Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / bcache / super.c
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/buffer_head.h>
15 #include <linux/debugfs.h>
16 #include <linux/genhd.h>
17 #include <linux/module.h>
18 #include <linux/random.h>
19 #include <linux/reboot.h>
20 #include <linux/sysfs.h>
21
22 MODULE_LICENSE("GPL");
23 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
24
25 static const char bcache_magic[] = {
26 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
27 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
28 };
29
30 static const char invalid_uuid[] = {
31 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
32 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
33 };
34
35 /* Default is -1; we skip past it for struct cached_dev's cache mode */
36 const char * const bch_cache_modes[] = {
37 "default",
38 "writethrough",
39 "writeback",
40 "writearound",
41 "none",
42 NULL
43 };
44
45 struct uuid_entry_v0 {
46 uint8_t uuid[16];
47 uint8_t label[32];
48 uint32_t first_reg;
49 uint32_t last_reg;
50 uint32_t invalidated;
51 uint32_t pad;
52 };
53
54 static struct kobject *bcache_kobj;
55 struct mutex bch_register_lock;
56 LIST_HEAD(bch_cache_sets);
57 static LIST_HEAD(uncached_devices);
58
59 static int bcache_major, bcache_minor;
60 static wait_queue_head_t unregister_wait;
61 struct workqueue_struct *bcache_wq;
62
63 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
64
65 static void bio_split_pool_free(struct bio_split_pool *p)
66 {
67 if (p->bio_split_hook)
68 mempool_destroy(p->bio_split_hook);
69
70 if (p->bio_split)
71 bioset_free(p->bio_split);
72 }
73
74 static int bio_split_pool_init(struct bio_split_pool *p)
75 {
76 p->bio_split = bioset_create(4, 0);
77 if (!p->bio_split)
78 return -ENOMEM;
79
80 p->bio_split_hook = mempool_create_kmalloc_pool(4,
81 sizeof(struct bio_split_hook));
82 if (!p->bio_split_hook)
83 return -ENOMEM;
84
85 return 0;
86 }
87
88 /* Superblock */
89
90 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
91 struct page **res)
92 {
93 const char *err;
94 struct cache_sb *s;
95 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
96 unsigned i;
97
98 if (!bh)
99 return "IO error";
100
101 s = (struct cache_sb *) bh->b_data;
102
103 sb->offset = le64_to_cpu(s->offset);
104 sb->version = le64_to_cpu(s->version);
105
106 memcpy(sb->magic, s->magic, 16);
107 memcpy(sb->uuid, s->uuid, 16);
108 memcpy(sb->set_uuid, s->set_uuid, 16);
109 memcpy(sb->label, s->label, SB_LABEL_SIZE);
110
111 sb->flags = le64_to_cpu(s->flags);
112 sb->seq = le64_to_cpu(s->seq);
113 sb->last_mount = le32_to_cpu(s->last_mount);
114 sb->first_bucket = le16_to_cpu(s->first_bucket);
115 sb->keys = le16_to_cpu(s->keys);
116
117 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
118 sb->d[i] = le64_to_cpu(s->d[i]);
119
120 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
121 sb->version, sb->flags, sb->seq, sb->keys);
122
123 err = "Not a bcache superblock";
124 if (sb->offset != SB_SECTOR)
125 goto err;
126
127 if (memcmp(sb->magic, bcache_magic, 16))
128 goto err;
129
130 err = "Too many journal buckets";
131 if (sb->keys > SB_JOURNAL_BUCKETS)
132 goto err;
133
134 err = "Bad checksum";
135 if (s->csum != csum_set(s))
136 goto err;
137
138 err = "Bad UUID";
139 if (bch_is_zero(sb->uuid, 16))
140 goto err;
141
142 sb->block_size = le16_to_cpu(s->block_size);
143
144 err = "Superblock block size smaller than device block size";
145 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
146 goto err;
147
148 switch (sb->version) {
149 case BCACHE_SB_VERSION_BDEV:
150 sb->data_offset = BDEV_DATA_START_DEFAULT;
151 break;
152 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
153 sb->data_offset = le64_to_cpu(s->data_offset);
154
155 err = "Bad data offset";
156 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
157 goto err;
158
159 break;
160 case BCACHE_SB_VERSION_CDEV:
161 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
162 sb->nbuckets = le64_to_cpu(s->nbuckets);
163 sb->block_size = le16_to_cpu(s->block_size);
164 sb->bucket_size = le16_to_cpu(s->bucket_size);
165
166 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
167 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
168
169 err = "Too many buckets";
170 if (sb->nbuckets > LONG_MAX)
171 goto err;
172
173 err = "Not enough buckets";
174 if (sb->nbuckets < 1 << 7)
175 goto err;
176
177 err = "Bad block/bucket size";
178 if (!is_power_of_2(sb->block_size) ||
179 sb->block_size > PAGE_SECTORS ||
180 !is_power_of_2(sb->bucket_size) ||
181 sb->bucket_size < PAGE_SECTORS)
182 goto err;
183
184 err = "Invalid superblock: device too small";
185 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
186 goto err;
187
188 err = "Bad UUID";
189 if (bch_is_zero(sb->set_uuid, 16))
190 goto err;
191
192 err = "Bad cache device number in set";
193 if (!sb->nr_in_set ||
194 sb->nr_in_set <= sb->nr_this_dev ||
195 sb->nr_in_set > MAX_CACHES_PER_SET)
196 goto err;
197
198 err = "Journal buckets not sequential";
199 for (i = 0; i < sb->keys; i++)
200 if (sb->d[i] != sb->first_bucket + i)
201 goto err;
202
203 err = "Too many journal buckets";
204 if (sb->first_bucket + sb->keys > sb->nbuckets)
205 goto err;
206
207 err = "Invalid superblock: first bucket comes before end of super";
208 if (sb->first_bucket * sb->bucket_size < 16)
209 goto err;
210
211 break;
212 default:
213 err = "Unsupported superblock version";
214 goto err;
215 }
216
217 sb->last_mount = get_seconds();
218 err = NULL;
219
220 get_page(bh->b_page);
221 *res = bh->b_page;
222 err:
223 put_bh(bh);
224 return err;
225 }
226
227 static void write_bdev_super_endio(struct bio *bio, int error)
228 {
229 struct cached_dev *dc = bio->bi_private;
230 /* XXX: error checking */
231
232 closure_put(&dc->sb_write.cl);
233 }
234
235 static void __write_super(struct cache_sb *sb, struct bio *bio)
236 {
237 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
238 unsigned i;
239
240 bio->bi_sector = SB_SECTOR;
241 bio->bi_rw = REQ_SYNC|REQ_META;
242 bio->bi_size = SB_SIZE;
243 bch_bio_map(bio, NULL);
244
245 out->offset = cpu_to_le64(sb->offset);
246 out->version = cpu_to_le64(sb->version);
247
248 memcpy(out->uuid, sb->uuid, 16);
