drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 /*
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
34 *
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 *
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
40 */
41
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
46
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
51
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
56
57 struct target_type *immutable_target_type;
58 unsigned integrity_supported:1;
59 unsigned singleton:1;
60
61 /*
62 * Indicates the rw permissions for the new logical
63 * device. This should be a combination of FMODE_READ
64 * and FMODE_WRITE.
65 */
66 fmode_t mode;
67
68 /* a list of devices used by this table */
69 struct list_head devices;
70
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
74
75 struct dm_md_mempools *mempools;
76
77 struct list_head target_callbacks;
78 };
79
80 /*
81 * Similar to ceiling(log_size(n))
82 */
83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 int result = 0;
86
87 while (n > 1) {
88 n = dm_div_up(n, base);
89 result++;
90 }
91
92 return result;
93 }
94
95 /*
96 * Calculate the index of the child node of the n'th node k'th key.
97 */
98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 return (n * CHILDREN_PER_NODE) + k;
101 }
102
103 /*
104 * Return the n'th node of level l from table t.
105 */
106 static inline sector_t *get_node(struct dm_table *t,
107 unsigned int l, unsigned int n)
108 {
109 return t->index[l] + (n * KEYS_PER_NODE);
110 }
111
112 /*
113 * Return the highest key that you could lookup from the n'th
114 * node on level l of the btree.
115 */
116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 for (; l < t->depth - 1; l++)
119 n = get_child(n, CHILDREN_PER_NODE - 1);
120
121 if (n >= t->counts[l])
122 return (sector_t) - 1;
123
124 return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126
127 /*
128 * Fills in a level of the btree based on the highs of the level
129 * below it.
130 */
131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 unsigned int n, k;
134 sector_t *node;
135
136 for (n = 0U; n < t->counts[l]; n++) {
137 node = get_node(t, l, n);
138
139 for (k = 0U; k < KEYS_PER_NODE; k++)
140 node[k] = high(t, l + 1, get_child(n, k));
141 }
142
143 return 0;
144 }
145
146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 unsigned long size;
149 void *addr;
150
151 /*
152 * Check that we're not going to overflow.
153 */
154 if (nmemb > (ULONG_MAX / elem_size))
155 return NULL;
156
157 size = nmemb * elem_size;
158 addr = vzalloc(size);
159
160 return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163
164 /*
165 * highs, and targets are managed as dynamic arrays during a
166 * table load.
167 */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 sector_t *n_highs;
171 struct dm_target *n_targets;
172 int n = t->num_targets;
173
174 /*
175 * Allocate both the target array and offset array at once.
176 * Append an empty entry to catch sectors beyond the end of
177 * the device.
178 */
179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 sizeof(sector_t));
181 if (!n_highs)
182 return -ENOMEM;
183
184 n_targets = (struct dm_target *) (n_highs + num);
185
186 if (n) {
187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 }
190
191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 vfree(t->highs);
193
194 t->num_allocated = num;
195 t->highs = n_highs;
196 t->targets = n_targets;
197
198 return 0;
199 }
200
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 unsigned num_targets, struct mapped_device *md)
203 {
204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205
206 if (!t)
207 return -ENOMEM;
208
209 INIT_LIST_HEAD(&t->devices);
210 INIT_LIST_HEAD(&t->target_callbacks);
211 atomic_set(&t->holders, 0);
212
213 if (!num_targets)
214 num_targets = KEYS_PER_NODE;
215
216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217
218 if (!num_targets) {
219 kfree(t);
220 return -ENOMEM;
221 }
222
223 if (alloc_targets(t, num_targets)) {
224 kfree(t);
225 return -ENOMEM;
226 }
227
228 t->mode = mode;
229 t->md = md;
230 *result = t;
231 return 0;
232 }
233
234 static void free_devices(struct list_head *devices)
235 {
236 struct list_head *tmp, *next;
237
238 list_for_each_safe(tmp, next, devices) {
239 struct dm_dev_internal *dd =
240 list_entry(tmp, struct dm_dev_internal, list);
241 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
242 dd->dm_dev.name);
243 kfree(dd);
244 }
245 }
246
247 void dm_table_destroy(struct dm_table *t)
248 {
249 unsigned int i;
250
251 if (!t)
252 return;
253
254 while (atomic_read(&t->holders))
255 msleep(1);
256 smp_mb();
257
258 /* free the indexes */
259 if (t->depth >= 2)
260 vfree(t->index[t->depth - 2]);
261
262 /* free the targets */
263 for (i = 0; i < t->num_targets; i++) {
264 struct dm_target *tgt = t->targets + i;
265
266 if (tgt->type->dtr)
267 tgt->type->dtr(tgt);
268
269 dm_put_target_type(tgt->type);
270 }
271
272 vfree(t->highs);
273
274 /* free the device list */
275 free_devices(&t->devices);
276
277 dm_free_md_mempools(t->mempools);
278
279 kfree(t);
280 }
281
282 void dm_table_get(struct dm_table *t)
283 {
284 atomic_inc(&t->holders);
285 }
286 EXPORT_SYMBOL(dm_table_get);
287
288 void dm_table_put(struct dm_table *t)
289 {
290 if (!t)
291 return;
292
293 smp_mb__before_atomic_dec();
294 atomic_dec(&t->holders);
295 }
296 EXPORT_SYMBOL(dm_table_put);
297
298 /*
299 * Checks to see if we need to extend highs or targets.
300 */
301 static inline int check_space(struct dm_table *t)
302 {
303 if (t->num_targets >= t->num_allocated)
304 return alloc_targets(t, t->num_allocated * 2);
305
306 return 0;
307 }
308
309 /*
310 * See if we've already got a device in the list.
