dm thin: fix discard support for data devices
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm.h"
9
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #define DM_MSG_PREFIX "thin"
19
20 /*
21 * Tunable constants
22 */
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 /*
30 * The block size of the device holding pool data must be
31 * between 64KB and 1GB.
32 */
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35
36 /*
37 * Device id is restricted to 24 bits.
38 */
39 #define MAX_DEV_ID ((1 << 24) - 1)
40
41 /*
42 * How do we handle breaking sharing of data blocks?
43 * =================================================
44 *
45 * We use a standard copy-on-write btree to store the mappings for the
46 * devices (note I'm talking about copy-on-write of the metadata here, not
47 * the data). When you take an internal snapshot you clone the root node
48 * of the origin btree. After this there is no concept of an origin or a
49 * snapshot. They are just two device trees that happen to point to the
50 * same data blocks.
51 *
52 * When we get a write in we decide if it's to a shared data block using
53 * some timestamp magic. If it is, we have to break sharing.
54 *
55 * Let's say we write to a shared block in what was the origin. The
56 * steps are:
57 *
58 * i) plug io further to this physical block. (see bio_prison code).
59 *
60 * ii) quiesce any read io to that shared data block. Obviously
61 * including all devices that share this block. (see deferred_set code)
62 *
63 * iii) copy the data block to a newly allocate block. This step can be
64 * missed out if the io covers the block. (schedule_copy).
65 *
66 * iv) insert the new mapping into the origin's btree
67 * (process_prepared_mapping). This act of inserting breaks some
68 * sharing of btree nodes between the two devices. Breaking sharing only
69 * effects the btree of that specific device. Btrees for the other
70 * devices that share the block never change. The btree for the origin
71 * device as it was after the last commit is untouched, ie. we're using
72 * persistent data structures in the functional programming sense.
73 *
74 * v) unplug io to this physical block, including the io that triggered
75 * the breaking of sharing.
76 *
77 * Steps (ii) and (iii) occur in parallel.
78 *
79 * The metadata _doesn't_ need to be committed before the io continues. We
80 * get away with this because the io is always written to a _new_ block.
81 * If there's a crash, then:
82 *
83 * - The origin mapping will point to the old origin block (the shared
84 * one). This will contain the data as it was before the io that triggered
85 * the breaking of sharing came in.
86 *
87 * - The snap mapping still points to the old block. As it would after
88 * the commit.
89 *
90 * The downside of this scheme is the timestamp magic isn't perfect, and
91 * will continue to think that data block in the snapshot device is shared
92 * even after the write to the origin has broken sharing. I suspect data
93 * blocks will typically be shared by many different devices, so we're
94 * breaking sharing n + 1 times, rather than n, where n is the number of
95 * devices that reference this data block. At the moment I think the
96 * benefits far, far outweigh the disadvantages.
97 */
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Sometimes we can't deal with a bio straight away. We put them in prison
103 * where they can't cause any mischief. Bios are put in a cell identified
104 * by a key, multiple bios can be in the same cell. When the cell is
105 * subsequently unlocked the bios become available.
106 */
107 struct bio_prison;
108
109 struct cell_key {
110 int virtual;
111 dm_thin_id dev;
112 dm_block_t block;
113 };
114
115 struct dm_bio_prison_cell {
116 struct hlist_node list;
117 struct bio_prison *prison;
118 struct cell_key key;
119 struct bio *holder;
120 struct bio_list bios;
121 };
122
123 struct bio_prison {
124 spinlock_t lock;
125 mempool_t *cell_pool;
126
127 unsigned nr_buckets;
128 unsigned hash_mask;
129 struct hlist_head *cells;
130 };
131
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
133 {
134 uint32_t n = 128;
135
136 nr_cells /= 4;
137 nr_cells = min(nr_cells, 8192u);
138
139 while (n < nr_cells)
140 n <<= 1;
141
142 return n;
143 }
144
145 static struct kmem_cache *_cell_cache;
146
147 /*
148 * @nr_cells should be the number of cells you want in use _concurrently_.
149 * Don't confuse it with the number of distinct keys.
150 */
151 static struct bio_prison *prison_create(unsigned nr_cells)
152 {
153 unsigned i;
154 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155 size_t len = sizeof(struct bio_prison) +
156 (sizeof(struct hlist_head) * nr_buckets);
157 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
158
159 if (!prison)
160 return NULL;
161
162 spin_lock_init(&prison->lock);
163 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164 if (!prison->cell_pool) {
165 kfree(prison);
166 return NULL;
167 }
168
169 prison->nr_buckets = nr_buckets;
170 prison->hash_mask = nr_buckets - 1;
171 prison->cells = (struct hlist_head *) (prison + 1);
172 for (i = 0; i < nr_buckets; i++)
173 INIT_HLIST_HEAD(prison->cells + i);
174
175 return prison;
176 }
177
178 static void prison_destroy(struct bio_prison *prison)
179 {
180 mempool_destroy(prison->cell_pool);
181 kfree(prison);
182 }
183
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 {
186 const unsigned long BIG_PRIME = 4294967291UL;
187 uint64_t hash = key->block * BIG_PRIME;
188
189 return (uint32_t) (hash & prison->hash_mask);
190 }
191
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 {
194 return (lhs->virtual == rhs->virtual) &&
195 (lhs->dev == rhs->dev) &&
196 (lhs->block == rhs->block);
197 }
198
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200 struct cell_key *key)
201 {
202 struct dm_bio_prison_cell *cell;
203 struct hlist_node *tmp;
204
205 hlist_for_each_entry(cell, tmp, bucket, list)
206 if (keys_equal(&cell->key, key))
207 return cell;
208
209 return NULL;
210 }
211
212 /*
213 * This may block if a new cell needs allocating. You must ensure that
214 * cells will be unlocked even if the calling thread is blocked.
215 *
216 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
217 */
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 struct bio *inmate, struct dm_bio_prison_cell **ref)
220 {
221 int r = 1;
222 unsigned long flags;
223 uint32_t hash = hash_key(prison, key);
224 struct dm_bio_prison_cell *cell, *cell2;
225
226 BUG_ON(hash > prison->nr_buckets);
227
228 spin_lock_irqsave(&prison->lock, flags);
229
230 cell = __search_bucket(prison->cells + hash, key);
231 if (cell) {
232 bio_list_add(&cell->bios, inmate);
233 goto out;
234 }
235
236 /*
237 * Allocate a new cell
238 */
239 spin_unlock_irqrestore(&prison->lock, flags);
240 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241 spin_lock_irqsave(&prison->lock, flags);
242
243 /*
244 * We've been unlocked, so we have to double check that
245 * nobody else has inserted this cell in the meantime.
246 */
247 cell = __search_bucket(prison->cells + hash, key);
248 if (cell) {
249 mempool_free(cell2, prison->cell_pool);
250 bio_list_add(&cell->bios, inmate);
251 goto out;
252 }
253
254 /*
255 * Use new cell.
256 */
257 cell = cell2;
258
259 cell->prison = prison;
260 memcpy(&cell->key, key, sizeof(cell->key));
261 cell->holder = inmate;
262 bio_list_init(&cell->bios);
263 hlist_add_head(&cell->list, prison->cells + hash);
264
265 r = 0;
266
267 out:
268 spin_unlock_irqrestore(&prison->lock, flags);
269
270 *ref = cell;
271
272 return r;
273 }
274
275 /*
276 * @inmates must have been initialised prior to this call
277 */
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
279 {
280 struct bio_prison *prison = cell->prison;
281
282 hlist_del(&cell->list);
283
284 if (inmates) {
285 bio_list_add(inmates, cell->holder);
286 bio_list_merge(inmates, &cell->bios);
287 }
288
289 mempool_free(cell, prison->cell_pool);
290 }
291
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
293 {
294 unsigned long flags;
295 struct bio_prison *prison = cell->prison;
296
297 spin_lock_irqsave(&prison->lock, flags);
298 __cell_release(cell, bios);
299 spin_unlock_irqrestore(&prison->lock, flags);
300 }
301
302 /*
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again. In these situations we know that no other
305 * bio may be in the cell. This function releases the cell, and also does
306 * a sanity check.
307 */
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
309 {
310 BUG_ON(cell->holder != bio);
311 BUG_ON(!bio_list_empty(&cell->bios));
312
313 __cell_release(cell, NULL);
314 }
315
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
317 {
318 unsigned long flags;
319 struct bio_prison *prison = cell->prison;
320
321 spin_lock_irqsave(&prison->lock, flags);
322 __cell_release_singleton(cell, bio);
323 spin_unlock_irqrestore(&prison->lock, flags);
324 }
325
326 /*
327 * Sometimes we don't want the holder, just the additional bios.
328 */
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330 struct bio_list *inmates)
331 {
332 struct bio_prison *prison = cell->prison;
333
334 hlist_del(&cell->list);
335 bio_list_merge(inmates, &cell->bios);
336
337 mempool_free(cell, prison->cell_pool);
338 }
339
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341 struct bio_list *inmates)
342 {
343 unsigned long flags;
344 struct bio_prison *prison = cell->prison;
345
346 spin_lock_irqsave(&prison->lock, flags);
347 __cell_release_no_holder(cell, inmates);
348 spin_unlock_irqrestore(&prison->lock, flags);
349 }
350
351 static void cell_error(struct dm_bio_prison_cell *cell)
352 {
353 struct bio_prison *prison = cell->prison;
354 struct bio_list bios;
355 struct bio *bio;
356 unsigned long flags;
357
358 bio_list_init(&bios);
359
360 spin_lock_irqsave(&prison->lock, flags);
361 __cell_release(cell, &bios);
362 spin_unlock_irqrestore(&prison->lock, flags);
363
364 while ((bio = bio_list_pop(&bios)))
365 bio_io_error(bio);
366 }
367
368 /*----------------------------------------------------------------*/
369
370 /*
371 * We use the deferred set to keep track of pending reads to shared blocks.
372 * We do this to ensure the new mapping caused by a write isn't performed
373 * until these prior reads have completed. Otherwise the insertion of the
374 * new mapping could free the old block that the read bios are mapped to.
375 */
376
377 struct deferred_set;
378 struct deferred_entry {
379 struct deferred_set *ds;
380 unsigned count;
381 struct list_head work_items;
382 };
383
384 struct deferred_set {
385 spinlock_t lock;
386 unsigned current_entry;
387 unsigned sweeper;
388 struct deferred_entry entries[DEFERRED_SET_SIZE];
389 };
390
391 static void ds_init(struct deferred_set *ds)
392 {
393 int i;
394
395 spin_lock_init(&ds->lock);
396 ds->current_entry = 0;
397 ds->sweeper = 0;
398 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399 ds->entries[i].ds = ds;
400 ds->entries[i].count = 0;
401 INIT_LIST_HEAD(&ds->entries[i].work_items);
402 }
403 }
404
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
406 {
407 unsigned long flags;
408 struct deferred_entry *entry;
409
410 spin_lock_irqsave(&ds->lock, flags);
411 entry = ds->entries + ds->current_entry;
412 entry->count++;
413 spin_unlock_irqrestore(&ds->lock, flags);
414
415 return entry;
416 }
417
418 static unsigned ds_next(unsigned index)
419 {
420 return (index + 1) % DEFERRED_SET_SIZE;
421 }
422
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
424 {
425 while ((ds->sweeper != ds->current_entry) &&
426 !ds->entries[ds->sweeper].count) {
427 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 ds->sweeper = ds_next(ds->sweeper);
429 }
430
431 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
433 }
434
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&entry->ds->lock, flags);
440 BUG_ON(!entry->count);
441 --entry->count;
442 __sweep(entry->ds, head);
443 spin_unlock_irqrestore(&entry->ds->lock, flags);
444 }
445
446 /*
447 * Returns 1 if deferred or 0 if no pending items to delay job.
