x86, paravirt: fix build error when thp is disabled
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / macintosh / smu.c
1 /*
2 * PowerMac G5 SMU driver
3 *
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6 *
7 * Released under the term of the GNU GPL v2.
8 */
9
10 /*
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/poll.h>
36 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/io.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/smu.h>
47 #include <asm/sections.h>
48 #include <asm/uaccess.h>
49
50 #define VERSION "0.7"
51 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
52
53 #undef DEBUG_SMU
54
55 #ifdef DEBUG_SMU
56 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
57 #else
58 #define DPRINTK(fmt, args...) do { } while (0)
59 #endif
60
61 /*
62 * This is the command buffer passed to the SMU hardware
63 */
64 #define SMU_MAX_DATA 254
65
66 struct smu_cmd_buf {
67 u8 cmd;
68 u8 length;
69 u8 data[SMU_MAX_DATA];
70 };
71
72 struct smu_device {
73 spinlock_t lock;
74 struct device_node *of_node;
75 struct platform_device *of_dev;
76 int doorbell; /* doorbell gpio */
77 u32 __iomem *db_buf; /* doorbell buffer */
78 struct device_node *db_node;
79 unsigned int db_irq;
80 int msg;
81 struct device_node *msg_node;
82 unsigned int msg_irq;
83 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
84 u32 cmd_buf_abs; /* command buffer absolute */
85 struct list_head cmd_list;
86 struct smu_cmd *cmd_cur; /* pending command */
87 int broken_nap;
88 struct list_head cmd_i2c_list;
89 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
90 struct timer_list i2c_timer;
91 };
92
93 /*
94 * I don't think there will ever be more than one SMU, so
95 * for now, just hard code that
96 */
97 static DEFINE_MUTEX(smu_mutex);
98 static struct smu_device *smu;
99 static DEFINE_MUTEX(smu_part_access);
100 static int smu_irq_inited;
101
102 static void smu_i2c_retry(unsigned long data);
103
104 /*
105 * SMU driver low level stuff
106 */
107
108 static void smu_start_cmd(void)
109 {
110 unsigned long faddr, fend;
111 struct smu_cmd *cmd;
112
113 if (list_empty(&smu->cmd_list))
114 return;
115
116 /* Fetch first command in queue */
117 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
118 smu->cmd_cur = cmd;
119 list_del(&cmd->link);
120
121 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
122 cmd->data_len);
123 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
124 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
125 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
126 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
127 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
128
129 /* Fill the SMU command buffer */
130 smu->cmd_buf->cmd = cmd->cmd;
131 smu->cmd_buf->length = cmd->data_len;
132 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
133
134 /* Flush command and data to RAM */
135 faddr = (unsigned long)smu->cmd_buf;
136 fend = faddr + smu->cmd_buf->length + 2;
137 flush_inval_dcache_range(faddr, fend);
138
139
140 /* We also disable NAP mode for the duration of the command
141 * on U3 based machines.
142 * This is slightly racy as it can be written back to 1 by a sysctl
143 * but that never happens in practice. There seem to be an issue with
144 * U3 based machines such as the iMac G5 where napping for the
145 * whole duration of the command prevents the SMU from fetching it
146 * from memory. This might be related to the strange i2c based
147 * mechanism the SMU uses to access memory.
148 */
149 if (smu->broken_nap)
150 powersave_nap = 0;
151
152 /* This isn't exactly a DMA mapping here, I suspect
153 * the SMU is actually communicating with us via i2c to the
154 * northbridge or the CPU to access RAM.
