[PATCH] md: Handle overflow of mdu_array_info_t->size better
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46
47 #include <linux/init.h>
48
49 #include <linux/file.h>
50
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54
55 #include <asm/unaligned.h>
56
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65
66
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73
74 /*
75 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76 * is 1000 KB/sec, so the extra system load does not show up that much.
77 * Increase it if you want to have more _guaranteed_ speed. Note that
78 * the RAID driver will use the maximum available bandwidth if the IO
79 * subsystem is idle. There is also an 'absolute maximum' reconstruction
80 * speed limit - in case reconstruction slows down your system despite
81 * idle IO detection.
82 *
83 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84 * or /sys/block/mdX/md/sync_speed_{min,max}
85 */
86
87 static int sysctl_speed_limit_min = 1000;
88 static int sysctl_speed_limit_max = 200000;
89 static inline int speed_min(mddev_t *mddev)
90 {
91 return mddev->sync_speed_min ?
92 mddev->sync_speed_min : sysctl_speed_limit_min;
93 }
94
95 static inline int speed_max(mddev_t *mddev)
96 {
97 return mddev->sync_speed_max ?
98 mddev->sync_speed_max : sysctl_speed_limit_max;
99 }
100
101 static struct ctl_table_header *raid_table_header;
102
103 static ctl_table raid_table[] = {
104 {
105 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
106 .procname = "speed_limit_min",
107 .data = &sysctl_speed_limit_min,
108 .maxlen = sizeof(int),
109 .mode = 0644,
110 .proc_handler = &proc_dointvec,
111 },
112 {
113 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
114 .procname = "speed_limit_max",
115 .data = &sysctl_speed_limit_max,
116 .maxlen = sizeof(int),
117 .mode = 0644,
118 .proc_handler = &proc_dointvec,
119 },
120 { .ctl_name = 0 }
121 };
122
123 static ctl_table raid_dir_table[] = {
124 {
125 .ctl_name = DEV_RAID,
126 .procname = "raid",
127 .maxlen = 0,
128 .mode = 0555,
129 .child = raid_table,
130 },
131 { .ctl_name = 0 }
132 };
133
134 static ctl_table raid_root_table[] = {
135 {
136 .ctl_name = CTL_DEV,
137 .procname = "dev",
138 .maxlen = 0,
139 .mode = 0555,
140 .child = raid_dir_table,
141 },
142 { .ctl_name = 0 }
143 };
144
145 static struct block_device_operations md_fops;
146
147 static int start_readonly;
148
149 /*
150 * We have a system wide 'event count' that is incremented
151 * on any 'interesting' event, and readers of /proc/mdstat
152 * can use 'poll' or 'select' to find out when the event
153 * count increases.
154 *
155 * Events are:
156 * start array, stop array, error, add device, remove device,
157 * start build, activate spare
158 */
159 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
160 static atomic_t md_event_count;
161 static void md_new_event(mddev_t *mddev)
162 {
163 atomic_inc(&md_event_count);
164 wake_up(&md_event_waiters);
165 }
166
167 /*
168 * Enables to iterate over all existing md arrays
169 * all_mddevs_lock protects this list.
170 */
171 static LIST_HEAD(all_mddevs);
172 static DEFINE_SPINLOCK(all_mddevs_lock);
173
174
175 /*
176 * iterates through all used mddevs in the system.
177 * We take care to grab the all_mddevs_lock whenever navigating
178 * the list, and to always hold a refcount when unlocked.
179 * Any code which breaks out of this loop while own
180 * a reference to the current mddev and must mddev_put it.
181 */
182 #define ITERATE_MDDEV(mddev,tmp) \
183 \
184 for (({ spin_lock(&all_mddevs_lock); \
185 tmp = all_mddevs.next; \
186 mddev = NULL;}); \
187 ({ if (tmp != &all_mddevs) \
188 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
189 spin_unlock(&all_mddevs_lock); \
190 if (mddev) mddev_put(mddev); \
191 mddev = list_entry(tmp, mddev_t, all_mddevs); \
192 tmp != &all_mddevs;}); \
193 ({ spin_lock(&all_mddevs_lock); \
194 tmp = tmp->next;}) \
195 )
196
197
198 static int md_fail_request (request_queue_t *q, struct bio *bio)
199 {
200 bio_io_error(bio, bio->bi_size);
201 return 0;
202 }
203
204 static inline mddev_t *mddev_get(mddev_t *mddev)
205 {
206 atomic_inc(&mddev->active);
207 return mddev;
208 }
209
210 static void mddev_put(mddev_t *mddev)
211 {
212 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
213 return;
214 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
215 list_del(&mddev->all_mddevs);
216 blk_put_queue(mddev->queue);
217 kobject_unregister(&mddev->kobj);
218 }
219 spin_unlock(&all_mddevs_lock);
220 }
221
222 static mddev_t * mddev_find(dev_t unit)
223 {
224 mddev_t *mddev, *new = NULL;
225
226 retry:
227 spin_lock(&all_mddevs_lock);
228 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
229 if (mddev->unit == unit) {
230 mddev_get(mddev);
231 spin_unlock(&all_mddevs_lock);
232 kfree(new);
233 return mddev;
234 }
235
236 if (new) {
237 list_add(&new->all_mddevs, &all_mddevs);
238 spin_unlock(&all_mddevs_lock);
239 return new;
240 }
241 spin_unlock(&all_mddevs_lock);
242
243 new = kzalloc(sizeof(*new), GFP_KERNEL);
244 if (!new)
245 return NULL;
246
247 new->unit = unit;
248 if (MAJOR(unit) == MD_MAJOR)
249 new->md_minor = MINOR(unit);
250 else
251 new->md_minor = MINOR(unit) >> MdpMinorShift;
252
253 init_MUTEX(&new->reconfig_sem);
254 INIT_LIST_HEAD(&new->disks);
255 INIT_LIST_HEAD(&new->all_mddevs);
256 init_timer(&new->safemode_timer);
257 atomic_set(&new->active, 1);
258 spin_lock_init(&new->write_lock);
259 init_waitqueue_head(&new->sb_wait);
260
261 new->queue = blk_alloc_queue(GFP_KERNEL);
262 if (!new->queue) {
263 kfree(new);
264 return NULL;
265 }
266
267 blk_queue_make_request(new->queue, md_fail_request);
268
269 goto retry;
270 }
271
272 static inline int mddev_lock(mddev_t * mddev)
273 {
274 return down_interruptible(&mddev->reconfig_sem);
275 }
276
277 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
278 {
279 down(&mddev->reconfig_sem);
280 }
281
282 static inline int mddev_trylock(mddev_t * mddev)
283 {
284 return down_trylock(&mddev->reconfig_sem);
285 }
286
287 static inline void mddev_unlock(mddev_t * mddev)
288 {
289 up(&mddev->reconfig_sem);
290
291 md_wakeup_thread(mddev->thread);
292 }
293
294 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
295 {
296 mdk_rdev_t * rdev;
297 struct list_head *tmp;
298
299 ITERATE_RDEV(mddev,rdev,tmp) {
300 if (rdev->desc_nr == nr)
301 return rdev;
302 }
303 return NULL;
304 }
305
306 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
307 {
308 struct list_head *tmp;
309 mdk_rdev_t *rdev;
310
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->bdev->bd_dev == dev)
313 return rdev;
314 }
315 return NULL;
316 }
317
318 static struct mdk_personality *find_pers(int level, char *clevel)
319 {
320 struct mdk_personality *pers;
321 list_for_each_entry(pers, &pers_list, list) {
322 if (level != LEVEL_NONE && pers->level == level)
323 return pers;
324 if (strcmp(pers->name, clevel)==0)
325 return pers;
326 }
327 return NULL;
328 }
329
330 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
331 {
332 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
333 return MD_NEW_SIZE_BLOCKS(size);
334 }
335
336 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
337 {
338 sector_t size;
339
340 size = rdev->sb_offset;
341
342 if (chunk_size)
343 size &= ~((sector_t)chunk_size/1024 - 1);
344 return size;
345 }
346
347 static int alloc_disk_sb(mdk_rdev_t * rdev)
348 {
349 if (rdev->sb_page)
350 MD_BUG();
351
352 rdev->sb_page = alloc_page(GFP_KERNEL);
353 if (!rdev->sb_page) {
354 printk(KERN_ALERT "md: out of memory.\n");
355 return -EINVAL;
356 }
357
358 return 0;
359 }
360
361 static void free_disk_sb(mdk_rdev_t * rdev)
362 {
363 if (rdev->sb_page) {
364 put_page(rdev->sb_page);
365 rdev->sb_loaded = 0;
366 rdev->sb_page = NULL;
367 rdev->sb_offset = 0;
368 rdev->size = 0;
369 }
370 }
371
372
373 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
374 {
375 mdk_rdev_t *rdev = bio->bi_private;
376 mddev_t *mddev = rdev->mddev;
377 if (bio->bi_size)
378 return 1;
379
380 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
381 md_error(mddev, rdev);
382
383 if (atomic_dec_and_test(&mddev->pending_writes))
384 wake_up(&mddev->sb_wait);
385 bio_put(bio);
386 return 0;
387 }
388
389 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
390 {
391 struct bio *bio2 = bio->bi_private;
392 mdk_rdev_t *rdev = bio2->bi_private;
393 mddev_t *mddev = rdev->mddev;
394 if (bio->bi_size)
395 return 1;
396
397 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
398 error == -EOPNOTSUPP) {
399 unsigned long flags;
400 /* barriers don't appear to be supported :-( */
401 set_bit(BarriersNotsupp, &rdev->flags);
402 mddev->barriers_work = 0;
403 spin_lock_irqsave(&mddev->write_lock, flags);
404 bio2->bi_next = mddev->biolist;
405 mddev->biolist = bio2;
406 spin_unlock_irqrestore(&mddev->write_lock, flags);
407 wake_up(&mddev->sb_wait);
408 bio_put(bio);
409 return 0;
410 }
411 bio_put(bio2);
412 bio->bi_private = rdev;
413 return super_written(bio, bytes_done, error);
414 }
415
416 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
417 sector_t sector, int size, struct page *page)
418 {
419 /* write first size bytes of page to sector of rdev
420 * Increment mddev->pending_writes before returning
421 * and decrement it on completion, waking up sb_wait
422 * if zero is reached.
423 * If an error occurred, call md_error
424 *
425 * As we might need to resubmit the request if BIO_RW_BARRIER
426 * causes ENOTSUPP, we allocate a spare bio...
427 */
428 struct bio *bio = bio_alloc(GFP_NOIO, 1);
429 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
430
431 bio->bi_bdev = rdev->bdev;
432 bio->bi_sector = sector;
433 bio_add_page(bio, page, size, 0);
434 bio->bi_private = rdev;
435 bio->bi_end_io = super_written;
436 bio->bi_rw = rw;
437
438 atomic_inc(&mddev->pending_writes);
439 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
440 struct bio *rbio;
441 rw |= (1<<BIO_RW_BARRIER);
442 rbio = bio_clone(bio, GFP_NOIO);
443 rbio->bi_private = bio;
444 rbio->bi_end_io = super_written_barrier;
445 submit_bio(rw, rbio);
446 } else
447 submit_bio(rw, bio);
448 }
449
450 void md_super_wait(mddev_t *mddev)
451 {
452 /* wait for all superblock writes that were scheduled to complete.
453 * if any had to be retried (due to BARRIER problems), retry them
454 */
455 DEFINE_WAIT(wq);
456 for(;;) {
457 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
458 if (atomic_read(&mddev->pending_writes)==0)
459 break;
460 while (mddev->biolist) {
461 struct bio *bio;
462 spin_lock_irq(&mddev->write_lock);
463 bio = mddev->biolist;
464 mddev->biolist = bio->bi_next ;
465 bio->bi_next = NULL;
466 spin_unlock_irq(&mddev->write_lock);
467 submit_bio(bio->bi_rw, bio);
468 }
469 schedule();
470 }
471 finish_wait(&mddev->sb_wait, &wq);
472 }
473
474 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
475 {
476 if (bio->bi_size)
477 return 1;
478
479 complete((struct completion*)bio->bi_private);
480 return 0;
481 }
482
483 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
484 struct page *page, int rw)
485 {
486 struct bio *bio = bio_alloc(GFP_NOIO, 1);
487 struct completion event;
488 int ret;
489
490 rw |= (1 << BIO_RW_SYNC);
491
492 bio->bi_bdev = bdev;
493 bio->bi_sector = sector;
494 bio_add_page(bio, page, size, 0);
495 init_completion(&event);
496 bio->bi_private = &event;
497 bio->bi_end_io = bi_complete;
498 submit_bio(rw, bio);
499 wait_for_completion(&event);
500
501 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
502 bio_put(bio);
503 return ret;
504 }
505 EXPORT_SYMBOL_GPL(sync_page_io);
506
507 static int read_disk_sb(mdk_rdev_t * rdev, int size)
508 {
509 char b[BDEVNAME_SIZE];
510 if (!rdev->sb_page) {
511 MD_BUG();
512 return -EINVAL;
513 }
514 if (rdev->sb_loaded)
515 return 0;
516
517
518 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
519 goto fail;
520 rdev->sb_loaded = 1;
521 return 0;
522
523 fail:
524 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
525 bdevname(rdev->bdev,b));
526 return -EINVAL;
527 }
528
529 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
530 {
531 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
532 (sb1->set_uuid1 == sb2->set_uuid1) &&
533 (sb1->set_uuid2 == sb2->set_uuid2) &&
534 (sb1->set_uuid3 == sb2->set_uuid3))
535
536 return 1;
537
538 return 0;
539 }
540
541
542 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
543 {
544 int ret;
545 mdp_super_t *tmp1, *tmp2;
546
547 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
548 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
549
550 if (!tmp1 || !tmp2) {
551 ret = 0;
552 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
553 goto abort;
554 }
555
556 *tmp1 = *sb1;
557 *tmp2 = *sb2;
558
559 /*
560 * nr_disks is not constant
561 */
562 tmp1->nr_disks = 0;
563 tmp2->nr_disks = 0;
564
565 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
566 ret = 0;
567 else
568 ret = 1;
569
570 abort:
571 kfree(tmp1);
572 kfree(tmp2);
573 return ret;
574 }
575
576 static unsigned int calc_sb_csum(mdp_super_t * sb)
577 {
578 unsigned int disk_csum, csum;
579
580 disk_csum = sb->sb_csum;
581 sb->sb_csum = 0;
582 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
583 sb->sb_csum = disk_csum;
584 return csum;
585 }
586
587
588 /*
589 * Handle superblock details.
590 * We want to be able to handle multiple superblock formats
591 * so we have a common interface to them all, and an array of
592 * different handlers.
593 * We rely on user-space to write the initial superblock, and support
594 * reading and updating of superblocks.
595 * Interface methods are:
596 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
597 * loads and validates a superblock on dev.
598 * if refdev != NULL, compare superblocks on both devices
599 * Return:
600 * 0 - dev has a superblock that is compatible with refdev
601 * 1 - dev has a superblock that is compatible and newer than refdev
602 * so dev should be used as the refdev in future
603 * -EINVAL superblock incompatible or invalid
604 * -othererror e.g. -EIO
605 *
606 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
607 * Verify that dev is acceptable into mddev.
608 * The first time, mddev->raid_disks will be 0, and data from
609 * dev should be merged in. Subsequent calls check that dev
610 * is new enough. Return 0 or -EINVAL
611 *
612 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
613 * Update the superblock for rdev with data in mddev
614 * This does not write to disc.
615 *
616 */
617
618 struct super_type {
619 char *name;
620 struct module *owner;
621 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
622 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
623 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
624 };
625
626 /*
627 * load_super for 0.90.0
628 */
629 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
630 {
631 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
632 mdp_super_t *sb;
633 int ret;
634 sector_t sb_offset;
635
636 /*
637 * Calculate the position of the superblock,
638 * it's at the end of the disk.
639 *
640 * It also happens to be a multiple of 4Kb.
641 */
642 sb_offset = calc_dev_sboffset(rdev->bdev);
643 rdev->sb_offset = sb_offset;
644
645 ret = read_disk_sb(rdev, MD_SB_BYTES);
646 if (ret) return ret;
647
648 ret = -EINVAL;
649
650 bdevname(rdev->bdev, b);
651 sb = (mdp_super_t*)page_address(rdev->sb_page);
652
653 if (sb->md_magic != MD_SB_MAGIC) {
654 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
655 b);
656 goto abort;
657 }
658
659 if (sb->major_version != 0 ||
660 sb->minor_version != 90) {
661 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
662 sb->major_version, sb->minor_version,
663 b);
664 goto abort;
665 }
666
667 if (sb->raid_disks <= 0)
668 goto abort;
669
670 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
671 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
672 b);
673 goto abort;
674 }
675
676 rdev->preferred_minor = sb->md_minor;
677 rdev->data_offset = 0;
678 rdev->sb_size = MD_SB_BYTES;
679
680 if (sb->level == LEVEL_MULTIPATH)
681 rdev->desc_nr = -1;
682 else
683 rdev->desc_nr = sb->this_disk.number;
684
685 if (refdev == 0)
686 ret = 1;
687 else {
688 __u64 ev1, ev2;
689 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
690 if (!uuid_equal(refsb, sb)) {
691 printk(KERN_WARNING "md: %s has different UUID to %s\n",
692 b, bdevname(refdev->bdev,b2));
693 goto abort;
694 }
695 if (!sb_equal(refsb, sb)) {
696 printk(KERN_WARNING "md: %s has same UUID"
697 " but different superblock to %s\n",
698 b, bdevname(refdev->bdev, b2));
699 goto abort;
700 }
701 ev1 = md_event(sb);
702 ev2 = md_event(refsb);
703 if (ev1 > ev2)
704 ret = 1;
705 else
706 ret = 0;
707 }
708 rdev->size = calc_dev_size(rdev, sb->chunk_size);
709
710 if (rdev->size < sb->size && sb->level > 1)
711 /* "this cannot possibly happen" ... */
712 ret = -EINVAL;
713
714 abort:
715 return ret;
716 }
717
718 /*
719 * validate_super for 0.90.0
720 */
721 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
722 {
723 mdp_disk_t *desc;
724 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
725
726 rdev->raid_disk = -1;
727 rdev->flags = 0;
728 if (mddev->raid_disks == 0) {
729 mddev->major_version = 0;
730 mddev->minor_version = sb->minor_version;
731 mddev->patch_version = sb->patch_version;
732 mddev->persistent = ! sb->not_persistent;
733 mddev->chunk_size = sb->chunk_size;
734 mddev->ctime = sb->ctime;
735 mddev->utime = sb->utime;
736 mddev->level = sb->level;
737 mddev->clevel[0] = 0;
738 mddev->layout = sb->layout;
739 mddev->raid_disks = sb->raid_disks;
740 mddev->size = sb->size;
741 mddev->events = md_event(sb);
742 mddev->bitmap_offset = 0;
743 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
744
745 if (sb->state & (1<<MD_SB_CLEAN))
746 mddev->recovery_cp = MaxSector;
747 else {
748 if (sb->events_hi == sb->cp_events_hi &&
749 sb->events_lo == sb->cp_events_lo) {
750 mddev->recovery_cp = sb->recovery_cp;
751 } else
752 mddev->recovery_cp = 0;
753 }
754
755 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
756 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
757 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
758 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
759
760 mddev->max_disks = MD_SB_DISKS;
761
762 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
763 mddev->bitmap_file == NULL) {
764 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
765 && mddev->level != 10) {
766 /* FIXME use a better test */
767 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
768 return -EINVAL;
769 }
770 mddev->bitmap_offset = mddev->default_bitmap_offset;
771 }
772
773 } else if (mddev->pers == NULL) {
774 /* Insist on good event counter while assembling */
775 __u64 ev1 = md_event(sb);
776 ++ev1;
777 if (ev1 < mddev->events)
778 return -EINVAL;
779 } else if (mddev->bitmap) {
780 /* if adding to array with a bitmap, then we can accept an
781 * older device ... but not too old.