448 */
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
450 {
451 int r = 1;
452 unsigned long flags;
453 unsigned next_entry;
454
455 spin_lock_irqsave(&ds->lock, flags);
456 if ((ds->sweeper == ds->current_entry) &&
457 !ds->entries[ds->current_entry].count)
458 r = 0;
459 else {
460 list_add(work, &ds->entries[ds->current_entry].work_items);
461 next_entry = ds_next(ds->current_entry);
462 if (!ds->entries[next_entry].count)
463 ds->current_entry = next_entry;
464 }
465 spin_unlock_irqrestore(&ds->lock, flags);
466
467 return r;
468 }
469
470 /*----------------------------------------------------------------*/
471
472 /*
473 * Key building.
474 */
475 static void build_data_key(struct dm_thin_device *td,
476 dm_block_t b, struct cell_key *key)
477 {
478 key->virtual = 0;
479 key->dev = dm_thin_dev_id(td);
480 key->block = b;
481 }
482
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484 struct cell_key *key)
485 {
486 key->virtual = 1;
487 key->dev = dm_thin_dev_id(td);
488 key->block = b;
489 }
490
491 /*----------------------------------------------------------------*/
492
493 /*
494 * A pool device ties together a metadata device and a data device. It
495 * also provides the interface for creating and destroying internal
496 * devices.
497 */
498 struct dm_thin_new_mapping;
499
500 /*
501 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
502 */
503 enum pool_mode {
504 PM_WRITE, /* metadata may be changed */
505 PM_READ_ONLY, /* metadata may not be changed */
506 PM_FAIL, /* all I/O fails */
507 };
508
509 struct pool_features {
510 enum pool_mode mode;
511
512 bool zero_new_blocks:1;
513 bool discard_enabled:1;
514 bool discard_passdown:1;
515 };
516
517 struct thin_c;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
520
521 struct pool {
522 struct list_head list;
523 struct dm_target *ti; /* Only set if a pool target is bound */
524
525 struct mapped_device *pool_md;
526 struct block_device *md_dev;
527 struct dm_pool_metadata *pmd;
528
529 dm_block_t low_water_blocks;
530 uint32_t sectors_per_block;
531 int sectors_per_block_shift;
532
533 struct pool_features pf;
534 unsigned low_water_triggered:1; /* A dm event has been sent */
535 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
536
537 struct bio_prison *prison;
538 struct dm_kcopyd_client *copier;
539
540 struct workqueue_struct *wq;
541 struct work_struct worker;
542 struct delayed_work waker;
543
544 unsigned long last_commit_jiffies;
545 unsigned ref_count;
546
547 spinlock_t lock;
548 struct bio_list deferred_bios;
549 struct bio_list deferred_flush_bios;
550 struct list_head prepared_mappings;
551 struct list_head prepared_discards;
552
553 struct bio_list retry_on_resume_list;
554
555 struct deferred_set shared_read_ds;
556 struct deferred_set all_io_ds;
557
558 struct dm_thin_new_mapping *next_mapping;
559 mempool_t *mapping_pool;
560 mempool_t *endio_hook_pool;
561
562 process_bio_fn process_bio;
563 process_bio_fn process_discard;
564
565 process_mapping_fn process_prepared_mapping;
566 process_mapping_fn process_prepared_discard;
567 };
568
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
571
572 /*
573 * Target context for a pool.
574 */
575 struct pool_c {
576 struct dm_target *ti;
577 struct pool *pool;
578 struct dm_dev *data_dev;
579 struct dm_dev *metadata_dev;
580 struct dm_target_callbacks callbacks;
581
582 dm_block_t low_water_blocks;
583 struct pool_features requested_pf; /* Features requested during table load */
584 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
585 };
586
587 /*
588 * Target context for a thin.
589 */
590 struct thin_c {
591 struct dm_dev *pool_dev;
592 struct dm_dev *origin_dev;
593 dm_thin_id dev_id;
594
595 struct pool *pool;
596 struct dm_thin_device *td;
597 };
598
599 /*----------------------------------------------------------------*/
600
601 /*
602 * A global list of pools that uses a struct mapped_device as a key.
603 */
604 static struct dm_thin_pool_table {
605 struct mutex mutex;
606 struct list_head pools;
607 } dm_thin_pool_table;
608
609 static void pool_table_init(void)
610 {
611 mutex_init(&dm_thin_pool_table.mutex);
612 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
613 }
614
615 static void __pool_table_insert(struct pool *pool)
616 {
617 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
618 list_add(&pool->list, &dm_thin_pool_table.pools);
619 }
620
621 static void __pool_table_remove(struct pool *pool)
622 {
623 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
624 list_del(&pool->list);
625 }
626
627 static struct pool *__pool_table_lookup(struct mapped_device *md)
628 {
629 struct pool *pool = NULL, *tmp;
630
631 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
632
633 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
634 if (tmp->pool_md == md) {
635 pool = tmp;
636 break;
637 }
638 }
639
640 return pool;
641 }
642
643 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
644 {
645 struct pool *pool = NULL, *tmp;
646
647 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
648
649 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
650 if (tmp->md_dev == md_dev) {
651 pool = tmp;
652 break;
653 }
654 }
655
656 return pool;
657 }
658
659 /*----------------------------------------------------------------*/
660
661 struct dm_thin_endio_hook {
662 struct thin_c *tc;
663 struct deferred_entry *shared_read_entry;
664 struct deferred_entry *all_io_entry;
665 struct dm_thin_new_mapping *overwrite_mapping;
666 };
667
668 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
669 {
670 struct bio *bio;
671 struct bio_list bios;
672
673 bio_list_init(&bios);
674 bio_list_merge(&bios, master);
675 bio_list_init(master);
676
677 while ((bio = bio_list_pop(&bios))) {
678 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
679
680 if (h->tc == tc)
681 bio_endio(bio, DM_ENDIO_REQUEUE);
682 else
683 bio_list_add(master, bio);
684 }
685 }
686
687 static void requeue_io(struct thin_c *tc)
688 {
689 struct pool *pool = tc->pool;
690 unsigned long flags;
691
692 spin_lock_irqsave(&pool->lock, flags);
693 __requeue_bio_list(tc, &pool->deferred_bios);
694 __requeue_bio_list(tc, &pool->retry_on_resume_list);
695 spin_unlock_irqrestore(&pool->lock, flags);
696 }
697
698 /*
699 * This section of code contains the logic for processing a thin device's IO.
700 * Much of the code depends on pool object resources (lists, workqueues, etc)
701 * but most is exclusively called from the thin target rather than the thin-pool
702 * target.
703 */
704
705 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
706 {
707 sector_t block_nr = bio->bi_sector;
708
709 if (tc->pool->sectors_per_block_shift < 0)
710 (void) sector_div(block_nr, tc->pool->sectors_per_block);
711 else
712 block_nr >>= tc->pool->sectors_per_block_shift;
713
714 return block_nr;
715 }
716
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719 struct pool *pool = tc->pool;
720 sector_t bi_sector = bio->bi_sector;
721
722 bio->bi_bdev = tc->pool_dev->bdev;
723 if (tc->pool->sectors_per_block_shift < 0)
724 bio->bi_sector = (block * pool->sectors_per_block) +
725 sector_div(bi_sector, pool->sectors_per_block);
726 else
727 bio->bi_sector = (block << pool->sectors_per_block_shift) |
728 (bi_sector & (pool->sectors_per_block - 1));
729 }
730
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733 bio->bi_bdev = tc->origin_dev->bdev;
734 }
735
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
739 dm_thin_changed_this_transaction(tc->td);
740 }
741
742 static void issue(struct thin_c *tc, struct bio *bio)
743 {
744 struct pool *pool = tc->pool;
745 unsigned long flags;
746
747 if (!bio_triggers_commit(tc, bio)) {
748 generic_make_request(bio);
749 return;
750 }
751
752 /*
753 * Complete bio with an error if earlier I/O caused changes to
754 * the metadata that can't be committed e.g, due to I/O errors
755 * on the metadata device.
756 */
757 if (dm_thin_aborted_changes(tc->td)) {
758 bio_io_error(bio);
759 return;
760 }
761
762 /*
763 * Batch together any bios that trigger commits and then issue a
764 * single commit for them in process_deferred_bios().
765 */
766 spin_lock_irqsave(&pool->lock, flags);
767 bio_list_add(&pool->deferred_flush_bios, bio);
768 spin_unlock_irqrestore(&pool->lock, flags);
769 }
770
771 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
772 {
773 remap_to_origin(tc, bio);
774 issue(tc, bio);
775 }
776
777 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
778 dm_block_t block)
779 {
780 remap(tc, bio, block);
781 issue(tc, bio);
782 }
783
784 /*
785 * wake_worker() is used when new work is queued and when pool_resume is
786 * ready to continue deferred IO processing.
787 */
788 static void wake_worker(struct pool *pool)
789 {
790 queue_work(pool->wq, &pool->worker);
791 }
792
793 /*----------------------------------------------------------------*/
794
795 /*
796 * Bio endio functions.
797 */
798 struct dm_thin_new_mapping {
799 struct list_head list;
800
801 unsigned quiesced:1;
802 unsigned prepared:1;
803 unsigned pass_discard:1;
804
805 struct thin_c *tc;
806 dm_block_t virt_block;
807 dm_block_t data_block;
808 struct dm_bio_prison_cell *cell, *cell2;
809 int err;
810
811 /*
812 * If the bio covers the whole area of a block then we can avoid
813 * zeroing or copying. Instead this bio is hooked. The bio will
814 * still be in the cell, so care has to be taken to avoid issuing
815 * the bio twice.
816 */
817 struct bio *bio;
818 bio_end_io_t *saved_bi_end_io;
819 };
820
821 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
822 {
823 struct pool *pool = m->tc->pool;
824
825 if (m->quiesced && m->prepared) {
826 list_add(&m->list, &pool->prepared_mappings);
827 wake_worker(pool);
828 }
829 }
830
831 static void copy_complete(int read_err, unsigned long write_err, void *context)
832 {
833 unsigned long flags;
834 struct dm_thin_new_mapping *m = context;
835 struct pool *pool = m->tc->pool;
836
837 m->err = read_err || write_err ? -EIO : 0;
838
839 spin_lock_irqsave(&pool->lock, flags);
840 m->prepared = 1;
841 __maybe_add_mapping(m);
842 spin_unlock_irqrestore(&pool->lock, flags);
843 }
844
845 static void overwrite_endio(struct bio *bio, int err)
846 {
847 unsigned long flags;
848 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
849 struct dm_thin_new_mapping *m = h->overwrite_mapping;
850 struct pool *pool = m->tc->pool;
851
852 m->err = err;
853
854 spin_lock_irqsave(&pool->lock, flags);
855 m->prepared = 1;
856 __maybe_add_mapping(m);
857 spin_unlock_irqrestore(&pool->lock, flags);
858 }
859
860 /*----------------------------------------------------------------*/
861
862 /*
863 * Workqueue.
