876 {
2877 unsigned long long offset;
2878 if (strict_strtoull(buf, 10, &offset) < 0)
2879 return -EINVAL;
2880 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2881 return -EBUSY;
2882 if (rdev->sectors && rdev->mddev->external)
2883 /* Must set offset before size, so overlap checks
2884 * can be sane */
2885 return -EBUSY;
2886 rdev->data_offset = offset;
2887 rdev->new_data_offset = offset;
2888 return len;
2889 }
2890
2891 static struct rdev_sysfs_entry rdev_offset =
2892 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2893
2894 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2895 {
2896 return sprintf(page, "%llu\n",
2897 (unsigned long long)rdev->new_data_offset);
2898 }
2899
2900 static ssize_t new_offset_store(struct md_rdev *rdev,
2901 const char *buf, size_t len)
2902 {
2903 unsigned long long new_offset;
2904 struct mddev *mddev = rdev->mddev;
2905
2906 if (strict_strtoull(buf, 10, &new_offset) < 0)
2907 return -EINVAL;
2908
2909 if (mddev->sync_thread)
2910 return -EBUSY;
2911 if (new_offset == rdev->data_offset)
2912 /* reset is always permitted */
2913 ;
2914 else if (new_offset > rdev->data_offset) {
2915 /* must not push array size beyond rdev_sectors */
2916 if (new_offset - rdev->data_offset
2917 + mddev->dev_sectors > rdev->sectors)
2918 return -E2BIG;
2919 }
2920 /* Metadata worries about other space details. */
2921
2922 /* decreasing the offset is inconsistent with a backwards
2923 * reshape.
2924 */
2925 if (new_offset < rdev->data_offset &&
2926 mddev->reshape_backwards)
2927 return -EINVAL;
2928 /* Increasing offset is inconsistent with forwards
2929 * reshape. reshape_direction should be set to
2930 * 'backwards' first.
2931 */
2932 if (new_offset > rdev->data_offset &&
2933 !mddev->reshape_backwards)
2934 return -EINVAL;
2935
2936 if (mddev->pers && mddev->persistent &&
2937 !super_types[mddev->major_version]
2938 .allow_new_offset(rdev, new_offset))
2939 return -E2BIG;
2940 rdev->new_data_offset = new_offset;
2941 if (new_offset > rdev->data_offset)
2942 mddev->reshape_backwards = 1;
2943 else if (new_offset < rdev->data_offset)
2944 mddev->reshape_backwards = 0;
2945
2946 return len;
2947 }
2948 static struct rdev_sysfs_entry rdev_new_offset =
2949 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2950
2951 static ssize_t
2952 rdev_size_show(struct md_rdev *rdev, char *page)
2953 {
2954 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2955 }
2956
2957 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2958 {
2959 /* check if two start/length pairs overlap */
2960 if (s1+l1 <= s2)
2961 return 0;
2962 if (s2+l2 <= s1)
2963 return 0;
2964 return 1;
2965 }
2966
2967 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2968 {
2969 unsigned long long blocks;
2970 sector_t new;
2971
2972 if (strict_strtoull(buf, 10, &blocks) < 0)
2973 return -EINVAL;
2974
2975 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2976 return -EINVAL; /* sector conversion overflow */
2977
2978 new = blocks * 2;
2979 if (new != blocks * 2)
2980 return -EINVAL; /* unsigned long long to sector_t overflow */
2981
2982 *sectors = new;
2983 return 0;
2984 }
2985
2986 static ssize_t
2987 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2988 {
2989 struct mddev *my_mddev = rdev->mddev;
2990 sector_t oldsectors = rdev->sectors;
2991 sector_t sectors;
2992
2993 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2994 return -EINVAL;
2995 if (rdev->data_offset != rdev->new_data_offset)
2996 return -EINVAL; /* too confusing */
2997 if (my_mddev->pers && rdev->raid_disk >= 0) {
2998 if (my_mddev->persistent) {
2999 sectors = super_types[my_mddev->major_version].
3000 rdev_size_change(rdev, sectors);
3001 if (!sectors)
3002 return -EBUSY;
3003 } else if (!sectors)
3004 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3005 rdev->data_offset;
3006 if (!my_mddev->pers->resize)
3007 /* Cannot change size for RAID0 or Linear etc */
3008 return -EINVAL;
3009 }
3010 if (sectors < my_mddev->dev_sectors)
3011 return -EINVAL; /* component must fit device */
3012
3013 rdev->sectors = sectors;
3014 if (sectors > oldsectors && my_mddev->external) {
3015 /* need to check that all other rdevs with the same ->bdev
3016 * do not overlap. We need to unlock the mddev to avoid
3017 * a deadlock. We have already changed rdev->sectors, and if
3018 * we have to change it back, we will have the lock again.
3019 */
3020 struct mddev *mddev;
3021 int overlap = 0;
3022 struct list_head *tmp;
3023
3024 mddev_unlock(my_mddev);
3025 for_each_mddev(mddev, tmp) {
3026 struct md_rdev *rdev2;
3027
3028 mddev_lock(mddev);
3029 rdev_for_each(rdev2, mddev)
3030 if (rdev->bdev == rdev2->bdev &&
3031 rdev != rdev2 &&
3032 overlaps(rdev->data_offset, rdev->sectors,
3033 rdev2->data_offset,
3034 rdev2->sectors)) {
3035 overlap = 1;
3036 break;
3037 }
3038 mddev_unlock(mddev);
3039 if (overlap) {
3040 mddev_put(mddev);
3041 break;
3042 }
3043 }
3044 mddev_lock(my_mddev);
3045 if (overlap) {
3046 /* Someone else could have slipped in a size
3047 * change here, but doing so is just silly.
3048 * We put oldsectors back because we *know* it is
3049 * safe, and trust userspace not to race with
3050 * itself
3051 */
3052 rdev->sectors = oldsectors;
3053 return -EBUSY;
3054 }
3055 }
3056 return len;
3057 }
3058
3059 static struct rdev_sysfs_entry rdev_size =
3060 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3061
3062
3063 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3064 {
3065 unsigned long long recovery_start = rdev->recovery_offset;
3066
3067 if (test_bit(In_sync, &rdev->flags) ||
3068 recovery_start == MaxSector)
3069 return sprintf(page, "none\n");
3070
3071 return sprintf(page, "%llu\n", recovery_start);
3072 }
3073
3074 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3075 {
3076 unsigned long long recovery_start;
3077
3078 if (cmd_match(buf, "none"))
3079 recovery_start = MaxSector;
3080 else if (strict_strtoull(buf, 10, &recovery_start))
3081 return -EINVAL;
3082
3083 if (rdev->mddev->pers &&
3084 rdev->raid_disk >= 0)
3085 return -EBUSY;
3086
3087 rdev->recovery_offset = recovery_start;
3088 if (recovery_start == MaxSector)
3089 set_bit(In_sync, &rdev->flags);
3090 else
3091 clear_bit(In_sync, &rdev->flags);
3092 return len;
3093 }
3094
3095 static struct rdev_sysfs_entry rdev_recovery_start =
3096 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3097
3098
3099 static ssize_t
3100 badblocks_show(struct badblocks *bb, char *page, int unack);
3101 static ssize_t
3102 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3103
3104 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3105 {
3106 return badblocks_show(&rdev->badblocks, page, 0);
3107 }
3108 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3109 {
3110 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3111 /* Maybe that ack was all we needed */
3112 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3113 wake_up(&rdev->blocked_wait);
3114 return rv;
3115 }
3116 static struct rdev_sysfs_entry rdev_bad_blocks =
3117 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3118
3119
3120 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3121 {
3122 return badblocks_show(&rdev->badblocks, page, 1);
3123 }
3124 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3125 {
3126 return badblocks_store(&rdev->badblocks, page, len, 1);
3127 }
3128 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3129 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3130
3131 static struct attribute *rdev_default_attrs[] = {
3132 &rdev_state.attr,
3133 &rdev_errors.attr,
3134 &rdev_slot.attr,
3135 &rdev_offset.attr,
3136 &rdev_new_offset.attr,
3137 &rdev_size.attr,
3138 &rdev_recovery_start.attr,
3139 &rdev_bad_blocks.attr,
3140 &rdev_unack_bad_blocks.attr,
3141 NULL,
3142 };
3143 static ssize_t
3144 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3145 {
3146 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3147 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3148 struct mddev *mddev = rdev->mddev;
3149 ssize_t rv;
3150
3151 if (!entry->show)
3152 return -EIO;
3153
3154 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3155 if (!rv) {
3156 if (rdev->mddev == NULL)
3157 rv = -EBUSY;
3158 else
3159 rv = entry->show(rdev, page);
3160 mddev_unlock(mddev);
3161 }
3162 return rv;
3163 }
3164
3165 static ssize_t
3166 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3167 const char *page, size_t length)
3168 {
3169 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3170 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3171 ssize_t rv;
3172 struct mddev *mddev = rdev->mddev;
3173
3174 if (!entry->store)
3175 return -EIO;
3176 if (!capable(CAP_SYS_ADMIN))
3177 return -EACCES;
3178 rv = mddev ? mddev_lock(mddev): -EBUSY;
3179 if (!rv) {
3180 if (rdev->mddev == NULL)
3181 rv = -EBUSY;
3182 else
3183 rv = entry->store(rdev, page, length);
3184 mddev_unlock(mddev);
3185 }
3186 return rv;
3187 }
3188
3189 static void rdev_free(struct kobject *ko)
3190 {
3191 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3192 kfree(rdev);
3193 }
3194 static const struct sysfs_ops rdev_sysfs_ops = {
3195 .show = rdev_attr_show,
3196 .store = rdev_attr_store,
3197 };
3198 static struct kobj_type rdev_ktype = {
3199 .release = rdev_free,
3200 .sysfs_ops = &rdev_sysfs_ops,
3201 .default_attrs = rdev_default_attrs,
3202 };
3203
3204 int md_rdev_init(struct md_rdev *rdev)
3205 {
3206 rdev->desc_nr = -1;
3207 rdev->saved_raid_disk = -1;
3208 rdev->raid_disk = -1;
3209 rdev->flags = 0;
3210 rdev->data_offset = 0;
3211 rdev->new_data_offset = 0;
3212 rdev->sb_events = 0;
3213 rdev->last_read_error.tv_sec = 0;
3214 rdev->last_read_error.tv_nsec = 0;
3215 rdev->sb_loaded = 0;
3216 rdev->bb_page = NULL;
3217 atomic_set(&rdev->nr_pending, 0);
3218 atomic_set(&rdev->read_errors, 0);
3219 atomic_set(&rdev->corrected_errors, 0);
3220
3221 INIT_LIST_HEAD(&rdev->same_set);
3222 init_waitqueue_head(&rdev->blocked_wait);
3223
3224 /* Add space to store bad block list.
3225 * This reserves the space even on arrays where it cannot
3226 * be used - I wonder if that matters
3227 */
3228 rdev->badblocks.count = 0;
3229 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3230 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3231 seqlock_init(&rdev->badblocks.lock);
3232 if (rdev->badblocks.page == NULL)
3233 return -ENOMEM;
3234
3235 return 0;
3236 }
3237 EXPORT_SYMBOL_GPL(md_rdev_init);
3238 /*
3239 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3240 *
3241 * mark the device faulty if:
3242 *
3243 * - the device is nonexistent (zero size)
3244 * - the device has no valid superblock
3245 *
3246 * a faulty rdev _never_ has rdev->sb set.
3247 */
3248 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3249 {
3250 char b[BDEVNAME_SIZE];
3251 int err;
3252 struct md_rdev *rdev;
3253 sector_t size;
3254
3255 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3256 if (!rdev) {
3257 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3258 return ERR_PTR(-ENOMEM);
3259 }
3260
3261 err = md_rdev_init(rdev);
3262 if (err)
3263 goto abort_free;
3264 err = alloc_disk_sb(rdev);
3265 if (err)
3266 goto abort_free;
3267
3268 err = lock_rdev(rdev, newdev, super_format == -2);
3269 if (err)
3270 goto abort_free;
3271
3272 kobject_init(&rdev->kobj, &rdev_ktype);
3273
3274 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3275 if (!size) {
3276 printk(KERN_WARNING
3277 "md: %s has zero or unknown size, marking faulty!\n",
3278 bdevname(rdev->bdev,b));
3279 err = -EINVAL;
3280 goto abort_free;
3281 }
3282
3283 if (super_format >= 0) {
3284 err = super_types[super_format].
3285 load_super(rdev, NULL, super_minor);
3286 if (err == -EINVAL) {
3287 printk(KERN_WARNING
3288 "md: %s does not have a valid v%d.%d "
3289 "superblock, not importing!\n",
3290 bdevname(rdev->bdev,b),
3291 super_format, super_minor);
3292 goto abort_free;
3293 }
3294 if (err < 0) {
3295 printk(KERN_WARNING
3296 "md: could not read %s's sb, not importing!\n",
3297 bdevname(rdev->bdev,b));
3298 goto abort_free;
3299 }
3300 }
3301
3302 return rdev;
3303
3304 abort_free:
3305 if (rdev->bdev)
3306 unlock_rdev(rdev);
3307 md_rdev_clear(rdev);
3308 kfree(rdev);
3309 return ERR_PTR(err);
3310 }
3311
3312 /*
3313 * Check a full RAID array for plausibility
3314 */
3315
3316
3317 static void analyze_sbs(struct mddev * mddev)
3318 {
3319 int i;
3320 struct md_rdev *rdev, *freshest, *tmp;
3321 char b[BDEVNAME_SIZE];
3322
3323 freshest = NULL;
3324 rdev_for_each_safe(rdev, tmp, mddev)
3325 switch (super_types[mddev->major_version].
3326 load_super(rdev, freshest, mddev->minor_version)) {
3327 case 1:
3328 freshest = rdev;
3329 break;
3330 case 0:
3331 break;
3332 default:
3333 printk( KERN_ERR \
3334 "md: fatal superblock inconsistency in %s"
3335 " -- removing from array\n",
3336 bdevname(rdev->bdev,b));
3337 kick_rdev_from_array(rdev);
3338 }
3339
3340
3341 super_types[mddev->major_version].
3342 validate_super(mddev, freshest);
3343
3344 i = 0;
3345 rdev_for_each_safe(rdev, tmp, mddev) {
3346 if (mddev->max_disks &&
3347 (rdev->desc_nr >= mddev->max_disks ||
3348 i > mddev->max_disks)) {
3349 printk(KERN_WARNING
3350 "md: %s: %s: only %d devices permitted\n",
3351 mdname(mddev), bdevname(rdev->bdev, b),
3352 mddev->max_disks);
3353 kick_rdev_from_array(rdev);
3354 continue;
3355 }
3356 if (rdev != freshest)
3357 if (super_types[mddev->major_version].
3358 validate_super(mddev, rdev)) {
3359 printk(KERN_WARNING "md: kicking non-fresh %s"
3360 " from array!\n",
3361 bdevname(rdev->bdev,b));
3362 kick_rdev_from_array(rdev);
3363 continue;
3364 }
3365 if (mddev->level == LEVEL_MULTIPATH) {
3366 rdev->desc_nr = i++;
3367 rdev->raid_disk = rdev->desc_nr;
3368 set_bit(In_sync, &rdev->flags);
3369 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3370 rdev->raid_disk = -1;
3371 clear_bit(In_sync, &rdev->flags);
3372 }
3373 }
3374 }
3375
3376 /* Read a fixed-point number.
3377 * Numbers in sysfs attributes should be in "standard" units where
3378 * possible, so time should be in seconds.
3379 * However we internally use a a much smaller unit such as
3380 * milliseconds or jiffies.
3381 * This function takes a decimal number with a possible fractional
3382 * component, and produces an integer which is the result of
3383 * multiplying that number by 10^'scale'.
3384 * all without any floating-point arithmetic.
3385 */
3386 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3387 {
3388 unsigned long result = 0;
3389 long decimals = -1;
3390 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3391 if (*cp == '.')
3392 decimals = 0;
3393 else if (decimals < scale) {
3394 unsigned int value;
3395 value = *cp - '0';
3396 result = result * 10 + value;
3397 if (decimals >= 0)
3398 decimals++;
3399 }
3400 cp++;
3401 }
3402 if (*cp == '\n')
3403 cp++;
3404 if (*cp)
3405 return -EINVAL;
3406 if (decimals < 0)
3407 decimals = 0;
3408 while (decimals < scale) {
3409 result *= 10;
3410 decimals ++;
3411 }
3412 *res = result;
3413 return 0;
3414 }
3415
3416
3417 static void md_safemode_timeout(unsigned long data);
3418
3419 static ssize_t
3420 safe_delay_show(struct mddev *mddev, char *page)
3421 {
3422 int msec = (mddev->safemode_delay*1000)/HZ;
3423 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3424 }
3425 static ssize_t
3426 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3427 {
3428 unsigned long msec;
3429
3430 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3431 return -EINVAL;
3432 if (msec == 0)
3433 mddev->safemode_delay = 0;
3434 else {
3435 unsigned long old_delay = mddev->safemode_delay;
3436 mddev->safemode_delay = (msec*HZ)/1000;
3437 if (mddev->safemode_delay == 0)
3438 mddev->safemode_delay = 1;
3439 if (mddev->safemode_delay < old_delay)
3440 md_safemode_timeout((unsigned long)mddev);
3441 }
3442 return len;
3443 }
3444 static struct md_sysfs_entry md_safe_delay =
3445 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3446
3447 static ssize_t
3448 level_show(struct mddev *mddev, char *page)
3449 {
3450 struct md_personality *p = mddev->pers;
3451 if (p)
3452 return sprintf(page, "%s\n", p->name);
3453 else if (mddev->clevel[0])
3454 return sprintf(page, "%s\n", mddev->clevel);
3455 else if (mddev->level != LEVEL_NONE)
3456 return sprintf(page, "%d\n", mddev->level);
3457 else
3458 return 0;
3459 }
3460
3461 static ssize_t
3462 level_store(struct mddev *mddev, const char *buf, size_t len)
3463 {
3464 char clevel[16];
3465 ssize_t rv = len;
3466 struct md_personality *pers;
3467 long level;
3468 void *priv;
3469 struct md_rdev *rdev;
3470
3471 if (mddev->pers == NULL) {
3472 if (len == 0)
3473 return 0;
3474 if (len >= sizeof(mddev->clevel))
3475 return -ENOSPC;
3476 strncpy(mddev->clevel, buf, len);
3477 if (mddev->clevel[len-1] == '\n')
3478 len--;
3479 mddev->clevel[len] = 0;
3480 mddev->level = LEVEL_NONE;
3481 return rv;
3482 }
3483
3484 /* request to change the personality. Need to ensure:
3485 * - array is not engaged in resync/recovery/reshape
3486 * - old personality can be suspended
3487 * - new personality will access other array.
3488 */
3489
3490 if (mddev->sync_thread ||
3491 mddev->reshape_position != MaxSector ||
3492 mddev->sysfs_active)
3493 return -EBUSY;
3494
3495 if (!mddev->pers->quiesce) {
3496 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3497 mdname(mddev), mddev->pers->name);
3498 return -EINVAL;
3499 }
3500
3501 /* Now find the new personality */
3502 if (len == 0 || len >= sizeof(clevel))
3503 return -EINVAL;
3504 strncpy(clevel, buf, len);
3505 if (clevel[len-1] == '\n')
3506 len--;
3507 clevel[len] = 0;
3508 if (strict_strtol(clevel, 10, &level))
3509 level = LEVEL_NONE;
3510
3511 if (request_module("md-%s", clevel) != 0)
3512 request_module("md-level-%s", clevel);
3513 spin_lock(&pers_lock);
3514 pers = find_pers(level, clevel);
3515 if (!pers || !try_module_get(pers->owner)) {
3516 spin_unlock(&pers_lock);
3517 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3518 return -EINVAL;
3519 }
3520 spin_unlock(&pers_lock);
3521
3522 if (pers == mddev->pers) {
3523 /* Nothing to do! */
3524 module_put(pers->owner);
3525 return rv;
3526 }
3527 if (!pers->takeover) {
3528 module_put(pers->owner);
3529 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3530 mdname(mddev), clevel);
3531 return -EINVAL;
3532 }
3533
3534 rdev_for_each(rdev, mddev)
3535 rdev->new_raid_disk = rdev->raid_disk;
3536
3537 /* ->takeover must set new_* and/or delta_disks
3538 * if it succeeds, and may set them when it fails.
3539 */
3540 priv = pers->takeover(mddev);
3541 if (IS_ERR(priv)) {
3542 mddev->new_level = mddev->level;
3543 mddev->new_layout = mddev->layout;
3544 mddev->new_chunk_sectors = mddev->chunk_sectors;
3545 mddev->raid_disks -= mddev->delta_disks;
3546 mddev->delta_disks = 0;
3547 mddev->reshape_backwards = 0;
3548 module_put(pers->owner);
3549 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3550 mdname(mddev), clevel);
3551 return PTR_ERR(priv);
3552 }
3553
3554 /* Looks like we have a winner */
3555 mddev_suspend(mddev);
3556 mddev->pers->stop(mddev);
3557
3558 if (mddev->pers->sync_request == NULL &&
3559 pers->sync_request != NULL) {
3560 /* need to add the md_redundancy_group */
3561 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3562 printk(KERN_WARNING
3563 "md: cannot register extra attributes for %s\n",
3564 mdname(mddev));
3565 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3566 }
3567 if (mddev->pers->sync_request != NULL &&
3568 pers->sync_request == NULL) {
3569 /* need to remove the md_redundancy_group */
3570 if (mddev->to_remove == NULL)
3571 mddev->to_remove = &md_redundancy_group;
3572 }
3573
3574 if (mddev->pers->sync_request == NULL &&
3575 mddev->external) {
3576 /* We are converting from a no-redundancy array
3577 * to a redundancy array and metadata is managed
3578 * externally so we need to be sure that writes
3579 * won't block due to a need to transition
3580 * clean->dirty
3581 * until external management is started.