782 */
783 __u64 ev1 = md_event(sb);
784 if (ev1 < mddev->bitmap->events_cleared)
785 return 0;
786 } else /* just a hot-add of a new device, leave raid_disk at -1 */
787 return 0;
788
789 if (mddev->level != LEVEL_MULTIPATH) {
790 desc = sb->disks + rdev->desc_nr;
791
792 if (desc->state & (1<<MD_DISK_FAULTY))
793 set_bit(Faulty, &rdev->flags);
794 else if (desc->state & (1<<MD_DISK_SYNC) &&
795 desc->raid_disk < mddev->raid_disks) {
796 set_bit(In_sync, &rdev->flags);
797 rdev->raid_disk = desc->raid_disk;
798 }
799 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
800 set_bit(WriteMostly, &rdev->flags);
801 } else /* MULTIPATH are always insync */
802 set_bit(In_sync, &rdev->flags);
803 return 0;
804 }
805
806 /*
807 * sync_super for 0.90.0
808 */
809 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
810 {
811 mdp_super_t *sb;
812 struct list_head *tmp;
813 mdk_rdev_t *rdev2;
814 int next_spare = mddev->raid_disks;
815
816
817 /* make rdev->sb match mddev data..
818 *
819 * 1/ zero out disks
820 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
821 * 3/ any empty disks < next_spare become removed
822 *
823 * disks[0] gets initialised to REMOVED because
824 * we cannot be sure from other fields if it has
825 * been initialised or not.
826 */
827 int i;
828 int active=0, working=0,failed=0,spare=0,nr_disks=0;
829
830 rdev->sb_size = MD_SB_BYTES;
831
832 sb = (mdp_super_t*)page_address(rdev->sb_page);
833
834 memset(sb, 0, sizeof(*sb));
835
836 sb->md_magic = MD_SB_MAGIC;
837 sb->major_version = mddev->major_version;
838 sb->minor_version = mddev->minor_version;
839 sb->patch_version = mddev->patch_version;
840 sb->gvalid_words = 0; /* ignored */
841 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
842 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
843 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
844 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
845
846 sb->ctime = mddev->ctime;
847 sb->level = mddev->level;
848 sb->size = mddev->size;
849 sb->raid_disks = mddev->raid_disks;
850 sb->md_minor = mddev->md_minor;
851 sb->not_persistent = !mddev->persistent;
852 sb->utime = mddev->utime;
853 sb->state = 0;
854 sb->events_hi = (mddev->events>>32);
855 sb->events_lo = (u32)mddev->events;
856
857 if (mddev->in_sync)
858 {
859 sb->recovery_cp = mddev->recovery_cp;
860 sb->cp_events_hi = (mddev->events>>32);
861 sb->cp_events_lo = (u32)mddev->events;
862 if (mddev->recovery_cp == MaxSector)
863 sb->state = (1<< MD_SB_CLEAN);
864 } else
865 sb->recovery_cp = 0;
866
867 sb->layout = mddev->layout;
868 sb->chunk_size = mddev->chunk_size;
869
870 if (mddev->bitmap && mddev->bitmap_file == NULL)
871 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
872
873 sb->disks[0].state = (1<<MD_DISK_REMOVED);
874 ITERATE_RDEV(mddev,rdev2,tmp) {
875 mdp_disk_t *d;
876 int desc_nr;
877 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
878 && !test_bit(Faulty, &rdev2->flags))
879 desc_nr = rdev2->raid_disk;
880 else
881 desc_nr = next_spare++;
882 rdev2->desc_nr = desc_nr;
883 d = &sb->disks[rdev2->desc_nr];
884 nr_disks++;
885 d->number = rdev2->desc_nr;
886 d->major = MAJOR(rdev2->bdev->bd_dev);
887 d->minor = MINOR(rdev2->bdev->bd_dev);
888 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
889 && !test_bit(Faulty, &rdev2->flags))
890 d->raid_disk = rdev2->raid_disk;
891 else
892 d->raid_disk = rdev2->desc_nr; /* compatibility */
893 if (test_bit(Faulty, &rdev2->flags)) {
894 d->state = (1<<MD_DISK_FAULTY);
895 failed++;
896 } else if (test_bit(In_sync, &rdev2->flags)) {
897 d->state = (1<<MD_DISK_ACTIVE);
898 d->state |= (1<<MD_DISK_SYNC);
899 active++;
900 working++;
901 } else {
902 d->state = 0;
903 spare++;
904 working++;
905 }
906 if (test_bit(WriteMostly, &rdev2->flags))
907 d->state |= (1<<MD_DISK_WRITEMOSTLY);
908 }
909 /* now set the "removed" and "faulty" bits on any missing devices */
910 for (i=0 ; i < mddev->raid_disks ; i++) {
911 mdp_disk_t *d = &sb->disks[i];
912 if (d->state == 0 && d->number == 0) {
913 d->number = i;
914 d->raid_disk = i;
915 d->state = (1<<MD_DISK_REMOVED);
916 d->state |= (1<<MD_DISK_FAULTY);
917 failed++;
918 }
919 }
920 sb->nr_disks = nr_disks;
921 sb->active_disks = active;
922 sb->working_disks = working;
923 sb->failed_disks = failed;
924 sb->spare_disks = spare;
925
926 sb->this_disk = sb->disks[rdev->desc_nr];
927 sb->sb_csum = calc_sb_csum(sb);
928 }
929
930 /*
931 * version 1 superblock
932 */
933
934 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
935 {
936 unsigned int disk_csum, csum;
937 unsigned long long newcsum;
938 int size = 256 + le32_to_cpu(sb->max_dev)*2;
939 unsigned int *isuper = (unsigned int*)sb;
940 int i;
941
942 disk_csum = sb->sb_csum;
943 sb->sb_csum = 0;
944 newcsum = 0;
945 for (i=0; size>=4; size -= 4 )
946 newcsum += le32_to_cpu(*isuper++);
947
948 if (size == 2)
949 newcsum += le16_to_cpu(*(unsigned short*) isuper);
950
951 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
952 sb->sb_csum = disk_csum;
953 return cpu_to_le32(csum);
954 }
955
956 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
957 {
958 struct mdp_superblock_1 *sb;
959 int ret;
960 sector_t sb_offset;
961 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 int bmask;
963
964 /*
965 * Calculate the position of the superblock.
966 * It is always aligned to a 4K boundary and
967 * depeding on minor_version, it can be:
968 * 0: At least 8K, but less than 12K, from end of device
969 * 1: At start of device
970 * 2: 4K from start of device.
971 */
972 switch(minor_version) {
973 case 0:
974 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
975 sb_offset -= 8*2;
976 sb_offset &= ~(sector_t)(4*2-1);
977 /* convert from sectors to K */
978 sb_offset /= 2;
979 break;
980 case 1:
981 sb_offset = 0;
982 break;
983 case 2:
984 sb_offset = 4;
985 break;
986 default:
987 return -EINVAL;
988 }
989 rdev->sb_offset = sb_offset;
990
991 /* superblock is rarely larger than 1K, but it can be larger,
992 * and it is safe to read 4k, so we do that
993 */
994 ret = read_disk_sb(rdev, 4096);
995 if (ret) return ret;
996
997
998 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
999
1000 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1001 sb->major_version != cpu_to_le32(1) ||
1002 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1003 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1004 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1005 return -EINVAL;
1006
1007 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1008 printk("md: invalid superblock checksum on %s\n",
1009 bdevname(rdev->bdev,b));
1010 return -EINVAL;
1011 }
1012 if (le64_to_cpu(sb->data_size) < 10) {
1013 printk("md: data_size too small on %s\n",
1014 bdevname(rdev->bdev,b));
1015 return -EINVAL;
1016 }
1017 rdev->preferred_minor = 0xffff;
1018 rdev->data_offset = le64_to_cpu(sb->data_offset);
1019 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1020
1021 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1022 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1023 if (rdev->sb_size & bmask)
1024 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1025
1026 if (refdev == 0)
1027 return 1;
1028 else {
1029 __u64 ev1, ev2;
1030 struct mdp_superblock_1 *refsb =
1031 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1032
1033 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1034 sb->level != refsb->level ||
1035 sb->layout != refsb->layout ||
1036 sb->chunksize != refsb->chunksize) {
1037 printk(KERN_WARNING "md: %s has strangely different"
1038 " superblock to %s\n",
1039 bdevname(rdev->bdev,b),
1040 bdevname(refdev->bdev,b2));
1041 return -EINVAL;
1042 }
1043 ev1 = le64_to_cpu(sb->events);
1044 ev2 = le64_to_cpu(refsb->events);
1045
1046 if (ev1 > ev2)
1047 return 1;
1048 }
1049 if (minor_version)
1050 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1051 else
1052 rdev->size = rdev->sb_offset;
1053 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1054 return -EINVAL;
1055 rdev->size = le64_to_cpu(sb->data_size)/2;
1056 if (le32_to_cpu(sb->chunksize))
1057 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1058
1059 if (le32_to_cpu(sb->size) > rdev->size*2)
1060 return -EINVAL;
1061 return 0;
1062 }
1063
1064 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1065 {
1066 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1067
1068 rdev->raid_disk = -1;
1069 rdev->flags = 0;
1070 if (mddev->raid_disks == 0) {
1071 mddev->major_version = 1;
1072 mddev->patch_version = 0;
1073 mddev->persistent = 1;
1074 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1075 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1076 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1077 mddev->level = le32_to_cpu(sb->level);
1078 mddev->clevel[0] = 0;
1079 mddev->layout = le32_to_cpu(sb->layout);
1080 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1081 mddev->size = le64_to_cpu(sb->size)/2;
1082 mddev->events = le64_to_cpu(sb->events);
1083 mddev->bitmap_offset = 0;
1084 mddev->default_bitmap_offset = 1024;
1085
1086 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1087 memcpy(mddev->uuid, sb->set_uuid, 16);
1088
1089 mddev->max_disks = (4096-256)/2;
1090
1091 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1092 mddev->bitmap_file == NULL ) {
1093 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1094 && mddev->level != 10) {
1095 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1096 return -EINVAL;
1097 }
1098 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1099 }
1100 } else if (mddev->pers == NULL) {
1101 /* Insist of good event counter while assembling */
1102 __u64 ev1 = le64_to_cpu(sb->events);
1103 ++ev1;
1104 if (ev1 < mddev->events)
1105 return -EINVAL;
1106 } else if (mddev->bitmap) {
1107 /* If adding to array with a bitmap, then we can accept an
1108 * older device, but not too old.
1109 */
1110 __u64 ev1 = le64_to_cpu(sb->events);
1111 if (ev1 < mddev->bitmap->events_cleared)
1112 return 0;
1113 } else /* just a hot-add of a new device, leave raid_disk at -1 */
1114 return 0;
1115
1116 if (mddev->level != LEVEL_MULTIPATH) {
1117 int role;
1118 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1119 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1120 switch(role) {
1121 case 0xffff: /* spare */
1122 break;
1123 case 0xfffe: /* faulty */
1124 set_bit(Faulty, &rdev->flags);
1125 break;
1126 default:
1127 set_bit(In_sync, &rdev->flags);
1128 rdev->raid_disk = role;
1129 break;
1130 }
1131 if (sb->devflags & WriteMostly1)
1132 set_bit(WriteMostly, &rdev->flags);
1133 } else /* MULTIPATH are always insync */
1134 set_bit(In_sync, &rdev->flags);
1135
1136 return 0;
1137 }
1138
1139 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1140 {
1141 struct mdp_superblock_1 *sb;
1142 struct list_head *tmp;
1143 mdk_rdev_t *rdev2;
1144 int max_dev, i;
1145 /* make rdev->sb match mddev and rdev data. */
1146
1147 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1148
1149 sb->feature_map = 0;
1150 sb->pad0 = 0;
1151 memset(sb->pad1, 0, sizeof(sb->pad1));
1152 memset(sb->pad2, 0, sizeof(sb->pad2));
1153 memset(sb->pad3, 0, sizeof(sb->pad3));
1154
1155 sb->utime = cpu_to_le64((__u64)mddev->utime);
1156 sb->events = cpu_to_le64(mddev->events);
1157 if (mddev->in_sync)
1158 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1159 else
1160 sb->resync_offset = cpu_to_le64(0);
1161
1162 sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1163
1164 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1165 sb->size = cpu_to_le64(mddev->size);
1166
1167 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1168 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1169 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1170 }
1171
1172 max_dev = 0;
1173 ITERATE_RDEV(mddev,rdev2,tmp)
1174 if (rdev2->desc_nr+1 > max_dev)
1175 max_dev = rdev2->desc_nr+1;
1176
1177 sb->max_dev = cpu_to_le32(max_dev);
1178 for (i=0; i<max_dev;i++)
1179 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1180
1181 ITERATE_RDEV(mddev,rdev2,tmp) {
1182 i = rdev2->desc_nr;
1183 if (test_bit(Faulty, &rdev2->flags))
1184 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1185 else if (test_bit(In_sync, &rdev2->flags))
1186 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1187 else
1188 sb->dev_roles[i] = cpu_to_le16(0xffff);
1189 }
1190
1191 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1192 sb->sb_csum = calc_sb_1_csum(sb);
1193 }
1194
1195
1196 static struct super_type super_types[] = {
1197 [0] = {
1198 .name = "0.90.0",
1199 .owner = THIS_MODULE,
1200 .load_super = super_90_load,
1201 .validate_super = super_90_validate,
1202 .sync_super = super_90_sync,
1203 },
1204 [1] = {
1205 .name = "md-1",
1206 .owner = THIS_MODULE,
1207 .load_super = super_1_load,
1208 .validate_super = super_1_validate,
1209 .sync_super = super_1_sync,
1210 },
1211 };
1212
1213 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1214 {
1215 struct list_head *tmp;
1216 mdk_rdev_t *rdev;
1217
1218 ITERATE_RDEV(mddev,rdev,tmp)
1219 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1220 return rdev;
1221
1222 return NULL;
1223 }
1224
1225 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1226 {
1227 struct list_head *tmp;
1228 mdk_rdev_t *rdev;
1229
1230 ITERATE_RDEV(mddev1,rdev,tmp)
1231 if (match_dev_unit(mddev2, rdev))
1232 return 1;
1233
1234 return 0;
1235 }
1236
1237 static LIST_HEAD(pending_raid_disks);
1238
1239 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1240 {
1241 mdk_rdev_t *same_pdev;
1242 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1243 struct kobject *ko;
1244 char *s;
1245
1246 if (rdev->mddev) {
1247 MD_BUG();
1248 return -EINVAL;
1249 }
1250 /* make sure rdev->size exceeds mddev->size */
1251 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1252 if (mddev->pers)
1253 /* Cannot change size, so fail */
1254 return -ENOSPC;
1255 else
1256 mddev->size = rdev->size;
1257 }
1258 same_pdev = match_dev_unit(mddev, rdev);
1259 if (same_pdev)
1260 printk(KERN_WARNING
1261 "%s: WARNING: %s appears to be on the same physical"
1262 " disk as %s. True\n protection against single-disk"
1263 " failure might be compromised.\n",
1264 mdname(mddev), bdevname(rdev->bdev,b),
1265 bdevname(same_pdev->bdev,b2));
1266
1267 /* Verify rdev->desc_nr is unique.
1268 * If it is -1, assign a free number, else
1269 * check number is not in use
1270 */
1271 if (rdev->desc_nr < 0) {
1272 int choice = 0;
1273 if (mddev->pers) choice = mddev->raid_disks;
1274 while (find_rdev_nr(mddev, choice))
1275 choice++;
1276 rdev->desc_nr = choice;
1277 } else {
1278 if (find_rdev_nr(mddev, rdev->desc_nr))
1279 return -EBUSY;
1280 }
1281 bdevname(rdev->bdev,b);
1282 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1283 return -ENOMEM;
1284 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1285 *s = '!';
1286
1287 list_add(&rdev->same_set, &mddev->disks);
1288 rdev->mddev = mddev;
1289 printk(KERN_INFO "md: bind<%s>\n", b);
1290
1291 rdev->kobj.parent = &mddev->kobj;
1292 kobject_add(&rdev->kobj);
1293
1294 if (rdev->bdev->bd_part)
1295 ko = &rdev->bdev->bd_part->kobj;
1296 else
1297 ko = &rdev->bdev->bd_disk->kobj;
1298 sysfs_create_link(&rdev->kobj, ko, "block");
1299 return 0;
1300 }
1301
1302 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1303 {
1304 char b[BDEVNAME_SIZE];
1305 if (!rdev->mddev) {
1306 MD_BUG();
1307 return;
1308 }
1309 list_del_init(&rdev->same_set);
1310 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1311 rdev->mddev = NULL;
1312 sysfs_remove_link(&rdev->kobj, "block");
1313 kobject_del(&rdev->kobj);
1314 }
1315
1316 /*
1317 * prevent the device from being mounted, repartitioned or
1318 * otherwise reused by a RAID array (or any other kernel
1319 * subsystem), by bd_claiming the device.
