7409d79729eebbb37b11d28c81e1a7fc8fe3fd95
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
25 #include <crypto/hash.h>
26 #include <crypto/md5.h>
27 #include <crypto/algapi.h>
28
29 #include <linux/device-mapper.h>
30
31 #define DM_MSG_PREFIX "crypt"
32
33 /*
34 * context holding the current state of a multi-part conversion
35 */
36 struct convert_context {
37 struct completion restart;
38 struct bio *bio_in;
39 struct bio *bio_out;
40 unsigned int offset_in;
41 unsigned int offset_out;
42 unsigned int idx_in;
43 unsigned int idx_out;
44 sector_t cc_sector;
45 atomic_t cc_pending;
46 struct ablkcipher_request *req;
47 };
48
49 /*
50 * per bio private data
51 */
52 struct dm_crypt_io {
53 struct crypt_config *cc;
54 struct bio *base_bio;
55 struct work_struct work;
56
57 struct convert_context ctx;
58
59 atomic_t io_pending;
60 int error;
61 sector_t sector;
62 struct dm_crypt_io *base_io;
63 };
64
65 struct dm_crypt_request {
66 struct convert_context *ctx;
67 struct scatterlist sg_in;
68 struct scatterlist sg_out;
69 sector_t iv_sector;
70 };
71
72 struct crypt_config;
73
74 struct crypt_iv_operations {
75 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 const char *opts);
77 void (*dtr)(struct crypt_config *cc);
78 int (*init)(struct crypt_config *cc);
79 int (*wipe)(struct crypt_config *cc);
80 int (*generator)(struct crypt_config *cc, u8 *iv,
81 struct dm_crypt_request *dmreq);
82 int (*post)(struct crypt_config *cc, u8 *iv,
83 struct dm_crypt_request *dmreq);
84 };
85
86 struct iv_essiv_private {
87 struct crypto_hash *hash_tfm;
88 u8 *salt;
89 };
90
91 struct iv_benbi_private {
92 int shift;
93 };
94
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 struct crypto_shash *hash_tfm;
98 u8 *seed;
99 };
100
101 /*
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
104 */
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106
107 /*
108 * The fields in here must be read only after initialization.
109 */
110 struct crypt_config {
111 struct dm_dev *dev;
112 sector_t start;
113
114 /*
115 * pool for per bio private data, crypto requests and
116 * encryption requeusts/buffer pages
117 */
118 mempool_t *io_pool;
119 mempool_t *req_pool;
120 mempool_t *page_pool;
121 struct bio_set *bs;
122
123 struct workqueue_struct *io_queue;
124 struct workqueue_struct *crypt_queue;
125
126 char *cipher;
127 char *cipher_string;
128
129 struct crypt_iv_operations *iv_gen_ops;
130 union {
131 struct iv_essiv_private essiv;
132 struct iv_benbi_private benbi;
133 struct iv_lmk_private lmk;
134 } iv_gen_private;
135 sector_t iv_offset;
136 unsigned int iv_size;
137
138 /* ESSIV: struct crypto_cipher *essiv_tfm */
139 void *iv_private;
140 struct crypto_ablkcipher **tfms;
141 unsigned tfms_count;
142
143 /*
144 * Layout of each crypto request:
145 *
146 * struct ablkcipher_request
147 * context
148 * padding
149 * struct dm_crypt_request
150 * padding
151 * IV
152 *
153 * The padding is added so that dm_crypt_request and the IV are
154 * correctly aligned.
155 */
156 unsigned int dmreq_start;
157
158 unsigned long flags;
159 unsigned int key_size;
160 unsigned int key_parts;
161 u8 key[0];
162 };
163
164 #define MIN_IOS 16
165 #define MIN_POOL_PAGES 32
166
167 static struct kmem_cache *_crypt_io_pool;
168
169 static void clone_init(struct dm_crypt_io *, struct bio *);
170 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
171 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
172
173 /*
174 * Use this to access cipher attributes that are the same for each CPU.
175 */
176 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
177 {
178 return cc->tfms[0];
179 }
180
181 /*
182 * Different IV generation algorithms:
183 *
184 * plain: the initial vector is the 32-bit little-endian version of the sector
185 * number, padded with zeros if necessary.
186 *
187 * plain64: the initial vector is the 64-bit little-endian version of the sector
188 * number, padded with zeros if necessary.
189 *
190 * essiv: "encrypted sector|salt initial vector", the sector number is
191 * encrypted with the bulk cipher using a salt as key. The salt
192 * should be derived from the bulk cipher's key via hashing.
193 *
194 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
195 * (needed for LRW-32-AES and possible other narrow block modes)
196 *
197 * null: the initial vector is always zero. Provides compatibility with
198 * obsolete loop_fish2 devices. Do not use for new devices.
199 *
200 * lmk: Compatible implementation of the block chaining mode used
201 * by the Loop-AES block device encryption system
202 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
203 * It operates on full 512 byte sectors and uses CBC
204 * with an IV derived from the sector number, the data and
205 * optionally extra IV seed.
206 * This means that after decryption the first block
207 * of sector must be tweaked according to decrypted data.
