md: Don't let implementation detail of curr_resync leak out through sysfs.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
79 */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
117 },
118 {
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
144 },
145 { }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
154 */
155
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 mddev_t *mddev, **mddevp;
159
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
162
163 bio_free(bio, mddev->bio_set);
164 }
165
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
168 {
169 struct bio *b;
170 mddev_t **mddevp;
171
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
174
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
188 {
189 struct bio *b;
190 mddev_t **mddevp;
191
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
194
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
205
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
211 }
212 }
213
214 return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218 /*
219 * We have a system wide 'event count' that is incremented
220 * on any 'interesting' event, and readers of /proc/mdstat
221 * can use 'poll' or 'select' to find out when the event
222 * count increases.
223 *
224 * Events are:
225 * start array, stop array, error, add device, remove device,
226 * start build, activate spare
227 */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 atomic_inc(&md_event_count);
233 wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236
237 /* Alternate version that can be called from interrupts
238 * when calling sysfs_notify isn't needed.
239 */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 atomic_inc(&md_event_count);
243 wake_up(&md_event_waiters);
244 }
245
246 /*
247 * Enables to iterate over all existing md arrays
248 * all_mddevs_lock protects this list.
249 */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252
253
254 /*
255 * iterates through all used mddevs in the system.
256 * We take care to grab the all_mddevs_lock whenever navigating
257 * the list, and to always hold a refcount when unlocked.
258 * Any code which breaks out of this loop while own
259 * a reference to the current mddev and must mddev_put it.
260 */
261 #define for_each_mddev(mddev,tmp) \
262 \
263 for (({ spin_lock(&all_mddevs_lock); \
264 tmp = all_mddevs.next; \
265 mddev = NULL;}); \
266 ({ if (tmp != &all_mddevs) \
267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 spin_unlock(&all_mddevs_lock); \
269 if (mddev) mddev_put(mddev); \
270 mddev = list_entry(tmp, mddev_t, all_mddevs); \
271 tmp != &all_mddevs;}); \
272 ({ spin_lock(&all_mddevs_lock); \
273 tmp = tmp->next;}) \
274 )
275
276
277 /* Rather than calling directly into the personality make_request function,
278 * IO requests come here first so that we can check if the device is
279 * being suspended pending a reconfiguration.
280 * We hold a refcount over the call to ->make_request. By the time that
281 * call has finished, the bio has been linked into some internal structure
282 * and so is visible to ->quiesce(), so we don't need the refcount any more.
283 */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 const int rw = bio_data_dir(bio);
287 mddev_t *mddev = q->queuedata;
288 int rv;
289 int cpu;
290
291 if (mddev == NULL || mddev->pers == NULL
292 || !mddev->ready) {
293 bio_io_error(bio);
294 return 0;
295 }
296 smp_rmb(); /* Ensure implications of 'active' are visible */
297 rcu_read_lock();
298 if (mddev->suspended) {
299 DEFINE_WAIT(__wait);
300 for (;;) {
301 prepare_to_wait(&mddev->sb_wait, &__wait,
302 TASK_UNINTERRUPTIBLE);
303 if (!mddev->suspended)
304 break;
305 rcu_read_unlock();
306 schedule();
307 rcu_read_lock();
308 }
309 finish_wait(&mddev->sb_wait, &__wait);
310 }
311 atomic_inc(&mddev->active_io);
312 rcu_read_unlock();
313
314 rv = mddev->pers->make_request(mddev, bio);
315
316 cpu = part_stat_lock();
317 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
318 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
319 bio_sectors(bio));
320 part_stat_unlock();
321
322 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
323 wake_up(&mddev->sb_wait);
324
325 return rv;
326 }
327
328 /* mddev_suspend makes sure no new requests are submitted
329 * to the device, and that any requests that have been submitted
330 * are completely handled.
331 * Once ->stop is called and completes, the module will be completely
332 * unused.
333 */
334 void mddev_suspend(mddev_t *mddev)
335 {
336 BUG_ON(mddev->suspended);
337 mddev->suspended = 1;
338 synchronize_rcu();
339 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
340 mddev->pers->quiesce(mddev, 1);
341 }
342 EXPORT_SYMBOL_GPL(mddev_suspend);
343
344 void mddev_resume(mddev_t *mddev)
345 {
346 mddev->suspended = 0;
347 wake_up(&mddev->sb_wait);
348 mddev->pers->quiesce(mddev, 0);
349 }
350 EXPORT_SYMBOL_GPL(mddev_resume);
351
352 int mddev_congested(mddev_t *mddev, int bits)
353 {
354 return mddev->suspended;
355 }
356 EXPORT_SYMBOL(mddev_congested);
357
358 /*
359 * Generic flush handling for md
360 */
361
362 static void md_end_flush(struct bio *bio, int err)
363 {
364 mdk_rdev_t *rdev = bio->bi_private;
365 mddev_t *mddev = rdev->mddev;
366
367 rdev_dec_pending(rdev, mddev);
368
369 if (atomic_dec_and_test(&mddev->flush_pending)) {
370 /* The pre-request flush has finished */
371 queue_work(md_wq, &mddev->flush_work);
372 }
373 bio_put(bio);
374 }
375
376 static void md_submit_flush_data(struct work_struct *ws);
377
378 static void submit_flushes(struct work_struct *ws)
379 {
380 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
381 mdk_rdev_t *rdev;
382
383 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
384 atomic_set(&mddev->flush_pending, 1);
385 rcu_read_lock();
386 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
387 if (rdev->raid_disk >= 0 &&
388 !test_bit(Faulty, &rdev->flags)) {
389 /* Take two references, one is dropped
390 * when request finishes, one after
391 * we reclaim rcu_read_lock
392 */
393 struct bio *bi;
394 atomic_inc(&rdev->nr_pending);
395 atomic_inc(&rdev->nr_pending);
396 rcu_read_unlock();
397 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
398 bi->bi_end_io = md_end_flush;
399 bi->bi_private = rdev;
400 bi->bi_bdev = rdev->bdev;
401 atomic_inc(&mddev->flush_pending);
402 submit_bio(WRITE_FLUSH, bi);
403 rcu_read_lock();
404 rdev_dec_pending(rdev, mddev);
405 }
406 rcu_read_unlock();
407 if (atomic_dec_and_test(&mddev->flush_pending))
408 queue_work(md_wq, &mddev->flush_work);
409 }
410
411 static void md_submit_flush_data(struct work_struct *ws)
412 {
413 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
414 struct bio *bio = mddev->flush_bio;
415
416 if (bio->bi_size == 0)
417 /* an empty barrier - all done */
418 bio_endio(bio, 0);
419 else {
420 bio->bi_rw &= ~REQ_FLUSH;
421 if (mddev->pers->make_request(mddev, bio))
422 generic_make_request(bio);
423 }
424
425 mddev->flush_bio = NULL;
426 wake_up(&mddev->sb_wait);
427 }
428
429 void md_flush_request(mddev_t *mddev, struct bio *bio)
430 {
431 spin_lock_irq(&mddev->write_lock);
432 wait_event_lock_irq(mddev->sb_wait,
433 !mddev->flush_bio,
434 mddev->write_lock, /*nothing*/);
435 mddev->flush_bio = bio;
436 spin_unlock_irq(&mddev->write_lock);
437
438 INIT_WORK(&mddev->flush_work, submit_flushes);
439 queue_work(md_wq, &mddev->flush_work);
440 }
441 EXPORT_SYMBOL(md_flush_request);
442
443 /* Support for plugging.
444 * This mirrors the plugging support in request_queue, but does not
445 * require having a whole queue
446 */
447 static void plugger_work(struct work_struct *work)
448 {
449 struct plug_handle *plug =
450 container_of(work, struct plug_handle, unplug_work);
451 plug->unplug_fn(plug);
452 }
453 static void plugger_timeout(unsigned long data)
454 {
455 struct plug_handle *plug = (void *)data;
456 kblockd_schedule_work(NULL, &plug->unplug_work);
457 }
458 void plugger_init(struct plug_handle *plug,
459 void (*unplug_fn)(struct plug_handle *))
460 {
461 plug->unplug_flag = 0;
462 plug->unplug_fn = unplug_fn;
463 init_timer(&plug->unplug_timer);
464 plug->unplug_timer.function = plugger_timeout;
465 plug->unplug_timer.data = (unsigned long)plug;
466 INIT_WORK(&plug->unplug_work, plugger_work);
467 }
468 EXPORT_SYMBOL_GPL(plugger_init);
469
470 void plugger_set_plug(struct plug_handle *plug)
471 {
472 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
473 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
474 }
475 EXPORT_SYMBOL_GPL(plugger_set_plug);
476
477 int plugger_remove_plug(struct plug_handle *plug)
478 {
479 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
480 del_timer(&plug->unplug_timer);
481 return 1;
482 } else
483 return 0;
484 }
485 EXPORT_SYMBOL_GPL(plugger_remove_plug);
486
487
488 static inline mddev_t *mddev_get(mddev_t *mddev)
489 {
490 atomic_inc(&mddev->active);
491 return mddev;
492 }
493
494 static void mddev_delayed_delete(struct work_struct *ws);
495
496 static void mddev_put(mddev_t *mddev)
497 {
498 struct bio_set *bs = NULL;
499
500 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
501 return;
502 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
503 mddev->ctime == 0 && !mddev->hold_active) {
504 /* Array is not configured at all, and not held active,
505 * so destroy it */
506 list_del(&mddev->all_mddevs);
507 bs = mddev->bio_set;
508 mddev->bio_set = NULL;
509 if (mddev->gendisk) {
510 /* We did a probe so need to clean up. Call
511 * queue_work inside the spinlock so that
512 * flush_workqueue() after mddev_find will
513 * succeed in waiting for the work to be done.
514 */
515 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
516 queue_work(md_misc_wq, &mddev->del_work);
517 } else
518 kfree(mddev);
519 }
520 spin_unlock(&all_mddevs_lock);
521 if (bs)
522 bioset_free(bs);
523 }
524
525 void mddev_init(mddev_t *mddev)
526 {
527 mutex_init(&mddev->open_mutex);
528 mutex_init(&mddev->reconfig_mutex);
529 mutex_init(&mddev->bitmap_info.mutex);
530 INIT_LIST_HEAD(&mddev->disks);
531 INIT_LIST_HEAD(&mddev->all_mddevs);
532 init_timer(&mddev->safemode_timer);
533 atomic_set(&mddev->active, 1);
534 atomic_set(&mddev->openers, 0);
535 atomic_set(&mddev->active_io, 0);
536 spin_lock_init(&mddev->write_lock);
537 atomic_set(&mddev->flush_pending, 0);
538 init_waitqueue_head(&mddev->sb_wait);
539 init_waitqueue_head(&mddev->recovery_wait);
540 mddev->reshape_position = MaxSector;
541 mddev->resync_min = 0;
542 mddev->resync_max = MaxSector;
543 mddev->level = LEVEL_NONE;
544 }
545 EXPORT_SYMBOL_GPL(mddev_init);
546
547 static mddev_t * mddev_find(dev_t unit)
548 {
549 mddev_t *mddev, *new = NULL;
550
551 retry:
552 spin_lock(&all_mddevs_lock);
553
554 if (unit) {
555 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
556 if (mddev->unit == unit) {
557 mddev_get(mddev);
558 spin_unlock(&all_mddevs_lock);
559 kfree(new);
560 return mddev;
561 }
562
563 if (new) {
564 list_add(&new->all_mddevs, &all_mddevs);
565 spin_unlock(&all_mddevs_lock);
566 new->hold_active = UNTIL_IOCTL;
567 return new;
568 }
569 } else if (new) {
570 /* find an unused unit number */
571 static int next_minor = 512;
572 int start = next_minor;
573 int is_free = 0;
574 int dev = 0;
575 while (!is_free) {
576 dev = MKDEV(MD_MAJOR, next_minor);
577 next_minor++;
578 if (next_minor > MINORMASK)
579 next_minor = 0;
580 if (next_minor == start) {
581 /* Oh dear, all in use. */
582 spin_unlock(&all_mddevs_lock);
583 kfree(new);
584 return NULL;
585 }
586
587 is_free = 1;
588 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
589 if (mddev->unit == dev) {
590 is_free = 0;
591 break;
592 }
593 }
594 new->unit = dev;
595 new->md_minor = MINOR(dev);
596 new->hold_active = UNTIL_STOP;
597 list_add(&new->all_mddevs, &all_mddevs);
598 spin_unlock(&all_mddevs_lock);
599 return new;
600 }
601 spin_unlock(&all_mddevs_lock);
602
603 new = kzalloc(sizeof(*new), GFP_KERNEL);
604 if (!new)
605 return NULL;
606
607 new->unit = unit;
608 if (MAJOR(unit) == MD_MAJOR)
609 new->md_minor = MINOR(unit);
610 else
611 new->md_minor = MINOR(unit) >> MdpMinorShift;
612
613 mddev_init(new);
614
615 goto retry;
616 }
617
618 static inline int mddev_lock(mddev_t * mddev)
619 {
620 return mutex_lock_interruptible(&mddev->reconfig_mutex);
621 }
622
623 static inline int mddev_is_locked(mddev_t *mddev)
624 {
625 return mutex_is_locked(&mddev->reconfig_mutex);
626 }
627
628 static inline int mddev_trylock(mddev_t * mddev)
629 {
630 return mutex_trylock(&mddev->reconfig_mutex);
631 }
632
633 static struct attribute_group md_redundancy_group;
634
635 static void mddev_unlock(mddev_t * mddev)
636 {
637 if (mddev->to_remove) {
638 /* These cannot be removed under reconfig_mutex as
639 * an access to the files will try to take reconfig_mutex
640 * while holding the file unremovable, which leads to
641 * a deadlock.
642 * So hold set sysfs_active while the remove in happeing,
643 * and anything else which might set ->to_remove or my
644 * otherwise change the sysfs namespace will fail with
645 * -EBUSY if sysfs_active is still set.
646 * We set sysfs_active under reconfig_mutex and elsewhere
647 * test it under the same mutex to ensure its correct value
648 * is seen.
649 */
650 struct attribute_group *to_remove = mddev->to_remove;
651 mddev->to_remove = NULL;
652 mddev->sysfs_active = 1;
653 mutex_unlock(&mddev->reconfig_mutex);
654
655 if (mddev->kobj.sd) {
656 if (to_remove != &md_redundancy_group)
657 sysfs_remove_group(&mddev->kobj, to_remove);
658 if (mddev->pers == NULL ||
659 mddev->pers->sync_request == NULL) {
660 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
661 if (mddev->sysfs_action)
662 sysfs_put(mddev->sysfs_action);
663 mddev->sysfs_action = NULL;
664 }
665 }
666 mddev->sysfs_active = 0;
667 } else
668 mutex_unlock(&mddev->reconfig_mutex);
669
670 md_wakeup_thread(mddev->thread);
671 }
672
673 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
674 {
675 mdk_rdev_t *rdev;
676
677 list_for_each_entry(rdev, &mddev->disks, same_set)
678 if (rdev->desc_nr == nr)
679 return rdev;
680
681 return NULL;
682 }
683
684 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
685 {
686 mdk_rdev_t *rdev;
687
688 list_for_each_entry(rdev, &mddev->disks, same_set)
689 if (rdev->bdev->bd_dev == dev)
690 return rdev;
691
692 return NULL;
693 }
694
695 static struct mdk_personality *find_pers(int level, char *clevel)
696 {
697 struct mdk_personality *pers;
698 list_for_each_entry(pers, &pers_list, list) {
699 if (level != LEVEL_NONE && pers->level == level)
700 return pers;
701 if (strcmp(pers->name, clevel)==0)
702 return pers;
703 }
704 return NULL;
705 }
706
707 /* return the offset of the super block in 512byte sectors */
708 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
709 {
710 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
711 return MD_NEW_SIZE_SECTORS(num_sectors);
712 }
713
714 static int alloc_disk_sb(mdk_rdev_t * rdev)
715 {
716 if (rdev->sb_page)
717 MD_BUG();
718
719 rdev->sb_page = alloc_page(GFP_KERNEL);
720 if (!rdev->sb_page) {
721 printk(KERN_ALERT "md: out of memory.\n");
722 return -ENOMEM;
723 }
724
725 return 0;
726 }
727
728 static void free_disk_sb(mdk_rdev_t * rdev)
729 {
730 if (rdev->sb_page) {
731 put_page(rdev->sb_page);
732 rdev->sb_loaded = 0;
733 rdev->sb_page = NULL;
734 rdev->sb_start = 0;
735 rdev->sectors = 0;
736 }
737 }
738
739
740 static void super_written(struct bio *bio, int error)
741 {
742 mdk_rdev_t *rdev = bio->bi_private;
743 mddev_t *mddev = rdev->mddev;
744
745 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
746 printk("md: super_written gets error=%d, uptodate=%d\n",
747 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
748 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
749 md_error(mddev, rdev);
750 }
751
752 if (atomic_dec_and_test(&mddev->pending_writes))
753 wake_up(&mddev->sb_wait);
754 bio_put(bio);
755 }
756
757 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
758 sector_t sector, int size, struct page *page)
759 {
760 /* write first size bytes of page to sector of rdev
761 * Increment mddev->pending_writes before returning
762 * and decrement it on completion, waking up sb_wait
763 * if zero is reached.
764 * If an error occurred, call md_error
765 */
766 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
767
768 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
769 bio->bi_sector = sector;
770 bio_add_page(bio, page, size, 0);
771 bio->bi_private = rdev;
772 bio->bi_end_io = super_written;
773
774 atomic_inc(&mddev->pending_writes);
775 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
776 bio);
777 }
778
779 void md_super_wait(mddev_t *mddev)
780 {
781 /* wait for all superblock writes that were scheduled to complete */
782 DEFINE_WAIT(wq);
783 for(;;) {
784 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
785 if (atomic_read(&mddev->pending_writes)==0)
786 break;
787 schedule();
788 }
789 finish_wait(&mddev->sb_wait, &wq);
790 }
791
792 static void bi_complete(struct bio *bio, int error)
793 {
794 complete((struct completion*)bio->bi_private);
795 }
796
797 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
798 struct page *page, int rw, bool metadata_op)
799 {
800 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
801 struct completion event;
802 int ret;
803
804 rw |= REQ_SYNC | REQ_UNPLUG;
805
806 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
807 rdev->meta_bdev : rdev->bdev;
808 if (metadata_op)
809 bio->bi_sector = sector + rdev->sb_start;
810 else
811 bio->bi_sector = sector + rdev->data_offset;
812 bio_add_page(bio, page, size, 0);
813 init_completion(&event);
814 bio->bi_private = &event;
815 bio->bi_end_io = bi_complete;
816 submit_bio(rw, bio);
817 wait_for_completion(&event);
818
819 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
820 bio_put(bio);
821 return ret;
822 }
823 EXPORT_SYMBOL_GPL(sync_page_io);
824
825 static int read_disk_sb(mdk_rdev_t * rdev, int size)
826 {
827 char b[BDEVNAME_SIZE];
828 if (!rdev->sb_page) {
829 MD_BUG();
830 return -EINVAL;
831 }
832 if (rdev->sb_loaded)
833 return 0;
834
835
836 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
837 goto fail;
838 rdev->sb_loaded = 1;
839 return 0;
840
841 fail:
842 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
843 bdevname(rdev->bdev,b));
844 return -EINVAL;
845 }
846
847 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
848 {
849 return sb1->set_uuid0 == sb2->set_uuid0 &&
850 sb1->set_uuid1 == sb2->set_uuid1 &&
851 sb1->set_uuid2 == sb2->set_uuid2 &&
852 sb1->set_uuid3 == sb2->set_uuid3;
853 }
854
855 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
856 {
857 int ret;
858 mdp_super_t *tmp1, *tmp2;
859
860 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
861 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
862
863 if (!tmp1 || !tmp2) {
864 ret = 0;
865 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
866 goto abort;
867 }
868
869 *tmp1 = *sb1;
870 *tmp2 = *sb2;
871
872 /*
873 * nr_disks is not constant
874 */
875 tmp1->nr_disks = 0;
876 tmp2->nr_disks = 0;
877
878 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
879 abort:
880 kfree(tmp1);
881 kfree(tmp2);
882 return ret;
883 }
884
885
886 static u32 md_csum_fold(u32 csum)
887 {
888 csum = (csum & 0xffff) + (csum >> 16);
889 return (csum & 0xffff) + (csum >> 16);
890 }
891
892 static unsigned int calc_sb_csum(mdp_super_t * sb)
893 {
894 u64 newcsum = 0;
895 u32 *sb32 = (u32*)sb;
896 int i;
897 unsigned int disk_csum, csum;
898
899 disk_csum = sb->sb_csum;
900 sb->sb_csum = 0;
901
902 for (i = 0; i < MD_SB_BYTES/4 ; i++)
903 newcsum += sb32[i];
904 csum = (newcsum & 0xffffffff) + (newcsum>>32);
905
906
907 #ifdef CONFIG_ALPHA
908 /* This used to use csum_partial, which was wrong for several
909 * reasons including that different results are returned on
910 * different architectures. It isn't critical that we get exactly
911 * the same return value as before (we always csum_fold before
912 * testing, and that removes any differences). However as we
913 * know that csum_partial always returned a 16bit value on
914 * alphas, do a fold to maximise conformity to previous behaviour.
915 */
916 sb->sb_csum = md_csum_fold(disk_csum);
917 #else
918 sb->sb_csum = disk_csum;
919 #endif
920 return csum;
921 }
922
923
924 /*
925 * Handle superblock details.
926 * We want to be able to handle multiple superblock formats
927 * so we have a common interface to them all, and an array of
928 * different handlers.
929 * We rely on user-space to write the initial superblock, and support
930 * reading and updating of superblocks.
931 * Interface methods are:
932 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
933 * loads and validates a superblock on dev.
934 * if refdev != NULL, compare superblocks on both devices
935 * Return:
936 * 0 - dev has a superblock that is compatible with refdev
937 * 1 - dev has a superblock that is compatible and newer than refdev
938 * so dev should be used as the refdev in future
939 * -EINVAL superblock incompatible or invalid
940 * -othererror e.g. -EIO
941 *
942 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
943 * Verify that dev is acceptable into mddev.
944 * The first time, mddev->raid_disks will be 0, and data from
945 * dev should be merged in. Subsequent calls check that dev
946 * is new enough. Return 0 or -EINVAL
947 *
948 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
949 * Update the superblock for rdev with data in mddev
950 * This does not write to disc.
951 *
952 */
953
954 struct super_type {
955 char *name;
956 struct module *owner;
957 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
958 int minor_version);
959 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
960 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
961 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
962 sector_t num_sectors);
963 };
964
965 /*
966 * Check that the given mddev has no bitmap.
967 *
968 * This function is called from the run method of all personalities that do not
969 * support bitmaps. It prints an error message and returns non-zero if mddev
970 * has a bitmap. Otherwise, it returns 0.
971 *
972 */
973 int md_check_no_bitmap(mddev_t *mddev)
974 {
975 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
976 return 0;
977 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
978 mdname(mddev), mddev->pers->name);
979 return 1;
980 }
981 EXPORT_SYMBOL(md_check_no_bitmap);
982
983 /*
984 * load_super for 0.90.0
985 */
986 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
987 {
988 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
989 mdp_super_t *sb;
990 int ret;
991
992 /*
993 * Calculate the position of the superblock (512byte sectors),
994 * it's at the end of the disk.
995 *
996 * It also happens to be a multiple of 4Kb.
997 */
998 rdev->sb_start = calc_dev_sboffset(rdev);
999
1000 ret = read_disk_sb(rdev, MD_SB_BYTES);
1001 if (ret) return ret;
1002
1003 ret = -EINVAL;
1004
1005 bdevname(rdev->bdev, b);
1006 sb = (mdp_super_t*)page_address(rdev->sb_page);
1007
1008 if (sb->md_magic != MD_SB_MAGIC) {
1009 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1010 b);
1011 goto abort;
1012 }
1013
1014 if (sb->major_version != 0 ||
1015 sb->minor_version < 90 ||
1016 sb->minor_version > 91) {
1017 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1018 sb->major_version, sb->minor_version,
1019 b);
1020 goto abort;
1021 }
1022
1023 if (sb->raid_disks <= 0)
1024 goto abort;
1025
1026 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1027 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1028 b);
1029 goto abort;
1030 }
1031
1032 rdev->preferred_minor = sb->md_minor;
1033 rdev->data_offset = 0;
1034 rdev->sb_size = MD_SB_BYTES;
1035
1036 if (sb->level == LEVEL_MULTIPATH)
1037 rdev->desc_nr = -1;
1038 else
1039 rdev->desc_nr = sb->this_disk.number;
1040
1041 if (!refdev) {
1042 ret = 1;
1043 } else {
1044 __u64 ev1, ev2;
1045 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1046 if (!uuid_equal(refsb, sb)) {
1047 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1048 b, bdevname(refdev->bdev,b2));
1049 goto abort;
1050 }
1051 if (!sb_equal(refsb, sb)) {
1052 printk(KERN_WARNING "md: %s has same UUID"
1053 " but different superblock to %s\n",
1054 b, bdevname(refdev->bdev, b2));
1055 goto abort;
1056 }
1057 ev1 = md_event(sb);
1058 ev2 = md_event(refsb);
1059 if (ev1 > ev2)
1060 ret = 1;
1061 else
1062 ret = 0;
1063 }
1064 rdev->sectors = rdev->sb_start;
1065
1066 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1067 /* "this cannot possibly happen" ... */
1068 ret = -EINVAL;
1069
1070 abort:
1071 return ret;
1072 }
1073
1074 /*
1075 * validate_super for 0.90.0
1076 */
1077 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1078 {
1079 mdp_disk_t *desc;
1080 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1081 __u64 ev1 = md_event(sb);
1082
1083 rdev->raid_disk = -1;
1084 clear_bit(Faulty, &rdev->flags);
1085 clear_bit(In_sync, &rdev->flags);
1086 clear_bit(WriteMostly, &rdev->flags);
1087
1088 if (mddev->raid_disks == 0) {
1089 mddev->major_version = 0;
1090 mddev->minor_version = sb->minor_version;
1091 mddev->patch_version = sb->patch_version;
1092 mddev->external = 0;
1093 mddev->chunk_sectors = sb->chunk_size >> 9;
1094 mddev->ctime = sb->ctime;
1095 mddev->utime = sb->utime;
1096 mddev->level = sb->level;
1097 mddev->clevel[0] = 0;
1098 mddev->layout = sb->layout;
1099 mddev->raid_disks = sb->raid_disks;
1100 mddev->dev_sectors = sb->size * 2;
1101 mddev->events = ev1;
1102 mddev->bitmap_info.offset = 0;
1103 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1104
1105 if (mddev->minor_version >= 91) {
1106 mddev->reshape_position = sb->reshape_position;
1107 mddev->delta_disks = sb->delta_disks;
1108 mddev->new_level = sb->new_level;
1109 mddev->new_layout = sb->new_layout;
1110 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1111 } else {
1112 mddev->reshape_position = MaxSector;
1113 mddev->delta_disks = 0;
1114 mddev->new_level = mddev->level;
1115 mddev->new_layout = mddev->layout;
1116 mddev->new_chunk_sectors = mddev->chunk_sectors;
1117 }
1118
1119 if (sb->state & (1<<MD_SB_CLEAN))
1120 mddev->recovery_cp = MaxSector;
1121 else {
1122 if (sb->events_hi == sb->cp_events_hi &&
1123 sb->events_lo == sb->cp_events_lo) {
1124 mddev->recovery_cp = sb->recovery_cp;
1125 } else
1126 mddev->recovery_cp = 0;
1127 }
1128
1129 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1130 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1131 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1132 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1133
1134 mddev->max_disks = MD_SB_DISKS;
1135
1136 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1137 mddev->bitmap_info.file == NULL)
1138 mddev->bitmap_info.offset =
1139 mddev->bitmap_info.default_offset;
1140
1141 } else if (mddev->pers == NULL) {
1142 /* Insist on good event counter while assembling, except
1143 * for spares (which don't need an event count) */
1144 ++ev1;
1145 if (sb->disks[rdev->desc_nr].state & (
1146 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1147 if (ev1 < mddev->events)
1148 return -EINVAL;
1149 } else if (mddev->bitmap) {
1150 /* if adding to array with a bitmap, then we can accept an
1151 * older device ... but not too old.
