md/raid1: fix test for 'was read error from last working device'.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For request-based dm.
67 * One of these is allocated per request.
68 */
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
75 };
76
77 /*
78 * For request-based dm - the bio clones we allocate are embedded in these
79 * structs.
80 *
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
83 * struct.
84 */
85 struct dm_rq_clone_bio_info {
86 struct bio *orig;
87 struct dm_rq_target_io *tio;
88 struct bio clone;
89 };
90
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
95 return NULL;
96 }
97
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105
106 #define MINOR_ALLOCED ((void *)-1)
107
108 /*
109 * Bits for the md->flags field.
110 */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118
119 /*
120 * Work processed by per-device workqueue.
121 */
122 struct mapped_device {
123 struct rw_semaphore io_lock;
124 struct mutex suspend_lock;
125 rwlock_t map_lock;
126 atomic_t holders;
127 atomic_t open_count;
128
129 unsigned long flags;
130
131 struct request_queue *queue;
132 unsigned type;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock;
135
136 struct target_type *immutable_target_type;
137
138 struct gendisk *disk;
139 char name[16];
140
141 void *interface_ptr;
142
143 /*
144 * A list of ios that arrived while we were suspended.
145 */
146 atomic_t pending[2];
147 wait_queue_head_t wait;
148 struct work_struct work;
149 struct bio_list deferred;
150 spinlock_t deferred_lock;
151
152 /*
153 * Processing queue (flush)
154 */
155 struct workqueue_struct *wq;
156
157 /*
158 * The current mapping.
159 */
160 struct dm_table *map;
161
162 /*
163 * io objects are allocated from here.
164 */
165 mempool_t *io_pool;
166
167 struct bio_set *bs;
168
169 /*
170 * Event handling.
171 */
172 atomic_t event_nr;
173 wait_queue_head_t eventq;
174 atomic_t uevent_seq;
175 struct list_head uevent_list;
176 spinlock_t uevent_lock; /* Protect access to uevent_list */
177
178 /*
179 * freeze/thaw support require holding onto a super block
180 */
181 struct super_block *frozen_sb;
182 struct block_device *bdev;
183
184 /* forced geometry settings */
185 struct hd_geometry geometry;
186
187 /* kobject and completion */
188 struct dm_kobject_holder kobj_holder;
189
190 /* zero-length flush that will be cloned and submitted to targets */
191 struct bio flush_bio;
192 };
193
194 /*
195 * For mempools pre-allocation at the table loading time.
196 */
197 struct dm_md_mempools {
198 mempool_t *io_pool;
199 struct bio_set *bs;
200 };
201
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_rq_tio_cache;
205
206 static int __init local_init(void)
207 {
208 int r = -ENOMEM;
209
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
212 if (!_io_cache)
213 return r;
214
215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
216 if (!_rq_tio_cache)
217 goto out_free_io_cache;
218
219 r = dm_uevent_init();
220 if (r)
221 goto out_free_rq_tio_cache;
222
223 _major = major;
224 r = register_blkdev(_major, _name);
225 if (r < 0)
226 goto out_uevent_exit;
227
228 if (!_major)
229 _major = r;
230
231 return 0;
232
233 out_uevent_exit:
234 dm_uevent_exit();
235 out_free_rq_tio_cache:
236 kmem_cache_destroy(_rq_tio_cache);
237 out_free_io_cache:
238 kmem_cache_destroy(_io_cache);
239
240 return r;
241 }
242
243 static void local_exit(void)
244 {
245 kmem_cache_destroy(_rq_tio_cache);
246 kmem_cache_destroy(_io_cache);
247 unregister_blkdev(_major, _name);
248 dm_uevent_exit();
249
250 _major = 0;
251
252 DMINFO("cleaned up");
253 }
254
255 static int (*_inits[])(void) __initdata = {
256 local_init,
257 dm_target_init,
258 dm_linear_init,
259 dm_stripe_init,
260 dm_io_init,
261 dm_kcopyd_init,
262 dm_interface_init,
263 };
264
265 static void (*_exits[])(void) = {
266 local_exit,
267 dm_target_exit,
268 dm_linear_exit,
269 dm_stripe_exit,
270 dm_io_exit,
271 dm_kcopyd_exit,
272 dm_interface_exit,
273 };
274
275 static int __init dm_init(void)
276 {
277 const int count = ARRAY_SIZE(_inits);
278
279 int r, i;
280
281 for (i = 0; i < count; i++) {
282 r = _inits[i]();
283 if (r)
284 goto bad;
285 }
286
287 return 0;
288
289 bad:
290 while (i--)
291 _exits[i]();
292
293 return r;
294 }
295
296 static void __exit dm_exit(void)
297 {
298 int i = ARRAY_SIZE(_exits);
299
300 while (i--)
301 _exits[i]();
302
303 /*
304 * Should be empty by this point.
305 */
306 idr_destroy(&_minor_idr);
307 }
308
309 /*
310 * Block device functions
311 */
312 int dm_deleting_md(struct mapped_device *md)
313 {
314 return test_bit(DMF_DELETING, &md->flags);
315 }
316
317 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 {
319 struct mapped_device *md;
320
321 spin_lock(&_minor_lock);
322
323 md = bdev->bd_disk->private_data;
324 if (!md)
325 goto out;
326
327 if (test_bit(DMF_FREEING, &md->flags) ||
328 dm_deleting_md(md)) {
329 md = NULL;
330 goto out;
331 }
332
333 dm_get(md);
334 atomic_inc(&md->open_count);
335
336 out:
337 spin_unlock(&_minor_lock);
338
339 return md ? 0 : -ENXIO;
340 }
341
342 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
343 {
344 struct mapped_device *md = disk->private_data;
345
346 spin_lock(&_minor_lock);
347
348 atomic_dec(&md->open_count);
349 dm_put(md);
350
351 spin_unlock(&_minor_lock);
352 }
353
354 int dm_open_count(struct mapped_device *md)
355 {
356 return atomic_read(&md->open_count);
357 }
358
359 /*
360 * Guarantees nothing is using the device before it's deleted.
361 */
362 int dm_lock_for_deletion(struct mapped_device *md)
363 {
364 int r = 0;
365
366 spin_lock(&_minor_lock);
367
368 if (dm_open_count(md))
369 r = -EBUSY;
370 else
371 set_bit(DMF_DELETING, &md->flags);
372
373 spin_unlock(&_minor_lock);
374
375 return r;
376 }
377
378 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
379 {
380 struct mapped_device *md = bdev->bd_disk->private_data;
381
382 return dm_get_geometry(md, geo);
383 }
384
385 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
386 unsigned int cmd, unsigned long arg)
387 {
388 struct mapped_device *md = bdev->bd_disk->private_data;
389 struct dm_table *map;
390 struct dm_target *tgt;
391 int r = -ENOTTY;
392
393 retry:
394 map = dm_get_live_table(md);
395 if (!map || !dm_table_get_size(map))
396 goto out;
397
398 /* We only support devices that have a single target */
399 if (dm_table_get_num_targets(map) != 1)
400 goto out;
401
402 tgt = dm_table_get_target(map, 0);
403
404 if (dm_suspended_md(md)) {
405 r = -EAGAIN;
406 goto out;
407 }
408
409 if (tgt->type->ioctl)
410 r = tgt->type->ioctl(tgt, cmd, arg);
411
412 out:
413 dm_table_put(map);
414
415 if (r == -ENOTCONN) {
416 msleep(10);
417 goto retry;
418 }
419
420 return r;
421 }
422
423 static struct dm_io *alloc_io(struct mapped_device *md)
424 {
425 return mempool_alloc(md->io_pool, GFP_NOIO);
426 }
427
428 static void free_io(struct mapped_device *md, struct dm_io *io)
429 {
430 mempool_free(io, md->io_pool);
431 }
432
433 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
434 {
435 bio_put(&tio->clone);
436 }
437
438 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
439 gfp_t gfp_mask)
440 {
441 return mempool_alloc(md->io_pool, gfp_mask);
442 }
443
444 static void free_rq_tio(struct dm_rq_target_io *tio)
445 {
446 mempool_free(tio, tio->md->io_pool);
447 }
448
449 static int md_in_flight(struct mapped_device *md)
450 {
451 return atomic_read(&md->pending[READ]) +
452 atomic_read(&md->pending[WRITE]);
453 }
454
455 static void start_io_acct(struct dm_io *io)
456 {
457 struct mapped_device *md = io->md;
458 int cpu;
459 int rw = bio_data_dir(io->bio);
460
461 io->start_time = jiffies;
462
463 cpu = part_stat_lock();
464 part_round_stats(cpu, &dm_disk(md)->part0);
465 part_stat_unlock();
466 atomic_set(&dm_disk(md)->part0.in_flight[rw],
467 atomic_inc_return(&md->pending[rw]));
468 }
469
470 static void end_io_acct(struct dm_io *io)
471 {
472 struct mapped_device *md = io->md;
473 struct bio *bio = io->bio;
474 unsigned long duration = jiffies - io->start_time;
475 int pending, cpu;
476 int rw = bio_data_dir(bio);
477
478 cpu = part_stat_lock();
479 part_round_stats(cpu, &dm_disk(md)->part0);
480 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
481 part_stat_unlock();
482
483 /*
484 * After this is decremented the bio must not be touched if it is
485 * a flush.
486 */
487 pending = atomic_dec_return(&md->pending[rw]);
488 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
489 pending += atomic_read(&md->pending[rw^0x1]);
490
491 /* nudge anyone waiting on suspend queue */
492 if (!pending)
493 wake_up(&md->wait);
494 }
495
496 /*
497 * Add the bio to the list of deferred io.