208 * Loop-AES can use three encryption schemes:
209 * version 1: is plain aes-cbc mode
210 * version 2: uses 64 multikey scheme with lmk IV generator
211 * version 3: the same as version 2 with additional IV seed
212 * (it uses 65 keys, last key is used as IV seed)
213 *
214 * plumb: unimplemented, see:
215 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
216 */
217
218 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
219 struct dm_crypt_request *dmreq)
220 {
221 memset(iv, 0, cc->iv_size);
222 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
223
224 return 0;
225 }
226
227 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
228 struct dm_crypt_request *dmreq)
229 {
230 memset(iv, 0, cc->iv_size);
231 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
232
233 return 0;
234 }
235
236 /* Initialise ESSIV - compute salt but no local memory allocations */
237 static int crypt_iv_essiv_init(struct crypt_config *cc)
238 {
239 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
240 struct hash_desc desc;
241 struct scatterlist sg;
242 struct crypto_cipher *essiv_tfm;
243 int err;
244
245 sg_init_one(&sg, cc->key, cc->key_size);
246 desc.tfm = essiv->hash_tfm;
247 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
248
249 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
250 if (err)
251 return err;
252
253 essiv_tfm = cc->iv_private;
254
255 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
256 crypto_hash_digestsize(essiv->hash_tfm));
257 if (err)
258 return err;
259
260 return 0;
261 }
262
263 /* Wipe salt and reset key derived from volume key */
264 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
265 {
266 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
267 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
268 struct crypto_cipher *essiv_tfm;
269 int r, err = 0;
270
271 memset(essiv->salt, 0, salt_size);
272
273 essiv_tfm = cc->iv_private;
274 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
275 if (r)
276 err = r;
277
278 return err;
279 }
280
281 /* Set up per cpu cipher state */
282 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
283 struct dm_target *ti,
284 u8 *salt, unsigned saltsize)
285 {
286 struct crypto_cipher *essiv_tfm;
287 int err;
288
289 /* Setup the essiv_tfm with the given salt */
290 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
291 if (IS_ERR(essiv_tfm)) {
292 ti->error = "Error allocating crypto tfm for ESSIV";
293 return essiv_tfm;
294 }
295
296 if (crypto_cipher_blocksize(essiv_tfm) !=
297 crypto_ablkcipher_ivsize(any_tfm(cc))) {
298 ti->error = "Block size of ESSIV cipher does "
299 "not match IV size of block cipher";
300 crypto_free_cipher(essiv_tfm);
301 return ERR_PTR(-EINVAL);
302 }
303
304 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
305 if (err) {
306 ti->error = "Failed to set key for ESSIV cipher";
307 crypto_free_cipher(essiv_tfm);
308 return ERR_PTR(err);
309 }
310
311 return essiv_tfm;
312 }
313
314 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
315 {
316 struct crypto_cipher *essiv_tfm;
317 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
318
319 crypto_free_hash(essiv->hash_tfm);
320 essiv->hash_tfm = NULL;
321
322 kzfree(essiv->salt);
323 essiv->salt = NULL;
324
325 essiv_tfm = cc->iv_private;
326
327 if (essiv_tfm)
328 crypto_free_cipher(essiv_tfm);
329
330 cc->iv_private = NULL;
331 }
332
333 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
334 const char *opts)
335 {
336 struct crypto_cipher *essiv_tfm = NULL;
337 struct crypto_hash *hash_tfm = NULL;
338 u8 *salt = NULL;
339 int err;
340
341 if (!opts) {
342 ti->error = "Digest algorithm missing for ESSIV mode";
343 return -EINVAL;
344 }
345
346 /* Allocate hash algorithm */
347 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
348 if (IS_ERR(hash_tfm)) {
349 ti->error = "Error initializing ESSIV hash";
350 err = PTR_ERR(hash_tfm);
351 goto bad;
352 }
353
354 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
355 if (!salt) {
356 ti->error = "Error kmallocing salt storage in ESSIV";
357 err = -ENOMEM;
358 goto bad;
359 }
360
361 cc->iv_gen_private.essiv.salt = salt;
362 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
363
364 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
365 crypto_hash_digestsize(hash_tfm));
366 if (IS_ERR(essiv_tfm)) {
367 crypt_iv_essiv_dtr(cc);
368 return PTR_ERR(essiv_tfm);
369 }
370 cc->iv_private = essiv_tfm;
371
372 return 0;
373
374 bad:
375 if (hash_tfm && !IS_ERR(hash_tfm))
376 crypto_free_hash(hash_tfm);
377 kfree(salt);
378 return err;
379 }
380
381 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
382 struct dm_crypt_request *dmreq)
383 {
384 struct crypto_cipher *essiv_tfm = cc->iv_private;
385
386 memset(iv, 0, cc->iv_size);
387 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
388 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
389
390 return 0;
391 }
392
393 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
394 const char *opts)
395 {
396 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
397 int log = ilog2(bs);
398
399 /* we need to calculate how far we must shift the sector count
400 * to get the cipher block count, we use this shift in _gen */
401
402 if (1 << log != bs) {
403 ti->error = "cypher blocksize is not a power of 2";
404 return -EINVAL;
405 }
406
407 if (log > 9) {
408 ti->error = "cypher blocksize is > 512";
409 return -EINVAL;
410 }
411
412 cc->iv_gen_private.benbi.shift = 9 - log;
413
414 return 0;
415 }
416
417 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
418 {
419 }
420
421 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
422 struct dm_crypt_request *dmreq)
423 {
424 __be64 val;
425
426 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
427
428 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
429 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
430
431 return 0;
432 }
433
434 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
435 struct dm_crypt_request *dmreq)
436 {
437 memset(iv, 0, cc->iv_size);
438
439 return 0;
440 }
441
442 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
443 {
444 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
445
446 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
447 crypto_free_shash(lmk->hash_tfm);
448 lmk->hash_tfm = NULL;
449
450 kzfree(lmk->seed);
451 lmk->seed = NULL;
452 }
453
454 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
455 const char *opts)
456 {
457 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
458
459 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
460 if (IS_ERR(lmk->hash_tfm)) {
461 ti->error = "Error initializing LMK hash";
462 return PTR_ERR(lmk->hash_tfm);
463 }
464
465 /* No seed in LMK version 2 */
466 if (cc->key_parts == cc->tfms_count) {
467 lmk->seed = NULL;
468 return 0;
469 }
470
471 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
472 if (!lmk->seed) {
473 crypt_iv_lmk_dtr(cc);
474 ti->error = "Error kmallocing seed storage in LMK";
475 return -ENOMEM;
476 }
477
478 return 0;
479 }
480
481 static int crypt_iv_lmk_init(struct crypt_config *cc)
482 {
483 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484 int subkey_size = cc->key_size / cc->key_parts;
485
486 /* LMK seed is on the position of LMK_KEYS + 1 key */
487 if (lmk->seed)
488 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
489 crypto_shash_digestsize(lmk->hash_tfm));
490
491 return 0;
492 }
493
494 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
495 {
496 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
497