249 memcpy(out->set_uuid, sb->set_uuid, 16);
250 memcpy(out->label, sb->label, SB_LABEL_SIZE);
251
252 out->flags = cpu_to_le64(sb->flags);
253 out->seq = cpu_to_le64(sb->seq);
254
255 out->last_mount = cpu_to_le32(sb->last_mount);
256 out->first_bucket = cpu_to_le16(sb->first_bucket);
257 out->keys = cpu_to_le16(sb->keys);
258
259 for (i = 0; i < sb->keys; i++)
260 out->d[i] = cpu_to_le64(sb->d[i]);
261
262 out->csum = csum_set(out);
263
264 pr_debug("ver %llu, flags %llu, seq %llu",
265 sb->version, sb->flags, sb->seq);
266
267 submit_bio(REQ_WRITE, bio);
268 }
269
270 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
271 {
272 struct closure *cl = &dc->sb_write.cl;
273 struct bio *bio = &dc->sb_bio;
274
275 closure_lock(&dc->sb_write, parent);
276
277 bio_reset(bio);
278 bio->bi_bdev = dc->bdev;
279 bio->bi_end_io = write_bdev_super_endio;
280 bio->bi_private = dc;
281
282 closure_get(cl);
283 __write_super(&dc->sb, bio);
284
285 closure_return(cl);
286 }
287
288 static void write_super_endio(struct bio *bio, int error)
289 {
290 struct cache *ca = bio->bi_private;
291
292 bch_count_io_errors(ca, error, "writing superblock");
293 closure_put(&ca->set->sb_write.cl);
294 }
295
296 void bcache_write_super(struct cache_set *c)
297 {
298 struct closure *cl = &c->sb_write.cl;
299 struct cache *ca;
300 unsigned i;
301
302 closure_lock(&c->sb_write, &c->cl);
303
304 c->sb.seq++;
305
306 for_each_cache(ca, c, i) {
307 struct bio *bio = &ca->sb_bio;
308
309 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
310 ca->sb.seq = c->sb.seq;
311 ca->sb.last_mount = c->sb.last_mount;
312
313 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
314
315 bio_reset(bio);
316 bio->bi_bdev = ca->bdev;
317 bio->bi_end_io = write_super_endio;
318 bio->bi_private = ca;
319
320 closure_get(cl);
321 __write_super(&ca->sb, bio);
322 }
323
324 closure_return(cl);
325 }
326
327 /* UUID io */
328
329 static void uuid_endio(struct bio *bio, int error)
330 {
331 struct closure *cl = bio->bi_private;
332 struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
333
334 cache_set_err_on(error, c, "accessing uuids");
335 bch_bbio_free(bio, c);
336 closure_put(cl);
337 }
338
339 static void uuid_io(struct cache_set *c, unsigned long rw,
340 struct bkey *k, struct closure *parent)
341 {
342 struct closure *cl = &c->uuid_write.cl;
343 struct uuid_entry *u;
344 unsigned i;
345
346 BUG_ON(!parent);
347 closure_lock(&c->uuid_write, parent);
348
349 for (i = 0; i < KEY_PTRS(k); i++) {
350 struct bio *bio = bch_bbio_alloc(c);
351
352 bio->bi_rw = REQ_SYNC|REQ_META|rw;
353 bio->bi_size = KEY_SIZE(k) << 9;
354
355 bio->bi_end_io = uuid_endio;
356 bio->bi_private = cl;
357 bch_bio_map(bio, c->uuids);
358
359 bch_submit_bbio(bio, c, k, i);
360
361 if (!(rw & WRITE))
362 break;
363 }
364
365 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read",
366 pkey(&c->uuid_bucket));
367
368 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369 if (!bch_is_zero(u->uuid, 16))
370 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371 u - c->uuids, u->uuid, u->label,
372 u->first_reg, u->last_reg, u->invalidated);
373
374 closure_return(cl);
375 }
376
377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379 struct bkey *k = &j->uuid_bucket;
380
381 if (__bch_ptr_invalid(c, 1, k))
382 return "bad uuid pointer";
383
384 bkey_copy(&c->uuid_bucket, k);
385 uuid_io(c, READ_SYNC, k, cl);
386
387 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388 struct uuid_entry_v0 *u0 = (void *) c->uuids;
389 struct uuid_entry *u1 = (void *) c->uuids;
390 int i;
391
392 closure_sync(cl);
393
394 /*
395 * Since the new uuid entry is bigger than the old, we have to
396 * convert starting at the highest memory address and work down
397 * in order to do it in place
398 */
399
400 for (i = c->nr_uuids - 1;
401 i >= 0;
402 --i) {
403 memcpy(u1[i].uuid, u0[i].uuid, 16);
404 memcpy(u1[i].label, u0[i].label, 32);
405
406 u1[i].first_reg = u0[i].first_reg;
407 u1[i].last_reg = u0[i].last_reg;
408 u1[i].invalidated = u0[i].invalidated;
409
410 u1[i].flags = 0;
411 u1[i].sectors = 0;
412 }
413 }
414
415 return NULL;
416 }
417
418 static int __uuid_write(struct cache_set *c)
419 {
420 BKEY_PADDED(key) k;
421 struct closure cl;
422 closure_init_stack(&cl);
423
424 lockdep_assert_held(&bch_register_lock);
425
426 if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
427 return 1;
428
429 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 uuid_io(c, REQ_WRITE, &k.key, &cl);
431 closure_sync(&cl);
432
433 bkey_copy(&c->uuid_bucket, &k.key);
434 __bkey_put(c, &k.key);
435 return 0;
436 }
437
438 int bch_uuid_write(struct cache_set *c)
439 {
440 int ret = __uuid_write(c);
441
442 if (!ret)
443 bch_journal_meta(c, NULL);
444
445 return ret;
446 }
447
448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450 struct uuid_entry *u;
451
452 for (u = c->uuids;
453 u < c->uuids + c->nr_uuids; u++)
454 if (!memcmp(u->uuid, uuid, 16))
455 return u;
456
457 return NULL;
458 }
459
460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463 return uuid_find(c, zero_uuid);
464 }
465
466 /*
467 * Bucket priorities/gens:
468 *
469 * For each bucket, we store on disk its
470 * 8 bit gen
471 * 16 bit priority
472 *
473 * See alloc.c for an explanation of the gen. The priority is used to implement
474 * lru (and in the future other) cache replacement policies; for most purposes
475 * it's just an opaque integer.
476 *
477 * The gens and the priorities don't have a whole lot to do with each other, and
478 * it's actually the gens that must be written out at specific times - it's no
479 * big deal if the priorities don't get written, if we lose them we just reuse
480 * buckets in suboptimal order.
481 *
482 * On disk they're stored in a packed array, and in as many buckets are required
483 * to fit them all. The buckets we use to store them form a list; the journal
484 * header points to the first bucket, the first bucket points to the second
485 * bucket, et cetera.
486 *
487 * This code is used by the allocation code; periodically (whenever it runs out
488 * of buckets to allocate from) the allocation code will invalidate some
489 * buckets, but it can't use those buckets until their new gens are safely on
490 * disk.