1152 */
1153 if (ev1 < mddev->bitmap->events_cleared)
1154 return 0;
1155 } else {
1156 if (ev1 < mddev->events)
1157 /* just a hot-add of a new device, leave raid_disk at -1 */
1158 return 0;
1159 }
1160
1161 if (mddev->level != LEVEL_MULTIPATH) {
1162 desc = sb->disks + rdev->desc_nr;
1163
1164 if (desc->state & (1<<MD_DISK_FAULTY))
1165 set_bit(Faulty, &rdev->flags);
1166 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1167 desc->raid_disk < mddev->raid_disks */) {
1168 set_bit(In_sync, &rdev->flags);
1169 rdev->raid_disk = desc->raid_disk;
1170 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1171 /* active but not in sync implies recovery up to
1172 * reshape position. We don't know exactly where
1173 * that is, so set to zero for now */
1174 if (mddev->minor_version >= 91) {
1175 rdev->recovery_offset = 0;
1176 rdev->raid_disk = desc->raid_disk;
1177 }
1178 }
1179 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1180 set_bit(WriteMostly, &rdev->flags);
1181 } else /* MULTIPATH are always insync */
1182 set_bit(In_sync, &rdev->flags);
1183 return 0;
1184 }
1185
1186 /*
1187 * sync_super for 0.90.0
1188 */
1189 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1190 {
1191 mdp_super_t *sb;
1192 mdk_rdev_t *rdev2;
1193 int next_spare = mddev->raid_disks;
1194
1195
1196 /* make rdev->sb match mddev data..
1197 *
1198 * 1/ zero out disks
1199 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1200 * 3/ any empty disks < next_spare become removed
1201 *
1202 * disks[0] gets initialised to REMOVED because
1203 * we cannot be sure from other fields if it has
1204 * been initialised or not.
1205 */
1206 int i;
1207 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1208
1209 rdev->sb_size = MD_SB_BYTES;
1210
1211 sb = (mdp_super_t*)page_address(rdev->sb_page);
1212
1213 memset(sb, 0, sizeof(*sb));
1214
1215 sb->md_magic = MD_SB_MAGIC;
1216 sb->major_version = mddev->major_version;
1217 sb->patch_version = mddev->patch_version;
1218 sb->gvalid_words = 0; /* ignored */
1219 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1220 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1221 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1222 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1223
1224 sb->ctime = mddev->ctime;
1225 sb->level = mddev->level;
1226 sb->size = mddev->dev_sectors / 2;
1227 sb->raid_disks = mddev->raid_disks;
1228 sb->md_minor = mddev->md_minor;
1229 sb->not_persistent = 0;
1230 sb->utime = mddev->utime;
1231 sb->state = 0;
1232 sb->events_hi = (mddev->events>>32);
1233 sb->events_lo = (u32)mddev->events;
1234
1235 if (mddev->reshape_position == MaxSector)
1236 sb->minor_version = 90;
1237 else {
1238 sb->minor_version = 91;
1239 sb->reshape_position = mddev->reshape_position;
1240 sb->new_level = mddev->new_level;
1241 sb->delta_disks = mddev->delta_disks;
1242 sb->new_layout = mddev->new_layout;
1243 sb->new_chunk = mddev->new_chunk_sectors << 9;
1244 }
1245 mddev->minor_version = sb->minor_version;
1246 if (mddev->in_sync)
1247 {
1248 sb->recovery_cp = mddev->recovery_cp;
1249 sb->cp_events_hi = (mddev->events>>32);
1250 sb->cp_events_lo = (u32)mddev->events;
1251 if (mddev->recovery_cp == MaxSector)
1252 sb->state = (1<< MD_SB_CLEAN);
1253 } else
1254 sb->recovery_cp = 0;
1255
1256 sb->layout = mddev->layout;
1257 sb->chunk_size = mddev->chunk_sectors << 9;
1258
1259 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1260 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1261
1262 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1263 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1264 mdp_disk_t *d;
1265 int desc_nr;
1266 int is_active = test_bit(In_sync, &rdev2->flags);
1267
1268 if (rdev2->raid_disk >= 0 &&
1269 sb->minor_version >= 91)
1270 /* we have nowhere to store the recovery_offset,
1271 * but if it is not below the reshape_position,
1272 * we can piggy-back on that.
1273 */
1274 is_active = 1;
1275 if (rdev2->raid_disk < 0 ||
1276 test_bit(Faulty, &rdev2->flags))
1277 is_active = 0;
1278 if (is_active)
1279 desc_nr = rdev2->raid_disk;
1280 else
1281 desc_nr = next_spare++;
1282 rdev2->desc_nr = desc_nr;
1283 d = &sb->disks[rdev2->desc_nr];
1284 nr_disks++;
1285 d->number = rdev2->desc_nr;
1286 d->major = MAJOR(rdev2->bdev->bd_dev);
1287 d->minor = MINOR(rdev2->bdev->bd_dev);
1288 if (is_active)
1289 d->raid_disk = rdev2->raid_disk;
1290 else
1291 d->raid_disk = rdev2->desc_nr; /* compatibility */
1292 if (test_bit(Faulty, &rdev2->flags))
1293 d->state = (1<<MD_DISK_FAULTY);
1294 else if (is_active) {
1295 d->state = (1<<MD_DISK_ACTIVE);
1296 if (test_bit(In_sync, &rdev2->flags))
1297 d->state |= (1<<MD_DISK_SYNC);
1298 active++;
1299 working++;
1300 } else {
1301 d->state = 0;
1302 spare++;
1303 working++;
1304 }
1305 if (test_bit(WriteMostly, &rdev2->flags))
1306 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1307 }
1308 /* now set the "removed" and "faulty" bits on any missing devices */
1309 for (i=0 ; i < mddev->raid_disks ; i++) {
1310 mdp_disk_t *d = &sb->disks[i];
1311 if (d->state == 0 && d->number == 0) {
1312 d->number = i;
1313 d->raid_disk = i;
1314 d->state = (1<<MD_DISK_REMOVED);
1315 d->state |= (1<<MD_DISK_FAULTY);
1316 failed++;
1317 }
1318 }
1319 sb->nr_disks = nr_disks;
1320 sb->active_disks = active;
1321 sb->working_disks = working;
1322 sb->failed_disks = failed;
1323 sb->spare_disks = spare;
1324
1325 sb->this_disk = sb->disks[rdev->desc_nr];
1326 sb->sb_csum = calc_sb_csum(sb);
1327 }
1328
1329 /*
1330 * rdev_size_change for 0.90.0
1331 */
1332 static unsigned long long
1333 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1334 {
1335 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1336 return 0; /* component must fit device */
1337 if (rdev->mddev->bitmap_info.offset)
1338 return 0; /* can't move bitmap */
1339 rdev->sb_start = calc_dev_sboffset(rdev);
1340 if (!num_sectors || num_sectors > rdev->sb_start)
1341 num_sectors = rdev->sb_start;
1342 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1343 rdev->sb_page);
1344 md_super_wait(rdev->mddev);
1345 return num_sectors;
1346 }
1347
1348
1349 /*
1350 * version 1 superblock
1351 */
1352
1353 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1354 {
1355 __le32 disk_csum;
1356 u32 csum;
1357 unsigned long long newcsum;
1358 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1359 __le32 *isuper = (__le32*)sb;
1360 int i;
1361
1362 disk_csum = sb->sb_csum;
1363 sb->sb_csum = 0;
1364 newcsum = 0;
1365 for (i=0; size>=4; size -= 4 )
1366 newcsum += le32_to_cpu(*isuper++);
1367
1368 if (size == 2)
1369 newcsum += le16_to_cpu(*(__le16*) isuper);
1370
1371 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1372 sb->sb_csum = disk_csum;
1373 return cpu_to_le32(csum);
1374 }
1375
1376 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1377 {
1378 struct mdp_superblock_1 *sb;
1379 int ret;
1380 sector_t sb_start;
1381 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1382 int bmask;
1383
1384 /*
1385 * Calculate the position of the superblock in 512byte sectors.
1386 * It is always aligned to a 4K boundary and
1387 * depeding on minor_version, it can be:
1388 * 0: At least 8K, but less than 12K, from end of device
1389 * 1: At start of device
1390 * 2: 4K from start of device.
1391 */
1392 switch(minor_version) {
1393 case 0:
1394 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1395 sb_start -= 8*2;
1396 sb_start &= ~(sector_t)(4*2-1);
1397 break;
1398 case 1:
1399 sb_start = 0;
1400 break;
1401 case 2:
1402 sb_start = 8;
1403 break;
1404 default:
1405 return -EINVAL;
1406 }
1407 rdev->sb_start = sb_start;
1408
1409 /* superblock is rarely larger than 1K, but it can be larger,
1410 * and it is safe to read 4k, so we do that
1411 */
1412 ret = read_disk_sb(rdev, 4096);
1413 if (ret) return ret;
1414
1415
1416 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1417
1418 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1419 sb->major_version != cpu_to_le32(1) ||
1420 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1421 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1422 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423 return -EINVAL;
1424
1425 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1426 printk("md: invalid superblock checksum on %s\n",
1427 bdevname(rdev->bdev,b));
1428 return -EINVAL;
1429 }
1430 if (le64_to_cpu(sb->data_size) < 10) {
1431 printk("md: data_size too small on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435
1436 rdev->preferred_minor = 0xffff;
1437 rdev->data_offset = le64_to_cpu(sb->data_offset);
1438 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1439
1440 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1441 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1442 if (rdev->sb_size & bmask)
1443 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1444
1445 if (minor_version
1446 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1447 return -EINVAL;
1448
1449 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1450 rdev->desc_nr = -1;
1451 else
1452 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1453
1454 if (!refdev) {
1455 ret = 1;
1456 } else {
1457 __u64 ev1, ev2;
1458 struct mdp_superblock_1 *refsb =
1459 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1460
1461 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1462 sb->level != refsb->level ||
1463 sb->layout != refsb->layout ||
1464 sb->chunksize != refsb->chunksize) {
1465 printk(KERN_WARNING "md: %s has strangely different"
1466 " superblock to %s\n",
1467 bdevname(rdev->bdev,b),
1468 bdevname(refdev->bdev,b2));
1469 return -EINVAL;
1470 }
1471 ev1 = le64_to_cpu(sb->events);
1472 ev2 = le64_to_cpu(refsb->events);
1473
1474 if (ev1 > ev2)
1475 ret = 1;
1476 else
1477 ret = 0;
1478 }
1479 if (minor_version)
1480 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1481 le64_to_cpu(sb->data_offset);
1482 else
1483 rdev->sectors = rdev->sb_start;
1484 if (rdev->sectors < le64_to_cpu(sb->data_size))
1485 return -EINVAL;
1486 rdev->sectors = le64_to_cpu(sb->data_size);
1487 if (le64_to_cpu(sb->size) > rdev->sectors)
1488 return -EINVAL;
1489 return ret;
1490 }
1491
1492 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1493 {
1494 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1495 __u64 ev1 = le64_to_cpu(sb->events);
1496
1497 rdev->raid_disk = -1;
1498 clear_bit(Faulty, &rdev->flags);
1499 clear_bit(In_sync, &rdev->flags);
1500 clear_bit(WriteMostly, &rdev->flags);
1501
1502 if (mddev->raid_disks == 0) {
1503 mddev->major_version = 1;
1504 mddev->patch_version = 0;
1505 mddev->external = 0;
1506 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1507 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1508 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1509 mddev->level = le32_to_cpu(sb->level);
1510 mddev->clevel[0] = 0;
1511 mddev->layout = le32_to_cpu(sb->layout);
1512 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1513 mddev->dev_sectors = le64_to_cpu(sb->size);
1514 mddev->events = ev1;
1515 mddev->bitmap_info.offset = 0;
1516 mddev->bitmap_info.default_offset = 1024 >> 9;
1517
1518 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1519 memcpy(mddev->uuid, sb->set_uuid, 16);
1520
1521 mddev->max_disks = (4096-256)/2;
1522
1523 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1524 mddev->bitmap_info.file == NULL )
1525 mddev->bitmap_info.offset =
1526 (__s32)le32_to_cpu(sb->bitmap_offset);
1527
1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1529 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1530 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1531 mddev->new_level = le32_to_cpu(sb->new_level);
1532 mddev->new_layout = le32_to_cpu(sb->new_layout);
1533 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1534 } else {
1535 mddev->reshape_position = MaxSector;
1536 mddev->delta_disks = 0;
1537 mddev->new_level = mddev->level;
1538 mddev->new_layout = mddev->layout;
1539 mddev->new_chunk_sectors = mddev->chunk_sectors;
1540 }
1541
1542 } else if (mddev->pers == NULL) {
1543 /* Insist of good event counter while assembling, except for
1544 * spares (which don't need an event count) */
1545 ++ev1;
1546 if (rdev->desc_nr >= 0 &&
1547 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1548 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1549 if (ev1 < mddev->events)
1550 return -EINVAL;
1551 } else if (mddev->bitmap) {
1552 /* If adding to array with a bitmap, then we can accept an
1553 * older device, but not too old.
1554 */
1555 if (ev1 < mddev->bitmap->events_cleared)
1556 return 0;
1557 } else {
1558 if (ev1 < mddev->events)
1559 /* just a hot-add of a new device, leave raid_disk at -1 */
1560 return 0;
1561 }
1562 if (mddev->level != LEVEL_MULTIPATH) {
1563 int role;
1564 if (rdev->desc_nr < 0 ||
1565 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1566 role = 0xffff;
1567 rdev->desc_nr = -1;
1568 } else
1569 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1570 switch(role) {
1571 case 0xffff: /* spare */
1572 break;
1573 case 0xfffe: /* faulty */
1574 set_bit(Faulty, &rdev->flags);
1575 break;
1576 default:
1577 if ((le32_to_cpu(sb->feature_map) &
1578 MD_FEATURE_RECOVERY_OFFSET))
1579 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1580 else
1581 set_bit(In_sync, &rdev->flags);
1582 rdev->raid_disk = role;
1583 break;
1584 }
1585 if (sb->devflags & WriteMostly1)
1586 set_bit(WriteMostly, &rdev->flags);
1587 } else /* MULTIPATH are always insync */
1588 set_bit(In_sync, &rdev->flags);
1589
1590 return 0;
1591 }
1592
1593 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1594 {
1595 struct mdp_superblock_1 *sb;
1596 mdk_rdev_t *rdev2;
1597 int max_dev, i;
1598 /* make rdev->sb match mddev and rdev data. */
1599
1600 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1601
1602 sb->feature_map = 0;
1603 sb->pad0 = 0;
1604 sb->recovery_offset = cpu_to_le64(0);
1605 memset(sb->pad1, 0, sizeof(sb->pad1));
1606 memset(sb->pad2, 0, sizeof(sb->pad2));
1607 memset(sb->pad3, 0, sizeof(sb->pad3));
1608
1609 sb->utime = cpu_to_le64((__u64)mddev->utime);
1610 sb->events = cpu_to_le64(mddev->events);
1611 if (mddev->in_sync)
1612 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1613 else
1614 sb->resync_offset = cpu_to_le64(0);
1615
1616 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1617
1618 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1619 sb->size = cpu_to_le64(mddev->dev_sectors);
1620 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1621 sb->level = cpu_to_le32(mddev->level);
1622 sb->layout = cpu_to_le32(mddev->layout);
1623
1624 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1625 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1626 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1627 }
1628
1629 if (rdev->raid_disk >= 0 &&
1630 !test_bit(In_sync, &rdev->flags)) {
1631 sb->feature_map |=
1632 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1633 sb->recovery_offset =
1634 cpu_to_le64(rdev->recovery_offset);
1635 }
1636
1637 if (mddev->reshape_position != MaxSector) {
1638 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1639 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1640 sb->new_layout = cpu_to_le32(mddev->new_layout);
1641 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1642 sb->new_level = cpu_to_le32(mddev->new_level);
1643 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1644 }
1645
1646 max_dev = 0;
1647 list_for_each_entry(rdev2, &mddev->disks, same_set)
1648 if (rdev2->desc_nr+1 > max_dev)
1649 max_dev = rdev2->desc_nr+1;
1650
1651 if (max_dev > le32_to_cpu(sb->max_dev)) {
1652 int bmask;
1653 sb->max_dev = cpu_to_le32(max_dev);
1654 rdev->sb_size = max_dev * 2 + 256;
1655 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1656 if (rdev->sb_size & bmask)
1657 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1658 } else
1659 max_dev = le32_to_cpu(sb->max_dev);
1660
1661 for (i=0; i<max_dev;i++)
1662 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1663
1664 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1665 i = rdev2->desc_nr;
1666 if (test_bit(Faulty, &rdev2->flags))
1667 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1668 else if (test_bit(In_sync, &rdev2->flags))
1669 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1670 else if (rdev2->raid_disk >= 0)
1671 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1672 else
1673 sb->dev_roles[i] = cpu_to_le16(0xffff);
1674 }
1675
1676 sb->sb_csum = calc_sb_1_csum(sb);
1677 }
1678
1679 static unsigned long long
1680 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1681 {
1682 struct mdp_superblock_1 *sb;
1683 sector_t max_sectors;
1684 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1685 return 0; /* component must fit device */
1686 if (rdev->sb_start < rdev->data_offset) {
1687 /* minor versions 1 and 2; superblock before data */
1688 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1689 max_sectors -= rdev->data_offset;
1690 if (!num_sectors || num_sectors > max_sectors)
1691 num_sectors = max_sectors;
1692 } else if (rdev->mddev->bitmap_info.offset) {
1693 /* minor version 0 with bitmap we can't move */
1694 return 0;
1695 } else {
1696 /* minor version 0; superblock after data */
1697 sector_t sb_start;
1698 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1699 sb_start &= ~(sector_t)(4*2 - 1);
1700 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1701 if (!num_sectors || num_sectors > max_sectors)
1702 num_sectors = max_sectors;
1703 rdev->sb_start = sb_start;
1704 }
1705 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1706 sb->data_size = cpu_to_le64(num_sectors);
1707 sb->super_offset = rdev->sb_start;
1708 sb->sb_csum = calc_sb_1_csum(sb);
1709 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1710 rdev->sb_page);
1711 md_super_wait(rdev->mddev);
1712 return num_sectors;
1713 }
1714
1715 static struct super_type super_types[] = {
1716 [0] = {
1717 .name = "0.90.0",
1718 .owner = THIS_MODULE,
1719 .load_super = super_90_load,
1720 .validate_super = super_90_validate,
1721 .sync_super = super_90_sync,
1722 .rdev_size_change = super_90_rdev_size_change,
1723 },
1724 [1] = {
1725 .name = "md-1",
1726 .owner = THIS_MODULE,
1727 .load_super = super_1_load,
1728 .validate_super = super_1_validate,
1729 .sync_super = super_1_sync,
1730 .rdev_size_change = super_1_rdev_size_change,
1731 },
1732 };
1733
1734 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1735 {
1736 mdk_rdev_t *rdev, *rdev2;
1737
1738 rcu_read_lock();
1739 rdev_for_each_rcu(rdev, mddev1)
1740 rdev_for_each_rcu(rdev2, mddev2)
1741 if (rdev->bdev->bd_contains ==
1742 rdev2->bdev->bd_contains) {
1743 rcu_read_unlock();
1744 return 1;
1745 }
1746 rcu_read_unlock();
1747 return 0;
1748 }
1749
1750 static LIST_HEAD(pending_raid_disks);
1751
1752 /*
1753 * Try to register data integrity profile for an mddev
1754 *
1755 * This is called when an array is started and after a disk has been kicked
1756 * from the array. It only succeeds if all working and active component devices
1757 * are integrity capable with matching profiles.
1758 */
1759 int md_integrity_register(mddev_t *mddev)
1760 {
1761 mdk_rdev_t *rdev, *reference = NULL;
1762
1763 if (list_empty(&mddev->disks))
1764 return 0; /* nothing to do */
1765 if (blk_get_integrity(mddev->gendisk))
1766 return 0; /* already registered */
1767 list_for_each_entry(rdev, &mddev->disks, same_set) {
1768 /* skip spares and non-functional disks */
1769 if (test_bit(Faulty, &rdev->flags))
1770 continue;
1771 if (rdev->raid_disk < 0)
1772 continue;
1773 /*
1774 * If at least one rdev is not integrity capable, we can not
1775 * enable data integrity for the md device.
1776 */
1777 if (!bdev_get_integrity(rdev->bdev))
1778 return -EINVAL;
1779 if (!reference) {
1780 /* Use the first rdev as the reference */
1781 reference = rdev;
1782 continue;
1783 }
1784 /* does this rdev's profile match the reference profile? */
1785 if (blk_integrity_compare(reference->bdev->bd_disk,
1786 rdev->bdev->bd_disk) < 0)
1787 return -EINVAL;
1788 }
1789 /*
1790 * All component devices are integrity capable and have matching
1791 * profiles, register the common profile for the md device.
1792 */
1793 if (blk_integrity_register(mddev->gendisk,
1794 bdev_get_integrity(reference->bdev)) != 0) {
1795 printk(KERN_ERR "md: failed to register integrity for %s\n",
1796 mdname(mddev));
1797 return -EINVAL;
1798 }
1799 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1800 mdname(mddev));
1801 return 0;
1802 }
1803 EXPORT_SYMBOL(md_integrity_register);
1804
1805 /* Disable data integrity if non-capable/non-matching disk is being added */
1806 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1807 {
1808 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1809 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1810
1811 if (!bi_mddev) /* nothing to do */
1812 return;
1813 if (rdev->raid_disk < 0) /* skip spares */
1814 return;
1815 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1816 rdev->bdev->bd_disk) >= 0)
1817 return;
1818 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1819 blk_integrity_unregister(mddev->gendisk);
1820 }
1821 EXPORT_SYMBOL(md_integrity_add_rdev);
1822
1823 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1824 {
1825 char b[BDEVNAME_SIZE];
1826 struct kobject *ko;
1827 char *s;
1828 int err;
1829
1830 if (rdev->mddev) {
1831 MD_BUG();
1832 return -EINVAL;
1833 }
1834
1835 /* prevent duplicates */
1836 if (find_rdev(mddev, rdev->bdev->bd_dev))
1837 return -EEXIST;
1838
1839 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1840 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1841 rdev->sectors < mddev->dev_sectors)) {
1842 if (mddev->pers) {
1843 /* Cannot change size, so fail
1844 * If mddev->level <= 0, then we don't care
1845 * about aligning sizes (e.g. linear)
1846 */
1847 if (mddev->level > 0)
1848 return -ENOSPC;
1849 } else
1850 mddev->dev_sectors = rdev->sectors;
1851 }
1852
1853 /* Verify rdev->desc_nr is unique.
1854 * If it is -1, assign a free number, else
1855 * check number is not in use
1856 */
1857 if (rdev->desc_nr < 0) {
1858 int choice = 0;
1859 if (mddev->pers) choice = mddev->raid_disks;
1860 while (find_rdev_nr(mddev, choice))
1861 choice++;
1862 rdev->desc_nr = choice;
1863 } else {
1864 if (find_rdev_nr(mddev, rdev->desc_nr))
1865 return -EBUSY;
1866 }
1867 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1868 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1869 mdname(mddev), mddev->max_disks);
1870 return -EBUSY;
1871 }
1872 bdevname(rdev->bdev,b);
1873 while ( (s=strchr(b, '/')) != NULL)
1874 *s = '!';
1875
1876 rdev->mddev = mddev;
1877 printk(KERN_INFO "md: bind<%s>\n", b);
1878
1879 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1880 goto fail;
1881
1882 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1883 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1884 /* failure here is OK */;
1885 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1886
1887 list_add_rcu(&rdev->same_set, &mddev->disks);
1888 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1889
1890 /* May as well allow recovery to be retried once */
1891 mddev->recovery_disabled = 0;
1892
1893 return 0;
1894
1895 fail:
1896 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1897 b, mdname(mddev));
1898 return err;
1899 }
1900
1901 static void md_delayed_delete(struct work_struct *ws)
1902 {
1903 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1904 kobject_del(&rdev->kobj);
1905 kobject_put(&rdev->kobj);
1906 }
1907
1908 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1909 {
1910 char b[BDEVNAME_SIZE];
1911 if (!rdev->mddev) {
1912 MD_BUG();
1913 return;
1914 }
1915 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1916 list_del_rcu(&rdev->same_set);
1917 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1918 rdev->mddev = NULL;
1919 sysfs_remove_link(&rdev->kobj, "block");
1920 sysfs_put(rdev->sysfs_state);
1921 rdev->sysfs_state = NULL;
1922 /* We need to delay this, otherwise we can deadlock when
1923 * writing to 'remove' to "dev/state". We also need
1924 * to delay it due to rcu usage.
1925 */
1926 synchronize_rcu();
1927 INIT_WORK(&rdev->del_work, md_delayed_delete);
1928 kobject_get(&rdev->kobj);
1929 queue_work(md_misc_wq, &rdev->del_work);
1930 }
1931
1932 /*
1933 * prevent the device from being mounted, repartitioned or
1934 * otherwise reused by a RAID array (or any other kernel
1935 * subsystem), by bd_claiming the device.