3582 */
3583 mddev->in_sync = 0;
3584 mddev->safemode_delay = 0;
3585 mddev->safemode = 0;
3586 }
3587
3588 rdev_for_each(rdev, mddev) {
3589 if (rdev->raid_disk < 0)
3590 continue;
3591 if (rdev->new_raid_disk >= mddev->raid_disks)
3592 rdev->new_raid_disk = -1;
3593 if (rdev->new_raid_disk == rdev->raid_disk)
3594 continue;
3595 sysfs_unlink_rdev(mddev, rdev);
3596 }
3597 rdev_for_each(rdev, mddev) {
3598 if (rdev->raid_disk < 0)
3599 continue;
3600 if (rdev->new_raid_disk == rdev->raid_disk)
3601 continue;
3602 rdev->raid_disk = rdev->new_raid_disk;
3603 if (rdev->raid_disk < 0)
3604 clear_bit(In_sync, &rdev->flags);
3605 else {
3606 if (sysfs_link_rdev(mddev, rdev))
3607 printk(KERN_WARNING "md: cannot register rd%d"
3608 " for %s after level change\n",
3609 rdev->raid_disk, mdname(mddev));
3610 }
3611 }
3612
3613 module_put(mddev->pers->owner);
3614 mddev->pers = pers;
3615 mddev->private = priv;
3616 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3617 mddev->level = mddev->new_level;
3618 mddev->layout = mddev->new_layout;
3619 mddev->chunk_sectors = mddev->new_chunk_sectors;
3620 mddev->delta_disks = 0;
3621 mddev->reshape_backwards = 0;
3622 mddev->degraded = 0;
3623 if (mddev->pers->sync_request == NULL) {
3624 /* this is now an array without redundancy, so
3625 * it must always be in_sync
3626 */
3627 mddev->in_sync = 1;
3628 del_timer_sync(&mddev->safemode_timer);
3629 }
3630 blk_set_stacking_limits(&mddev->queue->limits);
3631 pers->run(mddev);
3632 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633 mddev_resume(mddev);
3634 sysfs_notify(&mddev->kobj, NULL, "level");
3635 md_new_event(mddev);
3636 return rv;
3637 }
3638
3639 static struct md_sysfs_entry md_level =
3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3641
3642
3643 static ssize_t
3644 layout_show(struct mddev *mddev, char *page)
3645 {
3646 /* just a number, not meaningful for all levels */
3647 if (mddev->reshape_position != MaxSector &&
3648 mddev->layout != mddev->new_layout)
3649 return sprintf(page, "%d (%d)\n",
3650 mddev->new_layout, mddev->layout);
3651 return sprintf(page, "%d\n", mddev->layout);
3652 }
3653
3654 static ssize_t
3655 layout_store(struct mddev *mddev, const char *buf, size_t len)
3656 {
3657 char *e;
3658 unsigned long n = simple_strtoul(buf, &e, 10);
3659
3660 if (!*buf || (*e && *e != '\n'))
3661 return -EINVAL;
3662
3663 if (mddev->pers) {
3664 int err;
3665 if (mddev->pers->check_reshape == NULL)
3666 return -EBUSY;
3667 mddev->new_layout = n;
3668 err = mddev->pers->check_reshape(mddev);
3669 if (err) {
3670 mddev->new_layout = mddev->layout;
3671 return err;
3672 }
3673 } else {
3674 mddev->new_layout = n;
3675 if (mddev->reshape_position == MaxSector)
3676 mddev->layout = n;
3677 }
3678 return len;
3679 }
3680 static struct md_sysfs_entry md_layout =
3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3682
3683
3684 static ssize_t
3685 raid_disks_show(struct mddev *mddev, char *page)
3686 {
3687 if (mddev->raid_disks == 0)
3688 return 0;
3689 if (mddev->reshape_position != MaxSector &&
3690 mddev->delta_disks != 0)
3691 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3692 mddev->raid_disks - mddev->delta_disks);
3693 return sprintf(page, "%d\n", mddev->raid_disks);
3694 }
3695
3696 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3697
3698 static ssize_t
3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3700 {
3701 char *e;
3702 int rv = 0;
3703 unsigned long n = simple_strtoul(buf, &e, 10);
3704
3705 if (!*buf || (*e && *e != '\n'))
3706 return -EINVAL;
3707
3708 if (mddev->pers)
3709 rv = update_raid_disks(mddev, n);
3710 else if (mddev->reshape_position != MaxSector) {
3711 struct md_rdev *rdev;
3712 int olddisks = mddev->raid_disks - mddev->delta_disks;
3713
3714 rdev_for_each(rdev, mddev) {
3715 if (olddisks < n &&
3716 rdev->data_offset < rdev->new_data_offset)
3717 return -EINVAL;
3718 if (olddisks > n &&
3719 rdev->data_offset > rdev->new_data_offset)
3720 return -EINVAL;
3721 }
3722 mddev->delta_disks = n - olddisks;
3723 mddev->raid_disks = n;
3724 mddev->reshape_backwards = (mddev->delta_disks < 0);
3725 } else
3726 mddev->raid_disks = n;
3727 return rv ? rv : len;
3728 }
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3731
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3734 {
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 return sprintf(page, "%d (%d)\n",
3738 mddev->new_chunk_sectors << 9,
3739 mddev->chunk_sectors << 9);
3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3741 }
3742
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 char *e;
3747 unsigned long n = simple_strtoul(buf, &e, 10);
3748
3749 if (!*buf || (*e && *e != '\n'))
3750 return -EINVAL;
3751
3752 if (mddev->pers) {
3753 int err;
3754 if (mddev->pers->check_reshape == NULL)
3755 return -EBUSY;
3756 mddev->new_chunk_sectors = n >> 9;
3757 err = mddev->pers->check_reshape(mddev);
3758 if (err) {
3759 mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 return err;
3761 }
3762 } else {
3763 mddev->new_chunk_sectors = n >> 9;
3764 if (mddev->reshape_position == MaxSector)
3765 mddev->chunk_sectors = n >> 9;
3766 }
3767 return len;
3768 }
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3771
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3774 {
3775 if (mddev->recovery_cp == MaxSector)
3776 return sprintf(page, "none\n");
3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3778 }
3779
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3782 {
3783 char *e;
3784 unsigned long long n = simple_strtoull(buf, &e, 10);
3785
3786 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3787 return -EBUSY;
3788 if (cmd_match(buf, "none"))
3789 n = MaxSector;
3790 else if (!*buf || (*e && *e != '\n'))
3791 return -EINVAL;
3792
3793 mddev->recovery_cp = n;
3794 if (mddev->pers)
3795 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3796 return len;
3797 }
3798 static struct md_sysfs_entry md_resync_start =
3799 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3800
3801 /*
3802 * The array state can be:
3803 *
3804 * clear
3805 * No devices, no size, no level
3806 * Equivalent to STOP_ARRAY ioctl
3807 * inactive
3808 * May have some settings, but array is not active
3809 * all IO results in error
3810 * When written, doesn't tear down array, but just stops it
3811 * suspended (not supported yet)
3812 * All IO requests will block. The array can be reconfigured.
3813 * Writing this, if accepted, will block until array is quiescent
3814 * readonly
3815 * no resync can happen. no superblocks get written.
3816 * write requests fail
3817 * read-auto
3818 * like readonly, but behaves like 'clean' on a write request.
3819 *
3820 * clean - no pending writes, but otherwise active.
3821 * When written to inactive array, starts without resync
3822 * If a write request arrives then
3823 * if metadata is known, mark 'dirty' and switch to 'active'.
3824 * if not known, block and switch to write-pending
3825 * If written to an active array that has pending writes, then fails.
3826 * active
3827 * fully active: IO and resync can be happening.
3828 * When written to inactive array, starts with resync
3829 *
3830 * write-pending
3831 * clean, but writes are blocked waiting for 'active' to be written.
3832 *
3833 * active-idle
3834 * like active, but no writes have been seen for a while (100msec).
3835 *
3836 */
3837 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3838 write_pending, active_idle, bad_word};
3839 static char *array_states[] = {
3840 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3841 "write-pending", "active-idle", NULL };
3842
3843 static int match_word(const char *word, char **list)
3844 {
3845 int n;
3846 for (n=0; list[n]; n++)
3847 if (cmd_match(word, list[n]))
3848 break;
3849 return n;
3850 }
3851
3852 static ssize_t
3853 array_state_show(struct mddev *mddev, char *page)
3854 {
3855 enum array_state st = inactive;
3856
3857 if (mddev->pers)
3858 switch(mddev->ro) {
3859 case 1:
3860 st = readonly;
3861 break;
3862 case 2:
3863 st = read_auto;
3864 break;
3865 case 0:
3866 if (mddev->in_sync)
3867 st = clean;
3868 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3869 st = write_pending;
3870 else if (mddev->safemode)
3871 st = active_idle;
3872 else
3873 st = active;
3874 }
3875 else {
3876 if (list_empty(&mddev->disks) &&
3877 mddev->raid_disks == 0 &&
3878 mddev->dev_sectors == 0)
3879 st = clear;
3880 else
3881 st = inactive;
3882 }
3883 return sprintf(page, "%s\n", array_states[st]);
3884 }
3885
3886 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3887 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3888 static int do_md_run(struct mddev * mddev);
3889 static int restart_array(struct mddev *mddev);
3890
3891 static ssize_t
3892 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3893 {
3894 int err = -EINVAL;
3895 enum array_state st = match_word(buf, array_states);
3896 switch(st) {
3897 case bad_word:
3898 break;
3899 case clear:
3900 /* stopping an active array */
3901 err = do_md_stop(mddev, 0, NULL);
3902 break;
3903 case inactive:
3904 /* stopping an active array */
3905 if (mddev->pers)
3906 err = do_md_stop(mddev, 2, NULL);
3907 else
3908 err = 0; /* already inactive */
3909 break;
3910 case suspended:
3911 break; /* not supported yet */
3912 case readonly:
3913 if (mddev->pers)
3914 err = md_set_readonly(mddev, NULL);
3915 else {
3916 mddev->ro = 1;
3917 set_disk_ro(mddev->gendisk, 1);
3918 err = do_md_run(mddev);
3919 }
3920 break;
3921 case read_auto:
3922 if (mddev->pers) {
3923 if (mddev->ro == 0)
3924 err = md_set_readonly(mddev, NULL);
3925 else if (mddev->ro == 1)
3926 err = restart_array(mddev);
3927 if (err == 0) {
3928 mddev->ro = 2;
3929 set_disk_ro(mddev->gendisk, 0);
3930 }
3931 } else {
3932 mddev->ro = 2;
3933 err = do_md_run(mddev);
3934 }
3935 break;
3936 case clean:
3937 if (mddev->pers) {
3938 restart_array(mddev);
3939 spin_lock_irq(&mddev->write_lock);
3940 if (atomic_read(&mddev->writes_pending) == 0) {
3941 if (mddev->in_sync == 0) {
3942 mddev->in_sync = 1;
3943 if (mddev->safemode == 1)
3944 mddev->safemode = 0;
3945 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3946 }
3947 err = 0;
3948 } else
3949 err = -EBUSY;
3950 spin_unlock_irq(&mddev->write_lock);
3951 } else
3952 err = -EINVAL;
3953 break;
3954 case active:
3955 if (mddev->pers) {
3956 restart_array(mddev);
3957 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3958 wake_up(&mddev->sb_wait);
3959 err = 0;
3960 } else {
3961 mddev->ro = 0;
3962 set_disk_ro(mddev->gendisk, 0);
3963 err = do_md_run(mddev);
3964 }
3965 break;
3966 case write_pending:
3967 case active_idle:
3968 /* these cannot be set */
3969 break;
3970 }
3971 if (err)
3972 return err;
3973 else {
3974 if (mddev->hold_active == UNTIL_IOCTL)
3975 mddev->hold_active = 0;
3976 sysfs_notify_dirent_safe(mddev->sysfs_state);
3977 return len;
3978 }
3979 }
3980 static struct md_sysfs_entry md_array_state =
3981 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3982
3983 static ssize_t
3984 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3985 return sprintf(page, "%d\n",
3986 atomic_read(&mddev->max_corr_read_errors));
3987 }
3988
3989 static ssize_t
3990 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3991 {
3992 char *e;
3993 unsigned long n = simple_strtoul(buf, &e, 10);
3994
3995 if (*buf && (*e == 0 || *e == '\n')) {
3996 atomic_set(&mddev->max_corr_read_errors, n);
3997 return len;
3998 }
3999 return -EINVAL;
4000 }
4001
4002 static struct md_sysfs_entry max_corr_read_errors =
4003 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4004 max_corrected_read_errors_store);
4005
4006 static ssize_t
4007 null_show(struct mddev *mddev, char *page)
4008 {
4009 return -EINVAL;
4010 }
4011
4012 static ssize_t
4013 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4014 {
4015 /* buf must be %d:%d\n? giving major and minor numbers */
4016 /* The new device is added to the array.
4017 * If the array has a persistent superblock, we read the
4018 * superblock to initialise info and check validity.
4019 * Otherwise, only checking done is that in bind_rdev_to_array,
4020 * which mainly checks size.
4021 */
4022 char *e;
4023 int major = simple_strtoul(buf, &e, 10);
4024 int minor;
4025 dev_t dev;
4026 struct md_rdev *rdev;
4027 int err;
4028
4029 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4030 return -EINVAL;
4031 minor = simple_strtoul(e+1, &e, 10);
4032 if (*e && *e != '\n')
4033 return -EINVAL;
4034 dev = MKDEV(major, minor);
4035 if (major != MAJOR(dev) ||
4036 minor != MINOR(dev))
4037 return -EOVERFLOW;
4038
4039
4040 if (mddev->persistent) {
4041 rdev = md_import_device(dev, mddev->major_version,
4042 mddev->minor_version);
4043 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4044 struct md_rdev *rdev0
4045 = list_entry(mddev->disks.next,
4046 struct md_rdev, same_set);
4047 err = super_types[mddev->major_version]
4048 .load_super(rdev, rdev0, mddev->minor_version);
4049 if (err < 0)
4050 goto out;
4051 }
4052 } else if (mddev->external)
4053 rdev = md_import_device(dev, -2, -1);
4054 else
4055 rdev = md_import_device(dev, -1, -1);
4056
4057 if (IS_ERR(rdev))
4058 return PTR_ERR(rdev);
4059 err = bind_rdev_to_array(rdev, mddev);
4060 out:
4061 if (err)
4062 export_rdev(rdev);
4063 return err ? err : len;
4064 }
4065
4066 static struct md_sysfs_entry md_new_device =
4067 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4068
4069 static ssize_t
4070 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4071 {
4072 char *end;
4073 unsigned long chunk, end_chunk;
4074
4075 if (!mddev->bitmap)
4076 goto out;
4077 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4078 while (*buf) {
4079 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4080 if (buf == end) break;
4081 if (*end == '-') { /* range */
4082 buf = end + 1;
4083 end_chunk = simple_strtoul(buf, &end, 0);
4084 if (buf == end) break;
4085 }
4086 if (*end && !isspace(*end)) break;
4087 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4088 buf = skip_spaces(end);
4089 }
4090 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4091 out:
4092 return len;
4093 }
4094
4095 static struct md_sysfs_entry md_bitmap =
4096 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4097
4098 static ssize_t
4099 size_show(struct mddev *mddev, char *page)
4100 {
4101 return sprintf(page, "%llu\n",
4102 (unsigned long long)mddev->dev_sectors / 2);
4103 }
4104
4105 static int update_size(struct mddev *mddev, sector_t num_sectors);
4106
4107 static ssize_t
4108 size_store(struct mddev *mddev, const char *buf, size_t len)
4109 {
4110 /* If array is inactive, we can reduce the component size, but
4111 * not increase it (except from 0).
4112 * If array is active, we can try an on-line resize
4113 */
4114 sector_t sectors;
4115 int err = strict_blocks_to_sectors(buf, &sectors);
4116
4117 if (err < 0)
4118 return err;
4119 if (mddev->pers) {
4120 err = update_size(mddev, sectors);
4121 md_update_sb(mddev, 1);
4122 } else {
4123 if (mddev->dev_sectors == 0 ||
4124 mddev->dev_sectors > sectors)
4125 mddev->dev_sectors = sectors;
4126 else
4127 err = -ENOSPC;
4128 }
4129 return err ? err : len;
4130 }
4131
4132 static struct md_sysfs_entry md_size =
4133 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4134
4135
4136 /* Metadata version.
4137 * This is one of
4138 * 'none' for arrays with no metadata (good luck...)
4139 * 'external' for arrays with externally managed metadata,
4140 * or N.M for internally known formats
4141 */
4142 static ssize_t
4143 metadata_show(struct mddev *mddev, char *page)
4144 {
4145 if (mddev->persistent)
4146 return sprintf(page, "%d.%d\n",
4147 mddev->major_version, mddev->minor_version);
4148 else if (mddev->external)
4149 return sprintf(page, "external:%s\n", mddev->metadata_type);
4150 else
4151 return sprintf(page, "none\n");
4152 }
4153
4154 static ssize_t
4155 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4156 {
4157 int major, minor;
4158 char *e;
4159 /* Changing the details of 'external' metadata is
4160 * always permitted. Otherwise there must be
4161 * no devices attached to the array.
4162 */
4163 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4164 ;
4165 else if (!list_empty(&mddev->disks))
4166 return -EBUSY;
4167
4168 if (cmd_match(buf, "none")) {
4169 mddev->persistent = 0;
4170 mddev->external = 0;
4171 mddev->major_version = 0;
4172 mddev->minor_version = 90;
4173 return len;
4174 }
4175 if (strncmp(buf, "external:", 9) == 0) {
4176 size_t namelen = len-9;
4177 if (namelen >= sizeof(mddev->metadata_type))
4178 namelen = sizeof(mddev->metadata_type)-1;
4179 strncpy(mddev->metadata_type, buf+9, namelen);
4180 mddev->metadata_type[namelen] = 0;
4181 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4182 mddev->metadata_type[--namelen] = 0;
4183 mddev->persistent = 0;
4184 mddev->external = 1;
4185 mddev->major_version = 0;
4186 mddev->minor_version = 90;
4187 return len;
4188 }
4189 major = simple_strtoul(buf, &e, 10);
4190 if (e==buf || *e != '.')