498 if (lmk->seed)
499 memset(lmk->seed, 0, LMK_SEED_SIZE);
500
501 return 0;
502 }
503
504 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
505 struct dm_crypt_request *dmreq,
506 u8 *data)
507 {
508 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
509 struct {
510 struct shash_desc desc;
511 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
512 } sdesc;
513 struct md5_state md5state;
514 u32 buf[4];
515 int i, r;
516
517 sdesc.desc.tfm = lmk->hash_tfm;
518 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
519
520 r = crypto_shash_init(&sdesc.desc);
521 if (r)
522 return r;
523
524 if (lmk->seed) {
525 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
526 if (r)
527 return r;
528 }
529
530 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
531 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
532 if (r)
533 return r;
534
535 /* Sector is cropped to 56 bits here */
536 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
537 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
538 buf[2] = cpu_to_le32(4024);
539 buf[3] = 0;
540 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
541 if (r)
542 return r;
543
544 /* No MD5 padding here */
545 r = crypto_shash_export(&sdesc.desc, &md5state);
546 if (r)
547 return r;
548
549 for (i = 0; i < MD5_HASH_WORDS; i++)
550 __cpu_to_le32s(&md5state.hash[i]);
551 memcpy(iv, &md5state.hash, cc->iv_size);
552
553 return 0;
554 }
555
556 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
557 struct dm_crypt_request *dmreq)
558 {
559 u8 *src;
560 int r = 0;
561
562 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
563 src = kmap_atomic(sg_page(&dmreq->sg_in));
564 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
565 kunmap_atomic(src);
566 } else
567 memset(iv, 0, cc->iv_size);
568
569 return r;
570 }
571
572 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
573 struct dm_crypt_request *dmreq)
574 {
575 u8 *dst;
576 int r;
577
578 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
579 return 0;
580
581 dst = kmap_atomic(sg_page(&dmreq->sg_out));
582 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
583
584 /* Tweak the first block of plaintext sector */
585 if (!r)
586 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
587
588 kunmap_atomic(dst);
589 return r;
590 }
591
592 static struct crypt_iv_operations crypt_iv_plain_ops = {
593 .generator = crypt_iv_plain_gen
594 };
595
596 static struct crypt_iv_operations crypt_iv_plain64_ops = {
597 .generator = crypt_iv_plain64_gen
598 };
599
600 static struct crypt_iv_operations crypt_iv_essiv_ops = {
601 .ctr = crypt_iv_essiv_ctr,
602 .dtr = crypt_iv_essiv_dtr,
603 .init = crypt_iv_essiv_init,
604 .wipe = crypt_iv_essiv_wipe,
605 .generator = crypt_iv_essiv_gen
606 };
607
608 static struct crypt_iv_operations crypt_iv_benbi_ops = {
609 .ctr = crypt_iv_benbi_ctr,
610 .dtr = crypt_iv_benbi_dtr,
611 .generator = crypt_iv_benbi_gen
612 };
613
614 static struct crypt_iv_operations crypt_iv_null_ops = {
615 .generator = crypt_iv_null_gen
616 };
617
618 static struct crypt_iv_operations crypt_iv_lmk_ops = {
619 .ctr = crypt_iv_lmk_ctr,
620 .dtr = crypt_iv_lmk_dtr,
621 .init = crypt_iv_lmk_init,
622 .wipe = crypt_iv_lmk_wipe,
623 .generator = crypt_iv_lmk_gen,
624 .post = crypt_iv_lmk_post
625 };
626
627 static void crypt_convert_init(struct crypt_config *cc,
628 struct convert_context *ctx,
629 struct bio *bio_out, struct bio *bio_in,
630 sector_t sector)
631 {
632 ctx->bio_in = bio_in;
633 ctx->bio_out = bio_out;
634 ctx->offset_in = 0;
635 ctx->offset_out = 0;
636 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
637 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
638 ctx->cc_sector = sector + cc->iv_offset;
639 init_completion(&ctx->restart);
640 }
641
642 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
643 struct ablkcipher_request *req)
644 {
645 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
646 }
647
648 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
649 struct dm_crypt_request *dmreq)
650 {
651 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
652 }
653
654 static u8 *iv_of_dmreq(struct crypt_config *cc,
655 struct dm_crypt_request *dmreq)
656 {
657 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
658 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
659 }
660
661 static int crypt_convert_block(struct crypt_config *cc,
662 struct convert_context *ctx,
663 struct ablkcipher_request *req)
664 {
665 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
666 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
667 struct dm_crypt_request *dmreq;
668 u8 *iv;
669 int r;
670
671 dmreq = dmreq_of_req(cc, req);
672 iv = iv_of_dmreq(cc, dmreq);
673
674 dmreq->iv_sector = ctx->cc_sector;
675 dmreq->ctx = ctx;
676 sg_init_table(&dmreq->sg_in, 1);
677 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
678 bv_in->bv_offset + ctx->offset_in);
679
680 sg_init_table(&dmreq->sg_out, 1);
681 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
682 bv_out->bv_offset + ctx->offset_out);
683
684 ctx->offset_in += 1 << SECTOR_SHIFT;
685 if (ctx->offset_in >= bv_in->bv_len) {
686 ctx->offset_in = 0;
687 ctx->idx_in++;
688 }
689
690 ctx->offset_out += 1 << SECTOR_SHIFT;
691 if (ctx->offset_out >= bv_out->bv_len) {
692 ctx->offset_out = 0;
693 ctx->idx_out++;
694 }
695
696 if (cc->iv_gen_ops) {
697 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
698 if (r < 0)
699 return r;
700 }
701
702 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
703 1 << SECTOR_SHIFT, iv);
704
705 if (bio_data_dir(ctx->bio_in) == WRITE)
706 r = crypto_ablkcipher_encrypt(req);
707 else
708 r = crypto_ablkcipher_decrypt(req);
709
710 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
711 r = cc->iv_gen_ops->post(cc, iv, dmreq);
712
713 return r;
714 }
715
716 static void kcryptd_async_done(struct crypto_async_request *async_req,
717 int error);
718
719 static void crypt_alloc_req(struct crypt_config *cc,
720 struct convert_context *ctx)
721 {
722 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
723
724 if (!ctx->req)
725 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
726
727 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
728 ablkcipher_request_set_callback(ctx->req,
729 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
730 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
731 }
732
733 /*
734 * Encrypt / decrypt data from one bio to another one (can be the same one)
735 */
736 static int crypt_convert(struct crypt_config *cc,
737 struct convert_context *ctx)
738 {
739 int r;
740
741 atomic_set(&ctx->cc_pending, 1);
742
743 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
744 ctx->idx_out < ctx->bio_out->bi_vcnt) {
745
746 crypt_alloc_req(cc, ctx);
747
748 atomic_inc(&ctx->cc_pending);
749
750 r = crypt_convert_block(cc, ctx, ctx->req);
751
752 switch (r) {
753 /* async */
754 case -EBUSY:
755 wait_for_completion(&ctx->restart);
756 INIT_COMPLETION(ctx->restart);
757 /* fall through*/
758 case -EINPROGRESS:
759 ctx->req = NULL;
760 ctx->cc_sector++;
761 continue;
762
763 /* sync */
764 case 0:
765 atomic_dec(&ctx->cc_pending);
766 ctx->cc_sector++;
767 cond_resched();
768 continue;
769
770 /* error */
771 default:
772 atomic_dec(&ctx->cc_pending);
773 return r;
774 }
775 }
776
777 return 0;
778 }
779
780 /*
781 * Generate a new unfragmented bio with the given size
782 * This should never violate the device limitations
783 * May return a smaller bio when running out of pages, indicated by
784 * *out_of_pages set to 1.