864 */
865
866 /*
867 * Prepared mapping jobs.
868 */
869
870 /*
871 * This sends the bios in the cell back to the deferred_bios list.
872 */
873 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
874 dm_block_t data_block)
875 {
876 struct pool *pool = tc->pool;
877 unsigned long flags;
878
879 spin_lock_irqsave(&pool->lock, flags);
880 cell_release(cell, &pool->deferred_bios);
881 spin_unlock_irqrestore(&tc->pool->lock, flags);
882
883 wake_worker(pool);
884 }
885
886 /*
887 * Same as cell_defer above, except it omits one particular detainee,
888 * a write bio that covers the block and has already been processed.
889 */
890 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
891 {
892 struct bio_list bios;
893 struct pool *pool = tc->pool;
894 unsigned long flags;
895
896 bio_list_init(&bios);
897
898 spin_lock_irqsave(&pool->lock, flags);
899 cell_release_no_holder(cell, &pool->deferred_bios);
900 spin_unlock_irqrestore(&pool->lock, flags);
901
902 wake_worker(pool);
903 }
904
905 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
906 {
907 if (m->bio)
908 m->bio->bi_end_io = m->saved_bi_end_io;
909 cell_error(m->cell);
910 list_del(&m->list);
911 mempool_free(m, m->tc->pool->mapping_pool);
912 }
913 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
914 {
915 struct thin_c *tc = m->tc;
916 struct bio *bio;
917 int r;
918
919 bio = m->bio;
920 if (bio)
921 bio->bi_end_io = m->saved_bi_end_io;
922
923 if (m->err) {
924 cell_error(m->cell);
925 goto out;
926 }
927
928 /*
929 * Commit the prepared block into the mapping btree.
930 * Any I/O for this block arriving after this point will get
931 * remapped to it directly.
932 */
933 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
934 if (r) {
935 DMERR("dm_thin_insert_block() failed");
936 cell_error(m->cell);
937 goto out;
938 }
939
940 /*
941 * Release any bios held while the block was being provisioned.
942 * If we are processing a write bio that completely covers the block,
943 * we already processed it so can ignore it now when processing
944 * the bios in the cell.
945 */
946 if (bio) {
947 cell_defer_except(tc, m->cell);
948 bio_endio(bio, 0);
949 } else
950 cell_defer(tc, m->cell, m->data_block);
951
952 out:
953 list_del(&m->list);
954 mempool_free(m, tc->pool->mapping_pool);
955 }
956
957 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
958 {
959 struct thin_c *tc = m->tc;
960
961 bio_io_error(m->bio);
962 cell_defer_except(tc, m->cell);
963 cell_defer_except(tc, m->cell2);
964 mempool_free(m, tc->pool->mapping_pool);
965 }
966
967 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
968 {
969 struct thin_c *tc = m->tc;
970
971 if (m->pass_discard)
972 remap_and_issue(tc, m->bio, m->data_block);
973 else
974 bio_endio(m->bio, 0);
975
976 cell_defer_except(tc, m->cell);
977 cell_defer_except(tc, m->cell2);
978 mempool_free(m, tc->pool->mapping_pool);
979 }
980
981 static void process_prepared_discard(struct dm_thin_new_mapping *m)
982 {
983 int r;
984 struct thin_c *tc = m->tc;
985
986 r = dm_thin_remove_block(tc->td, m->virt_block);
987 if (r)
988 DMERR("dm_thin_remove_block() failed");
989
990 process_prepared_discard_passdown(m);
991 }
992
993 static void process_prepared(struct pool *pool, struct list_head *head,
994 process_mapping_fn *fn)
995 {
996 unsigned long flags;
997 struct list_head maps;
998 struct dm_thin_new_mapping *m, *tmp;
999
1000 INIT_LIST_HEAD(&maps);
1001 spin_lock_irqsave(&pool->lock, flags);
1002 list_splice_init(head, &maps);
1003 spin_unlock_irqrestore(&pool->lock, flags);
1004
1005 list_for_each_entry_safe(m, tmp, &maps, list)
1006 (*fn)(m);
1007 }
1008
1009 /*
1010 * Deferred bio jobs.
1011 */
1012 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1013 {
1014 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1015 }
1016
1017 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1018 {
1019 return (bio_data_dir(bio) == WRITE) &&
1020 io_overlaps_block(pool, bio);
1021 }
1022
1023 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1024 bio_end_io_t *fn)
1025 {
1026 *save = bio->bi_end_io;
1027 bio->bi_end_io = fn;
1028 }
1029
1030 static int ensure_next_mapping(struct pool *pool)
1031 {
1032 if (pool->next_mapping)
1033 return 0;
1034
1035 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1036
1037 return pool->next_mapping ? 0 : -ENOMEM;
1038 }
1039
1040 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1041 {
1042 struct dm_thin_new_mapping *r = pool->next_mapping;
1043
1044 BUG_ON(!pool->next_mapping);
1045
1046 pool->next_mapping = NULL;
1047
1048 return r;
1049 }
1050
1051 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1052 struct dm_dev *origin, dm_block_t data_origin,
1053 dm_block_t data_dest,
1054 struct dm_bio_prison_cell *cell, struct bio *bio)
1055 {
1056 int r;
1057 struct pool *pool = tc->pool;
1058 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1059
1060 INIT_LIST_HEAD(&m->list);
1061 m->quiesced = 0;
1062 m->prepared = 0;
1063 m->tc = tc;
1064 m->virt_block = virt_block;
1065 m->data_block = data_dest;
1066 m->cell = cell;
1067 m->err = 0;
1068 m->bio = NULL;
1069
1070 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1071 m->quiesced = 1;
1072
1073 /*
1074 * IO to pool_dev remaps to the pool target's data_dev.
1075 *
1076 * If the whole block of data is being overwritten, we can issue the
1077 * bio immediately. Otherwise we use kcopyd to clone the data first.
1078 */
1079 if (io_overwrites_block(pool, bio)) {
1080 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1081
1082 h->overwrite_mapping = m;
1083 m->bio = bio;
1084 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1085 remap_and_issue(tc, bio, data_dest);
1086 } else {
1087 struct dm_io_region from, to;
1088
1089 from.bdev = origin->bdev;
1090 from.sector = data_origin * pool->sectors_per_block;
1091 from.count = pool->sectors_per_block;
1092
1093 to.bdev = tc->pool_dev->bdev;
1094 to.sector = data_dest * pool->sectors_per_block;
1095 to.count = pool->sectors_per_block;
1096
1097 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1098 0, copy_complete, m);
1099 if (r < 0) {
1100 mempool_free(m, pool->mapping_pool);
1101 DMERR("dm_kcopyd_copy() failed");
1102 cell_error(cell);
1103 }
1104 }
1105 }
1106
1107 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1108 dm_block_t data_origin, dm_block_t data_dest,
1109 struct dm_bio_prison_cell *cell, struct bio *bio)
1110 {
1111 schedule_copy(tc, virt_block, tc->pool_dev,
1112 data_origin, data_dest, cell, bio);
1113 }
1114
1115 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1116 dm_block_t data_dest,
1117 struct dm_bio_prison_cell *cell, struct bio *bio)
1118 {
1119 schedule_copy(tc, virt_block, tc->origin_dev,
1120 virt_block, data_dest, cell, bio);
1121 }
1122
1123 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1124 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1125 struct bio *bio)
1126 {
1127 struct pool *pool = tc->pool;
1128 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1129
1130 INIT_LIST_HEAD(&m->list);
1131 m->quiesced = 1;
1132 m->prepared = 0;
1133 m->tc = tc;
1134 m->virt_block = virt_block;
1135 m->data_block = data_block;
1136 m->cell = cell;
1137 m->err = 0;
1138 m->bio = NULL;
1139
1140 /*
1141 * If the whole block of data is being overwritten or we are not
1142 * zeroing pre-existing data, we can issue the bio immediately.
1143 * Otherwise we use kcopyd to zero the data first.
1144 */
1145 if (!pool->pf.zero_new_blocks)
1146 process_prepared_mapping(m);
1147
1148 else if (io_overwrites_block(pool, bio)) {
1149 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1150
1151 h->overwrite_mapping = m;
1152 m->bio = bio;
1153 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1154 remap_and_issue(tc, bio, data_block);
1155 } else {
1156 int r;
1157 struct dm_io_region to;
1158
1159 to.bdev = tc->pool_dev->bdev;
1160 to.sector = data_block * pool->sectors_per_block;
1161 to.count = pool->sectors_per_block;
1162
1163 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1164 if (r < 0) {
1165 mempool_free(m, pool->mapping_pool);
1166 DMERR("dm_kcopyd_zero() failed");
1167 cell_error(cell);
1168 }
1169 }
1170 }
1171
1172 static int commit(struct pool *pool)
1173 {
1174 int r;
1175
1176 r = dm_pool_commit_metadata(pool->pmd);
1177 if (r)
1178 DMERR("commit failed, error = %d", r);
1179
1180 return r;
1181 }
1182
1183 /*
1184 * A non-zero return indicates read_only or fail_io mode.
1185 * Many callers don't care about the return value.
1186 */
1187 static int commit_or_fallback(struct pool *pool)
1188 {
1189 int r;
1190
1191 if (get_pool_mode(pool) != PM_WRITE)
1192 return -EINVAL;
1193
1194 r = commit(pool);
1195 if (r)
1196 set_pool_mode(pool, PM_READ_ONLY);
1197
1198 return r;
1199 }
1200
1201 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1202 {
1203 int r;
1204 dm_block_t free_blocks;
1205 unsigned long flags;
1206 struct pool *pool = tc->pool;
1207
1208 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1209 if (r)
1210 return r;
1211
1212 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1213 DMWARN("%s: reached low water mark, sending event.",
1214 dm_device_name(pool->pool_md));
1215 spin_lock_irqsave(&pool->lock, flags);
1216 pool->low_water_triggered = 1;
1217 spin_unlock_irqrestore(&pool->lock, flags);
1218 dm_table_event(pool->ti->table);
1219 }
1220
1221 if (!free_blocks) {
1222 if (pool->no_free_space)
1223 return -ENOSPC;
1224 else {
1225 /*
1226 * Try to commit to see if that will free up some
1227 * more space.
1228 */
1229 (void) commit_or_fallback(pool);
1230
1231 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1232 if (r)
1233 return r;
1234
1235 /*
1236 * If we still have no space we set a flag to avoid
1237 * doing all this checking and return -ENOSPC.