1320 */
1321 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1322 {
1323 int err = 0;
1324 struct block_device *bdev;
1325 char b[BDEVNAME_SIZE];
1326
1327 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1328 if (IS_ERR(bdev)) {
1329 printk(KERN_ERR "md: could not open %s.\n",
1330 __bdevname(dev, b));
1331 return PTR_ERR(bdev);
1332 }
1333 err = bd_claim(bdev, rdev);
1334 if (err) {
1335 printk(KERN_ERR "md: could not bd_claim %s.\n",
1336 bdevname(bdev, b));
1337 blkdev_put(bdev);
1338 return err;
1339 }
1340 rdev->bdev = bdev;
1341 return err;
1342 }
1343
1344 static void unlock_rdev(mdk_rdev_t *rdev)
1345 {
1346 struct block_device *bdev = rdev->bdev;
1347 rdev->bdev = NULL;
1348 if (!bdev)
1349 MD_BUG();
1350 bd_release(bdev);
1351 blkdev_put(bdev);
1352 }
1353
1354 void md_autodetect_dev(dev_t dev);
1355
1356 static void export_rdev(mdk_rdev_t * rdev)
1357 {
1358 char b[BDEVNAME_SIZE];
1359 printk(KERN_INFO "md: export_rdev(%s)\n",
1360 bdevname(rdev->bdev,b));
1361 if (rdev->mddev)
1362 MD_BUG();
1363 free_disk_sb(rdev);
1364 list_del_init(&rdev->same_set);
1365 #ifndef MODULE
1366 md_autodetect_dev(rdev->bdev->bd_dev);
1367 #endif
1368 unlock_rdev(rdev);
1369 kobject_put(&rdev->kobj);
1370 }
1371
1372 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1373 {
1374 unbind_rdev_from_array(rdev);
1375 export_rdev(rdev);
1376 }
1377
1378 static void export_array(mddev_t *mddev)
1379 {
1380 struct list_head *tmp;
1381 mdk_rdev_t *rdev;
1382
1383 ITERATE_RDEV(mddev,rdev,tmp) {
1384 if (!rdev->mddev) {
1385 MD_BUG();
1386 continue;
1387 }
1388 kick_rdev_from_array(rdev);
1389 }
1390 if (!list_empty(&mddev->disks))
1391 MD_BUG();
1392 mddev->raid_disks = 0;
1393 mddev->major_version = 0;
1394 }
1395
1396 static void print_desc(mdp_disk_t *desc)
1397 {
1398 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1399 desc->major,desc->minor,desc->raid_disk,desc->state);
1400 }
1401
1402 static void print_sb(mdp_super_t *sb)
1403 {
1404 int i;
1405
1406 printk(KERN_INFO
1407 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1408 sb->major_version, sb->minor_version, sb->patch_version,
1409 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1410 sb->ctime);
1411 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1412 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1413 sb->md_minor, sb->layout, sb->chunk_size);
1414 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1415 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1416 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1417 sb->failed_disks, sb->spare_disks,
1418 sb->sb_csum, (unsigned long)sb->events_lo);
1419
1420 printk(KERN_INFO);
1421 for (i = 0; i < MD_SB_DISKS; i++) {
1422 mdp_disk_t *desc;
1423
1424 desc = sb->disks + i;
1425 if (desc->number || desc->major || desc->minor ||
1426 desc->raid_disk || (desc->state && (desc->state != 4))) {
1427 printk(" D %2d: ", i);
1428 print_desc(desc);
1429 }
1430 }
1431 printk(KERN_INFO "md: THIS: ");
1432 print_desc(&sb->this_disk);
1433
1434 }
1435
1436 static void print_rdev(mdk_rdev_t *rdev)
1437 {
1438 char b[BDEVNAME_SIZE];
1439 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1440 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1441 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1442 rdev->desc_nr);
1443 if (rdev->sb_loaded) {
1444 printk(KERN_INFO "md: rdev superblock:\n");
1445 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1446 } else
1447 printk(KERN_INFO "md: no rdev superblock!\n");
1448 }
1449
1450 void md_print_devices(void)
1451 {
1452 struct list_head *tmp, *tmp2;
1453 mdk_rdev_t *rdev;
1454 mddev_t *mddev;
1455 char b[BDEVNAME_SIZE];
1456
1457 printk("\n");
1458 printk("md: **********************************\n");
1459 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1460 printk("md: **********************************\n");
1461 ITERATE_MDDEV(mddev,tmp) {
1462
1463 if (mddev->bitmap)
1464 bitmap_print_sb(mddev->bitmap);
1465 else
1466 printk("%s: ", mdname(mddev));
1467 ITERATE_RDEV(mddev,rdev,tmp2)
1468 printk("<%s>", bdevname(rdev->bdev,b));
1469 printk("\n");
1470
1471 ITERATE_RDEV(mddev,rdev,tmp2)
1472 print_rdev(rdev);
1473 }
1474 printk("md: **********************************\n");
1475 printk("\n");
1476 }
1477
1478
1479 static void sync_sbs(mddev_t * mddev)
1480 {
1481 mdk_rdev_t *rdev;
1482 struct list_head *tmp;
1483
1484 ITERATE_RDEV(mddev,rdev,tmp) {
1485 super_types[mddev->major_version].
1486 sync_super(mddev, rdev);
1487 rdev->sb_loaded = 1;
1488 }
1489 }
1490
1491 static void md_update_sb(mddev_t * mddev)
1492 {
1493 int err;
1494 struct list_head *tmp;
1495 mdk_rdev_t *rdev;
1496 int sync_req;
1497
1498 repeat:
1499 spin_lock_irq(&mddev->write_lock);
1500 sync_req = mddev->in_sync;
1501 mddev->utime = get_seconds();
1502 mddev->events ++;
1503
1504 if (!mddev->events) {
1505 /*
1506 * oops, this 64-bit counter should never wrap.
1507 * Either we are in around ~1 trillion A.C., assuming
1508 * 1 reboot per second, or we have a bug:
1509 */
1510 MD_BUG();
1511 mddev->events --;
1512 }
1513 mddev->sb_dirty = 2;
1514 sync_sbs(mddev);
1515
1516 /*
1517 * do not write anything to disk if using
1518 * nonpersistent superblocks
1519 */
1520 if (!mddev->persistent) {
1521 mddev->sb_dirty = 0;
1522 spin_unlock_irq(&mddev->write_lock);
1523 wake_up(&mddev->sb_wait);
1524 return;
1525 }
1526 spin_unlock_irq(&mddev->write_lock);
1527
1528 dprintk(KERN_INFO
1529 "md: updating %s RAID superblock on device (in sync %d)\n",
1530 mdname(mddev),mddev->in_sync);
1531
1532 err = bitmap_update_sb(mddev->bitmap);
1533 ITERATE_RDEV(mddev,rdev,tmp) {
1534 char b[BDEVNAME_SIZE];
1535 dprintk(KERN_INFO "md: ");
1536 if (test_bit(Faulty, &rdev->flags))
1537 dprintk("(skipping faulty ");
1538
1539 dprintk("%s ", bdevname(rdev->bdev,b));
1540 if (!test_bit(Faulty, &rdev->flags)) {
1541 md_super_write(mddev,rdev,
1542 rdev->sb_offset<<1, rdev->sb_size,
1543 rdev->sb_page);
1544 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1545 bdevname(rdev->bdev,b),
1546 (unsigned long long)rdev->sb_offset);
1547
1548 } else
1549 dprintk(")\n");
1550 if (mddev->level == LEVEL_MULTIPATH)
1551 /* only need to write one superblock... */
1552 break;
1553 }
1554 md_super_wait(mddev);
1555 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1556
1557 spin_lock_irq(&mddev->write_lock);
1558 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1559 /* have to write it out again */
1560 spin_unlock_irq(&mddev->write_lock);
1561 goto repeat;
1562 }
1563 mddev->sb_dirty = 0;
1564 spin_unlock_irq(&mddev->write_lock);
1565 wake_up(&mddev->sb_wait);
1566
1567 }
1568
1569 /* words written to sysfs files may, or my not, be \n terminated.
1570 * We want to accept with case. For this we use cmd_match.
1571 */
1572 static int cmd_match(const char *cmd, const char *str)
1573 {
1574 /* See if cmd, written into a sysfs file, matches
1575 * str. They must either be the same, or cmd can
1576 * have a trailing newline
1577 */
1578 while (*cmd && *str && *cmd == *str) {
1579 cmd++;
1580 str++;
1581 }
1582 if (*cmd == '\n')
1583 cmd++;
1584 if (*str || *cmd)
1585 return 0;
1586 return 1;
1587 }
1588
1589 struct rdev_sysfs_entry {
1590 struct attribute attr;
1591 ssize_t (*show)(mdk_rdev_t *, char *);
1592 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1593 };
1594
1595 static ssize_t
1596 state_show(mdk_rdev_t *rdev, char *page)
1597 {
1598 char *sep = "";
1599 int len=0;
1600
1601 if (test_bit(Faulty, &rdev->flags)) {
1602 len+= sprintf(page+len, "%sfaulty",sep);
1603 sep = ",";
1604 }
1605 if (test_bit(In_sync, &rdev->flags)) {
1606 len += sprintf(page+len, "%sin_sync",sep);
1607 sep = ",";
1608 }
1609 if (!test_bit(Faulty, &rdev->flags) &&
1610 !test_bit(In_sync, &rdev->flags)) {
1611 len += sprintf(page+len, "%sspare", sep);
1612 sep = ",";
1613 }
1614 return len+sprintf(page+len, "\n");
1615 }
1616
1617 static struct rdev_sysfs_entry
1618 rdev_state = __ATTR_RO(state);
1619
1620 static ssize_t
1621 super_show(mdk_rdev_t *rdev, char *page)
1622 {
1623 if (rdev->sb_loaded && rdev->sb_size) {
1624 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1625 return rdev->sb_size;
1626 } else
1627 return 0;
1628 }
1629 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1630
1631 static ssize_t
1632 errors_show(mdk_rdev_t *rdev, char *page)
1633 {
1634 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1635 }
1636
1637 static ssize_t
1638 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1639 {
1640 char *e;
1641 unsigned long n = simple_strtoul(buf, &e, 10);
1642 if (*buf && (*e == 0 || *e == '\n')) {
1643 atomic_set(&rdev->corrected_errors, n);
1644 return len;
1645 }
1646 return -EINVAL;
1647 }
1648 static struct rdev_sysfs_entry rdev_errors =
1649 __ATTR(errors, 0644, errors_show, errors_store);
1650
1651 static ssize_t
1652 slot_show(mdk_rdev_t *rdev, char *page)
1653 {
1654 if (rdev->raid_disk < 0)
1655 return sprintf(page, "none\n");
1656 else
1657 return sprintf(page, "%d\n", rdev->raid_disk);
1658 }
1659
1660 static ssize_t
1661 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1662 {
1663 char *e;
1664 int slot = simple_strtoul(buf, &e, 10);
1665 if (strncmp(buf, "none", 4)==0)
1666 slot = -1;
1667 else if (e==buf || (*e && *e!= '\n'))
1668 return -EINVAL;
1669 if (rdev->mddev->pers)
1670 /* Cannot set slot in active array (yet) */
1671 return -EBUSY;
1672 if (slot >= rdev->mddev->raid_disks)
1673 return -ENOSPC;
1674 rdev->raid_disk = slot;
1675 /* assume it is working */
1676 rdev->flags = 0;
1677 set_bit(In_sync, &rdev->flags);
1678 return len;
1679 }
1680
1681
1682 static struct rdev_sysfs_entry rdev_slot =
1683 __ATTR(slot, 0644, slot_show, slot_store);
1684
1685 static ssize_t
1686 offset_show(mdk_rdev_t *rdev, char *page)
1687 {
1688 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1689 }
1690
1691 static ssize_t
1692 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1693 {
1694 char *e;
1695 unsigned long long offset = simple_strtoull(buf, &e, 10);
1696 if (e==buf || (*e && *e != '\n'))
1697 return -EINVAL;
1698 if (rdev->mddev->pers)
1699 return -EBUSY;
1700 rdev->data_offset = offset;
1701 return len;
1702 }
1703
1704 static struct rdev_sysfs_entry rdev_offset =
1705 __ATTR(offset, 0644, offset_show, offset_store);
1706
1707 static ssize_t
1708 rdev_size_show(mdk_rdev_t *rdev, char *page)
1709 {
1710 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1711 }
1712
1713 static ssize_t
1714 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1715 {
1716 char *e;
1717 unsigned long long size = simple_strtoull(buf, &e, 10);
1718 if (e==buf || (*e && *e != '\n'))
1719 return -EINVAL;
1720 if (rdev->mddev->pers)
1721 return -EBUSY;
1722 rdev->size = size;
1723 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1724 rdev->mddev->size = size;
1725 return len;
1726 }
1727
1728 static struct rdev_sysfs_entry rdev_size =
1729 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1730
1731 static struct attribute *rdev_default_attrs[] = {
1732 &rdev_state.attr,
1733 &rdev_super.attr,
1734 &rdev_errors.attr,
1735 &rdev_slot.attr,
1736 &rdev_offset.attr,
1737 &rdev_size.attr,
1738 NULL,
1739 };
1740 static ssize_t
1741 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1742 {
1743 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1744 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1745
1746 if (!entry->show)
1747 return -EIO;
1748 return entry->show(rdev, page);
1749 }
1750
1751 static ssize_t
1752 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1753 const char *page, size_t length)
1754 {
1755 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1756 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1757
1758 if (!entry->store)
1759 return -EIO;
1760 return entry->store(rdev, page, length);
1761 }
1762
1763 static void rdev_free(struct kobject *ko)
1764 {
1765 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1766 kfree(rdev);
1767 }
1768 static struct sysfs_ops rdev_sysfs_ops = {
1769 .show = rdev_attr_show,
1770 .store = rdev_attr_store,
1771 };
1772 static struct kobj_type rdev_ktype = {
1773 .release = rdev_free,
1774 .sysfs_ops = &rdev_sysfs_ops,
1775 .default_attrs = rdev_default_attrs,
1776 };
1777
1778 /*
1779 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1780 *
1781 * mark the device faulty if:
1782 *
1783 * - the device is nonexistent (zero size)
1784 * - the device has no valid superblock
1785 *
1786 * a faulty rdev _never_ has rdev->sb set.
1787 */
1788 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1789 {
1790 char b[BDEVNAME_SIZE];
1791 int err;
1792 mdk_rdev_t *rdev;
1793 sector_t size;
1794
1795 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1796 if (!rdev) {
1797 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1798 return ERR_PTR(-ENOMEM);
1799 }
1800
1801 if ((err = alloc_disk_sb(rdev)))
1802 goto abort_free;
1803
1804 err = lock_rdev(rdev, newdev);
1805 if (err)
1806 goto abort_free;
1807
1808 rdev->kobj.parent = NULL;
1809 rdev->kobj.ktype = &rdev_ktype;
1810 kobject_init(&rdev->kobj);
1811
1812 rdev->desc_nr = -1;
1813 rdev->flags = 0;
1814 rdev->data_offset = 0;
1815 atomic_set(&rdev->nr_pending, 0);
1816 atomic_set(&rdev->read_errors, 0);
1817 atomic_set(&rdev->corrected_errors, 0);
1818
1819 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1820 if (!size) {
1821 printk(KERN_WARNING
1822 "md: %s has zero or unknown size, marking faulty!\n",
1823 bdevname(rdev->bdev,b));
1824 err = -EINVAL;
1825 goto abort_free;
1826 }
1827
1828 if (super_format >= 0) {
1829 err = super_types[super_format].
1830 load_super(rdev, NULL, super_minor);
1831 if (err == -EINVAL) {
1832 printk(KERN_WARNING
1833 "md: %s has invalid sb, not importing!\n",
1834 bdevname(rdev->bdev,b));
1835 goto abort_free;
1836 }
1837 if (err < 0) {
1838 printk(KERN_WARNING
1839 "md: could not read %s's sb, not importing!\n",
1840 bdevname(rdev->bdev,b));
1841 goto abort_free;
1842 }
1843 }
1844 INIT_LIST_HEAD(&rdev->same_set);
1845
1846 return rdev;
1847
1848 abort_free:
1849 if (rdev->sb_page) {
1850 if (rdev->bdev)
1851 unlock_rdev(rdev);
1852 free_disk_sb(rdev);
1853 }
1854 kfree(rdev);
1855 return ERR_PTR(err);
1856 }
1857
1858 /*
1859 * Check a full RAID array for plausibility
1860 */
1861
1862
1863 static void analyze_sbs(mddev_t * mddev)
1864 {
1865 int i;
1866 struct list_head *tmp;
1867 mdk_rdev_t *rdev, *freshest;
1868 char b[BDEVNAME_SIZE];
1869
1870 freshest = NULL;
1871 ITERATE_RDEV(mddev,rdev,tmp)
1872 switch (super_types[mddev->major_version].
1873 load_super(rdev, freshest, mddev->minor_version)) {
1874 case 1:
1875 freshest = rdev;
1876 break;
1877 case 0:
1878 break;
1879 default:
1880 printk( KERN_ERR \
1881 "md: fatal superblock inconsistency in %s"
1882 " -- removing from array\n",
1883 bdevname(rdev->bdev,b));
1884 kick_rdev_from_array(rdev);
1885 }
1886
1887
1888 super_types[mddev->major_version].
1889 validate_super(mddev, freshest);
1890
1891 i = 0;
1892 ITERATE_RDEV(mddev,rdev,tmp) {
1893 if (rdev != freshest)
1894 if (super_types[mddev->major_version].
1895 validate_super(mddev, rdev)) {
1896 printk(KERN_WARNING "md: kicking non-fresh %s"
1897 " from array!\n",
1898 bdevname(rdev->bdev,b));
1899 kick_rdev_from_array(rdev);
1900 continue;
1901 }
1902 if (mddev->level == LEVEL_MULTIPATH) {
1903 rdev->desc_nr = i++;
1904 rdev->raid_disk = rdev->desc_nr;
1905 set_bit(In_sync, &rdev->flags);
1906 }
1907 }
1908
1909
1910
1911 if (mddev->recovery_cp != MaxSector &&
1912 mddev->level >= 1)
1913 printk(KERN_ERR "md: %s: raid array is not clean"
1914 " -- starting background reconstruction\n",
1915 mdname(mddev));
1916
1917 }
1918
1919 static ssize_t
1920 level_show(mddev_t *mddev, char *page)
1921 {
1922 struct mdk_personality *p = mddev->pers;
1923 if (p)
1924 return sprintf(page, "%s\n", p->name);
1925 else if (mddev->clevel[0])
1926 return sprintf(page, "%s\n", mddev->clevel);
1927 else if (mddev->level != LEVEL_NONE)
1928 return sprintf(page, "%d\n", mddev->level);
1929 else
1930 return 0;
1931 }
1932
1933 static ssize_t
1934 level_store(mddev_t *mddev, const char *buf, size_t len)
1935 {
1936 int rv = len;
1937 if (mddev->pers)
1938 return -EBUSY;
1939 if (len == 0)
1940 return 0;
1941 if (len >= sizeof(mddev->clevel))
1942 return -ENOSPC;
1943 strncpy(mddev->clevel, buf, len);
1944 if (mddev->clevel[len-1] == '\n')
1945 len--;
1946 mddev->clevel[len] = 0;
1947 mddev->level = LEVEL_NONE;
1948 return rv;
1949 }
1950
1951 static struct md_sysfs_entry md_level =
1952 __ATTR(level, 0644, level_show, level_store);
1953
1954 static ssize_t
1955 raid_disks_show(mddev_t *mddev, char *page)
1956 {
1957 if (mddev->raid_disks == 0)
1958 return 0;
1959 return sprintf(page, "%d\n", mddev->raid_disks);
1960 }
1961
1962 static int update_raid_disks(mddev_t *mddev, int raid_disks);
1963
1964 static ssize_t
1965 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
1966 {
1967 /* can only set raid_disks if array is not yet active */
1968 char *e;
1969 int rv = 0;
1970 unsigned long n = simple_strtoul(buf, &e, 10);
1971
1972 if (!*buf || (*e && *e != '\n'))
1973 return -EINVAL;
1974
1975 if (mddev->pers)
1976 rv = update_raid_disks(mddev, n);
1977 else
1978 mddev->raid_disks = n;
1979 return rv ? rv : len;
1980 }
1981 static struct md_sysfs_entry md_raid_disks =
1982 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
1983
1984 static ssize_t
1985 chunk_size_show(mddev_t *mddev, char *page)
1986 {
1987 return sprintf(page, "%d\n", mddev->chunk_size);
1988 }
1989
1990 static ssize_t
1991 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1992 {
1993 /* can only set chunk_size if array is not yet active */
1994 char *e;
1995 unsigned long n = simple_strtoul(buf, &e, 10);
1996
1997 if (mddev->pers)
1998 return -EBUSY;
1999 if (!*buf || (*e && *e != '\n'))
2000 return -EINVAL;
2001
2002 mddev->chunk_size = n;
2003 return len;
2004 }
2005 static struct md_sysfs_entry md_chunk_size =
2006 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2007
2008 static ssize_t
2009 null_show(mddev_t *mddev, char *page)
2010 {
2011 return -EINVAL;
2012 }
2013
2014 static ssize_t
2015 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2016 {
2017 /* buf must be %d:%d\n? giving major and minor numbers */
2018 /* The new device is added to the array.