498 */
499 static void queue_io(struct mapped_device *md, struct bio *bio)
500 {
501 unsigned long flags;
502
503 spin_lock_irqsave(&md->deferred_lock, flags);
504 bio_list_add(&md->deferred, bio);
505 spin_unlock_irqrestore(&md->deferred_lock, flags);
506 queue_work(md->wq, &md->work);
507 }
508
509 /*
510 * Everyone (including functions in this file), should use this
511 * function to access the md->map field, and make sure they call
512 * dm_table_put() when finished.
513 */
514 struct dm_table *dm_get_live_table(struct mapped_device *md)
515 {
516 struct dm_table *t;
517 unsigned long flags;
518
519 read_lock_irqsave(&md->map_lock, flags);
520 t = md->map;
521 if (t)
522 dm_table_get(t);
523 read_unlock_irqrestore(&md->map_lock, flags);
524
525 return t;
526 }
527
528 /*
529 * Get the geometry associated with a dm device
530 */
531 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
532 {
533 *geo = md->geometry;
534
535 return 0;
536 }
537
538 /*
539 * Set the geometry of a device.
540 */
541 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
542 {
543 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
544
545 if (geo->start > sz) {
546 DMWARN("Start sector is beyond the geometry limits.");
547 return -EINVAL;
548 }
549
550 md->geometry = *geo;
551
552 return 0;
553 }
554
555 /*-----------------------------------------------------------------
556 * CRUD START:
557 * A more elegant soln is in the works that uses the queue
558 * merge fn, unfortunately there are a couple of changes to
559 * the block layer that I want to make for this. So in the
560 * interests of getting something for people to use I give
561 * you this clearly demarcated crap.
562 *---------------------------------------------------------------*/
563
564 static int __noflush_suspending(struct mapped_device *md)
565 {
566 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
567 }
568
569 /*
570 * Decrements the number of outstanding ios that a bio has been
571 * cloned into, completing the original io if necc.
572 */
573 static void dec_pending(struct dm_io *io, int error)
574 {
575 unsigned long flags;
576 int io_error;
577 struct bio *bio;
578 struct mapped_device *md = io->md;
579
580 /* Push-back supersedes any I/O errors */
581 if (unlikely(error)) {
582 spin_lock_irqsave(&io->endio_lock, flags);
583 if (!(io->error > 0 && __noflush_suspending(md)))
584 io->error = error;
585 spin_unlock_irqrestore(&io->endio_lock, flags);
586 }
587
588 if (atomic_dec_and_test(&io->io_count)) {
589 if (io->error == DM_ENDIO_REQUEUE) {
590 /*
591 * Target requested pushing back the I/O.
592 */
593 spin_lock_irqsave(&md->deferred_lock, flags);
594 if (__noflush_suspending(md))
595 bio_list_add_head(&md->deferred, io->bio);
596 else
597 /* noflush suspend was interrupted. */
598 io->error = -EIO;
599 spin_unlock_irqrestore(&md->deferred_lock, flags);
600 }
601
602 io_error = io->error;
603 bio = io->bio;
604 end_io_acct(io);
605 free_io(md, io);
606
607 if (io_error == DM_ENDIO_REQUEUE)
608 return;
609
610 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
611 /*
612 * Preflush done for flush with data, reissue
613 * without REQ_FLUSH.
614 */
615 bio->bi_rw &= ~REQ_FLUSH;
616 queue_io(md, bio);
617 } else {
618 /* done with normal IO or empty flush */
619 trace_block_bio_complete(md->queue, bio, io_error);
620 bio_endio(bio, io_error);
621 }
622 }
623 }
624
625 static void clone_endio(struct bio *bio, int error)
626 {
627 int r = 0;
628 struct dm_target_io *tio = bio->bi_private;
629 struct dm_io *io = tio->io;
630 struct mapped_device *md = tio->io->md;
631 dm_endio_fn endio = tio->ti->type->end_io;
632
633 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
634 error = -EIO;
635
636 if (endio) {
637 r = endio(tio->ti, bio, error);
638 if (r < 0 || r == DM_ENDIO_REQUEUE)
639 /*
640 * error and requeue request are handled
641 * in dec_pending().
642 */
643 error = r;
644 else if (r == DM_ENDIO_INCOMPLETE)
645 /* The target will handle the io */
646 return;
647 else if (r) {
648 DMWARN("unimplemented target endio return value: %d", r);
649 BUG();
650 }
651 }
652
653 free_tio(md, tio);
654 dec_pending(io, error);
655 }
656
657 /*
658 * Partial completion handling for request-based dm
659 */
660 static void end_clone_bio(struct bio *clone, int error)
661 {
662 struct dm_rq_clone_bio_info *info = clone->bi_private;
663 struct dm_rq_target_io *tio = info->tio;
664 struct bio *bio = info->orig;
665 unsigned int nr_bytes = info->orig->bi_size;
666
667 bio_put(clone);
668
669 if (tio->error)
670 /*
671 * An error has already been detected on the request.
672 * Once error occurred, just let clone->end_io() handle
673 * the remainder.
674 */
675 return;
676 else if (error) {
677 /*
678 * Don't notice the error to the upper layer yet.
679 * The error handling decision is made by the target driver,
680 * when the request is completed.
681 */
682 tio->error = error;
683 return;
684 }
685
686 /*
687 * I/O for the bio successfully completed.
688 * Notice the data completion to the upper layer.
689 */
690
691 /*
692 * bios are processed from the head of the list.
693 * So the completing bio should always be rq->bio.
694 * If it's not, something wrong is happening.
695 */
696 if (tio->orig->bio != bio)
697 DMERR("bio completion is going in the middle of the request");
698
699 /*
700 * Update the original request.
701 * Do not use blk_end_request() here, because it may complete
702 * the original request before the clone, and break the ordering.
703 */
704 blk_update_request(tio->orig, 0, nr_bytes);
705 }
706
707 /*
708 * Don't touch any member of the md after calling this function because
709 * the md may be freed in dm_put() at the end of this function.
710 * Or do dm_get() before calling this function and dm_put() later.
711 */
712 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
713 {
714 atomic_dec(&md->pending[rw]);
715
716 /* nudge anyone waiting on suspend queue */
717 if (!md_in_flight(md))
718 wake_up(&md->wait);
719
720 /*
721 * Run this off this callpath, as drivers could invoke end_io while
722 * inside their request_fn (and holding the queue lock). Calling
723 * back into ->request_fn() could deadlock attempting to grab the
724 * queue lock again.
725 */
726 if (run_queue)
727 blk_run_queue_async(md->queue);
728
729 /*
730 * dm_put() must be at the end of this function. See the comment above
731 */
732 dm_put(md);
733 }
734
735 static void free_rq_clone(struct request *clone)
736 {
737 struct dm_rq_target_io *tio = clone->end_io_data;
738
739 blk_rq_unprep_clone(clone);
740 free_rq_tio(tio);
741 }
742
743 /*
744 * Complete the clone and the original request.
745 * Must be called without queue lock.
746 */
747 static void dm_end_request(struct request *clone, int error)
748 {
749 int rw = rq_data_dir(clone);
750 struct dm_rq_target_io *tio = clone->end_io_data;
751 struct mapped_device *md = tio->md;
752 struct request *rq = tio->orig;
753
754 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
755 rq->errors = clone->errors;
756 rq->resid_len = clone->resid_len;
757
758 if (rq->sense)
759 /*
760 * We are using the sense buffer of the original
761 * request.
762 * So setting the length of the sense data is enough.
763 */
764 rq->sense_len = clone->sense_len;
765 }
766
767 free_rq_clone(clone);
768 blk_end_request_all(rq, error);
769 rq_completed(md, rw, true);
770 }
771
772 static void dm_unprep_request(struct request *rq)
773 {
774 struct request *clone = rq->special;
775
776 rq->special = NULL;
777 rq->cmd_flags &= ~REQ_DONTPREP;
778
779 free_rq_clone(clone);
780 }
781
782 /*
783 * Requeue the original request of a clone.
784 */
785 void dm_requeue_unmapped_request(struct request *clone)
786 {
787 int rw = rq_data_dir(clone);
788 struct dm_rq_target_io *tio = clone->end_io_data;
789 struct mapped_device *md = tio->md;
790 struct request *rq = tio->orig;
791 struct request_queue *q = rq->q;
792 unsigned long flags;
793
794 dm_unprep_request(rq);
795
796 spin_lock_irqsave(q->queue_lock, flags);
797 blk_requeue_request(q, rq);
798 spin_unlock_irqrestore(q->queue_lock, flags);
799
800 rq_completed(md, rw, 0);
801 }
802 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
803
804 static void __stop_queue(struct request_queue *q)
805 {
806 blk_stop_queue(q);
807 }
808
809 static void stop_queue(struct request_queue *q)
810 {
811 unsigned long flags;
812
813 spin_lock_irqsave(q->queue_lock, flags);
814 __stop_queue(q);
815 spin_unlock_irqrestore(q->queue_lock, flags);
816 }
817
818 static void __start_queue(struct request_queue *q)
819 {
820 if (blk_queue_stopped(q))
821 blk_start_queue(q);
822 }
823
824 static void start_queue(struct request_queue *q)
825 {
826 unsigned long flags;
827
828 spin_lock_irqsave(q->queue_lock, flags);
829 __start_queue(q);
830 spin_unlock_irqrestore(q->queue_lock, flags);
831 }
832
833 static void dm_done(struct request *clone, int error, bool mapped)
834 {
835 int r = error;
836 struct dm_rq_target_io *tio = clone->end_io_data;
837 dm_request_endio_fn rq_end_io = NULL;
838
839 if (tio->ti) {
840 rq_end_io = tio->ti->type->rq_end_io;
841
842 if (mapped && rq_end_io)
843 r = rq_end_io(tio->ti, clone, error, &tio->info);
844 }
845
846 if (r <= 0)
847 /* The target wants to complete the I/O */
848 dm_end_request(clone, r);
849 else if (r == DM_ENDIO_INCOMPLETE)
850 /* The target will handle the I/O */
851 return;
852 else if (r == DM_ENDIO_REQUEUE)
853 /* The target wants to requeue the I/O */
854 dm_requeue_unmapped_request(clone);
855 else {
856 DMWARN("unimplemented target endio return value: %d", r);
857 BUG();
858 }
859 }
860
861 /*
862 * Request completion handler for request-based dm
863 */
864 static void dm_softirq_done(struct request *rq)
865 {
866 bool mapped = true;
867 struct request *clone = rq->completion_data;
868 struct dm_rq_target_io *tio = clone->end_io_data;
869
870 if (rq->cmd_flags & REQ_FAILED)
871 mapped = false;
872
873 dm_done(clone, tio->error, mapped);
874 }
875
876 /*
877 * Complete the clone and the original request with the error status
878 * through softirq context.