4191 return -EINVAL;
4192 buf = e+1;
4193 minor = simple_strtoul(buf, &e, 10);
4194 if (e==buf || (*e && *e != '\n') )
4195 return -EINVAL;
4196 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4197 return -ENOENT;
4198 mddev->major_version = major;
4199 mddev->minor_version = minor;
4200 mddev->persistent = 1;
4201 mddev->external = 0;
4202 return len;
4203 }
4204
4205 static struct md_sysfs_entry md_metadata =
4206 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4207
4208 static ssize_t
4209 action_show(struct mddev *mddev, char *page)
4210 {
4211 char *type = "idle";
4212 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4213 type = "frozen";
4214 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4215 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4217 type = "reshape";
4218 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4219 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4220 type = "resync";
4221 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4222 type = "check";
4223 else
4224 type = "repair";
4225 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4226 type = "recover";
4227 }
4228 return sprintf(page, "%s\n", type);
4229 }
4230
4231 static ssize_t
4232 action_store(struct mddev *mddev, const char *page, size_t len)
4233 {
4234 if (!mddev->pers || !mddev->pers->sync_request)
4235 return -EINVAL;
4236
4237 if (cmd_match(page, "frozen"))
4238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4239 else
4240 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4241
4242 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4243 if (mddev->sync_thread) {
4244 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4245 md_reap_sync_thread(mddev);
4246 }
4247 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4248 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4249 return -EBUSY;
4250 else if (cmd_match(page, "resync"))
4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252 else if (cmd_match(page, "recover")) {
4253 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 } else if (cmd_match(page, "reshape")) {
4256 int err;
4257 if (mddev->pers->start_reshape == NULL)
4258 return -EINVAL;
4259 err = mddev->pers->start_reshape(mddev);
4260 if (err)
4261 return err;
4262 sysfs_notify(&mddev->kobj, NULL, "degraded");
4263 } else {
4264 if (cmd_match(page, "check"))
4265 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266 else if (!cmd_match(page, "repair"))
4267 return -EINVAL;
4268 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4270 }
4271 if (mddev->ro == 2) {
4272 /* A write to sync_action is enough to justify
4273 * canceling read-auto mode
4274 */
4275 mddev->ro = 0;
4276 md_wakeup_thread(mddev->sync_thread);
4277 }
4278 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4279 md_wakeup_thread(mddev->thread);
4280 sysfs_notify_dirent_safe(mddev->sysfs_action);
4281 return len;
4282 }
4283
4284 static ssize_t
4285 mismatch_cnt_show(struct mddev *mddev, char *page)
4286 {
4287 return sprintf(page, "%llu\n",
4288 (unsigned long long)
4289 atomic64_read(&mddev->resync_mismatches));
4290 }
4291
4292 static struct md_sysfs_entry md_scan_mode =
4293 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4294
4295
4296 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4297
4298 static ssize_t
4299 sync_min_show(struct mddev *mddev, char *page)
4300 {
4301 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4302 mddev->sync_speed_min ? "local": "system");
4303 }
4304
4305 static ssize_t
4306 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4307 {
4308 int min;
4309 char *e;
4310 if (strncmp(buf, "system", 6)==0) {
4311 mddev->sync_speed_min = 0;
4312 return len;
4313 }
4314 min = simple_strtoul(buf, &e, 10);
4315 if (buf == e || (*e && *e != '\n') || min <= 0)
4316 return -EINVAL;
4317 mddev->sync_speed_min = min;
4318 return len;
4319 }
4320
4321 static struct md_sysfs_entry md_sync_min =
4322 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4323
4324 static ssize_t
4325 sync_max_show(struct mddev *mddev, char *page)
4326 {
4327 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4328 mddev->sync_speed_max ? "local": "system");
4329 }
4330
4331 static ssize_t
4332 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4333 {
4334 int max;
4335 char *e;
4336 if (strncmp(buf, "system", 6)==0) {
4337 mddev->sync_speed_max = 0;
4338 return len;
4339 }
4340 max = simple_strtoul(buf, &e, 10);
4341 if (buf == e || (*e && *e != '\n') || max <= 0)
4342 return -EINVAL;
4343 mddev->sync_speed_max = max;
4344 return len;
4345 }
4346
4347 static struct md_sysfs_entry md_sync_max =
4348 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4349
4350 static ssize_t
4351 degraded_show(struct mddev *mddev, char *page)
4352 {
4353 return sprintf(page, "%d\n", mddev->degraded);
4354 }
4355 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4356
4357 static ssize_t
4358 sync_force_parallel_show(struct mddev *mddev, char *page)
4359 {
4360 return sprintf(page, "%d\n", mddev->parallel_resync);
4361 }
4362
4363 static ssize_t
4364 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4365 {
4366 long n;
4367
4368 if (strict_strtol(buf, 10, &n))
4369 return -EINVAL;
4370
4371 if (n != 0 && n != 1)
4372 return -EINVAL;
4373
4374 mddev->parallel_resync = n;
4375
4376 if (mddev->sync_thread)
4377 wake_up(&resync_wait);
4378
4379 return len;
4380 }
4381
4382 /* force parallel resync, even with shared block devices */
4383 static struct md_sysfs_entry md_sync_force_parallel =
4384 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4385 sync_force_parallel_show, sync_force_parallel_store);
4386
4387 static ssize_t
4388 sync_speed_show(struct mddev *mddev, char *page)
4389 {
4390 unsigned long resync, dt, db;
4391 if (mddev->curr_resync == 0)
4392 return sprintf(page, "none\n");
4393 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4394 dt = (jiffies - mddev->resync_mark) / HZ;
4395 if (!dt) dt++;
4396 db = resync - mddev->resync_mark_cnt;
4397 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4398 }
4399
4400 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4401
4402 static ssize_t
4403 sync_completed_show(struct mddev *mddev, char *page)
4404 {
4405 unsigned long long max_sectors, resync;
4406
4407 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4408 return sprintf(page, "none\n");
4409
4410 if (mddev->curr_resync == 1 ||
4411 mddev->curr_resync == 2)
4412 return sprintf(page, "delayed\n");
4413
4414 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4415 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4416 max_sectors = mddev->resync_max_sectors;
4417 else
4418 max_sectors = mddev->dev_sectors;
4419
4420 resync = mddev->curr_resync_completed;
4421 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4422 }
4423
4424 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4425
4426 static ssize_t
4427 min_sync_show(struct mddev *mddev, char *page)
4428 {
4429 return sprintf(page, "%llu\n",
4430 (unsigned long long)mddev->resync_min);
4431 }
4432 static ssize_t
4433 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 unsigned long long min;
4436 if (strict_strtoull(buf, 10, &min))
4437 return -EINVAL;
4438 if (min > mddev->resync_max)
4439 return -EINVAL;
4440 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 return -EBUSY;
4442
4443 /* Must be a multiple of chunk_size */
4444 if (mddev->chunk_sectors) {
4445 sector_t temp = min;
4446 if (sector_div(temp, mddev->chunk_sectors))
4447 return -EINVAL;
4448 }
4449 mddev->resync_min = min;
4450
4451 return len;
4452 }
4453
4454 static struct md_sysfs_entry md_min_sync =
4455 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4456
4457 static ssize_t
4458 max_sync_show(struct mddev *mddev, char *page)
4459 {
4460 if (mddev->resync_max == MaxSector)
4461 return sprintf(page, "max\n");
4462 else
4463 return sprintf(page, "%llu\n",
4464 (unsigned long long)mddev->resync_max);
4465 }
4466 static ssize_t
4467 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4468 {
4469 if (strncmp(buf, "max", 3) == 0)
4470 mddev->resync_max = MaxSector;
4471 else {
4472 unsigned long long max;
4473 if (strict_strtoull(buf, 10, &max))
4474 return -EINVAL;
4475 if (max < mddev->resync_min)
4476 return -EINVAL;
4477 if (max < mddev->resync_max &&
4478 mddev->ro == 0 &&
4479 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4480 return -EBUSY;
4481
4482 /* Must be a multiple of chunk_size */
4483 if (mddev->chunk_sectors) {
4484 sector_t temp = max;
4485 if (sector_div(temp, mddev->chunk_sectors))
4486 return -EINVAL;
4487 }
4488 mddev->resync_max = max;
4489 }
4490 wake_up(&mddev->recovery_wait);
4491 return len;
4492 }
4493
4494 static struct md_sysfs_entry md_max_sync =
4495 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4496
4497 static ssize_t
4498 suspend_lo_show(struct mddev *mddev, char *page)
4499 {
4500 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4501 }
4502
4503 static ssize_t
4504 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4505 {
4506 char *e;
4507 unsigned long long new = simple_strtoull(buf, &e, 10);
4508 unsigned long long old = mddev->suspend_lo;
4509
4510 if (mddev->pers == NULL ||
4511 mddev->pers->quiesce == NULL)
4512 return -EINVAL;
4513 if (buf == e || (*e && *e != '\n'))
4514 return -EINVAL;
4515
4516 mddev->suspend_lo = new;
4517 if (new >= old)
4518 /* Shrinking suspended region */
4519 mddev->pers->quiesce(mddev, 2);
4520 else {
4521 /* Expanding suspended region - need to wait */
4522 mddev->pers->quiesce(mddev, 1);
4523 mddev->pers->quiesce(mddev, 0);
4524 }
4525 return len;
4526 }
4527 static struct md_sysfs_entry md_suspend_lo =
4528 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4529
4530
4531 static ssize_t
4532 suspend_hi_show(struct mddev *mddev, char *page)
4533 {
4534 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4535 }
4536
4537 static ssize_t
4538 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4539 {
4540 char *e;
4541 unsigned long long new = simple_strtoull(buf, &e, 10);
4542 unsigned long long old = mddev->suspend_hi;
4543
4544 if (mddev->pers == NULL ||
4545 mddev->pers->quiesce == NULL)
4546 return -EINVAL;
4547 if (buf == e || (*e && *e != '\n'))
4548 return -EINVAL;
4549
4550 mddev->suspend_hi = new;
4551 if (new <= old)
4552 /* Shrinking suspended region */
4553 mddev->pers->quiesce(mddev, 2);
4554 else {
4555 /* Expanding suspended region - need to wait */
4556 mddev->pers->quiesce(mddev, 1);
4557 mddev->pers->quiesce(mddev, 0);
4558 }
4559 return len;
4560 }
4561 static struct md_sysfs_entry md_suspend_hi =
4562 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4563
4564 static ssize_t
4565 reshape_position_show(struct mddev *mddev, char *page)
4566 {
4567 if (mddev->reshape_position != MaxSector)
4568 return sprintf(page, "%llu\n",
4569 (unsigned long long)mddev->reshape_position);
4570 strcpy(page, "none\n");
4571 return 5;
4572 }
4573
4574 static ssize_t
4575 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4576 {
4577 struct md_rdev *rdev;
4578 char *e;
4579 unsigned long long new = simple_strtoull(buf, &e, 10);
4580 if (mddev->pers)
4581 return -EBUSY;
4582 if (buf == e || (*e && *e != '\n'))
4583 return -EINVAL;
4584 mddev->reshape_position = new;
4585 mddev->delta_disks = 0;
4586 mddev->reshape_backwards = 0;
4587 mddev->new_level = mddev->level;
4588 mddev->new_layout = mddev->layout;
4589 mddev->new_chunk_sectors = mddev->chunk_sectors;
4590 rdev_for_each(rdev, mddev)
4591 rdev->new_data_offset = rdev->data_offset;
4592 return len;
4593 }
4594
4595 static struct md_sysfs_entry md_reshape_position =
4596 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4597 reshape_position_store);
4598
4599 static ssize_t
4600 reshape_direction_show(struct mddev *mddev, char *page)
4601 {
4602 return sprintf(page, "%s\n",
4603 mddev->reshape_backwards ? "backwards" : "forwards");
4604 }
4605
4606 static ssize_t
4607 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4608 {
4609 int backwards = 0;
4610 if (cmd_match(buf, "forwards"))
4611 backwards = 0;
4612 else if (cmd_match(buf, "backwards"))
4613 backwards = 1;
4614 else
4615 return -EINVAL;
4616 if (mddev->reshape_backwards == backwards)
4617 return len;
4618
4619 /* check if we are allowed to change */
4620 if (mddev->delta_disks)
4621 return -EBUSY;
4622
4623 if (mddev->persistent &&
4624 mddev->major_version == 0)
4625 return -EINVAL;
4626
4627 mddev->reshape_backwards = backwards;
4628 return len;
4629 }
4630
4631 static struct md_sysfs_entry md_reshape_direction =
4632 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4633 reshape_direction_store);
4634
4635 static ssize_t
4636 array_size_show(struct mddev *mddev, char *page)
4637 {
4638 if (mddev->external_size)
4639 return sprintf(page, "%llu\n",
4640 (unsigned long long)mddev->array_sectors/2);
4641 else
4642 return sprintf(page, "default\n");
4643 }
4644
4645 static ssize_t
4646 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4647 {
4648 sector_t sectors;
4649
4650 if (strncmp(buf, "default", 7) == 0) {
4651 if (mddev->pers)
4652 sectors = mddev->pers->size(mddev, 0, 0);
4653 else
4654 sectors = mddev->array_sectors;
4655
4656 mddev->external_size = 0;
4657 } else {
4658 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4659 return -EINVAL;
4660 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4661 return -E2BIG;
4662
4663 mddev->external_size = 1;
4664 }
4665
4666 mddev->array_sectors = sectors;
4667 if (mddev->pers) {
4668 set_capacity(mddev->gendisk, mddev->array_sectors);
4669 revalidate_disk(mddev->gendisk);
4670 }
4671 return len;
4672 }
4673
4674 static struct md_sysfs_entry md_array_size =
4675 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4676 array_size_store);
4677
4678 static struct attribute *md_default_attrs[] = {
4679 &md_level.attr,
4680 &md_layout.attr,
4681 &md_raid_disks.attr,
4682 &md_chunk_size.attr,
4683 &md_size.attr,
4684 &md_resync_start.attr,
4685 &md_metadata.attr,
4686 &md_new_device.attr,
4687 &md_safe_delay.attr,
4688 &md_array_state.attr,
4689 &md_reshape_position.attr,
4690 &md_reshape_direction.attr,
4691 &md_array_size.attr,
4692 &max_corr_read_errors.attr,
4693 NULL,
4694 };
4695
4696 static struct attribute *md_redundancy_attrs[] = {
4697 &md_scan_mode.attr,
4698 &md_mismatches.attr,
4699 &md_sync_min.attr,
4700 &md_sync_max.attr,
4701 &md_sync_speed.attr,
4702 &md_sync_force_parallel.attr,
4703 &md_sync_completed.attr,
4704 &md_min_sync.attr,
4705 &md_max_sync.attr,
4706 &md_suspend_lo.attr,
4707 &md_suspend_hi.attr,
4708 &md_bitmap.attr,
4709 &md_degraded.attr,
4710 NULL,
4711 };
4712 static struct attribute_group md_redundancy_group = {
4713 .name = NULL,
4714 .attrs = md_redundancy_attrs,
4715 };
4716
4717
4718 static ssize_t
4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4720 {
4721 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4722 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4723 ssize_t rv;
4724
4725 if (!entry->show)
4726 return -EIO;
4727 spin_lock(&all_mddevs_lock);
4728 if (list_empty(&mddev->all_mddevs)) {
4729 spin_unlock(&all_mddevs_lock);
4730 return -EBUSY;
4731 }
4732 mddev_get(mddev);
4733 spin_unlock(&all_mddevs_lock);
4734
4735 rv = mddev_lock(mddev);
4736 if (!rv) {
4737 rv = entry->show(mddev, page);
4738 mddev_unlock(mddev);
4739 }
4740 mddev_put(mddev);
4741 return rv;
4742 }
4743
4744 static ssize_t
4745 md_attr_store(struct kobject *kobj, struct attribute *attr,
4746 const char *page, size_t length)
4747 {
4748 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4749 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4750 ssize_t rv;
4751
4752 if (!entry->store)
4753 return -EIO;
4754 if (!capable(CAP_SYS_ADMIN))
4755 return -EACCES;
4756 spin_lock(&all_mddevs_lock);
4757 if (list_empty(&mddev->all_mddevs)) {
4758 spin_unlock(&all_mddevs_lock);
4759 return -EBUSY;
4760 }
4761 mddev_get(mddev);
4762 spin_unlock(&all_mddevs_lock);
4763 if (entry->store == new_dev_store)
4764 flush_workqueue(md_misc_wq);
4765 rv = mddev_lock(mddev);
4766 if (!rv) {
4767 rv = entry->store(mddev, page, length);
4768 mddev_unlock(mddev);
4769 }
4770 mddev_put(mddev);
4771 return rv;
4772 }
4773
4774 static void md_free(struct kobject *ko)
4775 {
4776 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4777
4778 if (mddev->sysfs_state)
4779 sysfs_put(mddev->sysfs_state);
4780
4781 if (mddev->gendisk) {
4782 del_gendisk(mddev->gendisk);
4783 put_disk(mddev->gendisk);
4784 }
4785 if (mddev->queue)
4786 blk_cleanup_queue(mddev->queue);
4787
4788 kfree(mddev);
4789 }
4790
4791 static const struct sysfs_ops md_sysfs_ops = {
4792 .show = md_attr_show,
4793 .store = md_attr_store,
4794 };
4795 static struct kobj_type md_ktype = {
4796 .release = md_free,
4797 .sysfs_ops = &md_sysfs_ops,
4798 .default_attrs = md_default_attrs,
4799 };
4800
4801 int mdp_major = 0;
4802
4803 static void mddev_delayed_delete(struct work_struct *ws)
4804 {
4805 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4806
4807 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4808 kobject_del(&mddev->kobj);
4809 kobject_put(&mddev->kobj);
4810 }
4811
4812 static int md_alloc(dev_t dev, char *name)
4813 {
4814 static DEFINE_MUTEX(disks_mutex);
4815 struct mddev *mddev = mddev_find(dev);
4816 struct gendisk *disk;
4817 int partitioned;
4818 int shift;
4819 int unit;
4820 int error;
4821
4822 if (!mddev)
4823 return -ENODEV;
4824
4825 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4826 shift = partitioned ? MdpMinorShift : 0;
4827 unit = MINOR(mddev->unit) >> shift;
4828
4829 /* wait for any previous instance of this device to be
4830 * completely removed (mddev_delayed_delete).
4831 */
4832 flush_workqueue(md_misc_wq);
4833
4834 mutex_lock(&disks_mutex);
4835 error = -EEXIST;
4836 if (mddev->gendisk)
4837 goto abort;
4838
4839 if (name) {
4840 /* Need to ensure that 'name' is not a duplicate.
4841 */
4842 struct mddev *mddev2;
4843 spin_lock(&all_mddevs_lock);
4844
4845 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4846 if (mddev2->gendisk &&
4847 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4848 spin_unlock(&all_mddevs_lock);
4849 goto abort;
4850 }
4851 spin_unlock(&all_mddevs_lock);
4852 }
4853
4854 error = -ENOMEM;
4855 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4856 if (!mddev->queue)
4857 goto abort;
4858 mddev->queue->queuedata = mddev;
4859
4860 blk_queue_make_request(mddev->queue, md_make_request);
4861 blk_set_stacking_limits(&mddev->queue->limits);
4862
4863 disk = alloc_disk(1 << shift);
4864 if (!disk) {
4865 blk_cleanup_queue(mddev->queue);
4866 mddev->queue = NULL;
4867 goto abort;
4868 }
4869 disk->major = MAJOR(mddev->unit);
4870 disk->first_minor = unit << shift;
4871 if (name)
4872 strcpy(disk->disk_name, name);
4873 else if (partitioned)
4874 sprintf(disk->disk_name, "md_d%d", unit);
4875 else
4876 sprintf(disk->disk_name, "md%d", unit);
4877 disk->fops = &md_fops;
4878 disk->private_data = mddev;
4879 disk->queue = mddev->queue;
4880 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4881 /* Allow extended partitions. This makes the
4882 * 'mdp' device redundant, but we can't really
4883 * remove it now.
4884 */
4885 disk->flags |= GENHD_FL_EXT_DEVT;
4886 mddev->gendisk = disk;
4887 /* As soon as we call add_disk(), another thread could get
4888 * through to md_open, so make sure it doesn't get too far
4889 */
4890 mutex_lock(&mddev->open_mutex);
4891 add_disk(disk);
4892
4893 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4894 &disk_to_dev(disk)->kobj, "%s", "md");
4895 if (error) {
4896 /* This isn't possible, but as kobject_init_and_add is marked
4897 * __must_check, we must do something with the result
4898 */
4899 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4900 disk->disk_name);
4901 error = 0;
4902 }
4903 if (mddev->kobj.sd &&
4904 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4905 printk(KERN_DEBUG "pointless warning\n");
4906 mutex_unlock(&mddev->open_mutex);
4907 abort:
4908 mutex_unlock(&disks_mutex);
4909 if (!error && mddev->kobj.sd) {
4910 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4911 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4912 }
4913 mddev_put(mddev);
4914 return error;
4915 }
4916
4917 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4918 {
4919 md_alloc(dev, NULL);
4920 return NULL;
4921 }
4922
4923 static int add_named_array(const char *val, struct kernel_param *kp)
4924 {
4925 /* val must be "md_*" where * is not all digits.
4926 * We allocate an array with a large free minor number, and
4927 * set the name to val. val must not already be an active name.
4928 */
4929 int len = strlen(val);
4930 char buf[DISK_NAME_LEN];
4931
4932 while (len && val[len-1] == '\n')
4933 len--;
4934 if (len >= DISK_NAME_LEN)
4935 return -E2BIG;
4936 strlcpy(buf, val, len+1);
4937 if (strncmp(buf, "md_", 3) != 0)
4938 return -EINVAL;
4939 return md_alloc(0, buf);
4940 }
4941
4942 static void md_safemode_timeout(unsigned long data)
4943 {
4944 struct mddev *mddev = (struct mddev *) data;
4945
4946 if (!atomic_read(&mddev->writes_pending)) {
4947 mddev->safemode = 1;
4948 if (mddev->external)
4949 sysfs_notify_dirent_safe(mddev->sysfs_state);
4950 }
4951 md_wakeup_thread(mddev->thread);
4952 }
4953
4954 static int start_dirty_degraded;
4955
4956 int md_run(struct mddev *mddev)
4957 {
4958 int err;
4959 struct md_rdev *rdev;
4960 struct md_personality *pers;
4961
4962 if (list_empty(&mddev->disks))
4963 /* cannot run an array with no devices.. */
4964 return -EINVAL;
4965
4966 if (mddev->pers)
4967 return -EBUSY;
4968 /* Cannot run until previous stop completes properly */
4969 if (mddev->sysfs_active)
4970 return -EBUSY;
4971
4972 /*
4973 * Analyze all RAID superblock(s)
4974 */
4975 if (!mddev->raid_disks) {
4976 if (!mddev->persistent)
4977 return -EINVAL;
4978 analyze_sbs(mddev);
4979 }
4980
4981 if (mddev->level != LEVEL_NONE)
4982 request_module("md-level-%d", mddev->level);
4983 else if (mddev->clevel[0])
4984 request_module("md-%s", mddev->clevel);
4985
4986 /*
4987 * Drop all container device buffers, from now on
4988 * the only valid external interface is through the md
4989 * device.
4990 */
4991 rdev_for_each(rdev, mddev) {
4992 if (test_bit(Faulty, &rdev->flags))
4993 continue;
4994 sync_blockdev(rdev->bdev);
4995 invalidate_bdev(rdev->bdev);
4996
4997 /* perform some consistency tests on the device.
4998 * We don't want the data to overlap the metadata,
4999 * Internal Bitmap issues have been handled elsewhere.
5000 */
5001 if (rdev->meta_bdev) {
5002 /* Nothing to check */;
5003 } else if (rdev->data_offset < rdev->sb_start) {
5004 if (mddev->dev_sectors &&
5005 rdev->data_offset + mddev->dev_sectors
5006 > rdev->sb_start) {
5007 printk("md: %s: data overlaps metadata\n",
5008 mdname(mddev));
5009 return -EINVAL;
5010 }
5011 } else {
5012 if (rdev->sb_start + rdev->sb_size/512
5013 > rdev->data_offset) {
5014 printk("md: %s: metadata overlaps data\n",
5015 mdname(mddev));
5016 return -EINVAL;
5017 }
5018 }
5019 sysfs_notify_dirent_safe(rdev->sysfs_state);
5020 }
5021
5022 if (mddev->bio_set == NULL)
5023 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5024
5025 spin_lock(&pers_lock);
5026 pers = find_pers(mddev->level, mddev->clevel);
5027 if (!pers || !try_module_get(pers->owner)) {
5028 spin_unlock(&pers_lock);
5029 if (mddev->level != LEVEL_NONE)
5030 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5031 mddev->level);
5032 else
5033 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5034 mddev->clevel);
5035 return -EINVAL;
5036 }
5037 mddev->pers = pers;
5038 spin_unlock(&pers_lock);
5039 if (mddev->level != pers->level) {
5040 mddev->level = pers->level;
5041 mddev->new_level = pers->level;
5042 }
5043 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5044
5045 if (mddev->reshape_position != MaxSector &&
5046 pers->start_reshape == NULL) {
5047 /* This personality cannot handle reshaping... */
5048 mddev->pers = NULL;
5049 module_put(pers->owner);
5050 return -EINVAL;
5051 }
5052
5053 if (pers->sync_request) {
5054 /* Warn if this is a potentially silly
5055 * configuration.