491 */
492
493 static void prio_endio(struct bio *bio, int error)
494 {
495 struct cache *ca = bio->bi_private;
496
497 cache_set_err_on(error, ca->set, "accessing priorities");
498 bch_bbio_free(bio, ca->set);
499 closure_put(&ca->prio);
500 }
501
502 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
503 {
504 struct closure *cl = &ca->prio;
505 struct bio *bio = bch_bbio_alloc(ca->set);
506
507 closure_init_stack(cl);
508
509 bio->bi_sector = bucket * ca->sb.bucket_size;
510 bio->bi_bdev = ca->bdev;
511 bio->bi_rw = REQ_SYNC|REQ_META|rw;
512 bio->bi_size = bucket_bytes(ca);
513
514 bio->bi_end_io = prio_endio;
515 bio->bi_private = ca;
516 bch_bio_map(bio, ca->disk_buckets);
517
518 closure_bio_submit(bio, &ca->prio, ca);
519 closure_sync(cl);
520 }
521
522 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
523 fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
524
525 void bch_prio_write(struct cache *ca)
526 {
527 int i;
528 struct bucket *b;
529 struct closure cl;
530
531 closure_init_stack(&cl);
532
533 lockdep_assert_held(&ca->set->bucket_lock);
534
535 for (b = ca->buckets;
536 b < ca->buckets + ca->sb.nbuckets; b++)
537 b->disk_gen = b->gen;
538
539 ca->disk_buckets->seq++;
540
541 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
542 &ca->meta_sectors_written);
543
544 pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
545 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
546 blktrace_msg(ca, "Starting priorities: " buckets_free(ca));
547
548 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
549 long bucket;
550 struct prio_set *p = ca->disk_buckets;
551 struct bucket_disk *d = p->data;
552 struct bucket_disk *end = d + prios_per_bucket(ca);
553
554 for (b = ca->buckets + i * prios_per_bucket(ca);
555 b < ca->buckets + ca->sb.nbuckets && d < end;
556 b++, d++) {
557 d->prio = cpu_to_le16(b->prio);
558 d->gen = b->gen;
559 }
560
561 p->next_bucket = ca->prio_buckets[i + 1];
562 p->magic = pset_magic(ca);
563 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
564
565 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
566 BUG_ON(bucket == -1);
567
568 mutex_unlock(&ca->set->bucket_lock);
569 prio_io(ca, bucket, REQ_WRITE);
570 mutex_lock(&ca->set->bucket_lock);
571
572 ca->prio_buckets[i] = bucket;
573 atomic_dec_bug(&ca->buckets[bucket].pin);
574 }
575
576 mutex_unlock(&ca->set->bucket_lock);
577
578 bch_journal_meta(ca->set, &cl);
579 closure_sync(&cl);
580
581 mutex_lock(&ca->set->bucket_lock);
582
583 ca->need_save_prio = 0;
584
585 /*
586 * Don't want the old priorities to get garbage collected until after we
587 * finish writing the new ones, and they're journalled
588 */
589 for (i = 0; i < prio_buckets(ca); i++)
590 ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 }
592
593 static void prio_read(struct cache *ca, uint64_t bucket)
594 {
595 struct prio_set *p = ca->disk_buckets;
596 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
597 struct bucket *b;
598 unsigned bucket_nr = 0;
599
600 for (b = ca->buckets;
601 b < ca->buckets + ca->sb.nbuckets;
602 b++, d++) {
603 if (d == end) {
604 ca->prio_buckets[bucket_nr] = bucket;
605 ca->prio_last_buckets[bucket_nr] = bucket;
606 bucket_nr++;
607
608 prio_io(ca, bucket, READ_SYNC);
609
610 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
611 pr_warn("bad csum reading priorities");
612
613 if (p->magic != pset_magic(ca))
614 pr_warn("bad magic reading priorities");
615
616 bucket = p->next_bucket;
617 d = p->data;
618 }
619
620 b->prio = le16_to_cpu(d->prio);
621 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
622 }
623 }
624
625 /* Bcache device */
626
627 static int open_dev(struct block_device *b, fmode_t mode)
628 {
629 struct bcache_device *d = b->bd_disk->private_data;
630 if (atomic_read(&d->closing))
631 return -ENXIO;
632
633 closure_get(&d->cl);
634 return 0;
635 }
636
637 static void release_dev(struct gendisk *b, fmode_t mode)
638 {
639 struct bcache_device *d = b->private_data;
640 closure_put(&d->cl);
641 }
642
643 static int ioctl_dev(struct block_device *b, fmode_t mode,
644 unsigned int cmd, unsigned long arg)
645 {
646 struct bcache_device *d = b->bd_disk->private_data;
647 return d->ioctl(d, mode, cmd, arg);
648 }
649
650 static const struct block_device_operations bcache_ops = {
651 .open = open_dev,
652 .release = release_dev,
653 .ioctl = ioctl_dev,
654 .owner = THIS_MODULE,
655 };
656
657 void bcache_device_stop(struct bcache_device *d)
658 {
659 if (!atomic_xchg(&d->closing, 1))
660 closure_queue(&d->cl);
661 }
662
663 static void bcache_device_unlink(struct bcache_device *d)
664 {
665 unsigned i;
666 struct cache *ca;
667
668 sysfs_remove_link(&d->c->kobj, d->name);
669 sysfs_remove_link(&d->kobj, "cache");
670
671 for_each_cache(ca, d->c, i)
672 bd_unlink_disk_holder(ca->bdev, d->disk);
673 }
674
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676 const char *name)
677 {
678 unsigned i;
679 struct cache *ca;
680
681 for_each_cache(ca, d->c, i)
682 bd_link_disk_holder(ca->bdev, d->disk);
683
684 snprintf(d->name, BCACHEDEVNAME_SIZE,
685 "%s%u", name, d->id);
686
687 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688 sysfs_create_link(&c->kobj, &d->kobj, d->name),
689 "Couldn't create device <-> cache set symlinks");
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694 lockdep_assert_held(&bch_register_lock);
695
696 if (atomic_read(&d->detaching)) {
697 struct uuid_entry *u = d->c->uuids + d->id;
698
699 SET_UUID_FLASH_ONLY(u, 0);
700 memcpy(u->uuid, invalid_uuid, 16);
701 u->invalidated = cpu_to_le32(get_seconds());
702 bch_uuid_write(d->c);
703
704 atomic_set(&d->detaching, 0);
705 }
706
707 bcache_device_unlink(d);
708
709 d->c->devices[d->id] = NULL;
710 closure_put(&d->c->caching);