1936 */
1937 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1938 {
1939 int err = 0;
1940 struct block_device *bdev;
1941 char b[BDEVNAME_SIZE];
1942
1943 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1944 if (IS_ERR(bdev)) {
1945 printk(KERN_ERR "md: could not open %s.\n",
1946 __bdevname(dev, b));
1947 return PTR_ERR(bdev);
1948 }
1949 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1950 if (err) {
1951 printk(KERN_ERR "md: could not bd_claim %s.\n",
1952 bdevname(bdev, b));
1953 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1954 return err;
1955 }
1956 if (!shared)
1957 set_bit(AllReserved, &rdev->flags);
1958 rdev->bdev = bdev;
1959 return err;
1960 }
1961
1962 static void unlock_rdev(mdk_rdev_t *rdev)
1963 {
1964 struct block_device *bdev = rdev->bdev;
1965 rdev->bdev = NULL;
1966 if (!bdev)
1967 MD_BUG();
1968 bd_release(bdev);
1969 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1970 }
1971
1972 void md_autodetect_dev(dev_t dev);
1973
1974 static void export_rdev(mdk_rdev_t * rdev)
1975 {
1976 char b[BDEVNAME_SIZE];
1977 printk(KERN_INFO "md: export_rdev(%s)\n",
1978 bdevname(rdev->bdev,b));
1979 if (rdev->mddev)
1980 MD_BUG();
1981 free_disk_sb(rdev);
1982 #ifndef MODULE
1983 if (test_bit(AutoDetected, &rdev->flags))
1984 md_autodetect_dev(rdev->bdev->bd_dev);
1985 #endif
1986 unlock_rdev(rdev);
1987 kobject_put(&rdev->kobj);
1988 }
1989
1990 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1991 {
1992 unbind_rdev_from_array(rdev);
1993 export_rdev(rdev);
1994 }
1995
1996 static void export_array(mddev_t *mddev)
1997 {
1998 mdk_rdev_t *rdev, *tmp;
1999
2000 rdev_for_each(rdev, tmp, mddev) {
2001 if (!rdev->mddev) {
2002 MD_BUG();
2003 continue;
2004 }
2005 kick_rdev_from_array(rdev);
2006 }
2007 if (!list_empty(&mddev->disks))
2008 MD_BUG();
2009 mddev->raid_disks = 0;
2010 mddev->major_version = 0;
2011 }
2012
2013 static void print_desc(mdp_disk_t *desc)
2014 {
2015 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2016 desc->major,desc->minor,desc->raid_disk,desc->state);
2017 }
2018
2019 static void print_sb_90(mdp_super_t *sb)
2020 {
2021 int i;
2022
2023 printk(KERN_INFO
2024 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2025 sb->major_version, sb->minor_version, sb->patch_version,
2026 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2027 sb->ctime);
2028 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2029 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2030 sb->md_minor, sb->layout, sb->chunk_size);
2031 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2032 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2033 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2034 sb->failed_disks, sb->spare_disks,
2035 sb->sb_csum, (unsigned long)sb->events_lo);
2036
2037 printk(KERN_INFO);
2038 for (i = 0; i < MD_SB_DISKS; i++) {
2039 mdp_disk_t *desc;
2040
2041 desc = sb->disks + i;
2042 if (desc->number || desc->major || desc->minor ||
2043 desc->raid_disk || (desc->state && (desc->state != 4))) {
2044 printk(" D %2d: ", i);
2045 print_desc(desc);
2046 }
2047 }
2048 printk(KERN_INFO "md: THIS: ");
2049 print_desc(&sb->this_disk);
2050 }
2051
2052 static void print_sb_1(struct mdp_superblock_1 *sb)
2053 {
2054 __u8 *uuid;
2055
2056 uuid = sb->set_uuid;
2057 printk(KERN_INFO
2058 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2059 "md: Name: \"%s\" CT:%llu\n",
2060 le32_to_cpu(sb->major_version),
2061 le32_to_cpu(sb->feature_map),
2062 uuid,
2063 sb->set_name,
2064 (unsigned long long)le64_to_cpu(sb->ctime)
2065 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2066
2067 uuid = sb->device_uuid;
2068 printk(KERN_INFO
2069 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2070 " RO:%llu\n"
2071 "md: Dev:%08x UUID: %pU\n"
2072 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2073 "md: (MaxDev:%u) \n",
2074 le32_to_cpu(sb->level),
2075 (unsigned long long)le64_to_cpu(sb->size),
2076 le32_to_cpu(sb->raid_disks),
2077 le32_to_cpu(sb->layout),
2078 le32_to_cpu(sb->chunksize),
2079 (unsigned long long)le64_to_cpu(sb->data_offset),
2080 (unsigned long long)le64_to_cpu(sb->data_size),
2081 (unsigned long long)le64_to_cpu(sb->super_offset),
2082 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2083 le32_to_cpu(sb->dev_number),
2084 uuid,
2085 sb->devflags,
2086 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2087 (unsigned long long)le64_to_cpu(sb->events),
2088 (unsigned long long)le64_to_cpu(sb->resync_offset),
2089 le32_to_cpu(sb->sb_csum),
2090 le32_to_cpu(sb->max_dev)
2091 );
2092 }
2093
2094 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2095 {
2096 char b[BDEVNAME_SIZE];
2097 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2098 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2099 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2100 rdev->desc_nr);
2101 if (rdev->sb_loaded) {
2102 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2103 switch (major_version) {
2104 case 0:
2105 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2106 break;
2107 case 1:
2108 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2109 break;
2110 }
2111 } else
2112 printk(KERN_INFO "md: no rdev superblock!\n");
2113 }
2114
2115 static void md_print_devices(void)
2116 {
2117 struct list_head *tmp;
2118 mdk_rdev_t *rdev;
2119 mddev_t *mddev;
2120 char b[BDEVNAME_SIZE];
2121
2122 printk("\n");
2123 printk("md: **********************************\n");
2124 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2125 printk("md: **********************************\n");
2126 for_each_mddev(mddev, tmp) {
2127
2128 if (mddev->bitmap)
2129 bitmap_print_sb(mddev->bitmap);
2130 else
2131 printk("%s: ", mdname(mddev));
2132 list_for_each_entry(rdev, &mddev->disks, same_set)
2133 printk("<%s>", bdevname(rdev->bdev,b));
2134 printk("\n");
2135
2136 list_for_each_entry(rdev, &mddev->disks, same_set)
2137 print_rdev(rdev, mddev->major_version);
2138 }
2139 printk("md: **********************************\n");
2140 printk("\n");
2141 }
2142
2143
2144 static void sync_sbs(mddev_t * mddev, int nospares)
2145 {
2146 /* Update each superblock (in-memory image), but
2147 * if we are allowed to, skip spares which already
2148 * have the right event counter, or have one earlier
2149 * (which would mean they aren't being marked as dirty
2150 * with the rest of the array)
2151 */
2152 mdk_rdev_t *rdev;
2153 list_for_each_entry(rdev, &mddev->disks, same_set) {
2154 if (rdev->sb_events == mddev->events ||
2155 (nospares &&
2156 rdev->raid_disk < 0 &&
2157 rdev->sb_events+1 == mddev->events)) {
2158 /* Don't update this superblock */
2159 rdev->sb_loaded = 2;
2160 } else {
2161 super_types[mddev->major_version].
2162 sync_super(mddev, rdev);
2163 rdev->sb_loaded = 1;
2164 }
2165 }
2166 }
2167
2168 static void md_update_sb(mddev_t * mddev, int force_change)
2169 {
2170 mdk_rdev_t *rdev;
2171 int sync_req;
2172 int nospares = 0;
2173
2174 repeat:
2175 /* First make sure individual recovery_offsets are correct */
2176 list_for_each_entry(rdev, &mddev->disks, same_set) {
2177 if (rdev->raid_disk >= 0 &&
2178 mddev->delta_disks >= 0 &&
2179 !test_bit(In_sync, &rdev->flags) &&
2180 mddev->curr_resync_completed > rdev->recovery_offset)
2181 rdev->recovery_offset = mddev->curr_resync_completed;
2182
2183 }
2184 if (!mddev->persistent) {
2185 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2186 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2187 if (!mddev->external)
2188 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2189 wake_up(&mddev->sb_wait);
2190 return;
2191 }
2192
2193 spin_lock_irq(&mddev->write_lock);
2194
2195 mddev->utime = get_seconds();
2196
2197 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2198 force_change = 1;
2199 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2200 /* just a clean<-> dirty transition, possibly leave spares alone,
2201 * though if events isn't the right even/odd, we will have to do
2202 * spares after all
2203 */
2204 nospares = 1;
2205 if (force_change)
2206 nospares = 0;
2207 if (mddev->degraded)
2208 /* If the array is degraded, then skipping spares is both
2209 * dangerous and fairly pointless.
2210 * Dangerous because a device that was removed from the array
2211 * might have a event_count that still looks up-to-date,
2212 * so it can be re-added without a resync.
2213 * Pointless because if there are any spares to skip,
2214 * then a recovery will happen and soon that array won't
2215 * be degraded any more and the spare can go back to sleep then.
2216 */
2217 nospares = 0;
2218
2219 sync_req = mddev->in_sync;
2220
2221 /* If this is just a dirty<->clean transition, and the array is clean
2222 * and 'events' is odd, we can roll back to the previous clean state */
2223 if (nospares
2224 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2225 && mddev->can_decrease_events
2226 && mddev->events != 1) {
2227 mddev->events--;
2228 mddev->can_decrease_events = 0;
2229 } else {
2230 /* otherwise we have to go forward and ... */
2231 mddev->events ++;
2232 mddev->can_decrease_events = nospares;
2233 }
2234
2235 if (!mddev->events) {
2236 /*
2237 * oops, this 64-bit counter should never wrap.
2238 * Either we are in around ~1 trillion A.C., assuming
2239 * 1 reboot per second, or we have a bug:
2240 */
2241 MD_BUG();
2242 mddev->events --;
2243 }
2244 sync_sbs(mddev, nospares);
2245 spin_unlock_irq(&mddev->write_lock);
2246
2247 dprintk(KERN_INFO
2248 "md: updating %s RAID superblock on device (in sync %d)\n",
2249 mdname(mddev),mddev->in_sync);
2250
2251 bitmap_update_sb(mddev->bitmap);
2252 list_for_each_entry(rdev, &mddev->disks, same_set) {
2253 char b[BDEVNAME_SIZE];
2254 dprintk(KERN_INFO "md: ");
2255 if (rdev->sb_loaded != 1)
2256 continue; /* no noise on spare devices */
2257 if (test_bit(Faulty, &rdev->flags))
2258 dprintk("(skipping faulty ");
2259
2260 dprintk("%s ", bdevname(rdev->bdev,b));
2261 if (!test_bit(Faulty, &rdev->flags)) {
2262 md_super_write(mddev,rdev,
2263 rdev->sb_start, rdev->sb_size,
2264 rdev->sb_page);
2265 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2266 bdevname(rdev->bdev,b),
2267 (unsigned long long)rdev->sb_start);
2268 rdev->sb_events = mddev->events;
2269
2270 } else
2271 dprintk(")\n");
2272 if (mddev->level == LEVEL_MULTIPATH)
2273 /* only need to write one superblock... */
2274 break;
2275 }
2276 md_super_wait(mddev);
2277 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2278
2279 spin_lock_irq(&mddev->write_lock);
2280 if (mddev->in_sync != sync_req ||
2281 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2282 /* have to write it out again */
2283 spin_unlock_irq(&mddev->write_lock);
2284 goto repeat;
2285 }
2286 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2287 spin_unlock_irq(&mddev->write_lock);
2288 wake_up(&mddev->sb_wait);
2289 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2290 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2291
2292 }
2293
2294 /* words written to sysfs files may, or may not, be \n terminated.
2295 * We want to accept with case. For this we use cmd_match.
2296 */
2297 static int cmd_match(const char *cmd, const char *str)
2298 {
2299 /* See if cmd, written into a sysfs file, matches
2300 * str. They must either be the same, or cmd can
2301 * have a trailing newline
2302 */
2303 while (*cmd && *str && *cmd == *str) {
2304 cmd++;
2305 str++;
2306 }
2307 if (*cmd == '\n')
2308 cmd++;
2309 if (*str || *cmd)
2310 return 0;
2311 return 1;
2312 }
2313
2314 struct rdev_sysfs_entry {
2315 struct attribute attr;
2316 ssize_t (*show)(mdk_rdev_t *, char *);
2317 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2318 };
2319
2320 static ssize_t
2321 state_show(mdk_rdev_t *rdev, char *page)
2322 {
2323 char *sep = "";
2324 size_t len = 0;
2325
2326 if (test_bit(Faulty, &rdev->flags)) {
2327 len+= sprintf(page+len, "%sfaulty",sep);
2328 sep = ",";
2329 }
2330 if (test_bit(In_sync, &rdev->flags)) {
2331 len += sprintf(page+len, "%sin_sync",sep);
2332 sep = ",";
2333 }
2334 if (test_bit(WriteMostly, &rdev->flags)) {
2335 len += sprintf(page+len, "%swrite_mostly",sep);
2336 sep = ",";
2337 }
2338 if (test_bit(Blocked, &rdev->flags)) {
2339 len += sprintf(page+len, "%sblocked", sep);
2340 sep = ",";
2341 }
2342 if (!test_bit(Faulty, &rdev->flags) &&
2343 !test_bit(In_sync, &rdev->flags)) {
2344 len += sprintf(page+len, "%sspare", sep);
2345 sep = ",";
2346 }
2347 return len+sprintf(page+len, "\n");
2348 }
2349
2350 static ssize_t
2351 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2352 {
2353 /* can write
2354 * faulty - simulates and error
2355 * remove - disconnects the device
2356 * writemostly - sets write_mostly
2357 * -writemostly - clears write_mostly
2358 * blocked - sets the Blocked flag
2359 * -blocked - clears the Blocked flag
2360 * insync - sets Insync providing device isn't active
2361 */
2362 int err = -EINVAL;
2363 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2364 md_error(rdev->mddev, rdev);
2365 err = 0;
2366 } else if (cmd_match(buf, "remove")) {
2367 if (rdev->raid_disk >= 0)
2368 err = -EBUSY;
2369 else {
2370 mddev_t *mddev = rdev->mddev;
2371 kick_rdev_from_array(rdev);
2372 if (mddev->pers)
2373 md_update_sb(mddev, 1);
2374 md_new_event(mddev);
2375 err = 0;
2376 }
2377 } else if (cmd_match(buf, "writemostly")) {
2378 set_bit(WriteMostly, &rdev->flags);
2379 err = 0;
2380 } else if (cmd_match(buf, "-writemostly")) {
2381 clear_bit(WriteMostly, &rdev->flags);
2382 err = 0;
2383 } else if (cmd_match(buf, "blocked")) {
2384 set_bit(Blocked, &rdev->flags);
2385 err = 0;
2386 } else if (cmd_match(buf, "-blocked")) {
2387 clear_bit(Blocked, &rdev->flags);
2388 wake_up(&rdev->blocked_wait);
2389 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2390 md_wakeup_thread(rdev->mddev->thread);
2391
2392 err = 0;
2393 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2394 set_bit(In_sync, &rdev->flags);
2395 err = 0;
2396 }
2397 if (!err)
2398 sysfs_notify_dirent_safe(rdev->sysfs_state);
2399 return err ? err : len;
2400 }
2401 static struct rdev_sysfs_entry rdev_state =
2402 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2403
2404 static ssize_t
2405 errors_show(mdk_rdev_t *rdev, char *page)
2406 {
2407 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2408 }
2409
2410 static ssize_t
2411 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2412 {
2413 char *e;
2414 unsigned long n = simple_strtoul(buf, &e, 10);
2415 if (*buf && (*e == 0 || *e == '\n')) {
2416 atomic_set(&rdev->corrected_errors, n);
2417 return len;
2418 }
2419 return -EINVAL;
2420 }
2421 static struct rdev_sysfs_entry rdev_errors =
2422 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2423
2424 static ssize_t
2425 slot_show(mdk_rdev_t *rdev, char *page)
2426 {
2427 if (rdev->raid_disk < 0)
2428 return sprintf(page, "none\n");
2429 else
2430 return sprintf(page, "%d\n", rdev->raid_disk);
2431 }
2432
2433 static ssize_t
2434 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2435 {
2436 char *e;
2437 int err;
2438 char nm[20];
2439 int slot = simple_strtoul(buf, &e, 10);
2440 if (strncmp(buf, "none", 4)==0)
2441 slot = -1;
2442 else if (e==buf || (*e && *e!= '\n'))
2443 return -EINVAL;
2444 if (rdev->mddev->pers && slot == -1) {
2445 /* Setting 'slot' on an active array requires also
2446 * updating the 'rd%d' link, and communicating
2447 * with the personality with ->hot_*_disk.
2448 * For now we only support removing
2449 * failed/spare devices. This normally happens automatically,
2450 * but not when the metadata is externally managed.
2451 */
2452 if (rdev->raid_disk == -1)
2453 return -EEXIST;
2454 /* personality does all needed checks */
2455 if (rdev->mddev->pers->hot_add_disk == NULL)
2456 return -EINVAL;
2457 err = rdev->mddev->pers->
2458 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2459 if (err)
2460 return err;
2461 sprintf(nm, "rd%d", rdev->raid_disk);
2462 sysfs_remove_link(&rdev->mddev->kobj, nm);
2463 rdev->raid_disk = -1;
2464 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2465 md_wakeup_thread(rdev->mddev->thread);
2466 } else if (rdev->mddev->pers) {
2467 mdk_rdev_t *rdev2;
2468 /* Activating a spare .. or possibly reactivating
2469 * if we ever get bitmaps working here.
2470 */
2471
2472 if (rdev->raid_disk != -1)
2473 return -EBUSY;
2474
2475 if (rdev->mddev->pers->hot_add_disk == NULL)
2476 return -EINVAL;
2477
2478 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2479 if (rdev2->raid_disk == slot)
2480 return -EEXIST;
2481
2482 rdev->raid_disk = slot;
2483 if (test_bit(In_sync, &rdev->flags))
2484 rdev->saved_raid_disk = slot;
2485 else
2486 rdev->saved_raid_disk = -1;
2487 err = rdev->mddev->pers->
2488 hot_add_disk(rdev->mddev, rdev);
2489 if (err) {
2490 rdev->raid_disk = -1;
2491 return err;
2492 } else
2493 sysfs_notify_dirent_safe(rdev->sysfs_state);
2494 sprintf(nm, "rd%d", rdev->raid_disk);
2495 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2496 /* failure here is OK */;
2497 /* don't wakeup anyone, leave that to userspace. */
2498 } else {
2499 if (slot >= rdev->mddev->raid_disks)
2500 return -ENOSPC;
2501 rdev->raid_disk = slot;
2502 /* assume it is working */
2503 clear_bit(Faulty, &rdev->flags);
2504 clear_bit(WriteMostly, &rdev->flags);
2505 set_bit(In_sync, &rdev->flags);
2506 sysfs_notify_dirent_safe(rdev->sysfs_state);
2507 }
2508 return len;
2509 }
2510
2511
2512 static struct rdev_sysfs_entry rdev_slot =
2513 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2514
2515 static ssize_t
2516 offset_show(mdk_rdev_t *rdev, char *page)
2517 {
2518 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2519 }
2520
2521 static ssize_t
2522 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2523 {
2524 char *e;
2525 unsigned long long offset = simple_strtoull(buf, &e, 10);
2526 if (e==buf || (*e && *e != '\n'))
2527 return -EINVAL;
2528 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2529 return -EBUSY;
2530 if (rdev->sectors && rdev->mddev->external)
2531 /* Must set offset before size, so overlap checks
2532 * can be sane */
2533 return -EBUSY;
2534 rdev->data_offset = offset;
2535 return len;
2536 }
2537
2538 static struct rdev_sysfs_entry rdev_offset =
2539 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2540
2541 static ssize_t
2542 rdev_size_show(mdk_rdev_t *rdev, char *page)
2543 {
2544 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2545 }
2546
2547 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2548 {
2549 /* check if two start/length pairs overlap */
2550 if (s1+l1 <= s2)
2551 return 0;
2552 if (s2+l2 <= s1)
2553 return 0;
2554 return 1;
2555 }
2556
2557 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2558 {
2559 unsigned long long blocks;
2560 sector_t new;
2561
2562 if (strict_strtoull(buf, 10, &blocks) < 0)
2563 return -EINVAL;
2564
2565 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2566 return -EINVAL; /* sector conversion overflow */
2567
2568 new = blocks * 2;
2569 if (new != blocks * 2)
2570 return -EINVAL; /* unsigned long long to sector_t overflow */
2571
2572 *sectors = new;
2573 return 0;
2574 }
2575
2576 static ssize_t
2577 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2578 {
2579 mddev_t *my_mddev = rdev->mddev;
2580 sector_t oldsectors = rdev->sectors;
2581 sector_t sectors;
2582
2583 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2584 return -EINVAL;
2585 if (my_mddev->pers && rdev->raid_disk >= 0) {
2586 if (my_mddev->persistent) {
2587 sectors = super_types[my_mddev->major_version].
2588 rdev_size_change(rdev, sectors);
2589 if (!sectors)
2590 return -EBUSY;
2591 } else if (!sectors)
2592 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2593 rdev->data_offset;
2594 }
2595 if (sectors < my_mddev->dev_sectors)
2596 return -EINVAL; /* component must fit device */
2597
2598 rdev->sectors = sectors;
2599 if (sectors > oldsectors && my_mddev->external) {
2600 /* need to check that all other rdevs with the same ->bdev
2601 * do not overlap. We need to unlock the mddev to avoid
2602 * a deadlock. We have already changed rdev->sectors, and if
2603 * we have to change it back, we will have the lock again.
2604 */
2605 mddev_t *mddev;
2606 int overlap = 0;
2607 struct list_head *tmp;
2608
2609 mddev_unlock(my_mddev);
2610 for_each_mddev(mddev, tmp) {
2611 mdk_rdev_t *rdev2;
2612
2613 mddev_lock(mddev);
2614 list_for_each_entry(rdev2, &mddev->disks, same_set)
2615 if (test_bit(AllReserved, &rdev2->flags) ||
2616 (rdev->bdev == rdev2->bdev &&
2617 rdev != rdev2 &&
2618 overlaps(rdev->data_offset, rdev->sectors,
2619 rdev2->data_offset,
2620 rdev2->sectors))) {
2621 overlap = 1;
2622 break;
2623 }
2624 mddev_unlock(mddev);
2625 if (overlap) {
2626 mddev_put(mddev);
2627 break;
2628 }
2629 }
2630 mddev_lock(my_mddev);
2631 if (overlap) {
2632 /* Someone else could have slipped in a size
2633 * change here, but doing so is just silly.
2634 * We put oldsectors back because we *know* it is
2635 * safe, and trust userspace not to race with
2636 * itself
2637 */
2638 rdev->sectors = oldsectors;
2639 return -EBUSY;
2640 }
2641 }
2642 return len;
2643 }
2644
2645 static struct rdev_sysfs_entry rdev_size =
2646 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2647
2648
2649 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2650 {
2651 unsigned long long recovery_start = rdev->recovery_offset;
2652
2653 if (test_bit(In_sync, &rdev->flags) ||
2654 recovery_start == MaxSector)
2655 return sprintf(page, "none\n");
2656
2657 return sprintf(page, "%llu\n", recovery_start);
2658 }
2659
2660 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2661 {
2662 unsigned long long recovery_start;
2663
2664 if (cmd_match(buf, "none"))
2665 recovery_start = MaxSector;
2666 else if (strict_strtoull(buf, 10, &recovery_start))
2667 return -EINVAL;
2668
2669 if (rdev->mddev->pers &&
2670 rdev->raid_disk >= 0)
2671 return -EBUSY;
2672
2673 rdev->recovery_offset = recovery_start;
2674 if (recovery_start == MaxSector)
2675 set_bit(In_sync, &rdev->flags);
2676 else
2677 clear_bit(In_sync, &rdev->flags);
2678 return len;
2679 }
2680
2681 static struct rdev_sysfs_entry rdev_recovery_start =
2682 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2683
2684 static struct attribute *rdev_default_attrs[] = {
2685 &rdev_state.attr,
2686 &rdev_errors.attr,
2687 &rdev_slot.attr,
2688 &rdev_offset.attr,
2689 &rdev_size.attr,
2690 &rdev_recovery_start.attr,
2691 NULL,
2692 };
2693 static ssize_t
2694 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2695 {
2696 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2697 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2698 mddev_t *mddev = rdev->mddev;
2699 ssize_t rv;
2700
2701 if (!entry->show)
2702 return -EIO;
2703
2704 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2705 if (!rv) {
2706 if (rdev->mddev == NULL)
2707 rv = -EBUSY;
2708 else
2709 rv = entry->show(rdev, page);
2710 mddev_unlock(mddev);
2711 }
2712 return rv;
2713 }
2714
2715 static ssize_t
2716 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2717 const char *page, size_t length)
2718 {
2719 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2720 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2721 ssize_t rv;
2722 mddev_t *mddev = rdev->mddev;
2723
2724 if (!entry->store)
2725 return -EIO;
2726 if (!capable(CAP_SYS_ADMIN))
2727 return -EACCES;
2728 rv = mddev ? mddev_lock(mddev): -EBUSY;
2729 if (!rv) {
2730 if (rdev->mddev == NULL)
2731 rv = -EBUSY;
2732 else
2733 rv = entry->store(rdev, page, length);
2734 mddev_unlock(mddev);
2735 }
2736 return rv;
2737 }
2738
2739 static void rdev_free(struct kobject *ko)
2740 {
2741 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2742 kfree(rdev);
2743 }
2744 static const struct sysfs_ops rdev_sysfs_ops = {
2745 .show = rdev_attr_show,
2746 .store = rdev_attr_store,
2747 };
2748 static struct kobj_type rdev_ktype = {
2749 .release = rdev_free,
2750 .sysfs_ops = &rdev_sysfs_ops,
2751 .default_attrs = rdev_default_attrs,
2752 };
2753
2754 void md_rdev_init(mdk_rdev_t *rdev)
2755 {
2756 rdev->desc_nr = -1;
2757 rdev->saved_raid_disk = -1;
2758 rdev->raid_disk = -1;
2759 rdev->flags = 0;
2760 rdev->data_offset = 0;
2761 rdev->sb_events = 0;
2762 rdev->last_read_error.tv_sec = 0;
2763 rdev->last_read_error.tv_nsec = 0;
2764 atomic_set(&rdev->nr_pending, 0);
2765 atomic_set(&rdev->read_errors, 0);
2766 atomic_set(&rdev->corrected_errors, 0);
2767
2768 INIT_LIST_HEAD(&rdev->same_set);
2769 init_waitqueue_head(&rdev->blocked_wait);
2770 }
2771 EXPORT_SYMBOL_GPL(md_rdev_init);
2772 /*
2773 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2774 *
2775 * mark the device faulty if:
2776 *
2777 * - the device is nonexistent (zero size)
2778 * - the device has no valid superblock
2779 *
2780 * a faulty rdev _never_ has rdev->sb set.
2781 */
2782 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2783 {
2784 char b[BDEVNAME_SIZE];
2785 int err;
2786 mdk_rdev_t *rdev;
2787 sector_t size;
2788
2789 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2790 if (!rdev) {
2791 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2792 return ERR_PTR(-ENOMEM);
2793 }
2794
2795 md_rdev_init(rdev);
2796 if ((err = alloc_disk_sb(rdev)))
2797 goto abort_free;
2798
2799 err = lock_rdev(rdev, newdev, super_format == -2);
2800 if (err)
2801 goto abort_free;
2802
2803 kobject_init(&rdev->kobj, &rdev_ktype);
2804
2805 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2806 if (!size) {
2807 printk(KERN_WARNING
2808 "md: %s has zero or unknown size, marking faulty!\n",
2809 bdevname(rdev->bdev,b));
2810 err = -EINVAL;
2811 goto abort_free;
2812 }
2813
2814 if (super_format >= 0) {
2815 err = super_types[super_format].
2816 load_super(rdev, NULL, super_minor);
2817 if (err == -EINVAL) {
2818 printk(KERN_WARNING
2819 "md: %s does not have a valid v%d.%d "
2820 "superblock, not importing!\n",
2821 bdevname(rdev->bdev,b),
2822 super_format, super_minor);
2823 goto abort_free;
2824 }
2825 if (err < 0) {
2826 printk(KERN_WARNING
2827 "md: could not read %s's sb, not importing!\n",
2828 bdevname(rdev->bdev,b));
2829 goto abort_free;
2830 }
2831 }
2832
2833 return rdev;
2834
2835 abort_free:
2836 if (rdev->sb_page) {
2837 if (rdev->bdev)
2838 unlock_rdev(rdev);
2839 free_disk_sb(rdev);
2840 }
2841 kfree(rdev);
2842 return ERR_PTR(err);
2843 }
2844
2845 /*
2846 * Check a full RAID array for plausibility
2847 */
2848
2849
2850 static void analyze_sbs(mddev_t * mddev)
2851 {
2852 int i;
2853 mdk_rdev_t *rdev, *freshest, *tmp;
2854 char b[BDEVNAME_SIZE];
2855
2856 freshest = NULL;
2857 rdev_for_each(rdev, tmp, mddev)
2858 switch (super_types[mddev->major_version].
2859 load_super(rdev, freshest, mddev->minor_version)) {
2860 case 1:
2861 freshest = rdev;
2862 break;
2863 case 0:
2864 break;
2865 default:
2866 printk( KERN_ERR \
2867 "md: fatal superblock inconsistency in %s"
2868 " -- removing from array\n",
2869 bdevname(rdev->bdev,b));
2870 kick_rdev_from_array(rdev);
2871 }
2872
2873
2874 super_types[mddev->major_version].
2875 validate_super(mddev, freshest);
2876
2877 i = 0;
2878 rdev_for_each(rdev, tmp, mddev) {
2879 if (mddev->max_disks &&
2880 (rdev->desc_nr >= mddev->max_disks ||
2881 i > mddev->max_disks)) {
2882 printk(KERN_WARNING
2883 "md: %s: %s: only %d devices permitted\n",
2884 mdname(mddev), bdevname(rdev->bdev, b),
2885 mddev->max_disks);
2886 kick_rdev_from_array(rdev);
2887 continue;
2888 }
2889 if (rdev != freshest)
2890 if (super_types[mddev->major_version].
2891 validate_super(mddev, rdev)) {
2892 printk(KERN_WARNING "md: kicking non-fresh %s"
2893 " from array!\n",
2894 bdevname(rdev->bdev,b));
2895 kick_rdev_from_array(rdev);
2896 continue;
2897 }
2898 if (mddev->level == LEVEL_MULTIPATH) {
2899 rdev->desc_nr = i++;
2900 rdev->raid_disk = rdev->desc_nr;
2901 set_bit(In_sync, &rdev->flags);
2902 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2903 rdev->raid_disk = -1;
2904 clear_bit(In_sync, &rdev->flags);
2905 }
2906 }
2907 }
2908
2909 /* Read a fixed-point number.
2910 * Numbers in sysfs attributes should be in "standard" units where
2911 * possible, so time should be in seconds.
2912 * However we internally use a a much smaller unit such as
2913 * milliseconds or jiffies.