5056 */
5057 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5058 struct md_rdev *rdev2;
5059 int warned = 0;
5060
5061 rdev_for_each(rdev, mddev)
5062 rdev_for_each(rdev2, mddev) {
5063 if (rdev < rdev2 &&
5064 rdev->bdev->bd_contains ==
5065 rdev2->bdev->bd_contains) {
5066 printk(KERN_WARNING
5067 "%s: WARNING: %s appears to be"
5068 " on the same physical disk as"
5069 " %s.\n",
5070 mdname(mddev),
5071 bdevname(rdev->bdev,b),
5072 bdevname(rdev2->bdev,b2));
5073 warned = 1;
5074 }
5075 }
5076
5077 if (warned)
5078 printk(KERN_WARNING
5079 "True protection against single-disk"
5080 " failure might be compromised.\n");
5081 }
5082
5083 mddev->recovery = 0;
5084 /* may be over-ridden by personality */
5085 mddev->resync_max_sectors = mddev->dev_sectors;
5086
5087 mddev->ok_start_degraded = start_dirty_degraded;
5088
5089 if (start_readonly && mddev->ro == 0)
5090 mddev->ro = 2; /* read-only, but switch on first write */
5091
5092 err = mddev->pers->run(mddev);
5093 if (err)
5094 printk(KERN_ERR "md: pers->run() failed ...\n");
5095 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5096 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5097 " but 'external_size' not in effect?\n", __func__);
5098 printk(KERN_ERR
5099 "md: invalid array_size %llu > default size %llu\n",
5100 (unsigned long long)mddev->array_sectors / 2,
5101 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5102 err = -EINVAL;
5103 mddev->pers->stop(mddev);
5104 }
5105 if (err == 0 && mddev->pers->sync_request &&
5106 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5107 err = bitmap_create(mddev);
5108 if (err) {
5109 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5110 mdname(mddev), err);
5111 mddev->pers->stop(mddev);
5112 }
5113 }
5114 if (err) {
5115 module_put(mddev->pers->owner);
5116 mddev->pers = NULL;
5117 bitmap_destroy(mddev);
5118 return err;
5119 }
5120 if (mddev->pers->sync_request) {
5121 if (mddev->kobj.sd &&
5122 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5123 printk(KERN_WARNING
5124 "md: cannot register extra attributes for %s\n",
5125 mdname(mddev));
5126 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5127 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5128 mddev->ro = 0;
5129
5130 atomic_set(&mddev->writes_pending,0);
5131 atomic_set(&mddev->max_corr_read_errors,
5132 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5133 mddev->safemode = 0;
5134 mddev->safemode_timer.function = md_safemode_timeout;
5135 mddev->safemode_timer.data = (unsigned long) mddev;
5136 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5137 mddev->in_sync = 1;
5138 smp_wmb();
5139 mddev->ready = 1;
5140 rdev_for_each(rdev, mddev)
5141 if (rdev->raid_disk >= 0)
5142 if (sysfs_link_rdev(mddev, rdev))
5143 /* failure here is OK */;
5144
5145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146
5147 if (mddev->flags)
5148 md_update_sb(mddev, 0);
5149
5150 md_new_event(mddev);
5151 sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 sysfs_notify_dirent_safe(mddev->sysfs_action);
5153 sysfs_notify(&mddev->kobj, NULL, "degraded");
5154 return 0;
5155 }
5156 EXPORT_SYMBOL_GPL(md_run);
5157
5158 static int do_md_run(struct mddev *mddev)
5159 {
5160 int err;
5161
5162 err = md_run(mddev);
5163 if (err)
5164 goto out;
5165 err = bitmap_load(mddev);
5166 if (err) {
5167 bitmap_destroy(mddev);
5168 goto out;
5169 }
5170
5171 md_wakeup_thread(mddev->thread);
5172 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5173
5174 set_capacity(mddev->gendisk, mddev->array_sectors);
5175 revalidate_disk(mddev->gendisk);
5176 mddev->changed = 1;
5177 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5178 out:
5179 return err;
5180 }
5181
5182 static int restart_array(struct mddev *mddev)
5183 {
5184 struct gendisk *disk = mddev->gendisk;
5185
5186 /* Complain if it has no devices */
5187 if (list_empty(&mddev->disks))
5188 return -ENXIO;
5189 if (!mddev->pers)
5190 return -EINVAL;
5191 if (!mddev->ro)
5192 return -EBUSY;
5193 mddev->safemode = 0;
5194 mddev->ro = 0;
5195 set_disk_ro(disk, 0);
5196 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5197 mdname(mddev));
5198 /* Kick recovery or resync if necessary */
5199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200 md_wakeup_thread(mddev->thread);
5201 md_wakeup_thread(mddev->sync_thread);
5202 sysfs_notify_dirent_safe(mddev->sysfs_state);
5203 return 0;
5204 }
5205
5206 /* similar to deny_write_access, but accounts for our holding a reference
5207 * to the file ourselves */
5208 static int deny_bitmap_write_access(struct file * file)
5209 {
5210 struct inode *inode = file->f_mapping->host;
5211
5212 spin_lock(&inode->i_lock);
5213 if (atomic_read(&inode->i_writecount) > 1) {
5214 spin_unlock(&inode->i_lock);
5215 return -ETXTBSY;
5216 }
5217 atomic_set(&inode->i_writecount, -1);
5218 spin_unlock(&inode->i_lock);
5219
5220 return 0;
5221 }
5222
5223 void restore_bitmap_write_access(struct file *file)
5224 {
5225 struct inode *inode = file->f_mapping->host;
5226
5227 spin_lock(&inode->i_lock);
5228 atomic_set(&inode->i_writecount, 1);
5229 spin_unlock(&inode->i_lock);
5230 }
5231
5232 static void md_clean(struct mddev *mddev)
5233 {
5234 mddev->array_sectors = 0;
5235 mddev->external_size = 0;
5236 mddev->dev_sectors = 0;
5237 mddev->raid_disks = 0;
5238 mddev->recovery_cp = 0;
5239 mddev->resync_min = 0;
5240 mddev->resync_max = MaxSector;
5241 mddev->reshape_position = MaxSector;
5242 mddev->external = 0;
5243 mddev->persistent = 0;
5244 mddev->level = LEVEL_NONE;
5245 mddev->clevel[0] = 0;
5246 mddev->flags = 0;
5247 mddev->ro = 0;
5248 mddev->metadata_type[0] = 0;
5249 mddev->chunk_sectors = 0;
5250 mddev->ctime = mddev->utime = 0;
5251 mddev->layout = 0;
5252 mddev->max_disks = 0;
5253 mddev->events = 0;
5254 mddev->can_decrease_events = 0;
5255 mddev->delta_disks = 0;
5256 mddev->reshape_backwards = 0;
5257 mddev->new_level = LEVEL_NONE;
5258 mddev->new_layout = 0;
5259 mddev->new_chunk_sectors = 0;
5260 mddev->curr_resync = 0;
5261 atomic64_set(&mddev->resync_mismatches, 0);
5262 mddev->suspend_lo = mddev->suspend_hi = 0;
5263 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5264 mddev->recovery = 0;
5265 mddev->in_sync = 0;
5266 mddev->changed = 0;
5267 mddev->degraded = 0;
5268 mddev->safemode = 0;
5269 mddev->merge_check_needed = 0;
5270 mddev->bitmap_info.offset = 0;
5271 mddev->bitmap_info.default_offset = 0;
5272 mddev->bitmap_info.default_space = 0;
5273 mddev->bitmap_info.chunksize = 0;
5274 mddev->bitmap_info.daemon_sleep = 0;
5275 mddev->bitmap_info.max_write_behind = 0;
5276 }
5277
5278 static void __md_stop_writes(struct mddev *mddev)
5279 {
5280 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281 if (mddev->sync_thread) {
5282 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5283 md_reap_sync_thread(mddev);
5284 }
5285
5286 del_timer_sync(&mddev->safemode_timer);
5287
5288 bitmap_flush(mddev);
5289 md_super_wait(mddev);
5290
5291 if (mddev->ro == 0 &&
5292 (!mddev->in_sync || mddev->flags)) {
5293 /* mark array as shutdown cleanly */
5294 mddev->in_sync = 1;
5295 md_update_sb(mddev, 1);
5296 }
5297 }
5298
5299 void md_stop_writes(struct mddev *mddev)
5300 {
5301 mddev_lock(mddev);
5302 __md_stop_writes(mddev);
5303 mddev_unlock(mddev);
5304 }
5305 EXPORT_SYMBOL_GPL(md_stop_writes);
5306
5307 static void __md_stop(struct mddev *mddev)
5308 {
5309 mddev->ready = 0;
5310 /* Ensure ->event_work is done */
5311 flush_workqueue(md_misc_wq);
5312 mddev->pers->stop(mddev);
5313 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5314 mddev->to_remove = &md_redundancy_group;
5315 module_put(mddev->pers->owner);
5316 mddev->pers = NULL;
5317 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5318 }
5319
5320 void md_stop(struct mddev *mddev)
5321 {
5322 /* stop the array and free an attached data structures.
5323 * This is called from dm-raid
5324 */
5325 __md_stop(mddev);
5326 bitmap_destroy(mddev);
5327 if (mddev->bio_set)
5328 bioset_free(mddev->bio_set);
5329 }
5330
5331 EXPORT_SYMBOL_GPL(md_stop);
5332
5333 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5334 {
5335 int err = 0;
5336 mutex_lock(&mddev->open_mutex);
5337 if (atomic_read(&mddev->openers) > !!bdev) {
5338 printk("md: %s still in use.\n",mdname(mddev));
5339 err = -EBUSY;
5340 goto out;
5341 }
5342 if (bdev)
5343 sync_blockdev(bdev);
5344 if (mddev->pers) {
5345 __md_stop_writes(mddev);
5346
5347 err = -ENXIO;
5348 if (mddev->ro==1)
5349 goto out;
5350 mddev->ro = 1;
5351 set_disk_ro(mddev->gendisk, 1);
5352 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5353 sysfs_notify_dirent_safe(mddev->sysfs_state);
5354 err = 0;
5355 }
5356 out:
5357 mutex_unlock(&mddev->open_mutex);
5358 return err;
5359 }
5360
5361 /* mode:
5362 * 0 - completely stop and dis-assemble array
5363 * 2 - stop but do not disassemble array
5364 */
5365 static int do_md_stop(struct mddev * mddev, int mode,
5366 struct block_device *bdev)
5367 {
5368 struct gendisk *disk = mddev->gendisk;
5369 struct md_rdev *rdev;
5370
5371 mutex_lock(&mddev->open_mutex);
5372 if (atomic_read(&mddev->openers) > !!bdev ||
5373 mddev->sysfs_active) {
5374 printk("md: %s still in use.\n",mdname(mddev));
5375 mutex_unlock(&mddev->open_mutex);
5376 return -EBUSY;
5377 }
5378 if (bdev)
5379 /* It is possible IO was issued on some other
5380 * open file which was closed before we took ->open_mutex.
5381 * As that was not the last close __blkdev_put will not
5382 * have called sync_blockdev, so we must.
5383 */
5384 sync_blockdev(bdev);
5385
5386 if (mddev->pers) {
5387 if (mddev->ro)
5388 set_disk_ro(disk, 0);
5389
5390 __md_stop_writes(mddev);
5391 __md_stop(mddev);
5392 mddev->queue->merge_bvec_fn = NULL;
5393 mddev->queue->backing_dev_info.congested_fn = NULL;
5394
5395 /* tell userspace to handle 'inactive' */
5396 sysfs_notify_dirent_safe(mddev->sysfs_state);
5397
5398 rdev_for_each(rdev, mddev)
5399 if (rdev->raid_disk >= 0)
5400 sysfs_unlink_rdev(mddev, rdev);
5401
5402 set_capacity(disk, 0);
5403 mutex_unlock(&mddev->open_mutex);
5404 mddev->changed = 1;
5405 revalidate_disk(disk);
5406
5407 if (mddev->ro)
5408 mddev->ro = 0;
5409 } else
5410 mutex_unlock(&mddev->open_mutex);
5411 /*
5412 * Free resources if final stop
5413 */
5414 if (mode == 0) {
5415 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5416
5417 bitmap_destroy(mddev);
5418 if (mddev->bitmap_info.file) {
5419 restore_bitmap_write_access(mddev->bitmap_info.file);
5420 fput(mddev->bitmap_info.file);
5421 mddev->bitmap_info.file = NULL;
5422 }
5423 mddev->bitmap_info.offset = 0;
5424
5425 export_array(mddev);
5426
5427 md_clean(mddev);
5428 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5429 if (mddev->hold_active == UNTIL_STOP)
5430 mddev->hold_active = 0;
5431 }
5432 blk_integrity_unregister(disk);
5433 md_new_event(mddev);
5434 sysfs_notify_dirent_safe(mddev->sysfs_state);
5435 return 0;
5436 }
5437
5438 #ifndef MODULE
5439 static void autorun_array(struct mddev *mddev)
5440 {
5441 struct md_rdev *rdev;
5442 int err;
5443
5444 if (list_empty(&mddev->disks))
5445 return;
5446
5447 printk(KERN_INFO "md: running: ");
5448
5449 rdev_for_each(rdev, mddev) {
5450 char b[BDEVNAME_SIZE];
5451 printk("<%s>", bdevname(rdev->bdev,b));
5452 }
5453 printk("\n");
5454
5455 err = do_md_run(mddev);
5456 if (err) {
5457 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5458 do_md_stop(mddev, 0, NULL);
5459 }
5460 }
5461
5462 /*
5463 * lets try to run arrays based on all disks that have arrived
5464 * until now. (those are in pending_raid_disks)
5465 *
5466 * the method: pick the first pending disk, collect all disks with
5467 * the same UUID, remove all from the pending list and put them into
5468 * the 'same_array' list. Then order this list based on superblock
5469 * update time (freshest comes first), kick out 'old' disks and
5470 * compare superblocks. If everything's fine then run it.
5471 *
5472 * If "unit" is allocated, then bump its reference count
5473 */
5474 static void autorun_devices(int part)
5475 {
5476 struct md_rdev *rdev0, *rdev, *tmp;
5477 struct mddev *mddev;
5478 char b[BDEVNAME_SIZE];
5479
5480 printk(KERN_INFO "md: autorun ...\n");
5481 while (!list_empty(&pending_raid_disks)) {
5482 int unit;
5483 dev_t dev;
5484 LIST_HEAD(candidates);
5485 rdev0 = list_entry(pending_raid_disks.next,
5486 struct md_rdev, same_set);
5487
5488 printk(KERN_INFO "md: considering %s ...\n",
5489 bdevname(rdev0->bdev,b));
5490 INIT_LIST_HEAD(&candidates);
5491 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5492 if (super_90_load(rdev, rdev0, 0) >= 0) {
5493 printk(KERN_INFO "md: adding %s ...\n",
5494 bdevname(rdev->bdev,b));
5495 list_move(&rdev->same_set, &candidates);
5496 }
5497 /*
5498 * now we have a set of devices, with all of them having
5499 * mostly sane superblocks. It's time to allocate the
5500 * mddev.
5501 */
5502 if (part) {
5503 dev = MKDEV(mdp_major,
5504 rdev0->preferred_minor << MdpMinorShift);
5505 unit = MINOR(dev) >> MdpMinorShift;
5506 } else {
5507 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5508 unit = MINOR(dev);
5509 }
5510 if (rdev0->preferred_minor != unit) {
5511 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5512 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5513 break;
5514 }
5515
5516 md_probe(dev, NULL, NULL);
5517 mddev = mddev_find(dev);
5518 if (!mddev || !mddev->gendisk) {
5519 if (mddev)
5520 mddev_put(mddev);
5521 printk(KERN_ERR
5522 "md: cannot allocate memory for md drive.\n");
5523 break;
5524 }
5525 if (mddev_lock(mddev))
5526 printk(KERN_WARNING "md: %s locked, cannot run\n",
5527 mdname(mddev));
5528 else if (mddev->raid_disks || mddev->major_version
5529 || !list_empty(&mddev->disks)) {
5530 printk(KERN_WARNING
5531 "md: %s already running, cannot run %s\n",
5532 mdname(mddev), bdevname(rdev0->bdev,b));
5533 mddev_unlock(mddev);
5534 } else {
5535 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5536 mddev->persistent = 1;
5537 rdev_for_each_list(rdev, tmp, &candidates) {
5538 list_del_init(&rdev->same_set);
5539 if (bind_rdev_to_array(rdev, mddev))
5540 export_rdev(rdev);
5541 }
5542 autorun_array(mddev);
5543 mddev_unlock(mddev);
5544 }
5545 /* on success, candidates will be empty, on error
5546 * it won't...
5547 */
5548 rdev_for_each_list(rdev, tmp, &candidates) {
5549 list_del_init(&rdev->same_set);
5550 export_rdev(rdev);
5551 }
5552 mddev_put(mddev);
5553 }
5554 printk(KERN_INFO "md: ... autorun DONE.\n");
5555 }
5556 #endif /* !MODULE */
5557
5558 static int get_version(void __user * arg)
5559 {
5560 mdu_version_t ver;
5561
5562 ver.major = MD_MAJOR_VERSION;
5563 ver.minor = MD_MINOR_VERSION;
5564 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5565
5566 if (copy_to_user(arg, &ver, sizeof(ver)))
5567 return -EFAULT;
5568
5569 return 0;
5570 }
5571
5572 static int get_array_info(struct mddev * mddev, void __user * arg)
5573 {
5574 mdu_array_info_t info;
5575 int nr,working,insync,failed,spare;
5576 struct md_rdev *rdev;
5577
5578 nr = working = insync = failed = spare = 0;
5579 rcu_read_lock();
5580 rdev_for_each_rcu(rdev, mddev) {
5581 nr++;
5582 if (test_bit(Faulty, &rdev->flags))
5583 failed++;
5584 else {
5585 working++;
5586 if (test_bit(In_sync, &rdev->flags))
5587 insync++;
5588 else
5589 spare++;
5590 }
5591 }
5592 rcu_read_unlock();
5593
5594 info.major_version = mddev->major_version;
5595 info.minor_version = mddev->minor_version;
5596 info.patch_version = MD_PATCHLEVEL_VERSION;
5597 info.ctime = mddev->ctime;
5598 info.level = mddev->level;
5599 info.size = mddev->dev_sectors / 2;
5600 if (info.size != mddev->dev_sectors / 2) /* overflow */
5601 info.size = -1;
5602 info.nr_disks = nr;
5603 info.raid_disks = mddev->raid_disks;
5604 info.md_minor = mddev->md_minor;
5605 info.not_persistent= !mddev->persistent;
5606
5607 info.utime = mddev->utime;
5608 info.state = 0;
5609 if (mddev->in_sync)
5610 info.state = (1<<MD_SB_CLEAN);
5611 if (mddev->bitmap && mddev->bitmap_info.offset)
5612 info.state = (1<<MD_SB_BITMAP_PRESENT);
5613 info.active_disks = insync;
5614 info.working_disks = working;
5615 info.failed_disks = failed;
5616 info.spare_disks = spare;
5617
5618 info.layout = mddev->layout;
5619 info.chunk_size = mddev->chunk_sectors << 9;
5620
5621 if (copy_to_user(arg, &info, sizeof(info)))
5622 return -EFAULT;
5623
5624 return 0;
5625 }
5626
5627 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5628 {
5629 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5630 char *ptr, *buf = NULL;
5631 int err = -ENOMEM;
5632
5633 if (md_allow_write(mddev))
5634 file = kzalloc(sizeof(*file), GFP_NOIO);
5635 else
5636 file = kzalloc(sizeof(*file), GFP_KERNEL);
5637
5638 if (!file)
5639 goto out;
5640
5641 /* bitmap disabled, zero the first byte and copy out */
5642 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5643 file->pathname[0] = '\0';
5644 goto copy_out;
5645 }
5646
5647 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5648 if (!buf)
5649 goto out;
5650
5651 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5652 buf, sizeof(file->pathname));
5653 if (IS_ERR(ptr))
5654 goto out;
5655
5656 strcpy(file->pathname, ptr);
5657
5658 copy_out:
5659 err = 0;
5660 if (copy_to_user(arg, file, sizeof(*file)))
5661 err = -EFAULT;
5662 out:
5663 kfree(buf);
5664 kfree(file);
5665 return err;
5666 }
5667
5668 static int get_disk_info(struct mddev * mddev, void __user * arg)
5669 {
5670 mdu_disk_info_t info;
5671 struct md_rdev *rdev;
5672
5673 if (copy_from_user(&info, arg, sizeof(info)))
5674 return -EFAULT;
5675
5676 rcu_read_lock();
5677 rdev = find_rdev_nr_rcu(mddev, info.number);
5678 if (rdev) {
5679 info.major = MAJOR(rdev->bdev->bd_dev);
5680 info.minor = MINOR(rdev->bdev->bd_dev);
5681 info.raid_disk = rdev->raid_disk;
5682 info.state = 0;
5683 if (test_bit(Faulty, &rdev->flags))
5684 info.state |= (1<<MD_DISK_FAULTY);
5685 else if (test_bit(In_sync, &rdev->flags)) {
5686 info.state |= (1<<MD_DISK_ACTIVE);
5687 info.state |= (1<<MD_DISK_SYNC);
5688 }
5689 if (test_bit(WriteMostly, &rdev->flags))
5690 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5691 } else {
5692 info.major = info.minor = 0;
5693 info.raid_disk = -1;
5694 info.state = (1<<MD_DISK_REMOVED);
5695 }
5696 rcu_read_unlock();
5697
5698 if (copy_to_user(arg, &info, sizeof(info)))
5699 return -EFAULT;
5700
5701 return 0;
5702 }
5703
5704 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5705 {
5706 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5707 struct md_rdev *rdev;
5708 dev_t dev = MKDEV(info->major,info->minor);
5709
5710 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5711 return -EOVERFLOW;
5712
5713 if (!mddev->raid_disks) {
5714 int err;
5715 /* expecting a device which has a superblock */
5716 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5717 if (IS_ERR(rdev)) {
5718 printk(KERN_WARNING
5719 "md: md_import_device returned %ld\n",
5720 PTR_ERR(rdev));
5721 return PTR_ERR(rdev);
5722 }
5723 if (!list_empty(&mddev->disks)) {
5724 struct md_rdev *rdev0
5725 = list_entry(mddev->disks.next,
5726 struct md_rdev, same_set);
5727 err = super_types[mddev->major_version]
5728 .load_super(rdev, rdev0, mddev->minor_version);
5729 if (err < 0) {
5730 printk(KERN_WARNING
5731 "md: %s has different UUID to %s\n",
5732 bdevname(rdev->bdev,b),
5733 bdevname(rdev0->bdev,b2));
5734 export_rdev(rdev);
5735 return -EINVAL;
5736 }
5737 }
5738 err = bind_rdev_to_array(rdev, mddev);
5739 if (err)
5740 export_rdev(rdev);
5741 return err;
5742 }
5743
5744 /*
5745 * add_new_disk can be used once the array is assembled
5746 * to add "hot spares". They must already have a superblock
5747 * written
5748 */
5749 if (mddev->pers) {
5750 int err;
5751 if (!mddev->pers->hot_add_disk) {
5752 printk(KERN_WARNING
5753 "%s: personality does not support diskops!\n",
5754 mdname(mddev));
5755 return -EINVAL;
5756 }
5757 if (mddev->persistent)
5758 rdev = md_import_device(dev, mddev->major_version,
5759 mddev->minor_version);
5760 else
5761 rdev = md_import_device(dev, -1, -1);
5762 if (IS_ERR(rdev)) {
5763 printk(KERN_WARNING
5764 "md: md_import_device returned %ld\n",
5765 PTR_ERR(rdev));
5766 return PTR_ERR(rdev);
5767 }
5768 /* set saved_raid_disk if appropriate */
5769 if (!mddev->persistent) {
5770 if (info->state & (1<<MD_DISK_SYNC) &&
5771 info->raid_disk < mddev->raid_disks) {
5772 rdev->raid_disk = info->raid_disk;
5773 set_bit(In_sync, &rdev->flags);
5774 clear_bit(Bitmap_sync, &rdev->flags);
5775 } else
5776 rdev->raid_disk = -1;
5777 } else
5778 super_types[mddev->major_version].
5779 validate_super(mddev, rdev);
5780 if ((info->state & (1<<MD_DISK_SYNC)) &&
5781 rdev->raid_disk != info->raid_disk) {
5782 /* This was a hot-add request, but events doesn't
5783 * match, so reject it.