785 */
786 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
787 unsigned *out_of_pages)
788 {
789 struct crypt_config *cc = io->cc;
790 struct bio *clone;
791 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
792 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
793 unsigned i, len;
794 struct page *page;
795
796 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
797 if (!clone)
798 return NULL;
799
800 clone_init(io, clone);
801 *out_of_pages = 0;
802
803 for (i = 0; i < nr_iovecs; i++) {
804 page = mempool_alloc(cc->page_pool, gfp_mask);
805 if (!page) {
806 *out_of_pages = 1;
807 break;
808 }
809
810 /*
811 * If additional pages cannot be allocated without waiting,
812 * return a partially-allocated bio. The caller will then try
813 * to allocate more bios while submitting this partial bio.
814 */
815 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
816
817 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
818
819 if (!bio_add_page(clone, page, len, 0)) {
820 mempool_free(page, cc->page_pool);
821 break;
822 }
823
824 size -= len;
825 }
826
827 if (!clone->bi_size) {
828 bio_put(clone);
829 return NULL;
830 }
831
832 return clone;
833 }
834
835 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
836 {
837 unsigned int i;
838 struct bio_vec *bv;
839
840 bio_for_each_segment_all(bv, clone, i) {
841 BUG_ON(!bv->bv_page);
842 mempool_free(bv->bv_page, cc->page_pool);
843 bv->bv_page = NULL;
844 }
845 }
846
847 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
848 struct bio *bio, sector_t sector)
849 {
850 struct dm_crypt_io *io;
851
852 io = mempool_alloc(cc->io_pool, GFP_NOIO);
853 io->cc = cc;
854 io->base_bio = bio;
855 io->sector = sector;
856 io->error = 0;
857 io->base_io = NULL;
858 io->ctx.req = NULL;
859 atomic_set(&io->io_pending, 0);
860
861 return io;
862 }
863
864 static void crypt_inc_pending(struct dm_crypt_io *io)
865 {
866 atomic_inc(&io->io_pending);
867 }
868
869 /*
870 * One of the bios was finished. Check for completion of
871 * the whole request and correctly clean up the buffer.
872 * If base_io is set, wait for the last fragment to complete.
873 */
874 static void crypt_dec_pending(struct dm_crypt_io *io)
875 {
876 struct crypt_config *cc = io->cc;
877 struct bio *base_bio = io->base_bio;
878 struct dm_crypt_io *base_io = io->base_io;
879 int error = io->error;
880
881 if (!atomic_dec_and_test(&io->io_pending))
882 return;
883
884 if (io->ctx.req)
885 mempool_free(io->ctx.req, cc->req_pool);
886 mempool_free(io, cc->io_pool);
887
888 if (likely(!base_io))
889 bio_endio(base_bio, error);
890 else {
891 if (error && !base_io->error)
892 base_io->error = error;
893 crypt_dec_pending(base_io);
894 }
895 }
896
897 /*
898 * kcryptd/kcryptd_io:
899 *
900 * Needed because it would be very unwise to do decryption in an
901 * interrupt context.
902 *
903 * kcryptd performs the actual encryption or decryption.
904 *
905 * kcryptd_io performs the IO submission.
906 *
907 * They must be separated as otherwise the final stages could be
908 * starved by new requests which can block in the first stages due
909 * to memory allocation.
910 *
911 * The work is done per CPU global for all dm-crypt instances.
912 * They should not depend on each other and do not block.
913 */
914 static void crypt_endio(struct bio *clone, int error)
915 {
916 struct dm_crypt_io *io = clone->bi_private;
917 struct crypt_config *cc = io->cc;
918 unsigned rw = bio_data_dir(clone);
919
920 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
921 error = -EIO;
922
923 /*
924 * free the processed pages
925 */
926 if (rw == WRITE)
927 crypt_free_buffer_pages(cc, clone);
928
929 bio_put(clone);
930
931 if (rw == READ && !error) {
932 kcryptd_queue_crypt(io);
933 return;
934 }
935
936 if (unlikely(error))
937 io->error = error;
938
939 crypt_dec_pending(io);
940 }
941
942 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
943 {
944 struct crypt_config *cc = io->cc;
945
946 clone->bi_private = io;
947 clone->bi_end_io = crypt_endio;
948 clone->bi_bdev = cc->dev->bdev;
949 clone->bi_rw = io->base_bio->bi_rw;
950 }
951
952 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
953 {
954 struct crypt_config *cc = io->cc;
955 struct bio *base_bio = io->base_bio;
956 struct bio *clone;
957
958 /*
959 * The block layer might modify the bvec array, so always
960 * copy the required bvecs because we need the original
961 * one in order to decrypt the whole bio data *afterwards*.