2914 * This function takes a decimal number with a possible fractional
2915 * component, and produces an integer which is the result of
2916 * multiplying that number by 10^'scale'.
2917 * all without any floating-point arithmetic.
2918 */
2919 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2920 {
2921 unsigned long result = 0;
2922 long decimals = -1;
2923 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2924 if (*cp == '.')
2925 decimals = 0;
2926 else if (decimals < scale) {
2927 unsigned int value;
2928 value = *cp - '0';
2929 result = result * 10 + value;
2930 if (decimals >= 0)
2931 decimals++;
2932 }
2933 cp++;
2934 }
2935 if (*cp == '\n')
2936 cp++;
2937 if (*cp)
2938 return -EINVAL;
2939 if (decimals < 0)
2940 decimals = 0;
2941 while (decimals < scale) {
2942 result *= 10;
2943 decimals ++;
2944 }
2945 *res = result;
2946 return 0;
2947 }
2948
2949
2950 static void md_safemode_timeout(unsigned long data);
2951
2952 static ssize_t
2953 safe_delay_show(mddev_t *mddev, char *page)
2954 {
2955 int msec = (mddev->safemode_delay*1000)/HZ;
2956 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2957 }
2958 static ssize_t
2959 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2960 {
2961 unsigned long msec;
2962
2963 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2964 return -EINVAL;
2965 if (msec == 0)
2966 mddev->safemode_delay = 0;
2967 else {
2968 unsigned long old_delay = mddev->safemode_delay;
2969 mddev->safemode_delay = (msec*HZ)/1000;
2970 if (mddev->safemode_delay == 0)
2971 mddev->safemode_delay = 1;
2972 if (mddev->safemode_delay < old_delay)
2973 md_safemode_timeout((unsigned long)mddev);
2974 }
2975 return len;
2976 }
2977 static struct md_sysfs_entry md_safe_delay =
2978 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2979
2980 static ssize_t
2981 level_show(mddev_t *mddev, char *page)
2982 {
2983 struct mdk_personality *p = mddev->pers;
2984 if (p)
2985 return sprintf(page, "%s\n", p->name);
2986 else if (mddev->clevel[0])
2987 return sprintf(page, "%s\n", mddev->clevel);
2988 else if (mddev->level != LEVEL_NONE)
2989 return sprintf(page, "%d\n", mddev->level);
2990 else
2991 return 0;
2992 }
2993
2994 static ssize_t
2995 level_store(mddev_t *mddev, const char *buf, size_t len)
2996 {
2997 char clevel[16];
2998 ssize_t rv = len;
2999 struct mdk_personality *pers;
3000 long level;
3001 void *priv;
3002 mdk_rdev_t *rdev;
3003
3004 if (mddev->pers == NULL) {
3005 if (len == 0)
3006 return 0;
3007 if (len >= sizeof(mddev->clevel))
3008 return -ENOSPC;
3009 strncpy(mddev->clevel, buf, len);
3010 if (mddev->clevel[len-1] == '\n')
3011 len--;
3012 mddev->clevel[len] = 0;
3013 mddev->level = LEVEL_NONE;
3014 return rv;
3015 }
3016
3017 /* request to change the personality. Need to ensure:
3018 * - array is not engaged in resync/recovery/reshape
3019 * - old personality can be suspended
3020 * - new personality will access other array.
3021 */
3022
3023 if (mddev->sync_thread ||
3024 mddev->reshape_position != MaxSector ||
3025 mddev->sysfs_active)
3026 return -EBUSY;
3027
3028 if (!mddev->pers->quiesce) {
3029 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3030 mdname(mddev), mddev->pers->name);
3031 return -EINVAL;
3032 }
3033
3034 /* Now find the new personality */
3035 if (len == 0 || len >= sizeof(clevel))
3036 return -EINVAL;
3037 strncpy(clevel, buf, len);
3038 if (clevel[len-1] == '\n')
3039 len--;
3040 clevel[len] = 0;
3041 if (strict_strtol(clevel, 10, &level))
3042 level = LEVEL_NONE;
3043
3044 if (request_module("md-%s", clevel) != 0)
3045 request_module("md-level-%s", clevel);
3046 spin_lock(&pers_lock);
3047 pers = find_pers(level, clevel);
3048 if (!pers || !try_module_get(pers->owner)) {
3049 spin_unlock(&pers_lock);
3050 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3051 return -EINVAL;
3052 }
3053 spin_unlock(&pers_lock);
3054
3055 if (pers == mddev->pers) {
3056 /* Nothing to do! */
3057 module_put(pers->owner);
3058 return rv;
3059 }
3060 if (!pers->takeover) {
3061 module_put(pers->owner);
3062 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3063 mdname(mddev), clevel);
3064 return -EINVAL;
3065 }
3066
3067 list_for_each_entry(rdev, &mddev->disks, same_set)
3068 rdev->new_raid_disk = rdev->raid_disk;
3069
3070 /* ->takeover must set new_* and/or delta_disks
3071 * if it succeeds, and may set them when it fails.
3072 */
3073 priv = pers->takeover(mddev);
3074 if (IS_ERR(priv)) {
3075 mddev->new_level = mddev->level;
3076 mddev->new_layout = mddev->layout;
3077 mddev->new_chunk_sectors = mddev->chunk_sectors;
3078 mddev->raid_disks -= mddev->delta_disks;
3079 mddev->delta_disks = 0;
3080 module_put(pers->owner);
3081 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3082 mdname(mddev), clevel);
3083 return PTR_ERR(priv);
3084 }
3085
3086 /* Looks like we have a winner */
3087 mddev_suspend(mddev);
3088 mddev->pers->stop(mddev);
3089
3090 if (mddev->pers->sync_request == NULL &&
3091 pers->sync_request != NULL) {
3092 /* need to add the md_redundancy_group */
3093 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3094 printk(KERN_WARNING
3095 "md: cannot register extra attributes for %s\n",
3096 mdname(mddev));
3097 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3098 }
3099 if (mddev->pers->sync_request != NULL &&
3100 pers->sync_request == NULL) {
3101 /* need to remove the md_redundancy_group */
3102 if (mddev->to_remove == NULL)
3103 mddev->to_remove = &md_redundancy_group;
3104 }
3105
3106 if (mddev->pers->sync_request == NULL &&
3107 mddev->external) {
3108 /* We are converting from a no-redundancy array
3109 * to a redundancy array and metadata is managed
3110 * externally so we need to be sure that writes
3111 * won't block due to a need to transition
3112 * clean->dirty
3113 * until external management is started.
3114 */
3115 mddev->in_sync = 0;
3116 mddev->safemode_delay = 0;
3117 mddev->safemode = 0;
3118 }
3119
3120 list_for_each_entry(rdev, &mddev->disks, same_set) {
3121 char nm[20];
3122 if (rdev->raid_disk < 0)
3123 continue;
3124 if (rdev->new_raid_disk > mddev->raid_disks)
3125 rdev->new_raid_disk = -1;
3126 if (rdev->new_raid_disk == rdev->raid_disk)
3127 continue;
3128 sprintf(nm, "rd%d", rdev->raid_disk);
3129 sysfs_remove_link(&mddev->kobj, nm);
3130 }
3131 list_for_each_entry(rdev, &mddev->disks, same_set) {
3132 if (rdev->raid_disk < 0)
3133 continue;
3134 if (rdev->new_raid_disk == rdev->raid_disk)
3135 continue;
3136 rdev->raid_disk = rdev->new_raid_disk;
3137 if (rdev->raid_disk < 0)
3138 clear_bit(In_sync, &rdev->flags);
3139 else {
3140 char nm[20];
3141 sprintf(nm, "rd%d", rdev->raid_disk);
3142 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3143 printk("md: cannot register %s for %s after level change\n",
3144 nm, mdname(mddev));
3145 }
3146 }
3147
3148 module_put(mddev->pers->owner);
3149 mddev->pers = pers;
3150 mddev->private = priv;
3151 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3152 mddev->level = mddev->new_level;
3153 mddev->layout = mddev->new_layout;
3154 mddev->chunk_sectors = mddev->new_chunk_sectors;
3155 mddev->delta_disks = 0;
3156 if (mddev->pers->sync_request == NULL) {
3157 /* this is now an array without redundancy, so
3158 * it must always be in_sync
3159 */
3160 mddev->in_sync = 1;
3161 del_timer_sync(&mddev->safemode_timer);
3162 }
3163 pers->run(mddev);
3164 mddev_resume(mddev);
3165 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3166 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3167 md_wakeup_thread(mddev->thread);
3168 sysfs_notify(&mddev->kobj, NULL, "level");
3169 md_new_event(mddev);
3170 return rv;
3171 }
3172
3173 static struct md_sysfs_entry md_level =
3174 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3175
3176
3177 static ssize_t
3178 layout_show(mddev_t *mddev, char *page)
3179 {
3180 /* just a number, not meaningful for all levels */
3181 if (mddev->reshape_position != MaxSector &&
3182 mddev->layout != mddev->new_layout)
3183 return sprintf(page, "%d (%d)\n",
3184 mddev->new_layout, mddev->layout);
3185 return sprintf(page, "%d\n", mddev->layout);
3186 }
3187
3188 static ssize_t
3189 layout_store(mddev_t *mddev, const char *buf, size_t len)
3190 {
3191 char *e;
3192 unsigned long n = simple_strtoul(buf, &e, 10);
3193
3194 if (!*buf || (*e && *e != '\n'))
3195 return -EINVAL;
3196
3197 if (mddev->pers) {
3198 int err;
3199 if (mddev->pers->check_reshape == NULL)
3200 return -EBUSY;
3201 mddev->new_layout = n;
3202 err = mddev->pers->check_reshape(mddev);
3203 if (err) {
3204 mddev->new_layout = mddev->layout;
3205 return err;
3206 }
3207 } else {
3208 mddev->new_layout = n;
3209 if (mddev->reshape_position == MaxSector)
3210 mddev->layout = n;
3211 }
3212 return len;
3213 }
3214 static struct md_sysfs_entry md_layout =
3215 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3216
3217
3218 static ssize_t
3219 raid_disks_show(mddev_t *mddev, char *page)
3220 {
3221 if (mddev->raid_disks == 0)
3222 return 0;
3223 if (mddev->reshape_position != MaxSector &&
3224 mddev->delta_disks != 0)
3225 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3226 mddev->raid_disks - mddev->delta_disks);
3227 return sprintf(page, "%d\n", mddev->raid_disks);
3228 }
3229
3230 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3231
3232 static ssize_t
3233 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3234 {
3235 char *e;
3236 int rv = 0;
3237 unsigned long n = simple_strtoul(buf, &e, 10);
3238
3239 if (!*buf || (*e && *e != '\n'))
3240 return -EINVAL;
3241
3242 if (mddev->pers)
3243 rv = update_raid_disks(mddev, n);
3244 else if (mddev->reshape_position != MaxSector) {
3245 int olddisks = mddev->raid_disks - mddev->delta_disks;
3246 mddev->delta_disks = n - olddisks;
3247 mddev->raid_disks = n;
3248 } else
3249 mddev->raid_disks = n;
3250 return rv ? rv : len;
3251 }
3252 static struct md_sysfs_entry md_raid_disks =
3253 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3254
3255 static ssize_t
3256 chunk_size_show(mddev_t *mddev, char *page)
3257 {
3258 if (mddev->reshape_position != MaxSector &&
3259 mddev->chunk_sectors != mddev->new_chunk_sectors)
3260 return sprintf(page, "%d (%d)\n",
3261 mddev->new_chunk_sectors << 9,
3262 mddev->chunk_sectors << 9);
3263 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3264 }
3265
3266 static ssize_t
3267 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3268 {
3269 char *e;
3270 unsigned long n = simple_strtoul(buf, &e, 10);
3271
3272 if (!*buf || (*e && *e != '\n'))
3273 return -EINVAL;
3274
3275 if (mddev->pers) {
3276 int err;
3277 if (mddev->pers->check_reshape == NULL)
3278 return -EBUSY;
3279 mddev->new_chunk_sectors = n >> 9;
3280 err = mddev->pers->check_reshape(mddev);
3281 if (err) {
3282 mddev->new_chunk_sectors = mddev->chunk_sectors;
3283 return err;
3284 }
3285 } else {
3286 mddev->new_chunk_sectors = n >> 9;
3287 if (mddev->reshape_position == MaxSector)
3288 mddev->chunk_sectors = n >> 9;
3289 }
3290 return len;
3291 }
3292 static struct md_sysfs_entry md_chunk_size =
3293 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3294
3295 static ssize_t
3296 resync_start_show(mddev_t *mddev, char *page)
3297 {
3298 if (mddev->recovery_cp == MaxSector)
3299 return sprintf(page, "none\n");
3300 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3301 }
3302
3303 static ssize_t
3304 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3305 {
3306 char *e;
3307 unsigned long long n = simple_strtoull(buf, &e, 10);
3308
3309 if (mddev->pers)
3310 return -EBUSY;
3311 if (cmd_match(buf, "none"))
3312 n = MaxSector;
3313 else if (!*buf || (*e && *e != '\n'))
3314 return -EINVAL;
3315
3316 mddev->recovery_cp = n;
3317 return len;
3318 }
3319 static struct md_sysfs_entry md_resync_start =
3320 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3321
3322 /*
3323 * The array state can be:
3324 *
3325 * clear
3326 * No devices, no size, no level
3327 * Equivalent to STOP_ARRAY ioctl
3328 * inactive
3329 * May have some settings, but array is not active
3330 * all IO results in error
3331 * When written, doesn't tear down array, but just stops it
3332 * suspended (not supported yet)
3333 * All IO requests will block. The array can be reconfigured.
3334 * Writing this, if accepted, will block until array is quiescent
3335 * readonly
3336 * no resync can happen. no superblocks get written.
3337 * write requests fail
3338 * read-auto
3339 * like readonly, but behaves like 'clean' on a write request.
3340 *
3341 * clean - no pending writes, but otherwise active.
3342 * When written to inactive array, starts without resync
3343 * If a write request arrives then
3344 * if metadata is known, mark 'dirty' and switch to 'active'.
3345 * if not known, block and switch to write-pending
3346 * If written to an active array that has pending writes, then fails.
3347 * active
3348 * fully active: IO and resync can be happening.
3349 * When written to inactive array, starts with resync
3350 *
3351 * write-pending
3352 * clean, but writes are blocked waiting for 'active' to be written.
3353 *
3354 * active-idle
3355 * like active, but no writes have been seen for a while (100msec).
3356 *
3357 */
3358 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3359 write_pending, active_idle, bad_word};
3360 static char *array_states[] = {
3361 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3362 "write-pending", "active-idle", NULL };
3363
3364 static int match_word(const char *word, char **list)
3365 {
3366 int n;
3367 for (n=0; list[n]; n++)
3368 if (cmd_match(word, list[n]))
3369 break;
3370 return n;
3371 }
3372
3373 static ssize_t
3374 array_state_show(mddev_t *mddev, char *page)
3375 {
3376 enum array_state st = inactive;
3377
3378 if (mddev->pers)
3379 switch(mddev->ro) {
3380 case 1:
3381 st = readonly;
3382 break;
3383 case 2:
3384 st = read_auto;
3385 break;
3386 case 0:
3387 if (mddev->in_sync)
3388 st = clean;
3389 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3390 st = write_pending;
3391 else if (mddev->safemode)
3392 st = active_idle;
3393 else
3394 st = active;
3395 }
3396 else {
3397 if (list_empty(&mddev->disks) &&
3398 mddev->raid_disks == 0 &&
3399 mddev->dev_sectors == 0)
3400 st = clear;
3401 else
3402 st = inactive;
3403 }
3404 return sprintf(page, "%s\n", array_states[st]);
3405 }
3406
3407 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3408 static int md_set_readonly(mddev_t * mddev, int is_open);
3409 static int do_md_run(mddev_t * mddev);
3410 static int restart_array(mddev_t *mddev);
3411
3412 static ssize_t
3413 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3414 {
3415 int err = -EINVAL;
3416 enum array_state st = match_word(buf, array_states);
3417 switch(st) {
3418 case bad_word:
3419 break;
3420 case clear:
3421 /* stopping an active array */
3422 if (atomic_read(&mddev->openers) > 0)
3423 return -EBUSY;
3424 err = do_md_stop(mddev, 0, 0);
3425 break;
3426 case inactive:
3427 /* stopping an active array */
3428 if (mddev->pers) {
3429 if (atomic_read(&mddev->openers) > 0)
3430 return -EBUSY;
3431 err = do_md_stop(mddev, 2, 0);
3432 } else
3433 err = 0; /* already inactive */
3434 break;
3435 case suspended:
3436 break; /* not supported yet */
3437 case readonly:
3438 if (mddev->pers)
3439 err = md_set_readonly(mddev, 0);
3440 else {
3441 mddev->ro = 1;
3442 set_disk_ro(mddev->gendisk, 1);
3443 err = do_md_run(mddev);
3444 }
3445 break;
3446 case read_auto:
3447 if (mddev->pers) {
3448 if (mddev->ro == 0)
3449 err = md_set_readonly(mddev, 0);
3450 else if (mddev->ro == 1)
3451 err = restart_array(mddev);
3452 if (err == 0) {
3453 mddev->ro = 2;
3454 set_disk_ro(mddev->gendisk, 0);
3455 }
3456 } else {
3457 mddev->ro = 2;
3458 err = do_md_run(mddev);
3459 }
3460 break;
3461 case clean:
3462 if (mddev->pers) {
3463 restart_array(mddev);
3464 spin_lock_irq(&mddev->write_lock);
3465 if (atomic_read(&mddev->writes_pending) == 0) {
3466 if (mddev->in_sync == 0) {
3467 mddev->in_sync = 1;
3468 if (mddev->safemode == 1)
3469 mddev->safemode = 0;
3470 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3471 }
3472 err = 0;
3473 } else
3474 err = -EBUSY;
3475 spin_unlock_irq(&mddev->write_lock);
3476 } else
3477 err = -EINVAL;
3478 break;
3479 case active:
3480 if (mddev->pers) {
3481 restart_array(mddev);
3482 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3483 wake_up(&mddev->sb_wait);
3484 err = 0;
3485 } else {
3486 mddev->ro = 0;
3487 set_disk_ro(mddev->gendisk, 0);
3488 err = do_md_run(mddev);
3489 }
3490 break;
3491 case write_pending:
3492 case active_idle:
3493 /* these cannot be set */
3494 break;
3495 }
3496 if (err)
3497 return err;
3498 else {
3499 sysfs_notify_dirent_safe(mddev->sysfs_state);
3500 return len;
3501 }
3502 }
3503 static struct md_sysfs_entry md_array_state =
3504 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3505
3506 static ssize_t
3507 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3508 return sprintf(page, "%d\n",
3509 atomic_read(&mddev->max_corr_read_errors));
3510 }
3511
3512 static ssize_t
3513 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3514 {
3515 char *e;
3516 unsigned long n = simple_strtoul(buf, &e, 10);
3517
3518 if (*buf && (*e == 0 || *e == '\n')) {
3519 atomic_set(&mddev->max_corr_read_errors, n);
3520 return len;
3521 }
3522 return -EINVAL;
3523 }
3524
3525 static struct md_sysfs_entry max_corr_read_errors =
3526 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3527 max_corrected_read_errors_store);
3528
3529 static ssize_t
3530 null_show(mddev_t *mddev, char *page)
3531 {
3532 return -EINVAL;
3533 }
3534
3535 static ssize_t
3536 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3537 {
3538 /* buf must be %d:%d\n? giving major and minor numbers */
3539 /* The new device is added to the array.
3540 * If the array has a persistent superblock, we read the
3541 * superblock to initialise info and check validity.
3542 * Otherwise, only checking done is that in bind_rdev_to_array,
3543 * which mainly checks size.
3544 */
3545 char *e;
3546 int major = simple_strtoul(buf, &e, 10);
3547 int minor;
3548 dev_t dev;
3549 mdk_rdev_t *rdev;
3550 int err;
3551
3552 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3553 return -EINVAL;
3554 minor = simple_strtoul(e+1, &e, 10);
3555 if (*e && *e != '\n')
3556 return -EINVAL;
3557 dev = MKDEV(major, minor);
3558 if (major != MAJOR(dev) ||
3559 minor != MINOR(dev))
3560 return -EOVERFLOW;
3561
3562
3563 if (mddev->persistent) {
3564 rdev = md_import_device(dev, mddev->major_version,
3565 mddev->minor_version);
3566 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3567 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3568 mdk_rdev_t, same_set);
3569 err = super_types[mddev->major_version]
3570 .load_super(rdev, rdev0, mddev->minor_version);
3571 if (err < 0)
3572 goto out;
3573 }
3574 } else if (mddev->external)
3575 rdev = md_import_device(dev, -2, -1);
3576 else
3577 rdev = md_import_device(dev, -1, -1);
3578
3579 if (IS_ERR(rdev))
3580 return PTR_ERR(rdev);
3581 err = bind_rdev_to_array(rdev, mddev);
3582 out:
3583 if (err)
3584 export_rdev(rdev);
3585 return err ? err : len;
3586 }
3587
3588 static struct md_sysfs_entry md_new_device =
3589 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3590
3591 static ssize_t
3592 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3593 {
3594 char *end;
3595 unsigned long chunk, end_chunk;
3596
3597 if (!mddev->bitmap)
3598 goto out;
3599 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3600 while (*buf) {
3601 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3602 if (buf == end) break;
3603 if (*end == '-') { /* range */
3604 buf = end + 1;
3605 end_chunk = simple_strtoul(buf, &end, 0);
3606 if (buf == end) break;
3607 }
3608 if (*end && !isspace(*end)) break;
3609 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3610 buf = skip_spaces(end);
3611 }
3612 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3613 out:
3614 return len;
3615 }
3616
3617 static struct md_sysfs_entry md_bitmap =
3618 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3619
3620 static ssize_t
3621 size_show(mddev_t *mddev, char *page)
3622 {
3623 return sprintf(page, "%llu\n",
3624 (unsigned long long)mddev->dev_sectors / 2);
3625 }
3626
3627 static int update_size(mddev_t *mddev, sector_t num_sectors);
3628
3629 static ssize_t
3630 size_store(mddev_t *mddev, const char *buf, size_t len)
3631 {
3632 /* If array is inactive, we can reduce the component size, but
3633 * not increase it (except from 0).
3634 * If array is active, we can try an on-line resize
3635 */
3636 sector_t sectors;
3637 int err = strict_blocks_to_sectors(buf, &sectors);
3638
3639 if (err < 0)
3640 return err;
3641 if (mddev->pers) {
3642 err = update_size(mddev, sectors);
3643 md_update_sb(mddev, 1);
3644 } else {
3645 if (mddev->dev_sectors == 0 ||
3646 mddev->dev_sectors > sectors)
3647 mddev->dev_sectors = sectors;
3648 else
3649 err = -ENOSPC;
3650 }
3651 return err ? err : len;
3652 }
3653
3654 static struct md_sysfs_entry md_size =
3655 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3656
3657
3658 /* Metdata version.
3659 * This is one of
3660 * 'none' for arrays with no metadata (good luck...)
3661 * 'external' for arrays with externally managed metadata,
3662 * or N.M for internally known formats
3663 */
3664 static ssize_t
3665 metadata_show(mddev_t *mddev, char *page)
3666 {
3667 if (mddev->persistent)
3668 return sprintf(page, "%d.%d\n",
3669 mddev->major_version, mddev->minor_version);
3670 else if (mddev->external)
3671 return sprintf(page, "external:%s\n", mddev->metadata_type);
3672 else
3673 return sprintf(page, "none\n");
3674 }
3675
3676 static ssize_t
3677 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3678 {
3679 int major, minor;
3680 char *e;
3681 /* Changing the details of 'external' metadata is
3682 * always permitted. Otherwise there must be
3683 * no devices attached to the array.
3684 */
3685 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3686 ;
3687 else if (!list_empty(&mddev->disks))
3688 return -EBUSY;
3689
3690 if (cmd_match(buf, "none")) {
3691 mddev->persistent = 0;
3692 mddev->external = 0;
3693 mddev->major_version = 0;
3694 mddev->minor_version = 90;
3695 return len;
3696 }
3697 if (strncmp(buf, "external:", 9) == 0) {
3698 size_t namelen = len-9;
3699 if (namelen >= sizeof(mddev->metadata_type))
3700 namelen = sizeof(mddev->metadata_type)-1;
3701 strncpy(mddev->metadata_type, buf+9, namelen);
3702 mddev->metadata_type[namelen] = 0;
3703 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3704 mddev->metadata_type[--namelen] = 0;
3705 mddev->persistent = 0;
3706 mddev->external = 1;
3707 mddev->major_version = 0;
3708 mddev->minor_version = 90;
3709 return len;
3710 }
3711 major = simple_strtoul(buf, &e, 10);
3712 if (e==buf || *e != '.')