311 */
312 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
313 {
314 struct dm_dev_internal *dd;
315
316 list_for_each_entry (dd, l, list)
317 if (dd->dm_dev.bdev->bd_dev == dev)
318 return dd;
319
320 return NULL;
321 }
322
323 /*
324 * Open a device so we can use it as a map destination.
325 */
326 static int open_dev(struct dm_dev_internal *d, dev_t dev,
327 struct mapped_device *md)
328 {
329 static char *_claim_ptr = "I belong to device-mapper";
330 struct block_device *bdev;
331
332 int r;
333
334 BUG_ON(d->dm_dev.bdev);
335
336 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
337 if (IS_ERR(bdev))
338 return PTR_ERR(bdev);
339
340 r = bd_link_disk_holder(bdev, dm_disk(md));
341 if (r) {
342 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
343 return r;
344 }
345
346 d->dm_dev.bdev = bdev;
347 return 0;
348 }
349
350 /*
351 * Close a device that we've been using.
352 */
353 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
354 {
355 if (!d->dm_dev.bdev)
356 return;
357
358 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
359 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
360 d->dm_dev.bdev = NULL;
361 }
362
363 /*
364 * If possible, this checks an area of a destination device is invalid.
365 */
366 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
367 sector_t start, sector_t len, void *data)
368 {
369 struct request_queue *q;
370 struct queue_limits *limits = data;
371 struct block_device *bdev = dev->bdev;
372 sector_t dev_size =
373 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
374 unsigned short logical_block_size_sectors =
375 limits->logical_block_size >> SECTOR_SHIFT;
376 char b[BDEVNAME_SIZE];
377
378 /*
379 * Some devices exist without request functions,
380 * such as loop devices not yet bound to backing files.
381 * Forbid the use of such devices.
382 */
383 q = bdev_get_queue(bdev);
384 if (!q || !q->make_request_fn) {
385 DMWARN("%s: %s is not yet initialised: "
386 "start=%llu, len=%llu, dev_size=%llu",
387 dm_device_name(ti->table->md), bdevname(bdev, b),
388 (unsigned long long)start,
389 (unsigned long long)len,
390 (unsigned long long)dev_size);
391 return 1;
392 }
393
394 if (!dev_size)
395 return 0;
396
397 if ((start >= dev_size) || (start + len > dev_size)) {
398 DMWARN("%s: %s too small for target: "
399 "start=%llu, len=%llu, dev_size=%llu",
400 dm_device_name(ti->table->md), bdevname(bdev, b),
401 (unsigned long long)start,
402 (unsigned long long)len,
403 (unsigned long long)dev_size);
404 return 1;
405 }
406
407 if (logical_block_size_sectors <= 1)
408 return 0;
409
410 if (start & (logical_block_size_sectors - 1)) {
411 DMWARN("%s: start=%llu not aligned to h/w "
412 "logical block size %u of %s",
413 dm_device_name(ti->table->md),
414 (unsigned long long)start,
415 limits->logical_block_size, bdevname(bdev, b));
416 return 1;
417 }
418
419 if (len & (logical_block_size_sectors - 1)) {
420 DMWARN("%s: len=%llu not aligned to h/w "
421 "logical block size %u of %s",
422 dm_device_name(ti->table->md),
423 (unsigned long long)len,
424 limits->logical_block_size, bdevname(bdev, b));
425 return 1;
426 }
427
428 return 0;
429 }
430
431 /*
432 * This upgrades the mode on an already open dm_dev, being
433 * careful to leave things as they were if we fail to reopen the
434 * device and not to touch the existing bdev field in case
435 * it is accessed concurrently inside dm_table_any_congested().
436 */
437 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
438 struct mapped_device *md)
439 {
440 int r;
441 struct dm_dev_internal dd_new, dd_old;
442
443 dd_new = dd_old = *dd;
444
445 dd_new.dm_dev.mode |= new_mode;
446 dd_new.dm_dev.bdev = NULL;
447
448 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
449 if (r)
450 return r;
451
452 dd->dm_dev.mode |= new_mode;
453 close_dev(&dd_old, md);
454
455 return 0;
456 }
457
458 /*
459 * Add a device to the list, or just increment the usage count if
460 * it's already present.
461 */
462 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
463 struct dm_dev **result)
464 {
465 int r;
466 dev_t uninitialized_var(dev);
467 struct dm_dev_internal *dd;
468 unsigned int major, minor;
469 struct dm_table *t = ti->table;
470 char dummy;
471
472 BUG_ON(!t);
473
474 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
475 /* Extract the major/minor numbers */
476 dev = MKDEV(major, minor);
477 if (MAJOR(dev) != major || MINOR(dev) != minor)
478 return -EOVERFLOW;
479 } else {
480 /* convert the path to a device */
481 struct block_device *bdev = lookup_bdev(path);
482
483 if (IS_ERR(bdev))
484 return PTR_ERR(bdev);
485 dev = bdev->bd_dev;
486 bdput(bdev);
487 }
488
489 dd = find_device(&t->devices, dev);
490 if (!dd) {
491 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
492 if (!dd)
493 return -ENOMEM;
494
495 dd->dm_dev.mode = mode;
496 dd->dm_dev.bdev = NULL;
497
498 if ((r = open_dev(dd, dev, t->md))) {
499 kfree(dd);
500 return r;
501 }
502
503 format_dev_t(dd->dm_dev.name, dev);
504
505 atomic_set(&dd->count, 0);
506 list_add(&dd->list, &t->devices);
507
508 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
509 r = upgrade_mode(dd, mode, t->md);
510 if (r)
511 return r;
512 }
513 atomic_inc(&dd->count);
514
515 *result = &dd->dm_dev;
516 return 0;
517 }
518 EXPORT_SYMBOL(dm_get_device);
519
520 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
521 sector_t start, sector_t len, void *data)
522 {
523 struct queue_limits *limits = data;
524 struct block_device *bdev = dev->bdev;
525 struct request_queue *q = bdev_get_queue(bdev);
526 char b[BDEVNAME_SIZE];
527
528 if (unlikely(!q)) {
529 DMWARN("%s: Cannot set limits for nonexistent device %s",
530 dm_device_name(ti->table->md), bdevname(bdev, b));
531 return 0;
532 }
533
534 if (bdev_stack_limits(limits, bdev, start) < 0)
535 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
536 "physical_block_size=%u, logical_block_size=%u, "
537 "alignment_offset=%u, start=%llu",
538 dm_device_name(ti->table->md), bdevname(bdev, b),
539 q->limits.physical_block_size,
540 q->limits.logical_block_size,
541 q->limits.alignment_offset,
542 (unsigned long long) start << SECTOR_SHIFT);
543
544 /*
545 * Check if merge fn is supported.