5784 */
5785 export_rdev(rdev);
5786 return -EINVAL;
5787 }
5788
5789 if (test_bit(In_sync, &rdev->flags))
5790 rdev->saved_raid_disk = rdev->raid_disk;
5791 else
5792 rdev->saved_raid_disk = -1;
5793
5794 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5795 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5796 set_bit(WriteMostly, &rdev->flags);
5797 else
5798 clear_bit(WriteMostly, &rdev->flags);
5799
5800 rdev->raid_disk = -1;
5801 err = bind_rdev_to_array(rdev, mddev);
5802 if (!err && !mddev->pers->hot_remove_disk) {
5803 /* If there is hot_add_disk but no hot_remove_disk
5804 * then added disks for geometry changes,
5805 * and should be added immediately.
5806 */
5807 super_types[mddev->major_version].
5808 validate_super(mddev, rdev);
5809 err = mddev->pers->hot_add_disk(mddev, rdev);
5810 if (err)
5811 unbind_rdev_from_array(rdev);
5812 }
5813 if (err)
5814 export_rdev(rdev);
5815 else
5816 sysfs_notify_dirent_safe(rdev->sysfs_state);
5817
5818 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5819 if (mddev->degraded)
5820 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5821 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5822 if (!err)
5823 md_new_event(mddev);
5824 md_wakeup_thread(mddev->thread);
5825 return err;
5826 }
5827
5828 /* otherwise, add_new_disk is only allowed
5829 * for major_version==0 superblocks
5830 */
5831 if (mddev->major_version != 0) {
5832 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5833 mdname(mddev));
5834 return -EINVAL;
5835 }
5836
5837 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5838 int err;
5839 rdev = md_import_device(dev, -1, 0);
5840 if (IS_ERR(rdev)) {
5841 printk(KERN_WARNING
5842 "md: error, md_import_device() returned %ld\n",
5843 PTR_ERR(rdev));
5844 return PTR_ERR(rdev);
5845 }
5846 rdev->desc_nr = info->number;
5847 if (info->raid_disk < mddev->raid_disks)
5848 rdev->raid_disk = info->raid_disk;
5849 else
5850 rdev->raid_disk = -1;
5851
5852 if (rdev->raid_disk < mddev->raid_disks)
5853 if (info->state & (1<<MD_DISK_SYNC))
5854 set_bit(In_sync, &rdev->flags);
5855
5856 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5857 set_bit(WriteMostly, &rdev->flags);
5858
5859 if (!mddev->persistent) {
5860 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5861 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5862 } else
5863 rdev->sb_start = calc_dev_sboffset(rdev);
5864 rdev->sectors = rdev->sb_start;
5865
5866 err = bind_rdev_to_array(rdev, mddev);
5867 if (err) {
5868 export_rdev(rdev);
5869 return err;
5870 }
5871 }
5872
5873 return 0;
5874 }
5875
5876 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5877 {
5878 char b[BDEVNAME_SIZE];
5879 struct md_rdev *rdev;
5880
5881 rdev = find_rdev(mddev, dev);
5882 if (!rdev)
5883 return -ENXIO;
5884
5885 clear_bit(Blocked, &rdev->flags);
5886 remove_and_add_spares(mddev, rdev);
5887
5888 if (rdev->raid_disk >= 0)
5889 goto busy;
5890
5891 kick_rdev_from_array(rdev);
5892 md_update_sb(mddev, 1);
5893 md_new_event(mddev);
5894
5895 return 0;
5896 busy:
5897 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5898 bdevname(rdev->bdev,b), mdname(mddev));
5899 return -EBUSY;
5900 }
5901
5902 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5903 {
5904 char b[BDEVNAME_SIZE];
5905 int err;
5906 struct md_rdev *rdev;
5907
5908 if (!mddev->pers)
5909 return -ENODEV;
5910
5911 if (mddev->major_version != 0) {
5912 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5913 " version-0 superblocks.\n",
5914 mdname(mddev));
5915 return -EINVAL;
5916 }
5917 if (!mddev->pers->hot_add_disk) {
5918 printk(KERN_WARNING
5919 "%s: personality does not support diskops!\n",
5920 mdname(mddev));
5921 return -EINVAL;
5922 }
5923
5924 rdev = md_import_device(dev, -1, 0);
5925 if (IS_ERR(rdev)) {
5926 printk(KERN_WARNING
5927 "md: error, md_import_device() returned %ld\n",
5928 PTR_ERR(rdev));
5929 return -EINVAL;
5930 }
5931
5932 if (mddev->persistent)
5933 rdev->sb_start = calc_dev_sboffset(rdev);
5934 else
5935 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5936
5937 rdev->sectors = rdev->sb_start;
5938
5939 if (test_bit(Faulty, &rdev->flags)) {
5940 printk(KERN_WARNING
5941 "md: can not hot-add faulty %s disk to %s!\n",
5942 bdevname(rdev->bdev,b), mdname(mddev));
5943 err = -EINVAL;
5944 goto abort_export;
5945 }
5946 clear_bit(In_sync, &rdev->flags);
5947 rdev->desc_nr = -1;
5948 rdev->saved_raid_disk = -1;
5949 err = bind_rdev_to_array(rdev, mddev);
5950 if (err)
5951 goto abort_export;
5952
5953 /*
5954 * The rest should better be atomic, we can have disk failures
5955 * noticed in interrupt contexts ...
5956 */
5957
5958 rdev->raid_disk = -1;
5959
5960 md_update_sb(mddev, 1);
5961
5962 /*
5963 * Kick recovery, maybe this spare has to be added to the
5964 * array immediately.
5965 */
5966 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5967 md_wakeup_thread(mddev->thread);
5968 md_new_event(mddev);
5969 return 0;
5970
5971 abort_export:
5972 export_rdev(rdev);
5973 return err;
5974 }
5975
5976 static int set_bitmap_file(struct mddev *mddev, int fd)
5977 {
5978 int err;
5979
5980 if (mddev->pers) {
5981 if (!mddev->pers->quiesce)
5982 return -EBUSY;
5983 if (mddev->recovery || mddev->sync_thread)
5984 return -EBUSY;
5985 /* we should be able to change the bitmap.. */
5986 }
5987
5988
5989 if (fd >= 0) {
5990 if (mddev->bitmap)
5991 return -EEXIST; /* cannot add when bitmap is present */
5992 mddev->bitmap_info.file = fget(fd);
5993
5994 if (mddev->bitmap_info.file == NULL) {
5995 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5996 mdname(mddev));
5997 return -EBADF;
5998 }
5999
6000 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6001 if (err) {
6002 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6003 mdname(mddev));
6004 fput(mddev->bitmap_info.file);
6005 mddev->bitmap_info.file = NULL;
6006 return err;
6007 }
6008 mddev->bitmap_info.offset = 0; /* file overrides offset */
6009 } else if (mddev->bitmap == NULL)
6010 return -ENOENT; /* cannot remove what isn't there */
6011 err = 0;
6012 if (mddev->pers) {
6013 mddev->pers->quiesce(mddev, 1);
6014 if (fd >= 0) {
6015 err = bitmap_create(mddev);
6016 if (!err)
6017 err = bitmap_load(mddev);
6018 }
6019 if (fd < 0 || err) {
6020 bitmap_destroy(mddev);
6021 fd = -1; /* make sure to put the file */
6022 }
6023 mddev->pers->quiesce(mddev, 0);
6024 }
6025 if (fd < 0) {
6026 if (mddev->bitmap_info.file) {
6027 restore_bitmap_write_access(mddev->bitmap_info.file);
6028 fput(mddev->bitmap_info.file);
6029 }
6030 mddev->bitmap_info.file = NULL;
6031 }
6032
6033 return err;
6034 }
6035
6036 /*
6037 * set_array_info is used two different ways
6038 * The original usage is when creating a new array.
6039 * In this usage, raid_disks is > 0 and it together with
6040 * level, size, not_persistent,layout,chunksize determine the
6041 * shape of the array.
6042 * This will always create an array with a type-0.90.0 superblock.
6043 * The newer usage is when assembling an array.
6044 * In this case raid_disks will be 0, and the major_version field is
6045 * use to determine which style super-blocks are to be found on the devices.
6046 * The minor and patch _version numbers are also kept incase the
6047 * super_block handler wishes to interpret them.
6048 */
6049 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6050 {
6051
6052 if (info->raid_disks == 0) {
6053 /* just setting version number for superblock loading */
6054 if (info->major_version < 0 ||
6055 info->major_version >= ARRAY_SIZE(super_types) ||
6056 super_types[info->major_version].name == NULL) {
6057 /* maybe try to auto-load a module? */
6058 printk(KERN_INFO
6059 "md: superblock version %d not known\n",
6060 info->major_version);
6061 return -EINVAL;
6062 }
6063 mddev->major_version = info->major_version;
6064 mddev->minor_version = info->minor_version;
6065 mddev->patch_version = info->patch_version;
6066 mddev->persistent = !info->not_persistent;
6067 /* ensure mddev_put doesn't delete this now that there
6068 * is some minimal configuration.
6069 */
6070 mddev->ctime = get_seconds();
6071 return 0;
6072 }
6073 mddev->major_version = MD_MAJOR_VERSION;
6074 mddev->minor_version = MD_MINOR_VERSION;
6075 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6076 mddev->ctime = get_seconds();
6077
6078 mddev->level = info->level;
6079 mddev->clevel[0] = 0;
6080 mddev->dev_sectors = 2 * (sector_t)info->size;
6081 mddev->raid_disks = info->raid_disks;
6082 /* don't set md_minor, it is determined by which /dev/md* was
6083 * openned
6084 */
6085 if (info->state & (1<<MD_SB_CLEAN))
6086 mddev->recovery_cp = MaxSector;
6087 else
6088 mddev->recovery_cp = 0;
6089 mddev->persistent = ! info->not_persistent;
6090 mddev->external = 0;
6091
6092 mddev->layout = info->layout;
6093 mddev->chunk_sectors = info->chunk_size >> 9;
6094
6095 mddev->max_disks = MD_SB_DISKS;
6096
6097 if (mddev->persistent)
6098 mddev->flags = 0;
6099 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6100
6101 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6102 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6103 mddev->bitmap_info.offset = 0;
6104
6105 mddev->reshape_position = MaxSector;
6106
6107 /*
6108 * Generate a 128 bit UUID
6109 */
6110 get_random_bytes(mddev->uuid, 16);
6111
6112 mddev->new_level = mddev->level;
6113 mddev->new_chunk_sectors = mddev->chunk_sectors;
6114 mddev->new_layout = mddev->layout;
6115 mddev->delta_disks = 0;
6116 mddev->reshape_backwards = 0;
6117
6118 return 0;
6119 }
6120
6121 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6122 {
6123 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6124
6125 if (mddev->external_size)
6126 return;
6127
6128 mddev->array_sectors = array_sectors;
6129 }
6130 EXPORT_SYMBOL(md_set_array_sectors);
6131
6132 static int update_size(struct mddev *mddev, sector_t num_sectors)
6133 {
6134 struct md_rdev *rdev;
6135 int rv;
6136 int fit = (num_sectors == 0);
6137
6138 if (mddev->pers->resize == NULL)
6139 return -EINVAL;
6140 /* The "num_sectors" is the number of sectors of each device that
6141 * is used. This can only make sense for arrays with redundancy.
6142 * linear and raid0 always use whatever space is available. We can only
6143 * consider changing this number if no resync or reconstruction is
6144 * happening, and if the new size is acceptable. It must fit before the
6145 * sb_start or, if that is <data_offset, it must fit before the size
6146 * of each device. If num_sectors is zero, we find the largest size
6147 * that fits.
6148 */
6149 if (mddev->sync_thread)
6150 return -EBUSY;
6151
6152 rdev_for_each(rdev, mddev) {
6153 sector_t avail = rdev->sectors;
6154
6155 if (fit && (num_sectors == 0 || num_sectors > avail))
6156 num_sectors = avail;
6157 if (avail < num_sectors)
6158 return -ENOSPC;
6159 }
6160 rv = mddev->pers->resize(mddev, num_sectors);
6161 if (!rv)
6162 revalidate_disk(mddev->gendisk);
6163 return rv;
6164 }
6165
6166 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6167 {
6168 int rv;
6169 struct md_rdev *rdev;
6170 /* change the number of raid disks */
6171 if (mddev->pers->check_reshape == NULL)
6172 return -EINVAL;
6173 if (raid_disks <= 0 ||
6174 (mddev->max_disks && raid_disks >= mddev->max_disks))
6175 return -EINVAL;
6176 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6177 return -EBUSY;
6178
6179 rdev_for_each(rdev, mddev) {
6180 if (mddev->raid_disks < raid_disks &&
6181 rdev->data_offset < rdev->new_data_offset)
6182 return -EINVAL;
6183 if (mddev->raid_disks > raid_disks &&
6184 rdev->data_offset > rdev->new_data_offset)
6185 return -EINVAL;
6186 }
6187
6188 mddev->delta_disks = raid_disks - mddev->raid_disks;
6189 if (mddev->delta_disks < 0)
6190 mddev->reshape_backwards = 1;
6191 else if (mddev->delta_disks > 0)
6192 mddev->reshape_backwards = 0;
6193
6194 rv = mddev->pers->check_reshape(mddev);
6195 if (rv < 0) {
6196 mddev->delta_disks = 0;
6197 mddev->reshape_backwards = 0;
6198 }
6199 return rv;
6200 }
6201
6202
6203 /*
6204 * update_array_info is used to change the configuration of an
6205 * on-line array.
6206 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6207 * fields in the info are checked against the array.
6208 * Any differences that cannot be handled will cause an error.
6209 * Normally, only one change can be managed at a time.
6210 */
6211 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6212 {
6213 int rv = 0;
6214 int cnt = 0;
6215 int state = 0;
6216
6217 /* calculate expected state,ignoring low bits */
6218 if (mddev->bitmap && mddev->bitmap_info.offset)
6219 state |= (1 << MD_SB_BITMAP_PRESENT);
6220
6221 if (mddev->major_version != info->major_version ||
6222 mddev->minor_version != info->minor_version ||
6223 /* mddev->patch_version != info->patch_version || */
6224 mddev->ctime != info->ctime ||
6225 mddev->level != info->level ||
6226 /* mddev->layout != info->layout || */
6227 mddev->persistent != !info->not_persistent ||
6228 mddev->chunk_sectors != info->chunk_size >> 9 ||
6229 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6230 ((state^info->state) & 0xfffffe00)
6231 )
6232 return -EINVAL;
6233 /* Check there is only one change */
6234 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6235 cnt++;
6236 if (mddev->raid_disks != info->raid_disks)
6237 cnt++;
6238 if (mddev->layout != info->layout)
6239 cnt++;
6240 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6241 cnt++;
6242 if (cnt == 0)
6243 return 0;
6244 if (cnt > 1)
6245 return -EINVAL;
6246
6247 if (mddev->layout != info->layout) {
6248 /* Change layout
6249 * we don't need to do anything at the md level, the
6250 * personality will take care of it all.
6251 */
6252 if (mddev->pers->check_reshape == NULL)
6253 return -EINVAL;
6254 else {
6255 mddev->new_layout = info->layout;
6256 rv = mddev->pers->check_reshape(mddev);
6257 if (rv)
6258 mddev->new_layout = mddev->layout;
6259 return rv;
6260 }
6261 }
6262 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6263 rv = update_size(mddev, (sector_t)info->size * 2);
6264
6265 if (mddev->raid_disks != info->raid_disks)
6266 rv = update_raid_disks(mddev, info->raid_disks);
6267
6268 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6269 if (mddev->pers->quiesce == NULL)
6270 return -EINVAL;
6271 if (mddev->recovery || mddev->sync_thread)
6272 return -EBUSY;
6273 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6274 /* add the bitmap */
6275 if (mddev->bitmap)
6276 return -EEXIST;
6277 if (mddev->bitmap_info.default_offset == 0)
6278 return -EINVAL;
6279 mddev->bitmap_info.offset =
6280 mddev->bitmap_info.default_offset;
6281 mddev->bitmap_info.space =
6282 mddev->bitmap_info.default_space;
6283 mddev->pers->quiesce(mddev, 1);
6284 rv = bitmap_create(mddev);
6285 if (!rv)
6286 rv = bitmap_load(mddev);
6287 if (rv)
6288 bitmap_destroy(mddev);
6289 mddev->pers->quiesce(mddev, 0);
6290 } else {
6291 /* remove the bitmap */
6292 if (!mddev->bitmap)
6293 return -ENOENT;
6294 if (mddev->bitmap->storage.file)
6295 return -EINVAL;
6296 mddev->pers->quiesce(mddev, 1);
6297 bitmap_destroy(mddev);
6298 mddev->pers->quiesce(mddev, 0);
6299 mddev->bitmap_info.offset = 0;
6300 }
6301 }
6302 md_update_sb(mddev, 1);
6303 return rv;
6304 }
6305
6306 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6307 {
6308 struct md_rdev *rdev;
6309 int err = 0;
6310
6311 if (mddev->pers == NULL)
6312 return -ENODEV;
6313
6314 rcu_read_lock();
6315 rdev = find_rdev_rcu(mddev, dev);
6316 if (!rdev)
6317 err = -ENODEV;
6318 else {
6319 md_error(mddev, rdev);
6320 if (!test_bit(Faulty, &rdev->flags))
6321 err = -EBUSY;
6322 }
6323 rcu_read_unlock();
6324 return err;
6325 }
6326
6327 /*
6328 * We have a problem here : there is no easy way to give a CHS
6329 * virtual geometry. We currently pretend that we have a 2 heads
6330 * 4 sectors (with a BIG number of cylinders...). This drives
6331 * dosfs just mad... ;-)
6332 */
6333 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6334 {
6335 struct mddev *mddev = bdev->bd_disk->private_data;
6336
6337 geo->heads = 2;
6338 geo->sectors = 4;
6339 geo->cylinders = mddev->array_sectors / 8;
6340 return 0;
6341 }
6342
6343 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6344 unsigned int cmd, unsigned long arg)
6345 {
6346 int err = 0;
6347 void __user *argp = (void __user *)arg;
6348 struct mddev *mddev = NULL;
6349 int ro;
6350
6351 switch (cmd) {
6352 case RAID_VERSION:
6353 case GET_ARRAY_INFO:
6354 case GET_DISK_INFO:
6355 break;
6356 default:
6357 if (!capable(CAP_SYS_ADMIN))
6358 return -EACCES;
6359 }
6360
6361 /*
6362 * Commands dealing with the RAID driver but not any
6363 * particular array:
6364 */
6365 switch (cmd) {
6366 case RAID_VERSION:
6367 err = get_version(argp);
6368 goto done;
6369
6370 case PRINT_RAID_DEBUG:
6371 err = 0;
6372 md_print_devices();
6373 goto done;
6374
6375 #ifndef MODULE
6376 case RAID_AUTORUN:
6377 err = 0;
6378 autostart_arrays(arg);
6379 goto done;
6380 #endif
6381 default:;
6382 }
6383
6384 /*
6385 * Commands creating/starting a new array:
6386 */
6387
6388 mddev = bdev->bd_disk->private_data;
6389
6390 if (!mddev) {
6391 BUG();
6392 goto abort;
6393 }
6394
6395 /* Some actions do not requires the mutex */
6396 switch (cmd) {
6397 case GET_ARRAY_INFO:
6398 if (!mddev->raid_disks && !mddev->external)
6399 err = -ENODEV;
6400 else
6401 err = get_array_info(mddev, argp);
6402 goto abort;
6403
6404 case GET_DISK_INFO:
6405 if (!mddev->raid_disks && !mddev->external)
6406 err = -ENODEV;
6407 else
6408 err = get_disk_info(mddev, argp);
6409 goto abort;
6410
6411 case SET_DISK_FAULTY:
6412 err = set_disk_faulty(mddev, new_decode_dev(arg));
6413 goto abort;
6414 }
6415
6416 if (cmd == ADD_NEW_DISK)
6417 /* need to ensure md_delayed_delete() has completed */
6418 flush_workqueue(md_misc_wq);
6419
6420 err = mddev_lock(mddev);
6421 if (err) {
6422 printk(KERN_INFO
6423 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6424 err, cmd);
6425 goto abort;
6426 }
6427
6428 if (cmd == SET_ARRAY_INFO) {
6429 mdu_array_info_t info;
6430 if (!arg)
6431 memset(&info, 0, sizeof(info));
6432 else if (copy_from_user(&info, argp, sizeof(info))) {
6433 err = -EFAULT;
6434 goto abort_unlock;
6435 }
6436 if (mddev->pers) {
6437 err = update_array_info(mddev, &info);
6438 if (err) {
6439 printk(KERN_WARNING "md: couldn't update"
6440 " array info. %d\n", err);
6441 goto abort_unlock;
6442 }
6443 goto done_unlock;
6444 }
6445 if (!list_empty(&mddev->disks)) {
6446 printk(KERN_WARNING
6447 "md: array %s already has disks!\n",
6448 mdname(mddev));
6449 err = -EBUSY;
6450 goto abort_unlock;
6451 }
6452 if (mddev->raid_disks) {
6453 printk(KERN_WARNING
6454 "md: array %s already initialised!\n",
6455 mdname(mddev));
6456 err = -EBUSY;
6457 goto abort_unlock;
6458 }
6459 err = set_array_info(mddev, &info);
6460 if (err) {
6461 printk(KERN_WARNING "md: couldn't set"
6462 " array info. %d\n", err);
6463 goto abort_unlock;
6464 }
6465 goto done_unlock;
6466 }
6467
6468 /*
6469 * Commands querying/configuring an existing array:
6470 */
6471 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6472 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6473 if ((!mddev->raid_disks && !mddev->external)
6474 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6475 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6476 && cmd != GET_BITMAP_FILE) {
6477 err = -ENODEV;
6478 goto abort_unlock;
6479 }
6480
6481 /*
6482 * Commands even a read-only array can execute:
6483 */
6484 switch (cmd) {
6485 case GET_BITMAP_FILE:
6486 err = get_bitmap_file(mddev, argp);
6487 goto done_unlock;
6488
6489 case RESTART_ARRAY_RW:
6490 err = restart_array(mddev);
6491 goto done_unlock;
6492
6493 case STOP_ARRAY:
6494 err = do_md_stop(mddev, 0, bdev);
6495 goto done_unlock;
6496
6497 case STOP_ARRAY_RO:
6498 err = md_set_readonly(mddev, bdev);
6499 goto done_unlock;
6500
6501 case HOT_REMOVE_DISK:
6502 err = hot_remove_disk(mddev, new_decode_dev(arg));
6503 goto done_unlock;
6504
6505 case ADD_NEW_DISK:
6506 /* We can support ADD_NEW_DISK on read-only arrays
6507 * on if we are re-adding a preexisting device.
6508 * So require mddev->pers and MD_DISK_SYNC.