2019 * If the array has a persistent superblock, we read the
2020 * superblock to initialise info and check validity.
2021 * Otherwise, only checking done is that in bind_rdev_to_array,
2022 * which mainly checks size.
2023 */
2024 char *e;
2025 int major = simple_strtoul(buf, &e, 10);
2026 int minor;
2027 dev_t dev;
2028 mdk_rdev_t *rdev;
2029 int err;
2030
2031 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2032 return -EINVAL;
2033 minor = simple_strtoul(e+1, &e, 10);
2034 if (*e && *e != '\n')
2035 return -EINVAL;
2036 dev = MKDEV(major, minor);
2037 if (major != MAJOR(dev) ||
2038 minor != MINOR(dev))
2039 return -EOVERFLOW;
2040
2041
2042 if (mddev->persistent) {
2043 rdev = md_import_device(dev, mddev->major_version,
2044 mddev->minor_version);
2045 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2046 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2047 mdk_rdev_t, same_set);
2048 err = super_types[mddev->major_version]
2049 .load_super(rdev, rdev0, mddev->minor_version);
2050 if (err < 0)
2051 goto out;
2052 }
2053 } else
2054 rdev = md_import_device(dev, -1, -1);
2055
2056 if (IS_ERR(rdev))
2057 return PTR_ERR(rdev);
2058 err = bind_rdev_to_array(rdev, mddev);
2059 out:
2060 if (err)
2061 export_rdev(rdev);
2062 return err ? err : len;
2063 }
2064
2065 static struct md_sysfs_entry md_new_device =
2066 __ATTR(new_dev, 0200, null_show, new_dev_store);
2067
2068 static ssize_t
2069 size_show(mddev_t *mddev, char *page)
2070 {
2071 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2072 }
2073
2074 static int update_size(mddev_t *mddev, unsigned long size);
2075
2076 static ssize_t
2077 size_store(mddev_t *mddev, const char *buf, size_t len)
2078 {
2079 /* If array is inactive, we can reduce the component size, but
2080 * not increase it (except from 0).
2081 * If array is active, we can try an on-line resize
2082 */
2083 char *e;
2084 int err = 0;
2085 unsigned long long size = simple_strtoull(buf, &e, 10);
2086 if (!*buf || *buf == '\n' ||
2087 (*e && *e != '\n'))
2088 return -EINVAL;
2089
2090 if (mddev->pers) {
2091 err = update_size(mddev, size);
2092 md_update_sb(mddev);
2093 } else {
2094 if (mddev->size == 0 ||
2095 mddev->size > size)
2096 mddev->size = size;
2097 else
2098 err = -ENOSPC;
2099 }
2100 return err ? err : len;
2101 }
2102
2103 static struct md_sysfs_entry md_size =
2104 __ATTR(component_size, 0644, size_show, size_store);
2105
2106
2107 /* Metdata version.
2108 * This is either 'none' for arrays with externally managed metadata,
2109 * or N.M for internally known formats
2110 */
2111 static ssize_t
2112 metadata_show(mddev_t *mddev, char *page)
2113 {
2114 if (mddev->persistent)
2115 return sprintf(page, "%d.%d\n",
2116 mddev->major_version, mddev->minor_version);
2117 else
2118 return sprintf(page, "none\n");
2119 }
2120
2121 static ssize_t
2122 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2123 {
2124 int major, minor;
2125 char *e;
2126 if (!list_empty(&mddev->disks))
2127 return -EBUSY;
2128
2129 if (cmd_match(buf, "none")) {
2130 mddev->persistent = 0;
2131 mddev->major_version = 0;
2132 mddev->minor_version = 90;
2133 return len;
2134 }
2135 major = simple_strtoul(buf, &e, 10);
2136 if (e==buf || *e != '.')
2137 return -EINVAL;
2138 buf = e+1;
2139 minor = simple_strtoul(buf, &e, 10);
2140 if (e==buf || *e != '\n')
2141 return -EINVAL;
2142 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2143 super_types[major].name == NULL)
2144 return -ENOENT;
2145 mddev->major_version = major;
2146 mddev->minor_version = minor;
2147 mddev->persistent = 1;
2148 return len;
2149 }
2150
2151 static struct md_sysfs_entry md_metadata =
2152 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2153
2154 static ssize_t
2155 action_show(mddev_t *mddev, char *page)
2156 {
2157 char *type = "idle";
2158 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2159 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2160 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2161 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2162 type = "resync";
2163 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2164 type = "check";
2165 else
2166 type = "repair";
2167 } else
2168 type = "recover";
2169 }
2170 return sprintf(page, "%s\n", type);
2171 }
2172
2173 static ssize_t
2174 action_store(mddev_t *mddev, const char *page, size_t len)
2175 {
2176 if (!mddev->pers || !mddev->pers->sync_request)
2177 return -EINVAL;
2178
2179 if (cmd_match(page, "idle")) {
2180 if (mddev->sync_thread) {
2181 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2182 md_unregister_thread(mddev->sync_thread);
2183 mddev->sync_thread = NULL;
2184 mddev->recovery = 0;
2185 }
2186 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2187 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2188 return -EBUSY;
2189 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2191 else {
2192 if (cmd_match(page, "check"))
2193 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2194 else if (cmd_match(page, "repair"))
2195 return -EINVAL;
2196 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2197 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2198 }
2199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2200 md_wakeup_thread(mddev->thread);
2201 return len;
2202 }
2203
2204 static ssize_t
2205 mismatch_cnt_show(mddev_t *mddev, char *page)
2206 {
2207 return sprintf(page, "%llu\n",
2208 (unsigned long long) mddev->resync_mismatches);
2209 }
2210
2211 static struct md_sysfs_entry
2212 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2213
2214
2215 static struct md_sysfs_entry
2216 md_mismatches = __ATTR_RO(mismatch_cnt);
2217
2218 static ssize_t
2219 sync_min_show(mddev_t *mddev, char *page)
2220 {
2221 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2222 mddev->sync_speed_min ? "local": "system");
2223 }
2224
2225 static ssize_t
2226 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2227 {
2228 int min;
2229 char *e;
2230 if (strncmp(buf, "system", 6)==0) {
2231 mddev->sync_speed_min = 0;
2232 return len;
2233 }
2234 min = simple_strtoul(buf, &e, 10);
2235 if (buf == e || (*e && *e != '\n') || min <= 0)
2236 return -EINVAL;
2237 mddev->sync_speed_min = min;
2238 return len;
2239 }
2240
2241 static struct md_sysfs_entry md_sync_min =
2242 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2243
2244 static ssize_t
2245 sync_max_show(mddev_t *mddev, char *page)
2246 {
2247 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2248 mddev->sync_speed_max ? "local": "system");
2249 }
2250
2251 static ssize_t
2252 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2253 {
2254 int max;
2255 char *e;
2256 if (strncmp(buf, "system", 6)==0) {
2257 mddev->sync_speed_max = 0;
2258 return len;
2259 }
2260 max = simple_strtoul(buf, &e, 10);
2261 if (buf == e || (*e && *e != '\n') || max <= 0)
2262 return -EINVAL;
2263 mddev->sync_speed_max = max;
2264 return len;
2265 }
2266
2267 static struct md_sysfs_entry md_sync_max =
2268 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2269
2270
2271 static ssize_t
2272 sync_speed_show(mddev_t *mddev, char *page)
2273 {
2274 unsigned long resync, dt, db;
2275 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2276 dt = ((jiffies - mddev->resync_mark) / HZ);
2277 if (!dt) dt++;
2278 db = resync - (mddev->resync_mark_cnt);
2279 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2280 }
2281
2282 static struct md_sysfs_entry
2283 md_sync_speed = __ATTR_RO(sync_speed);
2284
2285 static ssize_t
2286 sync_completed_show(mddev_t *mddev, char *page)
2287 {
2288 unsigned long max_blocks, resync;
2289
2290 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2291 max_blocks = mddev->resync_max_sectors;
2292 else
2293 max_blocks = mddev->size << 1;
2294
2295 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2296 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2297 }
2298
2299 static struct md_sysfs_entry
2300 md_sync_completed = __ATTR_RO(sync_completed);
2301
2302 static struct attribute *md_default_attrs[] = {
2303 &md_level.attr,
2304 &md_raid_disks.attr,
2305 &md_chunk_size.attr,
2306 &md_size.attr,
2307 &md_metadata.attr,
2308 &md_new_device.attr,
2309 NULL,
2310 };
2311
2312 static struct attribute *md_redundancy_attrs[] = {
2313 &md_scan_mode.attr,
2314 &md_mismatches.attr,
2315 &md_sync_min.attr,
2316 &md_sync_max.attr,
2317 &md_sync_speed.attr,
2318 &md_sync_completed.attr,
2319 NULL,
2320 };
2321 static struct attribute_group md_redundancy_group = {
2322 .name = NULL,
2323 .attrs = md_redundancy_attrs,
2324 };
2325
2326
2327 static ssize_t
2328 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2329 {
2330 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2331 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2332 ssize_t rv;
2333
2334 if (!entry->show)
2335 return -EIO;
2336 mddev_lock(mddev);
2337 rv = entry->show(mddev, page);
2338 mddev_unlock(mddev);
2339 return rv;
2340 }
2341
2342 static ssize_t
2343 md_attr_store(struct kobject *kobj, struct attribute *attr,
2344 const char *page, size_t length)
2345 {
2346 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2347 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2348 ssize_t rv;
2349
2350 if (!entry->store)
2351 return -EIO;
2352 mddev_lock(mddev);
2353 rv = entry->store(mddev, page, length);
2354 mddev_unlock(mddev);
2355 return rv;
2356 }
2357
2358 static void md_free(struct kobject *ko)
2359 {
2360 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2361 kfree(mddev);
2362 }
2363
2364 static struct sysfs_ops md_sysfs_ops = {
2365 .show = md_attr_show,
2366 .store = md_attr_store,
2367 };
2368 static struct kobj_type md_ktype = {
2369 .release = md_free,
2370 .sysfs_ops = &md_sysfs_ops,
2371 .default_attrs = md_default_attrs,
2372 };
2373
2374 int mdp_major = 0;
2375
2376 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2377 {
2378 static DECLARE_MUTEX(disks_sem);
2379 mddev_t *mddev = mddev_find(dev);
2380 struct gendisk *disk;
2381 int partitioned = (MAJOR(dev) != MD_MAJOR);
2382 int shift = partitioned ? MdpMinorShift : 0;
2383 int unit = MINOR(dev) >> shift;
2384
2385 if (!mddev)
2386 return NULL;
2387
2388 down(&disks_sem);
2389 if (mddev->gendisk) {
2390 up(&disks_sem);
2391 mddev_put(mddev);
2392 return NULL;
2393 }
2394 disk = alloc_disk(1 << shift);
2395 if (!disk) {
2396 up(&disks_sem);
2397 mddev_put(mddev);
2398 return NULL;
2399 }
2400 disk->major = MAJOR(dev);
2401 disk->first_minor = unit << shift;
2402 if (partitioned) {
2403 sprintf(disk->disk_name, "md_d%d", unit);
2404 sprintf(disk->devfs_name, "md/d%d", unit);
2405 } else {
2406 sprintf(disk->disk_name, "md%d", unit);
2407 sprintf(disk->devfs_name, "md/%d", unit);
2408 }
2409 disk->fops = &md_fops;
2410 disk->private_data = mddev;
2411 disk->queue = mddev->queue;
2412 add_disk(disk);
2413 mddev->gendisk = disk;
2414 up(&disks_sem);
2415 mddev->kobj.parent = &disk->kobj;
2416 mddev->kobj.k_name = NULL;
2417 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2418 mddev->kobj.ktype = &md_ktype;
2419 kobject_register(&mddev->kobj);
2420 return NULL;
2421 }
2422
2423 void md_wakeup_thread(mdk_thread_t *thread);
2424
2425 static void md_safemode_timeout(unsigned long data)
2426 {
2427 mddev_t *mddev = (mddev_t *) data;
2428
2429 mddev->safemode = 1;
2430 md_wakeup_thread(mddev->thread);
2431 }
2432
2433 static int start_dirty_degraded;
2434
2435 static int do_md_run(mddev_t * mddev)
2436 {
2437 int err;
2438 int chunk_size;
2439 struct list_head *tmp;
2440 mdk_rdev_t *rdev;
2441 struct gendisk *disk;
2442 struct mdk_personality *pers;
2443 char b[BDEVNAME_SIZE];
2444
2445 if (list_empty(&mddev->disks))
2446 /* cannot run an array with no devices.. */
2447 return -EINVAL;
2448
2449 if (mddev->pers)
2450 return -EBUSY;
2451
2452 /*
2453 * Analyze all RAID superblock(s)
2454 */
2455 if (!mddev->raid_disks)
2456 analyze_sbs(mddev);
2457
2458 chunk_size = mddev->chunk_size;
2459
2460 if (chunk_size) {
2461 if (chunk_size > MAX_CHUNK_SIZE) {
2462 printk(KERN_ERR "too big chunk_size: %d > %d\n",
2463 chunk_size, MAX_CHUNK_SIZE);
2464 return -EINVAL;
2465 }
2466 /*
2467 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2468 */
2469 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2470 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2471 return -EINVAL;
2472 }
2473 if (chunk_size < PAGE_SIZE) {
2474 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2475 chunk_size, PAGE_SIZE);
2476 return -EINVAL;
2477 }
2478
2479 /* devices must have minimum size of one chunk */
2480 ITERATE_RDEV(mddev,rdev,tmp) {
2481 if (test_bit(Faulty, &rdev->flags))
2482 continue;
2483 if (rdev->size < chunk_size / 1024) {
2484 printk(KERN_WARNING
2485 "md: Dev %s smaller than chunk_size:"
2486 " %lluk < %dk\n",
2487 bdevname(rdev->bdev,b),
2488 (unsigned long long)rdev->size,
2489 chunk_size / 1024);
2490 return -EINVAL;
2491 }
2492 }
2493 }
2494
2495 #ifdef CONFIG_KMOD
2496 if (mddev->level != LEVEL_NONE)
2497 request_module("md-level-%d", mddev->level);
2498 else if (mddev->clevel[0])
2499 request_module("md-%s", mddev->clevel);
2500 #endif
2501
2502 /*
2503 * Drop all container device buffers, from now on
2504 * the only valid external interface is through the md
2505 * device.
2506 * Also find largest hardsector size
2507 */
2508 ITERATE_RDEV(mddev,rdev,tmp) {
2509 if (test_bit(Faulty, &rdev->flags))
2510 continue;
2511 sync_blockdev(rdev->bdev);
2512 invalidate_bdev(rdev->bdev, 0);
2513 }
2514
2515 md_probe(mddev->unit, NULL, NULL);
2516 disk = mddev->gendisk;
2517 if (!disk)
2518 return -ENOMEM;
2519
2520 spin_lock(&pers_lock);
2521 pers = find_pers(mddev->level, mddev->clevel);
2522 if (!pers || !try_module_get(pers->owner)) {
2523 spin_unlock(&pers_lock);
2524 if (mddev->level != LEVEL_NONE)
2525 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2526 mddev->level);
2527 else
2528 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2529 mddev->clevel);
2530 return -EINVAL;
2531 }
2532 mddev->pers = pers;
2533 spin_unlock(&pers_lock);
2534 mddev->level = pers->level;
2535 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2536
2537 mddev->recovery = 0;
2538 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2539 mddev->barriers_work = 1;
2540 mddev->ok_start_degraded = start_dirty_degraded;
2541
2542 if (start_readonly)
2543 mddev->ro = 2; /* read-only, but switch on first write */
2544
2545 err = mddev->pers->run(mddev);
2546 if (!err && mddev->pers->sync_request) {
2547 err = bitmap_create(mddev);
2548 if (err) {
2549 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2550 mdname(mddev), err);
2551 mddev->pers->stop(mddev);
2552 }
2553 }
2554 if (err) {
2555 printk(KERN_ERR "md: pers->run() failed ...\n");
2556 module_put(mddev->pers->owner);
2557 mddev->pers = NULL;
2558 bitmap_destroy(mddev);
2559 return err;
2560 }
2561 if (mddev->pers->sync_request)
2562 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2563 else if (mddev->ro == 2) /* auto-readonly not meaningful */
2564 mddev->ro = 0;
2565
2566 atomic_set(&mddev->writes_pending,0);
2567 mddev->safemode = 0;
2568 mddev->safemode_timer.function = md_safemode_timeout;
2569 mddev->safemode_timer.data = (unsigned long) mddev;
2570 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2571 mddev->in_sync = 1;
2572
2573 ITERATE_RDEV(mddev,rdev,tmp)
2574 if (rdev->raid_disk >= 0) {
2575 char nm[20];
2576 sprintf(nm, "rd%d", rdev->raid_disk);
2577 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2578 }
2579
2580 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2581 md_wakeup_thread(mddev->thread);
2582
2583 if (mddev->sb_dirty)
2584 md_update_sb(mddev);
2585
2586 set_capacity(disk, mddev->array_size<<1);
2587
2588 /* If we call blk_queue_make_request here, it will
2589 * re-initialise max_sectors etc which may have been
2590 * refined inside -> run. So just set the bits we need to set.
2591 * Most initialisation happended when we called
2592 * blk_queue_make_request(..., md_fail_request)
2593 * earlier.