546 * If not we'll force DM to use PAGE_SIZE or
547 * smaller I/O, just to be safe.
548 */
549 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
550 blk_limits_max_hw_sectors(limits,
551 (unsigned int) (PAGE_SIZE >> 9));
552 return 0;
553 }
554 EXPORT_SYMBOL_GPL(dm_set_device_limits);
555
556 /*
557 * Decrement a device's use count and remove it if necessary.
558 */
559 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
560 {
561 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
562 dm_dev);
563
564 if (atomic_dec_and_test(&dd->count)) {
565 close_dev(dd, ti->table->md);
566 list_del(&dd->list);
567 kfree(dd);
568 }
569 }
570 EXPORT_SYMBOL(dm_put_device);
571
572 /*
573 * Checks to see if the target joins onto the end of the table.
574 */
575 static int adjoin(struct dm_table *table, struct dm_target *ti)
576 {
577 struct dm_target *prev;
578
579 if (!table->num_targets)
580 return !ti->begin;
581
582 prev = &table->targets[table->num_targets - 1];
583 return (ti->begin == (prev->begin + prev->len));
584 }
585
586 /*
587 * Used to dynamically allocate the arg array.
588 *
589 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
590 * process messages even if some device is suspended. These messages have a
591 * small fixed number of arguments.
592 *
593 * On the other hand, dm-switch needs to process bulk data using messages and
594 * excessive use of GFP_NOIO could cause trouble.
595 */
596 static char **realloc_argv(unsigned *array_size, char **old_argv)
597 {
598 char **argv;
599 unsigned new_size;
600 gfp_t gfp;
601
602 if (*array_size) {
603 new_size = *array_size * 2;
604 gfp = GFP_KERNEL;
605 } else {
606 new_size = 8;
607 gfp = GFP_NOIO;
608 }
609 argv = kmalloc(new_size * sizeof(*argv), gfp);
610 if (argv) {
611 memcpy(argv, old_argv, *array_size * sizeof(*argv));
612 *array_size = new_size;
613 }
614
615 kfree(old_argv);
616 return argv;
617 }
618
619 /*
620 * Destructively splits up the argument list to pass to ctr.
621 */
622 int dm_split_args(int *argc, char ***argvp, char *input)
623 {
624 char *start, *end = input, *out, **argv = NULL;
625 unsigned array_size = 0;
626
627 *argc = 0;
628
629 if (!input) {
630 *argvp = NULL;
631 return 0;
632 }
633
634 argv = realloc_argv(&array_size, argv);
635 if (!argv)
636 return -ENOMEM;
637
638 while (1) {
639 /* Skip whitespace */
640 start = skip_spaces(end);
641
642 if (!*start)
643 break; /* success, we hit the end */
644
645 /* 'out' is used to remove any back-quotes */
646 end = out = start;
647 while (*end) {
648 /* Everything apart from '\0' can be quoted */
649 if (*end == '\\' && *(end + 1)) {
650 *out++ = *(end + 1);
651 end += 2;
652 continue;
653 }
654
655 if (isspace(*end))
656 break; /* end of token */
657
658 *out++ = *end++;
659 }
660
661 /* have we already filled the array ? */
662 if ((*argc + 1) > array_size) {
663 argv = realloc_argv(&array_size, argv);
664 if (!argv)
665 return -ENOMEM;
666 }
667
668 /* we know this is whitespace */
669 if (*end)
670 end++;
671
672 /* terminate the string and put it in the array */
673 *out = '\0';
674 argv[*argc] = start;
675 (*argc)++;
676 }
677
678 *argvp = argv;
679 return 0;
680 }
681
682 /*
683 * Impose necessary and sufficient conditions on a devices's table such
684 * that any incoming bio which respects its logical_block_size can be
685 * processed successfully. If it falls across the boundary between
686 * two or more targets, the size of each piece it gets split into must
687 * be compatible with the logical_block_size of the target processing it.
688 */
689 static int validate_hardware_logical_block_alignment(struct dm_table *table,
690 struct queue_limits *limits)
691 {
692 /*
693 * This function uses arithmetic modulo the logical_block_size
694 * (in units of 512-byte sectors).
695 */
696 unsigned short device_logical_block_size_sects =
697 limits->logical_block_size >> SECTOR_SHIFT;
698
699 /*
700 * Offset of the start of the next table entry, mod logical_block_size.
701 */
702 unsigned short next_target_start = 0;
703
704 /*
705 * Given an aligned bio that extends beyond the end of a
706 * target, how many sectors must the next target handle?