1238 */
1239 if (!free_blocks) {
1240 DMWARN("%s: no free space available.",
1241 dm_device_name(pool->pool_md));
1242 spin_lock_irqsave(&pool->lock, flags);
1243 pool->no_free_space = 1;
1244 spin_unlock_irqrestore(&pool->lock, flags);
1245 return -ENOSPC;
1246 }
1247 }
1248 }
1249
1250 r = dm_pool_alloc_data_block(pool->pmd, result);
1251 if (r)
1252 return r;
1253
1254 return 0;
1255 }
1256
1257 /*
1258 * If we have run out of space, queue bios until the device is
1259 * resumed, presumably after having been reloaded with more space.
1260 */
1261 static void retry_on_resume(struct bio *bio)
1262 {
1263 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1264 struct thin_c *tc = h->tc;
1265 struct pool *pool = tc->pool;
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&pool->lock, flags);
1269 bio_list_add(&pool->retry_on_resume_list, bio);
1270 spin_unlock_irqrestore(&pool->lock, flags);
1271 }
1272
1273 static void no_space(struct dm_bio_prison_cell *cell)
1274 {
1275 struct bio *bio;
1276 struct bio_list bios;
1277
1278 bio_list_init(&bios);
1279 cell_release(cell, &bios);
1280
1281 while ((bio = bio_list_pop(&bios)))
1282 retry_on_resume(bio);
1283 }
1284
1285 static void process_discard(struct thin_c *tc, struct bio *bio)
1286 {
1287 int r;
1288 unsigned long flags;
1289 struct pool *pool = tc->pool;
1290 struct dm_bio_prison_cell *cell, *cell2;
1291 struct cell_key key, key2;
1292 dm_block_t block = get_bio_block(tc, bio);
1293 struct dm_thin_lookup_result lookup_result;
1294 struct dm_thin_new_mapping *m;
1295
1296 build_virtual_key(tc->td, block, &key);
1297 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1298 return;
1299
1300 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1301 switch (r) {
1302 case 0:
1303 /*
1304 * Check nobody is fiddling with this pool block. This can
1305 * happen if someone's in the process of breaking sharing
1306 * on this block.
1307 */
1308 build_data_key(tc->td, lookup_result.block, &key2);
1309 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1310 cell_release_singleton(cell, bio);
1311 break;
1312 }
1313
1314 if (io_overlaps_block(pool, bio)) {
1315 /*
1316 * IO may still be going to the destination block. We must
1317 * quiesce before we can do the removal.
1318 */
1319 m = get_next_mapping(pool);
1320 m->tc = tc;
1321 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1322 m->virt_block = block;
1323 m->data_block = lookup_result.block;
1324 m->cell = cell;
1325 m->cell2 = cell2;
1326 m->err = 0;
1327 m->bio = bio;
1328
1329 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1330 spin_lock_irqsave(&pool->lock, flags);
1331 list_add(&m->list, &pool->prepared_discards);
1332 spin_unlock_irqrestore(&pool->lock, flags);
1333 wake_worker(pool);
1334 }
1335 } else {
1336 /*
1337 * The DM core makes sure that the discard doesn't span
1338 * a block boundary. So we submit the discard of a
1339 * partial block appropriately.
1340 */
1341 cell_release_singleton(cell, bio);
1342 cell_release_singleton(cell2, bio);
1343 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1344 remap_and_issue(tc, bio, lookup_result.block);
1345 else
1346 bio_endio(bio, 0);
1347 }
1348 break;
1349
1350 case -ENODATA:
1351 /*
1352 * It isn't provisioned, just forget it.
1353 */
1354 cell_release_singleton(cell, bio);
1355 bio_endio(bio, 0);
1356 break;
1357
1358 default:
1359 DMERR("discard: find block unexpectedly returned %d", r);
1360 cell_release_singleton(cell, bio);
1361 bio_io_error(bio);
1362 break;
1363 }
1364 }
1365
1366 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1367 struct cell_key *key,
1368 struct dm_thin_lookup_result *lookup_result,
1369 struct dm_bio_prison_cell *cell)
1370 {
1371 int r;
1372 dm_block_t data_block;
1373
1374 r = alloc_data_block(tc, &data_block);
1375 switch (r) {
1376 case 0:
1377 schedule_internal_copy(tc, block, lookup_result->block,
1378 data_block, cell, bio);
1379 break;
1380
1381 case -ENOSPC:
1382 no_space(cell);
1383 break;
1384
1385 default:
1386 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1387 cell_error(cell);
1388 break;
1389 }
1390 }
1391
1392 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1393 dm_block_t block,
1394 struct dm_thin_lookup_result *lookup_result)
1395 {
1396 struct dm_bio_prison_cell *cell;
1397 struct pool *pool = tc->pool;
1398 struct cell_key key;
1399
1400 /*
1401 * If cell is already occupied, then sharing is already in the process
1402 * of being broken so we have nothing further to do here.
1403 */
1404 build_data_key(tc->td, lookup_result->block, &key);
1405 if (bio_detain(pool->prison, &key, bio, &cell))
1406 return;
1407
1408 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1409 break_sharing(tc, bio, block, &key, lookup_result, cell);
1410 else {
1411 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1412
1413 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1414
1415 cell_release_singleton(cell, bio);
1416 remap_and_issue(tc, bio, lookup_result->block);
1417 }
1418 }
1419
1420 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1421 struct dm_bio_prison_cell *cell)
1422 {
1423 int r;
1424 dm_block_t data_block;
1425
1426 /*
1427 * Remap empty bios (flushes) immediately, without provisioning.
1428 */
1429 if (!bio->bi_size) {
1430 cell_release_singleton(cell, bio);
1431 remap_and_issue(tc, bio, 0);
1432 return;
1433 }
1434
1435 /*
1436 * Fill read bios with zeroes and complete them immediately.
1437 */
1438 if (bio_data_dir(bio) == READ) {
1439 zero_fill_bio(bio);
1440 cell_release_singleton(cell, bio);
1441 bio_endio(bio, 0);
1442 return;
1443 }
1444
1445 r = alloc_data_block(tc, &data_block);
1446 switch (r) {
1447 case 0:
1448 if (tc->origin_dev)
1449 schedule_external_copy(tc, block, data_block, cell, bio);
1450 else
1451 schedule_zero(tc, block, data_block, cell, bio);
1452 break;
1453
1454 case -ENOSPC:
1455 no_space(cell);
1456 break;
1457
1458 default:
1459 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1460 set_pool_mode(tc->pool, PM_READ_ONLY);
1461 cell_error(cell);
1462 break;
1463 }
1464 }
1465
1466 static void process_bio(struct thin_c *tc, struct bio *bio)
1467 {
1468 int r;
1469 dm_block_t block = get_bio_block(tc, bio);
1470 struct dm_bio_prison_cell *cell;
1471 struct cell_key key;
1472 struct dm_thin_lookup_result lookup_result;
1473
1474 /*
1475 * If cell is already occupied, then the block is already
1476 * being provisioned so we have nothing further to do here.
1477 */
1478 build_virtual_key(tc->td, block, &key);
1479 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1480 return;
1481
1482 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1483 switch (r) {
1484 case 0:
1485 /*
1486 * We can release this cell now. This thread is the only
1487 * one that puts bios into a cell, and we know there were
1488 * no preceding bios.
1489 */
1490 /*
1491 * TODO: this will probably have to change when discard goes
1492 * back in.
1493 */
1494 cell_release_singleton(cell, bio);
1495
1496 if (lookup_result.shared)
1497 process_shared_bio(tc, bio, block, &lookup_result);
1498 else
1499 remap_and_issue(tc, bio, lookup_result.block);
1500 break;
1501
1502 case -ENODATA:
1503 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1504 cell_release_singleton(cell, bio);
1505 remap_to_origin_and_issue(tc, bio);
1506 } else
1507 provision_block(tc, bio, block, cell);
1508 break;
1509
1510 default:
1511 DMERR("dm_thin_find_block() failed, error = %d", r);
1512 cell_release_singleton(cell, bio);
1513 bio_io_error(bio);
1514 break;
1515 }
1516 }
1517
1518 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1519 {
1520 int r;
1521 int rw = bio_data_dir(bio);
1522 dm_block_t block = get_bio_block(tc, bio);
1523 struct dm_thin_lookup_result lookup_result;
1524
1525 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1526 switch (r) {
1527 case 0:
1528 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1529 bio_io_error(bio);
1530 else
1531 remap_and_issue(tc, bio, lookup_result.block);
1532 break;
1533
1534 case -ENODATA:
1535 if (rw != READ) {
1536 bio_io_error(bio);
1537 break;
1538 }
1539
1540 if (tc->origin_dev) {
1541 remap_to_origin_and_issue(tc, bio);
1542 break;
1543 }
1544
1545 zero_fill_bio(bio);
1546 bio_endio(bio, 0);
1547 break;
1548
1549 default:
1550 DMERR("dm_thin_find_block() failed, error = %d", r);
1551 bio_io_error(bio);
1552 break;
1553 }
1554 }
1555
1556 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1557 {
1558 bio_io_error(bio);
1559 }
1560
1561 static int need_commit_due_to_time(struct pool *pool)
1562 {
1563 return jiffies < pool->last_commit_jiffies ||
1564 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1565 }
1566
1567 static void process_deferred_bios(struct pool *pool)
1568 {
1569 unsigned long flags;
1570 struct bio *bio;
1571 struct bio_list bios;
1572
1573 bio_list_init(&bios);
1574
1575 spin_lock_irqsave(&pool->lock, flags);
1576 bio_list_merge(&bios, &pool->deferred_bios);
1577 bio_list_init(&pool->deferred_bios);
1578 spin_unlock_irqrestore(&pool->lock, flags);
1579
1580 while ((bio = bio_list_pop(&bios))) {
1581 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1582 struct thin_c *tc = h->tc;
1583
1584 /*
1585 * If we've got no free new_mapping structs, and processing
1586 * this bio might require one, we pause until there are some
1587 * prepared mappings to process.
1588 */
1589 if (ensure_next_mapping(pool)) {
1590 spin_lock_irqsave(&pool->lock, flags);
1591 bio_list_merge(&pool->deferred_bios, &bios);
1592 spin_unlock_irqrestore(&pool->lock, flags);
1593
1594 break;
1595 }
1596
1597 if (bio->bi_rw & REQ_DISCARD)
1598 pool->process_discard(tc, bio);
1599 else
1600 pool->process_bio(tc, bio);
1601 }
1602
1603 /*
1604 * If there are any deferred flush bios, we must commit
1605 * the metadata before issuing them.
1606 */
1607 bio_list_init(&bios);
1608 spin_lock_irqsave(&pool->lock, flags);
1609 bio_list_merge(&bios, &pool->deferred_flush_bios);
1610 bio_list_init(&pool->deferred_flush_bios);
1611 spin_unlock_irqrestore(&pool->lock, flags);
1612
1613 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1614 return;
1615
1616 if (commit_or_fallback(pool)) {
1617 while ((bio = bio_list_pop(&bios)))
1618 bio_io_error(bio);
1619 return;
1620 }
1621 pool->last_commit_jiffies = jiffies;
1622
1623 while ((bio = bio_list_pop(&bios)))
1624 generic_make_request(bio);
1625 }
1626
1627 static void do_worker(struct work_struct *ws)
1628 {
1629 struct pool *pool = container_of(ws, struct pool, worker);
1630
1631 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1632 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1633 process_deferred_bios(pool);
1634 }
1635
1636 /*
1637 * We want to commit periodically so that not too much
1638 * unwritten data builds up.