155 */
156 writel(smu->cmd_buf_abs, smu->db_buf);
157
158 /* Ring the SMU doorbell */
159 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
160 }
161
162
163 static irqreturn_t smu_db_intr(int irq, void *arg)
164 {
165 unsigned long flags;
166 struct smu_cmd *cmd;
167 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
168 void *misc = NULL;
169 u8 gpio;
170 int rc = 0;
171
172 /* SMU completed the command, well, we hope, let's make sure
173 * of it
174 */
175 spin_lock_irqsave(&smu->lock, flags);
176
177 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
178 if ((gpio & 7) != 7) {
179 spin_unlock_irqrestore(&smu->lock, flags);
180 return IRQ_HANDLED;
181 }
182
183 cmd = smu->cmd_cur;
184 smu->cmd_cur = NULL;
185 if (cmd == NULL)
186 goto bail;
187
188 if (rc == 0) {
189 unsigned long faddr;
190 int reply_len;
191 u8 ack;
192
193 /* CPU might have brought back the cache line, so we need
194 * to flush again before peeking at the SMU response. We
195 * flush the entire buffer for now as we haven't read the
196 * reply length (it's only 2 cache lines anyway)
197 */
198 faddr = (unsigned long)smu->cmd_buf;
199 flush_inval_dcache_range(faddr, faddr + 256);
200
201 /* Now check ack */
202 ack = (~cmd->cmd) & 0xff;
203 if (ack != smu->cmd_buf->cmd) {
204 DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 ack, smu->cmd_buf->cmd);
206 rc = -EIO;
207 }
208 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
209 DPRINTK("SMU: reply len: %d\n", reply_len);
210 if (reply_len > cmd->reply_len) {
211 printk(KERN_WARNING "SMU: reply buffer too small,"
212 "got %d bytes for a %d bytes buffer\n",
213 reply_len, cmd->reply_len);
214 reply_len = cmd->reply_len;
215 }
216 cmd->reply_len = reply_len;
217 if (cmd->reply_buf && reply_len)
218 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
219 }
220
221 /* Now complete the command. Write status last in order as we lost
222 * ownership of the command structure as soon as it's no longer -1
223 */
224 done = cmd->done;
225 misc = cmd->misc;
226 mb();
227 cmd->status = rc;
228
229 /* Re-enable NAP mode */
230 if (smu->broken_nap)
231 powersave_nap = 1;
232 bail:
233 /* Start next command if any */
234 smu_start_cmd();
235 spin_unlock_irqrestore(&smu->lock, flags);
236
237 /* Call command completion handler if any */
238 if (done)
239 done(cmd, misc);
240
241 /* It's an edge interrupt, nothing to do */
242 return IRQ_HANDLED;
243 }
244
245
246 static irqreturn_t smu_msg_intr(int irq, void *arg)
247 {
248 /* I don't quite know what to do with this one, we seem to never
249 * receive it, so I suspect we have to arm it someway in the SMU
250 * to start getting events that way.
251 */
252
253 printk(KERN_INFO "SMU: message interrupt !\n");
254
255 /* It's an edge interrupt, nothing to do */
256 return IRQ_HANDLED;
257 }
258
259
260 /*
261 * Queued command management.
262 *
263 */
264
265 int smu_queue_cmd(struct smu_cmd *cmd)
266 {
267 unsigned long flags;
268
269 if (smu == NULL)
270 return -ENODEV;
271 if (cmd->data_len > SMU_MAX_DATA ||
272 cmd->reply_len > SMU_MAX_DATA)
273 return -EINVAL;
274
275 cmd->status = 1;
276 spin_lock_irqsave(&smu->lock, flags);
277 list_add_tail(&cmd->link, &smu->cmd_list);
278 if (smu->cmd_cur == NULL)
279 smu_start_cmd();
280 spin_unlock_irqrestore(&smu->lock, flags);
281
282 /* Workaround for early calls when irq isn't available */
283 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
284 smu_spinwait_cmd(cmd);
285
286 return 0;
287 }
288 EXPORT_SYMBOL(smu_queue_cmd);
289
290
291 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
292 unsigned int data_len,
293 void (*done)(struct smu_cmd *cmd, void *misc),
294 void *misc, ...)
295 {
296 struct smu_cmd *cmd = &scmd->cmd;
297 va_list list;
298 int i;
299
300 if (data_len > sizeof(scmd->buffer))
301 return -EINVAL;
302
303 memset(scmd, 0, sizeof(*scmd));
304 cmd->cmd = command;
305 cmd->data_len = data_len;
306 cmd->data_buf = scmd->buffer;
307 cmd->reply_len = sizeof(scmd->buffer);
308 cmd->reply_buf = scmd->buffer;
309 cmd->done = done;
310 cmd->misc = misc;
311
312 va_start(list, misc);
313 for (i = 0; i < data_len; ++i)
314 scmd->buffer[i] = (u8)va_arg(list, int);
315 va_end(list);
316
317 return smu_queue_cmd(cmd);
318 }
319 EXPORT_SYMBOL(smu_queue_simple);
320
321
322 void smu_poll(void)
323 {
324 u8 gpio;
325
326 if (smu == NULL)
327 return;
328
329 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
330 if ((gpio & 7) == 7)
331 smu_db_intr(smu->db_irq, smu);
332 }
333 EXPORT_SYMBOL(smu_poll);
334
335
336 void smu_done_complete(struct smu_cmd *cmd, void *misc)
337 {
338 struct completion *comp = misc;
339
340 complete(comp);
341 }
342 EXPORT_SYMBOL(smu_done_complete);
343
344
345 void smu_spinwait_cmd(struct smu_cmd *cmd)
346 {
347 while(cmd->status == 1)
348 smu_poll();
349 }
350 EXPORT_SYMBOL(smu_spinwait_cmd);