962 */
963 clone = bio_clone_bioset(base_bio, gfp, cc->bs);
964 if (!clone)
965 return 1;
966
967 crypt_inc_pending(io);
968
969 clone_init(io, clone);
970 clone->bi_sector = cc->start + io->sector;
971
972 generic_make_request(clone);
973 return 0;
974 }
975
976 static void kcryptd_io_write(struct dm_crypt_io *io)
977 {
978 struct bio *clone = io->ctx.bio_out;
979 generic_make_request(clone);
980 }
981
982 static void kcryptd_io(struct work_struct *work)
983 {
984 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
985
986 if (bio_data_dir(io->base_bio) == READ) {
987 crypt_inc_pending(io);
988 if (kcryptd_io_read(io, GFP_NOIO))
989 io->error = -ENOMEM;
990 crypt_dec_pending(io);
991 } else
992 kcryptd_io_write(io);
993 }
994
995 static void kcryptd_queue_io(struct dm_crypt_io *io)
996 {
997 struct crypt_config *cc = io->cc;
998
999 INIT_WORK(&io->work, kcryptd_io);
1000 queue_work(cc->io_queue, &io->work);
1001 }
1002
1003 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1004 {
1005 struct bio *clone = io->ctx.bio_out;
1006 struct crypt_config *cc = io->cc;
1007
1008 if (unlikely(io->error < 0)) {
1009 crypt_free_buffer_pages(cc, clone);
1010 bio_put(clone);
1011 crypt_dec_pending(io);
1012 return;
1013 }
1014
1015 /* crypt_convert should have filled the clone bio */
1016 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1017
1018 clone->bi_sector = cc->start + io->sector;
1019
1020 if (async)
1021 kcryptd_queue_io(io);
1022 else
1023 generic_make_request(clone);
1024 }
1025
1026 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1027 {
1028 struct crypt_config *cc = io->cc;
1029 struct bio *clone;
1030 struct dm_crypt_io *new_io;
1031 int crypt_finished;
1032 unsigned out_of_pages = 0;
1033 unsigned remaining = io->base_bio->bi_size;
1034 sector_t sector = io->sector;
1035 int r;
1036
1037 /*
1038 * Prevent io from disappearing until this function completes.
1039 */
1040 crypt_inc_pending(io);
1041 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1042
1043 /*
1044 * The allocated buffers can be smaller than the whole bio,
1045 * so repeat the whole process until all the data can be handled.
1046 */
1047 while (remaining) {
1048 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1049 if (unlikely(!clone)) {
1050 io->error = -ENOMEM;
1051 break;
1052 }
1053
1054 io->ctx.bio_out = clone;
1055 io->ctx.idx_out = 0;
1056
1057 remaining -= clone->bi_size;
1058 sector += bio_sectors(clone);
1059
1060 crypt_inc_pending(io);
1061
1062 r = crypt_convert(cc, &io->ctx);
1063 if (r < 0)
1064 io->error = -EIO;
1065
1066 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1067
1068 /* Encryption was already finished, submit io now */
1069 if (crypt_finished) {
1070 kcryptd_crypt_write_io_submit(io, 0);
1071
1072 /*
1073 * If there was an error, do not try next fragments.
1074 * For async, error is processed in async handler.
1075 */
1076 if (unlikely(r < 0))
1077 break;
1078
1079 io->sector = sector;
1080 }
1081
1082 /*
1083 * Out of memory -> run queues
1084 * But don't wait if split was due to the io size restriction
1085 */
1086 if (unlikely(out_of_pages))
1087 congestion_wait(BLK_RW_ASYNC, HZ/100);
1088
1089 /*
1090 * With async crypto it is unsafe to share the crypto context
1091 * between fragments, so switch to a new dm_crypt_io structure.
1092 */
1093 if (unlikely(!crypt_finished && remaining)) {
1094 new_io = crypt_io_alloc(io->cc, io->base_bio,
1095 sector);
1096 crypt_inc_pending(new_io);
1097 crypt_convert_init(cc, &new_io->ctx, NULL,
1098 io->base_bio, sector);
1099 new_io->ctx.idx_in = io->ctx.idx_in;
1100 new_io->ctx.offset_in = io->ctx.offset_in;
1101
1102 /*
1103 * Fragments after the first use the base_io
1104 * pending count.
1105 */
1106 if (!io->base_io)
1107 new_io->base_io = io;
1108 else {
1109 new_io->base_io = io->base_io;
1110 crypt_inc_pending(io->base_io);
1111 crypt_dec_pending(io);
1112 }
1113
1114 io = new_io;
1115 }
1116 }
1117
1118 crypt_dec_pending(io);
1119 }
1120
1121 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1122 {
1123 crypt_dec_pending(io);
1124 }
1125
1126 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1127 {
1128 struct crypt_config *cc = io->cc;
1129 int r = 0;
1130
1131 crypt_inc_pending(io);
1132
1133 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1134 io->sector);
1135
1136 r = crypt_convert(cc, &io->ctx);
1137 if (r < 0)
1138 io->error = -EIO;
1139
1140 if (atomic_dec_and_test(&io->ctx.cc_pending))
1141 kcryptd_crypt_read_done(io);
1142
1143 crypt_dec_pending(io);
1144 }
1145
1146 static void kcryptd_async_done(struct crypto_async_request *async_req,
1147 int error)
1148 {
1149 struct dm_crypt_request *dmreq = async_req->data;
1150 struct convert_context *ctx = dmreq->ctx;
1151 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1152 struct crypt_config *cc = io->cc;
1153
1154 if (error == -EINPROGRESS) {
1155 complete(&ctx->restart);
1156 return;
1157 }
1158
1159 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1160 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1161
1162 if (error < 0)
1163 io->error = -EIO;
1164
1165 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1166
1167 if (!atomic_dec_and_test(&ctx->cc_pending))
1168 return;
1169
1170 if (bio_data_dir(io->base_bio) == READ)
1171 kcryptd_crypt_read_done(io);
1172 else
1173 kcryptd_crypt_write_io_submit(io, 1);
1174 }