6509 */
6510 if (mddev->pers) {
6511 mdu_disk_info_t info;
6512 if (copy_from_user(&info, argp, sizeof(info)))
6513 err = -EFAULT;
6514 else if (!(info.state & (1<<MD_DISK_SYNC)))
6515 /* Need to clear read-only for this */
6516 break;
6517 else
6518 err = add_new_disk(mddev, &info);
6519 goto done_unlock;
6520 }
6521 break;
6522
6523 case BLKROSET:
6524 if (get_user(ro, (int __user *)(arg))) {
6525 err = -EFAULT;
6526 goto done_unlock;
6527 }
6528 err = -EINVAL;
6529
6530 /* if the bdev is going readonly the value of mddev->ro
6531 * does not matter, no writes are coming
6532 */
6533 if (ro)
6534 goto done_unlock;
6535
6536 /* are we are already prepared for writes? */
6537 if (mddev->ro != 1)
6538 goto done_unlock;
6539
6540 /* transitioning to readauto need only happen for
6541 * arrays that call md_write_start
6542 */
6543 if (mddev->pers) {
6544 err = restart_array(mddev);
6545 if (err == 0) {
6546 mddev->ro = 2;
6547 set_disk_ro(mddev->gendisk, 0);
6548 }
6549 }
6550 goto done_unlock;
6551 }
6552
6553 /*
6554 * The remaining ioctls are changing the state of the
6555 * superblock, so we do not allow them on read-only arrays.
6556 * However non-MD ioctls (e.g. get-size) will still come through
6557 * here and hit the 'default' below, so only disallow
6558 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6559 */
6560 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6561 if (mddev->ro == 2) {
6562 mddev->ro = 0;
6563 sysfs_notify_dirent_safe(mddev->sysfs_state);
6564 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6565 /* mddev_unlock will wake thread */
6566 /* If a device failed while we were read-only, we
6567 * need to make sure the metadata is updated now.
6568 */
6569 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6570 mddev_unlock(mddev);
6571 wait_event(mddev->sb_wait,
6572 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6573 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6574 mddev_lock(mddev);
6575 }
6576 } else {
6577 err = -EROFS;
6578 goto abort_unlock;
6579 }
6580 }
6581
6582 switch (cmd) {
6583 case ADD_NEW_DISK:
6584 {
6585 mdu_disk_info_t info;
6586 if (copy_from_user(&info, argp, sizeof(info)))
6587 err = -EFAULT;
6588 else
6589 err = add_new_disk(mddev, &info);
6590 goto done_unlock;
6591 }
6592
6593 case HOT_ADD_DISK:
6594 err = hot_add_disk(mddev, new_decode_dev(arg));
6595 goto done_unlock;
6596
6597 case RUN_ARRAY:
6598 err = do_md_run(mddev);
6599 goto done_unlock;
6600
6601 case SET_BITMAP_FILE:
6602 err = set_bitmap_file(mddev, (int)arg);
6603 goto done_unlock;
6604
6605 default:
6606 err = -EINVAL;
6607 goto abort_unlock;
6608 }
6609
6610 done_unlock:
6611 abort_unlock:
6612 if (mddev->hold_active == UNTIL_IOCTL &&
6613 err != -EINVAL)
6614 mddev->hold_active = 0;
6615 mddev_unlock(mddev);
6616
6617 return err;
6618 done:
6619 if (err)
6620 MD_BUG();
6621 abort:
6622 return err;
6623 }
6624 #ifdef CONFIG_COMPAT
6625 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6626 unsigned int cmd, unsigned long arg)
6627 {
6628 switch (cmd) {
6629 case HOT_REMOVE_DISK:
6630 case HOT_ADD_DISK:
6631 case SET_DISK_FAULTY:
6632 case SET_BITMAP_FILE:
6633 /* These take in integer arg, do not convert */
6634 break;
6635 default:
6636 arg = (unsigned long)compat_ptr(arg);
6637 break;
6638 }
6639
6640 return md_ioctl(bdev, mode, cmd, arg);
6641 }
6642 #endif /* CONFIG_COMPAT */
6643
6644 static int md_open(struct block_device *bdev, fmode_t mode)
6645 {
6646 /*
6647 * Succeed if we can lock the mddev, which confirms that
6648 * it isn't being stopped right now.
6649 */
6650 struct mddev *mddev = mddev_find(bdev->bd_dev);
6651 int err;
6652
6653 if (!mddev)
6654 return -ENODEV;
6655
6656 if (mddev->gendisk != bdev->bd_disk) {
6657 /* we are racing with mddev_put which is discarding this
6658 * bd_disk.
6659 */
6660 mddev_put(mddev);
6661 /* Wait until bdev->bd_disk is definitely gone */
6662 flush_workqueue(md_misc_wq);
6663 /* Then retry the open from the top */
6664 return -ERESTARTSYS;
6665 }
6666 BUG_ON(mddev != bdev->bd_disk->private_data);
6667
6668 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6669 goto out;
6670
6671 err = 0;
6672 atomic_inc(&mddev->openers);
6673 mutex_unlock(&mddev->open_mutex);
6674
6675 check_disk_change(bdev);
6676 out:
6677 return err;
6678 }
6679
6680 static void md_release(struct gendisk *disk, fmode_t mode)
6681 {
6682 struct mddev *mddev = disk->private_data;
6683
6684 BUG_ON(!mddev);
6685 atomic_dec(&mddev->openers);
6686 mddev_put(mddev);
6687 }
6688
6689 static int md_media_changed(struct gendisk *disk)
6690 {
6691 struct mddev *mddev = disk->private_data;
6692
6693 return mddev->changed;
6694 }
6695
6696 static int md_revalidate(struct gendisk *disk)
6697 {
6698 struct mddev *mddev = disk->private_data;
6699
6700 mddev->changed = 0;
6701 return 0;
6702 }
6703 static const struct block_device_operations md_fops =
6704 {
6705 .owner = THIS_MODULE,
6706 .open = md_open,
6707 .release = md_release,
6708 .ioctl = md_ioctl,
6709 #ifdef CONFIG_COMPAT
6710 .compat_ioctl = md_compat_ioctl,
6711 #endif
6712 .getgeo = md_getgeo,
6713 .media_changed = md_media_changed,
6714 .revalidate_disk= md_revalidate,
6715 };
6716
6717 static int md_thread(void * arg)
6718 {
6719 struct md_thread *thread = arg;
6720
6721 /*
6722 * md_thread is a 'system-thread', it's priority should be very
6723 * high. We avoid resource deadlocks individually in each
6724 * raid personality. (RAID5 does preallocation) We also use RR and
6725 * the very same RT priority as kswapd, thus we will never get
6726 * into a priority inversion deadlock.
6727 *
6728 * we definitely have to have equal or higher priority than
6729 * bdflush, otherwise bdflush will deadlock if there are too
6730 * many dirty RAID5 blocks.
6731 */
6732
6733 allow_signal(SIGKILL);
6734 while (!kthread_should_stop()) {
6735
6736 /* We need to wait INTERRUPTIBLE so that
6737 * we don't add to the load-average.
6738 * That means we need to be sure no signals are
6739 * pending
6740 */
6741 if (signal_pending(current))
6742 flush_signals(current);
6743
6744 wait_event_interruptible_timeout
6745 (thread->wqueue,
6746 test_bit(THREAD_WAKEUP, &thread->flags)
6747 || kthread_should_stop(),
6748 thread->timeout);
6749
6750 clear_bit(THREAD_WAKEUP, &thread->flags);
6751 if (!kthread_should_stop())
6752 thread->run(thread);
6753 }
6754
6755 return 0;
6756 }
6757
6758 void md_wakeup_thread(struct md_thread *thread)
6759 {
6760 if (thread) {
6761 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6762 set_bit(THREAD_WAKEUP, &thread->flags);
6763 wake_up(&thread->wqueue);
6764 }
6765 }
6766
6767 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6768 struct mddev *mddev, const char *name)
6769 {
6770 struct md_thread *thread;
6771
6772 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6773 if (!thread)
6774 return NULL;
6775
6776 init_waitqueue_head(&thread->wqueue);
6777
6778 thread->run = run;
6779 thread->mddev = mddev;
6780 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6781 thread->tsk = kthread_run(md_thread, thread,
6782 "%s_%s",
6783 mdname(thread->mddev),
6784 name);
6785 if (IS_ERR(thread->tsk)) {
6786 kfree(thread);
6787 return NULL;
6788 }
6789 return thread;
6790 }
6791
6792 void md_unregister_thread(struct md_thread **threadp)
6793 {
6794 struct md_thread *thread = *threadp;
6795 if (!thread)
6796 return;
6797 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6798 /* Locking ensures that mddev_unlock does not wake_up a
6799 * non-existent thread
6800 */
6801 spin_lock(&pers_lock);
6802 *threadp = NULL;
6803 spin_unlock(&pers_lock);
6804
6805 kthread_stop(thread->tsk);
6806 kfree(thread);
6807 }
6808
6809 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6810 {
6811 if (!mddev) {
6812 MD_BUG();
6813 return;
6814 }
6815
6816 if (!rdev || test_bit(Faulty, &rdev->flags))
6817 return;
6818
6819 if (!mddev->pers || !mddev->pers->error_handler)
6820 return;
6821 mddev->pers->error_handler(mddev,rdev);
6822 if (mddev->degraded)
6823 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6824 sysfs_notify_dirent_safe(rdev->sysfs_state);
6825 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6826 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6827 md_wakeup_thread(mddev->thread);
6828 if (mddev->event_work.func)
6829 queue_work(md_misc_wq, &mddev->event_work);
6830 md_new_event_inintr(mddev);
6831 }
6832
6833 /* seq_file implementation /proc/mdstat */
6834
6835 static void status_unused(struct seq_file *seq)
6836 {
6837 int i = 0;
6838 struct md_rdev *rdev;
6839
6840 seq_printf(seq, "unused devices: ");
6841
6842 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6843 char b[BDEVNAME_SIZE];
6844 i++;
6845 seq_printf(seq, "%s ",
6846 bdevname(rdev->bdev,b));
6847 }
6848 if (!i)
6849 seq_printf(seq, "<none>");
6850
6851 seq_printf(seq, "\n");
6852 }
6853
6854
6855 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6856 {
6857 sector_t max_sectors, resync, res;
6858 unsigned long dt, db;
6859 sector_t rt;
6860 int scale;
6861 unsigned int per_milli;
6862
6863 if (mddev->curr_resync <= 3)
6864 resync = 0;
6865 else
6866 resync = mddev->curr_resync
6867 - atomic_read(&mddev->recovery_active);
6868
6869 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6870 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6871 max_sectors = mddev->resync_max_sectors;
6872 else
6873 max_sectors = mddev->dev_sectors;
6874
6875 /*
6876 * Should not happen.
6877 */
6878 if (!max_sectors) {
6879 MD_BUG();
6880 return;
6881 }
6882 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6883 * in a sector_t, and (max_sectors>>scale) will fit in a
6884 * u32, as those are the requirements for sector_div.
6885 * Thus 'scale' must be at least 10
6886 */
6887 scale = 10;
6888 if (sizeof(sector_t) > sizeof(unsigned long)) {
6889 while ( max_sectors/2 > (1ULL<<(scale+32)))
6890 scale++;
6891 }
6892 res = (resync>>scale)*1000;
6893 sector_div(res, (u32)((max_sectors>>scale)+1));
6894
6895 per_milli = res;
6896 {
6897 int i, x = per_milli/50, y = 20-x;
6898 seq_printf(seq, "[");
6899 for (i = 0; i < x; i++)
6900 seq_printf(seq, "=");
6901 seq_printf(seq, ">");
6902 for (i = 0; i < y; i++)
6903 seq_printf(seq, ".");
6904 seq_printf(seq, "] ");
6905 }
6906 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6907 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6908 "reshape" :
6909 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6910 "check" :
6911 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6912 "resync" : "recovery"))),
6913 per_milli/10, per_milli % 10,
6914 (unsigned long long) resync/2,
6915 (unsigned long long) max_sectors/2);
6916
6917 /*
6918 * dt: time from mark until now
6919 * db: blocks written from mark until now
6920 * rt: remaining time
6921 *
6922 * rt is a sector_t, so could be 32bit or 64bit.
6923 * So we divide before multiply in case it is 32bit and close
6924 * to the limit.
6925 * We scale the divisor (db) by 32 to avoid losing precision
6926 * near the end of resync when the number of remaining sectors
6927 * is close to 'db'.
6928 * We then divide rt by 32 after multiplying by db to compensate.
6929 * The '+1' avoids division by zero if db is very small.
6930 */
6931 dt = ((jiffies - mddev->resync_mark) / HZ);
6932 if (!dt) dt++;
6933 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6934 - mddev->resync_mark_cnt;
6935
6936 rt = max_sectors - resync; /* number of remaining sectors */
6937 sector_div(rt, db/32+1);
6938 rt *= dt;
6939 rt >>= 5;
6940
6941 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6942 ((unsigned long)rt % 60)/6);
6943
6944 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6945 }
6946
6947 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6948 {
6949 struct list_head *tmp;
6950 loff_t l = *pos;
6951 struct mddev *mddev;
6952
6953 if (l >= 0x10000)
6954 return NULL;
6955 if (!l--)
6956 /* header */
6957 return (void*)1;
6958
6959 spin_lock(&all_mddevs_lock);
6960 list_for_each(tmp,&all_mddevs)
6961 if (!l--) {
6962 mddev = list_entry(tmp, struct mddev, all_mddevs);
6963 mddev_get(mddev);
6964 spin_unlock(&all_mddevs_lock);
6965 return mddev;
6966 }
6967 spin_unlock(&all_mddevs_lock);
6968 if (!l--)
6969 return (void*)2;/* tail */
6970 return NULL;
6971 }
6972
6973 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6974 {
6975 struct list_head *tmp;
6976 struct mddev *next_mddev, *mddev = v;
6977
6978 ++*pos;
6979 if (v == (void*)2)
6980 return NULL;
6981
6982 spin_lock(&all_mddevs_lock);
6983 if (v == (void*)1)
6984 tmp = all_mddevs.next;
6985 else
6986 tmp = mddev->all_mddevs.next;
6987 if (tmp != &all_mddevs)
6988 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6989 else {
6990 next_mddev = (void*)2;
6991 *pos = 0x10000;
6992 }
6993 spin_unlock(&all_mddevs_lock);
6994
6995 if (v != (void*)1)
6996 mddev_put(mddev);
6997 return next_mddev;
6998
6999 }
7000
7001 static void md_seq_stop(struct seq_file *seq, void *v)
7002 {
7003 struct mddev *mddev = v;
7004
7005 if (mddev && v != (void*)1 && v != (void*)2)
7006 mddev_put(mddev);
7007 }
7008
7009 static int md_seq_show(struct seq_file *seq, void *v)
7010 {
7011 struct mddev *mddev = v;
7012 sector_t sectors;
7013 struct md_rdev *rdev;
7014
7015 if (v == (void*)1) {
7016 struct md_personality *pers;
7017 seq_printf(seq, "Personalities : ");
7018 spin_lock(&pers_lock);
7019 list_for_each_entry(pers, &pers_list, list)
7020 seq_printf(seq, "[%s] ", pers->name);
7021
7022 spin_unlock(&pers_lock);
7023 seq_printf(seq, "\n");
7024 seq->poll_event = atomic_read(&md_event_count);
7025 return 0;
7026 }
7027 if (v == (void*)2) {
7028 status_unused(seq);
7029 return 0;
7030 }
7031
7032 if (mddev_lock(mddev) < 0)
7033 return -EINTR;
7034
7035 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7036 seq_printf(seq, "%s : %sactive", mdname(mddev),
7037 mddev->pers ? "" : "in");
7038 if (mddev->pers) {
7039 if (mddev->ro==1)
7040 seq_printf(seq, " (read-only)");
7041 if (mddev->ro==2)
7042 seq_printf(seq, " (auto-read-only)");
7043 seq_printf(seq, " %s", mddev->pers->name);
7044 }
7045
7046 sectors = 0;
7047 rdev_for_each(rdev, mddev) {
7048 char b[BDEVNAME_SIZE];
7049 seq_printf(seq, " %s[%d]",
7050 bdevname(rdev->bdev,b), rdev->desc_nr);
7051 if (test_bit(WriteMostly, &rdev->flags))
7052 seq_printf(seq, "(W)");
7053 if (test_bit(Faulty, &rdev->flags)) {
7054 seq_printf(seq, "(F)");
7055 continue;
7056 }
7057 if (rdev->raid_disk < 0)
7058 seq_printf(seq, "(S)"); /* spare */
7059 if (test_bit(Replacement, &rdev->flags))
7060 seq_printf(seq, "(R)");
7061 sectors += rdev->sectors;
7062 }
7063
7064 if (!list_empty(&mddev->disks)) {
7065 if (mddev->pers)
7066 seq_printf(seq, "\n %llu blocks",
7067 (unsigned long long)
7068 mddev->array_sectors / 2);
7069 else
7070 seq_printf(seq, "\n %llu blocks",
7071 (unsigned long long)sectors / 2);
7072 }
7073 if (mddev->persistent) {
7074 if (mddev->major_version != 0 ||
7075 mddev->minor_version != 90) {
7076 seq_printf(seq," super %d.%d",
7077 mddev->major_version,
7078 mddev->minor_version);
7079 }
7080 } else if (mddev->external)
7081 seq_printf(seq, " super external:%s",
7082 mddev->metadata_type);
7083 else
7084 seq_printf(seq, " super non-persistent");
7085
7086 if (mddev->pers) {
7087 mddev->pers->status(seq, mddev);
7088 seq_printf(seq, "\n ");
7089 if (mddev->pers->sync_request) {
7090 if (mddev->curr_resync > 2) {
7091 status_resync(seq, mddev);
7092 seq_printf(seq, "\n ");
7093 } else if (mddev->curr_resync >= 1)
7094 seq_printf(seq, "\tresync=DELAYED\n ");
7095 else if (mddev->recovery_cp < MaxSector)
7096 seq_printf(seq, "\tresync=PENDING\n ");
7097 }
7098 } else
7099 seq_printf(seq, "\n ");
7100
7101 bitmap_status(seq, mddev->bitmap);
7102
7103 seq_printf(seq, "\n");
7104 }
7105 mddev_unlock(mddev);
7106
7107 return 0;
7108 }
7109
7110 static const struct seq_operations md_seq_ops = {
7111 .start = md_seq_start,
7112 .next = md_seq_next,
7113 .stop = md_seq_stop,
7114 .show = md_seq_show,
7115 };
7116
7117 static int md_seq_open(struct inode *inode, struct file *file)
7118 {
7119 struct seq_file *seq;
7120 int error;
7121
7122 error = seq_open(file, &md_seq_ops);
7123 if (error)
7124 return error;
7125
7126 seq = file->private_data;
7127 seq->poll_event = atomic_read(&md_event_count);
7128 return error;
7129 }
7130
7131 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7132 {
7133 struct seq_file *seq = filp->private_data;
7134 int mask;
7135
7136 poll_wait(filp, &md_event_waiters, wait);
7137
7138 /* always allow read */
7139 mask = POLLIN | POLLRDNORM;
7140
7141 if (seq->poll_event != atomic_read(&md_event_count))
7142 mask |= POLLERR | POLLPRI;
7143 return mask;
7144 }
7145
7146 static const struct file_operations md_seq_fops = {
7147 .owner = THIS_MODULE,
7148 .open = md_seq_open,
7149 .read = seq_read,
7150 .llseek = seq_lseek,
7151 .release = seq_release_private,
7152 .poll = mdstat_poll,
7153 };
7154
7155 int register_md_personality(struct md_personality *p)
7156 {
7157 spin_lock(&pers_lock);
7158 list_add_tail(&p->list, &pers_list);
7159 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7160 spin_unlock(&pers_lock);
7161 return 0;
7162 }
7163
7164 int unregister_md_personality(struct md_personality *p)
7165 {
7166 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7167 spin_lock(&pers_lock);
7168 list_del_init(&p->list);
7169 spin_unlock(&pers_lock);
7170 return 0;
7171 }
7172
7173 static int is_mddev_idle(struct mddev *mddev, int init)
7174 {
7175 struct md_rdev * rdev;
7176 int idle;
7177 int curr_events;
7178
7179 idle = 1;
7180 rcu_read_lock();
7181 rdev_for_each_rcu(rdev, mddev) {
7182 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7183 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7184 (int)part_stat_read(&disk->part0, sectors[1]) -
7185 atomic_read(&disk->sync_io);
7186 /* sync IO will cause sync_io to increase before the disk_stats
7187 * as sync_io is counted when a request starts, and
7188 * disk_stats is counted when it completes.
7189 * So resync activity will cause curr_events to be smaller than
7190 * when there was no such activity.
7191 * non-sync IO will cause disk_stat to increase without
7192 * increasing sync_io so curr_events will (eventually)
7193 * be larger than it was before. Once it becomes
7194 * substantially larger, the test below will cause
7195 * the array to appear non-idle, and resync will slow
7196 * down.
7197 * If there is a lot of outstanding resync activity when
7198 * we set last_event to curr_events, then all that activity
7199 * completing might cause the array to appear non-idle
7200 * and resync will be slowed down even though there might
7201 * not have been non-resync activity. This will only
7202 * happen once though. 'last_events' will soon reflect
7203 * the state where there is little or no outstanding
7204 * resync requests, and further resync activity will
7205 * always make curr_events less than last_events.
7206 *
7207 */
7208 if (init || curr_events - rdev->last_events > 64) {
7209 rdev->last_events = curr_events;
7210 idle = 0;
7211 }
7212 }
7213 rcu_read_unlock();
7214 return idle;
7215 }
7216
7217 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7218 {
7219 /* another "blocks" (512byte) blocks have been synced */
7220 atomic_sub(blocks, &mddev->recovery_active);
7221 wake_up(&mddev->recovery_wait);
7222 if (!ok) {
7223 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7224 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7225 md_wakeup_thread(mddev->thread);
7226 // stop recovery, signal do_sync ....
7227 }
7228 }
7229
7230
7231 /* md_write_start(mddev, bi)
7232 * If we need to update some array metadata (e.g. 'active' flag
7233 * in superblock) before writing, schedule a superblock update
7234 * and wait for it to complete.