2594 */
2595 mddev->queue->queuedata = mddev;
2596 mddev->queue->make_request_fn = mddev->pers->make_request;
2597
2598 mddev->changed = 1;
2599 md_new_event(mddev);
2600 return 0;
2601 }
2602
2603 static int restart_array(mddev_t *mddev)
2604 {
2605 struct gendisk *disk = mddev->gendisk;
2606 int err;
2607
2608 /*
2609 * Complain if it has no devices
2610 */
2611 err = -ENXIO;
2612 if (list_empty(&mddev->disks))
2613 goto out;
2614
2615 if (mddev->pers) {
2616 err = -EBUSY;
2617 if (!mddev->ro)
2618 goto out;
2619
2620 mddev->safemode = 0;
2621 mddev->ro = 0;
2622 set_disk_ro(disk, 0);
2623
2624 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2625 mdname(mddev));
2626 /*
2627 * Kick recovery or resync if necessary
2628 */
2629 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2630 md_wakeup_thread(mddev->thread);
2631 err = 0;
2632 } else {
2633 printk(KERN_ERR "md: %s has no personality assigned.\n",
2634 mdname(mddev));
2635 err = -EINVAL;
2636 }
2637
2638 out:
2639 return err;
2640 }
2641
2642 static int do_md_stop(mddev_t * mddev, int ro)
2643 {
2644 int err = 0;
2645 struct gendisk *disk = mddev->gendisk;
2646
2647 if (mddev->pers) {
2648 if (atomic_read(&mddev->active)>2) {
2649 printk("md: %s still in use.\n",mdname(mddev));
2650 return -EBUSY;
2651 }
2652
2653 if (mddev->sync_thread) {
2654 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2655 md_unregister_thread(mddev->sync_thread);
2656 mddev->sync_thread = NULL;
2657 }
2658
2659 del_timer_sync(&mddev->safemode_timer);
2660
2661 invalidate_partition(disk, 0);
2662
2663 if (ro) {
2664 err = -ENXIO;
2665 if (mddev->ro==1)
2666 goto out;
2667 mddev->ro = 1;
2668 } else {
2669 bitmap_flush(mddev);
2670 md_super_wait(mddev);
2671 if (mddev->ro)
2672 set_disk_ro(disk, 0);
2673 blk_queue_make_request(mddev->queue, md_fail_request);
2674 mddev->pers->stop(mddev);
2675 if (mddev->pers->sync_request)
2676 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2677
2678 module_put(mddev->pers->owner);
2679 mddev->pers = NULL;
2680 if (mddev->ro)
2681 mddev->ro = 0;
2682 }
2683 if (!mddev->in_sync) {
2684 /* mark array as shutdown cleanly */
2685 mddev->in_sync = 1;
2686 md_update_sb(mddev);
2687 }
2688 if (ro)
2689 set_disk_ro(disk, 1);
2690 }
2691
2692 /*
2693 * Free resources if final stop
2694 */
2695 if (!ro) {
2696 mdk_rdev_t *rdev;
2697 struct list_head *tmp;
2698 struct gendisk *disk;
2699 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2700
2701 bitmap_destroy(mddev);
2702 if (mddev->bitmap_file) {
2703 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2704 fput(mddev->bitmap_file);
2705 mddev->bitmap_file = NULL;
2706 }
2707 mddev->bitmap_offset = 0;
2708
2709 ITERATE_RDEV(mddev,rdev,tmp)
2710 if (rdev->raid_disk >= 0) {
2711 char nm[20];
2712 sprintf(nm, "rd%d", rdev->raid_disk);
2713 sysfs_remove_link(&mddev->kobj, nm);
2714 }
2715
2716 export_array(mddev);
2717
2718 mddev->array_size = 0;
2719 disk = mddev->gendisk;
2720 if (disk)
2721 set_capacity(disk, 0);
2722 mddev->changed = 1;
2723 } else
2724 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2725 mdname(mddev));
2726 err = 0;
2727 md_new_event(mddev);
2728 out:
2729 return err;
2730 }
2731
2732 static void autorun_array(mddev_t *mddev)
2733 {
2734 mdk_rdev_t *rdev;
2735 struct list_head *tmp;
2736 int err;
2737
2738 if (list_empty(&mddev->disks))
2739 return;
2740
2741 printk(KERN_INFO "md: running: ");
2742
2743 ITERATE_RDEV(mddev,rdev,tmp) {
2744 char b[BDEVNAME_SIZE];
2745 printk("<%s>", bdevname(rdev->bdev,b));
2746 }
2747 printk("\n");
2748
2749 err = do_md_run (mddev);
2750 if (err) {
2751 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2752 do_md_stop (mddev, 0);
2753 }
2754 }
2755
2756 /*
2757 * lets try to run arrays based on all disks that have arrived
2758 * until now. (those are in pending_raid_disks)
2759 *
2760 * the method: pick the first pending disk, collect all disks with
2761 * the same UUID, remove all from the pending list and put them into
2762 * the 'same_array' list. Then order this list based on superblock
2763 * update time (freshest comes first), kick out 'old' disks and
2764 * compare superblocks. If everything's fine then run it.
2765 *
2766 * If "unit" is allocated, then bump its reference count
2767 */
2768 static void autorun_devices(int part)
2769 {
2770 struct list_head candidates;
2771 struct list_head *tmp;
2772 mdk_rdev_t *rdev0, *rdev;
2773 mddev_t *mddev;
2774 char b[BDEVNAME_SIZE];
2775
2776 printk(KERN_INFO "md: autorun ...\n");
2777 while (!list_empty(&pending_raid_disks)) {
2778 dev_t dev;
2779 rdev0 = list_entry(pending_raid_disks.next,
2780 mdk_rdev_t, same_set);
2781
2782 printk(KERN_INFO "md: considering %s ...\n",
2783 bdevname(rdev0->bdev,b));
2784 INIT_LIST_HEAD(&candidates);
2785 ITERATE_RDEV_PENDING(rdev,tmp)
2786 if (super_90_load(rdev, rdev0, 0) >= 0) {
2787 printk(KERN_INFO "md: adding %s ...\n",
2788 bdevname(rdev->bdev,b));
2789 list_move(&rdev->same_set, &candidates);
2790 }
2791 /*
2792 * now we have a set of devices, with all of them having
2793 * mostly sane superblocks. It's time to allocate the
2794 * mddev.
2795 */
2796 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2797 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2798 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2799 break;
2800 }
2801 if (part)
2802 dev = MKDEV(mdp_major,
2803 rdev0->preferred_minor << MdpMinorShift);
2804 else
2805 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2806
2807 md_probe(dev, NULL, NULL);
2808 mddev = mddev_find(dev);
2809 if (!mddev) {
2810 printk(KERN_ERR
2811 "md: cannot allocate memory for md drive.\n");
2812 break;
2813 }
2814 if (mddev_lock(mddev))
2815 printk(KERN_WARNING "md: %s locked, cannot run\n",
2816 mdname(mddev));
2817 else if (mddev->raid_disks || mddev->major_version
2818 || !list_empty(&mddev->disks)) {
2819 printk(KERN_WARNING
2820 "md: %s already running, cannot run %s\n",
2821 mdname(mddev), bdevname(rdev0->bdev,b));
2822 mddev_unlock(mddev);
2823 } else {
2824 printk(KERN_INFO "md: created %s\n", mdname(mddev));
2825 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2826 list_del_init(&rdev->same_set);
2827 if (bind_rdev_to_array(rdev, mddev))
2828 export_rdev(rdev);
2829 }
2830 autorun_array(mddev);
2831 mddev_unlock(mddev);
2832 }
2833 /* on success, candidates will be empty, on error
2834 * it won't...
2835 */
2836 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2837 export_rdev(rdev);
2838 mddev_put(mddev);
2839 }
2840 printk(KERN_INFO "md: ... autorun DONE.\n");
2841 }
2842
2843 /*
2844 * import RAID devices based on one partition
2845 * if possible, the array gets run as well.
2846 */
2847
2848 static int autostart_array(dev_t startdev)
2849 {
2850 char b[BDEVNAME_SIZE];
2851 int err = -EINVAL, i;
2852 mdp_super_t *sb = NULL;
2853 mdk_rdev_t *start_rdev = NULL, *rdev;
2854
2855 start_rdev = md_import_device(startdev, 0, 0);
2856 if (IS_ERR(start_rdev))
2857 return err;
2858
2859
2860 /* NOTE: this can only work for 0.90.0 superblocks */
2861 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2862 if (sb->major_version != 0 ||
2863 sb->minor_version != 90 ) {
2864 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2865 export_rdev(start_rdev);
2866 return err;
2867 }
2868
2869 if (test_bit(Faulty, &start_rdev->flags)) {
2870 printk(KERN_WARNING
2871 "md: can not autostart based on faulty %s!\n",
2872 bdevname(start_rdev->bdev,b));
2873 export_rdev(start_rdev);
2874 return err;
2875 }
2876 list_add(&start_rdev->same_set, &pending_raid_disks);
2877
2878 for (i = 0; i < MD_SB_DISKS; i++) {
2879 mdp_disk_t *desc = sb->disks + i;
2880 dev_t dev = MKDEV(desc->major, desc->minor);
2881
2882 if (!dev)
2883 continue;
2884 if (dev == startdev)
2885 continue;
2886 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2887 continue;
2888 rdev = md_import_device(dev, 0, 0);
2889 if (IS_ERR(rdev))
2890 continue;
2891
2892 list_add(&rdev->same_set, &pending_raid_disks);
2893 }
2894
2895 /*
2896 * possibly return codes
2897 */
2898 autorun_devices(0);
2899 return 0;
2900
2901 }
2902
2903
2904 static int get_version(void __user * arg)
2905 {
2906 mdu_version_t ver;
2907
2908 ver.major = MD_MAJOR_VERSION;
2909 ver.minor = MD_MINOR_VERSION;
2910 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2911
2912 if (copy_to_user(arg, &ver, sizeof(ver)))
2913 return -EFAULT;
2914
2915 return 0;
2916 }
2917
2918 static int get_array_info(mddev_t * mddev, void __user * arg)
2919 {
2920 mdu_array_info_t info;
2921 int nr,working,active,failed,spare;
2922 mdk_rdev_t *rdev;
2923 struct list_head *tmp;
2924
2925 nr=working=active=failed=spare=0;
2926 ITERATE_RDEV(mddev,rdev,tmp) {
2927 nr++;
2928 if (test_bit(Faulty, &rdev->flags))
2929 failed++;
2930 else {
2931 working++;
2932 if (test_bit(In_sync, &rdev->flags))
2933 active++;
2934 else
2935 spare++;
2936 }
2937 }
2938
2939 info.major_version = mddev->major_version;
2940 info.minor_version = mddev->minor_version;
2941 info.patch_version = MD_PATCHLEVEL_VERSION;
2942 info.ctime = mddev->ctime;
2943 info.level = mddev->level;
2944 info.size = mddev->size;
2945 if (info.size != mddev->size) /* overflow */
2946 info.size = -1;
2947 info.nr_disks = nr;
2948 info.raid_disks = mddev->raid_disks;
2949 info.md_minor = mddev->md_minor;
2950 info.not_persistent= !mddev->persistent;
2951
2952 info.utime = mddev->utime;
2953 info.state = 0;
2954 if (mddev->in_sync)
2955 info.state = (1<<MD_SB_CLEAN);
2956 if (mddev->bitmap && mddev->bitmap_offset)
2957 info.state = (1<<MD_SB_BITMAP_PRESENT);
2958 info.active_disks = active;
2959 info.working_disks = working;
2960 info.failed_disks = failed;
2961 info.spare_disks = spare;
2962
2963 info.layout = mddev->layout;
2964 info.chunk_size = mddev->chunk_size;
2965
2966 if (copy_to_user(arg, &info, sizeof(info)))
2967 return -EFAULT;
2968
2969 return 0;
2970 }
2971
2972 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2973 {
2974 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2975 char *ptr, *buf = NULL;
2976 int err = -ENOMEM;
2977
2978 file = kmalloc(sizeof(*file), GFP_KERNEL);
2979 if (!file)
2980 goto out;
2981
2982 /* bitmap disabled, zero the first byte and copy out */
2983 if (!mddev->bitmap || !mddev->bitmap->file) {
2984 file->pathname[0] = '\0';
2985 goto copy_out;
2986 }
2987
2988 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2989 if (!buf)
2990 goto out;
2991
2992 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2993 if (!ptr)
2994 goto out;
2995
2996 strcpy(file->pathname, ptr);
2997
2998 copy_out:
2999 err = 0;
3000 if (copy_to_user(arg, file, sizeof(*file)))
3001 err = -EFAULT;
3002 out:
3003 kfree(buf);
3004 kfree(file);
3005 return err;
3006 }
3007
3008 static int get_disk_info(mddev_t * mddev, void __user * arg)
3009 {
3010 mdu_disk_info_t info;
3011 unsigned int nr;
3012 mdk_rdev_t *rdev;
3013
3014 if (copy_from_user(&info, arg, sizeof(info)))
3015 return -EFAULT;
3016
3017 nr = info.number;
3018
3019 rdev = find_rdev_nr(mddev, nr);
3020 if (rdev) {
3021 info.major = MAJOR(rdev->bdev->bd_dev);
3022 info.minor = MINOR(rdev->bdev->bd_dev);
3023 info.raid_disk = rdev->raid_disk;
3024 info.state = 0;
3025 if (test_bit(Faulty, &rdev->flags))
3026 info.state |= (1<<MD_DISK_FAULTY);
3027 else if (test_bit(In_sync, &rdev->flags)) {
3028 info.state |= (1<<MD_DISK_ACTIVE);
3029 info.state |= (1<<MD_DISK_SYNC);
3030 }
3031 if (test_bit(WriteMostly, &rdev->flags))
3032 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3033 } else {
3034 info.major = info.minor = 0;
3035 info.raid_disk = -1;
3036 info.state = (1<<MD_DISK_REMOVED);
3037 }
3038
3039 if (copy_to_user(arg, &info, sizeof(info)))
3040 return -EFAULT;
3041
3042 return 0;
3043 }
3044
3045 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3046 {
3047 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3048 mdk_rdev_t *rdev;
3049 dev_t dev = MKDEV(info->major,info->minor);
3050
3051 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3052 return -EOVERFLOW;
3053
3054 if (!mddev->raid_disks) {
3055 int err;
3056 /* expecting a device which has a superblock */
3057 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3058 if (IS_ERR(rdev)) {
3059 printk(KERN_WARNING
3060 "md: md_import_device returned %ld\n",
3061 PTR_ERR(rdev));
3062 return PTR_ERR(rdev);
3063 }
3064 if (!list_empty(&mddev->disks)) {
3065 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3066 mdk_rdev_t, same_set);
3067 int err = super_types[mddev->major_version]
3068 .load_super(rdev, rdev0, mddev->minor_version);
3069 if (err < 0) {
3070 printk(KERN_WARNING
3071 "md: %s has different UUID to %s\n",
3072 bdevname(rdev->bdev,b),
3073 bdevname(rdev0->bdev,b2));
3074 export_rdev(rdev);
3075 return -EINVAL;
3076 }
3077 }
3078 err = bind_rdev_to_array(rdev, mddev);
3079 if (err)
3080 export_rdev(rdev);
3081 return err;
3082 }
3083
3084 /*
3085 * add_new_disk can be used once the array is assembled
3086 * to add "hot spares". They must already have a superblock
3087 * written
3088 */
3089 if (mddev->pers) {
3090 int err;
3091 if (!mddev->pers->hot_add_disk) {
3092 printk(KERN_WARNING
3093 "%s: personality does not support diskops!\n",
3094 mdname(mddev));
3095 return -EINVAL;
3096 }
3097 if (mddev->persistent)
3098 rdev = md_import_device(dev, mddev->major_version,
3099 mddev->minor_version);
3100 else
3101 rdev = md_import_device(dev, -1, -1);
3102 if (IS_ERR(rdev)) {
3103 printk(KERN_WARNING
3104 "md: md_import_device returned %ld\n",
3105 PTR_ERR(rdev));
3106 return PTR_ERR(rdev);
3107 }
3108 /* set save_raid_disk if appropriate */
3109 if (!mddev->persistent) {
3110 if (info->state & (1<<MD_DISK_SYNC) &&
3111 info->raid_disk < mddev->raid_disks)
3112 rdev->raid_disk = info->raid_disk;
3113 else
3114 rdev->raid_disk = -1;
3115 } else
3116 super_types[mddev->major_version].
3117 validate_super(mddev, rdev);
3118 rdev->saved_raid_disk = rdev->raid_disk;
3119
3120 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3121 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3122 set_bit(WriteMostly, &rdev->flags);
3123
3124 rdev->raid_disk = -1;
3125 err = bind_rdev_to_array(rdev, mddev);
3126 if (err)
3127 export_rdev(rdev);
3128
3129 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3130 md_wakeup_thread(mddev->thread);
3131 return err;
3132 }
3133
3134 /* otherwise, add_new_disk is only allowed
3135 * for major_version==0 superblocks
3136 */
3137 if (mddev->major_version != 0) {
3138 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3139 mdname(mddev));
3140 return -EINVAL;
3141 }
3142
3143 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3144 int err;
3145 rdev = md_import_device (dev, -1, 0);
3146 if (IS_ERR(rdev)) {
3147 printk(KERN_WARNING
3148 "md: error, md_import_device() returned %ld\n",
3149 PTR_ERR(rdev));
3150 return PTR_ERR(rdev);
3151 }
3152 rdev->desc_nr = info->number;
3153 if (info->raid_disk < mddev->raid_disks)
3154 rdev->raid_disk = info->raid_disk;
3155 else
3156 rdev->raid_disk = -1;
3157
3158 rdev->flags = 0;
3159
3160 if (rdev->raid_disk < mddev->raid_disks)
3161 if (info->state & (1<<MD_DISK_SYNC))
3162 set_bit(In_sync, &rdev->flags);
3163
3164 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3165 set_bit(WriteMostly, &rdev->flags);
3166
3167 if (!mddev->persistent) {
3168 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3169 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3170 } else
3171 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3172 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3173
3174 err = bind_rdev_to_array(rdev, mddev);
3175 if (err) {
3176 export_rdev(rdev);
3177 return err;
3178 }
3179 }
3180
3181 return 0;
3182 }
3183
3184 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3185 {
3186 char b[BDEVNAME_SIZE];
3187 mdk_rdev_t *rdev;
3188
3189 if (!mddev->pers)
3190 return -ENODEV;
3191
3192 rdev = find_rdev(mddev, dev);
3193 if (!rdev)
3194 return -ENXIO;
3195
3196 if (rdev->raid_disk >= 0)
3197 goto busy;
3198
3199 kick_rdev_from_array(rdev);
3200 md_update_sb(mddev);
3201 md_new_event(mddev);
3202
3203 return 0;
3204 busy:
3205 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3206 bdevname(rdev->bdev,b), mdname(mddev));
3207 return -EBUSY;
3208 }
3209
3210 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3211 {
3212 char b[BDEVNAME_SIZE];
3213 int err;
3214 unsigned int size;
3215 mdk_rdev_t *rdev;
3216
3217 if (!mddev->pers)
3218 return -ENODEV;
3219
3220 if (mddev->major_version != 0) {
3221 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3222 " version-0 superblocks.\n",
3223 mdname(mddev));
3224 return -EINVAL;
3225 }
3226 if (!mddev->pers->hot_add_disk) {
3227 printk(KERN_WARNING
3228 "%s: personality does not support diskops!\n",
3229 mdname(mddev));
3230 return -EINVAL;
3231 }
3232
3233 rdev = md_import_device (dev, -1, 0);
3234 if (IS_ERR(rdev)) {
3235 printk(KERN_WARNING
3236 "md: error, md_import_device() returned %ld\n",
3237 PTR_ERR(rdev));
3238 return -EINVAL;
3239 }
3240
3241 if (mddev->persistent)
3242 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3243 else
3244 rdev->sb_offset =
3245 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3246
3247 size = calc_dev_size(rdev, mddev->chunk_size);
3248 rdev->size = size;
3249
3250 if (test_bit(Faulty, &rdev->flags)) {
3251 printk(KERN_WARNING
3252 "md: can not hot-add faulty %s disk to %s!\n",
3253 bdevname(rdev->bdev,b), mdname(mddev));
3254 err = -EINVAL;
3255 goto abort_export;
3256 }
3257 clear_bit(In_sync, &rdev->flags);
3258 rdev->desc_nr = -1;
3259 err = bind_rdev_to_array(rdev, mddev);
3260 if (err)
3261 goto abort_export;
3262
3263 /*
3264 * The rest should better be atomic, we can have disk failures
3265 * noticed in interrupt contexts ...