1175
1176 static void kcryptd_crypt(struct work_struct *work)
1177 {
1178 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1179
1180 if (bio_data_dir(io->base_bio) == READ)
1181 kcryptd_crypt_read_convert(io);
1182 else
1183 kcryptd_crypt_write_convert(io);
1184 }
1185
1186 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1187 {
1188 struct crypt_config *cc = io->cc;
1189
1190 INIT_WORK(&io->work, kcryptd_crypt);
1191 queue_work(cc->crypt_queue, &io->work);
1192 }
1193
1194 /*
1195 * Decode key from its hex representation
1196 */
1197 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1198 {
1199 char buffer[3];
1200 unsigned int i;
1201
1202 buffer[2] = '\0';
1203
1204 for (i = 0; i < size; i++) {
1205 buffer[0] = *hex++;
1206 buffer[1] = *hex++;
1207
1208 if (kstrtou8(buffer, 16, &key[i]))
1209 return -EINVAL;
1210 }
1211
1212 if (*hex != '\0')
1213 return -EINVAL;
1214
1215 return 0;
1216 }
1217
1218 static void crypt_free_tfms(struct crypt_config *cc)
1219 {
1220 unsigned i;
1221
1222 if (!cc->tfms)
1223 return;
1224
1225 for (i = 0; i < cc->tfms_count; i++)
1226 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1227 crypto_free_ablkcipher(cc->tfms[i]);
1228 cc->tfms[i] = NULL;
1229 }
1230
1231 kfree(cc->tfms);
1232 cc->tfms = NULL;
1233 }
1234
1235 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1236 {
1237 unsigned i;
1238 int err;
1239
1240 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1241 GFP_KERNEL);
1242 if (!cc->tfms)
1243 return -ENOMEM;
1244
1245 for (i = 0; i < cc->tfms_count; i++) {
1246 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1247 if (IS_ERR(cc->tfms[i])) {
1248 err = PTR_ERR(cc->tfms[i]);
1249 crypt_free_tfms(cc);
1250 return err;
1251 }
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int crypt_setkey_allcpus(struct crypt_config *cc)
1258 {
1259 unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1260 int err = 0, i, r;
1261
1262 for (i = 0; i < cc->tfms_count; i++) {
1263 r = crypto_ablkcipher_setkey(cc->tfms[i],
1264 cc->key + (i * subkey_size),
1265 subkey_size);
1266 if (r)
1267 err = r;
1268 }
1269
1270 return err;
1271 }
1272
1273 static int crypt_set_key(struct crypt_config *cc, char *key)
1274 {
1275 int r = -EINVAL;
1276 int key_string_len = strlen(key);
1277
1278 /* The key size may not be changed. */
1279 if (cc->key_size != (key_string_len >> 1))
1280 goto out;
1281
1282 /* Hyphen (which gives a key_size of zero) means there is no key. */
1283 if (!cc->key_size && strcmp(key, "-"))
1284 goto out;
1285
1286 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1287 goto out;
1288
1289 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1290
1291 r = crypt_setkey_allcpus(cc);
1292
1293 out:
1294 /* Hex key string not needed after here, so wipe it. */
1295 memset(key, '0', key_string_len);
1296
1297 return r;
1298 }
1299
1300 static int crypt_wipe_key(struct crypt_config *cc)
1301 {
1302 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1303 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1304
1305 return crypt_setkey_allcpus(cc);
1306 }
1307
1308 static void crypt_dtr(struct dm_target *ti)
1309 {
1310 struct crypt_config *cc = ti->private;
1311
1312 ti->private = NULL;
1313
1314 if (!cc)
1315 return;
1316
1317 if (cc->io_queue)
1318 destroy_workqueue(cc->io_queue);
1319 if (cc->crypt_queue)
1320 destroy_workqueue(cc->crypt_queue);
1321
1322 crypt_free_tfms(cc);
1323
1324 if (cc->bs)
1325 bioset_free(cc->bs);
1326
1327 if (cc->page_pool)
1328 mempool_destroy(cc->page_pool);
1329 if (cc->req_pool)
1330 mempool_destroy(cc->req_pool);
1331 if (cc->io_pool)
1332 mempool_destroy(cc->io_pool);
1333
1334 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1335 cc->iv_gen_ops->dtr(cc);
1336
1337 if (cc->dev)
1338 dm_put_device(ti, cc->dev);
1339
1340 kzfree(cc->cipher);
1341 kzfree(cc->cipher_string);
1342
1343 /* Must zero key material before freeing */
1344 kzfree(cc);
1345 }
1346
1347 static int crypt_ctr_cipher(struct dm_target *ti,
1348 char *cipher_in, char *key)
1349 {
1350 struct crypt_config *cc = ti->private;
1351 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1352 char *cipher_api = NULL;
1353 int ret = -EINVAL;
1354 char dummy;
1355
1356 /* Convert to crypto api definition? */
1357 if (strchr(cipher_in, '(')) {
1358 ti->error = "Bad cipher specification";
1359 return -EINVAL;
1360 }
1361
1362 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1363 if (!cc->cipher_string)
1364 goto bad_mem;
1365
1366 /*
1367 * Legacy dm-crypt cipher specification
1368 * cipher[:keycount]-mode-iv:ivopts
1369 */
1370 tmp = cipher_in;
1371 keycount = strsep(&tmp, "-");
1372 cipher = strsep(&keycount, ":");
1373
1374 if (!keycount)
1375 cc->tfms_count = 1;
1376 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1377 !is_power_of_2(cc->tfms_count)) {
1378 ti->error = "Bad cipher key count specification";
1379 return -EINVAL;
1380 }
1381 cc->key_parts = cc->tfms_count;
1382
1383 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1384 if (!cc->cipher)
1385 goto bad_mem;
1386
1387 chainmode = strsep(&tmp, "-");
1388 ivopts = strsep(&tmp, "-");
1389 ivmode = strsep(&ivopts, ":");
1390
1391 if (tmp)
1392 DMWARN("Ignoring unexpected additional cipher options");
1393
1394 /*
1395 * For compatibility with the original dm-crypt mapping format, if
1396 * only the cipher name is supplied, use cbc-plain.