351
352
353 /* RTC low level commands */
354 static inline int bcd2hex (int n)
355 {
356 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
357 }
358
359
360 static inline int hex2bcd (int n)
361 {
362 return ((n / 10) << 4) + (n % 10);
363 }
364
365
366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
367 struct rtc_time *time)
368 {
369 cmd_buf->cmd = 0x8e;
370 cmd_buf->length = 8;
371 cmd_buf->data[0] = 0x80;
372 cmd_buf->data[1] = hex2bcd(time->tm_sec);
373 cmd_buf->data[2] = hex2bcd(time->tm_min);
374 cmd_buf->data[3] = hex2bcd(time->tm_hour);
375 cmd_buf->data[4] = time->tm_wday;
376 cmd_buf->data[5] = hex2bcd(time->tm_mday);
377 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
378 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
379 }
380
381
382 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
383 {
384 struct smu_simple_cmd cmd;
385 int rc;
386
387 if (smu == NULL)
388 return -ENODEV;
389
390 memset(time, 0, sizeof(struct rtc_time));
391 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
392 SMU_CMD_RTC_GET_DATETIME);
393 if (rc)
394 return rc;
395 smu_spinwait_simple(&cmd);
396
397 time->tm_sec = bcd2hex(cmd.buffer[0]);
398 time->tm_min = bcd2hex(cmd.buffer[1]);
399 time->tm_hour = bcd2hex(cmd.buffer[2]);
400 time->tm_wday = bcd2hex(cmd.buffer[3]);
401 time->tm_mday = bcd2hex(cmd.buffer[4]);
402 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
403 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
404
405 return 0;
406 }
407
408
409 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
410 {
411 struct smu_simple_cmd cmd;
412 int rc;
413
414 if (smu == NULL)
415 return -ENODEV;
416
417 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
418 SMU_CMD_RTC_SET_DATETIME,
419 hex2bcd(time->tm_sec),
420 hex2bcd(time->tm_min),
421 hex2bcd(time->tm_hour),
422 time->tm_wday,
423 hex2bcd(time->tm_mday),
424 hex2bcd(time->tm_mon) + 1,
425 hex2bcd(time->tm_year - 100));
426 if (rc)
427 return rc;
428 smu_spinwait_simple(&cmd);
429
430 return 0;
431 }
432
433
434 void smu_shutdown(void)
435 {
436 struct smu_simple_cmd cmd;
437
438 if (smu == NULL)
439 return;
440
441 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
442 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
443 return;
444 smu_spinwait_simple(&cmd);
445 for (;;)
446 ;
447 }
448
449
450 void smu_restart(void)
451 {
452 struct smu_simple_cmd cmd;
453
454 if (smu == NULL)
455 return;
456
457 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
458 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
459 return;
460 smu_spinwait_simple(&cmd);
461 for (;;)
462 ;
463 }
464
465
466 int smu_present(void)
467 {
468 return smu != NULL;
469 }
470 EXPORT_SYMBOL(smu_present);
471
472
473 int __init smu_init (void)
474 {
475 struct device_node *np;
476 const u32 *data;
477 int ret = 0;
478
479 np = of_find_node_by_type(NULL, "smu");
480 if (np == NULL)
481 return -ENODEV;
482
483 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
484
485 if (smu_cmdbuf_abs == 0) {
486 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
487 ret = -EINVAL;
488 goto fail_np;
489 }
490
491 smu = alloc_bootmem(sizeof(struct smu_device));
492
493 spin_lock_init(&smu->lock);
494 INIT_LIST_HEAD(&smu->cmd_list);
495 INIT_LIST_HEAD(&smu->cmd_i2c_list);
496 smu->of_node = np;
497 smu->db_irq = NO_IRQ;
498 smu->msg_irq = NO_IRQ;
499
500 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
501 * 32 bits value safely
502 */
503 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
504 smu->cmd_buf = __va(smu_cmdbuf_abs);
505
506 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
507 if (smu->db_node == NULL) {
508 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
509 ret = -ENXIO;
510 goto fail_bootmem;
511 }
512 data = of_get_property(smu->db_node, "reg", NULL);
513 if (data == NULL) {
514 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
515 ret = -ENXIO;
516 goto fail_db_node;
517 }
518
519 /* Current setup has one doorbell GPIO that does both doorbell
520 * and ack. GPIOs are at 0x50, best would be to find that out
521 * in the device-tree though.
522 */
523 smu->doorbell = *data;
524 if (smu->doorbell < 0x50)
525 smu->doorbell += 0x50;
526
527 /* Now look for the smu-interrupt GPIO */
528 do {
529 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
530 if (smu->msg_node == NULL)
531 break;
532 data = of_get_property(smu->msg_node, "reg", NULL);
533 if (data == NULL) {
534 of_node_put(smu->msg_node);
535 smu->msg_node = NULL;
536 break;
537 }
538 smu->msg = *data;
539 if (smu->msg < 0x50)
540 smu->msg += 0x50;
541 } while(0);
542
543 /* Doorbell buffer is currently hard-coded, I didn't find a proper
544 * device-tree entry giving the address. Best would probably to use
545 * an offset for K2 base though, but let's do it that way for now.