707 */
708 unsigned short remaining = 0;
709
710 struct dm_target *uninitialized_var(ti);
711 struct queue_limits ti_limits;
712 unsigned i = 0;
713
714 /*
715 * Check each entry in the table in turn.
716 */
717 while (i < dm_table_get_num_targets(table)) {
718 ti = dm_table_get_target(table, i++);
719
720 blk_set_stacking_limits(&ti_limits);
721
722 /* combine all target devices' limits */
723 if (ti->type->iterate_devices)
724 ti->type->iterate_devices(ti, dm_set_device_limits,
725 &ti_limits);
726
727 /*
728 * If the remaining sectors fall entirely within this
729 * table entry are they compatible with its logical_block_size?
730 */
731 if (remaining < ti->len &&
732 remaining & ((ti_limits.logical_block_size >>
733 SECTOR_SHIFT) - 1))
734 break; /* Error */
735
736 next_target_start =
737 (unsigned short) ((next_target_start + ti->len) &
738 (device_logical_block_size_sects - 1));
739 remaining = next_target_start ?
740 device_logical_block_size_sects - next_target_start : 0;
741 }
742
743 if (remaining) {
744 DMWARN("%s: table line %u (start sect %llu len %llu) "
745 "not aligned to h/w logical block size %u",
746 dm_device_name(table->md), i,
747 (unsigned long long) ti->begin,
748 (unsigned long long) ti->len,
749 limits->logical_block_size);
750 return -EINVAL;
751 }
752
753 return 0;
754 }
755
756 int dm_table_add_target(struct dm_table *t, const char *type,
757 sector_t start, sector_t len, char *params)
758 {
759 int r = -EINVAL, argc;
760 char **argv;
761 struct dm_target *tgt;
762
763 if (t->singleton) {
764 DMERR("%s: target type %s must appear alone in table",
765 dm_device_name(t->md), t->targets->type->name);
766 return -EINVAL;
767 }
768
769 if ((r = check_space(t)))
770 return r;
771
772 tgt = t->targets + t->num_targets;
773 memset(tgt, 0, sizeof(*tgt));
774
775 if (!len) {
776 DMERR("%s: zero-length target", dm_device_name(t->md));
777 return -EINVAL;
778 }
779
780 tgt->type = dm_get_target_type(type);
781 if (!tgt->type) {
782 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
783 type);
784 return -EINVAL;
785 }
786
787 if (dm_target_needs_singleton(tgt->type)) {
788 if (t->num_targets) {
789 DMERR("%s: target type %s must appear alone in table",
790 dm_device_name(t->md), type);
791 return -EINVAL;
792 }
793 t->singleton = 1;
794 }
795
796 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
797 DMERR("%s: target type %s may not be included in read-only tables",
798 dm_device_name(t->md), type);
799 return -EINVAL;
800 }
801
802 if (t->immutable_target_type) {
803 if (t->immutable_target_type != tgt->type) {
804 DMERR("%s: immutable target type %s cannot be mixed with other target types",
805 dm_device_name(t->md), t->immutable_target_type->name);
806 return -EINVAL;
807 }
808 } else if (dm_target_is_immutable(tgt->type)) {
809 if (t->num_targets) {
810 DMERR("%s: immutable target type %s cannot be mixed with other target types",
811 dm_device_name(t->md), tgt->type->name);
812 return -EINVAL;
813 }
814 t->immutable_target_type = tgt->type;
815 }
816
817 tgt->table = t;
818 tgt->begin = start;
819 tgt->len = len;
820 tgt->error = "Unknown error";
821
822 /*
823 * Does this target adjoin the previous one ?
824 */
825 if (!adjoin(t, tgt)) {
826 tgt->error = "Gap in table";
827 r = -EINVAL;
828 goto bad;
829 }
830
831 r = dm_split_args(&argc, &argv, params);
832 if (r) {
833 tgt->error = "couldn't split parameters (insufficient memory)";
834 goto bad;
835 }
836
837 r = tgt->type->ctr(tgt, argc, argv);
838 kfree(argv);
839 if (r)
840 goto bad;
841
842 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
843
844 if (!tgt->num_discard_bios && tgt->discards_supported)
845 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
846 dm_device_name(t->md), type);
847
848 return 0;
849
850 bad:
851 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
852 dm_put_target_type(tgt->type);
853 return r;
854 }
855
856 /*
857 * Target argument parsing helpers.