7235 */
7236 void md_write_start(struct mddev *mddev, struct bio *bi)
7237 {
7238 int did_change = 0;
7239 if (bio_data_dir(bi) != WRITE)
7240 return;
7241
7242 BUG_ON(mddev->ro == 1);
7243 if (mddev->ro == 2) {
7244 /* need to switch to read/write */
7245 mddev->ro = 0;
7246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7247 md_wakeup_thread(mddev->thread);
7248 md_wakeup_thread(mddev->sync_thread);
7249 did_change = 1;
7250 }
7251 atomic_inc(&mddev->writes_pending);
7252 if (mddev->safemode == 1)
7253 mddev->safemode = 0;
7254 if (mddev->in_sync) {
7255 spin_lock_irq(&mddev->write_lock);
7256 if (mddev->in_sync) {
7257 mddev->in_sync = 0;
7258 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7259 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7260 md_wakeup_thread(mddev->thread);
7261 did_change = 1;
7262 }
7263 spin_unlock_irq(&mddev->write_lock);
7264 }
7265 if (did_change)
7266 sysfs_notify_dirent_safe(mddev->sysfs_state);
7267 wait_event(mddev->sb_wait,
7268 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7269 }
7270
7271 void md_write_end(struct mddev *mddev)
7272 {
7273 if (atomic_dec_and_test(&mddev->writes_pending)) {
7274 if (mddev->safemode == 2)
7275 md_wakeup_thread(mddev->thread);
7276 else if (mddev->safemode_delay)
7277 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7278 }
7279 }
7280
7281 /* md_allow_write(mddev)
7282 * Calling this ensures that the array is marked 'active' so that writes
7283 * may proceed without blocking. It is important to call this before
7284 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7285 * Must be called with mddev_lock held.
7286 *
7287 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7288 * is dropped, so return -EAGAIN after notifying userspace.
7289 */
7290 int md_allow_write(struct mddev *mddev)
7291 {
7292 if (!mddev->pers)
7293 return 0;
7294 if (mddev->ro)
7295 return 0;
7296 if (!mddev->pers->sync_request)
7297 return 0;
7298
7299 spin_lock_irq(&mddev->write_lock);
7300 if (mddev->in_sync) {
7301 mddev->in_sync = 0;
7302 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7303 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7304 if (mddev->safemode_delay &&
7305 mddev->safemode == 0)
7306 mddev->safemode = 1;
7307 spin_unlock_irq(&mddev->write_lock);
7308 md_update_sb(mddev, 0);
7309 sysfs_notify_dirent_safe(mddev->sysfs_state);
7310 } else
7311 spin_unlock_irq(&mddev->write_lock);
7312
7313 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7314 return -EAGAIN;
7315 else
7316 return 0;
7317 }
7318 EXPORT_SYMBOL_GPL(md_allow_write);
7319
7320 #define SYNC_MARKS 10
7321 #define SYNC_MARK_STEP (3*HZ)
7322 #define UPDATE_FREQUENCY (5*60*HZ)
7323 void md_do_sync(struct md_thread *thread)
7324 {
7325 struct mddev *mddev = thread->mddev;
7326 struct mddev *mddev2;
7327 unsigned int currspeed = 0,
7328 window;
7329 sector_t max_sectors,j, io_sectors;
7330 unsigned long mark[SYNC_MARKS];
7331 unsigned long update_time;
7332 sector_t mark_cnt[SYNC_MARKS];
7333 int last_mark,m;
7334 struct list_head *tmp;
7335 sector_t last_check;
7336 int skipped = 0;
7337 struct md_rdev *rdev;
7338 char *desc;
7339 struct blk_plug plug;
7340
7341 /* just incase thread restarts... */
7342 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7343 return;
7344 if (mddev->ro) {/* never try to sync a read-only array */
7345 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7346 return;
7347 }
7348
7349 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7350 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7351 desc = "data-check";
7352 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7353 desc = "requested-resync";
7354 else
7355 desc = "resync";
7356 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7357 desc = "reshape";
7358 else
7359 desc = "recovery";
7360
7361 /* we overload curr_resync somewhat here.
7362 * 0 == not engaged in resync at all
7363 * 2 == checking that there is no conflict with another sync
7364 * 1 == like 2, but have yielded to allow conflicting resync to
7365 * commense
7366 * other == active in resync - this many blocks
7367 *
7368 * Before starting a resync we must have set curr_resync to
7369 * 2, and then checked that every "conflicting" array has curr_resync
7370 * less than ours. When we find one that is the same or higher
7371 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7372 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7373 * This will mean we have to start checking from the beginning again.
7374 *
7375 */
7376
7377 set_freezable();
7378
7379 do {
7380 mddev->curr_resync = 2;
7381
7382 try_again:
7383
7384 if (kthread_freezable_should_stop(NULL))
7385 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7386
7387 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7388 goto skip;
7389 for_each_mddev(mddev2, tmp) {
7390 if (mddev2 == mddev)
7391 continue;
7392 if (!mddev->parallel_resync
7393 && mddev2->curr_resync
7394 && match_mddev_units(mddev, mddev2)) {
7395 DEFINE_WAIT(wq);
7396 if (mddev < mddev2 && mddev->curr_resync == 2) {
7397 /* arbitrarily yield */
7398 mddev->curr_resync = 1;
7399 wake_up(&resync_wait);
7400 }
7401 if (mddev > mddev2 && mddev->curr_resync == 1)
7402 /* no need to wait here, we can wait the next
7403 * time 'round when curr_resync == 2
7404 */
7405 continue;
7406
7407 try_to_freeze();
7408
7409 /* We need to wait 'interruptible' so as not to
7410 * contribute to the load average, and not to
7411 * be caught by 'softlockup'
7412 */
7413 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7414 if (!kthread_should_stop() &&
7415 mddev2->curr_resync >= mddev->curr_resync) {
7416 printk(KERN_INFO "md: delaying %s of %s"
7417 " until %s has finished (they"
7418 " share one or more physical units)\n",
7419 desc, mdname(mddev), mdname(mddev2));
7420 mddev_put(mddev2);
7421 try_to_freeze();
7422 if (signal_pending(current))
7423 flush_signals(current);
7424 schedule();
7425 finish_wait(&resync_wait, &wq);
7426 goto try_again;
7427 }
7428 finish_wait(&resync_wait, &wq);
7429 }
7430 }
7431 } while (mddev->curr_resync < 2);
7432
7433 j = 0;
7434 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7435 /* resync follows the size requested by the personality,
7436 * which defaults to physical size, but can be virtual size
7437 */
7438 max_sectors = mddev->resync_max_sectors;
7439 atomic64_set(&mddev->resync_mismatches, 0);
7440 /* we don't use the checkpoint if there's a bitmap */
7441 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7442 j = mddev->resync_min;
7443 else if (!mddev->bitmap)
7444 j = mddev->recovery_cp;
7445
7446 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7447 max_sectors = mddev->resync_max_sectors;
7448 else {
7449 /* recovery follows the physical size of devices */
7450 max_sectors = mddev->dev_sectors;
7451 j = MaxSector;
7452 rcu_read_lock();
7453 rdev_for_each_rcu(rdev, mddev)
7454 if (rdev->raid_disk >= 0 &&
7455 !test_bit(Faulty, &rdev->flags) &&
7456 !test_bit(In_sync, &rdev->flags) &&
7457 rdev->recovery_offset < j)
7458 j = rdev->recovery_offset;
7459 rcu_read_unlock();
7460
7461 /* If there is a bitmap, we need to make sure all
7462 * writes that started before we added a spare
7463 * complete before we start doing a recovery.
7464 * Otherwise the write might complete and (via
7465 * bitmap_endwrite) set a bit in the bitmap after the
7466 * recovery has checked that bit and skipped that
7467 * region.
7468 */
7469 if (mddev->bitmap) {
7470 mddev->pers->quiesce(mddev, 1);
7471 mddev->pers->quiesce(mddev, 0);
7472 }
7473 }
7474
7475 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7476 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7477 " %d KB/sec/disk.\n", speed_min(mddev));
7478 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7479 "(but not more than %d KB/sec) for %s.\n",
7480 speed_max(mddev), desc);
7481
7482 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7483
7484 io_sectors = 0;
7485 for (m = 0; m < SYNC_MARKS; m++) {
7486 mark[m] = jiffies;
7487 mark_cnt[m] = io_sectors;
7488 }
7489 last_mark = 0;
7490 mddev->resync_mark = mark[last_mark];
7491 mddev->resync_mark_cnt = mark_cnt[last_mark];
7492
7493 /*
7494 * Tune reconstruction:
7495 */
7496 window = 32*(PAGE_SIZE/512);
7497 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7498 window/2, (unsigned long long)max_sectors/2);
7499
7500 atomic_set(&mddev->recovery_active, 0);
7501 last_check = 0;
7502
7503 if (j>2) {
7504 printk(KERN_INFO
7505 "md: resuming %s of %s from checkpoint.\n",
7506 desc, mdname(mddev));
7507 mddev->curr_resync = j;
7508 } else
7509 mddev->curr_resync = 3; /* no longer delayed */
7510 mddev->curr_resync_completed = j;
7511 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7512 md_new_event(mddev);
7513 update_time = jiffies;
7514
7515 blk_start_plug(&plug);
7516 while (j < max_sectors) {
7517 sector_t sectors;
7518
7519 skipped = 0;
7520
7521 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7522 ((mddev->curr_resync > mddev->curr_resync_completed &&
7523 (mddev->curr_resync - mddev->curr_resync_completed)
7524 > (max_sectors >> 4)) ||
7525 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7526 (j - mddev->curr_resync_completed)*2
7527 >= mddev->resync_max - mddev->curr_resync_completed
7528 )) {
7529 /* time to update curr_resync_completed */
7530 wait_event(mddev->recovery_wait,
7531 atomic_read(&mddev->recovery_active) == 0);
7532 mddev->curr_resync_completed = j;
7533 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7534 j > mddev->recovery_cp)
7535 mddev->recovery_cp = j;
7536 update_time = jiffies;
7537 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7538 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7539 }
7540
7541 while (j >= mddev->resync_max && !kthread_should_stop()) {
7542 /* As this condition is controlled by user-space,
7543 * we can block indefinitely, so use '_interruptible'
7544 * to avoid triggering warnings.
7545 */
7546 flush_signals(current); /* just in case */
7547 wait_event_interruptible(mddev->recovery_wait,
7548 mddev->resync_max > j
7549 || kthread_should_stop());
7550 }
7551
7552 if (kthread_freezable_should_stop(NULL))
7553 goto interrupted;
7554
7555 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7556 currspeed < speed_min(mddev));
7557 if (sectors == 0) {
7558 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7559 goto out;
7560 }
7561
7562 if (!skipped) { /* actual IO requested */
7563 io_sectors += sectors;
7564 atomic_add(sectors, &mddev->recovery_active);
7565 }
7566
7567 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7568 break;
7569
7570 j += sectors;
7571 if (j > 2)
7572 mddev->curr_resync = j;
7573 mddev->curr_mark_cnt = io_sectors;
7574 if (last_check == 0)
7575 /* this is the earliest that rebuild will be
7576 * visible in /proc/mdstat
7577 */
7578 md_new_event(mddev);
7579
7580 if (last_check + window > io_sectors || j == max_sectors)
7581 continue;
7582
7583 last_check = io_sectors;
7584 repeat:
7585 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7586 /* step marks */
7587 int next = (last_mark+1) % SYNC_MARKS;
7588
7589 mddev->resync_mark = mark[next];
7590 mddev->resync_mark_cnt = mark_cnt[next];
7591 mark[next] = jiffies;
7592 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7593 last_mark = next;
7594 }
7595
7596 if (kthread_freezable_should_stop(NULL))
7597 goto interrupted;
7598
7599
7600 /*
7601 * this loop exits only if either when we are slower than
7602 * the 'hard' speed limit, or the system was IO-idle for
7603 * a jiffy.
7604 * the system might be non-idle CPU-wise, but we only care
7605 * about not overloading the IO subsystem. (things like an
7606 * e2fsck being done on the RAID array should execute fast)
7607 */
7608 cond_resched();
7609
7610 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7611 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7612
7613 if (currspeed > speed_min(mddev)) {
7614 if ((currspeed > speed_max(mddev)) ||
7615 !is_mddev_idle(mddev, 0)) {
7616 msleep(500);
7617 goto repeat;
7618 }
7619 }
7620 }
7621 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7622 /*
7623 * this also signals 'finished resyncing' to md_stop
7624 */
7625 out:
7626 blk_finish_plug(&plug);
7627 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7628
7629 /* tell personality that we are finished */
7630 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7631
7632 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7633 mddev->curr_resync > 2) {
7634 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7635 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7636 if (mddev->curr_resync >= mddev->recovery_cp) {
7637 printk(KERN_INFO
7638 "md: checkpointing %s of %s.\n",
7639 desc, mdname(mddev));
7640 if (test_bit(MD_RECOVERY_ERROR,
7641 &mddev->recovery))
7642 mddev->recovery_cp =
7643 mddev->curr_resync_completed;
7644 else
7645 mddev->recovery_cp =
7646 mddev->curr_resync;
7647 }
7648 } else
7649 mddev->recovery_cp = MaxSector;
7650 } else {
7651 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7652 mddev->curr_resync = MaxSector;
7653 rcu_read_lock();
7654 rdev_for_each_rcu(rdev, mddev)
7655 if (rdev->raid_disk >= 0 &&
7656 mddev->delta_disks >= 0 &&
7657 !test_bit(Faulty, &rdev->flags) &&
7658 !test_bit(In_sync, &rdev->flags) &&
7659 rdev->recovery_offset < mddev->curr_resync)
7660 rdev->recovery_offset = mddev->curr_resync;
7661 rcu_read_unlock();
7662 }
7663 }
7664 skip:
7665 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7666
7667 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7668 /* We completed so min/max setting can be forgotten if used. */
7669 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7670 mddev->resync_min = 0;
7671 mddev->resync_max = MaxSector;
7672 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7673 mddev->resync_min = mddev->curr_resync_completed;
7674 mddev->curr_resync = 0;
7675 wake_up(&resync_wait);
7676 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7677 md_wakeup_thread(mddev->thread);
7678 return;
7679
7680 interrupted:
7681 /*
7682 * got a signal, exit.
7683 */
7684 printk(KERN_INFO
7685 "md: md_do_sync() got signal ... exiting\n");
7686 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7687 goto out;
7688
7689 }
7690 EXPORT_SYMBOL_GPL(md_do_sync);
7691
7692 static int remove_and_add_spares(struct mddev *mddev,
7693 struct md_rdev *this)
7694 {
7695 struct md_rdev *rdev;
7696 int spares = 0;
7697 int removed = 0;
7698
7699 rdev_for_each(rdev, mddev)
7700 if ((this == NULL || rdev == this) &&
7701 rdev->raid_disk >= 0 &&
7702 !test_bit(Blocked, &rdev->flags) &&
7703 (test_bit(Faulty, &rdev->flags) ||
7704 ! test_bit(In_sync, &rdev->flags)) &&
7705 atomic_read(&rdev->nr_pending)==0) {
7706 if (mddev->pers->hot_remove_disk(
7707 mddev, rdev) == 0) {
7708 sysfs_unlink_rdev(mddev, rdev);
7709 rdev->raid_disk = -1;
7710 removed++;
7711 }
7712 }
7713 if (removed && mddev->kobj.sd)
7714 sysfs_notify(&mddev->kobj, NULL, "degraded");
7715
7716 if (this)
7717 goto no_add;
7718
7719 rdev_for_each(rdev, mddev) {
7720 if (rdev->raid_disk >= 0 &&
7721 !test_bit(In_sync, &rdev->flags) &&
7722 !test_bit(Faulty, &rdev->flags))
7723 spares++;
7724 if (rdev->raid_disk >= 0)
7725 continue;
7726 if (test_bit(Faulty, &rdev->flags))
7727 continue;
7728 if (mddev->ro &&
7729 ! (rdev->saved_raid_disk >= 0 &&
7730 !test_bit(Bitmap_sync, &rdev->flags)))
7731 continue;
7732
7733 rdev->recovery_offset = 0;
7734 if (mddev->pers->
7735 hot_add_disk(mddev, rdev) == 0) {
7736 if (sysfs_link_rdev(mddev, rdev))
7737 /* failure here is OK */;
7738 spares++;
7739 md_new_event(mddev);
7740 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7741 }
7742 }
7743 no_add:
7744 if (removed)
7745 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7746 return spares;
7747 }
7748
7749 /*
7750 * This routine is regularly called by all per-raid-array threads to
7751 * deal with generic issues like resync and super-block update.
7752 * Raid personalities that don't have a thread (linear/raid0) do not
7753 * need this as they never do any recovery or update the superblock.
7754 *
7755 * It does not do any resync itself, but rather "forks" off other threads
7756 * to do that as needed.
7757 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7758 * "->recovery" and create a thread at ->sync_thread.
7759 * When the thread finishes it sets MD_RECOVERY_DONE
7760 * and wakeups up this thread which will reap the thread and finish up.
7761 * This thread also removes any faulty devices (with nr_pending == 0).
7762 *
7763 * The overall approach is:
7764 * 1/ if the superblock needs updating, update it.
7765 * 2/ If a recovery thread is running, don't do anything else.
7766 * 3/ If recovery has finished, clean up, possibly marking spares active.
7767 * 4/ If there are any faulty devices, remove them.
7768 * 5/ If array is degraded, try to add spares devices
7769 * 6/ If array has spares or is not in-sync, start a resync thread.
7770 */
7771 void md_check_recovery(struct mddev *mddev)
7772 {
7773 #ifdef CONFIG_FREEZER
7774 if (mddev->suspended || unlikely(atomic_read(&system_freezing_cnt)))
7775 return;
7776 #endif
7777
7778 if (mddev->bitmap)
7779 bitmap_daemon_work(mddev);
7780
7781 if (signal_pending(current)) {
7782 if (mddev->pers->sync_request && !mddev->external) {
7783 printk(KERN_INFO "md: %s in immediate safe mode\n",
7784 mdname(mddev));
7785 mddev->safemode = 2;
7786 }
7787 flush_signals(current);
7788 }
7789
7790 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7791 return;
7792 if ( ! (
7793 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7794 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7795 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7796 (mddev->external == 0 && mddev->safemode == 1) ||
7797 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7798 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7799 ))
7800 return;
7801
7802 if (mddev_trylock(mddev)) {
7803 int spares = 0;
7804
7805 if (mddev->ro) {
7806 /* On a read-only array we can:
7807 * - remove failed devices
7808 * - add already-in_sync devices if the array itself
7809 * is in-sync.
7810 * As we only add devices that are already in-sync,
7811 * we can activate the spares immediately.
7812 */
7813 remove_and_add_spares(mddev, NULL);
7814 /* There is no thread, but we need to call
7815 * ->spare_active and clear saved_raid_disk
7816 */
7817 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7818 md_reap_sync_thread(mddev);
7819 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7820 goto unlock;
7821 }
7822
7823 if (!mddev->external) {
7824 int did_change = 0;
7825 spin_lock_irq(&mddev->write_lock);
7826 if (mddev->safemode &&
7827 !atomic_read(&mddev->writes_pending) &&
7828 !mddev->in_sync &&
7829 mddev->recovery_cp == MaxSector) {
7830 mddev->in_sync = 1;
7831 did_change = 1;
7832 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7833 }
7834 if (mddev->safemode == 1)
7835 mddev->safemode = 0;
7836 spin_unlock_irq(&mddev->write_lock);
7837 if (did_change)
7838 sysfs_notify_dirent_safe(mddev->sysfs_state);
7839 }
7840
7841 if (mddev->flags)
7842 md_update_sb(mddev, 0);
7843
7844 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7845 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7846 /* resync/recovery still happening */
7847 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7848 goto unlock;
7849 }
7850 if (mddev->sync_thread) {
7851 md_reap_sync_thread(mddev);
7852 goto unlock;
7853 }
7854 /* Set RUNNING before clearing NEEDED to avoid
7855 * any transients in the value of "sync_action".
7856 */
7857 mddev->curr_resync_completed = 0;
7858 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7859 /* Clear some bits that don't mean anything, but
7860 * might be left set
7861 */
7862 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7863 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7864
7865 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7866 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7867 goto unlock;
7868 /* no recovery is running.
7869 * remove any failed drives, then
7870 * add spares if possible.
7871 * Spares are also removed and re-added, to allow
7872 * the personality to fail the re-add.
7873 */
7874
7875 if (mddev->reshape_position != MaxSector) {
7876 if (mddev->pers->check_reshape == NULL ||
7877 mddev->pers->check_reshape(mddev) != 0)
7878 /* Cannot proceed */
7879 goto unlock;
7880 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7881 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7882 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7883 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7884 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7885 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7886 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7887 } else if (mddev->recovery_cp < MaxSector) {
7888 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7889 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7890 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7891 /* nothing to be done ... */
7892 goto unlock;
7893
7894 if (mddev->pers->sync_request) {
7895 if (spares) {
7896 /* We are adding a device or devices to an array
7897 * which has the bitmap stored on all devices.
7898 * So make sure all bitmap pages get written
7899 */
7900 bitmap_write_all(mddev->bitmap);
7901 }
7902 mddev->sync_thread = md_register_thread(md_do_sync,
7903 mddev,
7904 "resync");
7905 if (!mddev->sync_thread) {
7906 printk(KERN_ERR "%s: could not start resync"
7907 " thread...\n",
7908 mdname(mddev));
7909 /* leave the spares where they are, it shouldn't hurt */
7910 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7911 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7912 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7913 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7914 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7915 } else
7916 md_wakeup_thread(mddev->sync_thread);
7917 sysfs_notify_dirent_safe(mddev->sysfs_action);
7918 md_new_event(mddev);
7919 }
7920 unlock:
7921 if (!mddev->sync_thread) {
7922 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7923 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7924 &mddev->recovery))
7925 if (mddev->sysfs_action)
7926 sysfs_notify_dirent_safe(mddev->sysfs_action);
7927 }
7928 mddev_unlock(mddev);
7929 }
7930 }
7931
7932 void md_reap_sync_thread(struct mddev *mddev)
7933 {
7934 struct md_rdev *rdev;
7935
7936 /* resync has finished, collect result */
7937 md_unregister_thread(&mddev->sync_thread);
7938 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7939 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7940 /* success...*/
7941 /* activate any spares */
7942 if (mddev->pers->spare_active(mddev)) {
7943 sysfs_notify(&mddev->kobj, NULL,
7944 "degraded");
7945 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7946 }
7947 }
7948 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7949 mddev->pers->finish_reshape)
7950 mddev->pers->finish_reshape(mddev);
7951
7952 /* If array is no-longer degraded, then any saved_raid_disk
7953 * information must be scrapped. Also if any device is now
7954 * In_sync we must scrape the saved_raid_disk for that device
7955 * do the superblock for an incrementally recovered device
7956 * written out.