546 */
547 smu->db_buf = ioremap(0x8000860c, 0x1000);
548 if (smu->db_buf == NULL) {
549 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
550 ret = -ENXIO;
551 goto fail_msg_node;
552 }
553
554 /* U3 has an issue with NAP mode when issuing SMU commands */
555 smu->broken_nap = pmac_get_uninorth_variant() < 4;
556 if (smu->broken_nap)
557 printk(KERN_INFO "SMU: using NAP mode workaround\n");
558
559 sys_ctrler = SYS_CTRLER_SMU;
560 return 0;
561
562 fail_msg_node:
563 if (smu->msg_node)
564 of_node_put(smu->msg_node);
565 fail_db_node:
566 of_node_put(smu->db_node);
567 fail_bootmem:
568 free_bootmem(__pa(smu), sizeof(struct smu_device));
569 smu = NULL;
570 fail_np:
571 of_node_put(np);
572 return ret;
573 }
574
575
576 static int smu_late_init(void)
577 {
578 if (!smu)
579 return 0;
580
581 init_timer(&smu->i2c_timer);
582 smu->i2c_timer.function = smu_i2c_retry;
583 smu->i2c_timer.data = (unsigned long)smu;
584
585 if (smu->db_node) {
586 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
587 if (smu->db_irq == NO_IRQ)
588 printk(KERN_ERR "smu: failed to map irq for node %s\n",
589 smu->db_node->full_name);
590 }
591 if (smu->msg_node) {
592 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
593 if (smu->msg_irq == NO_IRQ)
594 printk(KERN_ERR "smu: failed to map irq for node %s\n",
595 smu->msg_node->full_name);
596 }
597
598 /*
599 * Try to request the interrupts
600 */
601
602 if (smu->db_irq != NO_IRQ) {
603 if (request_irq(smu->db_irq, smu_db_intr,
604 IRQF_SHARED, "SMU doorbell", smu) < 0) {
605 printk(KERN_WARNING "SMU: can't "
606 "request interrupt %d\n",
607 smu->db_irq);
608 smu->db_irq = NO_IRQ;
609 }
610 }
611
612 if (smu->msg_irq != NO_IRQ) {
613 if (request_irq(smu->msg_irq, smu_msg_intr,
614 IRQF_SHARED, "SMU message", smu) < 0) {
615 printk(KERN_WARNING "SMU: can't "
616 "request interrupt %d\n",
617 smu->msg_irq);
618 smu->msg_irq = NO_IRQ;
619 }
620 }
621
622 smu_irq_inited = 1;
623 return 0;
624 }
625 /* This has to be before arch_initcall as the low i2c stuff relies on the
626 * above having been done before we reach arch_initcalls
627 */
628 core_initcall(smu_late_init);
629
630 /*
631 * sysfs visibility
632 */
633
634 static void smu_expose_childs(struct work_struct *unused)
635 {
636 struct device_node *np;
637
638 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
639 if (of_device_is_compatible(np, "smu-sensors"))
640 of_platform_device_create(np, "smu-sensors",
641 &smu->of_dev->dev);
642 }
643
644 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
645
646 static int smu_platform_probe(struct platform_device* dev)
647 {
648 if (!smu)
649 return -ENODEV;
650 smu->of_dev = dev;
651
652 /*
653 * Ok, we are matched, now expose all i2c busses. We have to defer
654 * that unfortunately or it would deadlock inside the device model
655 */
656 schedule_work(&smu_expose_childs_work);
657
658 return 0;
659 }
660
661 static const struct of_device_id smu_platform_match[] =
662 {
663 {
664 .type = "smu",
665 },
666 {},
667 };
668
669 static struct platform_driver smu_of_platform_driver =
670 {
671 .driver = {
672 .name = "smu",
673 .owner = THIS_MODULE,
674 .of_match_table = smu_platform_match,
675 },
676 .probe = smu_platform_probe,
677 };
678
679 static int __init smu_init_sysfs(void)
680 {
681 /*
682 * For now, we don't power manage machines with an SMU chip,
683 * I'm a bit too far from figuring out how that works with those
684 * new chipsets, but that will come back and bite us
685 */
686 platform_driver_register(&smu_of_platform_driver);
687 return 0;
688 }
689
690 device_initcall(smu_init_sysfs);
691
692 struct platform_device *smu_get_ofdev(void)
693 {
694 if (!smu)
695 return NULL;
696 return smu->of_dev;
697 }
698
699 EXPORT_SYMBOL_GPL(smu_get_ofdev);
700
701 /*
702 * i2c interface
703 */
704
705 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
706 {
707 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
708 void *misc = cmd->misc;
709 unsigned long flags;
710
711 /* Check for read case */
712 if (!fail && cmd->read) {
713 if (cmd->pdata[0] < 1)
714 fail = 1;
715 else