3713 return -EINVAL;
3714 buf = e+1;
3715 minor = simple_strtoul(buf, &e, 10);
3716 if (e==buf || (*e && *e != '\n') )
3717 return -EINVAL;
3718 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3719 return -ENOENT;
3720 mddev->major_version = major;
3721 mddev->minor_version = minor;
3722 mddev->persistent = 1;
3723 mddev->external = 0;
3724 return len;
3725 }
3726
3727 static struct md_sysfs_entry md_metadata =
3728 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3729
3730 static ssize_t
3731 action_show(mddev_t *mddev, char *page)
3732 {
3733 char *type = "idle";
3734 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3735 type = "frozen";
3736 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3737 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3738 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3739 type = "reshape";
3740 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3741 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3742 type = "resync";
3743 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3744 type = "check";
3745 else
3746 type = "repair";
3747 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3748 type = "recover";
3749 }
3750 return sprintf(page, "%s\n", type);
3751 }
3752
3753 static void reap_sync_thread(mddev_t *mddev);
3754
3755 static ssize_t
3756 action_store(mddev_t *mddev, const char *page, size_t len)
3757 {
3758 if (!mddev->pers || !mddev->pers->sync_request)
3759 return -EINVAL;
3760
3761 if (cmd_match(page, "frozen"))
3762 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3763 else
3764 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3765
3766 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3767 if (mddev->sync_thread) {
3768 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3769 reap_sync_thread(mddev);
3770 }
3771 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3772 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3773 return -EBUSY;
3774 else if (cmd_match(page, "resync"))
3775 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3776 else if (cmd_match(page, "recover")) {
3777 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3778 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3779 } else if (cmd_match(page, "reshape")) {
3780 int err;
3781 if (mddev->pers->start_reshape == NULL)
3782 return -EINVAL;
3783 err = mddev->pers->start_reshape(mddev);
3784 if (err)
3785 return err;
3786 sysfs_notify(&mddev->kobj, NULL, "degraded");
3787 } else {
3788 if (cmd_match(page, "check"))
3789 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3790 else if (!cmd_match(page, "repair"))
3791 return -EINVAL;
3792 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3793 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3794 }
3795 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3796 md_wakeup_thread(mddev->thread);
3797 sysfs_notify_dirent_safe(mddev->sysfs_action);
3798 return len;
3799 }
3800
3801 static ssize_t
3802 mismatch_cnt_show(mddev_t *mddev, char *page)
3803 {
3804 return sprintf(page, "%llu\n",
3805 (unsigned long long) mddev->resync_mismatches);
3806 }
3807
3808 static struct md_sysfs_entry md_scan_mode =
3809 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3810
3811
3812 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3813
3814 static ssize_t
3815 sync_min_show(mddev_t *mddev, char *page)
3816 {
3817 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3818 mddev->sync_speed_min ? "local": "system");
3819 }
3820
3821 static ssize_t
3822 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3823 {
3824 int min;
3825 char *e;
3826 if (strncmp(buf, "system", 6)==0) {
3827 mddev->sync_speed_min = 0;
3828 return len;
3829 }
3830 min = simple_strtoul(buf, &e, 10);
3831 if (buf == e || (*e && *e != '\n') || min <= 0)
3832 return -EINVAL;
3833 mddev->sync_speed_min = min;
3834 return len;
3835 }
3836
3837 static struct md_sysfs_entry md_sync_min =
3838 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3839
3840 static ssize_t
3841 sync_max_show(mddev_t *mddev, char *page)
3842 {
3843 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3844 mddev->sync_speed_max ? "local": "system");
3845 }
3846
3847 static ssize_t
3848 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3849 {
3850 int max;
3851 char *e;
3852 if (strncmp(buf, "system", 6)==0) {
3853 mddev->sync_speed_max = 0;
3854 return len;
3855 }
3856 max = simple_strtoul(buf, &e, 10);
3857 if (buf == e || (*e && *e != '\n') || max <= 0)
3858 return -EINVAL;
3859 mddev->sync_speed_max = max;
3860 return len;
3861 }
3862
3863 static struct md_sysfs_entry md_sync_max =
3864 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3865
3866 static ssize_t
3867 degraded_show(mddev_t *mddev, char *page)
3868 {
3869 return sprintf(page, "%d\n", mddev->degraded);
3870 }
3871 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3872
3873 static ssize_t
3874 sync_force_parallel_show(mddev_t *mddev, char *page)
3875 {
3876 return sprintf(page, "%d\n", mddev->parallel_resync);
3877 }
3878
3879 static ssize_t
3880 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3881 {
3882 long n;
3883
3884 if (strict_strtol(buf, 10, &n))
3885 return -EINVAL;
3886
3887 if (n != 0 && n != 1)
3888 return -EINVAL;
3889
3890 mddev->parallel_resync = n;
3891
3892 if (mddev->sync_thread)
3893 wake_up(&resync_wait);
3894
3895 return len;
3896 }
3897
3898 /* force parallel resync, even with shared block devices */
3899 static struct md_sysfs_entry md_sync_force_parallel =
3900 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3901 sync_force_parallel_show, sync_force_parallel_store);
3902
3903 static ssize_t
3904 sync_speed_show(mddev_t *mddev, char *page)
3905 {
3906 unsigned long resync, dt, db;
3907 if (mddev->curr_resync == 0)
3908 return sprintf(page, "none\n");
3909 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3910 dt = (jiffies - mddev->resync_mark) / HZ;
3911 if (!dt) dt++;
3912 db = resync - mddev->resync_mark_cnt;
3913 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3914 }
3915
3916 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3917
3918 static ssize_t
3919 sync_completed_show(mddev_t *mddev, char *page)
3920 {
3921 unsigned long max_sectors, resync;
3922
3923 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3924 return sprintf(page, "none\n");
3925
3926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3927 max_sectors = mddev->resync_max_sectors;
3928 else
3929 max_sectors = mddev->dev_sectors;
3930
3931 resync = mddev->curr_resync_completed;
3932 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3933 }
3934
3935 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3936
3937 static ssize_t
3938 min_sync_show(mddev_t *mddev, char *page)
3939 {
3940 return sprintf(page, "%llu\n",
3941 (unsigned long long)mddev->resync_min);
3942 }
3943 static ssize_t
3944 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3945 {
3946 unsigned long long min;
3947 if (strict_strtoull(buf, 10, &min))
3948 return -EINVAL;
3949 if (min > mddev->resync_max)
3950 return -EINVAL;
3951 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3952 return -EBUSY;
3953
3954 /* Must be a multiple of chunk_size */
3955 if (mddev->chunk_sectors) {
3956 sector_t temp = min;
3957 if (sector_div(temp, mddev->chunk_sectors))
3958 return -EINVAL;
3959 }
3960 mddev->resync_min = min;
3961
3962 return len;
3963 }
3964
3965 static struct md_sysfs_entry md_min_sync =
3966 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3967
3968 static ssize_t
3969 max_sync_show(mddev_t *mddev, char *page)
3970 {
3971 if (mddev->resync_max == MaxSector)
3972 return sprintf(page, "max\n");
3973 else
3974 return sprintf(page, "%llu\n",
3975 (unsigned long long)mddev->resync_max);
3976 }
3977 static ssize_t
3978 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3979 {
3980 if (strncmp(buf, "max", 3) == 0)
3981 mddev->resync_max = MaxSector;
3982 else {
3983 unsigned long long max;
3984 if (strict_strtoull(buf, 10, &max))
3985 return -EINVAL;
3986 if (max < mddev->resync_min)
3987 return -EINVAL;
3988 if (max < mddev->resync_max &&
3989 mddev->ro == 0 &&
3990 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3991 return -EBUSY;
3992
3993 /* Must be a multiple of chunk_size */
3994 if (mddev->chunk_sectors) {
3995 sector_t temp = max;
3996 if (sector_div(temp, mddev->chunk_sectors))
3997 return -EINVAL;
3998 }
3999 mddev->resync_max = max;
4000 }
4001 wake_up(&mddev->recovery_wait);
4002 return len;
4003 }
4004
4005 static struct md_sysfs_entry md_max_sync =
4006 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4007
4008 static ssize_t
4009 suspend_lo_show(mddev_t *mddev, char *page)
4010 {
4011 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4012 }
4013
4014 static ssize_t
4015 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4016 {
4017 char *e;
4018 unsigned long long new = simple_strtoull(buf, &e, 10);
4019
4020 if (mddev->pers == NULL ||
4021 mddev->pers->quiesce == NULL)
4022 return -EINVAL;
4023 if (buf == e || (*e && *e != '\n'))
4024 return -EINVAL;
4025 if (new >= mddev->suspend_hi ||
4026 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4027 mddev->suspend_lo = new;
4028 mddev->pers->quiesce(mddev, 2);
4029 return len;
4030 } else
4031 return -EINVAL;
4032 }
4033 static struct md_sysfs_entry md_suspend_lo =
4034 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4035
4036
4037 static ssize_t
4038 suspend_hi_show(mddev_t *mddev, char *page)
4039 {
4040 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4041 }
4042
4043 static ssize_t
4044 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4045 {
4046 char *e;
4047 unsigned long long new = simple_strtoull(buf, &e, 10);
4048
4049 if (mddev->pers == NULL ||
4050 mddev->pers->quiesce == NULL)
4051 return -EINVAL;
4052 if (buf == e || (*e && *e != '\n'))
4053 return -EINVAL;
4054 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4055 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4056 mddev->suspend_hi = new;
4057 mddev->pers->quiesce(mddev, 1);
4058 mddev->pers->quiesce(mddev, 0);
4059 return len;
4060 } else
4061 return -EINVAL;
4062 }
4063 static struct md_sysfs_entry md_suspend_hi =
4064 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4065
4066 static ssize_t
4067 reshape_position_show(mddev_t *mddev, char *page)
4068 {
4069 if (mddev->reshape_position != MaxSector)
4070 return sprintf(page, "%llu\n",
4071 (unsigned long long)mddev->reshape_position);
4072 strcpy(page, "none\n");
4073 return 5;
4074 }
4075
4076 static ssize_t
4077 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4078 {
4079 char *e;
4080 unsigned long long new = simple_strtoull(buf, &e, 10);
4081 if (mddev->pers)
4082 return -EBUSY;
4083 if (buf == e || (*e && *e != '\n'))
4084 return -EINVAL;
4085 mddev->reshape_position = new;
4086 mddev->delta_disks = 0;
4087 mddev->new_level = mddev->level;
4088 mddev->new_layout = mddev->layout;
4089 mddev->new_chunk_sectors = mddev->chunk_sectors;
4090 return len;
4091 }
4092
4093 static struct md_sysfs_entry md_reshape_position =
4094 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4095 reshape_position_store);
4096
4097 static ssize_t
4098 array_size_show(mddev_t *mddev, char *page)
4099 {
4100 if (mddev->external_size)
4101 return sprintf(page, "%llu\n",
4102 (unsigned long long)mddev->array_sectors/2);
4103 else
4104 return sprintf(page, "default\n");
4105 }
4106
4107 static ssize_t
4108 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4109 {
4110 sector_t sectors;
4111
4112 if (strncmp(buf, "default", 7) == 0) {
4113 if (mddev->pers)
4114 sectors = mddev->pers->size(mddev, 0, 0);
4115 else
4116 sectors = mddev->array_sectors;
4117
4118 mddev->external_size = 0;
4119 } else {
4120 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4121 return -EINVAL;
4122 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4123 return -E2BIG;
4124
4125 mddev->external_size = 1;
4126 }
4127
4128 mddev->array_sectors = sectors;
4129 set_capacity(mddev->gendisk, mddev->array_sectors);
4130 if (mddev->pers)
4131 revalidate_disk(mddev->gendisk);
4132
4133 return len;
4134 }
4135
4136 static struct md_sysfs_entry md_array_size =
4137 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4138 array_size_store);
4139
4140 static struct attribute *md_default_attrs[] = {
4141 &md_level.attr,
4142 &md_layout.attr,
4143 &md_raid_disks.attr,
4144 &md_chunk_size.attr,
4145 &md_size.attr,
4146 &md_resync_start.attr,
4147 &md_metadata.attr,
4148 &md_new_device.attr,
4149 &md_safe_delay.attr,
4150 &md_array_state.attr,
4151 &md_reshape_position.attr,
4152 &md_array_size.attr,
4153 &max_corr_read_errors.attr,
4154 NULL,
4155 };
4156
4157 static struct attribute *md_redundancy_attrs[] = {
4158 &md_scan_mode.attr,
4159 &md_mismatches.attr,
4160 &md_sync_min.attr,
4161 &md_sync_max.attr,
4162 &md_sync_speed.attr,
4163 &md_sync_force_parallel.attr,
4164 &md_sync_completed.attr,
4165 &md_min_sync.attr,
4166 &md_max_sync.attr,
4167 &md_suspend_lo.attr,
4168 &md_suspend_hi.attr,
4169 &md_bitmap.attr,
4170 &md_degraded.attr,
4171 NULL,
4172 };
4173 static struct attribute_group md_redundancy_group = {
4174 .name = NULL,
4175 .attrs = md_redundancy_attrs,
4176 };
4177
4178
4179 static ssize_t
4180 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4181 {
4182 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4183 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4184 ssize_t rv;
4185
4186 if (!entry->show)
4187 return -EIO;
4188 rv = mddev_lock(mddev);
4189 if (!rv) {
4190 rv = entry->show(mddev, page);
4191 mddev_unlock(mddev);
4192 }
4193 return rv;
4194 }
4195
4196 static ssize_t
4197 md_attr_store(struct kobject *kobj, struct attribute *attr,
4198 const char *page, size_t length)
4199 {
4200 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4201 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4202 ssize_t rv;
4203
4204 if (!entry->store)
4205 return -EIO;
4206 if (!capable(CAP_SYS_ADMIN))
4207 return -EACCES;
4208 rv = mddev_lock(mddev);
4209 if (mddev->hold_active == UNTIL_IOCTL)
4210 mddev->hold_active = 0;
4211 if (!rv) {
4212 rv = entry->store(mddev, page, length);
4213 mddev_unlock(mddev);
4214 }
4215 return rv;
4216 }
4217
4218 static void md_free(struct kobject *ko)
4219 {
4220 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4221
4222 if (mddev->sysfs_state)
4223 sysfs_put(mddev->sysfs_state);
4224
4225 if (mddev->gendisk) {
4226 del_gendisk(mddev->gendisk);
4227 put_disk(mddev->gendisk);
4228 }
4229 if (mddev->queue)
4230 blk_cleanup_queue(mddev->queue);
4231
4232 kfree(mddev);
4233 }
4234
4235 static const struct sysfs_ops md_sysfs_ops = {
4236 .show = md_attr_show,
4237 .store = md_attr_store,
4238 };
4239 static struct kobj_type md_ktype = {
4240 .release = md_free,
4241 .sysfs_ops = &md_sysfs_ops,
4242 .default_attrs = md_default_attrs,
4243 };
4244
4245 int mdp_major = 0;
4246
4247 static void mddev_delayed_delete(struct work_struct *ws)
4248 {
4249 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4250
4251 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4252 kobject_del(&mddev->kobj);
4253 kobject_put(&mddev->kobj);
4254 }
4255
4256 static int md_alloc(dev_t dev, char *name)
4257 {
4258 static DEFINE_MUTEX(disks_mutex);
4259 mddev_t *mddev = mddev_find(dev);
4260 struct gendisk *disk;
4261 int partitioned;
4262 int shift;
4263 int unit;
4264 int error;
4265
4266 if (!mddev)
4267 return -ENODEV;
4268
4269 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4270 shift = partitioned ? MdpMinorShift : 0;
4271 unit = MINOR(mddev->unit) >> shift;
4272
4273 /* wait for any previous instance of this device to be
4274 * completely removed (mddev_delayed_delete).
4275 */
4276 flush_workqueue(md_misc_wq);
4277
4278 mutex_lock(&disks_mutex);
4279 error = -EEXIST;
4280 if (mddev->gendisk)
4281 goto abort;
4282
4283 if (name) {
4284 /* Need to ensure that 'name' is not a duplicate.
4285 */
4286 mddev_t *mddev2;
4287 spin_lock(&all_mddevs_lock);
4288
4289 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4290 if (mddev2->gendisk &&
4291 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4292 spin_unlock(&all_mddevs_lock);
4293 goto abort;
4294 }
4295 spin_unlock(&all_mddevs_lock);
4296 }
4297
4298 error = -ENOMEM;
4299 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4300 if (!mddev->queue)
4301 goto abort;
4302 mddev->queue->queuedata = mddev;
4303
4304 blk_queue_make_request(mddev->queue, md_make_request);
4305
4306 disk = alloc_disk(1 << shift);
4307 if (!disk) {
4308 blk_cleanup_queue(mddev->queue);
4309 mddev->queue = NULL;
4310 goto abort;
4311 }
4312 disk->major = MAJOR(mddev->unit);
4313 disk->first_minor = unit << shift;
4314 if (name)
4315 strcpy(disk->disk_name, name);
4316 else if (partitioned)
4317 sprintf(disk->disk_name, "md_d%d", unit);
4318 else
4319 sprintf(disk->disk_name, "md%d", unit);
4320 disk->fops = &md_fops;
4321 disk->private_data = mddev;
4322 disk->queue = mddev->queue;
4323 /* Allow extended partitions. This makes the
4324 * 'mdp' device redundant, but we can't really
4325 * remove it now.
4326 */
4327 disk->flags |= GENHD_FL_EXT_DEVT;
4328 add_disk(disk);
4329 mddev->gendisk = disk;
4330 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4331 &disk_to_dev(disk)->kobj, "%s", "md");
4332 if (error) {
4333 /* This isn't possible, but as kobject_init_and_add is marked
4334 * __must_check, we must do something with the result
4335 */
4336 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4337 disk->disk_name);
4338 error = 0;
4339 }
4340 if (mddev->kobj.sd &&
4341 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4342 printk(KERN_DEBUG "pointless warning\n");
4343
4344 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4345 abort:
4346 mutex_unlock(&disks_mutex);
4347 if (!error && mddev->kobj.sd) {
4348 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4349 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4350 }
4351 mddev_put(mddev);
4352 return error;
4353 }
4354
4355 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4356 {
4357 md_alloc(dev, NULL);
4358 return NULL;
4359 }
4360
4361 static int add_named_array(const char *val, struct kernel_param *kp)
4362 {
4363 /* val must be "md_*" where * is not all digits.
4364 * We allocate an array with a large free minor number, and
4365 * set the name to val. val must not already be an active name.
4366 */
4367 int len = strlen(val);
4368 char buf[DISK_NAME_LEN];
4369
4370 while (len && val[len-1] == '\n')
4371 len--;
4372 if (len >= DISK_NAME_LEN)
4373 return -E2BIG;
4374 strlcpy(buf, val, len+1);
4375 if (strncmp(buf, "md_", 3) != 0)
4376 return -EINVAL;
4377 return md_alloc(0, buf);
4378 }
4379
4380 static void md_safemode_timeout(unsigned long data)
4381 {
4382 mddev_t *mddev = (mddev_t *) data;
4383
4384 if (!atomic_read(&mddev->writes_pending)) {
4385 mddev->safemode = 1;
4386 if (mddev->external)
4387 sysfs_notify_dirent_safe(mddev->sysfs_state);
4388 }
4389 md_wakeup_thread(mddev->thread);
4390 }
4391
4392 static int start_dirty_degraded;
4393
4394 int md_run(mddev_t *mddev)
4395 {
4396 int err;
4397 mdk_rdev_t *rdev;
4398 struct mdk_personality *pers;
4399
4400 if (list_empty(&mddev->disks))
4401 /* cannot run an array with no devices.. */
4402 return -EINVAL;
4403
4404 if (mddev->pers)
4405 return -EBUSY;
4406 /* Cannot run until previous stop completes properly */
4407 if (mddev->sysfs_active)
4408 return -EBUSY;
4409
4410 /*
4411 * Analyze all RAID superblock(s)
4412 */
4413 if (!mddev->raid_disks) {
4414 if (!mddev->persistent)
4415 return -EINVAL;
4416 analyze_sbs(mddev);
4417 }
4418
4419 if (mddev->level != LEVEL_NONE)
4420 request_module("md-level-%d", mddev->level);
4421 else if (mddev->clevel[0])
4422 request_module("md-%s", mddev->clevel);
4423
4424 /*
4425 * Drop all container device buffers, from now on
4426 * the only valid external interface is through the md
4427 * device.
4428 */
4429 list_for_each_entry(rdev, &mddev->disks, same_set) {
4430 if (test_bit(Faulty, &rdev->flags))
4431 continue;
4432 sync_blockdev(rdev->bdev);
4433 invalidate_bdev(rdev->bdev);
4434
4435 /* perform some consistency tests on the device.
4436 * We don't want the data to overlap the metadata,
4437 * Internal Bitmap issues have been handled elsewhere.
4438 */
4439 if (rdev->meta_bdev) {
4440 /* Nothing to check */;
4441 } else if (rdev->data_offset < rdev->sb_start) {
4442 if (mddev->dev_sectors &&
4443 rdev->data_offset + mddev->dev_sectors
4444 > rdev->sb_start) {
4445 printk("md: %s: data overlaps metadata\n",
4446 mdname(mddev));
4447 return -EINVAL;
4448 }
4449 } else {
4450 if (rdev->sb_start + rdev->sb_size/512
4451 > rdev->data_offset) {
4452 printk("md: %s: metadata overlaps data\n",
4453 mdname(mddev));
4454 return -EINVAL;
4455 }
4456 }
4457 sysfs_notify_dirent_safe(rdev->sysfs_state);
4458 }
4459
4460 if (mddev->bio_set == NULL)
4461 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4462
4463 spin_lock(&pers_lock);
4464 pers = find_pers(mddev->level, mddev->clevel);
4465 if (!pers || !try_module_get(pers->owner)) {
4466 spin_unlock(&pers_lock);
4467 if (mddev->level != LEVEL_NONE)
4468 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4469 mddev->level);
4470 else
4471 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4472 mddev->clevel);
4473 return -EINVAL;
4474 }
4475 mddev->pers = pers;
4476 spin_unlock(&pers_lock);
4477 if (mddev->level != pers->level) {
4478 mddev->level = pers->level;
4479 mddev->new_level = pers->level;
4480 }
4481 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4482
4483 if (mddev->reshape_position != MaxSector &&
4484 pers->start_reshape == NULL) {
4485 /* This personality cannot handle reshaping... */
4486 mddev->pers = NULL;
4487 module_put(pers->owner);
4488 return -EINVAL;
4489 }
4490
4491 if (pers->sync_request) {
4492 /* Warn if this is a potentially silly
4493 * configuration.
4494 */
4495 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4496 mdk_rdev_t *rdev2;
4497 int warned = 0;
4498
4499 list_for_each_entry(rdev, &mddev->disks, same_set)
4500 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4501 if (rdev < rdev2 &&
4502 rdev->bdev->bd_contains ==
4503 rdev2->bdev->bd_contains) {
4504 printk(KERN_WARNING
4505 "%s: WARNING: %s appears to be"
4506 " on the same physical disk as"
4507 " %s.\n",
4508 mdname(mddev),
4509 bdevname(rdev->bdev,b),
4510 bdevname(rdev2->bdev,b2));
4511 warned = 1;
4512 }
4513 }
4514
4515 if (warned)
4516 printk(KERN_WARNING
4517 "True protection against single-disk"
4518 " failure might be compromised.\n");
4519 }
4520
4521 mddev->recovery = 0;
4522 /* may be over-ridden by personality */
4523 mddev->resync_max_sectors = mddev->dev_sectors;
4524
4525 mddev->ok_start_degraded = start_dirty_degraded;
4526
4527 if (start_readonly && mddev->ro == 0)
4528 mddev->ro = 2; /* read-only, but switch on first write */
4529
4530 err = mddev->pers->run(mddev);
4531 if (err)
4532 printk(KERN_ERR "md: pers->run() failed ...\n");
4533 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4534 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4535 " but 'external_size' not in effect?\n", __func__);
4536 printk(KERN_ERR
4537 "md: invalid array_size %llu > default size %llu\n",
4538 (unsigned long long)mddev->array_sectors / 2,
4539 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4540 err = -EINVAL;
4541 mddev->pers->stop(mddev);
4542 }
4543 if (err == 0 && mddev->pers->sync_request) {
4544 err = bitmap_create(mddev);
4545 if (err) {
4546 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4547 mdname(mddev), err);
4548 mddev->pers->stop(mddev);
4549 }
4550 }
4551 if (err) {
4552 module_put(mddev->pers->owner);
4553 mddev->pers = NULL;
4554 bitmap_destroy(mddev);
4555 return err;
4556 }
4557 if (mddev->pers->sync_request) {
4558 if (mddev->kobj.sd &&
4559 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4560 printk(KERN_WARNING
4561 "md: cannot register extra attributes for %s\n",
4562 mdname(mddev));
4563 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4564 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4565 mddev->ro = 0;
4566
4567 atomic_set(&mddev->writes_pending,0);
4568 atomic_set(&mddev->max_corr_read_errors,
4569 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4570 mddev->safemode = 0;
4571 mddev->safemode_timer.function = md_safemode_timeout;
4572 mddev->safemode_timer.data = (unsigned long) mddev;
4573 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4574 mddev->in_sync = 1;
4575 smp_wmb();
4576 mddev->ready = 1;
4577 list_for_each_entry(rdev, &mddev->disks, same_set)
4578 if (rdev->raid_disk >= 0) {
4579 char nm[20];
4580 sprintf(nm, "rd%d", rdev->raid_disk);
4581 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4582 /* failure here is OK */;
4583 }
4584
4585 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4586
4587 if (mddev->flags)
4588 md_update_sb(mddev, 0);
4589
4590 md_wakeup_thread(mddev->thread);
4591 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4592
4593 md_new_event(mddev);
4594 sysfs_notify_dirent_safe(mddev->sysfs_state);
4595 sysfs_notify_dirent_safe(mddev->sysfs_action);
4596 sysfs_notify(&mddev->kobj, NULL, "degraded");
4597 return 0;
4598 }
4599 EXPORT_SYMBOL_GPL(md_run);
4600
4601 static int do_md_run(mddev_t *mddev)
4602 {
4603 int err;
4604
4605 err = md_run(mddev);
4606 if (err)
4607 goto out;
4608 err = bitmap_load(mddev);
4609 if (err) {
4610 bitmap_destroy(mddev);
4611 goto out;
4612 }
4613 set_capacity(mddev->gendisk, mddev->array_sectors);
4614 revalidate_disk(mddev->gendisk);
4615 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4616 out:
4617 return err;
4618 }
4619
4620 static int restart_array(mddev_t *mddev)
4621 {
4622 struct gendisk *disk = mddev->gendisk;
4623
4624 /* Complain if it has no devices */
4625 if (list_empty(&mddev->disks))
4626 return -ENXIO;
4627 if (!mddev->pers)
4628 return -EINVAL;
4629 if (!mddev->ro)
4630 return -EBUSY;
4631 mddev->safemode = 0;
4632 mddev->ro = 0;
4633 set_disk_ro(disk, 0);
4634 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4635 mdname(mddev));
4636 /* Kick recovery or resync if necessary */
4637 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4638 md_wakeup_thread(mddev->thread);
4639 md_wakeup_thread(mddev->sync_thread);
4640 sysfs_notify_dirent_safe(mddev->sysfs_state);
4641 return 0;
4642 }
4643
4644 /* similar to deny_write_access, but accounts for our holding a reference
4645 * to the file ourselves */
4646 static int deny_bitmap_write_access(struct file * file)
4647 {
4648 struct inode *inode = file->f_mapping->host;
4649
4650 spin_lock(&inode->i_lock);
4651 if (atomic_read(&inode->i_writecount) > 1) {
4652 spin_unlock(&inode->i_lock);
4653 return -ETXTBSY;
4654 }
4655 atomic_set(&inode->i_writecount, -1);
4656 spin_unlock(&inode->i_lock);
4657
4658 return 0;
4659 }
4660
4661 void restore_bitmap_write_access(struct file *file)
4662 {
4663 struct inode *inode = file->f_mapping->host;
4664
4665 spin_lock(&inode->i_lock);
4666 atomic_set(&inode->i_writecount, 1);
4667 spin_unlock(&inode->i_lock);
4668 }
4669
4670 static void md_clean(mddev_t *mddev)
4671 {
4672 mddev->array_sectors = 0;
4673 mddev->external_size = 0;
4674 mddev->dev_sectors = 0;
4675 mddev->raid_disks = 0;
4676 mddev->recovery_cp = 0;
4677 mddev->resync_min = 0;
4678 mddev->resync_max = MaxSector;
4679 mddev->reshape_position = MaxSector;
4680 mddev->external = 0;
4681 mddev->persistent = 0;
4682 mddev->level = LEVEL_NONE;
4683 mddev->clevel[0] = 0;
4684 mddev->flags = 0;
4685 mddev->ro = 0;
4686 mddev->metadata_type[0] = 0;
4687 mddev->chunk_sectors = 0;
4688 mddev->ctime = mddev->utime = 0;
4689 mddev->layout = 0;
4690 mddev->max_disks = 0;
4691 mddev->events = 0;
4692 mddev->can_decrease_events = 0;
4693 mddev->delta_disks = 0;
4694 mddev->new_level = LEVEL_NONE;
4695 mddev->new_layout = 0;
4696 mddev->new_chunk_sectors = 0;
4697 mddev->curr_resync = 0;
4698 mddev->resync_mismatches = 0;
4699 mddev->suspend_lo = mddev->suspend_hi = 0;
4700 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4701 mddev->recovery = 0;
4702 mddev->in_sync = 0;
4703 mddev->degraded = 0;
4704 mddev->safemode = 0;
4705 mddev->bitmap_info.offset = 0;
4706 mddev->bitmap_info.default_offset = 0;
4707 mddev->bitmap_info.chunksize = 0;
4708 mddev->bitmap_info.daemon_sleep = 0;
4709 mddev->bitmap_info.max_write_behind = 0;
4710 mddev->plug = NULL;
4711 }
4712
4713 static void __md_stop_writes(mddev_t *mddev)
4714 {
4715 if (mddev->sync_thread) {
4716 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4717 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4718 reap_sync_thread(mddev);
4719 }
4720
4721 del_timer_sync(&mddev->safemode_timer);
4722
4723 bitmap_flush(mddev);
4724 md_super_wait(mddev);
4725
4726 if (!mddev->in_sync || mddev->flags) {
4727 /* mark array as shutdown cleanly */
4728 mddev->in_sync = 1;
4729 md_update_sb(mddev, 1);
4730 }
4731 }
4732
4733 void md_stop_writes(mddev_t *mddev)
4734 {
4735 mddev_lock(mddev);
4736 __md_stop_writes(mddev);
4737 mddev_unlock(mddev);
4738 }
4739 EXPORT_SYMBOL_GPL(md_stop_writes);
4740
4741 void md_stop(mddev_t *mddev)
4742 {
4743 mddev->ready = 0;
4744 mddev->pers->stop(mddev);
4745 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4746 mddev->to_remove = &md_redundancy_group;
4747 module_put(mddev->pers->owner);
4748 mddev->pers = NULL;
4749 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4750 }
4751 EXPORT_SYMBOL_GPL(md_stop);
4752
4753 static int md_set_readonly(mddev_t *mddev, int is_open)
4754 {
4755 int err = 0;
4756 mutex_lock(&mddev->open_mutex);
4757 if (atomic_read(&mddev->openers) > is_open) {
4758 printk("md: %s still in use.\n",mdname(mddev));
4759 err = -EBUSY;
4760 goto out;
4761 }
4762 if (mddev->pers) {
4763 __md_stop_writes(mddev);
4764
4765 err = -ENXIO;
4766 if (mddev->ro==1)
4767 goto out;
4768 mddev->ro = 1;
4769 set_disk_ro(mddev->gendisk, 1);
4770 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4771 sysfs_notify_dirent_safe(mddev->sysfs_state);
4772 err = 0;
4773 }
4774 out:
4775 mutex_unlock(&mddev->open_mutex);
4776 return err;
4777 }
4778
4779 /* mode:
4780 * 0 - completely stop and dis-assemble array
4781 * 2 - stop but do not disassemble array
4782 */
4783 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4784 {
4785 struct gendisk *disk = mddev->gendisk;
4786 mdk_rdev_t *rdev;
4787
4788 mutex_lock(&mddev->open_mutex);
4789 if (atomic_read(&mddev->openers) > is_open ||
4790 mddev->sysfs_active) {
4791 printk("md: %s still in use.\n",mdname(mddev));
4792 mutex_unlock(&mddev->open_mutex);
4793 return -EBUSY;
4794 }
4795
4796 if (mddev->pers) {
4797 if (mddev->ro)
4798 set_disk_ro(disk, 0);
4799
4800 __md_stop_writes(mddev);
4801 md_stop(mddev);
4802 mddev->queue->merge_bvec_fn = NULL;
4803 mddev->queue->unplug_fn = NULL;
4804 mddev->queue->backing_dev_info.congested_fn = NULL;
4805
4806 /* tell userspace to handle 'inactive' */
4807 sysfs_notify_dirent_safe(mddev->sysfs_state);
4808
4809 list_for_each_entry(rdev, &mddev->disks, same_set)
4810 if (rdev->raid_disk >= 0) {
4811 char nm[20];
4812 sprintf(nm, "rd%d", rdev->raid_disk);
4813 sysfs_remove_link(&mddev->kobj, nm);
4814 }
4815
4816 set_capacity(disk, 0);
4817 mutex_unlock(&mddev->open_mutex);
4818 revalidate_disk(disk);
4819
4820 if (mddev->ro)
4821 mddev->ro = 0;
4822 } else
4823 mutex_unlock(&mddev->open_mutex);
4824 /*
4825 * Free resources if final stop
4826 */
4827 if (mode == 0) {
4828 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4829
4830 bitmap_destroy(mddev);
4831 if (mddev->bitmap_info.file) {
4832 restore_bitmap_write_access(mddev->bitmap_info.file);
4833 fput(mddev->bitmap_info.file);
4834 mddev->bitmap_info.file = NULL;
4835 }
4836 mddev->bitmap_info.offset = 0;
4837
4838 export_array(mddev);
4839
4840 md_clean(mddev);
4841 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4842 if (mddev->hold_active == UNTIL_STOP)
4843 mddev->hold_active = 0;
4844 }
4845 blk_integrity_unregister(disk);
4846 md_new_event(mddev);
4847 sysfs_notify_dirent_safe(mddev->sysfs_state);
4848 return 0;
4849 }
4850
4851 #ifndef MODULE
4852 static void autorun_array(mddev_t *mddev)
4853 {
4854 mdk_rdev_t *rdev;
4855 int err;
4856
4857 if (list_empty(&mddev->disks))
4858 return;
4859
4860 printk(KERN_INFO "md: running: ");
4861
4862 list_for_each_entry(rdev, &mddev->disks, same_set) {
4863 char b[BDEVNAME_SIZE];
4864 printk("<%s>", bdevname(rdev->bdev,b));
4865 }
4866 printk("\n");
4867
4868 err = do_md_run(mddev);
4869 if (err) {
4870 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4871 do_md_stop(mddev, 0, 0);
4872 }
4873 }
4874
4875 /*
4876 * lets try to run arrays based on all disks that have arrived
4877 * until now. (those are in pending_raid_disks)
4878 *
4879 * the method: pick the first pending disk, collect all disks with
4880 * the same UUID, remove all from the pending list and put them into
4881 * the 'same_array' list. Then order this list based on superblock
4882 * update time (freshest comes first), kick out 'old' disks and
4883 * compare superblocks. If everything's fine then run it.