711 d->c = NULL;
712 }
713
714 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
715 unsigned id)
716 {
717 BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
718
719 d->id = id;
720 d->c = c;
721 c->devices[id] = d;
722
723 closure_get(&c->caching);
724 }
725
726 static void bcache_device_free(struct bcache_device *d)
727 {
728 lockdep_assert_held(&bch_register_lock);
729
730 pr_info("%s stopped", d->disk->disk_name);
731
732 if (d->c)
733 bcache_device_detach(d);
734 if (d->disk && d->disk->flags & GENHD_FL_UP)
735 del_gendisk(d->disk);
736 if (d->disk && d->disk->queue)
737 blk_cleanup_queue(d->disk->queue);
738 if (d->disk)
739 put_disk(d->disk);
740
741 bio_split_pool_free(&d->bio_split_hook);
742 if (d->unaligned_bvec)
743 mempool_destroy(d->unaligned_bvec);
744 if (d->bio_split)
745 bioset_free(d->bio_split);
746
747 closure_debug_destroy(&d->cl);
748 }
749
750 static int bcache_device_init(struct bcache_device *d, unsigned block_size)
751 {
752 struct request_queue *q;
753
754 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
755 !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
756 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
757 bio_split_pool_init(&d->bio_split_hook) ||
758 !(d->disk = alloc_disk(1)) ||
759 !(q = blk_alloc_queue(GFP_KERNEL)))
760 return -ENOMEM;
761
762 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
763
764 d->disk->major = bcache_major;
765 d->disk->first_minor = bcache_minor++;
766 d->disk->fops = &bcache_ops;
767 d->disk->private_data = d;
768
769 blk_queue_make_request(q, NULL);
770 d->disk->queue = q;
771 q->queuedata = d;
772 q->backing_dev_info.congested_data = d;
773 q->limits.max_hw_sectors = UINT_MAX;
774 q->limits.max_sectors = UINT_MAX;
775 q->limits.max_segment_size = UINT_MAX;
776 q->limits.max_segments = BIO_MAX_PAGES;
777 q->limits.max_discard_sectors = UINT_MAX;
778 q->limits.io_min = block_size;
779 q->limits.logical_block_size = block_size;
780 q->limits.physical_block_size = block_size;
781 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
782 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
783
784 return 0;
785 }
786
787 /* Cached device */
788
789 static void calc_cached_dev_sectors(struct cache_set *c)
790 {
791 uint64_t sectors = 0;
792 struct cached_dev *dc;
793
794 list_for_each_entry(dc, &c->cached_devs, list)
795 sectors += bdev_sectors(dc->bdev);
796
797 c->cached_dev_sectors = sectors;
798 }
799
800 void bch_cached_dev_run(struct cached_dev *dc)
801 {
802 struct bcache_device *d = &dc->disk;
803
804 if (atomic_xchg(&dc->running, 1))
805 return;
806
807 if (!d->c &&
808 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
809 struct closure cl;
810 closure_init_stack(&cl);
811
812 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
813 bch_write_bdev_super(dc, &cl);
814 closure_sync(&cl);
815 }
816
817 add_disk(d->disk);
818 bd_link_disk_holder(dc->bdev, dc->disk.disk);
819 #if 0
820 char *env[] = { "SYMLINK=label" , NULL };
821 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
822 #endif
823 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
824 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
825 pr_debug("error creating sysfs link");
826 }
827
828 static void cached_dev_detach_finish(struct work_struct *w)
829 {
830 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
831 char buf[BDEVNAME_SIZE];
832 struct closure cl;
833 closure_init_stack(&cl);
834
835 BUG_ON(!atomic_read(&dc->disk.detaching));
836 BUG_ON(atomic_read(&dc->count));
837
838 mutex_lock(&bch_register_lock);
839
840 memset(&dc->sb.set_uuid, 0, 16);
841 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
842
843 bch_write_bdev_super(dc, &cl);
844 closure_sync(&cl);
845
846 bcache_device_detach(&dc->disk);
847 list_move(&dc->list, &uncached_devices);
848
849 mutex_unlock(&bch_register_lock);
850
851 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
852
853 /* Drop ref we took in cached_dev_detach() */
854 closure_put(&dc->disk.cl);
855 }
856
857 void bch_cached_dev_detach(struct cached_dev *dc)
858 {
859 lockdep_assert_held(&bch_register_lock);
860
861 if (atomic_read(&dc->disk.closing))
862 return;
863
864 if (atomic_xchg(&dc->disk.detaching, 1))
865 return;
866
867 /*
868 * Block the device from being closed and freed until we're finished
869 * detaching
870 */
871 closure_get(&dc->disk.cl);
872
873 bch_writeback_queue(dc);
874 cached_dev_put(dc);
875 }
876
877 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
878 {
879 uint32_t rtime = cpu_to_le32(get_seconds());
880 struct uuid_entry *u;
881 char buf[BDEVNAME_SIZE];
882
883 bdevname(dc->bdev, buf);
884
885 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
886 return -ENOENT;
887
888 if (dc->disk.c) {
889 pr_err("Can't attach %s: already attached", buf);
890 return -EINVAL;
891 }
892
893 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
894 pr_err("Can't attach %s: shutting down", buf);
895 return -EINVAL;
896 }
897
898 if (dc->sb.block_size < c->sb.block_size) {
899 /* Will die */
900 pr_err("Couldn't attach %s: block size less than set's block size",
901 buf);
902 return -EINVAL;
903 }
904
905 u = uuid_find(c, dc->sb.uuid);
906
907 if (u &&
908 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
909 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
910 memcpy(u->uuid, invalid_uuid, 16);
911 u->invalidated = cpu_to_le32(get_seconds());
912 u = NULL;
913 }
914
915 if (!u) {
916 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
917 pr_err("Couldn't find uuid for %s in set", buf);
918 return -ENOENT;
919 }
920
921 u = uuid_find_empty(c);
922 if (!u) {
923 pr_err("Not caching %s, no room for UUID", buf);
924 return -EINVAL;
925 }
926 }
927
928 /* Deadlocks since we're called via sysfs...