716 memcpy(cmd->info.data, &cmd->pdata[1],
717 cmd->info.datalen);
718 }
719
720 DPRINTK("SMU: completing, success: %d\n", !fail);
721
722 /* Update status and mark no pending i2c command with lock
723 * held so nobody comes in while we dequeue an eventual
724 * pending next i2c command
725 */
726 spin_lock_irqsave(&smu->lock, flags);
727 smu->cmd_i2c_cur = NULL;
728 wmb();
729 cmd->status = fail ? -EIO : 0;
730
731 /* Is there another i2c command waiting ? */
732 if (!list_empty(&smu->cmd_i2c_list)) {
733 struct smu_i2c_cmd *newcmd;
734
735 /* Fetch it, new current, remove from list */
736 newcmd = list_entry(smu->cmd_i2c_list.next,
737 struct smu_i2c_cmd, link);
738 smu->cmd_i2c_cur = newcmd;
739 list_del(&cmd->link);
740
741 /* Queue with low level smu */
742 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
743 if (smu->cmd_cur == NULL)
744 smu_start_cmd();
745 }
746 spin_unlock_irqrestore(&smu->lock, flags);
747
748 /* Call command completion handler if any */
749 if (done)
750 done(cmd, misc);
751
752 }
753
754
755 static void smu_i2c_retry(unsigned long data)
756 {
757 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
758
759 DPRINTK("SMU: i2c failure, requeuing...\n");
760
761 /* requeue command simply by resetting reply_len */
762 cmd->pdata[0] = 0xff;
763 cmd->scmd.reply_len = sizeof(cmd->pdata);
764 smu_queue_cmd(&cmd->scmd);
765 }
766
767
768 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
769 {
770 struct smu_i2c_cmd *cmd = misc;
771 int fail = 0;
772
773 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
774 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
775
776 /* Check for possible status */
777 if (scmd->status < 0)
778 fail = 1;
779 else if (cmd->read) {
780 if (cmd->stage == 0)
781 fail = cmd->pdata[0] != 0;
782 else
783 fail = cmd->pdata[0] >= 0x80;
784 } else {
785 fail = cmd->pdata[0] != 0;
786 }
787
788 /* Handle failures by requeuing command, after 5ms interval
789 */
790 if (fail && --cmd->retries > 0) {
791 DPRINTK("SMU: i2c failure, starting timer...\n");
792 BUG_ON(cmd != smu->cmd_i2c_cur);
793 if (!smu_irq_inited) {
794 mdelay(5);
795 smu_i2c_retry(0);
796 return;
797 }
798 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
799 return;
800 }
801
802 /* If failure or stage 1, command is complete */
803 if (fail || cmd->stage != 0) {
804 smu_i2c_complete_command(cmd, fail);
805 return;
806 }
807
808 DPRINTK("SMU: going to stage 1\n");
809
810 /* Ok, initial command complete, now poll status */
811 scmd->reply_buf = cmd->pdata;
812 scmd->reply_len = sizeof(cmd->pdata);
813 scmd->data_buf = cmd->pdata;
814 scmd->data_len = 1;
815 cmd->pdata[0] = 0;
816 cmd->stage = 1;
817 cmd->retries = 20;
818 smu_queue_cmd(scmd);
819 }
820
821
822 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
823 {
824 unsigned long flags;
825
826 if (smu == NULL)
827 return -ENODEV;
828
829 /* Fill most fields of scmd */
830 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
831 cmd->scmd.done = smu_i2c_low_completion;
832 cmd->scmd.misc = cmd;
833 cmd->scmd.reply_buf = cmd->pdata;
834 cmd->scmd.reply_len = sizeof(cmd->pdata);
835 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
836 cmd->scmd.status = 1;
837 cmd->stage = 0;
838 cmd->pdata[0] = 0xff;
839 cmd->retries = 20;
840 cmd->status = 1;
841
842 /* Check transfer type, sanitize some "info" fields
843 * based on transfer type and do more checking
844 */
845 cmd->info.caddr = cmd->info.devaddr;
846 cmd->read = cmd->info.devaddr & 0x01;
847 switch(cmd->info.type) {
848 case SMU_I2C_TRANSFER_SIMPLE:
849 memset(&cmd->info.sublen, 0, 4);
850 break;
851 case SMU_I2C_TRANSFER_COMBINED:
852 cmd->info.devaddr &= 0xfe;
853 case SMU_I2C_TRANSFER_STDSUB:
854 if (cmd->info.sublen > 3)
855 return -EINVAL;
856 break;
857 default:
858 return -EINVAL;
859 }
860
861 /* Finish setting up command based on transfer direction
862 */
863 if (cmd->read) {
864 if (cmd->info.datalen > SMU_I2C_READ_MAX)
865 return -EINVAL;
866 memset(cmd->info.data, 0xff, cmd->info.datalen);
867 cmd->scmd.data_len = 9;
868 } else {
869 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
