iommu/vt-d: Fix 64-bit accesses to 32-bit DMAR_GSTS_REG
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/iommu_table.h>
43
44 #include "irq_remapping.h"
45
46 /* No locks are needed as DMA remapping hardware unit
47 * list is constructed at boot time and hotplug of
48 * these units are not supported by the architecture.
49 */
50 LIST_HEAD(dmar_drhd_units);
51
52 struct acpi_table_header * __initdata dmar_tbl;
53 static acpi_size dmar_tbl_size;
54
55 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
56 {
57 /*
58 * add INCLUDE_ALL at the tail, so scan the list will find it at
59 * the very end.
60 */
61 if (drhd->include_all)
62 list_add_tail(&drhd->list, &dmar_drhd_units);
63 else
64 list_add(&drhd->list, &dmar_drhd_units);
65 }
66
67 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
68 struct pci_dev **dev, u16 segment)
69 {
70 struct pci_bus *bus;
71 struct pci_dev *pdev = NULL;
72 struct acpi_dmar_pci_path *path;
73 int count;
74
75 bus = pci_find_bus(segment, scope->bus);
76 path = (struct acpi_dmar_pci_path *)(scope + 1);
77 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
78 / sizeof(struct acpi_dmar_pci_path);
79
80 while (count) {
81 if (pdev)
82 pci_dev_put(pdev);
83 /*
84 * Some BIOSes list non-exist devices in DMAR table, just
85 * ignore it
86 */
87 if (!bus) {
88 pr_warn("Device scope bus [%d] not found\n", scope->bus);
89 break;
90 }
91 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
92 if (!pdev) {
93 /* warning will be printed below */
94 break;
95 }
96 path ++;
97 count --;
98 bus = pdev->subordinate;
99 }
100 if (!pdev) {
101 pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
105 }
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 pr_warn("Device scope type does not match for %s\n",
111 pci_name(pdev));
112 return -EINVAL;
113 }
114 *dev = pdev;
115 return 0;
116 }
117
118 int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119 struct pci_dev ***devices, u16 segment)
120 {
121 struct acpi_dmar_device_scope *scope;
122 void * tmp = start;
123 int index;
124 int ret;
125
126 *cnt = 0;
127 while (start < end) {
128 scope = start;
129 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
131 (*cnt)++;
132 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
133 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
134 pr_warn("Unsupported device scope\n");
135 }
136 start += scope->length;
137 }
138 if (*cnt == 0)
139 return 0;
140
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
144
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
156 }
157 index ++;
158 }
159 start += scope->length;
160 }
161
162 return 0;
163 }
164
165 /**
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
169 */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
176
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
179 if (!dmaru)
180 return -ENOMEM;
181
182 dmaru->hdr = header;
183 dmaru->reg_base_addr = drhd->address;
184 dmaru->segment = drhd->segment;
185 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
186
187 ret = alloc_iommu(dmaru);
188 if (ret) {
189 kfree(dmaru);
190 return ret;
191 }
192 dmar_register_drhd_unit(dmaru);
193 return 0;
194 }
195
196 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
197 {
198 struct acpi_dmar_hardware_unit *drhd;
199 int ret = 0;
200
201 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
202
203 if (dmaru->include_all)
204 return 0;
205
206 ret = dmar_parse_dev_scope((void *)(drhd + 1),
207 ((void *)drhd) + drhd->header.length,
208 &dmaru->devices_cnt, &dmaru->devices,
209 drhd->segment);
210 if (ret) {
211 list_del(&dmaru->list);
212 kfree(dmaru);
213 }
214 return ret;
215 }
216
217 #ifdef CONFIG_ACPI_NUMA
218 static int __init
219 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
220 {
221 struct acpi_dmar_rhsa *rhsa;
222 struct dmar_drhd_unit *drhd;
223
224 rhsa = (struct acpi_dmar_rhsa *)header;
225 for_each_drhd_unit(drhd) {
226 if (drhd->reg_base_addr == rhsa->base_address) {
227 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
228
229 if (!node_online(node))
230 node = -1;
231 drhd->iommu->node = node;
232 return 0;
233 }
234 }
235 WARN_TAINT(
236 1, TAINT_FIRMWARE_WORKAROUND,