1639 */
1640 static void do_waker(struct work_struct *ws)
1641 {
1642 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1643 wake_worker(pool);
1644 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1645 }
1646
1647 /*----------------------------------------------------------------*/
1648
1649 static enum pool_mode get_pool_mode(struct pool *pool)
1650 {
1651 return pool->pf.mode;
1652 }
1653
1654 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1655 {
1656 int r;
1657
1658 pool->pf.mode = mode;
1659
1660 switch (mode) {
1661 case PM_FAIL:
1662 DMERR("switching pool to failure mode");
1663 pool->process_bio = process_bio_fail;
1664 pool->process_discard = process_bio_fail;
1665 pool->process_prepared_mapping = process_prepared_mapping_fail;
1666 pool->process_prepared_discard = process_prepared_discard_fail;
1667 break;
1668
1669 case PM_READ_ONLY:
1670 DMERR("switching pool to read-only mode");
1671 r = dm_pool_abort_metadata(pool->pmd);
1672 if (r) {
1673 DMERR("aborting transaction failed");
1674 set_pool_mode(pool, PM_FAIL);
1675 } else {
1676 dm_pool_metadata_read_only(pool->pmd);
1677 pool->process_bio = process_bio_read_only;
1678 pool->process_discard = process_discard;
1679 pool->process_prepared_mapping = process_prepared_mapping_fail;
1680 pool->process_prepared_discard = process_prepared_discard_passdown;
1681 }
1682 break;
1683
1684 case PM_WRITE:
1685 pool->process_bio = process_bio;
1686 pool->process_discard = process_discard;
1687 pool->process_prepared_mapping = process_prepared_mapping;
1688 pool->process_prepared_discard = process_prepared_discard;
1689 break;
1690 }
1691 }
1692
1693 /*----------------------------------------------------------------*/
1694
1695 /*
1696 * Mapping functions.
1697 */
1698
1699 /*
1700 * Called only while mapping a thin bio to hand it over to the workqueue.
1701 */
1702 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1703 {
1704 unsigned long flags;
1705 struct pool *pool = tc->pool;
1706
1707 spin_lock_irqsave(&pool->lock, flags);
1708 bio_list_add(&pool->deferred_bios, bio);
1709 spin_unlock_irqrestore(&pool->lock, flags);
1710
1711 wake_worker(pool);
1712 }
1713
1714 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1715 {
1716 struct pool *pool = tc->pool;
1717 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1718
1719 h->tc = tc;
1720 h->shared_read_entry = NULL;
1721 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1722 h->overwrite_mapping = NULL;
1723
1724 return h;
1725 }
1726
1727 /*
1728 * Non-blocking function called from the thin target's map function.
1729 */
1730 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1731 union map_info *map_context)
1732 {
1733 int r;
1734 struct thin_c *tc = ti->private;
1735 dm_block_t block = get_bio_block(tc, bio);
1736 struct dm_thin_device *td = tc->td;
1737 struct dm_thin_lookup_result result;
1738
1739 map_context->ptr = thin_hook_bio(tc, bio);
1740
1741 if (get_pool_mode(tc->pool) == PM_FAIL) {
1742 bio_io_error(bio);
1743 return DM_MAPIO_SUBMITTED;
1744 }
1745
1746 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1747 thin_defer_bio(tc, bio);
1748 return DM_MAPIO_SUBMITTED;
1749 }
1750
1751 r = dm_thin_find_block(td, block, 0, &result);
1752
1753 /*
1754 * Note that we defer readahead too.
1755 */
1756 switch (r) {
1757 case 0:
1758 if (unlikely(result.shared)) {
1759 /*
1760 * We have a race condition here between the
1761 * result.shared value returned by the lookup and
1762 * snapshot creation, which may cause new
1763 * sharing.
1764 *
1765 * To avoid this always quiesce the origin before
1766 * taking the snap. You want to do this anyway to
1767 * ensure a consistent application view
1768 * (i.e. lockfs).
1769 *
1770 * More distant ancestors are irrelevant. The
1771 * shared flag will be set in their case.
1772 */
1773 thin_defer_bio(tc, bio);
1774 r = DM_MAPIO_SUBMITTED;
1775 } else {
1776 remap(tc, bio, result.block);
1777 r = DM_MAPIO_REMAPPED;
1778 }
1779 break;
1780
1781 case -ENODATA:
1782 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1783 /*
1784 * This block isn't provisioned, and we have no way
1785 * of doing so. Just error it.
1786 */
1787 bio_io_error(bio);
1788 r = DM_MAPIO_SUBMITTED;
1789 break;
1790 }
1791 /* fall through */
1792
1793 case -EWOULDBLOCK:
1794 /*
1795 * In future, the failed dm_thin_find_block above could
1796 * provide the hint to load the metadata into cache.
1797 */
1798 thin_defer_bio(tc, bio);
1799 r = DM_MAPIO_SUBMITTED;
1800 break;
1801
1802 default:
1803 /*
1804 * Must always call bio_io_error on failure.
1805 * dm_thin_find_block can fail with -EINVAL if the
1806 * pool is switched to fail-io mode.
1807 */
1808 bio_io_error(bio);
1809 r = DM_MAPIO_SUBMITTED;
1810 break;
1811 }
1812
1813 return r;
1814 }
1815
1816 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1817 {
1818 int r;
1819 unsigned long flags;
1820 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1821
1822 spin_lock_irqsave(&pt->pool->lock, flags);
1823 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1824 spin_unlock_irqrestore(&pt->pool->lock, flags);
1825
1826 if (!r) {
1827 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1828 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1829 }
1830
1831 return r;
1832 }
1833
1834 static void __requeue_bios(struct pool *pool)
1835 {
1836 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1837 bio_list_init(&pool->retry_on_resume_list);
1838 }
1839
1840 /*----------------------------------------------------------------
1841 * Binding of control targets to a pool object
1842 *--------------------------------------------------------------*/
1843 static bool data_dev_supports_discard(struct pool_c *pt)
1844 {
1845 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1846
1847 return q && blk_queue_discard(q);
1848 }
1849
1850 /*
1851 * If discard_passdown was enabled verify that the data device
1852 * supports discards. Disable discard_passdown if not.
1853 */
1854 static void disable_passdown_if_not_supported(struct pool_c *pt)
1855 {
1856 struct pool *pool = pt->pool;
1857 struct block_device *data_bdev = pt->data_dev->bdev;
1858 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1859 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1860 const char *reason = NULL;
1861 char buf[BDEVNAME_SIZE];
1862
1863 if (!pt->adjusted_pf.discard_passdown)
1864 return;
1865
1866 if (!data_dev_supports_discard(pt))
1867 reason = "discard unsupported";
1868
1869 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1870 reason = "max discard sectors smaller than a block";
1871
1872 else if (data_limits->discard_granularity > block_size)
1873 reason = "discard granularity larger than a block";
1874
1875 else if (block_size & (data_limits->discard_granularity - 1))
1876 reason = "discard granularity not a factor of block size";
1877
1878 if (reason) {
1879 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1880 pt->adjusted_pf.discard_passdown = false;
1881 }
1882 }
1883
1884 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1885 {
1886 struct pool_c *pt = ti->private;
1887
1888 /*
1889 * We want to make sure that degraded pools are never upgraded.
1890 */
1891 enum pool_mode old_mode = pool->pf.mode;
1892 enum pool_mode new_mode = pt->adjusted_pf.mode;
1893
1894 if (old_mode > new_mode)
1895 new_mode = old_mode;
1896
1897 pool->ti = ti;
1898 pool->low_water_blocks = pt->low_water_blocks;
1899 pool->pf = pt->adjusted_pf;
1900
1901 set_pool_mode(pool, new_mode);
1902
1903 return 0;
1904 }
1905
1906 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1907 {
1908 if (pool->ti == ti)
1909 pool->ti = NULL;
1910 }
1911
1912 /*----------------------------------------------------------------
1913 * Pool creation
1914 *--------------------------------------------------------------*/
1915 /* Initialize pool features. */
1916 static void pool_features_init(struct pool_features *pf)
1917 {
1918 pf->mode = PM_WRITE;
1919 pf->zero_new_blocks = true;
1920 pf->discard_enabled = true;
1921 pf->discard_passdown = true;
1922 }
1923
1924 static void __pool_destroy(struct pool *pool)
1925 {
1926 __pool_table_remove(pool);
1927
1928 if (dm_pool_metadata_close(pool->pmd) < 0)
1929 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1930
1931 prison_destroy(pool->prison);
1932 dm_kcopyd_client_destroy(pool->copier);
1933
1934 if (pool->wq)
1935 destroy_workqueue(pool->wq);
1936
1937 if (pool->next_mapping)
1938 mempool_free(pool->next_mapping, pool->mapping_pool);
1939 mempool_destroy(pool->mapping_pool);
1940 mempool_destroy(pool->endio_hook_pool);
1941 kfree(pool);
1942 }
1943
1944 static struct kmem_cache *_new_mapping_cache;
1945 static struct kmem_cache *_endio_hook_cache;
1946
1947 static struct pool *pool_create(struct mapped_device *pool_md,
1948 struct block_device *metadata_dev,
1949 unsigned long block_size,
1950 int read_only, char **error)
1951 {
1952 int r;
1953 void *err_p;
1954 struct pool *pool;
1955 struct dm_pool_metadata *pmd;
1956 bool format_device = read_only ? false : true;
1957
1958 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1959 if (IS_ERR(pmd)) {
1960 *error = "Error creating metadata object";
1961 return (struct pool *)pmd;
1962 }
1963
1964 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1965 if (!pool) {
1966 *error = "Error allocating memory for pool";
1967 err_p = ERR_PTR(-ENOMEM);
1968 goto bad_pool;
1969 }
1970
1971 pool->pmd = pmd;
1972 pool->sectors_per_block = block_size;
1973 if (block_size & (block_size - 1))
1974 pool->sectors_per_block_shift = -1;
1975 else
1976 pool->sectors_per_block_shift = __ffs(block_size);
1977 pool->low_water_blocks = 0;
1978 pool_features_init(&pool->pf);
1979 pool->prison = prison_create(PRISON_CELLS);
1980 if (!pool->prison) {
1981 *error = "Error creating pool's bio prison";
1982 err_p = ERR_PTR(-ENOMEM);
1983 goto bad_prison;
1984 }
1985
1986 pool->copier = dm_kcopyd_client_create();
1987 if (IS_ERR(pool->copier)) {
1988 r = PTR_ERR(pool->copier);
1989 *error = "Error creating pool's kcopyd client";
1990 err_p = ERR_PTR(r);
1991 goto bad_kcopyd_client;
1992 }
1993
1994 /*
1995 * Create singlethreaded workqueue that will service all devices
1996 * that use this metadata.