879 */
880 static void dm_complete_request(struct request *clone, int error)
881 {
882 struct dm_rq_target_io *tio = clone->end_io_data;
883 struct request *rq = tio->orig;
884
885 tio->error = error;
886 rq->completion_data = clone;
887 blk_complete_request(rq);
888 }
889
890 /*
891 * Complete the not-mapped clone and the original request with the error status
892 * through softirq context.
893 * Target's rq_end_io() function isn't called.
894 * This may be used when the target's map_rq() function fails.
895 */
896 void dm_kill_unmapped_request(struct request *clone, int error)
897 {
898 struct dm_rq_target_io *tio = clone->end_io_data;
899 struct request *rq = tio->orig;
900
901 rq->cmd_flags |= REQ_FAILED;
902 dm_complete_request(clone, error);
903 }
904 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
905
906 /*
907 * Called with the queue lock held
908 */
909 static void end_clone_request(struct request *clone, int error)
910 {
911 /*
912 * For just cleaning up the information of the queue in which
913 * the clone was dispatched.
914 * The clone is *NOT* freed actually here because it is alloced from
915 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
916 */
917 __blk_put_request(clone->q, clone);
918
919 /*
920 * Actual request completion is done in a softirq context which doesn't
921 * hold the queue lock. Otherwise, deadlock could occur because:
922 * - another request may be submitted by the upper level driver
923 * of the stacking during the completion
924 * - the submission which requires queue lock may be done
925 * against this queue
926 */
927 dm_complete_request(clone, error);
928 }
929
930 /*
931 * Return maximum size of I/O possible at the supplied sector up to the current
932 * target boundary.
933 */
934 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
935 {
936 sector_t target_offset = dm_target_offset(ti, sector);
937
938 return ti->len - target_offset;
939 }
940
941 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
942 {
943 sector_t len = max_io_len_target_boundary(sector, ti);
944 sector_t offset, max_len;
945
946 /*
947 * Does the target need to split even further?
948 */
949 if (ti->max_io_len) {
950 offset = dm_target_offset(ti, sector);
951 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
952 max_len = sector_div(offset, ti->max_io_len);
953 else
954 max_len = offset & (ti->max_io_len - 1);
955 max_len = ti->max_io_len - max_len;
956
957 if (len > max_len)
958 len = max_len;
959 }
960
961 return len;
962 }
963
964 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
965 {
966 if (len > UINT_MAX) {
967 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
968 (unsigned long long)len, UINT_MAX);
969 ti->error = "Maximum size of target IO is too large";
970 return -EINVAL;
971 }
972
973 ti->max_io_len = (uint32_t) len;
974
975 return 0;
976 }
977 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
978
979 static void __map_bio(struct dm_target_io *tio)
980 {
981 int r;
982 sector_t sector;
983 struct mapped_device *md;
984 struct bio *clone = &tio->clone;
985 struct dm_target *ti = tio->ti;
986
987 clone->bi_end_io = clone_endio;
988 clone->bi_private = tio;
989
990 /*
991 * Map the clone. If r == 0 we don't need to do
992 * anything, the target has assumed ownership of
993 * this io.
994 */
995 atomic_inc(&tio->io->io_count);
996 sector = clone->bi_sector;
997 r = ti->type->map(ti, clone);
998 if (r == DM_MAPIO_REMAPPED) {
999 /* the bio has been remapped so dispatch it */
1000
1001 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1002 tio->io->bio->bi_bdev->bd_dev, sector);
1003
1004 generic_make_request(clone);
1005 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1006 /* error the io and bail out, or requeue it if needed */
1007 md = tio->io->md;
1008 dec_pending(tio->io, r);
1009 free_tio(md, tio);
1010 } else if (r) {
1011 DMWARN("unimplemented target map return value: %d", r);
1012 BUG();
1013 }
1014 }
1015
1016 struct clone_info {
1017 struct mapped_device *md;
1018 struct dm_table *map;
1019 struct bio *bio;
1020 struct dm_io *io;
1021 sector_t sector;
1022 sector_t sector_count;
1023 unsigned short idx;
1024 };
1025
1026 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1027 {
1028 bio->bi_sector = sector;
1029 bio->bi_size = to_bytes(len);
1030 }
1031
1032 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1033 {
1034 bio->bi_idx = idx;
1035 bio->bi_vcnt = idx + bv_count;
1036 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1037 }
1038
1039 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1040 unsigned short idx, unsigned len, unsigned offset,
1041 unsigned trim)
1042 {
1043 if (!bio_integrity(bio))
1044 return;
1045
1046 bio_integrity_clone(clone, bio, GFP_NOIO);
1047
1048 if (trim)
1049 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1050 }
1051
1052 /*
1053 * Creates a little bio that just does part of a bvec.
1054 */
1055 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1056 sector_t sector, unsigned short idx,
1057 unsigned offset, unsigned len)
1058 {
1059 struct bio *clone = &tio->clone;
1060 struct bio_vec *bv = bio->bi_io_vec + idx;
1061
1062 *clone->bi_io_vec = *bv;
1063
1064 bio_setup_sector(clone, sector, len);
1065
1066 clone->bi_bdev = bio->bi_bdev;
1067 clone->bi_rw = bio->bi_rw;
1068 clone->bi_vcnt = 1;
1069 clone->bi_io_vec->bv_offset = offset;
1070 clone->bi_io_vec->bv_len = clone->bi_size;
1071 clone->bi_flags |= 1 << BIO_CLONED;
1072
1073 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1074 }
1075
1076 /*
1077 * Creates a bio that consists of range of complete bvecs.
1078 */
1079 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1080 sector_t sector, unsigned short idx,
1081 unsigned short bv_count, unsigned len)
1082 {
1083 struct bio *clone = &tio->clone;
1084 unsigned trim = 0;
1085
1086 __bio_clone(clone, bio);
1087 bio_setup_sector(clone, sector, len);
1088 bio_setup_bv(clone, idx, bv_count);
1089
1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 trim = 1;
1092 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1093 }
1094
1095 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1096 struct dm_target *ti, int nr_iovecs,
1097 unsigned target_bio_nr)
1098 {
1099 struct dm_target_io *tio;
1100 struct bio *clone;
1101
1102 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1103 tio = container_of(clone, struct dm_target_io, clone);
1104
1105 tio->io = ci->io;
1106 tio->ti = ti;
1107 memset(&tio->info, 0, sizeof(tio->info));
1108 tio->target_bio_nr = target_bio_nr;
1109
1110 return tio;
1111 }
1112
1113 static void __clone_and_map_simple_bio(struct clone_info *ci,
1114 struct dm_target *ti,
1115 unsigned target_bio_nr, sector_t len)
1116 {
1117 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1118 struct bio *clone = &tio->clone;
1119
1120 /*
1121 * Discard requests require the bio's inline iovecs be initialized.
1122 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1123 * and discard, so no need for concern about wasted bvec allocations.
1124 */
1125 __bio_clone(clone, ci->bio);
1126 if (len)
1127 bio_setup_sector(clone, ci->sector, len);
1128
1129 __map_bio(tio);
1130 }
1131
1132 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1133 unsigned num_bios, sector_t len)
1134 {
1135 unsigned target_bio_nr;
1136
1137 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1138 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1139 }
1140
1141 static int __send_empty_flush(struct clone_info *ci)
1142 {
1143 unsigned target_nr = 0;
1144 struct dm_target *ti;
1145
1146 BUG_ON(bio_has_data(ci->bio));
1147 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1148 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1149
1150 return 0;
1151 }
1152
1153 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1154 sector_t sector, int nr_iovecs,
1155 unsigned short idx, unsigned short bv_count,
1156 unsigned offset, unsigned len,
1157 unsigned split_bvec)
1158 {
1159 struct bio *bio = ci->bio;
1160 struct dm_target_io *tio;
1161 unsigned target_bio_nr;
1162 unsigned num_target_bios = 1;
1163
1164 /*
1165 * Does the target want to receive duplicate copies of the bio?