3266 */
3267
3268 if (rdev->desc_nr == mddev->max_disks) {
3269 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3270 mdname(mddev));
3271 err = -EBUSY;
3272 goto abort_unbind_export;
3273 }
3274
3275 rdev->raid_disk = -1;
3276
3277 md_update_sb(mddev);
3278
3279 /*
3280 * Kick recovery, maybe this spare has to be added to the
3281 * array immediately.
3282 */
3283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3284 md_wakeup_thread(mddev->thread);
3285 md_new_event(mddev);
3286 return 0;
3287
3288 abort_unbind_export:
3289 unbind_rdev_from_array(rdev);
3290
3291 abort_export:
3292 export_rdev(rdev);
3293 return err;
3294 }
3295
3296 /* similar to deny_write_access, but accounts for our holding a reference
3297 * to the file ourselves */
3298 static int deny_bitmap_write_access(struct file * file)
3299 {
3300 struct inode *inode = file->f_mapping->host;
3301
3302 spin_lock(&inode->i_lock);
3303 if (atomic_read(&inode->i_writecount) > 1) {
3304 spin_unlock(&inode->i_lock);
3305 return -ETXTBSY;
3306 }
3307 atomic_set(&inode->i_writecount, -1);
3308 spin_unlock(&inode->i_lock);
3309
3310 return 0;
3311 }
3312
3313 static int set_bitmap_file(mddev_t *mddev, int fd)
3314 {
3315 int err;
3316
3317 if (mddev->pers) {
3318 if (!mddev->pers->quiesce)
3319 return -EBUSY;
3320 if (mddev->recovery || mddev->sync_thread)
3321 return -EBUSY;
3322 /* we should be able to change the bitmap.. */
3323 }
3324
3325
3326 if (fd >= 0) {
3327 if (mddev->bitmap)
3328 return -EEXIST; /* cannot add when bitmap is present */
3329 mddev->bitmap_file = fget(fd);
3330
3331 if (mddev->bitmap_file == NULL) {
3332 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3333 mdname(mddev));
3334 return -EBADF;
3335 }
3336
3337 err = deny_bitmap_write_access(mddev->bitmap_file);
3338 if (err) {
3339 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3340 mdname(mddev));
3341 fput(mddev->bitmap_file);
3342 mddev->bitmap_file = NULL;
3343 return err;
3344 }
3345 mddev->bitmap_offset = 0; /* file overrides offset */
3346 } else if (mddev->bitmap == NULL)
3347 return -ENOENT; /* cannot remove what isn't there */
3348 err = 0;
3349 if (mddev->pers) {
3350 mddev->pers->quiesce(mddev, 1);
3351 if (fd >= 0)
3352 err = bitmap_create(mddev);
3353 if (fd < 0 || err)
3354 bitmap_destroy(mddev);
3355 mddev->pers->quiesce(mddev, 0);
3356 } else if (fd < 0) {
3357 if (mddev->bitmap_file)
3358 fput(mddev->bitmap_file);
3359 mddev->bitmap_file = NULL;
3360 }
3361
3362 return err;
3363 }
3364
3365 /*
3366 * set_array_info is used two different ways
3367 * The original usage is when creating a new array.
3368 * In this usage, raid_disks is > 0 and it together with
3369 * level, size, not_persistent,layout,chunksize determine the
3370 * shape of the array.
3371 * This will always create an array with a type-0.90.0 superblock.
3372 * The newer usage is when assembling an array.
3373 * In this case raid_disks will be 0, and the major_version field is
3374 * use to determine which style super-blocks are to be found on the devices.
3375 * The minor and patch _version numbers are also kept incase the
3376 * super_block handler wishes to interpret them.
3377 */
3378 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3379 {
3380
3381 if (info->raid_disks == 0) {
3382 /* just setting version number for superblock loading */
3383 if (info->major_version < 0 ||
3384 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3385 super_types[info->major_version].name == NULL) {
3386 /* maybe try to auto-load a module? */
3387 printk(KERN_INFO
3388 "md: superblock version %d not known\n",
3389 info->major_version);
3390 return -EINVAL;
3391 }
3392 mddev->major_version = info->major_version;
3393 mddev->minor_version = info->minor_version;
3394 mddev->patch_version = info->patch_version;
3395 return 0;
3396 }
3397 mddev->major_version = MD_MAJOR_VERSION;
3398 mddev->minor_version = MD_MINOR_VERSION;
3399 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3400 mddev->ctime = get_seconds();
3401
3402 mddev->level = info->level;
3403 mddev->clevel[0] = 0;
3404 mddev->size = info->size;
3405 mddev->raid_disks = info->raid_disks;
3406 /* don't set md_minor, it is determined by which /dev/md* was
3407 * openned
3408 */
3409 if (info->state & (1<<MD_SB_CLEAN))
3410 mddev->recovery_cp = MaxSector;
3411 else
3412 mddev->recovery_cp = 0;
3413 mddev->persistent = ! info->not_persistent;
3414
3415 mddev->layout = info->layout;
3416 mddev->chunk_size = info->chunk_size;
3417
3418 mddev->max_disks = MD_SB_DISKS;
3419
3420 mddev->sb_dirty = 1;
3421
3422 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3423 mddev->bitmap_offset = 0;
3424
3425 /*
3426 * Generate a 128 bit UUID
3427 */
3428 get_random_bytes(mddev->uuid, 16);
3429
3430 return 0;
3431 }
3432
3433 static int update_size(mddev_t *mddev, unsigned long size)
3434 {
3435 mdk_rdev_t * rdev;
3436 int rv;
3437 struct list_head *tmp;
3438
3439 if (mddev->pers->resize == NULL)
3440 return -EINVAL;
3441 /* The "size" is the amount of each device that is used.
3442 * This can only make sense for arrays with redundancy.
3443 * linear and raid0 always use whatever space is available
3444 * We can only consider changing the size if no resync
3445 * or reconstruction is happening, and if the new size
3446 * is acceptable. It must fit before the sb_offset or,
3447 * if that is <data_offset, it must fit before the
3448 * size of each device.
3449 * If size is zero, we find the largest size that fits.
3450 */
3451 if (mddev->sync_thread)
3452 return -EBUSY;
3453 ITERATE_RDEV(mddev,rdev,tmp) {
3454 sector_t avail;
3455 int fit = (size == 0);
3456 if (rdev->sb_offset > rdev->data_offset)
3457 avail = (rdev->sb_offset*2) - rdev->data_offset;
3458 else
3459 avail = get_capacity(rdev->bdev->bd_disk)
3460 - rdev->data_offset;
3461 if (fit && (size == 0 || size > avail/2))
3462 size = avail/2;
3463 if (avail < ((sector_t)size << 1))
3464 return -ENOSPC;
3465 }
3466 rv = mddev->pers->resize(mddev, (sector_t)size *2);
3467 if (!rv) {
3468 struct block_device *bdev;
3469
3470 bdev = bdget_disk(mddev->gendisk, 0);
3471 if (bdev) {
3472 mutex_lock(&bdev->bd_inode->i_mutex);
3473 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
3474 mutex_unlock(&bdev->bd_inode->i_mutex);
3475 bdput(bdev);
3476 }
3477 }
3478 return rv;
3479 }
3480
3481 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3482 {
3483 int rv;
3484 /* change the number of raid disks */
3485 if (mddev->pers->reshape == NULL)
3486 return -EINVAL;
3487 if (raid_disks <= 0 ||
3488 raid_disks >= mddev->max_disks)
3489 return -EINVAL;
3490 if (mddev->sync_thread)
3491 return -EBUSY;
3492 rv = mddev->pers->reshape(mddev, raid_disks);
3493 return rv;
3494 }
3495
3496
3497 /*
3498 * update_array_info is used to change the configuration of an
3499 * on-line array.
3500 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3501 * fields in the info are checked against the array.
3502 * Any differences that cannot be handled will cause an error.
3503 * Normally, only one change can be managed at a time.
3504 */
3505 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3506 {
3507 int rv = 0;
3508 int cnt = 0;
3509 int state = 0;
3510
3511 /* calculate expected state,ignoring low bits */
3512 if (mddev->bitmap && mddev->bitmap_offset)
3513 state |= (1 << MD_SB_BITMAP_PRESENT);
3514
3515 if (mddev->major_version != info->major_version ||
3516 mddev->minor_version != info->minor_version ||
3517 /* mddev->patch_version != info->patch_version || */
3518 mddev->ctime != info->ctime ||
3519 mddev->level != info->level ||
3520 /* mddev->layout != info->layout || */
3521 !mddev->persistent != info->not_persistent||
3522 mddev->chunk_size != info->chunk_size ||
3523 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3524 ((state^info->state) & 0xfffffe00)
3525 )
3526 return -EINVAL;
3527 /* Check there is only one change */
3528 if (info->size >= 0 && mddev->size != info->size) cnt++;
3529 if (mddev->raid_disks != info->raid_disks) cnt++;
3530 if (mddev->layout != info->layout) cnt++;
3531 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3532 if (cnt == 0) return 0;
3533 if (cnt > 1) return -EINVAL;
3534
3535 if (mddev->layout != info->layout) {
3536 /* Change layout
3537 * we don't need to do anything at the md level, the
3538 * personality will take care of it all.
3539 */
3540 if (mddev->pers->reconfig == NULL)
3541 return -EINVAL;
3542 else
3543 return mddev->pers->reconfig(mddev, info->layout, -1);
3544 }
3545 if (info->size >= 0 && mddev->size != info->size)
3546 rv = update_size(mddev, info->size);
3547
3548 if (mddev->raid_disks != info->raid_disks)
3549 rv = update_raid_disks(mddev, info->raid_disks);
3550
3551 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3552 if (mddev->pers->quiesce == NULL)
3553 return -EINVAL;
3554 if (mddev->recovery || mddev->sync_thread)
3555 return -EBUSY;
3556 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3557 /* add the bitmap */
3558 if (mddev->bitmap)
3559 return -EEXIST;
3560 if (mddev->default_bitmap_offset == 0)
3561 return -EINVAL;
3562 mddev->bitmap_offset = mddev->default_bitmap_offset;
3563 mddev->pers->quiesce(mddev, 1);
3564 rv = bitmap_create(mddev);
3565 if (rv)
3566 bitmap_destroy(mddev);
3567 mddev->pers->quiesce(mddev, 0);
3568 } else {
3569 /* remove the bitmap */
3570 if (!mddev->bitmap)
3571 return -ENOENT;
3572 if (mddev->bitmap->file)
3573 return -EINVAL;
3574 mddev->pers->quiesce(mddev, 1);
3575 bitmap_destroy(mddev);
3576 mddev->pers->quiesce(mddev, 0);
3577 mddev->bitmap_offset = 0;
3578 }
3579 }
3580 md_update_sb(mddev);
3581 return rv;
3582 }
3583
3584 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3585 {
3586 mdk_rdev_t *rdev;
3587
3588 if (mddev->pers == NULL)
3589 return -ENODEV;
3590
3591 rdev = find_rdev(mddev, dev);
3592 if (!rdev)
3593 return -ENODEV;
3594
3595 md_error(mddev, rdev);
3596 return 0;
3597 }
3598
3599 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3600 {
3601 mddev_t *mddev = bdev->bd_disk->private_data;
3602
3603 geo->heads = 2;
3604 geo->sectors = 4;
3605 geo->cylinders = get_capacity(mddev->gendisk) / 8;
3606 return 0;
3607 }
3608
3609 static int md_ioctl(struct inode *inode, struct file *file,
3610 unsigned int cmd, unsigned long arg)
3611 {
3612 int err = 0;
3613 void __user *argp = (void __user *)arg;
3614 mddev_t *mddev = NULL;
3615
3616 if (!capable(CAP_SYS_ADMIN))
3617 return -EACCES;
3618
3619 /*
3620 * Commands dealing with the RAID driver but not any
3621 * particular array:
3622 */
3623 switch (cmd)
3624 {
3625 case RAID_VERSION:
3626 err = get_version(argp);
3627 goto done;
3628
3629 case PRINT_RAID_DEBUG:
3630 err = 0;
3631 md_print_devices();
3632 goto done;
3633
3634 #ifndef MODULE
3635 case RAID_AUTORUN:
3636 err = 0;
3637 autostart_arrays(arg);
3638 goto done;
3639 #endif
3640 default:;
3641 }
3642
3643 /*
3644 * Commands creating/starting a new array:
3645 */
3646
3647 mddev = inode->i_bdev->bd_disk->private_data;
3648
3649 if (!mddev) {
3650 BUG();
3651 goto abort;
3652 }
3653
3654
3655 if (cmd == START_ARRAY) {
3656 /* START_ARRAY doesn't need to lock the array as autostart_array
3657 * does the locking, and it could even be a different array
3658 */
3659 static int cnt = 3;
3660 if (cnt > 0 ) {
3661 printk(KERN_WARNING
3662 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3663 "This will not be supported beyond July 2006\n",
3664 current->comm, current->pid);
3665 cnt--;
3666 }
3667 err = autostart_array(new_decode_dev(arg));
3668 if (err) {
3669 printk(KERN_WARNING "md: autostart failed!\n");
3670 goto abort;
3671 }
3672 goto done;
3673 }
3674
3675 err = mddev_lock(mddev);
3676 if (err) {
3677 printk(KERN_INFO
3678 "md: ioctl lock interrupted, reason %d, cmd %d\n",
3679 err, cmd);
3680 goto abort;
3681 }
3682
3683 switch (cmd)
3684 {
3685 case SET_ARRAY_INFO:
3686 {
3687 mdu_array_info_t info;
3688 if (!arg)
3689 memset(&info, 0, sizeof(info));
3690 else if (copy_from_user(&info, argp, sizeof(info))) {
3691 err = -EFAULT;
3692 goto abort_unlock;
3693 }
3694 if (mddev->pers) {
3695 err = update_array_info(mddev, &info);
3696 if (err) {
3697 printk(KERN_WARNING "md: couldn't update"
3698 " array info. %d\n", err);
3699 goto abort_unlock;
3700 }
3701 goto done_unlock;
3702 }
3703 if (!list_empty(&mddev->disks)) {
3704 printk(KERN_WARNING
3705 "md: array %s already has disks!\n",
3706 mdname(mddev));
3707 err = -EBUSY;
3708 goto abort_unlock;
3709 }
3710 if (mddev->raid_disks) {
3711 printk(KERN_WARNING
3712 "md: array %s already initialised!\n",
3713 mdname(mddev));
3714 err = -EBUSY;
3715 goto abort_unlock;
3716 }
3717 err = set_array_info(mddev, &info);
3718 if (err) {
3719 printk(KERN_WARNING "md: couldn't set"
3720 " array info. %d\n", err);
3721 goto abort_unlock;
3722 }
3723 }
3724 goto done_unlock;
3725
3726 default:;
3727 }
3728
3729 /*
3730 * Commands querying/configuring an existing array:
3731 */
3732 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3733 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3734 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3735 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3736 err = -ENODEV;
3737 goto abort_unlock;
3738 }
3739
3740 /*
3741 * Commands even a read-only array can execute:
3742 */
3743 switch (cmd)
3744 {
3745 case GET_ARRAY_INFO:
3746 err = get_array_info(mddev, argp);
3747 goto done_unlock;
3748
3749 case GET_BITMAP_FILE:
3750 err = get_bitmap_file(mddev, argp);
3751 goto done_unlock;
3752
3753 case GET_DISK_INFO:
3754 err = get_disk_info(mddev, argp);
3755 goto done_unlock;
3756
3757 case RESTART_ARRAY_RW:
3758 err = restart_array(mddev);
3759 goto done_unlock;
3760
3761 case STOP_ARRAY:
3762 err = do_md_stop (mddev, 0);
3763 goto done_unlock;
3764
3765 case STOP_ARRAY_RO:
3766 err = do_md_stop (mddev, 1);
3767 goto done_unlock;
3768
3769 /*
3770 * We have a problem here : there is no easy way to give a CHS
3771 * virtual geometry. We currently pretend that we have a 2 heads
3772 * 4 sectors (with a BIG number of cylinders...). This drives
3773 * dosfs just mad... ;-)
3774 */
3775 }
3776
3777 /*
3778 * The remaining ioctls are changing the state of the
3779 * superblock, so we do not allow them on read-only arrays.