4884 *
4885 * If "unit" is allocated, then bump its reference count
4886 */
4887 static void autorun_devices(int part)
4888 {
4889 mdk_rdev_t *rdev0, *rdev, *tmp;
4890 mddev_t *mddev;
4891 char b[BDEVNAME_SIZE];
4892
4893 printk(KERN_INFO "md: autorun ...\n");
4894 while (!list_empty(&pending_raid_disks)) {
4895 int unit;
4896 dev_t dev;
4897 LIST_HEAD(candidates);
4898 rdev0 = list_entry(pending_raid_disks.next,
4899 mdk_rdev_t, same_set);
4900
4901 printk(KERN_INFO "md: considering %s ...\n",
4902 bdevname(rdev0->bdev,b));
4903 INIT_LIST_HEAD(&candidates);
4904 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4905 if (super_90_load(rdev, rdev0, 0) >= 0) {
4906 printk(KERN_INFO "md: adding %s ...\n",
4907 bdevname(rdev->bdev,b));
4908 list_move(&rdev->same_set, &candidates);
4909 }
4910 /*
4911 * now we have a set of devices, with all of them having
4912 * mostly sane superblocks. It's time to allocate the
4913 * mddev.
4914 */
4915 if (part) {
4916 dev = MKDEV(mdp_major,
4917 rdev0->preferred_minor << MdpMinorShift);
4918 unit = MINOR(dev) >> MdpMinorShift;
4919 } else {
4920 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4921 unit = MINOR(dev);
4922 }
4923 if (rdev0->preferred_minor != unit) {
4924 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4925 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4926 break;
4927 }
4928
4929 md_probe(dev, NULL, NULL);
4930 mddev = mddev_find(dev);
4931 if (!mddev || !mddev->gendisk) {
4932 if (mddev)
4933 mddev_put(mddev);
4934 printk(KERN_ERR
4935 "md: cannot allocate memory for md drive.\n");
4936 break;
4937 }
4938 if (mddev_lock(mddev))
4939 printk(KERN_WARNING "md: %s locked, cannot run\n",
4940 mdname(mddev));
4941 else if (mddev->raid_disks || mddev->major_version
4942 || !list_empty(&mddev->disks)) {
4943 printk(KERN_WARNING
4944 "md: %s already running, cannot run %s\n",
4945 mdname(mddev), bdevname(rdev0->bdev,b));
4946 mddev_unlock(mddev);
4947 } else {
4948 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4949 mddev->persistent = 1;
4950 rdev_for_each_list(rdev, tmp, &candidates) {
4951 list_del_init(&rdev->same_set);
4952 if (bind_rdev_to_array(rdev, mddev))
4953 export_rdev(rdev);
4954 }
4955 autorun_array(mddev);
4956 mddev_unlock(mddev);
4957 }
4958 /* on success, candidates will be empty, on error
4959 * it won't...
4960 */
4961 rdev_for_each_list(rdev, tmp, &candidates) {
4962 list_del_init(&rdev->same_set);
4963 export_rdev(rdev);
4964 }
4965 mddev_put(mddev);
4966 }
4967 printk(KERN_INFO "md: ... autorun DONE.\n");
4968 }
4969 #endif /* !MODULE */
4970
4971 static int get_version(void __user * arg)
4972 {
4973 mdu_version_t ver;
4974
4975 ver.major = MD_MAJOR_VERSION;
4976 ver.minor = MD_MINOR_VERSION;
4977 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4978
4979 if (copy_to_user(arg, &ver, sizeof(ver)))
4980 return -EFAULT;
4981
4982 return 0;
4983 }
4984
4985 static int get_array_info(mddev_t * mddev, void __user * arg)
4986 {
4987 mdu_array_info_t info;
4988 int nr,working,insync,failed,spare;
4989 mdk_rdev_t *rdev;
4990
4991 nr=working=insync=failed=spare=0;
4992 list_for_each_entry(rdev, &mddev->disks, same_set) {
4993 nr++;
4994 if (test_bit(Faulty, &rdev->flags))
4995 failed++;
4996 else {
4997 working++;
4998 if (test_bit(In_sync, &rdev->flags))
4999 insync++;
5000 else
5001 spare++;
5002 }
5003 }
5004
5005 info.major_version = mddev->major_version;
5006 info.minor_version = mddev->minor_version;
5007 info.patch_version = MD_PATCHLEVEL_VERSION;
5008 info.ctime = mddev->ctime;
5009 info.level = mddev->level;
5010 info.size = mddev->dev_sectors / 2;
5011 if (info.size != mddev->dev_sectors / 2) /* overflow */
5012 info.size = -1;
5013 info.nr_disks = nr;
5014 info.raid_disks = mddev->raid_disks;
5015 info.md_minor = mddev->md_minor;
5016 info.not_persistent= !mddev->persistent;
5017
5018 info.utime = mddev->utime;
5019 info.state = 0;
5020 if (mddev->in_sync)
5021 info.state = (1<<MD_SB_CLEAN);
5022 if (mddev->bitmap && mddev->bitmap_info.offset)
5023 info.state = (1<<MD_SB_BITMAP_PRESENT);
5024 info.active_disks = insync;
5025 info.working_disks = working;
5026 info.failed_disks = failed;
5027 info.spare_disks = spare;
5028
5029 info.layout = mddev->layout;
5030 info.chunk_size = mddev->chunk_sectors << 9;
5031
5032 if (copy_to_user(arg, &info, sizeof(info)))
5033 return -EFAULT;
5034
5035 return 0;
5036 }
5037
5038 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5039 {
5040 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5041 char *ptr, *buf = NULL;
5042 int err = -ENOMEM;
5043
5044 if (md_allow_write(mddev))
5045 file = kmalloc(sizeof(*file), GFP_NOIO);
5046 else
5047 file = kmalloc(sizeof(*file), GFP_KERNEL);
5048
5049 if (!file)
5050 goto out;
5051
5052 /* bitmap disabled, zero the first byte and copy out */
5053 if (!mddev->bitmap || !mddev->bitmap->file) {
5054 file->pathname[0] = '\0';
5055 goto copy_out;
5056 }
5057
5058 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5059 if (!buf)
5060 goto out;
5061
5062 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5063 if (IS_ERR(ptr))
5064 goto out;
5065
5066 strcpy(file->pathname, ptr);
5067
5068 copy_out:
5069 err = 0;
5070 if (copy_to_user(arg, file, sizeof(*file)))
5071 err = -EFAULT;
5072 out:
5073 kfree(buf);
5074 kfree(file);
5075 return err;
5076 }
5077
5078 static int get_disk_info(mddev_t * mddev, void __user * arg)
5079 {
5080 mdu_disk_info_t info;
5081 mdk_rdev_t *rdev;
5082
5083 if (copy_from_user(&info, arg, sizeof(info)))
5084 return -EFAULT;
5085
5086 rdev = find_rdev_nr(mddev, info.number);
5087 if (rdev) {
5088 info.major = MAJOR(rdev->bdev->bd_dev);
5089 info.minor = MINOR(rdev->bdev->bd_dev);
5090 info.raid_disk = rdev->raid_disk;
5091 info.state = 0;
5092 if (test_bit(Faulty, &rdev->flags))
5093 info.state |= (1<<MD_DISK_FAULTY);
5094 else if (test_bit(In_sync, &rdev->flags)) {
5095 info.state |= (1<<MD_DISK_ACTIVE);
5096 info.state |= (1<<MD_DISK_SYNC);
5097 }
5098 if (test_bit(WriteMostly, &rdev->flags))
5099 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5100 } else {
5101 info.major = info.minor = 0;
5102 info.raid_disk = -1;
5103 info.state = (1<<MD_DISK_REMOVED);
5104 }
5105
5106 if (copy_to_user(arg, &info, sizeof(info)))
5107 return -EFAULT;
5108
5109 return 0;
5110 }
5111
5112 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5113 {
5114 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5115 mdk_rdev_t *rdev;
5116 dev_t dev = MKDEV(info->major,info->minor);
5117
5118 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5119 return -EOVERFLOW;
5120
5121 if (!mddev->raid_disks) {
5122 int err;
5123 /* expecting a device which has a superblock */
5124 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5125 if (IS_ERR(rdev)) {
5126 printk(KERN_WARNING
5127 "md: md_import_device returned %ld\n",
5128 PTR_ERR(rdev));
5129 return PTR_ERR(rdev);
5130 }
5131 if (!list_empty(&mddev->disks)) {
5132 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5133 mdk_rdev_t, same_set);
5134 err = super_types[mddev->major_version]
5135 .load_super(rdev, rdev0, mddev->minor_version);
5136 if (err < 0) {
5137 printk(KERN_WARNING
5138 "md: %s has different UUID to %s\n",
5139 bdevname(rdev->bdev,b),
5140 bdevname(rdev0->bdev,b2));
5141 export_rdev(rdev);
5142 return -EINVAL;
5143 }
5144 }
5145 err = bind_rdev_to_array(rdev, mddev);
5146 if (err)
5147 export_rdev(rdev);
5148 return err;
5149 }
5150
5151 /*
5152 * add_new_disk can be used once the array is assembled
5153 * to add "hot spares". They must already have a superblock
5154 * written
5155 */
5156 if (mddev->pers) {
5157 int err;
5158 if (!mddev->pers->hot_add_disk) {
5159 printk(KERN_WARNING
5160 "%s: personality does not support diskops!\n",
5161 mdname(mddev));
5162 return -EINVAL;
5163 }
5164 if (mddev->persistent)
5165 rdev = md_import_device(dev, mddev->major_version,
5166 mddev->minor_version);
5167 else
5168 rdev = md_import_device(dev, -1, -1);
5169 if (IS_ERR(rdev)) {
5170 printk(KERN_WARNING
5171 "md: md_import_device returned %ld\n",
5172 PTR_ERR(rdev));
5173 return PTR_ERR(rdev);
5174 }
5175 /* set saved_raid_disk if appropriate */
5176 if (!mddev->persistent) {
5177 if (info->state & (1<<MD_DISK_SYNC) &&
5178 info->raid_disk < mddev->raid_disks) {
5179 rdev->raid_disk = info->raid_disk;
5180 set_bit(In_sync, &rdev->flags);
5181 } else
5182 rdev->raid_disk = -1;
5183 } else
5184 super_types[mddev->major_version].
5185 validate_super(mddev, rdev);
5186 if (test_bit(In_sync, &rdev->flags))
5187 rdev->saved_raid_disk = rdev->raid_disk;
5188 else
5189 rdev->saved_raid_disk = -1;
5190
5191 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5192 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5193 set_bit(WriteMostly, &rdev->flags);
5194 else
5195 clear_bit(WriteMostly, &rdev->flags);
5196
5197 rdev->raid_disk = -1;
5198 err = bind_rdev_to_array(rdev, mddev);
5199 if (!err && !mddev->pers->hot_remove_disk) {
5200 /* If there is hot_add_disk but no hot_remove_disk
5201 * then added disks for geometry changes,
5202 * and should be added immediately.
5203 */
5204 super_types[mddev->major_version].
5205 validate_super(mddev, rdev);
5206 err = mddev->pers->hot_add_disk(mddev, rdev);
5207 if (err)
5208 unbind_rdev_from_array(rdev);
5209 }
5210 if (err)
5211 export_rdev(rdev);
5212 else
5213 sysfs_notify_dirent_safe(rdev->sysfs_state);
5214
5215 md_update_sb(mddev, 1);
5216 if (mddev->degraded)
5217 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5218 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5219 md_wakeup_thread(mddev->thread);
5220 return err;
5221 }
5222
5223 /* otherwise, add_new_disk is only allowed
5224 * for major_version==0 superblocks
5225 */
5226 if (mddev->major_version != 0) {
5227 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5228 mdname(mddev));
5229 return -EINVAL;
5230 }
5231
5232 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5233 int err;
5234 rdev = md_import_device(dev, -1, 0);
5235 if (IS_ERR(rdev)) {
5236 printk(KERN_WARNING
5237 "md: error, md_import_device() returned %ld\n",
5238 PTR_ERR(rdev));
5239 return PTR_ERR(rdev);
5240 }
5241 rdev->desc_nr = info->number;
5242 if (info->raid_disk < mddev->raid_disks)
5243 rdev->raid_disk = info->raid_disk;
5244 else
5245 rdev->raid_disk = -1;
5246
5247 if (rdev->raid_disk < mddev->raid_disks)
5248 if (info->state & (1<<MD_DISK_SYNC))
5249 set_bit(In_sync, &rdev->flags);
5250
5251 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5252 set_bit(WriteMostly, &rdev->flags);
5253
5254 if (!mddev->persistent) {
5255 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5256 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5257 } else
5258 rdev->sb_start = calc_dev_sboffset(rdev);
5259 rdev->sectors = rdev->sb_start;
5260
5261 err = bind_rdev_to_array(rdev, mddev);
5262 if (err) {
5263 export_rdev(rdev);
5264 return err;
5265 }
5266 }
5267
5268 return 0;
5269 }
5270
5271 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5272 {
5273 char b[BDEVNAME_SIZE];
5274 mdk_rdev_t *rdev;
5275
5276 rdev = find_rdev(mddev, dev);
5277 if (!rdev)
5278 return -ENXIO;
5279
5280 if (rdev->raid_disk >= 0)
5281 goto busy;
5282
5283 kick_rdev_from_array(rdev);
5284 md_update_sb(mddev, 1);
5285 md_new_event(mddev);
5286
5287 return 0;
5288 busy:
5289 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5290 bdevname(rdev->bdev,b), mdname(mddev));
5291 return -EBUSY;
5292 }
5293
5294 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5295 {
5296 char b[BDEVNAME_SIZE];
5297 int err;
5298 mdk_rdev_t *rdev;
5299
5300 if (!mddev->pers)
5301 return -ENODEV;
5302
5303 if (mddev->major_version != 0) {
5304 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5305 " version-0 superblocks.\n",
5306 mdname(mddev));
5307 return -EINVAL;
5308 }
5309 if (!mddev->pers->hot_add_disk) {
5310 printk(KERN_WARNING
5311 "%s: personality does not support diskops!\n",
5312 mdname(mddev));
5313 return -EINVAL;
5314 }
5315
5316 rdev = md_import_device(dev, -1, 0);
5317 if (IS_ERR(rdev)) {
5318 printk(KERN_WARNING
5319 "md: error, md_import_device() returned %ld\n",
5320 PTR_ERR(rdev));
5321 return -EINVAL;
5322 }
5323
5324 if (mddev->persistent)
5325 rdev->sb_start = calc_dev_sboffset(rdev);
5326 else
5327 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5328
5329 rdev->sectors = rdev->sb_start;
5330
5331 if (test_bit(Faulty, &rdev->flags)) {
5332 printk(KERN_WARNING
5333 "md: can not hot-add faulty %s disk to %s!\n",
5334 bdevname(rdev->bdev,b), mdname(mddev));
5335 err = -EINVAL;
5336 goto abort_export;
5337 }
5338 clear_bit(In_sync, &rdev->flags);
5339 rdev->desc_nr = -1;
5340 rdev->saved_raid_disk = -1;
5341 err = bind_rdev_to_array(rdev, mddev);
5342 if (err)
5343 goto abort_export;
5344
5345 /*
5346 * The rest should better be atomic, we can have disk failures
5347 * noticed in interrupt contexts ...
5348 */
5349
5350 rdev->raid_disk = -1;
5351
5352 md_update_sb(mddev, 1);
5353
5354 /*
5355 * Kick recovery, maybe this spare has to be added to the
5356 * array immediately.
5357 */
5358 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5359 md_wakeup_thread(mddev->thread);
5360 md_new_event(mddev);
5361 return 0;
5362
5363 abort_export:
5364 export_rdev(rdev);
5365 return err;
5366 }
5367
5368 static int set_bitmap_file(mddev_t *mddev, int fd)
5369 {
5370 int err;
5371
5372 if (mddev->pers) {
5373 if (!mddev->pers->quiesce)
5374 return -EBUSY;
5375 if (mddev->recovery || mddev->sync_thread)
5376 return -EBUSY;
5377 /* we should be able to change the bitmap.. */
5378 }
5379
5380
5381 if (fd >= 0) {
5382 if (mddev->bitmap)
5383 return -EEXIST; /* cannot add when bitmap is present */
5384 mddev->bitmap_info.file = fget(fd);
5385
5386 if (mddev->bitmap_info.file == NULL) {
5387 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5388 mdname(mddev));
5389 return -EBADF;
5390 }
5391
5392 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5393 if (err) {
5394 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5395 mdname(mddev));
5396 fput(mddev->bitmap_info.file);
5397 mddev->bitmap_info.file = NULL;
5398 return err;
5399 }
5400 mddev->bitmap_info.offset = 0; /* file overrides offset */
5401 } else if (mddev->bitmap == NULL)
5402 return -ENOENT; /* cannot remove what isn't there */
5403 err = 0;
5404 if (mddev->pers) {
5405 mddev->pers->quiesce(mddev, 1);
5406 if (fd >= 0) {
5407 err = bitmap_create(mddev);
5408 if (!err)
5409 err = bitmap_load(mddev);
5410 }
5411 if (fd < 0 || err) {
5412 bitmap_destroy(mddev);
5413 fd = -1; /* make sure to put the file */
5414 }
5415 mddev->pers->quiesce(mddev, 0);
5416 }
5417 if (fd < 0) {
5418 if (mddev->bitmap_info.file) {
5419 restore_bitmap_write_access(mddev->bitmap_info.file);
5420 fput(mddev->bitmap_info.file);
5421 }
5422 mddev->bitmap_info.file = NULL;
5423 }
5424
5425 return err;
5426 }
5427
5428 /*
5429 * set_array_info is used two different ways
5430 * The original usage is when creating a new array.
5431 * In this usage, raid_disks is > 0 and it together with
5432 * level, size, not_persistent,layout,chunksize determine the
5433 * shape of the array.
5434 * This will always create an array with a type-0.90.0 superblock.
5435 * The newer usage is when assembling an array.
5436 * In this case raid_disks will be 0, and the major_version field is
5437 * use to determine which style super-blocks are to be found on the devices.
5438 * The minor and patch _version numbers are also kept incase the
5439 * super_block handler wishes to interpret them.
5440 */
5441 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5442 {
5443
5444 if (info->raid_disks == 0) {
5445 /* just setting version number for superblock loading */
5446 if (info->major_version < 0 ||
5447 info->major_version >= ARRAY_SIZE(super_types) ||
5448 super_types[info->major_version].name == NULL) {
5449 /* maybe try to auto-load a module? */
5450 printk(KERN_INFO
5451 "md: superblock version %d not known\n",
5452 info->major_version);
5453 return -EINVAL;
5454 }
5455 mddev->major_version = info->major_version;
5456 mddev->minor_version = info->minor_version;
5457 mddev->patch_version = info->patch_version;
5458 mddev->persistent = !info->not_persistent;
5459 /* ensure mddev_put doesn't delete this now that there
5460 * is some minimal configuration.
5461 */
5462 mddev->ctime = get_seconds();
5463 return 0;
5464 }
5465 mddev->major_version = MD_MAJOR_VERSION;
5466 mddev->minor_version = MD_MINOR_VERSION;
5467 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5468 mddev->ctime = get_seconds();
5469
5470 mddev->level = info->level;
5471 mddev->clevel[0] = 0;
5472 mddev->dev_sectors = 2 * (sector_t)info->size;
5473 mddev->raid_disks = info->raid_disks;
5474 /* don't set md_minor, it is determined by which /dev/md* was
5475 * openned
5476 */
5477 if (info->state & (1<<MD_SB_CLEAN))
5478 mddev->recovery_cp = MaxSector;
5479 else
5480 mddev->recovery_cp = 0;
5481 mddev->persistent = ! info->not_persistent;
5482 mddev->external = 0;
5483
5484 mddev->layout = info->layout;
5485 mddev->chunk_sectors = info->chunk_size >> 9;
5486
5487 mddev->max_disks = MD_SB_DISKS;
5488
5489 if (mddev->persistent)
5490 mddev->flags = 0;
5491 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5492
5493 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5494 mddev->bitmap_info.offset = 0;
5495
5496 mddev->reshape_position = MaxSector;
5497
5498 /*
5499 * Generate a 128 bit UUID
5500 */
5501 get_random_bytes(mddev->uuid, 16);
5502
5503 mddev->new_level = mddev->level;
5504 mddev->new_chunk_sectors = mddev->chunk_sectors;
5505 mddev->new_layout = mddev->layout;
5506 mddev->delta_disks = 0;
5507
5508 return 0;
5509 }
5510
5511 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5512 {
5513 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5514
5515 if (mddev->external_size)
5516 return;
5517
5518 mddev->array_sectors = array_sectors;
5519 }
5520 EXPORT_SYMBOL(md_set_array_sectors);
5521
5522 static int update_size(mddev_t *mddev, sector_t num_sectors)
5523 {
5524 mdk_rdev_t *rdev;
5525 int rv;
5526 int fit = (num_sectors == 0);
5527
5528 if (mddev->pers->resize == NULL)
5529 return -EINVAL;
5530 /* The "num_sectors" is the number of sectors of each device that
5531 * is used. This can only make sense for arrays with redundancy.
5532 * linear and raid0 always use whatever space is available. We can only
5533 * consider changing this number if no resync or reconstruction is
5534 * happening, and if the new size is acceptable. It must fit before the
5535 * sb_start or, if that is <data_offset, it must fit before the size
5536 * of each device. If num_sectors is zero, we find the largest size
5537 * that fits.
5538 */
5539 if (mddev->sync_thread)
5540 return -EBUSY;
5541 if (mddev->bitmap)
5542 /* Sorry, cannot grow a bitmap yet, just remove it,
5543 * grow, and re-add.
5544 */
5545 return -EBUSY;
5546 list_for_each_entry(rdev, &mddev->disks, same_set) {
5547 sector_t avail = rdev->sectors;
5548
5549 if (fit && (num_sectors == 0 || num_sectors > avail))
5550 num_sectors = avail;
5551 if (avail < num_sectors)
5552 return -ENOSPC;
5553 }
5554 rv = mddev->pers->resize(mddev, num_sectors);
5555 if (!rv)
5556 revalidate_disk(mddev->gendisk);
5557 return rv;
5558 }
5559
5560 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5561 {
5562 int rv;
5563 /* change the number of raid disks */
5564 if (mddev->pers->check_reshape == NULL)
5565 return -EINVAL;
5566 if (raid_disks <= 0 ||
5567 (mddev->max_disks && raid_disks >= mddev->max_disks))
5568 return -EINVAL;
5569 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5570 return -EBUSY;
5571 mddev->delta_disks = raid_disks - mddev->raid_disks;
5572
5573 rv = mddev->pers->check_reshape(mddev);
5574 return rv;
5575 }
5576
5577
5578 /*
5579 * update_array_info is used to change the configuration of an
5580 * on-line array.
5581 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5582 * fields in the info are checked against the array.
5583 * Any differences that cannot be handled will cause an error.
5584 * Normally, only one change can be managed at a time.
5585 */
5586 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5587 {
5588 int rv = 0;
5589 int cnt = 0;
5590 int state = 0;
5591
5592 /* calculate expected state,ignoring low bits */
5593 if (mddev->bitmap && mddev->bitmap_info.offset)
5594 state |= (1 << MD_SB_BITMAP_PRESENT);
5595
5596 if (mddev->major_version != info->major_version ||
5597 mddev->minor_version != info->minor_version ||
5598 /* mddev->patch_version != info->patch_version || */
5599 mddev->ctime != info->ctime ||
5600 mddev->level != info->level ||
5601 /* mddev->layout != info->layout || */
5602 !mddev->persistent != info->not_persistent||
5603 mddev->chunk_sectors != info->chunk_size >> 9 ||
5604 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5605 ((state^info->state) & 0xfffffe00)
5606 )
5607 return -EINVAL;
5608 /* Check there is only one change */
5609 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5610 cnt++;
5611 if (mddev->raid_disks != info->raid_disks)
5612 cnt++;
5613 if (mddev->layout != info->layout)
5614 cnt++;
5615 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5616 cnt++;
5617 if (cnt == 0)
5618 return 0;
5619 if (cnt > 1)
5620 return -EINVAL;
5621
5622 if (mddev->layout != info->layout) {
5623 /* Change layout
5624 * we don't need to do anything at the md level, the
5625 * personality will take care of it all.