1166 */
1167 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1168 num_target_bios = ti->num_write_bios(ti, bio);
1169
1170 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1171 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1172 if (split_bvec)
1173 clone_split_bio(tio, bio, sector, idx, offset, len);
1174 else
1175 clone_bio(tio, bio, sector, idx, bv_count, len);
1176 __map_bio(tio);
1177 }
1178 }
1179
1180 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1181
1182 static unsigned get_num_discard_bios(struct dm_target *ti)
1183 {
1184 return ti->num_discard_bios;
1185 }
1186
1187 static unsigned get_num_write_same_bios(struct dm_target *ti)
1188 {
1189 return ti->num_write_same_bios;
1190 }
1191
1192 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1193
1194 static bool is_split_required_for_discard(struct dm_target *ti)
1195 {
1196 return ti->split_discard_bios;
1197 }
1198
1199 static int __send_changing_extent_only(struct clone_info *ci,
1200 get_num_bios_fn get_num_bios,
1201 is_split_required_fn is_split_required)
1202 {
1203 struct dm_target *ti;
1204 sector_t len;
1205 unsigned num_bios;
1206
1207 do {
1208 ti = dm_table_find_target(ci->map, ci->sector);
1209 if (!dm_target_is_valid(ti))
1210 return -EIO;
1211
1212 /*
1213 * Even though the device advertised support for this type of
1214 * request, that does not mean every target supports it, and
1215 * reconfiguration might also have changed that since the
1216 * check was performed.
1217 */
1218 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1219 if (!num_bios)
1220 return -EOPNOTSUPP;
1221
1222 if (is_split_required && !is_split_required(ti))
1223 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1224 else
1225 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1226
1227 __send_duplicate_bios(ci, ti, num_bios, len);
1228
1229 ci->sector += len;
1230 } while (ci->sector_count -= len);
1231
1232 return 0;
1233 }
1234
1235 static int __send_discard(struct clone_info *ci)
1236 {
1237 return __send_changing_extent_only(ci, get_num_discard_bios,
1238 is_split_required_for_discard);
1239 }
1240
1241 static int __send_write_same(struct clone_info *ci)
1242 {
1243 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1244 }
1245
1246 /*
1247 * Find maximum number of sectors / bvecs we can process with a single bio.
1248 */
1249 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1250 {
1251 struct bio *bio = ci->bio;
1252 sector_t bv_len, total_len = 0;
1253
1254 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1255 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1256
1257 if (bv_len > max)
1258 break;
1259
1260 max -= bv_len;
1261 total_len += bv_len;
1262 }
1263
1264 return total_len;
1265 }
1266
1267 static int __split_bvec_across_targets(struct clone_info *ci,
1268 struct dm_target *ti, sector_t max)
1269 {
1270 struct bio *bio = ci->bio;
1271 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1272 sector_t remaining = to_sector(bv->bv_len);
1273 unsigned offset = 0;
1274 sector_t len;
1275
1276 do {
1277 if (offset) {
1278 ti = dm_table_find_target(ci->map, ci->sector);
1279 if (!dm_target_is_valid(ti))
1280 return -EIO;
1281
1282 max = max_io_len(ci->sector, ti);
1283 }
1284
1285 len = min(remaining, max);
1286
1287 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1288 bv->bv_offset + offset, len, 1);
1289
1290 ci->sector += len;
1291 ci->sector_count -= len;
1292 offset += to_bytes(len);
1293 } while (remaining -= len);
1294
1295 ci->idx++;
1296
1297 return 0;
1298 }
1299
1300 /*
1301 * Select the correct strategy for processing a non-flush bio.
1302 */
1303 static int __split_and_process_non_flush(struct clone_info *ci)
1304 {
1305 struct bio *bio = ci->bio;
1306 struct dm_target *ti;
1307 sector_t len, max;
1308 int idx;
1309
1310 if (unlikely(bio->bi_rw & REQ_DISCARD))
1311 return __send_discard(ci);
1312 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1313 return __send_write_same(ci);
1314
1315 ti = dm_table_find_target(ci->map, ci->sector);
1316 if (!dm_target_is_valid(ti))
1317 return -EIO;
1318
1319 max = max_io_len(ci->sector, ti);
1320
1321 /*
1322 * Optimise for the simple case where we can do all of
1323 * the remaining io with a single clone.
1324 */
1325 if (ci->sector_count <= max) {
1326 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1327 ci->idx, bio->bi_vcnt - ci->idx, 0,
1328 ci->sector_count, 0);
1329 ci->sector_count = 0;
1330 return 0;
1331 }
1332
1333 /*
1334 * There are some bvecs that don't span targets.
1335 * Do as many of these as possible.
1336 */
1337 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1338 len = __len_within_target(ci, max, &idx);
1339
1340 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1341 ci->idx, idx - ci->idx, 0, len, 0);
1342
1343 ci->sector += len;
1344 ci->sector_count -= len;
1345 ci->idx = idx;
1346
1347 return 0;
1348 }
1349
1350 /*
1351 * Handle a bvec that must be split between two or more targets.
1352 */
1353 return __split_bvec_across_targets(ci, ti, max);
1354 }
1355
1356 /*
1357 * Entry point to split a bio into clones and submit them to the targets.
1358 */
1359 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1360 {
1361 struct clone_info ci;
1362 int error = 0;
1363
1364 ci.map = dm_get_live_table(md);
1365 if (unlikely(!ci.map)) {
1366 bio_io_error(bio);
1367 return;
1368 }
1369
1370 ci.md = md;
1371 ci.io = alloc_io(md);
1372 ci.io->error = 0;
1373 atomic_set(&ci.io->io_count, 1);
1374 ci.io->bio = bio;
1375 ci.io->md = md;
1376 spin_lock_init(&ci.io->endio_lock);
1377 ci.sector = bio->bi_sector;
1378 ci.idx = bio->bi_idx;
1379
1380 start_io_acct(ci.io);
1381
1382 if (bio->bi_rw & REQ_FLUSH) {
1383 ci.bio = &ci.md->flush_bio;
1384 ci.sector_count = 0;
1385 error = __send_empty_flush(&ci);
1386 /* dec_pending submits any data associated with flush */
1387 } else {
1388 ci.bio = bio;
1389 ci.sector_count = bio_sectors(bio);
1390 while (ci.sector_count && !error)
1391 error = __split_and_process_non_flush(&ci);
1392 }
1393
1394 /* drop the extra reference count */
1395 dec_pending(ci.io, error);
1396 dm_table_put(ci.map);
1397 }
1398 /*-----------------------------------------------------------------
1399 * CRUD END
1400 *---------------------------------------------------------------*/
1401
1402 static int dm_merge_bvec(struct request_queue *q,
1403 struct bvec_merge_data *bvm,
1404 struct bio_vec *biovec)
1405 {
1406 struct mapped_device *md = q->queuedata;
1407 struct dm_table *map = dm_get_live_table(md);
1408 struct dm_target *ti;
1409 sector_t max_sectors;
1410 int max_size = 0;
1411
1412 if (unlikely(!map))
1413 goto out;
1414
1415 ti = dm_table_find_target(map, bvm->bi_sector);
1416 if (!dm_target_is_valid(ti))
1417 goto out_table;
1418
1419 /*
1420 * Find maximum amount of I/O that won't need splitting
1421 */
1422 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1423 (sector_t) BIO_MAX_SECTORS);
1424 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1425 if (max_size < 0)
1426 max_size = 0;
1427
1428 /*
1429 * merge_bvec_fn() returns number of bytes
1430 * it can accept at this offset
1431 * max is precomputed maximal io size
1432 */
1433 if (max_size && ti->type->merge)
1434 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1435 /*
1436 * If the target doesn't support merge method and some of the devices
1437 * provided their merge_bvec method (we know this by looking at
1438 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1439 * entries. So always set max_size to 0, and the code below allows
1440 * just one page.
1441 */
1442 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1443
1444 max_size = 0;
1445
1446 out_table:
1447 dm_table_put(map);
1448
1449 out:
1450 /*
1451 * Always allow an entire first page
1452 */
1453 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1454 max_size = biovec->bv_len;
1455
1456 return max_size;
1457 }
1458
1459 /*
1460 * The request function that just remaps the bio built up by
1461 * dm_merge_bvec.