3780 * However non-MD ioctls (e.g. get-size) will still come through
3781 * here and hit the 'default' below, so only disallow
3782 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3783 */
3784 if (_IOC_TYPE(cmd) == MD_MAJOR &&
3785 mddev->ro && mddev->pers) {
3786 if (mddev->ro == 2) {
3787 mddev->ro = 0;
3788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3789 md_wakeup_thread(mddev->thread);
3790
3791 } else {
3792 err = -EROFS;
3793 goto abort_unlock;
3794 }
3795 }
3796
3797 switch (cmd)
3798 {
3799 case ADD_NEW_DISK:
3800 {
3801 mdu_disk_info_t info;
3802 if (copy_from_user(&info, argp, sizeof(info)))
3803 err = -EFAULT;
3804 else
3805 err = add_new_disk(mddev, &info);
3806 goto done_unlock;
3807 }
3808
3809 case HOT_REMOVE_DISK:
3810 err = hot_remove_disk(mddev, new_decode_dev(arg));
3811 goto done_unlock;
3812
3813 case HOT_ADD_DISK:
3814 err = hot_add_disk(mddev, new_decode_dev(arg));
3815 goto done_unlock;
3816
3817 case SET_DISK_FAULTY:
3818 err = set_disk_faulty(mddev, new_decode_dev(arg));
3819 goto done_unlock;
3820
3821 case RUN_ARRAY:
3822 err = do_md_run (mddev);
3823 goto done_unlock;
3824
3825 case SET_BITMAP_FILE:
3826 err = set_bitmap_file(mddev, (int)arg);
3827 goto done_unlock;
3828
3829 default:
3830 if (_IOC_TYPE(cmd) == MD_MAJOR)
3831 printk(KERN_WARNING "md: %s(pid %d) used"
3832 " obsolete MD ioctl, upgrade your"
3833 " software to use new ictls.\n",
3834 current->comm, current->pid);
3835 err = -EINVAL;
3836 goto abort_unlock;
3837 }
3838
3839 done_unlock:
3840 abort_unlock:
3841 mddev_unlock(mddev);
3842
3843 return err;
3844 done:
3845 if (err)
3846 MD_BUG();
3847 abort:
3848 return err;
3849 }
3850
3851 static int md_open(struct inode *inode, struct file *file)
3852 {
3853 /*
3854 * Succeed if we can lock the mddev, which confirms that
3855 * it isn't being stopped right now.
3856 */
3857 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3858 int err;
3859
3860 if ((err = mddev_lock(mddev)))
3861 goto out;
3862
3863 err = 0;
3864 mddev_get(mddev);
3865 mddev_unlock(mddev);
3866
3867 check_disk_change(inode->i_bdev);
3868 out:
3869 return err;
3870 }
3871
3872 static int md_release(struct inode *inode, struct file * file)
3873 {
3874 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3875
3876 if (!mddev)
3877 BUG();
3878 mddev_put(mddev);
3879
3880 return 0;
3881 }
3882
3883 static int md_media_changed(struct gendisk *disk)
3884 {
3885 mddev_t *mddev = disk->private_data;
3886
3887 return mddev->changed;
3888 }
3889
3890 static int md_revalidate(struct gendisk *disk)
3891 {
3892 mddev_t *mddev = disk->private_data;
3893
3894 mddev->changed = 0;
3895 return 0;
3896 }
3897 static struct block_device_operations md_fops =
3898 {
3899 .owner = THIS_MODULE,
3900 .open = md_open,
3901 .release = md_release,
3902 .ioctl = md_ioctl,
3903 .getgeo = md_getgeo,
3904 .media_changed = md_media_changed,
3905 .revalidate_disk= md_revalidate,
3906 };
3907
3908 static int md_thread(void * arg)
3909 {
3910 mdk_thread_t *thread = arg;
3911
3912 /*
3913 * md_thread is a 'system-thread', it's priority should be very
3914 * high. We avoid resource deadlocks individually in each
3915 * raid personality. (RAID5 does preallocation) We also use RR and
3916 * the very same RT priority as kswapd, thus we will never get
3917 * into a priority inversion deadlock.
3918 *
3919 * we definitely have to have equal or higher priority than
3920 * bdflush, otherwise bdflush will deadlock if there are too
3921 * many dirty RAID5 blocks.
3922 */
3923
3924 allow_signal(SIGKILL);
3925 while (!kthread_should_stop()) {
3926
3927 /* We need to wait INTERRUPTIBLE so that
3928 * we don't add to the load-average.
3929 * That means we need to be sure no signals are
3930 * pending
3931 */
3932 if (signal_pending(current))
3933 flush_signals(current);
3934
3935 wait_event_interruptible_timeout
3936 (thread->wqueue,
3937 test_bit(THREAD_WAKEUP, &thread->flags)
3938 || kthread_should_stop(),
3939 thread->timeout);
3940 try_to_freeze();
3941
3942 clear_bit(THREAD_WAKEUP, &thread->flags);
3943
3944 thread->run(thread->mddev);
3945 }
3946
3947 return 0;
3948 }
3949
3950 void md_wakeup_thread(mdk_thread_t *thread)
3951 {
3952 if (thread) {
3953 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3954 set_bit(THREAD_WAKEUP, &thread->flags);
3955 wake_up(&thread->wqueue);
3956 }
3957 }
3958
3959 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3960 const char *name)
3961 {
3962 mdk_thread_t *thread;
3963
3964 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3965 if (!thread)
3966 return NULL;
3967
3968 init_waitqueue_head(&thread->wqueue);
3969
3970 thread->run = run;
3971 thread->mddev = mddev;
3972 thread->timeout = MAX_SCHEDULE_TIMEOUT;
3973 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3974 if (IS_ERR(thread->tsk)) {
3975 kfree(thread);
3976 return NULL;
3977 }
3978 return thread;
3979 }
3980
3981 void md_unregister_thread(mdk_thread_t *thread)
3982 {
3983 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3984
3985 kthread_stop(thread->tsk);
3986 kfree(thread);
3987 }
3988
3989 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3990 {
3991 if (!mddev) {
3992 MD_BUG();
3993 return;
3994 }
3995
3996 if (!rdev || test_bit(Faulty, &rdev->flags))
3997 return;
3998 /*
3999 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4000 mdname(mddev),
4001 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4002 __builtin_return_address(0),__builtin_return_address(1),
4003 __builtin_return_address(2),__builtin_return_address(3));
4004 */
4005 if (!mddev->pers->error_handler)
4006 return;
4007 mddev->pers->error_handler(mddev,rdev);
4008 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4009 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4010 md_wakeup_thread(mddev->thread);
4011 md_new_event(mddev);
4012 }
4013
4014 /* seq_file implementation /proc/mdstat */
4015
4016 static void status_unused(struct seq_file *seq)
4017 {
4018 int i = 0;
4019 mdk_rdev_t *rdev;
4020 struct list_head *tmp;
4021
4022 seq_printf(seq, "unused devices: ");
4023
4024 ITERATE_RDEV_PENDING(rdev,tmp) {
4025 char b[BDEVNAME_SIZE];
4026 i++;
4027 seq_printf(seq, "%s ",
4028 bdevname(rdev->bdev,b));
4029 }
4030 if (!i)
4031 seq_printf(seq, "<none>");
4032
4033 seq_printf(seq, "\n");
4034 }
4035
4036
4037 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4038 {
4039 unsigned long max_blocks, resync, res, dt, db, rt;
4040
4041 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4042
4043 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4044 max_blocks = mddev->resync_max_sectors >> 1;
4045 else
4046 max_blocks = mddev->size;
4047
4048 /*
4049 * Should not happen.
4050 */
4051 if (!max_blocks) {
4052 MD_BUG();
4053 return;
4054 }
4055 res = (resync/1024)*1000/(max_blocks/1024 + 1);
4056 {
4057 int i, x = res/50, y = 20-x;
4058 seq_printf(seq, "[");
4059 for (i = 0; i < x; i++)
4060 seq_printf(seq, "=");
4061 seq_printf(seq, ">");
4062 for (i = 0; i < y; i++)
4063 seq_printf(seq, ".");
4064 seq_printf(seq, "] ");
4065 }
4066 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
4067 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4068 "resync" : "recovery"),
4069 res/10, res % 10, resync, max_blocks);
4070
4071 /*
4072 * We do not want to overflow, so the order of operands and
4073 * the * 100 / 100 trick are important. We do a +1 to be
4074 * safe against division by zero. We only estimate anyway.
4075 *
4076 * dt: time from mark until now
4077 * db: blocks written from mark until now
4078 * rt: remaining time
4079 */
4080 dt = ((jiffies - mddev->resync_mark) / HZ);
4081 if (!dt) dt++;
4082 db = resync - (mddev->resync_mark_cnt/2);
4083 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
4084
4085 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4086
4087 seq_printf(seq, " speed=%ldK/sec", db/dt);
4088 }
4089
4090 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4091 {
4092 struct list_head *tmp;
4093 loff_t l = *pos;
4094 mddev_t *mddev;
4095
4096 if (l >= 0x10000)
4097 return NULL;
4098 if (!l--)
4099 /* header */
4100 return (void*)1;
4101
4102 spin_lock(&all_mddevs_lock);
4103 list_for_each(tmp,&all_mddevs)
4104 if (!l--) {
4105 mddev = list_entry(tmp, mddev_t, all_mddevs);
4106 mddev_get(mddev);
4107 spin_unlock(&all_mddevs_lock);
4108 return mddev;
4109 }
4110 spin_unlock(&all_mddevs_lock);
4111 if (!l--)
4112 return (void*)2;/* tail */
4113 return NULL;
4114 }
4115
4116 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4117 {
4118 struct list_head *tmp;
4119 mddev_t *next_mddev, *mddev = v;
4120
4121 ++*pos;
4122 if (v == (void*)2)
4123 return NULL;
4124
4125 spin_lock(&all_mddevs_lock);
4126 if (v == (void*)1)
4127 tmp = all_mddevs.next;
4128 else
4129 tmp = mddev->all_mddevs.next;
4130 if (tmp != &all_mddevs)
4131 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4132 else {
4133 next_mddev = (void*)2;
4134 *pos = 0x10000;
4135 }
4136 spin_unlock(&all_mddevs_lock);
4137
4138 if (v != (void*)1)
4139 mddev_put(mddev);
4140 return next_mddev;
4141
4142 }
4143
4144 static void md_seq_stop(struct seq_file *seq, void *v)
4145 {
4146 mddev_t *mddev = v;
4147
4148 if (mddev && v != (void*)1 && v != (void*)2)
4149 mddev_put(mddev);
4150 }
4151
4152 struct mdstat_info {
4153 int event;
4154 };
4155
4156 static int md_seq_show(struct seq_file *seq, void *v)
4157 {
4158 mddev_t *mddev = v;
4159 sector_t size;
4160 struct list_head *tmp2;
4161 mdk_rdev_t *rdev;
4162 struct mdstat_info *mi = seq->private;
4163 struct bitmap *bitmap;
4164
4165 if (v == (void*)1) {
4166 struct mdk_personality *pers;
4167 seq_printf(seq, "Personalities : ");
4168 spin_lock(&pers_lock);
4169 list_for_each_entry(pers, &pers_list, list)
4170 seq_printf(seq, "[%s] ", pers->name);
4171
4172 spin_unlock(&pers_lock);
4173 seq_printf(seq, "\n");
4174 mi->event = atomic_read(&md_event_count);
4175 return 0;
4176 }
4177 if (v == (void*)2) {
4178 status_unused(seq);
4179 return 0;
4180 }
4181
4182 if (mddev_lock(mddev)!=0)
4183 return -EINTR;
4184 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4185 seq_printf(seq, "%s : %sactive", mdname(mddev),
4186 mddev->pers ? "" : "in");
4187 if (mddev->pers) {
4188 if (mddev->ro==1)
4189 seq_printf(seq, " (read-only)");
4190 if (mddev->ro==2)
4191 seq_printf(seq, "(auto-read-only)");
4192 seq_printf(seq, " %s", mddev->pers->name);
4193 }
4194
4195 size = 0;
4196 ITERATE_RDEV(mddev,rdev,tmp2) {
4197 char b[BDEVNAME_SIZE];
4198 seq_printf(seq, " %s[%d]",
4199 bdevname(rdev->bdev,b), rdev->desc_nr);
4200 if (test_bit(WriteMostly, &rdev->flags))
4201 seq_printf(seq, "(W)");
4202 if (test_bit(Faulty, &rdev->flags)) {
4203 seq_printf(seq, "(F)");
4204 continue;
4205 } else if (rdev->raid_disk < 0)
4206 seq_printf(seq, "(S)"); /* spare */
4207 size += rdev->size;
4208 }
4209
4210 if (!list_empty(&mddev->disks)) {
4211 if (mddev->pers)
4212 seq_printf(seq, "\n %llu blocks",
4213 (unsigned long long)mddev->array_size);
4214 else
4215 seq_printf(seq, "\n %llu blocks",
4216 (unsigned long long)size);
4217 }
4218 if (mddev->persistent) {
4219 if (mddev->major_version != 0 ||
4220 mddev->minor_version != 90) {
4221 seq_printf(seq," super %d.%d",
4222 mddev->major_version,
4223 mddev->minor_version);
4224 }
4225 } else
4226 seq_printf(seq, " super non-persistent");
4227
4228 if (mddev->pers) {
4229 mddev->pers->status (seq, mddev);
4230 seq_printf(seq, "\n ");
4231 if (mddev->pers->sync_request) {
4232 if (mddev->curr_resync > 2) {
4233 status_resync (seq, mddev);
4234 seq_printf(seq, "\n ");
4235 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4236 seq_printf(seq, "\tresync=DELAYED\n ");
4237 else if (mddev->recovery_cp < MaxSector)
4238 seq_printf(seq, "\tresync=PENDING\n ");
4239 }
4240 } else
4241 seq_printf(seq, "\n ");
4242
4243 if ((bitmap = mddev->bitmap)) {
4244 unsigned long chunk_kb;
4245 unsigned long flags;
4246 spin_lock_irqsave(&bitmap->lock, flags);
4247 chunk_kb = bitmap->chunksize >> 10;
4248 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4249 "%lu%s chunk",
4250 bitmap->pages - bitmap->missing_pages,
4251 bitmap->pages,
4252 (bitmap->pages - bitmap->missing_pages)
4253 << (PAGE_SHIFT - 10),
4254 chunk_kb ? chunk_kb : bitmap->chunksize,
4255 chunk_kb ? "KB" : "B");
4256 if (bitmap->file) {
4257 seq_printf(seq, ", file: ");
4258 seq_path(seq, bitmap->file->f_vfsmnt,
4259 bitmap->file->f_dentry," \t\n");
4260 }
4261
4262 seq_printf(seq, "\n");
4263 spin_unlock_irqrestore(&bitmap->lock, flags);
4264 }
4265
4266 seq_printf(seq, "\n");
4267 }
4268 mddev_unlock(mddev);
4269
4270 return 0;
4271 }
4272
4273 static struct seq_operations md_seq_ops = {
4274 .start = md_seq_start,
4275 .next = md_seq_next,
4276 .stop = md_seq_stop,
4277 .show = md_seq_show,
4278 };
4279
4280 static int md_seq_open(struct inode *inode, struct file *file)
4281 {
4282 int error;
4283 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4284 if (mi == NULL)
4285 return -ENOMEM;
4286
4287 error = seq_open(file, &md_seq_ops);
4288 if (error)
4289 kfree(mi);
4290 else {
4291 struct seq_file *p = file->private_data;
4292 p->private = mi;
4293 mi->event = atomic_read(&md_event_count);
4294 }
4295 return error;
4296 }
4297
4298 static int md_seq_release(struct inode *inode, struct file *file)
4299 {
4300 struct seq_file *m = file->private_data;
4301 struct mdstat_info *mi = m->private;
4302 m->private = NULL;
4303 kfree(mi);
4304 return seq_release(inode, file);
4305 }
4306
4307 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4308 {
4309 struct seq_file *m = filp->private_data;
4310 struct mdstat_info *mi = m->private;
4311 int mask;
4312
4313 poll_wait(filp, &md_event_waiters, wait);
4314
4315 /* always allow read */
4316 mask = POLLIN | POLLRDNORM;
4317
4318 if (mi->event != atomic_read(&md_event_count))
4319 mask |= POLLERR | POLLPRI;
4320 return mask;
4321 }
4322
4323 static struct file_operations md_seq_fops = {
4324 .open = md_seq_open,
4325 .read = seq_read,
4326 .llseek = seq_lseek,
4327 .release = md_seq_release,
4328 .poll = mdstat_poll,
4329 };
4330
4331 int register_md_personality(struct mdk_personality *p)
4332 {
4333 spin_lock(&pers_lock);
4334 list_add_tail(&p->list, &pers_list);
4335 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4336 spin_unlock(&pers_lock);
4337 return 0;
4338 }
4339
4340 int unregister_md_personality(struct mdk_personality *p)
4341 {
4342 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4343 spin_lock(&pers_lock);
4344 list_del_init(&p->list);
4345 spin_unlock(&pers_lock);
4346 return 0;
4347 }
4348
4349 static int is_mddev_idle(mddev_t *mddev)
4350 {
4351 mdk_rdev_t * rdev;
4352 struct list_head *tmp;
4353 int idle;
4354 unsigned long curr_events;
4355
4356 idle = 1;
4357 ITERATE_RDEV(mddev,rdev,tmp) {
4358 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4359 curr_events = disk_stat_read(disk, sectors[0]) +
4360 disk_stat_read(disk, sectors[1]) -
4361 atomic_read(&disk->sync_io);
4362 /* The difference between curr_events and last_events
4363 * will be affected by any new non-sync IO (making
4364 * curr_events bigger) and any difference in the amount of
4365 * in-flight syncio (making current_events bigger or smaller)
4366 * The amount in-flight is currently limited to
4367 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4368 * which is at most 4096 sectors.
4369 * These numbers are fairly fragile and should be made
4370 * more robust, probably by enforcing the
4371 * 'window size' that md_do_sync sort-of uses.
4372 *
4373 * Note: the following is an unsigned comparison.
4374 */
4375 if ((curr_events - rdev->last_events + 4096) > 8192) {
4376 rdev->last_events = curr_events;
4377 idle = 0;
4378 }
4379 }
4380 return idle;
4381 }
4382
4383 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4384 {
4385 /* another "blocks" (512byte) blocks have been synced */
4386 atomic_sub(blocks, &mddev->recovery_active);
4387 wake_up(&mddev->recovery_wait);
4388 if (!ok) {
4389 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4390 md_wakeup_thread(mddev->thread);
4391 // stop recovery, signal do_sync ....
4392 }
4393 }
4394
4395
4396 /* md_write_start(mddev, bi)
4397 * If we need to update some array metadata (e.g. 'active' flag
4398 * in superblock) before writing, schedule a superblock update
4399 * and wait for it to complete.
4400 */
4401 void md_write_start(mddev_t *mddev, struct bio *bi)
4402 {
4403 if (bio_data_dir(bi) != WRITE)
4404 return;
4405
4406 BUG_ON(mddev->ro == 1);
4407 if (mddev->ro == 2) {
4408 /* need to switch to read/write */
4409 mddev->ro = 0;
4410 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4411 md_wakeup_thread(mddev->thread);
4412 }
4413 atomic_inc(&mddev->writes_pending);
4414 if (mddev->in_sync) {
4415 spin_lock_irq(&mddev->write_lock);
4416 if (mddev->in_sync) {
4417 mddev->in_sync = 0;
4418 mddev->sb_dirty = 1;
4419 md_wakeup_thread(mddev->thread);
4420 }
4421 spin_unlock_irq(&mddev->write_lock);
4422 }
4423 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4424 }
4425
4426 void md_write_end(mddev_t *mddev)
4427 {
4428 if (atomic_dec_and_test(&mddev->writes_pending)) {
4429 if (mddev->safemode == 2)
4430 md_wakeup_thread(mddev->thread);
4431 else
4432 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4433 }
4434 }
4435
4436 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4437
4438 #define SYNC_MARKS 10
4439 #define SYNC_MARK_STEP (3*HZ)
4440 static void md_do_sync(mddev_t *mddev)
4441 {
4442 mddev_t *mddev2;
4443 unsigned int currspeed = 0,
4444 window;
4445 sector_t max_sectors,j, io_sectors;
4446 unsigned long mark[SYNC_MARKS];
4447 sector_t mark_cnt[SYNC_MARKS];
4448 int last_mark,m;
4449 struct list_head *tmp;
4450 sector_t last_check;
4451 int skipped = 0;
4452
4453 /* just incase thread restarts... */
4454 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4455 return;
4456
4457 /* we overload curr_resync somewhat here.