870 return -EINVAL;
871 cmd->scmd.data_len = 9 + cmd->info.datalen;
872 }
873
874 DPRINTK("SMU: i2c enqueuing command\n");
875 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
876 cmd->read ? "read" : "write", cmd->info.datalen,
877 cmd->info.bus, cmd->info.caddr,
878 cmd->info.subaddr[0], cmd->info.type);
879
880
881 /* Enqueue command in i2c list, and if empty, enqueue also in
882 * main command list
883 */
884 spin_lock_irqsave(&smu->lock, flags);
885 if (smu->cmd_i2c_cur == NULL) {
886 smu->cmd_i2c_cur = cmd;
887 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
888 if (smu->cmd_cur == NULL)
889 smu_start_cmd();
890 } else
891 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
892 spin_unlock_irqrestore(&smu->lock, flags);
893
894 return 0;
895 }
896
897 /*
898 * Handling of "partitions"
899 */
900
901 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
902 {
903 DECLARE_COMPLETION_ONSTACK(comp);
904 unsigned int chunk;
905 struct smu_cmd cmd;
906 int rc;
907 u8 params[8];
908
909 /* We currently use a chunk size of 0xe. We could check the
910 * SMU firmware version and use bigger sizes though
911 */
912 chunk = 0xe;
913
914 while (len) {
915 unsigned int clen = min(len, chunk);
916
917 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
918 cmd.data_len = 7;
919 cmd.data_buf = params;
920 cmd.reply_len = chunk;
921 cmd.reply_buf = dest;
922 cmd.done = smu_done_complete;
923 cmd.misc = &comp;
924 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
925 params[1] = 0x4;
926 *((u32 *)&params[2]) = addr;
927 params[6] = clen;
928
929 rc = smu_queue_cmd(&cmd);
930 if (rc)
931 return rc;
932 wait_for_completion(&comp);
933 if (cmd.status != 0)
934 return rc;
935 if (cmd.reply_len != clen) {
936 printk(KERN_DEBUG "SMU: short read in "
937 "smu_read_datablock, got: %d, want: %d\n",
938 cmd.reply_len, clen);
939 return -EIO;
940 }
941 len -= clen;
942 addr += clen;
943 dest += clen;
944 }
945 return 0;
946 }
947
948 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
949 {
950 DECLARE_COMPLETION_ONSTACK(comp);
951 struct smu_simple_cmd cmd;
952 unsigned int addr, len, tlen;
953 struct smu_sdbp_header *hdr;
954 struct property *prop;
955
956 /* First query the partition info */
957 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
958 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
959 smu_done_complete, &comp,
960 SMU_CMD_PARTITION_LATEST, id);
961 wait_for_completion(&comp);
962 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
963 cmd.cmd.status, cmd.cmd.reply_len);
964
965 /* Partition doesn't exist (or other error) */
966 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
967 return NULL;
968
969 /* Fetch address and length from reply */
970 addr = *((u16 *)cmd.buffer);
971 len = cmd.buffer[3] << 2;
972 /* Calucluate total length to allocate, including the 17 bytes
973 * for "sdb-partition-XX" that we append at the end of the buffer
974 */
975 tlen = sizeof(struct property) + len + 18;
976
977 prop = kzalloc(tlen, GFP_KERNEL);
978 if (prop == NULL)
979 return NULL;
980 hdr = (struct smu_sdbp_header *)(prop + 1);
981 prop->name = ((char *)prop) + tlen - 18;
982 sprintf(prop->name, "sdb-partition-%02x", id);
983 prop->length = len;
984 prop->value = hdr;
985 prop->next = NULL;
986
987 /* Read the datablock */
988 if (smu_read_datablock((u8 *)hdr, addr, len)) {
989 printk(KERN_DEBUG "SMU: datablock read failed while reading "
990 "partition %02x !\n", id);
991 goto failure;
992 }
993
994 /* Got it, check a few things and create the property */
995 if (hdr->id != id) {
996 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
997 "%02x !\n", id, hdr->id);
998 goto failure;
999 }
1000 if (prom_add_property(smu->of_node, prop)) {
1001 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1002 "property !\n", id);
1003 goto failure;
1004 }
1005
1006 return hdr;
1007 failure:
1008 kfree(prop);
1009 return NULL;
1010 }
1011
1012 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1013 * when interruptible is 1
1014 */