5626 */
5627 if (mddev->pers->check_reshape == NULL)
5628 return -EINVAL;
5629 else {
5630 mddev->new_layout = info->layout;
5631 rv = mddev->pers->check_reshape(mddev);
5632 if (rv)
5633 mddev->new_layout = mddev->layout;
5634 return rv;
5635 }
5636 }
5637 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5638 rv = update_size(mddev, (sector_t)info->size * 2);
5639
5640 if (mddev->raid_disks != info->raid_disks)
5641 rv = update_raid_disks(mddev, info->raid_disks);
5642
5643 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5644 if (mddev->pers->quiesce == NULL)
5645 return -EINVAL;
5646 if (mddev->recovery || mddev->sync_thread)
5647 return -EBUSY;
5648 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5649 /* add the bitmap */
5650 if (mddev->bitmap)
5651 return -EEXIST;
5652 if (mddev->bitmap_info.default_offset == 0)
5653 return -EINVAL;
5654 mddev->bitmap_info.offset =
5655 mddev->bitmap_info.default_offset;
5656 mddev->pers->quiesce(mddev, 1);
5657 rv = bitmap_create(mddev);
5658 if (!rv)
5659 rv = bitmap_load(mddev);
5660 if (rv)
5661 bitmap_destroy(mddev);
5662 mddev->pers->quiesce(mddev, 0);
5663 } else {
5664 /* remove the bitmap */
5665 if (!mddev->bitmap)
5666 return -ENOENT;
5667 if (mddev->bitmap->file)
5668 return -EINVAL;
5669 mddev->pers->quiesce(mddev, 1);
5670 bitmap_destroy(mddev);
5671 mddev->pers->quiesce(mddev, 0);
5672 mddev->bitmap_info.offset = 0;
5673 }
5674 }
5675 md_update_sb(mddev, 1);
5676 return rv;
5677 }
5678
5679 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5680 {
5681 mdk_rdev_t *rdev;
5682
5683 if (mddev->pers == NULL)
5684 return -ENODEV;
5685
5686 rdev = find_rdev(mddev, dev);
5687 if (!rdev)
5688 return -ENODEV;
5689
5690 md_error(mddev, rdev);
5691 return 0;
5692 }
5693
5694 /*
5695 * We have a problem here : there is no easy way to give a CHS
5696 * virtual geometry. We currently pretend that we have a 2 heads
5697 * 4 sectors (with a BIG number of cylinders...). This drives
5698 * dosfs just mad... ;-)
5699 */
5700 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5701 {
5702 mddev_t *mddev = bdev->bd_disk->private_data;
5703
5704 geo->heads = 2;
5705 geo->sectors = 4;
5706 geo->cylinders = mddev->array_sectors / 8;
5707 return 0;
5708 }
5709
5710 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5711 unsigned int cmd, unsigned long arg)
5712 {
5713 int err = 0;
5714 void __user *argp = (void __user *)arg;
5715 mddev_t *mddev = NULL;
5716 int ro;
5717
5718 if (!capable(CAP_SYS_ADMIN))
5719 return -EACCES;
5720
5721 /*
5722 * Commands dealing with the RAID driver but not any
5723 * particular array:
5724 */
5725 switch (cmd)
5726 {
5727 case RAID_VERSION:
5728 err = get_version(argp);
5729 goto done;
5730
5731 case PRINT_RAID_DEBUG:
5732 err = 0;
5733 md_print_devices();
5734 goto done;
5735
5736 #ifndef MODULE
5737 case RAID_AUTORUN:
5738 err = 0;
5739 autostart_arrays(arg);
5740 goto done;
5741 #endif
5742 default:;
5743 }
5744
5745 /*
5746 * Commands creating/starting a new array:
5747 */
5748
5749 mddev = bdev->bd_disk->private_data;
5750
5751 if (!mddev) {
5752 BUG();
5753 goto abort;
5754 }
5755
5756 err = mddev_lock(mddev);
5757 if (err) {
5758 printk(KERN_INFO
5759 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5760 err, cmd);
5761 goto abort;
5762 }
5763
5764 switch (cmd)
5765 {
5766 case SET_ARRAY_INFO:
5767 {
5768 mdu_array_info_t info;
5769 if (!arg)
5770 memset(&info, 0, sizeof(info));
5771 else if (copy_from_user(&info, argp, sizeof(info))) {
5772 err = -EFAULT;
5773 goto abort_unlock;
5774 }
5775 if (mddev->pers) {
5776 err = update_array_info(mddev, &info);
5777 if (err) {
5778 printk(KERN_WARNING "md: couldn't update"
5779 " array info. %d\n", err);
5780 goto abort_unlock;
5781 }
5782 goto done_unlock;
5783 }
5784 if (!list_empty(&mddev->disks)) {
5785 printk(KERN_WARNING
5786 "md: array %s already has disks!\n",
5787 mdname(mddev));
5788 err = -EBUSY;
5789 goto abort_unlock;
5790 }
5791 if (mddev->raid_disks) {
5792 printk(KERN_WARNING
5793 "md: array %s already initialised!\n",
5794 mdname(mddev));
5795 err = -EBUSY;
5796 goto abort_unlock;
5797 }
5798 err = set_array_info(mddev, &info);
5799 if (err) {
5800 printk(KERN_WARNING "md: couldn't set"
5801 " array info. %d\n", err);
5802 goto abort_unlock;
5803 }
5804 }
5805 goto done_unlock;
5806
5807 default:;
5808 }
5809
5810 /*
5811 * Commands querying/configuring an existing array:
5812 */
5813 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5814 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5815 if ((!mddev->raid_disks && !mddev->external)
5816 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5817 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5818 && cmd != GET_BITMAP_FILE) {
5819 err = -ENODEV;
5820 goto abort_unlock;
5821 }
5822
5823 /*
5824 * Commands even a read-only array can execute:
5825 */
5826 switch (cmd)
5827 {
5828 case GET_ARRAY_INFO:
5829 err = get_array_info(mddev, argp);
5830 goto done_unlock;
5831
5832 case GET_BITMAP_FILE:
5833 err = get_bitmap_file(mddev, argp);
5834 goto done_unlock;
5835
5836 case GET_DISK_INFO:
5837 err = get_disk_info(mddev, argp);
5838 goto done_unlock;
5839
5840 case RESTART_ARRAY_RW:
5841 err = restart_array(mddev);
5842 goto done_unlock;
5843
5844 case STOP_ARRAY:
5845 err = do_md_stop(mddev, 0, 1);
5846 goto done_unlock;
5847
5848 case STOP_ARRAY_RO:
5849 err = md_set_readonly(mddev, 1);
5850 goto done_unlock;
5851
5852 case BLKROSET:
5853 if (get_user(ro, (int __user *)(arg))) {
5854 err = -EFAULT;
5855 goto done_unlock;
5856 }
5857 err = -EINVAL;
5858
5859 /* if the bdev is going readonly the value of mddev->ro
5860 * does not matter, no writes are coming
5861 */
5862 if (ro)
5863 goto done_unlock;
5864
5865 /* are we are already prepared for writes? */
5866 if (mddev->ro != 1)
5867 goto done_unlock;
5868
5869 /* transitioning to readauto need only happen for
5870 * arrays that call md_write_start
5871 */
5872 if (mddev->pers) {
5873 err = restart_array(mddev);
5874 if (err == 0) {
5875 mddev->ro = 2;
5876 set_disk_ro(mddev->gendisk, 0);
5877 }
5878 }
5879 goto done_unlock;
5880 }
5881
5882 /*
5883 * The remaining ioctls are changing the state of the
5884 * superblock, so we do not allow them on read-only arrays.
5885 * However non-MD ioctls (e.g. get-size) will still come through
5886 * here and hit the 'default' below, so only disallow
5887 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5888 */
5889 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5890 if (mddev->ro == 2) {
5891 mddev->ro = 0;
5892 sysfs_notify_dirent_safe(mddev->sysfs_state);
5893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5894 md_wakeup_thread(mddev->thread);
5895 } else {
5896 err = -EROFS;
5897 goto abort_unlock;
5898 }
5899 }
5900
5901 switch (cmd)
5902 {
5903 case ADD_NEW_DISK:
5904 {
5905 mdu_disk_info_t info;
5906 if (copy_from_user(&info, argp, sizeof(info)))
5907 err = -EFAULT;
5908 else
5909 err = add_new_disk(mddev, &info);
5910 goto done_unlock;
5911 }
5912
5913 case HOT_REMOVE_DISK:
5914 err = hot_remove_disk(mddev, new_decode_dev(arg));
5915 goto done_unlock;
5916
5917 case HOT_ADD_DISK:
5918 err = hot_add_disk(mddev, new_decode_dev(arg));
5919 goto done_unlock;
5920
5921 case SET_DISK_FAULTY:
5922 err = set_disk_faulty(mddev, new_decode_dev(arg));
5923 goto done_unlock;
5924
5925 case RUN_ARRAY:
5926 err = do_md_run(mddev);
5927 goto done_unlock;
5928
5929 case SET_BITMAP_FILE:
5930 err = set_bitmap_file(mddev, (int)arg);
5931 goto done_unlock;
5932
5933 default:
5934 err = -EINVAL;
5935 goto abort_unlock;
5936 }
5937
5938 done_unlock:
5939 abort_unlock:
5940 if (mddev->hold_active == UNTIL_IOCTL &&
5941 err != -EINVAL)
5942 mddev->hold_active = 0;
5943 mddev_unlock(mddev);
5944
5945 return err;
5946 done:
5947 if (err)
5948 MD_BUG();
5949 abort:
5950 return err;
5951 }
5952 #ifdef CONFIG_COMPAT
5953 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5954 unsigned int cmd, unsigned long arg)
5955 {
5956 switch (cmd) {
5957 case HOT_REMOVE_DISK:
5958 case HOT_ADD_DISK:
5959 case SET_DISK_FAULTY:
5960 case SET_BITMAP_FILE:
5961 /* These take in integer arg, do not convert */
5962 break;
5963 default:
5964 arg = (unsigned long)compat_ptr(arg);
5965 break;
5966 }
5967
5968 return md_ioctl(bdev, mode, cmd, arg);
5969 }
5970 #endif /* CONFIG_COMPAT */
5971
5972 static int md_open(struct block_device *bdev, fmode_t mode)
5973 {
5974 /*
5975 * Succeed if we can lock the mddev, which confirms that
5976 * it isn't being stopped right now.
5977 */
5978 mddev_t *mddev = mddev_find(bdev->bd_dev);
5979 int err;
5980
5981 if (mddev->gendisk != bdev->bd_disk) {
5982 /* we are racing with mddev_put which is discarding this
5983 * bd_disk.
5984 */
5985 mddev_put(mddev);
5986 /* Wait until bdev->bd_disk is definitely gone */
5987 flush_workqueue(md_misc_wq);
5988 /* Then retry the open from the top */
5989 return -ERESTARTSYS;
5990 }
5991 BUG_ON(mddev != bdev->bd_disk->private_data);
5992
5993 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5994 goto out;
5995
5996 err = 0;
5997 atomic_inc(&mddev->openers);
5998 mutex_unlock(&mddev->open_mutex);
5999
6000 check_disk_size_change(mddev->gendisk, bdev);
6001 out:
6002 return err;
6003 }
6004
6005 static int md_release(struct gendisk *disk, fmode_t mode)
6006 {
6007 mddev_t *mddev = disk->private_data;
6008
6009 BUG_ON(!mddev);
6010 atomic_dec(&mddev->openers);
6011 mddev_put(mddev);
6012
6013 return 0;
6014 }
6015 static const struct block_device_operations md_fops =
6016 {
6017 .owner = THIS_MODULE,
6018 .open = md_open,
6019 .release = md_release,
6020 .ioctl = md_ioctl,
6021 #ifdef CONFIG_COMPAT
6022 .compat_ioctl = md_compat_ioctl,
6023 #endif
6024 .getgeo = md_getgeo,
6025 };
6026
6027 static int md_thread(void * arg)
6028 {
6029 mdk_thread_t *thread = arg;
6030
6031 /*
6032 * md_thread is a 'system-thread', it's priority should be very
6033 * high. We avoid resource deadlocks individually in each
6034 * raid personality. (RAID5 does preallocation) We also use RR and
6035 * the very same RT priority as kswapd, thus we will never get
6036 * into a priority inversion deadlock.
6037 *
6038 * we definitely have to have equal or higher priority than
6039 * bdflush, otherwise bdflush will deadlock if there are too
6040 * many dirty RAID5 blocks.
6041 */
6042
6043 allow_signal(SIGKILL);
6044 while (!kthread_should_stop()) {
6045
6046 /* We need to wait INTERRUPTIBLE so that
6047 * we don't add to the load-average.
6048 * That means we need to be sure no signals are
6049 * pending
6050 */
6051 if (signal_pending(current))
6052 flush_signals(current);
6053
6054 wait_event_interruptible_timeout
6055 (thread->wqueue,
6056 test_bit(THREAD_WAKEUP, &thread->flags)
6057 || kthread_should_stop(),
6058 thread->timeout);
6059
6060 clear_bit(THREAD_WAKEUP, &thread->flags);
6061 if (!kthread_should_stop())
6062 thread->run(thread->mddev);
6063 }
6064
6065 return 0;
6066 }
6067
6068 void md_wakeup_thread(mdk_thread_t *thread)
6069 {
6070 if (thread) {
6071 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6072 set_bit(THREAD_WAKEUP, &thread->flags);
6073 wake_up(&thread->wqueue);
6074 }
6075 }
6076
6077 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6078 const char *name)
6079 {
6080 mdk_thread_t *thread;
6081
6082 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6083 if (!thread)
6084 return NULL;
6085
6086 init_waitqueue_head(&thread->wqueue);
6087
6088 thread->run = run;
6089 thread->mddev = mddev;
6090 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6091 thread->tsk = kthread_run(md_thread, thread,
6092 "%s_%s",
6093 mdname(thread->mddev),
6094 name ?: mddev->pers->name);
6095 if (IS_ERR(thread->tsk)) {
6096 kfree(thread);
6097 return NULL;
6098 }
6099 return thread;
6100 }
6101
6102 void md_unregister_thread(mdk_thread_t *thread)
6103 {
6104 if (!thread)
6105 return;
6106 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6107
6108 kthread_stop(thread->tsk);
6109 kfree(thread);
6110 }
6111
6112 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6113 {
6114 if (!mddev) {
6115 MD_BUG();
6116 return;
6117 }
6118
6119 if (!rdev || test_bit(Faulty, &rdev->flags))
6120 return;
6121
6122 if (mddev->external)
6123 set_bit(Blocked, &rdev->flags);
6124 /*
6125 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6126 mdname(mddev),
6127 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6128 __builtin_return_address(0),__builtin_return_address(1),
6129 __builtin_return_address(2),__builtin_return_address(3));
6130 */
6131 if (!mddev->pers)
6132 return;
6133 if (!mddev->pers->error_handler)
6134 return;
6135 mddev->pers->error_handler(mddev,rdev);
6136 if (mddev->degraded)
6137 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6138 sysfs_notify_dirent_safe(rdev->sysfs_state);
6139 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6140 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6141 md_wakeup_thread(mddev->thread);
6142 if (mddev->event_work.func)
6143 queue_work(md_misc_wq, &mddev->event_work);
6144 md_new_event_inintr(mddev);
6145 }
6146
6147 /* seq_file implementation /proc/mdstat */
6148
6149 static void status_unused(struct seq_file *seq)
6150 {
6151 int i = 0;
6152 mdk_rdev_t *rdev;
6153
6154 seq_printf(seq, "unused devices: ");
6155
6156 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6157 char b[BDEVNAME_SIZE];
6158 i++;
6159 seq_printf(seq, "%s ",
6160 bdevname(rdev->bdev,b));
6161 }
6162 if (!i)
6163 seq_printf(seq, "<none>");
6164
6165 seq_printf(seq, "\n");
6166 }
6167
6168
6169 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6170 {
6171 sector_t max_sectors, resync, res;
6172 unsigned long dt, db;
6173 sector_t rt;
6174 int scale;
6175 unsigned int per_milli;
6176
6177 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6178
6179 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6180 max_sectors = mddev->resync_max_sectors;
6181 else
6182 max_sectors = mddev->dev_sectors;
6183
6184 /*
6185 * Should not happen.
6186 */
6187 if (!max_sectors) {
6188 MD_BUG();
6189 return;
6190 }
6191 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6192 * in a sector_t, and (max_sectors>>scale) will fit in a
6193 * u32, as those are the requirements for sector_div.
6194 * Thus 'scale' must be at least 10
6195 */
6196 scale = 10;
6197 if (sizeof(sector_t) > sizeof(unsigned long)) {
6198 while ( max_sectors/2 > (1ULL<<(scale+32)))
6199 scale++;
6200 }
6201 res = (resync>>scale)*1000;
6202 sector_div(res, (u32)((max_sectors>>scale)+1));
6203
6204 per_milli = res;
6205 {
6206 int i, x = per_milli/50, y = 20-x;
6207 seq_printf(seq, "[");
6208 for (i = 0; i < x; i++)
6209 seq_printf(seq, "=");
6210 seq_printf(seq, ">");
6211 for (i = 0; i < y; i++)
6212 seq_printf(seq, ".");
6213 seq_printf(seq, "] ");
6214 }
6215 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6216 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6217 "reshape" :
6218 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6219 "check" :
6220 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6221 "resync" : "recovery"))),
6222 per_milli/10, per_milli % 10,
6223 (unsigned long long) resync/2,
6224 (unsigned long long) max_sectors/2);
6225
6226 /*
6227 * dt: time from mark until now
6228 * db: blocks written from mark until now
6229 * rt: remaining time
6230 *
6231 * rt is a sector_t, so could be 32bit or 64bit.
6232 * So we divide before multiply in case it is 32bit and close
6233 * to the limit.
6234 * We scale the divisor (db) by 32 to avoid loosing precision
6235 * near the end of resync when the number of remaining sectors
6236 * is close to 'db'.
6237 * We then divide rt by 32 after multiplying by db to compensate.
6238 * The '+1' avoids division by zero if db is very small.
6239 */
6240 dt = ((jiffies - mddev->resync_mark) / HZ);
6241 if (!dt) dt++;
6242 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6243 - mddev->resync_mark_cnt;
6244
6245 rt = max_sectors - resync; /* number of remaining sectors */
6246 sector_div(rt, db/32+1);
6247 rt *= dt;
6248 rt >>= 5;
6249
6250 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6251 ((unsigned long)rt % 60)/6);
6252
6253 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6254 }
6255
6256 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6257 {
6258 struct list_head *tmp;
6259 loff_t l = *pos;
6260 mddev_t *mddev;
6261
6262 if (l >= 0x10000)
6263 return NULL;
6264 if (!l--)
6265 /* header */
6266 return (void*)1;
6267
6268 spin_lock(&all_mddevs_lock);
6269 list_for_each(tmp,&all_mddevs)
6270 if (!l--) {
6271 mddev = list_entry(tmp, mddev_t, all_mddevs);
6272 mddev_get(mddev);
6273 spin_unlock(&all_mddevs_lock);
6274 return mddev;
6275 }
6276 spin_unlock(&all_mddevs_lock);
6277 if (!l--)
6278 return (void*)2;/* tail */
6279 return NULL;
6280 }
6281
6282 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6283 {
6284 struct list_head *tmp;
6285 mddev_t *next_mddev, *mddev = v;
6286
6287 ++*pos;
6288 if (v == (void*)2)
6289 return NULL;
6290
6291 spin_lock(&all_mddevs_lock);
6292 if (v == (void*)1)
6293 tmp = all_mddevs.next;
6294 else
6295 tmp = mddev->all_mddevs.next;
6296 if (tmp != &all_mddevs)
6297 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6298 else {
6299 next_mddev = (void*)2;
6300 *pos = 0x10000;
6301 }
6302 spin_unlock(&all_mddevs_lock);
6303
6304 if (v != (void*)1)
6305 mddev_put(mddev);
6306 return next_mddev;
6307
6308 }
6309
6310 static void md_seq_stop(struct seq_file *seq, void *v)
6311 {
6312 mddev_t *mddev = v;
6313
6314 if (mddev && v != (void*)1 && v != (void*)2)
6315 mddev_put(mddev);
6316 }
6317
6318 struct mdstat_info {
6319 int event;
6320 };
6321
6322 static int md_seq_show(struct seq_file *seq, void *v)
6323 {
6324 mddev_t *mddev = v;
6325 sector_t sectors;
6326 mdk_rdev_t *rdev;
6327 struct mdstat_info *mi = seq->private;
6328 struct bitmap *bitmap;
6329
6330 if (v == (void*)1) {
6331 struct mdk_personality *pers;
6332 seq_printf(seq, "Personalities : ");
6333 spin_lock(&pers_lock);
6334 list_for_each_entry(pers, &pers_list, list)
6335 seq_printf(seq, "[%s] ", pers->name);
6336
6337 spin_unlock(&pers_lock);
6338 seq_printf(seq, "\n");
6339 mi->event = atomic_read(&md_event_count);
6340 return 0;
6341 }
6342 if (v == (void*)2) {
6343 status_unused(seq);
6344 return 0;
6345 }
6346
6347 if (mddev_lock(mddev) < 0)
6348 return -EINTR;
6349
6350 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6351 seq_printf(seq, "%s : %sactive", mdname(mddev),
6352 mddev->pers ? "" : "in");
6353 if (mddev->pers) {
6354 if (mddev->ro==1)
6355 seq_printf(seq, " (read-only)");
6356 if (mddev->ro==2)
6357 seq_printf(seq, " (auto-read-only)");
6358 seq_printf(seq, " %s", mddev->pers->name);
6359 }
6360
6361 sectors = 0;
6362 list_for_each_entry(rdev, &mddev->disks, same_set) {
6363 char b[BDEVNAME_SIZE];
6364 seq_printf(seq, " %s[%d]",
6365 bdevname(rdev->bdev,b), rdev->desc_nr);
6366 if (test_bit(WriteMostly, &rdev->flags))
6367 seq_printf(seq, "(W)");
6368 if (test_bit(Faulty, &rdev->flags)) {
6369 seq_printf(seq, "(F)");
6370 continue;
6371 } else if (rdev->raid_disk < 0)
6372 seq_printf(seq, "(S)"); /* spare */
6373 sectors += rdev->sectors;
6374 }
6375
6376 if (!list_empty(&mddev->disks)) {
6377 if (mddev->pers)
6378 seq_printf(seq, "\n %llu blocks",
6379 (unsigned long long)
6380 mddev->array_sectors / 2);
6381 else
6382 seq_printf(seq, "\n %llu blocks",
6383 (unsigned long long)sectors / 2);
6384 }
6385 if (mddev->persistent) {
6386 if (mddev->major_version != 0 ||
6387 mddev->minor_version != 90) {
6388 seq_printf(seq," super %d.%d",
6389 mddev->major_version,
6390 mddev->minor_version);
6391 }
6392 } else if (mddev->external)
6393 seq_printf(seq, " super external:%s",
6394 mddev->metadata_type);
6395 else
6396 seq_printf(seq, " super non-persistent");
6397
6398 if (mddev->pers) {
6399 mddev->pers->status(seq, mddev);
6400 seq_printf(seq, "\n ");
6401 if (mddev->pers->sync_request) {
6402 if (mddev->curr_resync > 2) {
6403 status_resync(seq, mddev);
6404 seq_printf(seq, "\n ");
6405 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6406 seq_printf(seq, "\tresync=DELAYED\n ");
6407 else if (mddev->recovery_cp < MaxSector)
6408 seq_printf(seq, "\tresync=PENDING\n ");
6409 }
6410 } else
6411 seq_printf(seq, "\n ");
6412
6413 if ((bitmap = mddev->bitmap)) {
6414 unsigned long chunk_kb;
6415 unsigned long flags;
6416 spin_lock_irqsave(&bitmap->lock, flags);
6417 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6418 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6419 "%lu%s chunk",
6420 bitmap->pages - bitmap->missing_pages,
6421 bitmap->pages,
6422 (bitmap->pages - bitmap->missing_pages)
6423 << (PAGE_SHIFT - 10),
6424 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6425 chunk_kb ? "KB" : "B");
6426 if (bitmap->file) {
6427 seq_printf(seq, ", file: ");
6428 seq_path(seq, &bitmap->file->f_path, " \t\n");
6429 }
6430
6431 seq_printf(seq, "\n");
6432 spin_unlock_irqrestore(&bitmap->lock, flags);
6433 }
6434
6435 seq_printf(seq, "\n");
6436 }
6437 mddev_unlock(mddev);
6438
6439 return 0;
6440 }
6441
6442 static const struct seq_operations md_seq_ops = {
6443 .start = md_seq_start,
6444 .next = md_seq_next,
6445 .stop = md_seq_stop,
6446 .show = md_seq_show,
6447 };
6448
6449 static int md_seq_open(struct inode *inode, struct file *file)
6450 {
6451 int error;
6452 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6453 if (mi == NULL)
6454 return -ENOMEM;
6455
6456 error = seq_open(file, &md_seq_ops);
6457 if (error)
6458 kfree(mi);
6459 else {
6460 struct seq_file *p = file->private_data;
6461 p->private = mi;
6462 mi->event = atomic_read(&md_event_count);
6463 }
6464 return error;
6465 }
6466
6467 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6468 {
6469 struct seq_file *m = filp->private_data;
6470 struct mdstat_info *mi = m->private;
6471 int mask;
6472
6473 poll_wait(filp, &md_event_waiters, wait);
6474
6475 /* always allow read */
6476 mask = POLLIN | POLLRDNORM;
6477
6478 if (mi->event != atomic_read(&md_event_count))
6479 mask |= POLLERR | POLLPRI;
6480 return mask;
6481 }
6482
6483 static const struct file_operations md_seq_fops = {
6484 .owner = THIS_MODULE,
6485 .open = md_seq_open,
6486 .read = seq_read,
6487 .llseek = seq_lseek,
6488 .release = seq_release_private,
6489 .poll = mdstat_poll,
6490 };
6491
6492 int register_md_personality(struct mdk_personality *p)
6493 {
6494 spin_lock(&pers_lock);
6495 list_add_tail(&p->list, &pers_list);
6496 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6497 spin_unlock(&pers_lock);
6498 return 0;
6499 }
6500
6501 int unregister_md_personality(struct mdk_personality *p)
6502 {
6503 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6504 spin_lock(&pers_lock);
6505 list_del_init(&p->list);
6506 spin_unlock(&pers_lock);
6507 return 0;
6508 }
6509
6510 static int is_mddev_idle(mddev_t *mddev, int init)
6511 {
6512 mdk_rdev_t * rdev;
6513 int idle;
6514 int curr_events;
6515
6516 idle = 1;
6517 rcu_read_lock();
6518 rdev_for_each_rcu(rdev, mddev) {
6519 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6520 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6521 (int)part_stat_read(&disk->part0, sectors[1]) -
6522 atomic_read(&disk->sync_io);
6523 /* sync IO will cause sync_io to increase before the disk_stats
6524 * as sync_io is counted when a request starts, and
6525 * disk_stats is counted when it completes.
6526 * So resync activity will cause curr_events to be smaller than
6527 * when there was no such activity.
6528 * non-sync IO will cause disk_stat to increase without
6529 * increasing sync_io so curr_events will (eventually)
6530 * be larger than it was before. Once it becomes
6531 * substantially larger, the test below will cause
6532 * the array to appear non-idle, and resync will slow
6533 * down.
6534 * If there is a lot of outstanding resync activity when
6535 * we set last_event to curr_events, then all that activity
6536 * completing might cause the array to appear non-idle
6537 * and resync will be slowed down even though there might
6538 * not have been non-resync activity. This will only
6539 * happen once though. 'last_events' will soon reflect
6540 * the state where there is little or no outstanding
6541 * resync requests, and further resync activity will
6542 * always make curr_events less than last_events.
6543 *
6544 */
6545 if (init || curr_events - rdev->last_events > 64) {
6546 rdev->last_events = curr_events;
6547 idle = 0;
6548 }
6549 }
6550 rcu_read_unlock();
6551 return idle;
6552 }
6553
6554 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6555 {
6556 /* another "blocks" (512byte) blocks have been synced */
6557 atomic_sub(blocks, &mddev->recovery_active);
6558 wake_up(&mddev->recovery_wait);
6559 if (!ok) {
6560 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6561 md_wakeup_thread(mddev->thread);
6562 // stop recovery, signal do_sync ....