4458 * 0 == not engaged in resync at all
4459 * 2 == checking that there is no conflict with another sync
4460 * 1 == like 2, but have yielded to allow conflicting resync to
4461 * commense
4462 * other == active in resync - this many blocks
4463 *
4464 * Before starting a resync we must have set curr_resync to
4465 * 2, and then checked that every "conflicting" array has curr_resync
4466 * less than ours. When we find one that is the same or higher
4467 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
4468 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4469 * This will mean we have to start checking from the beginning again.
4470 *
4471 */
4472
4473 do {
4474 mddev->curr_resync = 2;
4475
4476 try_again:
4477 if (kthread_should_stop()) {
4478 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4479 goto skip;
4480 }
4481 ITERATE_MDDEV(mddev2,tmp) {
4482 if (mddev2 == mddev)
4483 continue;
4484 if (mddev2->curr_resync &&
4485 match_mddev_units(mddev,mddev2)) {
4486 DEFINE_WAIT(wq);
4487 if (mddev < mddev2 && mddev->curr_resync == 2) {
4488 /* arbitrarily yield */
4489 mddev->curr_resync = 1;
4490 wake_up(&resync_wait);
4491 }
4492 if (mddev > mddev2 && mddev->curr_resync == 1)
4493 /* no need to wait here, we can wait the next
4494 * time 'round when curr_resync == 2
4495 */
4496 continue;
4497 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4498 if (!kthread_should_stop() &&
4499 mddev2->curr_resync >= mddev->curr_resync) {
4500 printk(KERN_INFO "md: delaying resync of %s"
4501 " until %s has finished resync (they"
4502 " share one or more physical units)\n",
4503 mdname(mddev), mdname(mddev2));
4504 mddev_put(mddev2);
4505 schedule();
4506 finish_wait(&resync_wait, &wq);
4507 goto try_again;
4508 }
4509 finish_wait(&resync_wait, &wq);
4510 }
4511 }
4512 } while (mddev->curr_resync < 2);
4513
4514 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4515 /* resync follows the size requested by the personality,
4516 * which defaults to physical size, but can be virtual size
4517 */
4518 max_sectors = mddev->resync_max_sectors;
4519 mddev->resync_mismatches = 0;
4520 } else
4521 /* recovery follows the physical size of devices */
4522 max_sectors = mddev->size << 1;
4523
4524 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4525 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4526 " %d KB/sec/disc.\n", speed_min(mddev));
4527 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4528 "(but not more than %d KB/sec) for reconstruction.\n",
4529 speed_max(mddev));
4530
4531 is_mddev_idle(mddev); /* this also initializes IO event counters */
4532 /* we don't use the checkpoint if there's a bitmap */
4533 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4534 && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4535 j = mddev->recovery_cp;
4536 else
4537 j = 0;
4538 io_sectors = 0;
4539 for (m = 0; m < SYNC_MARKS; m++) {
4540 mark[m] = jiffies;
4541 mark_cnt[m] = io_sectors;
4542 }
4543 last_mark = 0;
4544 mddev->resync_mark = mark[last_mark];
4545 mddev->resync_mark_cnt = mark_cnt[last_mark];
4546
4547 /*
4548 * Tune reconstruction:
4549 */
4550 window = 32*(PAGE_SIZE/512);
4551 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4552 window/2,(unsigned long long) max_sectors/2);
4553
4554 atomic_set(&mddev->recovery_active, 0);
4555 init_waitqueue_head(&mddev->recovery_wait);
4556 last_check = 0;
4557
4558 if (j>2) {
4559 printk(KERN_INFO
4560 "md: resuming recovery of %s from checkpoint.\n",
4561 mdname(mddev));
4562 mddev->curr_resync = j;
4563 }
4564
4565 while (j < max_sectors) {
4566 sector_t sectors;
4567
4568 skipped = 0;
4569 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4570 currspeed < speed_min(mddev));
4571 if (sectors == 0) {
4572 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4573 goto out;
4574 }
4575
4576 if (!skipped) { /* actual IO requested */
4577 io_sectors += sectors;
4578 atomic_add(sectors, &mddev->recovery_active);
4579 }
4580
4581 j += sectors;
4582 if (j>1) mddev->curr_resync = j;
4583 if (last_check == 0)
4584 /* this is the earliers that rebuilt will be
4585 * visible in /proc/mdstat
4586 */
4587 md_new_event(mddev);
4588
4589 if (last_check + window > io_sectors || j == max_sectors)
4590 continue;
4591
4592 last_check = io_sectors;
4593
4594 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4595 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4596 break;
4597
4598 repeat:
4599 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4600 /* step marks */
4601 int next = (last_mark+1) % SYNC_MARKS;
4602
4603 mddev->resync_mark = mark[next];
4604 mddev->resync_mark_cnt = mark_cnt[next];
4605 mark[next] = jiffies;
4606 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4607 last_mark = next;
4608 }
4609
4610
4611 if (kthread_should_stop()) {
4612 /*
4613 * got a signal, exit.
4614 */
4615 printk(KERN_INFO
4616 "md: md_do_sync() got signal ... exiting\n");
4617 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4618 goto out;
4619 }
4620
4621 /*
4622 * this loop exits only if either when we are slower than
4623 * the 'hard' speed limit, or the system was IO-idle for
4624 * a jiffy.
4625 * the system might be non-idle CPU-wise, but we only care
4626 * about not overloading the IO subsystem. (things like an
4627 * e2fsck being done on the RAID array should execute fast)
4628 */
4629 mddev->queue->unplug_fn(mddev->queue);
4630 cond_resched();
4631
4632 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4633 /((jiffies-mddev->resync_mark)/HZ +1) +1;
4634
4635 if (currspeed > speed_min(mddev)) {
4636 if ((currspeed > speed_max(mddev)) ||
4637 !is_mddev_idle(mddev)) {
4638 msleep(500);
4639 goto repeat;
4640 }
4641 }
4642 }
4643 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4644 /*
4645 * this also signals 'finished resyncing' to md_stop
4646 */
4647 out:
4648 mddev->queue->unplug_fn(mddev->queue);
4649
4650 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4651
4652 /* tell personality that we are finished */
4653 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4654
4655 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4656 mddev->curr_resync > 2 &&
4657 mddev->curr_resync >= mddev->recovery_cp) {
4658 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4659 printk(KERN_INFO
4660 "md: checkpointing recovery of %s.\n",
4661 mdname(mddev));
4662 mddev->recovery_cp = mddev->curr_resync;
4663 } else
4664 mddev->recovery_cp = MaxSector;
4665 }
4666
4667 skip:
4668 mddev->curr_resync = 0;
4669 wake_up(&resync_wait);
4670 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4671 md_wakeup_thread(mddev->thread);
4672 }
4673
4674
4675 /*
4676 * This routine is regularly called by all per-raid-array threads to
4677 * deal with generic issues like resync and super-block update.
4678 * Raid personalities that don't have a thread (linear/raid0) do not
4679 * need this as they never do any recovery or update the superblock.
4680 *
4681 * It does not do any resync itself, but rather "forks" off other threads
4682 * to do that as needed.
4683 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4684 * "->recovery" and create a thread at ->sync_thread.
4685 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4686 * and wakeups up this thread which will reap the thread and finish up.
4687 * This thread also removes any faulty devices (with nr_pending == 0).
4688 *
4689 * The overall approach is:
4690 * 1/ if the superblock needs updating, update it.
4691 * 2/ If a recovery thread is running, don't do anything else.
4692 * 3/ If recovery has finished, clean up, possibly marking spares active.
4693 * 4/ If there are any faulty devices, remove them.
4694 * 5/ If array is degraded, try to add spares devices
4695 * 6/ If array has spares or is not in-sync, start a resync thread.
4696 */
4697 void md_check_recovery(mddev_t *mddev)
4698 {
4699 mdk_rdev_t *rdev;
4700 struct list_head *rtmp;
4701
4702
4703 if (mddev->bitmap)
4704 bitmap_daemon_work(mddev->bitmap);
4705
4706 if (mddev->ro)
4707 return;
4708
4709 if (signal_pending(current)) {
4710 if (mddev->pers->sync_request) {
4711 printk(KERN_INFO "md: %s in immediate safe mode\n",
4712 mdname(mddev));
4713 mddev->safemode = 2;
4714 }
4715 flush_signals(current);
4716 }
4717
4718 if ( ! (
4719 mddev->sb_dirty ||
4720 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4721 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4722 (mddev->safemode == 1) ||
4723 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4724 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4725 ))
4726 return;
4727
4728 if (mddev_trylock(mddev)==0) {
4729 int spares =0;
4730
4731 spin_lock_irq(&mddev->write_lock);
4732 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4733 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4734 mddev->in_sync = 1;
4735 mddev->sb_dirty = 1;
4736 }
4737 if (mddev->safemode == 1)
4738 mddev->safemode = 0;
4739 spin_unlock_irq(&mddev->write_lock);
4740
4741 if (mddev->sb_dirty)
4742 md_update_sb(mddev);
4743
4744
4745 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4746 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4747 /* resync/recovery still happening */
4748 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4749 goto unlock;
4750 }
4751 if (mddev->sync_thread) {
4752 /* resync has finished, collect result */
4753 md_unregister_thread(mddev->sync_thread);
4754 mddev->sync_thread = NULL;
4755 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4756 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4757 /* success...*/
4758 /* activate any spares */
4759 mddev->pers->spare_active(mddev);
4760 }
4761 md_update_sb(mddev);
4762
4763 /* if array is no-longer degraded, then any saved_raid_disk
4764 * information must be scrapped
4765 */
4766 if (!mddev->degraded)
4767 ITERATE_RDEV(mddev,rdev,rtmp)
4768 rdev->saved_raid_disk = -1;
4769
4770 mddev->recovery = 0;
4771 /* flag recovery needed just to double check */
4772 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4773 md_new_event(mddev);
4774 goto unlock;
4775 }
4776 /* Clear some bits that don't mean anything, but
4777 * might be left set
4778 */
4779 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4780 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4781 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4782 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4783
4784 /* no recovery is running.
4785 * remove any failed drives, then
4786 * add spares if possible.
4787 * Spare are also removed and re-added, to allow
4788 * the personality to fail the re-add.
4789 */
4790 ITERATE_RDEV(mddev,rdev,rtmp)
4791 if (rdev->raid_disk >= 0 &&
4792 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4793 atomic_read(&rdev->nr_pending)==0) {
4794 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4795 char nm[20];
4796 sprintf(nm,"rd%d", rdev->raid_disk);
4797 sysfs_remove_link(&mddev->kobj, nm);
4798 rdev->raid_disk = -1;
4799 }
4800 }
4801
4802 if (mddev->degraded) {
4803 ITERATE_RDEV(mddev,rdev,rtmp)
4804 if (rdev->raid_disk < 0
4805 && !test_bit(Faulty, &rdev->flags)) {
4806 if (mddev->pers->hot_add_disk(mddev,rdev)) {
4807 char nm[20];
4808 sprintf(nm, "rd%d", rdev->raid_disk);
4809 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4810 spares++;
4811 md_new_event(mddev);
4812 } else
4813 break;
4814 }
4815 }
4816
4817 if (spares) {
4818 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4819 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4820 } else if (mddev->recovery_cp < MaxSector) {
4821 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4822 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4823 /* nothing to be done ... */
4824 goto unlock;
4825
4826 if (mddev->pers->sync_request) {
4827 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4828 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4829 /* We are adding a device or devices to an array
4830 * which has the bitmap stored on all devices.
4831 * So make sure all bitmap pages get written
4832 */
4833 bitmap_write_all(mddev->bitmap);
4834 }
4835 mddev->sync_thread = md_register_thread(md_do_sync,
4836 mddev,
4837 "%s_resync");
4838 if (!mddev->sync_thread) {
4839 printk(KERN_ERR "%s: could not start resync"
4840 " thread...\n",
4841 mdname(mddev));
4842 /* leave the spares where they are, it shouldn't hurt */
4843 mddev->recovery = 0;
4844 } else
4845 md_wakeup_thread(mddev->sync_thread);
4846 md_new_event(mddev);
4847 }
4848 unlock:
4849 mddev_unlock(mddev);
4850 }
4851 }
4852
4853 static int md_notify_reboot(struct notifier_block *this,
4854 unsigned long code, void *x)
4855 {
4856 struct list_head *tmp;
4857 mddev_t *mddev;
4858
4859 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4860
4861 printk(KERN_INFO "md: stopping all md devices.\n");
4862
4863 ITERATE_MDDEV(mddev,tmp)
4864 if (mddev_trylock(mddev)==0)
4865 do_md_stop (mddev, 1);
4866 /*
4867 * certain more exotic SCSI devices are known to be
4868 * volatile wrt too early system reboots. While the
4869 * right place to handle this issue is the given
4870 * driver, we do want to have a safe RAID driver ...
4871 */
4872 mdelay(1000*1);
4873 }
4874 return NOTIFY_DONE;
4875 }
4876
4877 static struct notifier_block md_notifier = {
4878 .notifier_call = md_notify_reboot,
4879 .next = NULL,
4880 .priority = INT_MAX, /* before any real devices */
4881 };
4882
4883 static void md_geninit(void)
4884 {
4885 struct proc_dir_entry *p;
4886
4887 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4888
4889 p = create_proc_entry("mdstat", S_IRUGO, NULL);
4890 if (p)
4891 p->proc_fops = &md_seq_fops;
4892 }
4893
4894 static int __init md_init(void)
4895 {
4896 int minor;
4897
4898 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4899 " MD_SB_DISKS=%d\n",
4900 MD_MAJOR_VERSION, MD_MINOR_VERSION,
4901 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4902 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4903 BITMAP_MINOR);
4904
4905 if (register_blkdev(MAJOR_NR, "md"))
4906 return -1;
4907 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4908 unregister_blkdev(MAJOR_NR, "md");
4909 return -1;
4910 }
4911 devfs_mk_dir("md");
4912 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4913 md_probe, NULL, NULL);
4914 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4915 md_probe, NULL, NULL);
4916
4917 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4918 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4919 S_IFBLK|S_IRUSR|S_IWUSR,
4920 "md/%d", minor);
4921
4922 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4923 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4924 S_IFBLK|S_IRUSR|S_IWUSR,
4925 "md/mdp%d", minor);
4926
4927
4928 register_reboot_notifier(&md_notifier);
4929 raid_table_header = register_sysctl_table(raid_root_table, 1);
4930
4931 md_geninit();
4932 return (0);
4933 }
4934
4935
4936 #ifndef MODULE
4937
4938 /*
4939 * Searches all registered partitions for autorun RAID arrays
4940 * at boot time.
4941 */
4942 static dev_t detected_devices[128];
4943 static int dev_cnt;
4944
4945 void md_autodetect_dev(dev_t dev)
4946 {
4947 if (dev_cnt >= 0 && dev_cnt < 127)
4948 detected_devices[dev_cnt++] = dev;
4949 }
4950
4951
4952 static void autostart_arrays(int part)
4953 {
4954 mdk_rdev_t *rdev;
4955 int i;
4956
4957 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4958
4959 for (i = 0; i < dev_cnt; i++) {
4960 dev_t dev = detected_devices[i];
4961
4962 rdev = md_import_device(dev,0, 0);
4963 if (IS_ERR(rdev))
4964 continue;
4965
4966 if (test_bit(Faulty, &rdev->flags)) {
4967 MD_BUG();
4968 continue;
4969 }
4970 list_add(&rdev->same_set, &pending_raid_disks);
4971 }
4972 dev_cnt = 0;
4973
4974 autorun_devices(part);
4975 }
4976
4977 #endif
4978
4979 static __exit void md_exit(void)
4980 {
4981 mddev_t *mddev;
4982 struct list_head *tmp;
4983 int i;
4984 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4985 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4986 for (i=0; i < MAX_MD_DEVS; i++)
4987 devfs_remove("md/%d", i);
4988 for (i=0; i < MAX_MD_DEVS; i++)
4989 devfs_remove("md/d%d", i);
4990
4991 devfs_remove("md");
4992
4993 unregister_blkdev(MAJOR_NR,"md");
4994 unregister_blkdev(mdp_major, "mdp");
4995 unregister_reboot_notifier(&md_notifier);
4996 unregister_sysctl_table(raid_table_header);
4997 remove_proc_entry("mdstat", NULL);
4998 ITERATE_MDDEV(mddev,tmp) {
4999 struct gendisk *disk = mddev->gendisk;
5000 if (!disk)
5001 continue;
5002 export_array(mddev);
5003 del_gendisk(disk);
5004 put_disk(disk);
5005 mddev->gendisk = NULL;
5006 mddev_put(mddev);
5007 }
5008 }
5009
5010 module_init(md_init)
5011 module_exit(md_exit)
5012
5013 static int get_ro(char *buffer, struct kernel_param *kp)
5014 {
5015 return sprintf(buffer, "%d", start_readonly);
5016 }
5017 static int set_ro(const char *val, struct kernel_param *kp)
5018 {
5019 char *e;
5020 int num = simple_strtoul(val, &e, 10);
5021 if (*val && (*e == '\0' || *e == '\n')) {
5022 start_readonly = num;
5023 return 0;
5024 }
5025 return -EINVAL;
5026 }
5027
5028 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5029 module_param(start_dirty_degraded, int, 0644);
5030
5031
5032 EXPORT_SYMBOL(register_md_personality);
5033 EXPORT_SYMBOL(unregister_md_personality);
5034 EXPORT_SYMBOL(md_error);
5035 EXPORT_SYMBOL(md_done_sync);
5036 EXPORT_SYMBOL(md_write_start);
5037 EXPORT_SYMBOL(md_write_end);
5038 EXPORT_SYMBOL(md_register_thread);
5039 EXPORT_SYMBOL(md_unregister_thread);
5040 EXPORT_SYMBOL(md_wakeup_thread);
5041 EXPORT_SYMBOL(md_print_devices);
5042 EXPORT_SYMBOL(md_check_recovery);
5043 MODULE_LICENSE("GPL");
5044 MODULE_ALIAS("md");
5045 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);