1015 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1016 unsigned int *size, int interruptible)
1017 {
1018 char pname[32];
1019 const struct smu_sdbp_header *part;
1020
1021 if (!smu)
1022 return NULL;
1023
1024 sprintf(pname, "sdb-partition-%02x", id);
1025
1026 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1027
1028 if (interruptible) {
1029 int rc;
1030 rc = mutex_lock_interruptible(&smu_part_access);
1031 if (rc)
1032 return ERR_PTR(rc);
1033 } else
1034 mutex_lock(&smu_part_access);
1035
1036 part = of_get_property(smu->of_node, pname, size);
1037 if (part == NULL) {
1038 DPRINTK("trying to extract from SMU ...\n");
1039 part = smu_create_sdb_partition(id);
1040 if (part != NULL && size)
1041 *size = part->len << 2;
1042 }
1043 mutex_unlock(&smu_part_access);
1044 return part;
1045 }
1046
1047 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1048 {
1049 return __smu_get_sdb_partition(id, size, 0);
1050 }
1051 EXPORT_SYMBOL(smu_get_sdb_partition);
1052
1053
1054 /*
1055 * Userland driver interface
1056 */
1057
1058
1059 static LIST_HEAD(smu_clist);
1060 static DEFINE_SPINLOCK(smu_clist_lock);
1061
1062 enum smu_file_mode {
1063 smu_file_commands,
1064 smu_file_events,
1065 smu_file_closing
1066 };
1067
1068 struct smu_private
1069 {
1070 struct list_head list;
1071 enum smu_file_mode mode;
1072 int busy;
1073 struct smu_cmd cmd;
1074 spinlock_t lock;
1075 wait_queue_head_t wait;
1076 u8 buffer[SMU_MAX_DATA];
1077 };
1078
1079
1080 static int smu_open(struct inode *inode, struct file *file)
1081 {
1082 struct smu_private *pp;
1083 unsigned long flags;
1084
1085 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1086 if (pp == 0)
1087 return -ENOMEM;
1088 spin_lock_init(&pp->lock);
1089 pp->mode = smu_file_commands;
1090 init_waitqueue_head(&pp->wait);
1091
1092 mutex_lock(&smu_mutex);
1093 spin_lock_irqsave(&smu_clist_lock, flags);
1094 list_add(&pp->list, &smu_clist);
1095 spin_unlock_irqrestore(&smu_clist_lock, flags);
1096 file->private_data = pp;
1097 mutex_unlock(&smu_mutex);
1098
1099 return 0;
1100 }
1101
1102
1103 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1104 {
1105 struct smu_private *pp = misc;
1106
1107 wake_up_all(&pp->wait);
1108 }
1109
1110
1111 static ssize_t smu_write(struct file *file, const char __user *buf,
1112 size_t count, loff_t *ppos)
1113 {
1114 struct smu_private *pp = file->private_data;
1115 unsigned long flags;
1116 struct smu_user_cmd_hdr hdr;
1117 int rc = 0;
1118
1119 if (pp->busy)
1120 return -EBUSY;
1121 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1122 return -EFAULT;
1123 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1124 pp->mode = smu_file_events;
1125 return 0;
1126 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1127 const struct smu_sdbp_header *part;
1128 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1129 if (part == NULL)
1130 return -EINVAL;
1131 else if (IS_ERR(part))
1132 return PTR_ERR(part);
1133 return 0;
1134 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1135 return -EINVAL;
1136 else if (pp->mode != smu_file_commands)
1137 return -EBADFD;
1138 else if (hdr.data_len > SMU_MAX_DATA)
1139 return -EINVAL;
1140
1141 spin_lock_irqsave(&pp->lock, flags);
1142 if (pp->busy) {
1143 spin_unlock_irqrestore(&pp->lock, flags);
1144 return -EBUSY;
1145 }
1146 pp->busy = 1;
1147 pp->cmd.status = 1;
1148 spin_unlock_irqrestore(&pp->lock, flags);
1149
1150 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1151 pp->busy = 0;
1152 return -EFAULT;
1153 }
1154
1155 pp->cmd.cmd = hdr.cmd;
1156 pp->cmd.data_len = hdr.data_len;
1157 pp->cmd.reply_len = SMU_MAX_DATA;
1158 pp->cmd.data_buf = pp->buffer;
1159 pp->cmd.reply_buf = pp->buffer;
1160 pp->cmd.done = smu_user_cmd_done;
1161 pp->cmd.misc = pp;
1162 rc = smu_queue_cmd(&pp->cmd);
1163 if (rc < 0)
1164 return rc;
1165 return count;
1166 }
1167
1168
1169 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1170 char __user *buf, size_t count)
1171 {
1172 DECLARE_WAITQUEUE(wait, current);
1173 struct smu_user_reply_hdr hdr;
1174 unsigned long flags;
1175 int size, rc = 0;
1176
1177 if (!pp->busy)
1178 return 0;