1997 */
1998 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1999 if (!pool->wq) {
2000 *error = "Error creating pool's workqueue";
2001 err_p = ERR_PTR(-ENOMEM);
2002 goto bad_wq;
2003 }
2004
2005 INIT_WORK(&pool->worker, do_worker);
2006 INIT_DELAYED_WORK(&pool->waker, do_waker);
2007 spin_lock_init(&pool->lock);
2008 bio_list_init(&pool->deferred_bios);
2009 bio_list_init(&pool->deferred_flush_bios);
2010 INIT_LIST_HEAD(&pool->prepared_mappings);
2011 INIT_LIST_HEAD(&pool->prepared_discards);
2012 pool->low_water_triggered = 0;
2013 pool->no_free_space = 0;
2014 bio_list_init(&pool->retry_on_resume_list);
2015 ds_init(&pool->shared_read_ds);
2016 ds_init(&pool->all_io_ds);
2017
2018 pool->next_mapping = NULL;
2019 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2020 _new_mapping_cache);
2021 if (!pool->mapping_pool) {
2022 *error = "Error creating pool's mapping mempool";
2023 err_p = ERR_PTR(-ENOMEM);
2024 goto bad_mapping_pool;
2025 }
2026
2027 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2028 _endio_hook_cache);
2029 if (!pool->endio_hook_pool) {
2030 *error = "Error creating pool's endio_hook mempool";
2031 err_p = ERR_PTR(-ENOMEM);
2032 goto bad_endio_hook_pool;
2033 }
2034 pool->ref_count = 1;
2035 pool->last_commit_jiffies = jiffies;
2036 pool->pool_md = pool_md;
2037 pool->md_dev = metadata_dev;
2038 __pool_table_insert(pool);
2039
2040 return pool;
2041
2042 bad_endio_hook_pool:
2043 mempool_destroy(pool->mapping_pool);
2044 bad_mapping_pool:
2045 destroy_workqueue(pool->wq);
2046 bad_wq:
2047 dm_kcopyd_client_destroy(pool->copier);
2048 bad_kcopyd_client:
2049 prison_destroy(pool->prison);
2050 bad_prison:
2051 kfree(pool);
2052 bad_pool:
2053 if (dm_pool_metadata_close(pmd))
2054 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2055
2056 return err_p;
2057 }
2058
2059 static void __pool_inc(struct pool *pool)
2060 {
2061 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2062 pool->ref_count++;
2063 }
2064
2065 static void __pool_dec(struct pool *pool)
2066 {
2067 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2068 BUG_ON(!pool->ref_count);
2069 if (!--pool->ref_count)
2070 __pool_destroy(pool);
2071 }
2072
2073 static struct pool *__pool_find(struct mapped_device *pool_md,
2074 struct block_device *metadata_dev,
2075 unsigned long block_size, int read_only,
2076 char **error, int *created)
2077 {
2078 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2079
2080 if (pool) {
2081 if (pool->pool_md != pool_md) {
2082 *error = "metadata device already in use by a pool";
2083 return ERR_PTR(-EBUSY);
2084 }
2085 __pool_inc(pool);
2086
2087 } else {
2088 pool = __pool_table_lookup(pool_md);
2089 if (pool) {
2090 if (pool->md_dev != metadata_dev) {
2091 *error = "different pool cannot replace a pool";
2092 return ERR_PTR(-EINVAL);
2093 }
2094 __pool_inc(pool);
2095
2096 } else {
2097 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2098 *created = 1;
2099 }
2100 }
2101
2102 return pool;
2103 }
2104
2105 /*----------------------------------------------------------------
2106 * Pool target methods
2107 *--------------------------------------------------------------*/
2108 static void pool_dtr(struct dm_target *ti)
2109 {
2110 struct pool_c *pt = ti->private;
2111
2112 mutex_lock(&dm_thin_pool_table.mutex);
2113
2114 unbind_control_target(pt->pool, ti);
2115 __pool_dec(pt->pool);
2116 dm_put_device(ti, pt->metadata_dev);
2117 dm_put_device(ti, pt->data_dev);
2118 kfree(pt);
2119
2120 mutex_unlock(&dm_thin_pool_table.mutex);
2121 }
2122
2123 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2124 struct dm_target *ti)
2125 {
2126 int r;
2127 unsigned argc;
2128 const char *arg_name;
2129
2130 static struct dm_arg _args[] = {
2131 {0, 3, "Invalid number of pool feature arguments"},
2132 };
2133
2134 /*
2135 * No feature arguments supplied.
2136 */
2137 if (!as->argc)
2138 return 0;
2139
2140 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2141 if (r)
2142 return -EINVAL;
2143
2144 while (argc && !r) {
2145 arg_name = dm_shift_arg(as);
2146 argc--;
2147
2148 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2149 pf->zero_new_blocks = false;
2150
2151 else if (!strcasecmp(arg_name, "ignore_discard"))
2152 pf->discard_enabled = false;
2153
2154 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2155 pf->discard_passdown = false;
2156
2157 else if (!strcasecmp(arg_name, "read_only"))
2158 pf->mode = PM_READ_ONLY;
2159
2160 else {
2161 ti->error = "Unrecognised pool feature requested";
2162 r = -EINVAL;
2163 break;
2164 }
2165 }
2166
2167 return r;
2168 }
2169
2170 /*
2171 * thin-pool <metadata dev> <data dev>
2172 * <data block size (sectors)>
2173 * <low water mark (blocks)>
2174 * [<#feature args> [<arg>]*]
2175 *
2176 * Optional feature arguments are:
2177 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2178 * ignore_discard: disable discard
2179 * no_discard_passdown: don't pass discards down to the data device
2180 */
2181 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2182 {
2183 int r, pool_created = 0;
2184 struct pool_c *pt;
2185 struct pool *pool;
2186 struct pool_features pf;
2187 struct dm_arg_set as;
2188 struct dm_dev *data_dev;
2189 unsigned long block_size;
2190 dm_block_t low_water_blocks;
2191 struct dm_dev *metadata_dev;
2192 sector_t metadata_dev_size;
2193 char b[BDEVNAME_SIZE];
2194
2195 /*
2196 * FIXME Remove validation from scope of lock.
2197 */
2198 mutex_lock(&dm_thin_pool_table.mutex);
2199
2200 if (argc < 4) {
2201 ti->error = "Invalid argument count";
2202 r = -EINVAL;
2203 goto out_unlock;
2204 }
2205 as.argc = argc;
2206 as.argv = argv;
2207
2208 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2209 if (r) {
2210 ti->error = "Error opening metadata block device";
2211 goto out_unlock;
2212 }
2213
2214 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2215 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2216 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2217 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2218
2219 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2220 if (r) {
2221 ti->error = "Error getting data device";
2222 goto out_metadata;
2223 }
2224
2225 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2226 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2227 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2228 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2229 ti->error = "Invalid block size";
2230 r = -EINVAL;
2231 goto out;
2232 }
2233
2234 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2235 ti->error = "Invalid low water mark";
2236 r = -EINVAL;
2237 goto out;
2238 }
2239
2240 /*
2241 * Set default pool features.
2242 */
2243 pool_features_init(&pf);
2244
2245 dm_consume_args(&as, 4);
2246 r = parse_pool_features(&as, &pf, ti);
2247 if (r)
2248 goto out;
2249
2250 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2251 if (!pt) {
2252 r = -ENOMEM;
2253 goto out;
2254 }
2255
2256 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2257 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2258 if (IS_ERR(pool)) {
2259 r = PTR_ERR(pool);
2260 goto out_free_pt;
2261 }
2262
2263 /*
2264 * 'pool_created' reflects whether this is the first table load.
2265 * Top level discard support is not allowed to be changed after
2266 * initial load. This would require a pool reload to trigger thin
2267 * device changes.
2268 */
2269 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2270 ti->error = "Discard support cannot be disabled once enabled";
2271 r = -EINVAL;
2272 goto out_flags_changed;
2273 }
2274
2275 /*
2276 * The block layer requires discard_granularity to be a power of 2.
2277 */
2278 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2279 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2280 r = -EINVAL;
2281 goto out_flags_changed;
2282 }
2283
2284 pt->pool = pool;
2285 pt->ti = ti;
2286 pt->metadata_dev = metadata_dev;
2287 pt->data_dev = data_dev;
2288 pt->low_water_blocks = low_water_blocks;
2289 pt->adjusted_pf = pt->requested_pf = pf;
2290 ti->num_flush_requests = 1;
2291
2292 /*
2293 * Only need to enable discards if the pool should pass
2294 * them down to the data device. The thin device's discard
2295 * processing will cause mappings to be removed from the btree.
2296 */
2297 if (pf.discard_enabled && pf.discard_passdown) {
2298 ti->num_discard_requests = 1;
2299
2300 /*
2301 * Setting 'discards_supported' circumvents the normal
2302 * stacking of discard limits (this keeps the pool and
2303 * thin devices' discard limits consistent).
2304 */
2305 ti->discards_supported = true;
2306 ti->discard_zeroes_data_unsupported = true;
2307 }
2308 ti->private = pt;
2309
2310 pt->callbacks.congested_fn = pool_is_congested;
2311 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2312
2313 mutex_unlock(&dm_thin_pool_table.mutex);
2314
2315 return 0;
2316
2317 out_flags_changed:
2318 __pool_dec(pool);
2319 out_free_pt:
2320 kfree(pt);
2321 out:
2322 dm_put_device(ti, data_dev);
2323 out_metadata:
2324 dm_put_device(ti, metadata_dev);
2325 out_unlock:
2326 mutex_unlock(&dm_thin_pool_table.mutex);
2327
2328 return r;
2329 }
2330
2331 static int pool_map(struct dm_target *ti, struct bio *bio,
2332 union map_info *map_context)
2333 {
2334 int r;
2335 struct pool_c *pt = ti->private;
2336 struct pool *pool = pt->pool;
2337 unsigned long flags;
2338
2339 /*
2340 * As this is a singleton target, ti->begin is always zero.
2341 */
2342 spin_lock_irqsave(&pool->lock, flags);
2343 bio->bi_bdev = pt->data_dev->bdev;
2344 r = DM_MAPIO_REMAPPED;
2345 spin_unlock_irqrestore(&pool->lock, flags);
2346
2347 return r;
2348 }
2349
2350 /*
2351 * Retrieves the number of blocks of the data device from
2352 * the superblock and compares it to the actual device size,
2353 * thus resizing the data device in case it has grown.
2354 *
2355 * This both copes with opening preallocated data devices in the ctr
2356 * being followed by a resume
2357 * -and-
2358 * calling the resume method individually after userspace has
2359 * grown the data device in reaction to a table event.
2360 */
2361 static int pool_preresume(struct dm_target *ti)
2362 {
2363 int r;
2364 struct pool_c *pt = ti->private;
2365 struct pool *pool = pt->pool;
2366 sector_t data_size = ti->len;
2367 dm_block_t sb_data_size;
2368
2369 /*
2370 * Take control of the pool object.