1462 */
1463 static void _dm_request(struct request_queue *q, struct bio *bio)
1464 {
1465 int rw = bio_data_dir(bio);
1466 struct mapped_device *md = q->queuedata;
1467 int cpu;
1468
1469 down_read(&md->io_lock);
1470
1471 cpu = part_stat_lock();
1472 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1473 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1474 part_stat_unlock();
1475
1476 /* if we're suspended, we have to queue this io for later */
1477 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1478 up_read(&md->io_lock);
1479
1480 if (bio_rw(bio) != READA)
1481 queue_io(md, bio);
1482 else
1483 bio_io_error(bio);
1484 return;
1485 }
1486
1487 __split_and_process_bio(md, bio);
1488 up_read(&md->io_lock);
1489 return;
1490 }
1491
1492 static int dm_request_based(struct mapped_device *md)
1493 {
1494 return blk_queue_stackable(md->queue);
1495 }
1496
1497 static void dm_request(struct request_queue *q, struct bio *bio)
1498 {
1499 struct mapped_device *md = q->queuedata;
1500
1501 if (dm_request_based(md))
1502 blk_queue_bio(q, bio);
1503 else
1504 _dm_request(q, bio);
1505 }
1506
1507 void dm_dispatch_request(struct request *rq)
1508 {
1509 int r;
1510
1511 if (blk_queue_io_stat(rq->q))
1512 rq->cmd_flags |= REQ_IO_STAT;
1513
1514 rq->start_time = jiffies;
1515 r = blk_insert_cloned_request(rq->q, rq);
1516 if (r)
1517 dm_complete_request(rq, r);
1518 }
1519 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1520
1521 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1522 void *data)
1523 {
1524 struct dm_rq_target_io *tio = data;
1525 struct dm_rq_clone_bio_info *info =
1526 container_of(bio, struct dm_rq_clone_bio_info, clone);
1527
1528 info->orig = bio_orig;
1529 info->tio = tio;
1530 bio->bi_end_io = end_clone_bio;
1531 bio->bi_private = info;
1532
1533 return 0;
1534 }
1535
1536 static int setup_clone(struct request *clone, struct request *rq,
1537 struct dm_rq_target_io *tio)
1538 {
1539 int r;
1540
1541 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1542 dm_rq_bio_constructor, tio);
1543 if (r)
1544 return r;
1545
1546 clone->cmd = rq->cmd;
1547 clone->cmd_len = rq->cmd_len;
1548 clone->sense = rq->sense;
1549 clone->buffer = rq->buffer;
1550 clone->end_io = end_clone_request;
1551 clone->end_io_data = tio;
1552
1553 return 0;
1554 }
1555
1556 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1557 gfp_t gfp_mask)
1558 {
1559 struct request *clone;
1560 struct dm_rq_target_io *tio;
1561
1562 tio = alloc_rq_tio(md, gfp_mask);
1563 if (!tio)
1564 return NULL;
1565
1566 tio->md = md;
1567 tio->ti = NULL;
1568 tio->orig = rq;
1569 tio->error = 0;
1570 memset(&tio->info, 0, sizeof(tio->info));
1571
1572 clone = &tio->clone;
1573 if (setup_clone(clone, rq, tio)) {
1574 /* -ENOMEM */
1575 free_rq_tio(tio);
1576 return NULL;
1577 }
1578
1579 return clone;
1580 }
1581
1582 /*
1583 * Called with the queue lock held.
1584 */
1585 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1586 {
1587 struct mapped_device *md = q->queuedata;
1588 struct request *clone;
1589
1590 if (unlikely(rq->special)) {
1591 DMWARN("Already has something in rq->special.");
1592 return BLKPREP_KILL;
1593 }
1594
1595 clone = clone_rq(rq, md, GFP_ATOMIC);
1596 if (!clone)
1597 return BLKPREP_DEFER;
1598
1599 rq->special = clone;
1600 rq->cmd_flags |= REQ_DONTPREP;
1601
1602 return BLKPREP_OK;
1603 }
1604
1605 /*
1606 * Returns:
1607 * 0 : the request has been processed (not requeued)
1608 * !0 : the request has been requeued
1609 */
1610 static int map_request(struct dm_target *ti, struct request *clone,
1611 struct mapped_device *md)
1612 {
1613 int r, requeued = 0;
1614 struct dm_rq_target_io *tio = clone->end_io_data;
1615
1616 tio->ti = ti;
1617 r = ti->type->map_rq(ti, clone, &tio->info);
1618 switch (r) {
1619 case DM_MAPIO_SUBMITTED:
1620 /* The target has taken the I/O to submit by itself later */
1621 break;
1622 case DM_MAPIO_REMAPPED:
1623 /* The target has remapped the I/O so dispatch it */
1624 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1625 blk_rq_pos(tio->orig));
1626 dm_dispatch_request(clone);
1627 break;
1628 case DM_MAPIO_REQUEUE:
1629 /* The target wants to requeue the I/O */
1630 dm_requeue_unmapped_request(clone);
1631 requeued = 1;
1632 break;
1633 default:
1634 if (r > 0) {
1635 DMWARN("unimplemented target map return value: %d", r);
1636 BUG();
1637 }
1638
1639 /* The target wants to complete the I/O */
1640 dm_kill_unmapped_request(clone, r);
1641 break;
1642 }
1643
1644 return requeued;
1645 }
1646
1647 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1648 {
1649 struct request *clone;
1650
1651 blk_start_request(orig);
1652 clone = orig->special;
1653 atomic_inc(&md->pending[rq_data_dir(clone)]);
1654
1655 /*
1656 * Hold the md reference here for the in-flight I/O.
1657 * We can't rely on the reference count by device opener,
1658 * because the device may be closed during the request completion
1659 * when all bios are completed.
1660 * See the comment in rq_completed() too.
1661 */
1662 dm_get(md);
1663
1664 return clone;
1665 }
1666
1667 /*
1668 * q->request_fn for request-based dm.
1669 * Called with the queue lock held.
1670 */
1671 static void dm_request_fn(struct request_queue *q)
1672 {
1673 struct mapped_device *md = q->queuedata;
1674 struct dm_table *map = dm_get_live_table(md);
1675 struct dm_target *ti;
1676 struct request *rq, *clone;
1677 sector_t pos;
1678
1679 /*
1680 * For suspend, check blk_queue_stopped() and increment
1681 * ->pending within a single queue_lock not to increment the
1682 * number of in-flight I/Os after the queue is stopped in
1683 * dm_suspend().
1684 */
1685 while (!blk_queue_stopped(q)) {
1686 rq = blk_peek_request(q);
1687 if (!rq)
1688 goto delay_and_out;
1689
1690 /* always use block 0 to find the target for flushes for now */
1691 pos = 0;
1692 if (!(rq->cmd_flags & REQ_FLUSH))
1693 pos = blk_rq_pos(rq);
1694
1695 ti = dm_table_find_target(map, pos);
1696 if (!dm_target_is_valid(ti)) {
1697 /*
1698 * Must perform setup, that dm_done() requires,
1699 * before calling dm_kill_unmapped_request
1700 */
1701 DMERR_LIMIT("request attempted access beyond the end of device");
1702 clone = dm_start_request(md, rq);
1703 dm_kill_unmapped_request(clone, -EIO);
1704 continue;
1705 }
1706
1707 if (ti->type->busy && ti->type->busy(ti))
1708 goto delay_and_out;
1709
1710 clone = dm_start_request(md, rq);
1711
1712 spin_unlock(q->queue_lock);
1713 if (map_request(ti, clone, md))
1714 goto requeued;
1715
1716 BUG_ON(!irqs_disabled());
1717 spin_lock(q->queue_lock);
1718 }
1719
1720 goto out;
1721
1722 requeued:
1723 BUG_ON(!irqs_disabled());
1724 spin_lock(q->queue_lock);
1725
1726 delay_and_out:
1727 blk_delay_queue(q, HZ / 10);
1728 out:
1729 dm_table_put(map);
1730 }
1731
1732 int dm_underlying_device_busy(struct request_queue *q)
1733 {
1734 return blk_lld_busy(q);
1735 }
1736 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1737
1738 static int dm_lld_busy(struct request_queue *q)
1739 {
1740 int r;
1741 struct mapped_device *md = q->queuedata;
1742 struct dm_table *map = dm_get_live_table(md);
1743
1744 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1745 r = 1;
1746 else
1747 r = dm_table_any_busy_target(map);
1748
1749 dm_table_put(map);
1750
1751 return r;
1752 }
1753
1754 static int dm_any_congested(void *congested_data, int bdi_bits)
1755 {
1756 int r = bdi_bits;
1757 struct mapped_device *md = congested_data;
1758 struct dm_table *map;
1759
1760 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1761 map = dm_get_live_table(md);
1762 if (map) {
1763 /*
1764 * Request-based dm cares about only own queue for
1765 * the query about congestion status of request_queue
1766 */
1767 if (dm_request_based(md))
1768 r = md->queue->backing_dev_info.state &
1769 bdi_bits;
1770 else
1771 r = dm_table_any_congested(map, bdi_bits);
1772
1773 dm_table_put(map);
1774 }
1775 }
1776
1777 return r;
1778 }
1779
1780 /*-----------------------------------------------------------------
1781 * An IDR is used to keep track of allocated minor numbers.
1782 *---------------------------------------------------------------*/
1783 static void free_minor(int minor)
1784 {
1785 spin_lock(&_minor_lock);
1786 idr_remove(&_minor_idr, minor);
1787 spin_unlock(&_minor_lock);
1788 }
1789
1790 /*
1791 * See if the device with a specific minor # is free.
1792 */
1793 static int specific_minor(int minor)
1794 {
1795 int r;
1796
1797 if (minor >= (1 << MINORBITS))
1798 return -EINVAL;
1799
1800 idr_preload(GFP_KERNEL);
1801 spin_lock(&_minor_lock);
1802
1803 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1804
1805 spin_unlock(&_minor_lock);
1806 idr_preload_end();
1807 if (r < 0)
1808 return r == -ENOSPC ? -EBUSY : r;
1809 return 0;
1810 }
1811
1812 static int next_free_minor(int *minor)
1813 {
1814 int r;
1815
1816 idr_preload(GFP_KERNEL);
1817 spin_lock(&_minor_lock);
1818
1819 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1820
1821 spin_unlock(&_minor_lock);
1822 idr_preload_end();
1823 if (r < 0)
1824 return r;
1825 *minor = r;
1826 return 0;
1827 }
1828
1829 static const struct block_device_operations dm_blk_dops;
1830
1831 static void dm_wq_work(struct work_struct *work);
1832
1833 static void dm_init_md_queue(struct mapped_device *md)
1834 {
1835 /*
1836 * Request-based dm devices cannot be stacked on top of bio-based dm
1837 * devices. The type of this dm device has not been decided yet.
1838 * The type is decided at the first table loading time.
1839 * To prevent problematic device stacking, clear the queue flag
1840 * for request stacking support until then.
1841 *
1842 * This queue is new, so no concurrency on the queue_flags.