858 */
859 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
860 unsigned *value, char **error, unsigned grouped)
861 {
862 const char *arg_str = dm_shift_arg(arg_set);
863 char dummy;
864
865 if (!arg_str ||
866 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
867 (*value < arg->min) ||
868 (*value > arg->max) ||
869 (grouped && arg_set->argc < *value)) {
870 *error = arg->error;
871 return -EINVAL;
872 }
873
874 return 0;
875 }
876
877 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
878 unsigned *value, char **error)
879 {
880 return validate_next_arg(arg, arg_set, value, error, 0);
881 }
882 EXPORT_SYMBOL(dm_read_arg);
883
884 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
885 unsigned *value, char **error)
886 {
887 return validate_next_arg(arg, arg_set, value, error, 1);
888 }
889 EXPORT_SYMBOL(dm_read_arg_group);
890
891 const char *dm_shift_arg(struct dm_arg_set *as)
892 {
893 char *r;
894
895 if (as->argc) {
896 as->argc--;
897 r = *as->argv;
898 as->argv++;
899 return r;
900 }
901
902 return NULL;
903 }
904 EXPORT_SYMBOL(dm_shift_arg);
905
906 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
907 {
908 BUG_ON(as->argc < num_args);
909 as->argc -= num_args;
910 as->argv += num_args;
911 }
912 EXPORT_SYMBOL(dm_consume_args);
913
914 static int dm_table_set_type(struct dm_table *t)
915 {
916 unsigned i;
917 unsigned bio_based = 0, request_based = 0;
918 struct dm_target *tgt;
919 struct dm_dev_internal *dd;
920 struct list_head *devices;
921
922 for (i = 0; i < t->num_targets; i++) {
923 tgt = t->targets + i;
924 if (dm_target_request_based(tgt))
925 request_based = 1;
926 else
927 bio_based = 1;
928
929 if (bio_based && request_based) {
930 DMWARN("Inconsistent table: different target types"
931 " can't be mixed up");
932 return -EINVAL;
933 }
934 }
935
936 if (bio_based) {
937 /* We must use this table as bio-based */
938 t->type = DM_TYPE_BIO_BASED;
939 return 0;
940 }
941
942 BUG_ON(!request_based); /* No targets in this table */
943
944 /* Non-request-stackable devices can't be used for request-based dm */
945 devices = dm_table_get_devices(t);
946 list_for_each_entry(dd, devices, list) {
947 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
948 DMWARN("table load rejected: including"
949 " non-request-stackable devices");
950 return -EINVAL;
951 }
952 }
953
954 /*
955 * Request-based dm supports only tables that have a single target now.
956 * To support multiple targets, request splitting support is needed,
957 * and that needs lots of changes in the block-layer.
958 * (e.g. request completion process for partial completion.)
959 */
960 if (t->num_targets > 1) {
961 DMWARN("Request-based dm doesn't support multiple targets yet");
962 return -EINVAL;
963 }
964
965 t->type = DM_TYPE_REQUEST_BASED;
966
967 return 0;
968 }
969
970 unsigned dm_table_get_type(struct dm_table *t)
971 {
972 return t->type;
973 }
974
975 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
976 {
977 return t->immutable_target_type;
978 }
979
980 bool dm_table_request_based(struct dm_table *t)
981 {
982 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
983 }
984
985 int dm_table_alloc_md_mempools(struct dm_table *t)
986 {
987 unsigned type = dm_table_get_type(t);
988 unsigned per_bio_data_size = 0;
989 struct dm_target *tgt;
990 unsigned i;
991
992 if (unlikely(type == DM_TYPE_NONE)) {
993 DMWARN("no table type is set, can't allocate mempools");
994 return -EINVAL;
995 }
996
997 if (type == DM_TYPE_BIO_BASED)
998 for (i = 0; i < t->num_targets; i++) {
999 tgt = t->targets + i;
1000 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
1001 }
1002
1003 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
1004 if (!t->mempools)
1005 return -ENOMEM;
1006
1007 return 0;
1008 }
1009
1010 void dm_table_free_md_mempools(struct dm_table *t)
1011 {
1012 dm_free_md_mempools(t->mempools);
1013 t->mempools = NULL;
1014 }
1015
1016 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1017 {
1018 return t->mempools;
1019 }
1020
1021 static int setup_indexes(struct dm_table *t)
1022 {
1023 int i;
1024 unsigned int total = 0;
1025 sector_t *indexes;
1026
1027 /* allocate the space for *all* the indexes */
1028 for (i = t->depth - 2; i >= 0; i--) {
1029 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1030 total += t->counts[i];
1031 }
1032
1033 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1034 if (!indexes)
1035 return -ENOMEM;
1036
1037 /* set up internal nodes, bottom-up */
1038 for (i = t->depth - 2; i >= 0; i--) {
1039 t->index[i] = indexes;
1040 indexes += (KEYS_PER_NODE * t->counts[i]);
1041 setup_btree_index(i, t);
1042 }
1043
1044 return 0;
1045 }
1046
1047 /*
1048 * Builds the btree to index the map.
1049 */
1050 static int dm_table_build_index(struct dm_table *t)
1051 {
1052 int r = 0;
1053 unsigned int leaf_nodes;
1054
1055 /* how many indexes will the btree have ? */
1056 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1057 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1058
1059 /* leaf layer has already been set up */
1060 t->counts[t->depth - 1] = leaf_nodes;
1061 t->index[t->depth - 1] = t->highs;
1062
1063 if (t->depth >= 2)
1064 r = setup_indexes(t);
1065
1066 return r;
1067 }
1068
1069 /*
1070 * Get a disk whose integrity profile reflects the table's profile.
1071 * If %match_all is true, all devices' profiles must match.
1072 * If %match_all is false, all devices must at least have an
1073 * allocated integrity profile; but uninitialized is ok.
1074 * Returns NULL if integrity support was inconsistent or unavailable.
1075 */
1076 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1077 bool match_all)
1078 {
1079 struct list_head *devices = dm_table_get_devices(t);
1080 struct dm_dev_internal *dd = NULL;
1081 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1082
1083 list_for_each_entry(dd, devices, list) {
1084 template_disk = dd->dm_dev.bdev->bd_disk;
1085 if (!blk_get_integrity(template_disk))
1086 goto no_integrity;
1087 if (!match_all && !blk_integrity_is_initialized(template_disk))
1088 continue; /* skip uninitialized profiles */
1089 else if (prev_disk &&
1090 blk_integrity_compare(prev_disk, template_disk) < 0)
1091 goto no_integrity;
1092 prev_disk = template_disk;
1093 }
1094
1095 return template_disk;
1096
1097 no_integrity:
1098 if (prev_disk)
1099 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1100 dm_device_name(t->md),
1101 prev_disk->disk_name,
1102 template_disk->disk_name);
1103 return NULL;
1104 }
1105
1106 /*
1107 * Register the mapped device for blk_integrity support if
1108 * the underlying devices have an integrity profile. But all devices
1109 * may not have matching profiles (checking all devices isn't reliable
1110 * during table load because this table may use other DM device(s) which
1111 * must be resumed before they will have an initialized integity profile).