1179 if (count < sizeof(struct smu_user_reply_hdr))
1180 return -EOVERFLOW;
1181 spin_lock_irqsave(&pp->lock, flags);
1182 if (pp->cmd.status == 1) {
1183 if (file->f_flags & O_NONBLOCK) {
1184 spin_unlock_irqrestore(&pp->lock, flags);
1185 return -EAGAIN;
1186 }
1187 add_wait_queue(&pp->wait, &wait);
1188 for (;;) {
1189 set_current_state(TASK_INTERRUPTIBLE);
1190 rc = 0;
1191 if (pp->cmd.status != 1)
1192 break;
1193 rc = -ERESTARTSYS;
1194 if (signal_pending(current))
1195 break;
1196 spin_unlock_irqrestore(&pp->lock, flags);
1197 schedule();
1198 spin_lock_irqsave(&pp->lock, flags);
1199 }
1200 set_current_state(TASK_RUNNING);
1201 remove_wait_queue(&pp->wait, &wait);
1202 }
1203 spin_unlock_irqrestore(&pp->lock, flags);
1204 if (rc)
1205 return rc;
1206 if (pp->cmd.status != 0)
1207 pp->cmd.reply_len = 0;
1208 size = sizeof(hdr) + pp->cmd.reply_len;
1209 if (count < size)
1210 size = count;
1211 rc = size;
1212 hdr.status = pp->cmd.status;
1213 hdr.reply_len = pp->cmd.reply_len;
1214 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1215 return -EFAULT;
1216 size -= sizeof(hdr);
1217 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1218 return -EFAULT;
1219 pp->busy = 0;
1220
1221 return rc;
1222 }
1223
1224
1225 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1226 char __user *buf, size_t count)
1227 {
1228 /* Not implemented */
1229 msleep_interruptible(1000);
1230 return 0;
1231 }
1232
1233
1234 static ssize_t smu_read(struct file *file, char __user *buf,
1235 size_t count, loff_t *ppos)
1236 {
1237 struct smu_private *pp = file->private_data;
1238
1239 if (pp->mode == smu_file_commands)
1240 return smu_read_command(file, pp, buf, count);
1241 if (pp->mode == smu_file_events)
1242 return smu_read_events(file, pp, buf, count);
1243
1244 return -EBADFD;
1245 }
1246
1247 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1248 {
1249 struct smu_private *pp = file->private_data;
1250 unsigned int mask = 0;
1251 unsigned long flags;
1252
1253 if (pp == 0)
1254 return 0;
1255
1256 if (pp->mode == smu_file_commands) {
1257 poll_wait(file, &pp->wait, wait);
1258
1259 spin_lock_irqsave(&pp->lock, flags);
1260 if (pp->busy && pp->cmd.status != 1)
1261 mask |= POLLIN;
1262 spin_unlock_irqrestore(&pp->lock, flags);
1263 } if (pp->mode == smu_file_events) {
1264 /* Not yet implemented */
1265 }
1266 return mask;
1267 }
1268
1269 static int smu_release(struct inode *inode, struct file *file)
1270 {
1271 struct smu_private *pp = file->private_data;
1272 unsigned long flags;
1273 unsigned int busy;
1274
1275 if (pp == 0)
1276 return 0;
1277
1278 file->private_data = NULL;
1279
1280 /* Mark file as closing to avoid races with new request */
1281 spin_lock_irqsave(&pp->lock, flags);
1282 pp->mode = smu_file_closing;
1283 busy = pp->busy;
1284
1285 /* Wait for any pending request to complete */
1286 if (busy && pp->cmd.status == 1) {
1287 DECLARE_WAITQUEUE(wait, current);
1288
1289 add_wait_queue(&pp->wait, &wait);
1290 for (;;) {
1291 set_current_state(TASK_UNINTERRUPTIBLE);
1292 if (pp->cmd.status != 1)
1293 break;
1294 spin_unlock_irqrestore(&pp->lock, flags);
1295 schedule();
1296 spin_lock_irqsave(&pp->lock, flags);
1297 }
1298 set_current_state(TASK_RUNNING);
1299 remove_wait_queue(&pp->wait, &wait);
1300 }
1301 spin_unlock_irqrestore(&pp->lock, flags);
1302
1303 spin_lock_irqsave(&smu_clist_lock, flags);
1304 list_del(&pp->list);
1305 spin_unlock_irqrestore(&smu_clist_lock, flags);
1306 kfree(pp);
1307
1308 return 0;
1309 }
1310
1311
1312 static const struct file_operations smu_device_fops = {
1313 .llseek = no_llseek,
1314 .read = smu_read,
1315 .write = smu_write,
1316 .poll = smu_fpoll,
1317 .open = smu_open,
1318 .release = smu_release,
1319 };
1320
1321 static struct miscdevice pmu_device = {
1322 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1323 };
1324
1325 static int smu_device_init(void)
1326 {
1327 if (!smu)
1328 return -ENODEV;
1329 if (misc_register(&pmu_device) < 0)
1330 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1331 return 0;
1332 }
1333 device_initcall(smu_device_init);