1843 */
1844 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1845
1846 md->queue->queuedata = md;
1847 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1848 md->queue->backing_dev_info.congested_data = md;
1849 blk_queue_make_request(md->queue, dm_request);
1850 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1851 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1852 }
1853
1854 /*
1855 * Allocate and initialise a blank device with a given minor.
1856 */
1857 static struct mapped_device *alloc_dev(int minor)
1858 {
1859 int r;
1860 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1861 void *old_md;
1862
1863 if (!md) {
1864 DMWARN("unable to allocate device, out of memory.");
1865 return NULL;
1866 }
1867
1868 if (!try_module_get(THIS_MODULE))
1869 goto bad_module_get;
1870
1871 /* get a minor number for the dev */
1872 if (minor == DM_ANY_MINOR)
1873 r = next_free_minor(&minor);
1874 else
1875 r = specific_minor(minor);
1876 if (r < 0)
1877 goto bad_minor;
1878
1879 md->type = DM_TYPE_NONE;
1880 init_rwsem(&md->io_lock);
1881 mutex_init(&md->suspend_lock);
1882 mutex_init(&md->type_lock);
1883 spin_lock_init(&md->deferred_lock);
1884 rwlock_init(&md->map_lock);
1885 atomic_set(&md->holders, 1);
1886 atomic_set(&md->open_count, 0);
1887 atomic_set(&md->event_nr, 0);
1888 atomic_set(&md->uevent_seq, 0);
1889 INIT_LIST_HEAD(&md->uevent_list);
1890 spin_lock_init(&md->uevent_lock);
1891
1892 md->queue = blk_alloc_queue(GFP_KERNEL);
1893 if (!md->queue)
1894 goto bad_queue;
1895
1896 dm_init_md_queue(md);
1897
1898 md->disk = alloc_disk(1);
1899 if (!md->disk)
1900 goto bad_disk;
1901
1902 atomic_set(&md->pending[0], 0);
1903 atomic_set(&md->pending[1], 0);
1904 init_waitqueue_head(&md->wait);
1905 INIT_WORK(&md->work, dm_wq_work);
1906 init_waitqueue_head(&md->eventq);
1907 init_completion(&md->kobj_holder.completion);
1908
1909 md->disk->major = _major;
1910 md->disk->first_minor = minor;
1911 md->disk->fops = &dm_blk_dops;
1912 md->disk->queue = md->queue;
1913 md->disk->private_data = md;
1914 sprintf(md->disk->disk_name, "dm-%d", minor);
1915 add_disk(md->disk);
1916 format_dev_t(md->name, MKDEV(_major, minor));
1917
1918 md->wq = alloc_workqueue("kdmflush",
1919 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1920 if (!md->wq)
1921 goto bad_thread;
1922
1923 md->bdev = bdget_disk(md->disk, 0);
1924 if (!md->bdev)
1925 goto bad_bdev;
1926
1927 bio_init(&md->flush_bio);
1928 md->flush_bio.bi_bdev = md->bdev;
1929 md->flush_bio.bi_rw = WRITE_FLUSH;
1930
1931 /* Populate the mapping, nobody knows we exist yet */
1932 spin_lock(&_minor_lock);
1933 old_md = idr_replace(&_minor_idr, md, minor);
1934 spin_unlock(&_minor_lock);
1935
1936 BUG_ON(old_md != MINOR_ALLOCED);
1937
1938 return md;
1939
1940 bad_bdev:
1941 destroy_workqueue(md->wq);
1942 bad_thread:
1943 del_gendisk(md->disk);
1944 put_disk(md->disk);
1945 bad_disk:
1946 blk_cleanup_queue(md->queue);
1947 bad_queue:
1948 free_minor(minor);
1949 bad_minor:
1950 module_put(THIS_MODULE);
1951 bad_module_get:
1952 kfree(md);
1953 return NULL;
1954 }
1955
1956 static void unlock_fs(struct mapped_device *md);
1957
1958 static void free_dev(struct mapped_device *md)
1959 {
1960 int minor = MINOR(disk_devt(md->disk));
1961
1962 unlock_fs(md);
1963 bdput(md->bdev);
1964 destroy_workqueue(md->wq);
1965 if (md->io_pool)
1966 mempool_destroy(md->io_pool);
1967 if (md->bs)
1968 bioset_free(md->bs);
1969 blk_integrity_unregister(md->disk);
1970 del_gendisk(md->disk);
1971 free_minor(minor);
1972
1973 spin_lock(&_minor_lock);
1974 md->disk->private_data = NULL;
1975 spin_unlock(&_minor_lock);
1976
1977 put_disk(md->disk);
1978 blk_cleanup_queue(md->queue);
1979 module_put(THIS_MODULE);
1980 kfree(md);
1981 }
1982
1983 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1984 {
1985 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1986
1987 if (md->io_pool && md->bs) {
1988 /* The md already has necessary mempools. */
1989 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1990 /*
1991 * Reload bioset because front_pad may have changed
1992 * because a different table was loaded.
1993 */
1994 bioset_free(md->bs);
1995 md->bs = p->bs;
1996 p->bs = NULL;
1997 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1998 /*
1999 * There's no need to reload with request-based dm
2000 * because the size of front_pad doesn't change.
2001 * Note for future: If you are to reload bioset,
2002 * prep-ed requests in the queue may refer
2003 * to bio from the old bioset, so you must walk
2004 * through the queue to unprep.
2005 */
2006 }
2007 goto out;
2008 }
2009
2010 BUG_ON(!p || md->io_pool || md->bs);
2011
2012 md->io_pool = p->io_pool;
2013 p->io_pool = NULL;
2014 md->bs = p->bs;
2015 p->bs = NULL;
2016
2017 out:
2018 /* mempool bind completed, now no need any mempools in the table */
2019 dm_table_free_md_mempools(t);
2020 }
2021
2022 /*
2023 * Bind a table to the device.
2024 */
2025 static void event_callback(void *context)
2026 {
2027 unsigned long flags;
2028 LIST_HEAD(uevents);
2029 struct mapped_device *md = (struct mapped_device *) context;
2030
2031 spin_lock_irqsave(&md->uevent_lock, flags);
2032 list_splice_init(&md->uevent_list, &uevents);
2033 spin_unlock_irqrestore(&md->uevent_lock, flags);
2034
2035 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2036
2037 atomic_inc(&md->event_nr);
2038 wake_up(&md->eventq);
2039 }
2040
2041 /*
2042 * Protected by md->suspend_lock obtained by dm_swap_table().
2043 */
2044 static void __set_size(struct mapped_device *md, sector_t size)
2045 {
2046 set_capacity(md->disk, size);
2047
2048 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2049 }
2050
2051 /*
2052 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2053 *
2054 * If this function returns 0, then the device is either a non-dm
2055 * device without a merge_bvec_fn, or it is a dm device that is
2056 * able to split any bios it receives that are too big.
2057 */
2058 int dm_queue_merge_is_compulsory(struct request_queue *q)
2059 {
2060 struct mapped_device *dev_md;
2061
2062 if (!q->merge_bvec_fn)
2063 return 0;
2064
2065 if (q->make_request_fn == dm_request) {
2066 dev_md = q->queuedata;
2067 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2068 return 0;
2069 }
2070
2071 return 1;
2072 }
2073
2074 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2075 struct dm_dev *dev, sector_t start,
2076 sector_t len, void *data)
2077 {
2078 struct block_device *bdev = dev->bdev;
2079 struct request_queue *q = bdev_get_queue(bdev);
2080
2081 return dm_queue_merge_is_compulsory(q);
2082 }
2083
2084 /*
2085 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2086 * on the properties of the underlying devices.
2087 */
2088 static int dm_table_merge_is_optional(struct dm_table *table)
2089 {
2090 unsigned i = 0;
2091 struct dm_target *ti;
2092
2093 while (i < dm_table_get_num_targets(table)) {
2094 ti = dm_table_get_target(table, i++);
2095
2096 if (ti->type->iterate_devices &&
2097 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2098 return 0;
2099 }
2100
2101 return 1;
2102 }
2103
2104 /*
2105 * Returns old map, which caller must destroy.
2106 */
2107 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2108 struct queue_limits *limits)
2109 {
2110 struct dm_table *old_map;
2111 struct request_queue *q = md->queue;
2112 sector_t size;
2113 unsigned long flags;
2114 int merge_is_optional;
2115
2116 size = dm_table_get_size(t);
2117
2118 /*
2119 * Wipe any geometry if the size of the table changed.
2120 */
2121 if (size != get_capacity(md->disk))
2122 memset(&md->geometry, 0, sizeof(md->geometry));
2123
2124 __set_size(md, size);
2125
2126 dm_table_event_callback(t, event_callback, md);
2127
2128 /*
2129 * The queue hasn't been stopped yet, if the old table type wasn't
2130 * for request-based during suspension. So stop it to prevent
2131 * I/O mapping before resume.
2132 * This must be done before setting the queue restrictions,
2133 * because request-based dm may be run just after the setting.
2134 */
2135 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2136 stop_queue(q);
2137
2138 __bind_mempools(md, t);
2139
2140 merge_is_optional = dm_table_merge_is_optional(t);
2141
2142 write_lock_irqsave(&md->map_lock, flags);
2143 old_map = md->map;
2144 md->map = t;
2145 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2146
2147 dm_table_set_restrictions(t, q, limits);
2148 if (merge_is_optional)
2149 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2150 else
2151 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2152 write_unlock_irqrestore(&md->map_lock, flags);
2153
2154 return old_map;
2155 }
2156
2157 /*
2158 * Returns unbound table for the caller to free.