1112 * Stacked DM devices force a 2 stage integrity profile validation:
1113 * 1 - during load, validate all initialized integrity profiles match
1114 * 2 - during resume, validate all integrity profiles match
1115 */
1116 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1117 {
1118 struct gendisk *template_disk = NULL;
1119
1120 template_disk = dm_table_get_integrity_disk(t, false);
1121 if (!template_disk)
1122 return 0;
1123
1124 if (!blk_integrity_is_initialized(dm_disk(md))) {
1125 t->integrity_supported = 1;
1126 return blk_integrity_register(dm_disk(md), NULL);
1127 }
1128
1129 /*
1130 * If DM device already has an initalized integrity
1131 * profile the new profile should not conflict.
1132 */
1133 if (blk_integrity_is_initialized(template_disk) &&
1134 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1135 DMWARN("%s: conflict with existing integrity profile: "
1136 "%s profile mismatch",
1137 dm_device_name(t->md),
1138 template_disk->disk_name);
1139 return 1;
1140 }
1141
1142 /* Preserve existing initialized integrity profile */
1143 t->integrity_supported = 1;
1144 return 0;
1145 }
1146
1147 /*
1148 * Prepares the table for use by building the indices,
1149 * setting the type, and allocating mempools.
1150 */
1151 int dm_table_complete(struct dm_table *t)
1152 {
1153 int r;
1154
1155 r = dm_table_set_type(t);
1156 if (r) {
1157 DMERR("unable to set table type");
1158 return r;
1159 }
1160
1161 r = dm_table_build_index(t);
1162 if (r) {
1163 DMERR("unable to build btrees");
1164 return r;
1165 }
1166
1167 r = dm_table_prealloc_integrity(t, t->md);
1168 if (r) {
1169 DMERR("could not register integrity profile.");
1170 return r;
1171 }
1172
1173 r = dm_table_alloc_md_mempools(t);
1174 if (r)
1175 DMERR("unable to allocate mempools");
1176
1177 return r;
1178 }
1179
1180 static DEFINE_MUTEX(_event_lock);
1181 void dm_table_event_callback(struct dm_table *t,
1182 void (*fn)(void *), void *context)
1183 {
1184 mutex_lock(&_event_lock);
1185 t->event_fn = fn;
1186 t->event_context = context;
1187 mutex_unlock(&_event_lock);
1188 }
1189
1190 void dm_table_event(struct dm_table *t)
1191 {
1192 /*
1193 * You can no longer call dm_table_event() from interrupt
1194 * context, use a bottom half instead.
1195 */
1196 BUG_ON(in_interrupt());
1197
1198 mutex_lock(&_event_lock);
1199 if (t->event_fn)
1200 t->event_fn(t->event_context);
1201 mutex_unlock(&_event_lock);
1202 }
1203 EXPORT_SYMBOL(dm_table_event);
1204
1205 sector_t dm_table_get_size(struct dm_table *t)
1206 {
1207 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1208 }
1209 EXPORT_SYMBOL(dm_table_get_size);
1210
1211 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1212 {
1213 if (index >= t->num_targets)
1214 return NULL;
1215
1216 return t->targets + index;
1217 }
1218
1219 /*
1220 * Search the btree for the correct target.
1221 *
1222 * Caller should check returned pointer with dm_target_is_valid()
1223 * to trap I/O beyond end of device.
1224 */
1225 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1226 {
1227 unsigned int l, n = 0, k = 0;
1228 sector_t *node;
1229
1230 for (l = 0; l < t->depth; l++) {
1231 n = get_child(n, k);
1232 node = get_node(t, l, n);
1233
1234 for (k = 0; k < KEYS_PER_NODE; k++)
1235 if (node[k] >= sector)
1236 break;
1237 }
1238
1239 return &t->targets[(KEYS_PER_NODE * n) + k];
1240 }
1241
1242 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1243 sector_t start, sector_t len, void *data)
1244 {
1245 unsigned *num_devices = data;
1246
1247 (*num_devices)++;
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Check whether a table has no data devices attached using each
1254 * target's iterate_devices method.
1255 * Returns false if the result is unknown because a target doesn't
1256 * support iterate_devices.
1257 */
1258 bool dm_table_has_no_data_devices(struct dm_table *table)
1259 {
1260 struct dm_target *uninitialized_var(ti);
1261 unsigned i = 0, num_devices = 0;
1262
1263 while (i < dm_table_get_num_targets(table)) {
1264 ti = dm_table_get_target(table, i++);
1265
1266 if (!ti->type->iterate_devices)
1267 return false;
1268
1269 ti->type->iterate_devices(ti, count_device, &num_devices);
1270 if (num_devices)
1271 return false;
1272 }
1273
1274 return true;
1275 }
1276
1277 /*
1278 * Establish the new table's queue_limits and validate them.
1279 */
1280 int dm_calculate_queue_limits(struct dm_table *table,
1281 struct queue_limits *limits)
1282 {
1283 struct dm_target *uninitialized_var(ti);
1284 struct queue_limits ti_limits;
1285 unsigned i = 0;
1286
1287 blk_set_stacking_limits(limits);
1288
1289 while (i < dm_table_get_num_targets(table)) {
1290 blk_set_stacking_limits(&ti_limits);
1291
1292 ti = dm_table_get_target(table, i++);
1293
1294 if (!ti->type->iterate_devices)
1295 goto combine_limits;
1296
1297 /*
1298 * Combine queue limits of all the devices this target uses.