929 sysfs_remove_file(&dc->kobj, &sysfs_attach);
930 */
931
932 if (bch_is_zero(u->uuid, 16)) {
933 struct closure cl;
934 closure_init_stack(&cl);
935
936 memcpy(u->uuid, dc->sb.uuid, 16);
937 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
938 u->first_reg = u->last_reg = rtime;
939 bch_uuid_write(c);
940
941 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
942 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
943
944 bch_write_bdev_super(dc, &cl);
945 closure_sync(&cl);
946 } else {
947 u->last_reg = rtime;
948 bch_uuid_write(c);
949 }
950
951 bcache_device_attach(&dc->disk, c, u - c->uuids);
952 list_move(&dc->list, &c->cached_devs);
953 calc_cached_dev_sectors(c);
954
955 smp_wmb();
956 /*
957 * dc->c must be set before dc->count != 0 - paired with the mb in
958 * cached_dev_get()
959 */
960 atomic_set(&dc->count, 1);
961
962 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
963 atomic_set(&dc->has_dirty, 1);
964 atomic_inc(&dc->count);
965 bch_writeback_queue(dc);
966 }
967
968 bch_cached_dev_run(dc);
969 bcache_device_link(&dc->disk, c, "bdev");
970
971 pr_info("Caching %s as %s on set %pU",
972 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
973 dc->disk.c->sb.set_uuid);
974 return 0;
975 }
976
977 void bch_cached_dev_release(struct kobject *kobj)
978 {
979 struct cached_dev *dc = container_of(kobj, struct cached_dev,
980 disk.kobj);
981 kfree(dc);
982 module_put(THIS_MODULE);
983 }
984
985 static void cached_dev_free(struct closure *cl)
986 {
987 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
988
989 cancel_delayed_work_sync(&dc->writeback_rate_update);
990
991 mutex_lock(&bch_register_lock);
992
993 if (atomic_read(&dc->running))
994 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
995 bcache_device_free(&dc->disk);
996 list_del(&dc->list);
997
998 mutex_unlock(&bch_register_lock);
999
1000 if (!IS_ERR_OR_NULL(dc->bdev)) {
1001 if (dc->bdev->bd_disk)
1002 blk_sync_queue(bdev_get_queue(dc->bdev));
1003
1004 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1005 }
1006
1007 wake_up(&unregister_wait);
1008
1009 kobject_put(&dc->disk.kobj);
1010 }
1011
1012 static void cached_dev_flush(struct closure *cl)
1013 {
1014 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1015 struct bcache_device *d = &dc->disk;
1016
1017 bch_cache_accounting_destroy(&dc->accounting);
1018 kobject_del(&d->kobj);
1019
1020 continue_at(cl, cached_dev_free, system_wq);
1021 }
1022
1023 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1024 {
1025 int ret;
1026 struct io *io;
1027 struct request_queue *q = bdev_get_queue(dc->bdev);
1028
1029 __module_get(THIS_MODULE);
1030 INIT_LIST_HEAD(&dc->list);
1031 closure_init(&dc->disk.cl, NULL);
1032 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1033 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1034 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1035 closure_init_unlocked(&dc->sb_write);
1036 INIT_LIST_HEAD(&dc->io_lru);
1037 spin_lock_init(&dc->io_lock);
1038 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1039
1040 dc->sequential_merge = true;
1041 dc->sequential_cutoff = 4 << 20;
1042
1043 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1044 list_add(&io->lru, &dc->io_lru);
1045 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1046 }
1047
1048 ret = bcache_device_init(&dc->disk, block_size);
1049 if (ret)
1050 return ret;
1051
1052 set_capacity(dc->disk.disk,
1053 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1054
1055 dc->disk.disk->queue->backing_dev_info.ra_pages =
1056 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1057 q->backing_dev_info.ra_pages);
1058
1059 bch_cached_dev_request_init(dc);
1060 bch_cached_dev_writeback_init(dc);
1061 return 0;
1062 }
1063
1064 /* Cached device - bcache superblock */
1065
1066 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1067 struct block_device *bdev,
1068 struct cached_dev *dc)
1069 {
1070 char name[BDEVNAME_SIZE];
1071 const char *err = "cannot allocate memory";
1072 struct cache_set *c;
1073
1074 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1075 dc->bdev = bdev;
1076 dc->bdev->bd_holder = dc;
1077
1078 bio_init(&dc->sb_bio);
1079 dc->sb_bio.bi_max_vecs = 1;
1080 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1081 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1082 get_page(sb_page);
1083
1084 if (cached_dev_init(dc, sb->block_size << 9))
1085 goto err;
1086
1087 err = "error creating kobject";
1088 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1089 "bcache"))
1090 goto err;
1091 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1092 goto err;
1093
1094 pr_info("registered backing device %s", bdevname(bdev, name));
1095
1096 list_add(&dc->list, &uncached_devices);
1097 list_for_each_entry(c, &bch_cache_sets, list)
1098 bch_cached_dev_attach(dc, c);
1099
1100 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1101 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1102 bch_cached_dev_run(dc);
1103
1104 return;
1105 err:
1106 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1107 bcache_device_stop(&dc->disk);
1108 }
1109
1110 /* Flash only volumes */
1111
1112 void bch_flash_dev_release(struct kobject *kobj)
1113 {
1114 struct bcache_device *d = container_of(kobj, struct bcache_device,
1115 kobj);
1116 kfree(d);
1117 }
1118
1119 static void flash_dev_free(struct closure *cl)
1120 {
1121 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1122 bcache_device_free(d);
1123 kobject_put(&d->kobj);
1124 }
1125
1126 static void flash_dev_flush(struct closure *cl)
1127 {
1128 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1129
1130 bcache_device_unlink(d);
1131 kobject_del(&d->kobj);
1132 continue_at(cl, flash_dev_free, system_wq);
1133 }
1134
1135 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1136 {
1137 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1138 GFP_KERNEL);
1139 if (!d)
1140 return -ENOMEM;
1141
1142 closure_init(&d->cl, NULL);
1143 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1144
1145 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1146
1147 if (bcache_device_init(d, block_bytes(c)))
1148 goto err;
1149
1150 bcache_device_attach(d, c, u - c->uuids);
1151 set_capacity(d->disk, u->sectors);
1152 bch_flash_dev_request_init(d);
1153 add_disk(d->disk);
1154
1155 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1156 goto err;
1157
1158 bcache_device_link(d, c, "volume");
1159
1160 return 0;
1161 err:
1162 kobject_put(&d->kobj);
1163 return -ENOMEM;
1164 }
1165
1166 static int flash_devs_run(struct cache_set *c)
1167 {
1168 int ret = 0;
1169 struct uuid_entry *u;
1170
1171 for (u = c->uuids;
1172 u < c->uuids + c->nr_uuids && !ret;
1173 u++)
1174 if (UUID_FLASH_ONLY(u))
1175 ret = flash_dev_run(c, u);
1176
1177 return ret;
1178 }
1179
1180 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1181 {
1182 struct uuid_entry *u;
1183
1184 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1185 return -EINTR;
1186
1187 u = uuid_find_empty(c);
1188 if (!u) {
1189 pr_err("Can't create volume, no room for UUID");
1190 return -EINVAL;
1191 }
1192
1193 get_random_bytes(u->uuid, 16);
1194 memset(u->label, 0, 32);
1195 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1196
1197 SET_UUID_FLASH_ONLY(u, 1);
1198 u->sectors = size >> 9;
1199
1200 bch_uuid_write(c);
1201
1202 return flash_dev_run(c, u);
1203 }
1204
1205 /* Cache set */
1206
1207 __printf(2, 3)
1208 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1209 {
1210 va_list args;
1211
1212 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1213 return false;
1214
1215 /* XXX: we can be called from atomic context
1216 acquire_console_sem();
1217 */
1218
1219 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1220
1221 va_start(args, fmt);
1222 vprintk(fmt, args);
1223 va_end(args);
1224
1225 printk(", disabling caching\n");