2159 */
2160 static struct dm_table *__unbind(struct mapped_device *md)
2161 {
2162 struct dm_table *map = md->map;
2163 unsigned long flags;
2164
2165 if (!map)
2166 return NULL;
2167
2168 dm_table_event_callback(map, NULL, NULL);
2169 write_lock_irqsave(&md->map_lock, flags);
2170 md->map = NULL;
2171 write_unlock_irqrestore(&md->map_lock, flags);
2172
2173 return map;
2174 }
2175
2176 /*
2177 * Constructor for a new device.
2178 */
2179 int dm_create(int minor, struct mapped_device **result)
2180 {
2181 struct mapped_device *md;
2182
2183 md = alloc_dev(minor);
2184 if (!md)
2185 return -ENXIO;
2186
2187 dm_sysfs_init(md);
2188
2189 *result = md;
2190 return 0;
2191 }
2192
2193 /*
2194 * Functions to manage md->type.
2195 * All are required to hold md->type_lock.
2196 */
2197 void dm_lock_md_type(struct mapped_device *md)
2198 {
2199 mutex_lock(&md->type_lock);
2200 }
2201
2202 void dm_unlock_md_type(struct mapped_device *md)
2203 {
2204 mutex_unlock(&md->type_lock);
2205 }
2206
2207 void dm_set_md_type(struct mapped_device *md, unsigned type)
2208 {
2209 md->type = type;
2210 }
2211
2212 unsigned dm_get_md_type(struct mapped_device *md)
2213 {
2214 return md->type;
2215 }
2216
2217 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2218 {
2219 return md->immutable_target_type;
2220 }
2221
2222 /*
2223 * The queue_limits are only valid as long as you have a reference
2224 * count on 'md'.
2225 */
2226 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2227 {
2228 BUG_ON(!atomic_read(&md->holders));
2229 return &md->queue->limits;
2230 }
2231 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2232
2233 /*
2234 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2235 */
2236 static int dm_init_request_based_queue(struct mapped_device *md)
2237 {
2238 struct request_queue *q = NULL;
2239
2240 if (md->queue->elevator)
2241 return 1;
2242
2243 /* Fully initialize the queue */
2244 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2245 if (!q)
2246 return 0;
2247
2248 md->queue = q;
2249 dm_init_md_queue(md);
2250 blk_queue_softirq_done(md->queue, dm_softirq_done);
2251 blk_queue_prep_rq(md->queue, dm_prep_fn);
2252 blk_queue_lld_busy(md->queue, dm_lld_busy);
2253
2254 elv_register_queue(md->queue);
2255
2256 return 1;
2257 }
2258
2259 /*
2260 * Setup the DM device's queue based on md's type
2261 */
2262 int dm_setup_md_queue(struct mapped_device *md)
2263 {
2264 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2265 !dm_init_request_based_queue(md)) {
2266 DMWARN("Cannot initialize queue for request-based mapped device");
2267 return -EINVAL;
2268 }
2269
2270 return 0;
2271 }
2272
2273 struct mapped_device *dm_get_md(dev_t dev)
2274 {
2275 struct mapped_device *md;
2276 unsigned minor = MINOR(dev);
2277
2278 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2279 return NULL;
2280
2281 spin_lock(&_minor_lock);
2282
2283 md = idr_find(&_minor_idr, minor);
2284 if (md) {
2285 if ((md == MINOR_ALLOCED ||
2286 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2287 dm_deleting_md(md) ||
2288 test_bit(DMF_FREEING, &md->flags))) {
2289 md = NULL;
2290 goto out;
2291 }
2292 dm_get(md);
2293 }
2294
2295 out:
2296 spin_unlock(&_minor_lock);
2297
2298 return md;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_get_md);
2301
2302 void *dm_get_mdptr(struct mapped_device *md)
2303 {
2304 return md->interface_ptr;
2305 }
2306
2307 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2308 {
2309 md->interface_ptr = ptr;
2310 }
2311
2312 void dm_get(struct mapped_device *md)
2313 {
2314 atomic_inc(&md->holders);
2315 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2316 }
2317
2318 const char *dm_device_name(struct mapped_device *md)
2319 {
2320 return md->name;
2321 }
2322 EXPORT_SYMBOL_GPL(dm_device_name);
2323
2324 static void __dm_destroy(struct mapped_device *md, bool wait)
2325 {
2326 struct dm_table *map;
2327
2328 might_sleep();
2329
2330 spin_lock(&_minor_lock);
2331 map = dm_get_live_table(md);
2332 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2333 set_bit(DMF_FREEING, &md->flags);
2334 spin_unlock(&_minor_lock);
2335
2336 /*
2337 * Take suspend_lock so that presuspend and postsuspend methods
2338 * do not race with internal suspend.
2339 */
2340 mutex_lock(&md->suspend_lock);
2341 if (!dm_suspended_md(md)) {
2342 dm_table_presuspend_targets(map);
2343 dm_table_postsuspend_targets(map);
2344 }
2345 mutex_unlock(&md->suspend_lock);
2346
2347 /*
2348 * Rare, but there may be I/O requests still going to complete,
2349 * for example. Wait for all references to disappear.
2350 * No one should increment the reference count of the mapped_device,
2351 * after the mapped_device state becomes DMF_FREEING.
2352 */
2353 if (wait)
2354 while (atomic_read(&md->holders))
2355 msleep(1);
2356 else if (atomic_read(&md->holders))
2357 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2358 dm_device_name(md), atomic_read(&md->holders));
2359
2360 dm_sysfs_exit(md);
2361 dm_table_put(map);
2362 dm_table_destroy(__unbind(md));
2363 free_dev(md);
2364 }
2365
2366 void dm_destroy(struct mapped_device *md)
2367 {
2368 __dm_destroy(md, true);
2369 }
2370
2371 void dm_destroy_immediate(struct mapped_device *md)
2372 {
2373 __dm_destroy(md, false);
2374 }
2375
2376 void dm_put(struct mapped_device *md)
2377 {
2378 atomic_dec(&md->holders);
2379 }
2380 EXPORT_SYMBOL_GPL(dm_put);
2381
2382 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2383 {
2384 int r = 0;
2385 DECLARE_WAITQUEUE(wait, current);
2386
2387 add_wait_queue(&md->wait, &wait);
2388
2389 while (1) {
2390 set_current_state(interruptible);
2391
2392 if (!md_in_flight(md))
2393 break;
2394
2395 if (interruptible == TASK_INTERRUPTIBLE &&
2396 signal_pending(current)) {
2397 r = -EINTR;
2398 break;
2399 }
2400
2401 io_schedule();
2402 }
2403 set_current_state(TASK_RUNNING);
2404
2405 remove_wait_queue(&md->wait, &wait);
2406
2407 return r;
2408 }
2409
2410 /*
2411 * Process the deferred bios
2412 */
2413 static void dm_wq_work(struct work_struct *work)
2414 {
2415 struct mapped_device *md = container_of(work, struct mapped_device,
2416 work);
2417 struct bio *c;
2418
2419 down_read(&md->io_lock);
2420
2421 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2422 spin_lock_irq(&md->deferred_lock);
2423 c = bio_list_pop(&md->deferred);
2424 spin_unlock_irq(&md->deferred_lock);
2425
2426 if (!c)
2427 break;
2428
2429 up_read(&md->io_lock);
2430
2431 if (dm_request_based(md))
2432 generic_make_request(c);
2433 else
2434 __split_and_process_bio(md, c);
2435
2436 down_read(&md->io_lock);
2437 }
2438
2439 up_read(&md->io_lock);
2440 }
2441
2442 static void dm_queue_flush(struct mapped_device *md)
2443 {
2444 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2445 smp_mb__after_clear_bit();
2446 queue_work(md->wq, &md->work);
2447 }
2448
2449 /*
2450 * Swap in a new table, returning the old one for the caller to destroy.
2451 */
2452 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2453 {
2454 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2455 struct queue_limits limits;
2456 int r;
2457
2458 mutex_lock(&md->suspend_lock);
2459
2460 /* device must be suspended */
2461 if (!dm_suspended_md(md))
2462 goto out;
2463
2464 /*
2465 * If the new table has no data devices, retain the existing limits.
2466 * This helps multipath with queue_if_no_path if all paths disappear,
2467 * then new I/O is queued based on these limits, and then some paths
2468 * reappear.
2469 */
2470 if (dm_table_has_no_data_devices(table)) {
2471 live_map = dm_get_live_table(md);
2472 if (live_map)
2473 limits = md->queue->limits;
2474 dm_table_put(live_map);
2475 }
2476
2477 if (!live_map) {
2478 r = dm_calculate_queue_limits(table, &limits);
2479 if (r) {
2480 map = ERR_PTR(r);
2481 goto out;
2482 }
2483 }
2484
2485 map = __bind(md, table, &limits);
2486
2487 out:
2488 mutex_unlock(&md->suspend_lock);
2489 return map;
2490 }
2491
2492 /*
2493 * Functions to lock and unlock any filesystem running on the
2494 * device.
2495 */
2496 static int lock_fs(struct mapped_device *md)
2497 {
2498 int r;
2499
2500 WARN_ON(md->frozen_sb);
2501
2502 md->frozen_sb = freeze_bdev(md->bdev);
2503 if (IS_ERR(md->frozen_sb)) {
2504 r = PTR_ERR(md->frozen_sb);
2505 md->frozen_sb = NULL;
2506 return r;
2507 }
2508
2509 set_bit(DMF_FROZEN, &md->flags);
2510
2511 return 0;
2512 }
2513
2514 static void unlock_fs(struct mapped_device *md)
2515 {
2516 if (!test_bit(DMF_FROZEN, &md->flags))
2517 return;
2518
2519 thaw_bdev(md->bdev, md->frozen_sb);
2520 md->frozen_sb = NULL;
2521 clear_bit(DMF_FROZEN, &md->flags);
2522 }
2523
2524 /*
2525 * We need to be able to change a mapping table under a mounted
2526 * filesystem. For example we might want to move some data in
2527 * the background. Before the table can be swapped with
2528 * dm_bind_table, dm_suspend must be called to flush any in
2529 * flight bios and ensure that any further io gets deferred.