2371 */
2372 r = bind_control_target(pool, ti);
2373 if (r)
2374 return r;
2375
2376 (void) sector_div(data_size, pool->sectors_per_block);
2377
2378 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2379 if (r) {
2380 DMERR("failed to retrieve data device size");
2381 return r;
2382 }
2383
2384 if (data_size < sb_data_size) {
2385 DMERR("pool target too small, is %llu blocks (expected %llu)",
2386 (unsigned long long)data_size, sb_data_size);
2387 return -EINVAL;
2388
2389 } else if (data_size > sb_data_size) {
2390 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2391 if (r) {
2392 DMERR("failed to resize data device");
2393 /* FIXME Stricter than necessary: Rollback transaction instead here */
2394 set_pool_mode(pool, PM_READ_ONLY);
2395 return r;
2396 }
2397
2398 (void) commit_or_fallback(pool);
2399 }
2400
2401 return 0;
2402 }
2403
2404 static void pool_resume(struct dm_target *ti)
2405 {
2406 struct pool_c *pt = ti->private;
2407 struct pool *pool = pt->pool;
2408 unsigned long flags;
2409
2410 spin_lock_irqsave(&pool->lock, flags);
2411 pool->low_water_triggered = 0;
2412 pool->no_free_space = 0;
2413 __requeue_bios(pool);
2414 spin_unlock_irqrestore(&pool->lock, flags);
2415
2416 do_waker(&pool->waker.work);
2417 }
2418
2419 static void pool_postsuspend(struct dm_target *ti)
2420 {
2421 struct pool_c *pt = ti->private;
2422 struct pool *pool = pt->pool;
2423
2424 cancel_delayed_work(&pool->waker);
2425 flush_workqueue(pool->wq);
2426 (void) commit_or_fallback(pool);
2427 }
2428
2429 static int check_arg_count(unsigned argc, unsigned args_required)
2430 {
2431 if (argc != args_required) {
2432 DMWARN("Message received with %u arguments instead of %u.",
2433 argc, args_required);
2434 return -EINVAL;
2435 }
2436
2437 return 0;
2438 }
2439
2440 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2441 {
2442 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2443 *dev_id <= MAX_DEV_ID)
2444 return 0;
2445
2446 if (warning)
2447 DMWARN("Message received with invalid device id: %s", arg);
2448
2449 return -EINVAL;
2450 }
2451
2452 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2453 {
2454 dm_thin_id dev_id;
2455 int r;
2456
2457 r = check_arg_count(argc, 2);
2458 if (r)
2459 return r;
2460
2461 r = read_dev_id(argv[1], &dev_id, 1);
2462 if (r)
2463 return r;
2464
2465 r = dm_pool_create_thin(pool->pmd, dev_id);
2466 if (r) {
2467 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2468 argv[1]);
2469 return r;
2470 }
2471
2472 return 0;
2473 }
2474
2475 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2476 {
2477 dm_thin_id dev_id;
2478 dm_thin_id origin_dev_id;
2479 int r;
2480
2481 r = check_arg_count(argc, 3);
2482 if (r)
2483 return r;
2484
2485 r = read_dev_id(argv[1], &dev_id, 1);
2486 if (r)
2487 return r;
2488
2489 r = read_dev_id(argv[2], &origin_dev_id, 1);
2490 if (r)
2491 return r;
2492
2493 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2494 if (r) {
2495 DMWARN("Creation of new snapshot %s of device %s failed.",
2496 argv[1], argv[2]);
2497 return r;
2498 }
2499
2500 return 0;
2501 }
2502
2503 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2504 {
2505 dm_thin_id dev_id;
2506 int r;
2507
2508 r = check_arg_count(argc, 2);
2509 if (r)
2510 return r;
2511
2512 r = read_dev_id(argv[1], &dev_id, 1);
2513 if (r)
2514 return r;
2515
2516 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2517 if (r)
2518 DMWARN("Deletion of thin device %s failed.", argv[1]);
2519
2520 return r;
2521 }
2522
2523 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2524 {
2525 dm_thin_id old_id, new_id;
2526 int r;
2527
2528 r = check_arg_count(argc, 3);
2529 if (r)
2530 return r;
2531
2532 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2533 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2534 return -EINVAL;
2535 }
2536
2537 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2538 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2539 return -EINVAL;
2540 }
2541
2542 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2543 if (r) {
2544 DMWARN("Failed to change transaction id from %s to %s.",
2545 argv[1], argv[2]);
2546 return r;
2547 }
2548
2549 return 0;
2550 }
2551
2552 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2553 {
2554 int r;
2555
2556 r = check_arg_count(argc, 1);
2557 if (r)
2558 return r;
2559
2560 (void) commit_or_fallback(pool);
2561
2562 r = dm_pool_reserve_metadata_snap(pool->pmd);
2563 if (r)
2564 DMWARN("reserve_metadata_snap message failed.");
2565
2566 return r;
2567 }
2568
2569 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2570 {
2571 int r;
2572
2573 r = check_arg_count(argc, 1);
2574 if (r)
2575 return r;
2576
2577 r = dm_pool_release_metadata_snap(pool->pmd);
2578 if (r)
2579 DMWARN("release_metadata_snap message failed.");
2580
2581 return r;
2582 }
2583
2584 /*
2585 * Messages supported:
2586 * create_thin <dev_id>
2587 * create_snap <dev_id> <origin_id>
2588 * delete <dev_id>
2589 * trim <dev_id> <new_size_in_sectors>
2590 * set_transaction_id <current_trans_id> <new_trans_id>
2591 * reserve_metadata_snap
2592 * release_metadata_snap
2593 */
2594 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2595 {
2596 int r = -EINVAL;
2597 struct pool_c *pt = ti->private;
2598 struct pool *pool = pt->pool;
2599
2600 if (!strcasecmp(argv[0], "create_thin"))
2601 r = process_create_thin_mesg(argc, argv, pool);
2602
2603 else if (!strcasecmp(argv[0], "create_snap"))
2604 r = process_create_snap_mesg(argc, argv, pool);
2605
2606 else if (!strcasecmp(argv[0], "delete"))
2607 r = process_delete_mesg(argc, argv, pool);
2608
2609 else if (!strcasecmp(argv[0], "set_transaction_id"))
2610 r = process_set_transaction_id_mesg(argc, argv, pool);
2611
2612 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2613 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2614
2615 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2616 r = process_release_metadata_snap_mesg(argc, argv, pool);
2617
2618 else
2619 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2620
2621 if (!r)
2622 (void) commit_or_fallback(pool);
2623
2624 return r;
2625 }
2626
2627 static void emit_flags(struct pool_features *pf, char *result,
2628 unsigned sz, unsigned maxlen)
2629 {
2630 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2631 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2632 DMEMIT("%u ", count);
2633
2634 if (!pf->zero_new_blocks)
2635 DMEMIT("skip_block_zeroing ");
2636
2637 if (!pf->discard_enabled)
2638 DMEMIT("ignore_discard ");
2639
2640 if (!pf->discard_passdown)
2641 DMEMIT("no_discard_passdown ");
2642
2643 if (pf->mode == PM_READ_ONLY)
2644 DMEMIT("read_only ");
2645 }
2646
2647 /*
2648 * Status line is:
2649 * <transaction id> <used metadata sectors>/<total metadata sectors>
2650 * <used data sectors>/<total data sectors> <held metadata root>
2651 */
2652 static int pool_status(struct dm_target *ti, status_type_t type,
2653 unsigned status_flags, char *result, unsigned maxlen)
2654 {
2655 int r;
2656 unsigned sz = 0;
2657 uint64_t transaction_id;
2658 dm_block_t nr_free_blocks_data;
2659 dm_block_t nr_free_blocks_metadata;
2660 dm_block_t nr_blocks_data;
2661 dm_block_t nr_blocks_metadata;
2662 dm_block_t held_root;
2663 char buf[BDEVNAME_SIZE];
2664 char buf2[BDEVNAME_SIZE];
2665 struct pool_c *pt = ti->private;
2666 struct pool *pool = pt->pool;
2667
2668 switch (type) {
2669 case STATUSTYPE_INFO:
2670 if (get_pool_mode(pool) == PM_FAIL) {
2671 DMEMIT("Fail");
2672 break;
2673 }
2674
2675 /* Commit to ensure statistics aren't out-of-date */
2676 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2677 (void) commit_or_fallback(pool);
2678
2679 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2680 &transaction_id);
2681 if (r)
2682 return r;
2683
2684 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2685 &nr_free_blocks_metadata);
2686 if (r)
2687 return r;
2688
2689 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2690 if (r)
2691 return r;
2692
2693 r = dm_pool_get_free_block_count(pool->pmd,
2694 &nr_free_blocks_data);
2695 if (r)
2696 return r;
2697
2698 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2699 if (r)
2700 return r;
2701
2702 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2703 if (r)
2704 return r;
2705
2706 DMEMIT("%llu %llu/%llu %llu/%llu ",
2707 (unsigned long long)transaction_id,
2708 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2709 (unsigned long long)nr_blocks_metadata,
2710 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2711 (unsigned long long)nr_blocks_data);
2712
2713 if (held_root)
2714 DMEMIT("%llu ", held_root);
2715 else
2716 DMEMIT("- ");
2717
2718 if (pool->pf.mode == PM_READ_ONLY)
2719 DMEMIT("ro ");
2720 else
2721 DMEMIT("rw ");
2722
2723 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2724 DMEMIT("discard_passdown");
2725 else
2726 DMEMIT("no_discard_passdown");
2727
2728 break;
2729
2730 case STATUSTYPE_TABLE:
2731 DMEMIT("%s %s %lu %llu ",
2732 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2733 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2734 (unsigned long)pool->sectors_per_block,
2735 (unsigned long long)pt->low_water_blocks);
2736 emit_flags(&pt->requested_pf, result, sz, maxlen);
2737 break;
2738 }
2739
2740 return 0;
2741 }
2742
2743 static int pool_iterate_devices(struct dm_target *ti,
2744 iterate_devices_callout_fn fn, void *data)
2745 {
2746 struct pool_c *pt = ti->private;
2747
2748 return fn(ti, pt->data_dev, 0, ti->len, data);
2749 }
2750
2751 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2752 struct bio_vec *biovec, int max_size)
2753 {
2754 struct pool_c *pt = ti->private;
2755 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2756
2757 if (!q->merge_bvec_fn)
2758 return max_size;
2759
2760 bvm->bi_bdev = pt->data_dev->bdev;
2761
2762 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2763 }
2764
2765 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2766 {
2767 struct pool *pool = pt->pool;
2768 struct queue_limits *data_limits;
2769
2770 limits->max_discard_sectors = pool->sectors_per_block;
2771
2772 /*
2773 * discard_granularity is just a hint, and not enforced.
2774 */
2775 if (pt->adjusted_pf.discard_passdown) {
2776 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2777 limits->discard_granularity = data_limits->discard_granularity;
2778 } else
2779 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2780 }
2781
2782 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2783 {
2784 struct pool_c *pt = ti->private;
2785 struct pool *pool = pt->pool;
2786
2787 blk_limits_io_min(limits, 0);
2788 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2789
2790 /*
2791 * pt->adjusted_pf is a staging area for the actual features to use.
2792 * They get transferred to the live pool in bind_control_target()
2793 * called from pool_preresume().