1226
1227 bch_cache_set_unregister(c);
1228 return true;
1229 }
1230
1231 void bch_cache_set_release(struct kobject *kobj)
1232 {
1233 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1234 kfree(c);
1235 module_put(THIS_MODULE);
1236 }
1237
1238 static void cache_set_free(struct closure *cl)
1239 {
1240 struct cache_set *c = container_of(cl, struct cache_set, cl);
1241 struct cache *ca;
1242 unsigned i;
1243
1244 if (!IS_ERR_OR_NULL(c->debug))
1245 debugfs_remove(c->debug);
1246
1247 bch_open_buckets_free(c);
1248 bch_btree_cache_free(c);
1249 bch_journal_free(c);
1250
1251 for_each_cache(ca, c, i)
1252 if (ca)
1253 kobject_put(&ca->kobj);
1254
1255 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1256 free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1257
1258 kfree(c->fill_iter);
1259 if (c->bio_split)
1260 bioset_free(c->bio_split);
1261 if (c->bio_meta)
1262 mempool_destroy(c->bio_meta);
1263 if (c->search)
1264 mempool_destroy(c->search);
1265 kfree(c->devices);
1266
1267 mutex_lock(&bch_register_lock);
1268 list_del(&c->list);
1269 mutex_unlock(&bch_register_lock);
1270
1271 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1272 wake_up(&unregister_wait);
1273
1274 closure_debug_destroy(&c->cl);
1275 kobject_put(&c->kobj);
1276 }
1277
1278 static void cache_set_flush(struct closure *cl)
1279 {
1280 struct cache_set *c = container_of(cl, struct cache_set, caching);
1281 struct btree *b;
1282
1283 /* Shut down allocator threads */
1284 set_bit(CACHE_SET_STOPPING_2, &c->flags);
1285 wake_up(&c->alloc_wait);
1286
1287 bch_cache_accounting_destroy(&c->accounting);
1288
1289 kobject_put(&c->internal);
1290 kobject_del(&c->kobj);
1291
1292 if (!IS_ERR_OR_NULL(c->root))
1293 list_add(&c->root->list, &c->btree_cache);
1294
1295 /* Should skip this if we're unregistering because of an error */
1296 list_for_each_entry(b, &c->btree_cache, list)
1297 if (btree_node_dirty(b))
1298 bch_btree_write(b, true, NULL);
1299
1300 closure_return(cl);
1301 }
1302
1303 static void __cache_set_unregister(struct closure *cl)
1304 {
1305 struct cache_set *c = container_of(cl, struct cache_set, caching);
1306 struct cached_dev *dc, *t;
1307 size_t i;
1308
1309 mutex_lock(&bch_register_lock);
1310
1311 if (test_bit(CACHE_SET_UNREGISTERING, &c->flags))
1312 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1313 bch_cached_dev_detach(dc);
1314
1315 for (i = 0; i < c->nr_uuids; i++)
1316 if (c->devices[i] && UUID_FLASH_ONLY(&c->uuids[i]))
1317 bcache_device_stop(c->devices[i]);
1318
1319 mutex_unlock(&bch_register_lock);
1320
1321 continue_at(cl, cache_set_flush, system_wq);
1322 }
1323
1324 void bch_cache_set_stop(struct cache_set *c)
1325 {
1326 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1327 closure_queue(&c->caching);
1328 }
1329
1330 void bch_cache_set_unregister(struct cache_set *c)
1331 {
1332 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1333 bch_cache_set_stop(c);
1334 }
1335
1336 #define alloc_bucket_pages(gfp, c) \
1337 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1338
1339 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1340 {
1341 int iter_size;
1342 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1343 if (!c)
1344 return NULL;
1345
1346 __module_get(THIS_MODULE);
1347 closure_init(&c->cl, NULL);
1348 set_closure_fn(&c->cl, cache_set_free, system_wq);
1349
1350 closure_init(&c->caching, &c->cl);
1351 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1352
1353 /* Maybe create continue_at_noreturn() and use it here? */
1354 closure_set_stopped(&c->cl);
1355 closure_put(&c->cl);
1356
1357 kobject_init(&c->kobj, &bch_cache_set_ktype);
1358 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1359
1360 bch_cache_accounting_init(&c->accounting, &c->cl);
1361
1362 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1363 c->sb.block_size = sb->block_size;
1364 c->sb.bucket_size = sb->bucket_size;
1365 c->sb.nr_in_set = sb->nr_in_set;
1366 c->sb.last_mount = sb->last_mount;
1367 c->bucket_bits = ilog2(sb->bucket_size);
1368 c->block_bits = ilog2(sb->block_size);
1369 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1370
1371 c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
1372 if (c->btree_pages > BTREE_MAX_PAGES)
1373 c->btree_pages = max_t(int, c->btree_pages / 4,
1374 BTREE_MAX_PAGES);
1375
1376 init_waitqueue_head(&c->alloc_wait);
1377 mutex_init(&c->bucket_lock);
1378 mutex_init(&c->fill_lock);
1379 mutex_init(&c->sort_lock);
1380 spin_lock_init(&c->sort_time_lock);
1381 closure_init_unlocked(&c->sb_write);
1382 closure_init_unlocked(&c->uuid_write);
1383 spin_lock_init(&c->btree_read_time_lock);
1384 bch_moving_init_cache_set(c);
1385
1386 INIT_LIST_HEAD(&c->list);
1387 INIT_LIST_HEAD(&c->cached_devs);
1388 INIT_LIST_HEAD(&c->btree_cache);
1389 INIT_LIST_HEAD(&c->btree_cache_freeable);
1390 INIT_LIST_HEAD(&c->btree_cache_freed);
1391 INIT_LIST_HEAD(&c->data_buckets);
1392
1393 c->search = mempool_create_slab_pool(32, bch_search_cache);
1394 if (!c->search)
1395 goto err;
1396
1397 iter_size = (sb->bucket_size / sb->block_size + 1) *
1398 sizeof(struct btree_iter_set);
1399
1400 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1401 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1402 sizeof(struct bbio) + sizeof(struct bio_vec) *
1403 bucket_pages(c))) ||
1404 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1405 !(c->fill_iter = kmalloc(iter_size, GFP_KERNEL)) ||
1406 !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1407 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1408 bch_journal_alloc(c) ||
1409 bch_btree_cache_alloc(c) ||
1410 bch_open_buckets_alloc(c))
1411 goto err;
1412
1413 c->fill_iter->size = sb->bucket_size / sb->block_size;
1414
1415 c->congested_read_threshold_us = 2000;
1416 c->congested_write_threshold_us = 20000;
1417 c->error_limit = 8 << IO_ERROR_SHIFT;
1418
1419 return c;
1420 err:
1421 bch_cache_set_unregister(c);
1422 return NULL;
1423 }
1424
1425 static void run_cache_set(struct cache_set *c)
1426 {
1427 const char *err = "cannot allocate memory";
1428 struct cached_dev *dc, *t;
1429 struct cache *ca;
1430 unsigned i;
1431
1432 struct btree_op op;
1433 bch_btree_op_init_stack(&op);
1434 op.lock = SHRT_MAX;
1435
1436 for_each_cache(ca, c, i)
1437 c->nbuckets += ca->sb.nbuckets;
1438
1439 if (CACHE_SYNC(&c->sb)) {
1440 LIST_HEAD(journal);
1441 struct bkey *k;
1442 struct jset *j;
1443
1444 err = "cannot allocate memory for journal";
1445 if (bch_journal_read(c, &journal, &op))
1446 goto err;
1447
1448 pr_debug("btree_journal_read() done");
1449
1450 err = "no journal entries found";
1451 if (list_empty(&journal))
1452 goto err;
1453
1454 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1455
1456 err = "IO error reading priorities";
1457 for_each_cache(ca, c, i)
1458 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1459
1460 /*
1461 * If prio_read() fails it'll call cache_set_error and we'll
1462 * tear everything down right away, but if we perhaps checked
1463 * sooner we could avoid journal replay.
1464 */
1465
1466 k = &j->btree_root;
1467
1468 err = "bad btree root";
1469 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1470 goto err;
1471
1472 err = "error reading btree root";
1473 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1474 if (IS_ERR_OR_NULL(c->root))
1475 goto err;
1476
1477 list_del_init(&c->root->list);
1478 rw_unlock(true, c->root);
1479
1480 err = uuid_read(c, j, &op.cl);
1481 if (err)
1482 goto err;
1483
1484 err = "error in recovery";
1485 if (bch_btree_check(c, &op))
1486 goto err;
1487
1488 bch_journal_mark(c, &journal);
1489 bch_btree_gc_finish(c);
1490 pr_debug("btree_check() done");
1491
1492 /*
1493 * bcache_journal_next() can't happen sooner, or
1494 * btree_gc_finish() will give spurious errors about last_gc >
1495 * gc_gen - this is a hack but oh well.