2530 */
2531 /*
2532 * Suspend mechanism in request-based dm.
2533 *
2534 * 1. Flush all I/Os by lock_fs() if needed.
2535 * 2. Stop dispatching any I/O by stopping the request_queue.
2536 * 3. Wait for all in-flight I/Os to be completed or requeued.
2537 *
2538 * To abort suspend, start the request_queue.
2539 */
2540 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2541 {
2542 struct dm_table *map = NULL;
2543 int r = 0;
2544 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2545 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2546
2547 mutex_lock(&md->suspend_lock);
2548
2549 if (dm_suspended_md(md)) {
2550 r = -EINVAL;
2551 goto out_unlock;
2552 }
2553
2554 map = dm_get_live_table(md);
2555
2556 /*
2557 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2558 * This flag is cleared before dm_suspend returns.
2559 */
2560 if (noflush)
2561 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2562
2563 /* This does not get reverted if there's an error later. */
2564 dm_table_presuspend_targets(map);
2565
2566 /*
2567 * Flush I/O to the device.
2568 * Any I/O submitted after lock_fs() may not be flushed.
2569 * noflush takes precedence over do_lockfs.
2570 * (lock_fs() flushes I/Os and waits for them to complete.)
2571 */
2572 if (!noflush && do_lockfs) {
2573 r = lock_fs(md);
2574 if (r)
2575 goto out;
2576 }
2577
2578 /*
2579 * Here we must make sure that no processes are submitting requests
2580 * to target drivers i.e. no one may be executing
2581 * __split_and_process_bio. This is called from dm_request and
2582 * dm_wq_work.
2583 *
2584 * To get all processes out of __split_and_process_bio in dm_request,
2585 * we take the write lock. To prevent any process from reentering
2586 * __split_and_process_bio from dm_request and quiesce the thread
2587 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2588 * flush_workqueue(md->wq).
2589 */
2590 down_write(&md->io_lock);
2591 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2592 up_write(&md->io_lock);
2593
2594 /*
2595 * Stop md->queue before flushing md->wq in case request-based
2596 * dm defers requests to md->wq from md->queue.
2597 */
2598 if (dm_request_based(md))
2599 stop_queue(md->queue);
2600
2601 flush_workqueue(md->wq);
2602
2603 /*
2604 * At this point no more requests are entering target request routines.
2605 * We call dm_wait_for_completion to wait for all existing requests
2606 * to finish.
2607 */
2608 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2609
2610 down_write(&md->io_lock);
2611 if (noflush)
2612 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2613 up_write(&md->io_lock);
2614
2615 /* were we interrupted ? */
2616 if (r < 0) {
2617 dm_queue_flush(md);
2618
2619 if (dm_request_based(md))
2620 start_queue(md->queue);
2621
2622 unlock_fs(md);
2623 goto out; /* pushback list is already flushed, so skip flush */
2624 }
2625
2626 /*
2627 * If dm_wait_for_completion returned 0, the device is completely
2628 * quiescent now. There is no request-processing activity. All new
2629 * requests are being added to md->deferred list.
2630 */
2631
2632 set_bit(DMF_SUSPENDED, &md->flags);
2633
2634 dm_table_postsuspend_targets(map);
2635
2636 out:
2637 dm_table_put(map);
2638
2639 out_unlock:
2640 mutex_unlock(&md->suspend_lock);
2641 return r;
2642 }
2643
2644 int dm_resume(struct mapped_device *md)
2645 {
2646 int r = -EINVAL;
2647 struct dm_table *map = NULL;
2648
2649 mutex_lock(&md->suspend_lock);
2650 if (!dm_suspended_md(md))
2651 goto out;
2652
2653 map = dm_get_live_table(md);
2654 if (!map || !dm_table_get_size(map))
2655 goto out;
2656
2657 r = dm_table_resume_targets(map);
2658 if (r)
2659 goto out;
2660
2661 dm_queue_flush(md);
2662
2663 /*
2664 * Flushing deferred I/Os must be done after targets are resumed
2665 * so that mapping of targets can work correctly.
2666 * Request-based dm is queueing the deferred I/Os in its request_queue.
2667 */
2668 if (dm_request_based(md))
2669 start_queue(md->queue);
2670
2671 unlock_fs(md);
2672
2673 clear_bit(DMF_SUSPENDED, &md->flags);
2674
2675 r = 0;
2676 out:
2677 dm_table_put(map);
2678 mutex_unlock(&md->suspend_lock);
2679
2680 return r;
2681 }
2682
2683 /*-----------------------------------------------------------------
2684 * Event notification.
2685 *---------------------------------------------------------------*/
2686 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2687 unsigned cookie)
2688 {
2689 char udev_cookie[DM_COOKIE_LENGTH];
2690 char *envp[] = { udev_cookie, NULL };
2691
2692 if (!cookie)
2693 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2694 else {
2695 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2696 DM_COOKIE_ENV_VAR_NAME, cookie);
2697 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2698 action, envp);
2699 }
2700 }
2701
2702 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2703 {
2704 return atomic_add_return(1, &md->uevent_seq);
2705 }
2706
2707 uint32_t dm_get_event_nr(struct mapped_device *md)
2708 {
2709 return atomic_read(&md->event_nr);
2710 }
2711
2712 int dm_wait_event(struct mapped_device *md, int event_nr)
2713 {
2714 return wait_event_interruptible(md->eventq,
2715 (event_nr != atomic_read(&md->event_nr)));
2716 }
2717
2718 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2719 {
2720 unsigned long flags;
2721
2722 spin_lock_irqsave(&md->uevent_lock, flags);
2723 list_add(elist, &md->uevent_list);
2724 spin_unlock_irqrestore(&md->uevent_lock, flags);
2725 }
2726
2727 /*
2728 * The gendisk is only valid as long as you have a reference
2729 * count on 'md'.
2730 */
2731 struct gendisk *dm_disk(struct mapped_device *md)
2732 {
2733 return md->disk;
2734 }
2735
2736 struct kobject *dm_kobject(struct mapped_device *md)
2737 {
2738 return &md->kobj_holder.kobj;
2739 }
2740
2741 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2742 {
2743 struct mapped_device *md;
2744
2745 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2746
2747 if (test_bit(DMF_FREEING, &md->flags) ||
2748 dm_deleting_md(md))
2749 return NULL;
2750
2751 dm_get(md);
2752 return md;
2753 }
2754
2755 int dm_suspended_md(struct mapped_device *md)
2756 {
2757 return test_bit(DMF_SUSPENDED, &md->flags);
2758 }
2759
2760 int dm_suspended(struct dm_target *ti)
2761 {
2762 return dm_suspended_md(dm_table_get_md(ti->table));
2763 }
2764 EXPORT_SYMBOL_GPL(dm_suspended);
2765
2766 int dm_noflush_suspending(struct dm_target *ti)
2767 {
2768 return __noflush_suspending(dm_table_get_md(ti->table));
2769 }
2770 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2771
2772 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2773 {
2774 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2775 struct kmem_cache *cachep;
2776 unsigned int pool_size;
2777 unsigned int front_pad;
2778
2779 if (!pools)
2780 return NULL;
2781
2782 if (type == DM_TYPE_BIO_BASED) {
2783 cachep = _io_cache;
2784 pool_size = 16;
2785 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2786 } else if (type == DM_TYPE_REQUEST_BASED) {
2787 cachep = _rq_tio_cache;
2788 pool_size = MIN_IOS;
2789 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2790 /* per_bio_data_size is not used. See __bind_mempools(). */
2791 WARN_ON(per_bio_data_size != 0);
2792 } else
2793 goto out;
2794
2795 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2796 if (!pools->io_pool)
2797 goto out;
2798
2799 pools->bs = bioset_create(pool_size, front_pad);
2800 if (!pools->bs)
2801 goto out;
2802
2803 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2804 goto out;
2805
2806 return pools;
2807
2808 out:
2809 dm_free_md_mempools(pools);
2810
2811 return NULL;
2812 }
2813
2814 void dm_free_md_mempools(struct dm_md_mempools *pools)
2815 {
2816 if (!pools)
2817 return;
2818
2819 if (pools->io_pool)
2820 mempool_destroy(pools->io_pool);
2821
2822 if (pools->bs)
2823 bioset_free(pools->bs);
2824
2825 kfree(pools);
2826 }
2827
2828 static const struct block_device_operations dm_blk_dops = {
2829 .open = dm_blk_open,
2830 .release = dm_blk_close,
2831 .ioctl = dm_blk_ioctl,
2832 .getgeo = dm_blk_getgeo,
2833 .owner = THIS_MODULE
2834 };
2835
2836 EXPORT_SYMBOL(dm_get_mapinfo);
2837
2838 /*
2839 * module hooks
2840 */
2841 module_init(dm_init);
2842 module_exit(dm_exit);
2843
2844 module_param(major, uint, 0);
2845 MODULE_PARM_DESC(major, "The major number of the device mapper");
2846 MODULE_DESCRIPTION(DM_NAME " driver");
2847 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2848 MODULE_LICENSE("GPL");