2794 */
2795 if (!pt->adjusted_pf.discard_enabled)
2796 return;
2797
2798 disable_passdown_if_not_supported(pt);
2799
2800 set_discard_limits(pt, limits);
2801 }
2802
2803 static struct target_type pool_target = {
2804 .name = "thin-pool",
2805 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2806 DM_TARGET_IMMUTABLE,
2807 .version = {1, 4, 0},
2808 .module = THIS_MODULE,
2809 .ctr = pool_ctr,
2810 .dtr = pool_dtr,
2811 .map = pool_map,
2812 .postsuspend = pool_postsuspend,
2813 .preresume = pool_preresume,
2814 .resume = pool_resume,
2815 .message = pool_message,
2816 .status = pool_status,
2817 .merge = pool_merge,
2818 .iterate_devices = pool_iterate_devices,
2819 .io_hints = pool_io_hints,
2820 };
2821
2822 /*----------------------------------------------------------------
2823 * Thin target methods
2824 *--------------------------------------------------------------*/
2825 static void thin_dtr(struct dm_target *ti)
2826 {
2827 struct thin_c *tc = ti->private;
2828
2829 mutex_lock(&dm_thin_pool_table.mutex);
2830
2831 __pool_dec(tc->pool);
2832 dm_pool_close_thin_device(tc->td);
2833 dm_put_device(ti, tc->pool_dev);
2834 if (tc->origin_dev)
2835 dm_put_device(ti, tc->origin_dev);
2836 kfree(tc);
2837
2838 mutex_unlock(&dm_thin_pool_table.mutex);
2839 }
2840
2841 /*
2842 * Thin target parameters:
2843 *
2844 * <pool_dev> <dev_id> [origin_dev]
2845 *
2846 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2847 * dev_id: the internal device identifier
2848 * origin_dev: a device external to the pool that should act as the origin
2849 *
2850 * If the pool device has discards disabled, they get disabled for the thin
2851 * device as well.
2852 */
2853 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2854 {
2855 int r;
2856 struct thin_c *tc;
2857 struct dm_dev *pool_dev, *origin_dev;
2858 struct mapped_device *pool_md;
2859
2860 mutex_lock(&dm_thin_pool_table.mutex);
2861
2862 if (argc != 2 && argc != 3) {
2863 ti->error = "Invalid argument count";
2864 r = -EINVAL;
2865 goto out_unlock;
2866 }
2867
2868 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2869 if (!tc) {
2870 ti->error = "Out of memory";
2871 r = -ENOMEM;
2872 goto out_unlock;
2873 }
2874
2875 if (argc == 3) {
2876 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2877 if (r) {
2878 ti->error = "Error opening origin device";
2879 goto bad_origin_dev;
2880 }
2881 tc->origin_dev = origin_dev;
2882 }
2883
2884 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2885 if (r) {
2886 ti->error = "Error opening pool device";
2887 goto bad_pool_dev;
2888 }
2889 tc->pool_dev = pool_dev;
2890
2891 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2892 ti->error = "Invalid device id";
2893 r = -EINVAL;
2894 goto bad_common;
2895 }
2896
2897 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2898 if (!pool_md) {
2899 ti->error = "Couldn't get pool mapped device";
2900 r = -EINVAL;
2901 goto bad_common;
2902 }
2903
2904 tc->pool = __pool_table_lookup(pool_md);
2905 if (!tc->pool) {
2906 ti->error = "Couldn't find pool object";
2907 r = -EINVAL;
2908 goto bad_pool_lookup;
2909 }
2910 __pool_inc(tc->pool);
2911
2912 if (get_pool_mode(tc->pool) == PM_FAIL) {
2913 ti->error = "Couldn't open thin device, Pool is in fail mode";
2914 goto bad_thin_open;
2915 }
2916
2917 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2918 if (r) {
2919 ti->error = "Couldn't open thin internal device";
2920 goto bad_thin_open;
2921 }
2922
2923 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2924 if (r)
2925 goto bad_thin_open;
2926
2927 ti->num_flush_requests = 1;
2928 ti->flush_supported = true;
2929
2930 /* In case the pool supports discards, pass them on. */
2931 if (tc->pool->pf.discard_enabled) {
2932 ti->discards_supported = true;
2933 ti->num_discard_requests = 1;
2934 ti->discard_zeroes_data_unsupported = true;
2935 /* Discard requests must be split on a block boundary */
2936 ti->split_discard_requests = true;
2937 }
2938
2939 dm_put(pool_md);
2940
2941 mutex_unlock(&dm_thin_pool_table.mutex);
2942
2943 return 0;
2944
2945 bad_thin_open:
2946 __pool_dec(tc->pool);
2947 bad_pool_lookup:
2948 dm_put(pool_md);
2949 bad_common:
2950 dm_put_device(ti, tc->pool_dev);
2951 bad_pool_dev:
2952 if (tc->origin_dev)
2953 dm_put_device(ti, tc->origin_dev);
2954 bad_origin_dev:
2955 kfree(tc);
2956 out_unlock:
2957 mutex_unlock(&dm_thin_pool_table.mutex);
2958
2959 return r;
2960 }
2961
2962 static int thin_map(struct dm_target *ti, struct bio *bio,
2963 union map_info *map_context)
2964 {
2965 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2966
2967 return thin_bio_map(ti, bio, map_context);
2968 }
2969
2970 static int thin_endio(struct dm_target *ti,
2971 struct bio *bio, int err,
2972 union map_info *map_context)
2973 {
2974 unsigned long flags;
2975 struct dm_thin_endio_hook *h = map_context->ptr;
2976 struct list_head work;
2977 struct dm_thin_new_mapping *m, *tmp;
2978 struct pool *pool = h->tc->pool;
2979
2980 if (h->shared_read_entry) {
2981 INIT_LIST_HEAD(&work);
2982 ds_dec(h->shared_read_entry, &work);
2983
2984 spin_lock_irqsave(&pool->lock, flags);
2985 list_for_each_entry_safe(m, tmp, &work, list) {
2986 list_del(&m->list);
2987 m->quiesced = 1;
2988 __maybe_add_mapping(m);
2989 }
2990 spin_unlock_irqrestore(&pool->lock, flags);
2991 }
2992
2993 if (h->all_io_entry) {
2994 INIT_LIST_HEAD(&work);
2995 ds_dec(h->all_io_entry, &work);
2996 spin_lock_irqsave(&pool->lock, flags);
2997 list_for_each_entry_safe(m, tmp, &work, list)
2998 list_add(&m->list, &pool->prepared_discards);
2999 spin_unlock_irqrestore(&pool->lock, flags);
3000 }
3001
3002 mempool_free(h, pool->endio_hook_pool);
3003
3004 return 0;
3005 }
3006
3007 static void thin_postsuspend(struct dm_target *ti)
3008 {
3009 if (dm_noflush_suspending(ti))
3010 requeue_io((struct thin_c *)ti->private);
3011 }
3012
3013 /*
3014 * <nr mapped sectors> <highest mapped sector>
3015 */
3016 static int thin_status(struct dm_target *ti, status_type_t type,
3017 unsigned status_flags, char *result, unsigned maxlen)
3018 {
3019 int r;
3020 ssize_t sz = 0;
3021 dm_block_t mapped, highest;
3022 char buf[BDEVNAME_SIZE];
3023 struct thin_c *tc = ti->private;
3024
3025 if (get_pool_mode(tc->pool) == PM_FAIL) {
3026 DMEMIT("Fail");
3027 return 0;
3028 }
3029
3030 if (!tc->td)
3031 DMEMIT("-");
3032 else {
3033 switch (type) {
3034 case STATUSTYPE_INFO:
3035 r = dm_thin_get_mapped_count(tc->td, &mapped);
3036 if (r)
3037 return r;
3038
3039 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3040 if (r < 0)
3041 return r;
3042
3043 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3044 if (r)
3045 DMEMIT("%llu", ((highest + 1) *
3046 tc->pool->sectors_per_block) - 1);
3047 else
3048 DMEMIT("-");
3049 break;
3050
3051 case STATUSTYPE_TABLE:
3052 DMEMIT("%s %lu",
3053 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3054 (unsigned long) tc->dev_id);
3055 if (tc->origin_dev)
3056 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3057 break;
3058 }
3059 }
3060
3061 return 0;
3062 }
3063
3064 static int thin_iterate_devices(struct dm_target *ti,
3065 iterate_devices_callout_fn fn, void *data)
3066 {
3067 sector_t blocks;
3068 struct thin_c *tc = ti->private;
3069 struct pool *pool = tc->pool;
3070
3071 /*
3072 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3073 * we follow a more convoluted path through to the pool's target.
3074 */
3075 if (!pool->ti)
3076 return 0; /* nothing is bound */
3077
3078 blocks = pool->ti->len;
3079 (void) sector_div(blocks, pool->sectors_per_block);
3080 if (blocks)
3081 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3082
3083 return 0;
3084 }
3085
3086 /*
3087 * A thin device always inherits its queue limits from its pool.
3088 */
3089 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3090 {
3091 struct thin_c *tc = ti->private;
3092
3093 *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
3094 }
3095
3096 static struct target_type thin_target = {
3097 .name = "thin",
3098 .version = {1, 4, 0},
3099 .module = THIS_MODULE,
3100 .ctr = thin_ctr,
3101 .dtr = thin_dtr,
3102 .map = thin_map,
3103 .end_io = thin_endio,
3104 .postsuspend = thin_postsuspend,
3105 .status = thin_status,
3106 .iterate_devices = thin_iterate_devices,
3107 .io_hints = thin_io_hints,
3108 };
3109
3110 /*----------------------------------------------------------------*/
3111
3112 static int __init dm_thin_init(void)
3113 {
3114 int r;
3115
3116 pool_table_init();
3117
3118 r = dm_register_target(&thin_target);
3119 if (r)
3120 return r;
3121
3122 r = dm_register_target(&pool_target);
3123 if (r)
3124 goto bad_pool_target;
3125
3126 r = -ENOMEM;
3127
3128 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3129 if (!_cell_cache)
3130 goto bad_cell_cache;
3131
3132 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3133 if (!_new_mapping_cache)
3134 goto bad_new_mapping_cache;
3135
3136 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3137 if (!_endio_hook_cache)
3138 goto bad_endio_hook_cache;
3139
3140 return 0;
3141
3142 bad_endio_hook_cache:
3143 kmem_cache_destroy(_new_mapping_cache);
3144 bad_new_mapping_cache:
3145 kmem_cache_destroy(_cell_cache);
3146 bad_cell_cache:
3147 dm_unregister_target(&pool_target);
3148 bad_pool_target:
3149 dm_unregister_target(&thin_target);
3150
3151 return r;
3152 }
3153
3154 static void dm_thin_exit(void)
3155 {
3156 dm_unregister_target(&thin_target);
3157 dm_unregister_target(&pool_target);
3158
3159 kmem_cache_destroy(_cell_cache);
3160 kmem_cache_destroy(_new_mapping_cache);
3161 kmem_cache_destroy(_endio_hook_cache);
3162 }
3163
3164 module_init(dm_thin_init);
3165 module_exit(dm_thin_exit);
3166
3167 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3168 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3169 MODULE_LICENSE("GPL");