1496 */
1497 bch_journal_next(&c->journal);
1498
1499 for_each_cache(ca, c, i)
1500 closure_call(&ca->alloc, bch_allocator_thread,
1501 system_wq, &c->cl);
1502
1503 /*
1504 * First place it's safe to allocate: btree_check() and
1505 * btree_gc_finish() have to run before we have buckets to
1506 * allocate, and bch_bucket_alloc_set() might cause a journal
1507 * entry to be written so bcache_journal_next() has to be called
1508 * first.
1509 *
1510 * If the uuids were in the old format we have to rewrite them
1511 * before the next journal entry is written:
1512 */
1513 if (j->version < BCACHE_JSET_VERSION_UUID)
1514 __uuid_write(c);
1515
1516 bch_journal_replay(c, &journal, &op);
1517 } else {
1518 pr_notice("invalidating existing data");
1519 /* Don't want invalidate_buckets() to queue a gc yet */
1520 closure_lock(&c->gc, NULL);
1521
1522 for_each_cache(ca, c, i) {
1523 unsigned j;
1524
1525 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1526 2, SB_JOURNAL_BUCKETS);
1527
1528 for (j = 0; j < ca->sb.keys; j++)
1529 ca->sb.d[j] = ca->sb.first_bucket + j;
1530 }
1531
1532 bch_btree_gc_finish(c);
1533
1534 for_each_cache(ca, c, i)
1535 closure_call(&ca->alloc, bch_allocator_thread,
1536 ca->alloc_workqueue, &c->cl);
1537
1538 mutex_lock(&c->bucket_lock);
1539 for_each_cache(ca, c, i)
1540 bch_prio_write(ca);
1541 mutex_unlock(&c->bucket_lock);
1542
1543 wake_up(&c->alloc_wait);
1544
1545 err = "cannot allocate new UUID bucket";
1546 if (__uuid_write(c))
1547 goto err_unlock_gc;
1548
1549 err = "cannot allocate new btree root";
1550 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1551 if (IS_ERR_OR_NULL(c->root))
1552 goto err_unlock_gc;
1553
1554 bkey_copy_key(&c->root->key, &MAX_KEY);
1555 bch_btree_write(c->root, true, &op);
1556
1557 bch_btree_set_root(c->root);
1558 rw_unlock(true, c->root);
1559
1560 /*
1561 * We don't want to write the first journal entry until
1562 * everything is set up - fortunately journal entries won't be
1563 * written until the SET_CACHE_SYNC() here:
1564 */
1565 SET_CACHE_SYNC(&c->sb, true);
1566
1567 bch_journal_next(&c->journal);
1568 bch_journal_meta(c, &op.cl);
1569
1570 /* Unlock */
1571 closure_set_stopped(&c->gc.cl);
1572 closure_put(&c->gc.cl);
1573 }
1574
1575 closure_sync(&op.cl);
1576 c->sb.last_mount = get_seconds();
1577 bcache_write_super(c);
1578
1579 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1580 bch_cached_dev_attach(dc, c);
1581
1582 flash_devs_run(c);
1583
1584 return;
1585 err_unlock_gc:
1586 closure_set_stopped(&c->gc.cl);
1587 closure_put(&c->gc.cl);
1588 err:
1589 closure_sync(&op.cl);
1590 /* XXX: test this, it's broken */
1591 bch_cache_set_error(c, err);
1592 }
1593
1594 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1595 {
1596 return ca->sb.block_size == c->sb.block_size &&
1597 ca->sb.bucket_size == c->sb.block_size &&
1598 ca->sb.nr_in_set == c->sb.nr_in_set;
1599 }
1600
1601 static const char *register_cache_set(struct cache *ca)
1602 {
1603 char buf[12];
1604 const char *err = "cannot allocate memory";
1605 struct cache_set *c;
1606
1607 list_for_each_entry(c, &bch_cache_sets, list)
1608 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1609 if (c->cache[ca->sb.nr_this_dev])
1610 return "duplicate cache set member";
1611
1612 if (!can_attach_cache(ca, c))
1613 return "cache sb does not match set";
1614
1615 if (!CACHE_SYNC(&ca->sb))
1616 SET_CACHE_SYNC(&c->sb, false);
1617
1618 goto found;
1619 }
1620
1621 c = bch_cache_set_alloc(&ca->sb);
1622 if (!c)
1623 return err;
1624
1625 err = "error creating kobject";
1626 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1627 kobject_add(&c->internal, &c->kobj, "internal"))
1628 goto err;
1629
1630 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1631 goto err;
1632
1633 bch_debug_init_cache_set(c);
1634
1635 list_add(&c->list, &bch_cache_sets);
1636 found:
1637 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1638 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1639 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1640 goto err;
1641
1642 if (ca->sb.seq > c->sb.seq) {
1643 c->sb.version = ca->sb.version;
1644 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1645 c->sb.flags = ca->sb.flags;
1646 c->sb.seq = ca->sb.seq;
1647 pr_debug("set version = %llu", c->sb.version);
1648 }
1649
1650 ca->set = c;
1651 ca->set->cache[ca->sb.nr_this_dev] = ca;
1652 c->cache_by_alloc[c->caches_loaded++] = ca;
1653
1654 if (c->caches_loaded == c->sb.nr_in_set)
1655 run_cache_set(c);
1656
1657 return NULL;
1658 err:
1659 bch_cache_set_unregister(c);
1660 return err;
1661 }
1662
1663 /* Cache device */
1664
1665 void bch_cache_release(struct kobject *kobj)
1666 {
1667 struct cache *ca = container_of(kobj, struct cache, kobj);
1668
1669 if (ca->set)
1670 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1671
1672 bch_cache_allocator_exit(ca);
1673
1674 bio_split_pool_free(&ca->bio_split_hook);
1675
1676 if (ca->alloc_workqueue)
1677 destroy_workqueue(ca->alloc_workqueue);
1678
1679 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1680 kfree(ca->prio_buckets);
1681 vfree(ca->buckets);
1682
1683 free_heap(&ca->heap);
1684 free_fifo(&ca->unused);
1685 free_fifo(&ca->free_inc);
1686 free_fifo(&ca->free);
1687
1688 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1689 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1690
1691 if (!IS_ERR_OR_NULL(ca->bdev)) {
1692 blk_sync_queue(bdev_get_queue(ca->bdev));
1693 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1694 }
1695
1696 kfree(ca);
1697 module_put(THIS_MODULE);
1698 }
1699
1700 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1701 {
1702 size_t free;
1703 struct bucket *b;
1704
1705 __module_get(THIS_MODULE);
1706 kobject_init(&ca->kobj, &bch_cache_ktype);
1707
1708 INIT_LIST_HEAD(&ca->discards);
1709
1710 bio_init(&ca->journal.bio);
1711 ca->journal.bio.bi_max_vecs = 8;
1712 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1713
1714 free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1715 free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1716
1717 if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
1718 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1719 !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
1720 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1721 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1722 ca->sb.nbuckets)) ||