1299 */
1300 ti->type->iterate_devices(ti, dm_set_device_limits,
1301 &ti_limits);
1302
1303 /* Set I/O hints portion of queue limits */
1304 if (ti->type->io_hints)
1305 ti->type->io_hints(ti, &ti_limits);
1306
1307 /*
1308 * Check each device area is consistent with the target's
1309 * overall queue limits.
1310 */
1311 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1312 &ti_limits))
1313 return -EINVAL;
1314
1315 combine_limits:
1316 /*
1317 * Merge this target's queue limits into the overall limits
1318 * for the table.
1319 */
1320 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1321 DMWARN("%s: adding target device "
1322 "(start sect %llu len %llu) "
1323 "caused an alignment inconsistency",
1324 dm_device_name(table->md),
1325 (unsigned long long) ti->begin,
1326 (unsigned long long) ti->len);
1327 }
1328
1329 return validate_hardware_logical_block_alignment(table, limits);
1330 }
1331
1332 /*
1333 * Set the integrity profile for this device if all devices used have
1334 * matching profiles. We're quite deep in the resume path but still
1335 * don't know if all devices (particularly DM devices this device
1336 * may be stacked on) have matching profiles. Even if the profiles
1337 * don't match we have no way to fail (to resume) at this point.
1338 */
1339 static void dm_table_set_integrity(struct dm_table *t)
1340 {
1341 struct gendisk *template_disk = NULL;
1342
1343 if (!blk_get_integrity(dm_disk(t->md)))
1344 return;
1345
1346 template_disk = dm_table_get_integrity_disk(t, true);
1347 if (template_disk)
1348 blk_integrity_register(dm_disk(t->md),
1349 blk_get_integrity(template_disk));
1350 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1351 DMWARN("%s: device no longer has a valid integrity profile",
1352 dm_device_name(t->md));
1353 else
1354 DMWARN("%s: unable to establish an integrity profile",
1355 dm_device_name(t->md));
1356 }
1357
1358 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1359 sector_t start, sector_t len, void *data)
1360 {
1361 unsigned flush = (*(unsigned *)data);
1362 struct request_queue *q = bdev_get_queue(dev->bdev);
1363
1364 return q && (q->flush_flags & flush);
1365 }
1366
1367 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1368 {
1369 struct dm_target *ti;
1370 unsigned i = 0;
1371
1372 /*
1373 * Require at least one underlying device to support flushes.
1374 * t->devices includes internal dm devices such as mirror logs
1375 * so we need to use iterate_devices here, which targets
1376 * supporting flushes must provide.
1377 */
1378 while (i < dm_table_get_num_targets(t)) {
1379 ti = dm_table_get_target(t, i++);
1380
1381 if (!ti->num_flush_bios)
1382 continue;
1383
1384 if (ti->flush_supported)
1385 return 1;
1386
1387 if (ti->type->iterate_devices &&
1388 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1389 return 1;
1390 }
1391
1392 return 0;
1393 }
1394
1395 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1396 {
1397 struct dm_target *ti;
1398 unsigned i = 0;
1399
1400 /* Ensure that all targets supports discard_zeroes_data. */
1401 while (i < dm_table_get_num_targets(t)) {
1402 ti = dm_table_get_target(t, i++);
1403
1404 if (ti->discard_zeroes_data_unsupported)
1405 return 0;
1406 }
1407
1408 return 1;
1409 }
1410
1411 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1412 sector_t start, sector_t len, void *data)
1413 {
1414 struct request_queue *q = bdev_get_queue(dev->bdev);
1415
1416 return q && blk_queue_nonrot(q);
1417 }
1418
1419 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1420 sector_t start, sector_t len, void *data)
1421 {
1422 struct request_queue *q = bdev_get_queue(dev->bdev);
1423
1424 return q && !blk_queue_add_random(q);
1425 }
1426
1427 static bool dm_table_all_devices_attribute(struct dm_table *t,
1428 iterate_devices_callout_fn func)
1429 {
1430 struct dm_target *ti;
1431 unsigned i = 0;
1432
1433 while (i < dm_table_get_num_targets(t)) {
1434 ti = dm_table_get_target(t, i++);
1435
1436 if (!ti->type->iterate_devices ||
1437 !ti->type->iterate_devices(ti, func, NULL))
1438 return 0;
1439 }
1440
1441 return 1;
1442 }
1443
1444 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1445 sector_t start, sector_t len, void *data)
1446 {
1447 struct request_queue *q = bdev_get_queue(dev->bdev);
1448
1449 return q && !q->limits.max_write_same_sectors;
1450 }
1451
1452 static bool dm_table_supports_write_same(struct dm_table *t)
1453 {
1454 struct dm_target *ti;
1455 unsigned i = 0;
1456
1457 while (i < dm_table_get_num_targets(t)) {
1458 ti = dm_table_get_target(t, i++);
1459
1460 if (!ti->num_write_same_bios)
1461 return false;
1462
1463 if (!ti->type->iterate_devices ||
1464 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1465 return false;
1466 }
1467
1468 return true;
1469 }
1470
1471 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1472 struct queue_limits *limits)
1473 {
1474 unsigned flush = 0;
1475
1476 /*
1477 * Copy table's limits to the DM device's request_queue
1478 */
1479 q->limits = *limits;
1480
1481 if (!dm_table_supports_discards(t))
1482 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1483 else
1484 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1485
1486 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1487 flush |= REQ_FLUSH;
1488 if (dm_table_supports_flush(t, REQ_FUA))
1489 flush |= REQ_FUA;
1490 }
1491 blk_queue_flush(q, flush);
1492
1493 if (!dm_table_discard_zeroes_data(t))
1494 q->limits.discard_zeroes_data = 0;
1495
1496 /* Ensure that all underlying devices are non-rotational. */
1497 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1498 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1499 else
1500 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1501
1502 if (!dm_table_supports_write_same(t))
1503 q->limits.max_write_same_sectors = 0;
1504
1505 dm_table_set_integrity(t);
1506
1507 /*
1508 * Determine whether or not this queue's I/O timings contribute
1509 * to the entropy pool, Only request-based targets use this.