1397 */
1398 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1399 chainmode = "cbc";
1400 ivmode = "plain";
1401 }
1402
1403 if (strcmp(chainmode, "ecb") && !ivmode) {
1404 ti->error = "IV mechanism required";
1405 return -EINVAL;
1406 }
1407
1408 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1409 if (!cipher_api)
1410 goto bad_mem;
1411
1412 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1413 "%s(%s)", chainmode, cipher);
1414 if (ret < 0) {
1415 kfree(cipher_api);
1416 goto bad_mem;
1417 }
1418
1419 /* Allocate cipher */
1420 ret = crypt_alloc_tfms(cc, cipher_api);
1421 if (ret < 0) {
1422 ti->error = "Error allocating crypto tfm";
1423 goto bad;
1424 }
1425
1426 /* Initialize and set key */
1427 ret = crypt_set_key(cc, key);
1428 if (ret < 0) {
1429 ti->error = "Error decoding and setting key";
1430 goto bad;
1431 }
1432
1433 /* Initialize IV */
1434 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1435 if (cc->iv_size)
1436 /* at least a 64 bit sector number should fit in our buffer */
1437 cc->iv_size = max(cc->iv_size,
1438 (unsigned int)(sizeof(u64) / sizeof(u8)));
1439 else if (ivmode) {
1440 DMWARN("Selected cipher does not support IVs");
1441 ivmode = NULL;
1442 }
1443
1444 /* Choose ivmode, see comments at iv code. */
1445 if (ivmode == NULL)
1446 cc->iv_gen_ops = NULL;
1447 else if (strcmp(ivmode, "plain") == 0)
1448 cc->iv_gen_ops = &crypt_iv_plain_ops;
1449 else if (strcmp(ivmode, "plain64") == 0)
1450 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1451 else if (strcmp(ivmode, "essiv") == 0)
1452 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1453 else if (strcmp(ivmode, "benbi") == 0)
1454 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1455 else if (strcmp(ivmode, "null") == 0)
1456 cc->iv_gen_ops = &crypt_iv_null_ops;
1457 else if (strcmp(ivmode, "lmk") == 0) {
1458 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1459 /* Version 2 and 3 is recognised according
1460 * to length of provided multi-key string.
1461 * If present (version 3), last key is used as IV seed.
1462 */
1463 if (cc->key_size % cc->key_parts)
1464 cc->key_parts++;
1465 } else {
1466 ret = -EINVAL;
1467 ti->error = "Invalid IV mode";
1468 goto bad;
1469 }
1470
1471 /* Allocate IV */
1472 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1473 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1474 if (ret < 0) {
1475 ti->error = "Error creating IV";
1476 goto bad;
1477 }
1478 }
1479
1480 /* Initialize IV (set keys for ESSIV etc) */
1481 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1482 ret = cc->iv_gen_ops->init(cc);
1483 if (ret < 0) {
1484 ti->error = "Error initialising IV";
1485 goto bad;
1486 }
1487 }
1488
1489 ret = 0;
1490 bad:
1491 kfree(cipher_api);
1492 return ret;
1493
1494 bad_mem:
1495 ti->error = "Cannot allocate cipher strings";
1496 return -ENOMEM;
1497 }
1498
1499 /*
1500 * Construct an encryption mapping:
1501 * <cipher> <key> <iv_offset> <dev_path> <start>
1502 */
1503 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1504 {
1505 struct crypt_config *cc;
1506 unsigned int key_size, opt_params;
1507 unsigned long long tmpll;
1508 int ret;
1509 size_t iv_size_padding;
1510 struct dm_arg_set as;
1511 const char *opt_string;
1512 char dummy;
1513
1514 static struct dm_arg _args[] = {
1515 {0, 1, "Invalid number of feature args"},
1516 };
1517
1518 if (argc < 5) {
1519 ti->error = "Not enough arguments";
1520 return -EINVAL;
1521 }
1522
1523 key_size = strlen(argv[1]) >> 1;
1524
1525 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1526 if (!cc) {
1527 ti->error = "Cannot allocate encryption context";
1528 return -ENOMEM;
1529 }
1530 cc->key_size = key_size;
1531
1532 ti->private = cc;
1533 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1534 if (ret < 0)
1535 goto bad;
1536
1537 ret = -ENOMEM;
1538 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1539 if (!cc->io_pool) {
1540 ti->error = "Cannot allocate crypt io mempool";
1541 goto bad;
1542 }
1543
1544 cc->dmreq_start = sizeof(struct ablkcipher_request);
1545 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1546 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1547
1548 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1549 /* Allocate the padding exactly */
1550 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1551 & crypto_ablkcipher_alignmask(any_tfm(cc));
1552 } else {
1553 /*
1554 * If the cipher requires greater alignment than kmalloc
1555 * alignment, we don't know the exact position of the
1556 * initialization vector. We must assume worst case.