1723 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1724 2, GFP_KERNEL)) ||
1725 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1726 !(ca->alloc_workqueue = alloc_workqueue("bch_allocator", 0, 1)) ||
1727 bio_split_pool_init(&ca->bio_split_hook))
1728 return -ENOMEM;
1729
1730 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1731
1732 for_each_bucket(b, ca)
1733 atomic_set(&b->pin, 0);
1734
1735 if (bch_cache_allocator_init(ca))
1736 goto err;
1737
1738 return 0;
1739 err:
1740 kobject_put(&ca->kobj);
1741 return -ENOMEM;
1742 }
1743
1744 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1745 struct block_device *bdev, struct cache *ca)
1746 {
1747 char name[BDEVNAME_SIZE];
1748 const char *err = "cannot allocate memory";
1749
1750 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1751 ca->bdev = bdev;
1752 ca->bdev->bd_holder = ca;
1753
1754 bio_init(&ca->sb_bio);
1755 ca->sb_bio.bi_max_vecs = 1;
1756 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1757 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1758 get_page(sb_page);
1759
1760 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1761 ca->discard = CACHE_DISCARD(&ca->sb);
1762
1763 if (cache_alloc(sb, ca) != 0)
1764 goto err;
1765
1766 err = "error creating kobject";
1767 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1768 goto err;
1769
1770 err = register_cache_set(ca);
1771 if (err)
1772 goto err;
1773
1774 pr_info("registered cache device %s", bdevname(bdev, name));
1775 return;
1776 err:
1777 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1778 kobject_put(&ca->kobj);
1779 }
1780
1781 /* Global interfaces/init */
1782
1783 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1784 const char *, size_t);
1785
1786 kobj_attribute_write(register, register_bcache);
1787 kobj_attribute_write(register_quiet, register_bcache);
1788
1789 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1790 const char *buffer, size_t size)
1791 {
1792 ssize_t ret = size;
1793 const char *err = "cannot allocate memory";
1794 char *path = NULL;
1795 struct cache_sb *sb = NULL;
1796 struct block_device *bdev = NULL;
1797 struct page *sb_page = NULL;
1798
1799 if (!try_module_get(THIS_MODULE))
1800 return -EBUSY;
1801
1802 mutex_lock(&bch_register_lock);
1803
1804 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1805 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1806 goto err;
1807
1808 err = "failed to open device";
1809 bdev = blkdev_get_by_path(strim(path),
1810 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1811 sb);
1812 if (IS_ERR(bdev)) {
1813 if (bdev == ERR_PTR(-EBUSY))
1814 err = "device busy";
1815 goto err;
1816 }
1817
1818 err = "failed to set blocksize";
1819 if (set_blocksize(bdev, 4096))
1820 goto err_close;
1821
1822 err = read_super(sb, bdev, &sb_page);
1823 if (err)
1824 goto err_close;
1825
1826 if (SB_IS_BDEV(sb)) {
1827 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1828 if (!dc)
1829 goto err_close;
1830
1831 register_bdev(sb, sb_page, bdev, dc);
1832 } else {
1833 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1834 if (!ca)
1835 goto err_close;
1836
1837 register_cache(sb, sb_page, bdev, ca);
1838 }
1839 out:
1840 if (sb_page)
1841 put_page(sb_page);
1842 kfree(sb);
1843 kfree(path);
1844 mutex_unlock(&bch_register_lock);
1845 module_put(THIS_MODULE);
1846 return ret;
1847
1848 err_close:
1849 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1850 err:
1851 if (attr != &ksysfs_register_quiet)
1852 pr_info("error opening %s: %s", path, err);
1853 ret = -EINVAL;
1854 goto out;
1855 }
1856
1857 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1858 {
1859 if (code == SYS_DOWN ||
1860 code == SYS_HALT ||
1861 code == SYS_POWER_OFF) {
1862 DEFINE_WAIT(wait);
1863 unsigned long start = jiffies;
1864 bool stopped = false;
1865
1866 struct cache_set *c, *tc;
1867 struct cached_dev *dc, *tdc;
1868
1869 mutex_lock(&bch_register_lock);
1870
1871 if (list_empty(&bch_cache_sets) &&
1872 list_empty(&uncached_devices))
1873 goto out;
1874
1875 pr_info("Stopping all devices:");
1876
1877 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1878 bch_cache_set_stop(c);
1879
1880 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1881 bcache_device_stop(&dc->disk);
1882
1883 /* What's a condition variable? */
1884 while (1) {
1885 long timeout = start + 2 * HZ - jiffies;
1886
1887 stopped = list_empty(&bch_cache_sets) &&
1888 list_empty(&uncached_devices);
1889
1890 if (timeout < 0 || stopped)
1891 break;
1892
1893 prepare_to_wait(&unregister_wait, &wait,
1894 TASK_UNINTERRUPTIBLE);
1895
1896 mutex_unlock(&bch_register_lock);
1897 schedule_timeout(timeout);
1898 mutex_lock(&bch_register_lock);
1899 }
1900
1901 finish_wait(&unregister_wait, &wait);
1902
1903 if (stopped)
1904 pr_info("All devices stopped");
1905 else
1906 pr_notice("Timeout waiting for devices to be closed");
1907 out:
1908 mutex_unlock(&bch_register_lock);
1909 }
1910
1911 return NOTIFY_DONE;
1912 }
1913
1914 static struct notifier_block reboot = {
1915 .notifier_call = bcache_reboot,
1916 .priority = INT_MAX, /* before any real devices */
1917 };
1918
1919 static void bcache_exit(void)
1920 {
1921 bch_debug_exit();
1922 bch_writeback_exit();
1923 bch_request_exit();
1924 bch_btree_exit();
1925 if (bcache_kobj)
1926 kobject_put(bcache_kobj);
1927 if (bcache_wq)
1928 destroy_workqueue(bcache_wq);
1929 unregister_blkdev(bcache_major, "bcache");
1930 unregister_reboot_notifier(&reboot);
1931 }
1932
1933 static int __init bcache_init(void)
1934 {
1935 static const struct attribute *files[] = {
1936 &ksysfs_register.attr,
1937 &ksysfs_register_quiet.attr,
1938 NULL
1939 };
1940
1941 mutex_init(&bch_register_lock);
1942 init_waitqueue_head(&unregister_wait);
1943 register_reboot_notifier(&reboot);
1944 closure_debug_init();
1945
1946 bcache_major = register_blkdev(0, "bcache");
1947 if (bcache_major < 0)
1948 return bcache_major;
1949
1950 if (!(bcache_wq = create_workqueue("bcache")) ||
1951 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
1952 sysfs_create_files(bcache_kobj, files) ||
1953 bch_btree_init() ||
1954 bch_request_init() ||
1955 bch_writeback_init() ||
1956 bch_debug_init(bcache_kobj))
1957 goto err;
1958
1959 return 0;
1960 err:
1961 bcache_exit();
1962 return -ENOMEM;
1963 }
1964
1965 module_exit(bcache_exit);
1966 module_init(bcache_init);