1510 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1511 * have it set.
1512 */
1513 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1514 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1515
1516 /*
1517 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1518 * visible to other CPUs because, once the flag is set, incoming bios
1519 * are processed by request-based dm, which refers to the queue
1520 * settings.
1521 * Until the flag set, bios are passed to bio-based dm and queued to
1522 * md->deferred where queue settings are not needed yet.
1523 * Those bios are passed to request-based dm at the resume time.
1524 */
1525 smp_mb();
1526 if (dm_table_request_based(t))
1527 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1528 }
1529
1530 unsigned int dm_table_get_num_targets(struct dm_table *t)
1531 {
1532 return t->num_targets;
1533 }
1534
1535 struct list_head *dm_table_get_devices(struct dm_table *t)
1536 {
1537 return &t->devices;
1538 }
1539
1540 fmode_t dm_table_get_mode(struct dm_table *t)
1541 {
1542 return t->mode;
1543 }
1544 EXPORT_SYMBOL(dm_table_get_mode);
1545
1546 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1547 {
1548 int i = t->num_targets;
1549 struct dm_target *ti = t->targets;
1550
1551 while (i--) {
1552 if (postsuspend) {
1553 if (ti->type->postsuspend)
1554 ti->type->postsuspend(ti);
1555 } else if (ti->type->presuspend)
1556 ti->type->presuspend(ti);
1557
1558 ti++;
1559 }
1560 }
1561
1562 void dm_table_presuspend_targets(struct dm_table *t)
1563 {
1564 if (!t)
1565 return;
1566
1567 suspend_targets(t, 0);
1568 }
1569
1570 void dm_table_postsuspend_targets(struct dm_table *t)
1571 {
1572 if (!t)
1573 return;
1574
1575 suspend_targets(t, 1);
1576 }
1577
1578 int dm_table_resume_targets(struct dm_table *t)
1579 {
1580 int i, r = 0;
1581
1582 for (i = 0; i < t->num_targets; i++) {
1583 struct dm_target *ti = t->targets + i;
1584
1585 if (!ti->type->preresume)
1586 continue;
1587
1588 r = ti->type->preresume(ti);
1589 if (r)
1590 return r;
1591 }
1592
1593 for (i = 0; i < t->num_targets; i++) {
1594 struct dm_target *ti = t->targets + i;
1595
1596 if (ti->type->resume)
1597 ti->type->resume(ti);
1598 }
1599
1600 return 0;
1601 }
1602
1603 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1604 {
1605 list_add(&cb->list, &t->target_callbacks);
1606 }
1607 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1608
1609 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1610 {
1611 struct dm_dev_internal *dd;
1612 struct list_head *devices = dm_table_get_devices(t);
1613 struct dm_target_callbacks *cb;
1614 int r = 0;
1615
1616 list_for_each_entry(dd, devices, list) {
1617 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1618 char b[BDEVNAME_SIZE];
1619
1620 if (likely(q))
1621 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1622 else
1623 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1624 dm_device_name(t->md),
1625 bdevname(dd->dm_dev.bdev, b));
1626 }
1627
1628 list_for_each_entry(cb, &t->target_callbacks, list)
1629 if (cb->congested_fn)
1630 r |= cb->congested_fn(cb, bdi_bits);
1631
1632 return r;
1633 }
1634
1635 int dm_table_any_busy_target(struct dm_table *t)
1636 {
1637 unsigned i;
1638 struct dm_target *ti;
1639
1640 for (i = 0; i < t->num_targets; i++) {
1641 ti = t->targets + i;
1642 if (ti->type->busy && ti->type->busy(ti))
1643 return 1;
1644 }
1645
1646 return 0;
1647 }
1648
1649 struct mapped_device *dm_table_get_md(struct dm_table *t)
1650 {
1651 return t->md;
1652 }
1653 EXPORT_SYMBOL(dm_table_get_md);
1654
1655 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1656 sector_t start, sector_t len, void *data)
1657 {
1658 struct request_queue *q = bdev_get_queue(dev->bdev);
1659
1660 return q && blk_queue_discard(q);
1661 }
1662
1663 bool dm_table_supports_discards(struct dm_table *t)
1664 {
1665 struct dm_target *ti;
1666 unsigned i = 0;
1667
1668 /*
1669 * Unless any target used by the table set discards_supported,
1670 * require at least one underlying device to support discards.
1671 * t->devices includes internal dm devices such as mirror logs
1672 * so we need to use iterate_devices here, which targets
1673 * supporting discard selectively must provide.
1674 */
1675 while (i < dm_table_get_num_targets(t)) {
1676 ti = dm_table_get_target(t, i++);
1677
1678 if (!ti->num_discard_bios)
1679 continue;
1680
1681 if (ti->discards_supported)
1682 return 1;
1683
1684 if (ti->type->iterate_devices &&
1685 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1686 return 1;
1687 }
1688
1689 return 0;
1690 }