6563 }
6564 }
6565
6566
6567 /* md_write_start(mddev, bi)
6568 * If we need to update some array metadata (e.g. 'active' flag
6569 * in superblock) before writing, schedule a superblock update
6570 * and wait for it to complete.
6571 */
6572 void md_write_start(mddev_t *mddev, struct bio *bi)
6573 {
6574 int did_change = 0;
6575 if (bio_data_dir(bi) != WRITE)
6576 return;
6577
6578 BUG_ON(mddev->ro == 1);
6579 if (mddev->ro == 2) {
6580 /* need to switch to read/write */
6581 mddev->ro = 0;
6582 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6583 md_wakeup_thread(mddev->thread);
6584 md_wakeup_thread(mddev->sync_thread);
6585 did_change = 1;
6586 }
6587 atomic_inc(&mddev->writes_pending);
6588 if (mddev->safemode == 1)
6589 mddev->safemode = 0;
6590 if (mddev->in_sync) {
6591 spin_lock_irq(&mddev->write_lock);
6592 if (mddev->in_sync) {
6593 mddev->in_sync = 0;
6594 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6595 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6596 md_wakeup_thread(mddev->thread);
6597 did_change = 1;
6598 }
6599 spin_unlock_irq(&mddev->write_lock);
6600 }
6601 if (did_change)
6602 sysfs_notify_dirent_safe(mddev->sysfs_state);
6603 wait_event(mddev->sb_wait,
6604 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6605 }
6606
6607 void md_write_end(mddev_t *mddev)
6608 {
6609 if (atomic_dec_and_test(&mddev->writes_pending)) {
6610 if (mddev->safemode == 2)
6611 md_wakeup_thread(mddev->thread);
6612 else if (mddev->safemode_delay)
6613 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6614 }
6615 }
6616
6617 /* md_allow_write(mddev)
6618 * Calling this ensures that the array is marked 'active' so that writes
6619 * may proceed without blocking. It is important to call this before
6620 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6621 * Must be called with mddev_lock held.
6622 *
6623 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6624 * is dropped, so return -EAGAIN after notifying userspace.
6625 */
6626 int md_allow_write(mddev_t *mddev)
6627 {
6628 if (!mddev->pers)
6629 return 0;
6630 if (mddev->ro)
6631 return 0;
6632 if (!mddev->pers->sync_request)
6633 return 0;
6634
6635 spin_lock_irq(&mddev->write_lock);
6636 if (mddev->in_sync) {
6637 mddev->in_sync = 0;
6638 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6639 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6640 if (mddev->safemode_delay &&
6641 mddev->safemode == 0)
6642 mddev->safemode = 1;
6643 spin_unlock_irq(&mddev->write_lock);
6644 md_update_sb(mddev, 0);
6645 sysfs_notify_dirent_safe(mddev->sysfs_state);
6646 } else
6647 spin_unlock_irq(&mddev->write_lock);
6648
6649 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6650 return -EAGAIN;
6651 else
6652 return 0;
6653 }
6654 EXPORT_SYMBOL_GPL(md_allow_write);
6655
6656 void md_unplug(mddev_t *mddev)
6657 {
6658 if (mddev->queue)
6659 blk_unplug(mddev->queue);
6660 if (mddev->plug)
6661 mddev->plug->unplug_fn(mddev->plug);
6662 }
6663
6664 #define SYNC_MARKS 10
6665 #define SYNC_MARK_STEP (3*HZ)
6666 void md_do_sync(mddev_t *mddev)
6667 {
6668 mddev_t *mddev2;
6669 unsigned int currspeed = 0,
6670 window;
6671 sector_t max_sectors,j, io_sectors;
6672 unsigned long mark[SYNC_MARKS];
6673 sector_t mark_cnt[SYNC_MARKS];
6674 int last_mark,m;
6675 struct list_head *tmp;
6676 sector_t last_check;
6677 int skipped = 0;
6678 mdk_rdev_t *rdev;
6679 char *desc;
6680
6681 /* just incase thread restarts... */
6682 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6683 return;
6684 if (mddev->ro) /* never try to sync a read-only array */
6685 return;
6686
6687 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6688 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6689 desc = "data-check";
6690 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6691 desc = "requested-resync";
6692 else
6693 desc = "resync";
6694 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6695 desc = "reshape";
6696 else
6697 desc = "recovery";
6698
6699 /* we overload curr_resync somewhat here.
6700 * 0 == not engaged in resync at all
6701 * 2 == checking that there is no conflict with another sync
6702 * 1 == like 2, but have yielded to allow conflicting resync to
6703 * commense
6704 * other == active in resync - this many blocks
6705 *
6706 * Before starting a resync we must have set curr_resync to
6707 * 2, and then checked that every "conflicting" array has curr_resync
6708 * less than ours. When we find one that is the same or higher
6709 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6710 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6711 * This will mean we have to start checking from the beginning again.
6712 *
6713 */
6714
6715 do {
6716 mddev->curr_resync = 2;
6717
6718 try_again:
6719 if (kthread_should_stop())
6720 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6721
6722 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6723 goto skip;
6724 for_each_mddev(mddev2, tmp) {
6725 if (mddev2 == mddev)
6726 continue;
6727 if (!mddev->parallel_resync
6728 && mddev2->curr_resync
6729 && match_mddev_units(mddev, mddev2)) {
6730 DEFINE_WAIT(wq);
6731 if (mddev < mddev2 && mddev->curr_resync == 2) {
6732 /* arbitrarily yield */
6733 mddev->curr_resync = 1;
6734 wake_up(&resync_wait);
6735 }
6736 if (mddev > mddev2 && mddev->curr_resync == 1)
6737 /* no need to wait here, we can wait the next
6738 * time 'round when curr_resync == 2
6739 */
6740 continue;
6741 /* We need to wait 'interruptible' so as not to
6742 * contribute to the load average, and not to
6743 * be caught by 'softlockup'
6744 */
6745 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6746 if (!kthread_should_stop() &&
6747 mddev2->curr_resync >= mddev->curr_resync) {
6748 printk(KERN_INFO "md: delaying %s of %s"
6749 " until %s has finished (they"
6750 " share one or more physical units)\n",
6751 desc, mdname(mddev), mdname(mddev2));
6752 mddev_put(mddev2);
6753 if (signal_pending(current))
6754 flush_signals(current);
6755 schedule();
6756 finish_wait(&resync_wait, &wq);
6757 goto try_again;
6758 }
6759 finish_wait(&resync_wait, &wq);
6760 }
6761 }
6762 } while (mddev->curr_resync < 2);
6763
6764 j = 0;
6765 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6766 /* resync follows the size requested by the personality,
6767 * which defaults to physical size, but can be virtual size
6768 */
6769 max_sectors = mddev->resync_max_sectors;
6770 mddev->resync_mismatches = 0;
6771 /* we don't use the checkpoint if there's a bitmap */
6772 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6773 j = mddev->resync_min;
6774 else if (!mddev->bitmap)
6775 j = mddev->recovery_cp;
6776
6777 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6778 max_sectors = mddev->dev_sectors;
6779 else {
6780 /* recovery follows the physical size of devices */
6781 max_sectors = mddev->dev_sectors;
6782 j = MaxSector;
6783 rcu_read_lock();
6784 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6785 if (rdev->raid_disk >= 0 &&
6786 !test_bit(Faulty, &rdev->flags) &&
6787 !test_bit(In_sync, &rdev->flags) &&
6788 rdev->recovery_offset < j)
6789 j = rdev->recovery_offset;
6790 rcu_read_unlock();
6791 }
6792
6793 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6794 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6795 " %d KB/sec/disk.\n", speed_min(mddev));
6796 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6797 "(but not more than %d KB/sec) for %s.\n",
6798 speed_max(mddev), desc);
6799
6800 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6801
6802 io_sectors = 0;
6803 for (m = 0; m < SYNC_MARKS; m++) {
6804 mark[m] = jiffies;
6805 mark_cnt[m] = io_sectors;
6806 }
6807 last_mark = 0;
6808 mddev->resync_mark = mark[last_mark];
6809 mddev->resync_mark_cnt = mark_cnt[last_mark];
6810
6811 /*
6812 * Tune reconstruction:
6813 */
6814 window = 32*(PAGE_SIZE/512);
6815 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6816 window/2,(unsigned long long) max_sectors/2);
6817
6818 atomic_set(&mddev->recovery_active, 0);
6819 last_check = 0;
6820
6821 if (j>2) {
6822 printk(KERN_INFO
6823 "md: resuming %s of %s from checkpoint.\n",
6824 desc, mdname(mddev));
6825 mddev->curr_resync = j;
6826 }
6827 mddev->curr_resync_completed = j;
6828
6829 while (j < max_sectors) {
6830 sector_t sectors;
6831
6832 skipped = 0;
6833
6834 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6835 ((mddev->curr_resync > mddev->curr_resync_completed &&
6836 (mddev->curr_resync - mddev->curr_resync_completed)
6837 > (max_sectors >> 4)) ||
6838 (j - mddev->curr_resync_completed)*2
6839 >= mddev->resync_max - mddev->curr_resync_completed
6840 )) {
6841 /* time to update curr_resync_completed */
6842 md_unplug(mddev);
6843 wait_event(mddev->recovery_wait,
6844 atomic_read(&mddev->recovery_active) == 0);
6845 mddev->curr_resync_completed = j;
6846 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6847 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6848 }
6849
6850 while (j >= mddev->resync_max && !kthread_should_stop()) {
6851 /* As this condition is controlled by user-space,
6852 * we can block indefinitely, so use '_interruptible'
6853 * to avoid triggering warnings.
6854 */
6855 flush_signals(current); /* just in case */
6856 wait_event_interruptible(mddev->recovery_wait,
6857 mddev->resync_max > j
6858 || kthread_should_stop());
6859 }
6860
6861 if (kthread_should_stop())
6862 goto interrupted;
6863
6864 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6865 currspeed < speed_min(mddev));
6866 if (sectors == 0) {
6867 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6868 goto out;
6869 }
6870
6871 if (!skipped) { /* actual IO requested */
6872 io_sectors += sectors;
6873 atomic_add(sectors, &mddev->recovery_active);
6874 }
6875
6876 j += sectors;
6877 if (j>1) mddev->curr_resync = j;
6878 mddev->curr_mark_cnt = io_sectors;
6879 if (last_check == 0)
6880 /* this is the earliers that rebuilt will be
6881 * visible in /proc/mdstat
6882 */
6883 md_new_event(mddev);
6884
6885 if (last_check + window > io_sectors || j == max_sectors)
6886 continue;
6887
6888 last_check = io_sectors;
6889
6890 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6891 break;
6892
6893 repeat:
6894 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6895 /* step marks */
6896 int next = (last_mark+1) % SYNC_MARKS;
6897
6898 mddev->resync_mark = mark[next];
6899 mddev->resync_mark_cnt = mark_cnt[next];
6900 mark[next] = jiffies;
6901 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6902 last_mark = next;
6903 }
6904
6905
6906 if (kthread_should_stop())
6907 goto interrupted;
6908
6909
6910 /*
6911 * this loop exits only if either when we are slower than
6912 * the 'hard' speed limit, or the system was IO-idle for
6913 * a jiffy.
6914 * the system might be non-idle CPU-wise, but we only care
6915 * about not overloading the IO subsystem. (things like an
6916 * e2fsck being done on the RAID array should execute fast)
6917 */
6918 md_unplug(mddev);
6919 cond_resched();
6920
6921 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6922 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6923
6924 if (currspeed > speed_min(mddev)) {
6925 if ((currspeed > speed_max(mddev)) ||
6926 !is_mddev_idle(mddev, 0)) {
6927 msleep(500);
6928 goto repeat;
6929 }
6930 }
6931 }
6932 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6933 /*
6934 * this also signals 'finished resyncing' to md_stop
6935 */
6936 out:
6937 md_unplug(mddev);
6938
6939 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6940
6941 /* tell personality that we are finished */
6942 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6943
6944 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6945 mddev->curr_resync > 2) {
6946 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6947 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6948 if (mddev->curr_resync >= mddev->recovery_cp) {
6949 printk(KERN_INFO
6950 "md: checkpointing %s of %s.\n",
6951 desc, mdname(mddev));
6952 mddev->recovery_cp = mddev->curr_resync;
6953 }
6954 } else
6955 mddev->recovery_cp = MaxSector;
6956 } else {
6957 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6958 mddev->curr_resync = MaxSector;
6959 rcu_read_lock();
6960 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6961 if (rdev->raid_disk >= 0 &&
6962 mddev->delta_disks >= 0 &&
6963 !test_bit(Faulty, &rdev->flags) &&
6964 !test_bit(In_sync, &rdev->flags) &&
6965 rdev->recovery_offset < mddev->curr_resync)
6966 rdev->recovery_offset = mddev->curr_resync;
6967 rcu_read_unlock();
6968 }
6969 }
6970 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6971
6972 skip:
6973 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6974 /* We completed so min/max setting can be forgotten if used. */
6975 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6976 mddev->resync_min = 0;
6977 mddev->resync_max = MaxSector;
6978 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6979 mddev->resync_min = mddev->curr_resync_completed;
6980 mddev->curr_resync = 0;
6981 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6982 mddev->curr_resync_completed = 0;
6983 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6984 wake_up(&resync_wait);
6985 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6986 md_wakeup_thread(mddev->thread);
6987 return;
6988
6989 interrupted:
6990 /*
6991 * got a signal, exit.
6992 */
6993 printk(KERN_INFO
6994 "md: md_do_sync() got signal ... exiting\n");
6995 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6996 goto out;
6997
6998 }
6999 EXPORT_SYMBOL_GPL(md_do_sync);
7000
7001
7002 static int remove_and_add_spares(mddev_t *mddev)
7003 {
7004 mdk_rdev_t *rdev;
7005 int spares = 0;
7006
7007 mddev->curr_resync_completed = 0;
7008
7009 list_for_each_entry(rdev, &mddev->disks, same_set)
7010 if (rdev->raid_disk >= 0 &&
7011 !test_bit(Blocked, &rdev->flags) &&
7012 (test_bit(Faulty, &rdev->flags) ||
7013 ! test_bit(In_sync, &rdev->flags)) &&
7014 atomic_read(&rdev->nr_pending)==0) {
7015 if (mddev->pers->hot_remove_disk(
7016 mddev, rdev->raid_disk)==0) {
7017 char nm[20];
7018 sprintf(nm,"rd%d", rdev->raid_disk);
7019 sysfs_remove_link(&mddev->kobj, nm);
7020 rdev->raid_disk = -1;
7021 }
7022 }
7023
7024 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7025 list_for_each_entry(rdev, &mddev->disks, same_set) {
7026 if (rdev->raid_disk >= 0 &&
7027 !test_bit(In_sync, &rdev->flags) &&
7028 !test_bit(Blocked, &rdev->flags))
7029 spares++;
7030 if (rdev->raid_disk < 0
7031 && !test_bit(Faulty, &rdev->flags)) {
7032 rdev->recovery_offset = 0;
7033 if (mddev->pers->
7034 hot_add_disk(mddev, rdev) == 0) {
7035 char nm[20];
7036 sprintf(nm, "rd%d", rdev->raid_disk);
7037 if (sysfs_create_link(&mddev->kobj,
7038 &rdev->kobj, nm))
7039 /* failure here is OK */;
7040 spares++;
7041 md_new_event(mddev);
7042 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7043 } else
7044 break;
7045 }
7046 }
7047 }
7048 return spares;
7049 }
7050
7051 static void reap_sync_thread(mddev_t *mddev)
7052 {
7053 mdk_rdev_t *rdev;
7054
7055 /* resync has finished, collect result */
7056 md_unregister_thread(mddev->sync_thread);
7057 mddev->sync_thread = NULL;
7058 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7059 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7060 /* success...*/
7061 /* activate any spares */
7062 if (mddev->pers->spare_active(mddev))
7063 sysfs_notify(&mddev->kobj, NULL,
7064 "degraded");
7065 }
7066 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7067 mddev->pers->finish_reshape)
7068 mddev->pers->finish_reshape(mddev);
7069 md_update_sb(mddev, 1);
7070
7071 /* if array is no-longer degraded, then any saved_raid_disk
7072 * information must be scrapped
7073 */
7074 if (!mddev->degraded)
7075 list_for_each_entry(rdev, &mddev->disks, same_set)
7076 rdev->saved_raid_disk = -1;
7077
7078 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7079 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7080 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7081 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7082 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7083 /* flag recovery needed just to double check */
7084 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7085 sysfs_notify_dirent_safe(mddev->sysfs_action);
7086 md_new_event(mddev);
7087 }
7088
7089 /*
7090 * This routine is regularly called by all per-raid-array threads to
7091 * deal with generic issues like resync and super-block update.
7092 * Raid personalities that don't have a thread (linear/raid0) do not
7093 * need this as they never do any recovery or update the superblock.
7094 *
7095 * It does not do any resync itself, but rather "forks" off other threads
7096 * to do that as needed.
7097 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7098 * "->recovery" and create a thread at ->sync_thread.
7099 * When the thread finishes it sets MD_RECOVERY_DONE
7100 * and wakeups up this thread which will reap the thread and finish up.
7101 * This thread also removes any faulty devices (with nr_pending == 0).
7102 *
7103 * The overall approach is:
7104 * 1/ if the superblock needs updating, update it.
7105 * 2/ If a recovery thread is running, don't do anything else.
7106 * 3/ If recovery has finished, clean up, possibly marking spares active.
7107 * 4/ If there are any faulty devices, remove them.
7108 * 5/ If array is degraded, try to add spares devices
7109 * 6/ If array has spares or is not in-sync, start a resync thread.
7110 */
7111 void md_check_recovery(mddev_t *mddev)
7112 {
7113 if (mddev->bitmap)
7114 bitmap_daemon_work(mddev);
7115
7116 if (mddev->ro)
7117 return;
7118
7119 if (signal_pending(current)) {
7120 if (mddev->pers->sync_request && !mddev->external) {
7121 printk(KERN_INFO "md: %s in immediate safe mode\n",
7122 mdname(mddev));
7123 mddev->safemode = 2;
7124 }
7125 flush_signals(current);
7126 }
7127
7128 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7129 return;
7130 if ( ! (
7131 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7132 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7133 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7134 (mddev->external == 0 && mddev->safemode == 1) ||
7135 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7136 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7137 ))
7138 return;
7139
7140 if (mddev_trylock(mddev)) {
7141 int spares = 0;
7142
7143 if (mddev->ro) {
7144 /* Only thing we do on a ro array is remove
7145 * failed devices.
7146 */
7147 remove_and_add_spares(mddev);
7148 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7149 goto unlock;
7150 }
7151
7152 if (!mddev->external) {
7153 int did_change = 0;
7154 spin_lock_irq(&mddev->write_lock);
7155 if (mddev->safemode &&
7156 !atomic_read(&mddev->writes_pending) &&
7157 !mddev->in_sync &&
7158 mddev->recovery_cp == MaxSector) {
7159 mddev->in_sync = 1;
7160 did_change = 1;
7161 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7162 }
7163 if (mddev->safemode == 1)
7164 mddev->safemode = 0;
7165 spin_unlock_irq(&mddev->write_lock);
7166 if (did_change)
7167 sysfs_notify_dirent_safe(mddev->sysfs_state);
7168 }
7169
7170 if (mddev->flags)
7171 md_update_sb(mddev, 0);
7172
7173 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7174 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7175 /* resync/recovery still happening */
7176 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7177 goto unlock;
7178 }
7179 if (mddev->sync_thread) {
7180 reap_sync_thread(mddev);
7181 goto unlock;
7182 }
7183 /* Set RUNNING before clearing NEEDED to avoid
7184 * any transients in the value of "sync_action".
7185 */
7186 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7187 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7188 /* Clear some bits that don't mean anything, but
7189 * might be left set
7190 */
7191 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7192 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7193
7194 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7195 goto unlock;
7196 /* no recovery is running.
7197 * remove any failed drives, then
7198 * add spares if possible.
7199 * Spare are also removed and re-added, to allow
7200 * the personality to fail the re-add.
7201 */
7202
7203 if (mddev->reshape_position != MaxSector) {
7204 if (mddev->pers->check_reshape == NULL ||
7205 mddev->pers->check_reshape(mddev) != 0)
7206 /* Cannot proceed */
7207 goto unlock;
7208 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7209 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7210 } else if ((spares = remove_and_add_spares(mddev))) {
7211 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7212 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7213 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7214 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7215 } else if (mddev->recovery_cp < MaxSector) {
7216 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7217 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7218 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7219 /* nothing to be done ... */
7220 goto unlock;
7221
7222 if (mddev->pers->sync_request) {
7223 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7224 /* We are adding a device or devices to an array
7225 * which has the bitmap stored on all devices.
7226 * So make sure all bitmap pages get written
7227 */
7228 bitmap_write_all(mddev->bitmap);
7229 }
7230 mddev->sync_thread = md_register_thread(md_do_sync,
7231 mddev,
7232 "resync");
7233 if (!mddev->sync_thread) {
7234 printk(KERN_ERR "%s: could not start resync"
7235 " thread...\n",
7236 mdname(mddev));
7237 /* leave the spares where they are, it shouldn't hurt */
7238 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7239 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7240 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7241 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7242 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7243 } else
7244 md_wakeup_thread(mddev->sync_thread);
7245 sysfs_notify_dirent_safe(mddev->sysfs_action);
7246 md_new_event(mddev);
7247 }
7248 unlock:
7249 if (!mddev->sync_thread) {
7250 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7251 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7252 &mddev->recovery))
7253 if (mddev->sysfs_action)
7254 sysfs_notify_dirent_safe(mddev->sysfs_action);
7255 }
7256 mddev_unlock(mddev);
7257 }
7258 }
7259
7260 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7261 {
7262 sysfs_notify_dirent_safe(rdev->sysfs_state);
7263 wait_event_timeout(rdev->blocked_wait,
7264 !test_bit(Blocked, &rdev->flags),
7265 msecs_to_jiffies(5000));
7266 rdev_dec_pending(rdev, mddev);
7267 }
7268 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7269
7270 static int md_notify_reboot(struct notifier_block *this,
7271 unsigned long code, void *x)
7272 {
7273 struct list_head *tmp;
7274 mddev_t *mddev;
7275
7276 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7277
7278 printk(KERN_INFO "md: stopping all md devices.\n");
7279
7280 for_each_mddev(mddev, tmp)
7281 if (mddev_trylock(mddev)) {
7282 /* Force a switch to readonly even array
7283 * appears to still be in use. Hence
7284 * the '100'.
7285 */
7286 md_set_readonly(mddev, 100);
7287 mddev_unlock(mddev);
7288 }
7289 /*
7290 * certain more exotic SCSI devices are known to be
7291 * volatile wrt too early system reboots. While the
7292 * right place to handle this issue is the given
7293 * driver, we do want to have a safe RAID driver ...
7294 */
7295 mdelay(1000*1);
7296 }
7297 return NOTIFY_DONE;
7298 }
7299
7300 static struct notifier_block md_notifier = {
7301 .notifier_call = md_notify_reboot,
7302 .next = NULL,
7303 .priority = INT_MAX, /* before any real devices */
7304 };
7305
7306 static void md_geninit(void)
7307 {
7308 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7309
7310 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7311 }
7312
7313 static int __init md_init(void)
7314 {
7315 int ret = -ENOMEM;
7316
7317 md_wq = alloc_workqueue("md", WQ_RESCUER, 0);
7318 if (!md_wq)
7319 goto err_wq;
7320
7321 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7322 if (!md_misc_wq)
7323 goto err_misc_wq;
7324
7325 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7326 goto err_md;
7327
7328 if ((ret = register_blkdev(0, "mdp")) < 0)
7329 goto err_mdp;
7330 mdp_major = ret;
7331
7332 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7333 md_probe, NULL, NULL);
7334 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7335 md_probe, NULL, NULL);
7336
7337 register_reboot_notifier(&md_notifier);
7338 raid_table_header = register_sysctl_table(raid_root_table);
7339
7340 md_geninit();
7341 return 0;
7342
7343 err_mdp:
7344 unregister_blkdev(MD_MAJOR, "md");
7345 err_md:
7346 destroy_workqueue(md_misc_wq);
7347 err_misc_wq:
7348 destroy_workqueue(md_wq);
7349 err_wq:
7350 return ret;
7351 }
7352
7353 #ifndef MODULE
7354
7355 /*
7356 * Searches all registered partitions for autorun RAID arrays
7357 * at boot time.
7358 */
7359
7360 static LIST_HEAD(all_detected_devices);
7361 struct detected_devices_node {
7362 struct list_head list;
7363 dev_t dev;
7364 };
7365
7366 void md_autodetect_dev(dev_t dev)
7367 {
7368 struct detected_devices_node *node_detected_dev;
7369
7370 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7371 if (node_detected_dev) {
7372 node_detected_dev->dev = dev;
7373 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7374 } else {
7375 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7376 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7377 }
7378 }
7379
7380
7381 static void autostart_arrays(int part)
7382 {
7383 mdk_rdev_t *rdev;
7384 struct detected_devices_node *node_detected_dev;
7385 dev_t dev;
7386 int i_scanned, i_passed;
7387
7388 i_scanned = 0;
7389 i_passed = 0;
7390
7391 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7392
7393 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7394 i_scanned++;
7395 node_detected_dev = list_entry(all_detected_devices.next,
7396 struct detected_devices_node, list);
7397 list_del(&node_detected_dev->list);
7398 dev = node_detected_dev->dev;
7399 kfree(node_detected_dev);
7400 rdev = md_import_device(dev,0, 90);
7401 if (IS_ERR(rdev))
7402 continue;
7403
7404 if (test_bit(Faulty, &rdev->flags)) {
7405 MD_BUG();
7406 continue;
7407 }
7408 set_bit(AutoDetected, &rdev->flags);
7409 list_add(&rdev->same_set, &pending_raid_disks);
7410 i_passed++;
7411 }
7412
7413 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7414 i_scanned, i_passed);
7415
7416 autorun_devices(part);
7417 }
7418
7419 #endif /* !MODULE */
7420
7421 static __exit void md_exit(void)
7422 {
7423 mddev_t *mddev;
7424 struct list_head *tmp;
7425
7426 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7427 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7428
7429 unregister_blkdev(MD_MAJOR,"md");
7430 unregister_blkdev(mdp_major, "mdp");
7431 unregister_reboot_notifier(&md_notifier);
7432 unregister_sysctl_table(raid_table_header);
7433 remove_proc_entry("mdstat", NULL);
7434 for_each_mddev(mddev, tmp) {
7435 export_array(mddev);
7436 mddev->hold_active = 0;
7437 }
7438 destroy_workqueue(md_misc_wq);
7439 destroy_workqueue(md_wq);
7440 }
7441
7442 subsys_initcall(md_init);
7443 module_exit(md_exit)
7444
7445 static int get_ro(char *buffer, struct kernel_param *kp)
7446 {
7447 return sprintf(buffer, "%d", start_readonly);
7448 }
7449 static int set_ro(const char *val, struct kernel_param *kp)
7450 {
7451 char *e;
7452 int num = simple_strtoul(val, &e, 10);
7453 if (*val && (*e == '\0' || *e == '\n')) {
7454 start_readonly = num;
7455 return 0;
7456 }
7457 return -EINVAL;
7458 }
7459
7460 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7461 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7462
7463 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7464
7465 EXPORT_SYMBOL(register_md_personality);
7466 EXPORT_SYMBOL(unregister_md_personality);
7467 EXPORT_SYMBOL(md_error);
7468 EXPORT_SYMBOL(md_done_sync);
7469 EXPORT_SYMBOL(md_write_start);
7470 EXPORT_SYMBOL(md_write_end);
7471 EXPORT_SYMBOL(md_register_thread);
7472 EXPORT_SYMBOL(md_unregister_thread);
7473 EXPORT_SYMBOL(md_wakeup_thread);
7474 EXPORT_SYMBOL(md_check_recovery);
7475 MODULE_LICENSE("GPL");
7476 MODULE_DESCRIPTION("MD RAID framework");
7477 MODULE_ALIAS("md");
7478 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);