1557 */
1558 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1559 }
1560
1561 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1562 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1563 if (!cc->req_pool) {
1564 ti->error = "Cannot allocate crypt request mempool";
1565 goto bad;
1566 }
1567
1568 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1569 if (!cc->page_pool) {
1570 ti->error = "Cannot allocate page mempool";
1571 goto bad;
1572 }
1573
1574 cc->bs = bioset_create(MIN_IOS, 0);
1575 if (!cc->bs) {
1576 ti->error = "Cannot allocate crypt bioset";
1577 goto bad;
1578 }
1579
1580 ret = -EINVAL;
1581 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1582 ti->error = "Invalid iv_offset sector";
1583 goto bad;
1584 }
1585 cc->iv_offset = tmpll;
1586
1587 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1588 ti->error = "Device lookup failed";
1589 goto bad;
1590 }
1591
1592 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1593 ti->error = "Invalid device sector";
1594 goto bad;
1595 }
1596 cc->start = tmpll;
1597
1598 argv += 5;
1599 argc -= 5;
1600
1601 /* Optional parameters */
1602 if (argc) {
1603 as.argc = argc;
1604 as.argv = argv;
1605
1606 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1607 if (ret)
1608 goto bad;
1609
1610 opt_string = dm_shift_arg(&as);
1611
1612 if (opt_params == 1 && opt_string &&
1613 !strcasecmp(opt_string, "allow_discards"))
1614 ti->num_discard_bios = 1;
1615 else if (opt_params) {
1616 ret = -EINVAL;
1617 ti->error = "Invalid feature arguments";
1618 goto bad;
1619 }
1620 }
1621
1622 ret = -ENOMEM;
1623 cc->io_queue = alloc_workqueue("kcryptd_io",
1624 WQ_NON_REENTRANT|
1625 WQ_MEM_RECLAIM,
1626 1);
1627 if (!cc->io_queue) {
1628 ti->error = "Couldn't create kcryptd io queue";
1629 goto bad;
1630 }
1631
1632 cc->crypt_queue = alloc_workqueue("kcryptd",
1633 WQ_NON_REENTRANT|
1634 WQ_CPU_INTENSIVE|
1635 WQ_MEM_RECLAIM,
1636 1);
1637 if (!cc->crypt_queue) {
1638 ti->error = "Couldn't create kcryptd queue";
1639 goto bad;
1640 }
1641
1642 ti->num_flush_bios = 1;
1643 ti->discard_zeroes_data_unsupported = true;
1644
1645 return 0;
1646
1647 bad:
1648 crypt_dtr(ti);
1649 return ret;
1650 }
1651
1652 static int crypt_map(struct dm_target *ti, struct bio *bio)
1653 {
1654 struct dm_crypt_io *io;
1655 struct crypt_config *cc = ti->private;
1656
1657 /*
1658 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1659 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1660 * - for REQ_DISCARD caller must use flush if IO ordering matters
1661 */
1662 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1663 bio->bi_bdev = cc->dev->bdev;
1664 if (bio_sectors(bio))
1665 bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1666 return DM_MAPIO_REMAPPED;
1667 }
1668
1669 io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1670
1671 if (bio_data_dir(io->base_bio) == READ) {
1672 if (kcryptd_io_read(io, GFP_NOWAIT))
1673 kcryptd_queue_io(io);
1674 } else
1675 kcryptd_queue_crypt(io);
1676
1677 return DM_MAPIO_SUBMITTED;
1678 }
1679
1680 static void crypt_status(struct dm_target *ti, status_type_t type,
1681 unsigned status_flags, char *result, unsigned maxlen)
1682 {
1683 struct crypt_config *cc = ti->private;
1684 unsigned i, sz = 0;
1685
1686 switch (type) {
1687 case STATUSTYPE_INFO:
1688 result[0] = '\0';
1689 break;
1690
1691 case STATUSTYPE_TABLE:
1692 DMEMIT("%s ", cc->cipher_string);
1693
1694 if (cc->key_size > 0)
1695 for (i = 0; i < cc->key_size; i++)
1696 DMEMIT("%02x", cc->key[i]);
1697 else
1698 DMEMIT("-");
1699
1700 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1701 cc->dev->name, (unsigned long long)cc->start);
1702
1703 if (ti->num_discard_bios)
1704 DMEMIT(" 1 allow_discards");
1705
1706 break;
1707 }
1708 }
1709
1710 static void crypt_postsuspend(struct dm_target *ti)
1711 {
1712 struct crypt_config *cc = ti->private;
1713
1714 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1715 }
1716
1717 static int crypt_preresume(struct dm_target *ti)
1718 {
1719 struct crypt_config *cc = ti->private;
1720
1721 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1722 DMERR("aborting resume - crypt key is not set.");
1723 return -EAGAIN;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static void crypt_resume(struct dm_target *ti)
1730 {
1731 struct crypt_config *cc = ti->private;
1732
1733 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1734 }
1735
1736 /* Message interface
1737 * key set <key>
1738 * key wipe
1739 */
1740 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1741 {
1742 struct crypt_config *cc = ti->private;
1743 int ret = -EINVAL;
1744
1745 if (argc < 2)
1746 goto error;
1747
1748 if (!strcasecmp(argv[0], "key")) {
1749 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1750 DMWARN("not suspended during key manipulation.");
1751 return -EINVAL;
1752 }
1753 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1754 ret = crypt_set_key(cc, argv[2]);
1755 if (ret)
1756 return ret;
1757 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1758 ret = cc->iv_gen_ops->init(cc);
1759 return ret;
1760 }
1761 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1762 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1763 ret = cc->iv_gen_ops->wipe(cc);
1764 if (ret)
1765 return ret;
1766 }
1767 return crypt_wipe_key(cc);
1768 }
1769 }
1770
1771 error:
1772 DMWARN("unrecognised message received.");
1773 return -EINVAL;
1774 }
1775
1776 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1777 struct bio_vec *biovec, int max_size)
1778 {
1779 struct crypt_config *cc = ti->private;
1780 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1781
1782 if (!q->merge_bvec_fn)
1783 return max_size;
1784
1785 bvm->bi_bdev = cc->dev->bdev;
1786 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1787
1788 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1789 }
1790
1791 static int crypt_iterate_devices(struct dm_target *ti,
1792 iterate_devices_callout_fn fn, void *data)
1793 {
1794 struct crypt_config *cc = ti->private;
1795
1796 return fn(ti, cc->dev, cc->start, ti->len, data);
1797 }
1798
1799 static struct target_type crypt_target = {
1800 .name = "crypt",
1801 .version = {1, 12, 1},
1802 .module = THIS_MODULE,
1803 .ctr = crypt_ctr,
1804 .dtr = crypt_dtr,
1805 .map = crypt_map,
1806 .status = crypt_status,
1807 .postsuspend = crypt_postsuspend,
1808 .preresume = crypt_preresume,
1809 .resume = crypt_resume,
1810 .message = crypt_message,
1811 .merge = crypt_merge,
1812 .iterate_devices = crypt_iterate_devices,
1813 };
1814
1815 static int __init dm_crypt_init(void)
1816 {
1817 int r;
1818
1819 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1820 if (!_crypt_io_pool)
1821 return -ENOMEM;
1822
1823 r = dm_register_target(&crypt_target);
1824 if (r < 0) {
1825 DMERR("register failed %d", r);
1826 kmem_cache_destroy(_crypt_io_pool);
1827 }
1828
1829 return r;
1830 }
1831
1832 static void __exit dm_crypt_exit(void)
1833 {
1834 dm_unregister_target(&crypt_target);
1835 kmem_cache_destroy(_crypt_io_pool);
1836 }
1837
1838 module_init(dm_crypt_init);
1839 module_exit(dm_crypt_exit);
1840
1841 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1842 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1843 MODULE_LICENSE("GPL");