7957 */
7958 rdev_for_each(rdev, mddev)
7959 if (!mddev->degraded ||
7960 test_bit(In_sync, &rdev->flags))
7961 rdev->saved_raid_disk = -1;
7962
7963 md_update_sb(mddev, 1);
7964 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7965 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7966 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7967 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7968 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7969 /* flag recovery needed just to double check */
7970 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7971 sysfs_notify_dirent_safe(mddev->sysfs_action);
7972 md_new_event(mddev);
7973 if (mddev->event_work.func)
7974 queue_work(md_misc_wq, &mddev->event_work);
7975 }
7976
7977 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7978 {
7979 sysfs_notify_dirent_safe(rdev->sysfs_state);
7980 wait_event_timeout(rdev->blocked_wait,
7981 !test_bit(Blocked, &rdev->flags) &&
7982 !test_bit(BlockedBadBlocks, &rdev->flags),
7983 msecs_to_jiffies(5000));
7984 rdev_dec_pending(rdev, mddev);
7985 }
7986 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7987
7988 void md_finish_reshape(struct mddev *mddev)
7989 {
7990 /* called be personality module when reshape completes. */
7991 struct md_rdev *rdev;
7992
7993 rdev_for_each(rdev, mddev) {
7994 if (rdev->data_offset > rdev->new_data_offset)
7995 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7996 else
7997 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7998 rdev->data_offset = rdev->new_data_offset;
7999 }
8000 }
8001 EXPORT_SYMBOL(md_finish_reshape);
8002
8003 /* Bad block management.
8004 * We can record which blocks on each device are 'bad' and so just
8005 * fail those blocks, or that stripe, rather than the whole device.
8006 * Entries in the bad-block table are 64bits wide. This comprises:
8007 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8008 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8009 * A 'shift' can be set so that larger blocks are tracked and
8010 * consequently larger devices can be covered.
8011 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8012 *
8013 * Locking of the bad-block table uses a seqlock so md_is_badblock
8014 * might need to retry if it is very unlucky.
8015 * We will sometimes want to check for bad blocks in a bi_end_io function,
8016 * so we use the write_seqlock_irq variant.
8017 *
8018 * When looking for a bad block we specify a range and want to
8019 * know if any block in the range is bad. So we binary-search
8020 * to the last range that starts at-or-before the given endpoint,
8021 * (or "before the sector after the target range")
8022 * then see if it ends after the given start.
8023 * We return
8024 * 0 if there are no known bad blocks in the range
8025 * 1 if there are known bad block which are all acknowledged
8026 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8027 * plus the start/length of the first bad section we overlap.
8028 */
8029 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8030 sector_t *first_bad, int *bad_sectors)
8031 {
8032 int hi;
8033 int lo;
8034 u64 *p = bb->page;
8035 int rv;
8036 sector_t target = s + sectors;
8037 unsigned seq;
8038
8039 if (bb->shift > 0) {
8040 /* round the start down, and the end up */
8041 s >>= bb->shift;
8042 target += (1<<bb->shift) - 1;
8043 target >>= bb->shift;
8044 sectors = target - s;
8045 }
8046 /* 'target' is now the first block after the bad range */
8047
8048 retry:
8049 seq = read_seqbegin(&bb->lock);
8050 lo = 0;
8051 rv = 0;
8052 hi = bb->count;
8053
8054 /* Binary search between lo and hi for 'target'
8055 * i.e. for the last range that starts before 'target'
8056 */
8057 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8058 * are known not to be the last range before target.
8059 * VARIANT: hi-lo is the number of possible
8060 * ranges, and decreases until it reaches 1
8061 */
8062 while (hi - lo > 1) {
8063 int mid = (lo + hi) / 2;
8064 sector_t a = BB_OFFSET(p[mid]);
8065 if (a < target)
8066 /* This could still be the one, earlier ranges
8067 * could not. */
8068 lo = mid;
8069 else
8070 /* This and later ranges are definitely out. */
8071 hi = mid;
8072 }
8073 /* 'lo' might be the last that started before target, but 'hi' isn't */
8074 if (hi > lo) {
8075 /* need to check all range that end after 's' to see if
8076 * any are unacknowledged.
8077 */
8078 while (lo >= 0 &&
8079 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8080 if (BB_OFFSET(p[lo]) < target) {
8081 /* starts before the end, and finishes after
8082 * the start, so they must overlap
8083 */
8084 if (rv != -1 && BB_ACK(p[lo]))
8085 rv = 1;
8086 else
8087 rv = -1;
8088 *first_bad = BB_OFFSET(p[lo]);
8089 *bad_sectors = BB_LEN(p[lo]);
8090 }
8091 lo--;
8092 }
8093 }
8094
8095 if (read_seqretry(&bb->lock, seq))
8096 goto retry;
8097
8098 return rv;
8099 }
8100 EXPORT_SYMBOL_GPL(md_is_badblock);
8101
8102 /*
8103 * Add a range of bad blocks to the table.
8104 * This might extend the table, or might contract it
8105 * if two adjacent ranges can be merged.
8106 * We binary-search to find the 'insertion' point, then
8107 * decide how best to handle it.
8108 */
8109 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8110 int acknowledged)
8111 {
8112 u64 *p;
8113 int lo, hi;
8114 int rv = 1;
8115 unsigned long flags;
8116
8117 if (bb->shift < 0)
8118 /* badblocks are disabled */
8119 return 0;
8120
8121 if (bb->shift) {
8122 /* round the start down, and the end up */
8123 sector_t next = s + sectors;
8124 s >>= bb->shift;
8125 next += (1<<bb->shift) - 1;
8126 next >>= bb->shift;
8127 sectors = next - s;
8128 }
8129
8130 write_seqlock_irqsave(&bb->lock, flags);
8131
8132 p = bb->page;
8133 lo = 0;
8134 hi = bb->count;
8135 /* Find the last range that starts at-or-before 's' */
8136 while (hi - lo > 1) {
8137 int mid = (lo + hi) / 2;
8138 sector_t a = BB_OFFSET(p[mid]);
8139 if (a <= s)
8140 lo = mid;
8141 else
8142 hi = mid;
8143 }
8144 if (hi > lo && BB_OFFSET(p[lo]) > s)
8145 hi = lo;
8146
8147 if (hi > lo) {
8148 /* we found a range that might merge with the start
8149 * of our new range
8150 */
8151 sector_t a = BB_OFFSET(p[lo]);
8152 sector_t e = a + BB_LEN(p[lo]);
8153 int ack = BB_ACK(p[lo]);
8154 if (e >= s) {
8155 /* Yes, we can merge with a previous range */
8156 if (s == a && s + sectors >= e)
8157 /* new range covers old */
8158 ack = acknowledged;
8159 else
8160 ack = ack && acknowledged;
8161
8162 if (e < s + sectors)
8163 e = s + sectors;
8164 if (e - a <= BB_MAX_LEN) {
8165 p[lo] = BB_MAKE(a, e-a, ack);
8166 s = e;
8167 } else {
8168 /* does not all fit in one range,
8169 * make p[lo] maximal
8170 */
8171 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8172 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8173 s = a + BB_MAX_LEN;
8174 }
8175 sectors = e - s;
8176 }
8177 }
8178 if (sectors && hi < bb->count) {
8179 /* 'hi' points to the first range that starts after 's'.
8180 * Maybe we can merge with the start of that range */
8181 sector_t a = BB_OFFSET(p[hi]);
8182 sector_t e = a + BB_LEN(p[hi]);
8183 int ack = BB_ACK(p[hi]);
8184 if (a <= s + sectors) {
8185 /* merging is possible */
8186 if (e <= s + sectors) {
8187 /* full overlap */
8188 e = s + sectors;
8189 ack = acknowledged;
8190 } else
8191 ack = ack && acknowledged;
8192
8193 a = s;
8194 if (e - a <= BB_MAX_LEN) {
8195 p[hi] = BB_MAKE(a, e-a, ack);
8196 s = e;
8197 } else {
8198 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8199 s = a + BB_MAX_LEN;
8200 }
8201 sectors = e - s;
8202 lo = hi;
8203 hi++;
8204 }
8205 }
8206 if (sectors == 0 && hi < bb->count) {
8207 /* we might be able to combine lo and hi */
8208 /* Note: 's' is at the end of 'lo' */
8209 sector_t a = BB_OFFSET(p[hi]);
8210 int lolen = BB_LEN(p[lo]);
8211 int hilen = BB_LEN(p[hi]);
8212 int newlen = lolen + hilen - (s - a);
8213 if (s >= a && newlen < BB_MAX_LEN) {
8214 /* yes, we can combine them */
8215 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8216 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8217 memmove(p + hi, p + hi + 1,
8218 (bb->count - hi - 1) * 8);
8219 bb->count--;
8220 }
8221 }
8222 while (sectors) {
8223 /* didn't merge (it all).
8224 * Need to add a range just before 'hi' */
8225 if (bb->count >= MD_MAX_BADBLOCKS) {
8226 /* No room for more */
8227 rv = 0;
8228 break;
8229 } else {
8230 int this_sectors = sectors;
8231 memmove(p + hi + 1, p + hi,
8232 (bb->count - hi) * 8);
8233 bb->count++;
8234
8235 if (this_sectors > BB_MAX_LEN)
8236 this_sectors = BB_MAX_LEN;
8237 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8238 sectors -= this_sectors;
8239 s += this_sectors;
8240 }
8241 }
8242
8243 bb->changed = 1;
8244 if (!acknowledged)
8245 bb->unacked_exist = 1;
8246 write_sequnlock_irqrestore(&bb->lock, flags);
8247
8248 return rv;
8249 }
8250
8251 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8252 int is_new)
8253 {
8254 int rv;
8255 if (is_new)
8256 s += rdev->new_data_offset;
8257 else
8258 s += rdev->data_offset;
8259 rv = md_set_badblocks(&rdev->badblocks,
8260 s, sectors, 0);
8261 if (rv) {
8262 /* Make sure they get written out promptly */
8263 sysfs_notify_dirent_safe(rdev->sysfs_state);
8264 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8265 md_wakeup_thread(rdev->mddev->thread);
8266 }
8267 return rv;
8268 }
8269 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8270
8271 /*
8272 * Remove a range of bad blocks from the table.
8273 * This may involve extending the table if we spilt a region,
8274 * but it must not fail. So if the table becomes full, we just
8275 * drop the remove request.
8276 */
8277 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8278 {
8279 u64 *p;
8280 int lo, hi;
8281 sector_t target = s + sectors;
8282 int rv = 0;
8283
8284 if (bb->shift > 0) {
8285 /* When clearing we round the start up and the end down.
8286 * This should not matter as the shift should align with
8287 * the block size and no rounding should ever be needed.
8288 * However it is better the think a block is bad when it
8289 * isn't than to think a block is not bad when it is.
8290 */
8291 s += (1<<bb->shift) - 1;
8292 s >>= bb->shift;
8293 target >>= bb->shift;
8294 sectors = target - s;
8295 }
8296
8297 write_seqlock_irq(&bb->lock);
8298
8299 p = bb->page;
8300 lo = 0;
8301 hi = bb->count;
8302 /* Find the last range that starts before 'target' */
8303 while (hi - lo > 1) {
8304 int mid = (lo + hi) / 2;
8305 sector_t a = BB_OFFSET(p[mid]);
8306 if (a < target)
8307 lo = mid;
8308 else
8309 hi = mid;
8310 }
8311 if (hi > lo) {
8312 /* p[lo] is the last range that could overlap the
8313 * current range. Earlier ranges could also overlap,
8314 * but only this one can overlap the end of the range.
8315 */
8316 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8317 /* Partial overlap, leave the tail of this range */
8318 int ack = BB_ACK(p[lo]);
8319 sector_t a = BB_OFFSET(p[lo]);
8320 sector_t end = a + BB_LEN(p[lo]);
8321
8322 if (a < s) {
8323 /* we need to split this range */
8324 if (bb->count >= MD_MAX_BADBLOCKS) {
8325 rv = 0;
8326 goto out;
8327 }
8328 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8329 bb->count++;
8330 p[lo] = BB_MAKE(a, s-a, ack);
8331 lo++;
8332 }
8333 p[lo] = BB_MAKE(target, end - target, ack);
8334 /* there is no longer an overlap */
8335 hi = lo;
8336 lo--;
8337 }
8338 while (lo >= 0 &&
8339 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8340 /* This range does overlap */
8341 if (BB_OFFSET(p[lo]) < s) {
8342 /* Keep the early parts of this range. */
8343 int ack = BB_ACK(p[lo]);
8344 sector_t start = BB_OFFSET(p[lo]);
8345 p[lo] = BB_MAKE(start, s - start, ack);
8346 /* now low doesn't overlap, so.. */
8347 break;
8348 }
8349 lo--;
8350 }
8351 /* 'lo' is strictly before, 'hi' is strictly after,
8352 * anything between needs to be discarded
8353 */
8354 if (hi - lo > 1) {
8355 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8356 bb->count -= (hi - lo - 1);
8357 }
8358 }
8359
8360 bb->changed = 1;
8361 out:
8362 write_sequnlock_irq(&bb->lock);
8363 return rv;
8364 }
8365
8366 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8367 int is_new)
8368 {
8369 if (is_new)
8370 s += rdev->new_data_offset;
8371 else
8372 s += rdev->data_offset;
8373 return md_clear_badblocks(&rdev->badblocks,
8374 s, sectors);
8375 }
8376 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8377
8378 /*
8379 * Acknowledge all bad blocks in a list.
8380 * This only succeeds if ->changed is clear. It is used by
8381 * in-kernel metadata updates
8382 */
8383 void md_ack_all_badblocks(struct badblocks *bb)
8384 {
8385 if (bb->page == NULL || bb->changed)
8386 /* no point even trying */
8387 return;
8388 write_seqlock_irq(&bb->lock);
8389
8390 if (bb->changed == 0 && bb->unacked_exist) {
8391 u64 *p = bb->page;
8392 int i;
8393 for (i = 0; i < bb->count ; i++) {
8394 if (!BB_ACK(p[i])) {
8395 sector_t start = BB_OFFSET(p[i]);
8396 int len = BB_LEN(p[i]);
8397 p[i] = BB_MAKE(start, len, 1);
8398 }
8399 }
8400 bb->unacked_exist = 0;
8401 }
8402 write_sequnlock_irq(&bb->lock);
8403 }
8404 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8405
8406 /* sysfs access to bad-blocks list.
8407 * We present two files.
8408 * 'bad-blocks' lists sector numbers and lengths of ranges that
8409 * are recorded as bad. The list is truncated to fit within
8410 * the one-page limit of sysfs.
8411 * Writing "sector length" to this file adds an acknowledged
8412 * bad block list.
8413 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8414 * been acknowledged. Writing to this file adds bad blocks
8415 * without acknowledging them. This is largely for testing.
8416 */
8417
8418 static ssize_t
8419 badblocks_show(struct badblocks *bb, char *page, int unack)
8420 {
8421 size_t len;
8422 int i;
8423 u64 *p = bb->page;
8424 unsigned seq;
8425
8426 if (bb->shift < 0)
8427 return 0;
8428
8429 retry:
8430 seq = read_seqbegin(&bb->lock);
8431
8432 len = 0;
8433 i = 0;
8434
8435 while (len < PAGE_SIZE && i < bb->count) {
8436 sector_t s = BB_OFFSET(p[i]);
8437 unsigned int length = BB_LEN(p[i]);
8438 int ack = BB_ACK(p[i]);
8439 i++;
8440
8441 if (unack && ack)
8442 continue;
8443
8444 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8445 (unsigned long long)s << bb->shift,
8446 length << bb->shift);
8447 }
8448 if (unack && len == 0)
8449 bb->unacked_exist = 0;
8450
8451 if (read_seqretry(&bb->lock, seq))
8452 goto retry;
8453
8454 return len;
8455 }
8456
8457 #define DO_DEBUG 1
8458
8459 static ssize_t
8460 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8461 {
8462 unsigned long long sector;
8463 int length;
8464 char newline;
8465 #ifdef DO_DEBUG
8466 /* Allow clearing via sysfs *only* for testing/debugging.
8467 * Normally only a successful write may clear a badblock
8468 */
8469 int clear = 0;
8470 if (page[0] == '-') {
8471 clear = 1;
8472 page++;
8473 }
8474 #endif /* DO_DEBUG */
8475
8476 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8477 case 3:
8478 if (newline != '\n')
8479 return -EINVAL;
8480 case 2:
8481 if (length <= 0)
8482 return -EINVAL;
8483 break;
8484 default:
8485 return -EINVAL;
8486 }
8487
8488 #ifdef DO_DEBUG
8489 if (clear) {
8490 md_clear_badblocks(bb, sector, length);
8491 return len;
8492 }
8493 #endif /* DO_DEBUG */
8494 if (md_set_badblocks(bb, sector, length, !unack))
8495 return len;
8496 else
8497 return -ENOSPC;
8498 }
8499
8500 static int md_notify_reboot(struct notifier_block *this,
8501 unsigned long code, void *x)
8502 {
8503 struct list_head *tmp;
8504 struct mddev *mddev;
8505 int need_delay = 0;
8506
8507 for_each_mddev(mddev, tmp) {
8508 if (mddev_trylock(mddev)) {
8509 if (mddev->pers)
8510 __md_stop_writes(mddev);
8511 if (mddev->persistent)
8512 mddev->safemode = 2;
8513 mddev_unlock(mddev);
8514 }
8515 need_delay = 1;
8516 }
8517 /*
8518 * certain more exotic SCSI devices are known to be
8519 * volatile wrt too early system reboots. While the
8520 * right place to handle this issue is the given
8521 * driver, we do want to have a safe RAID driver ...
8522 */
8523 if (need_delay)
8524 mdelay(1000*1);
8525
8526 return NOTIFY_DONE;
8527 }
8528
8529 static struct notifier_block md_notifier = {
8530 .notifier_call = md_notify_reboot,
8531 .next = NULL,
8532 .priority = INT_MAX, /* before any real devices */
8533 };
8534
8535 static void md_geninit(void)
8536 {
8537 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8538
8539 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8540 }
8541
8542 static int __init md_init(void)
8543 {
8544 int ret = -ENOMEM;
8545
8546 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8547 if (!md_wq)
8548 goto err_wq;
8549
8550 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8551 if (!md_misc_wq)
8552 goto err_misc_wq;
8553
8554 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8555 goto err_md;
8556
8557 if ((ret = register_blkdev(0, "mdp")) < 0)
8558 goto err_mdp;
8559 mdp_major = ret;
8560
8561 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8562 md_probe, NULL, NULL);
8563 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8564 md_probe, NULL, NULL);
8565
8566 register_reboot_notifier(&md_notifier);
8567 raid_table_header = register_sysctl_table(raid_root_table);
8568
8569 md_geninit();
8570 return 0;
8571
8572 err_mdp:
8573 unregister_blkdev(MD_MAJOR, "md");
8574 err_md:
8575 destroy_workqueue(md_misc_wq);
8576 err_misc_wq:
8577 destroy_workqueue(md_wq);
8578 err_wq:
8579 return ret;
8580 }
8581
8582 #ifndef MODULE
8583
8584 /*
8585 * Searches all registered partitions for autorun RAID arrays
8586 * at boot time.
8587 */
8588
8589 static LIST_HEAD(all_detected_devices);
8590 struct detected_devices_node {
8591 struct list_head list;
8592 dev_t dev;
8593 };
8594
8595 void md_autodetect_dev(dev_t dev)
8596 {
8597 struct detected_devices_node *node_detected_dev;
8598
8599 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8600 if (node_detected_dev) {
8601 node_detected_dev->dev = dev;
8602 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8603 } else {
8604 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8605 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8606 }
8607 }
8608
8609
8610 static void autostart_arrays(int part)
8611 {
8612 struct md_rdev *rdev;
8613 struct detected_devices_node *node_detected_dev;
8614 dev_t dev;
8615 int i_scanned, i_passed;
8616
8617 i_scanned = 0;
8618 i_passed = 0;
8619
8620 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8621
8622 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8623 i_scanned++;
8624 node_detected_dev = list_entry(all_detected_devices.next,
8625 struct detected_devices_node, list);
8626 list_del(&node_detected_dev->list);
8627 dev = node_detected_dev->dev;
8628 kfree(node_detected_dev);
8629 rdev = md_import_device(dev,0, 90);
8630 if (IS_ERR(rdev))
8631 continue;
8632
8633 if (test_bit(Faulty, &rdev->flags)) {
8634 MD_BUG();
8635 continue;
8636 }
8637 set_bit(AutoDetected, &rdev->flags);
8638 list_add(&rdev->same_set, &pending_raid_disks);
8639 i_passed++;
8640 }
8641
8642 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8643 i_scanned, i_passed);
8644
8645 autorun_devices(part);
8646 }
8647
8648 #endif /* !MODULE */
8649
8650 static __exit void md_exit(void)
8651 {
8652 struct mddev *mddev;
8653 struct list_head *tmp;
8654
8655 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8656 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8657
8658 unregister_blkdev(MD_MAJOR,"md");
8659 unregister_blkdev(mdp_major, "mdp");
8660 unregister_reboot_notifier(&md_notifier);
8661 unregister_sysctl_table(raid_table_header);
8662 remove_proc_entry("mdstat", NULL);
8663 for_each_mddev(mddev, tmp) {
8664 export_array(mddev);
8665 mddev->hold_active = 0;
8666 }
8667 destroy_workqueue(md_misc_wq);
8668 destroy_workqueue(md_wq);
8669 }
8670
8671 subsys_initcall(md_init);
8672 module_exit(md_exit)
8673
8674 static int get_ro(char *buffer, struct kernel_param *kp)
8675 {
8676 return sprintf(buffer, "%d", start_readonly);
8677 }
8678 static int set_ro(const char *val, struct kernel_param *kp)
8679 {
8680 char *e;
8681 int num = simple_strtoul(val, &e, 10);
8682 if (*val && (*e == '\0' || *e == '\n')) {
8683 start_readonly = num;
8684 return 0;
8685 }
8686 return -EINVAL;
8687 }
8688
8689 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8690 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8691
8692 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8693
8694 EXPORT_SYMBOL(register_md_personality);
8695 EXPORT_SYMBOL(unregister_md_personality);
8696 EXPORT_SYMBOL(md_error);
8697 EXPORT_SYMBOL(md_done_sync);
8698 EXPORT_SYMBOL(md_write_start);
8699 EXPORT_SYMBOL(md_write_end);
8700 EXPORT_SYMBOL(md_register_thread);
8701 EXPORT_SYMBOL(md_unregister_thread);
8702 EXPORT_SYMBOL(md_wakeup_thread);
8703 EXPORT_SYMBOL(md_check_recovery);
8704 EXPORT_SYMBOL(md_reap_sync_thread);
8705 MODULE_LICENSE("GPL");
8706 MODULE_DESCRIPTION("MD RAID framework");
8707 MODULE_ALIAS("md");
8708 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);