237 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
238 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
239 drhd->reg_base_addr,
240 dmi_get_system_info(DMI_BIOS_VENDOR),
241 dmi_get_system_info(DMI_BIOS_VERSION),
242 dmi_get_system_info(DMI_PRODUCT_VERSION));
243
244 return 0;
245 }
246 #endif
247
248 static void __init
249 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
250 {
251 struct acpi_dmar_hardware_unit *drhd;
252 struct acpi_dmar_reserved_memory *rmrr;
253 struct acpi_dmar_atsr *atsr;
254 struct acpi_dmar_rhsa *rhsa;
255
256 switch (header->type) {
257 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
258 drhd = container_of(header, struct acpi_dmar_hardware_unit,
259 header);
260 pr_info("DRHD base: %#016Lx flags: %#x\n",
261 (unsigned long long)drhd->address, drhd->flags);
262 break;
263 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
264 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
265 header);
266 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
267 (unsigned long long)rmrr->base_address,
268 (unsigned long long)rmrr->end_address);
269 break;
270 case ACPI_DMAR_TYPE_ATSR:
271 atsr = container_of(header, struct acpi_dmar_atsr, header);
272 pr_info("ATSR flags: %#x\n", atsr->flags);
273 break;
274 case ACPI_DMAR_HARDWARE_AFFINITY:
275 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
276 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
277 (unsigned long long)rhsa->base_address,
278 rhsa->proximity_domain);
279 break;
280 }
281 }
282
283 /**
284 * dmar_table_detect - checks to see if the platform supports DMAR devices
285 */
286 static int __init dmar_table_detect(void)
287 {
288 acpi_status status = AE_OK;
289
290 /* if we could find DMAR table, then there are DMAR devices */
291 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
292 (struct acpi_table_header **)&dmar_tbl,
293 &dmar_tbl_size);
294
295 if (ACPI_SUCCESS(status) && !dmar_tbl) {
296 pr_warn("Unable to map DMAR\n");
297 status = AE_NOT_FOUND;
298 }
299
300 return (ACPI_SUCCESS(status) ? 1 : 0);
301 }
302
303 /**
304 * parse_dmar_table - parses the DMA reporting table
305 */
306 static int __init
307 parse_dmar_table(void)
308 {
309 struct acpi_table_dmar *dmar;
310 struct acpi_dmar_header *entry_header;
311 int ret = 0;
312
313 /*
314 * Do it again, earlier dmar_tbl mapping could be mapped with
315 * fixed map.
316 */
317 dmar_table_detect();
318
319 /*
320 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
321 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
322 */
323 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
324
325 dmar = (struct acpi_table_dmar *)dmar_tbl;
326 if (!dmar)
327 return -ENODEV;
328
329 if (dmar->width < PAGE_SHIFT - 1) {
330 pr_warn("Invalid DMAR haw\n");
331 return -EINVAL;
332 }
333
334 pr_info("Host address width %d\n", dmar->width + 1);
335
336 entry_header = (struct acpi_dmar_header *)(dmar + 1);
337 while (((unsigned long)entry_header) <
338 (((unsigned long)dmar) + dmar_tbl->length)) {
339 /* Avoid looping forever on bad ACPI tables */
340 if (entry_header->length == 0) {
341 pr_warn("Invalid 0-length structure\n");
342 ret = -EINVAL;
343 break;
344 }
345
346 dmar_table_print_dmar_entry(entry_header);
347
348 switch (entry_header->type) {
349 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
350 ret = dmar_parse_one_drhd(entry_header);
351 break;
352 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
353 ret = dmar_parse_one_rmrr(entry_header);
354 break;
355 case ACPI_DMAR_TYPE_ATSR:
356 ret = dmar_parse_one_atsr(entry_header);
357 break;
358 case ACPI_DMAR_HARDWARE_AFFINITY:
359 #ifdef CONFIG_ACPI_NUMA
360 ret = dmar_parse_one_rhsa(entry_header);
361 #endif
362 break;
363 default:
364 pr_warn("Unknown DMAR structure type %d\n",
365 entry_header->type);
366 ret = 0; /* for forward compatibility */
367 break;
368 }
369 if (ret)
370 break;
371
372 entry_header = ((void *)entry_header + entry_header->length);
373 }
374 return ret;
375 }
376
377 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
378 struct pci_dev *dev)
379 {
380 int index;
381
382 while (dev) {
383 for (index = 0; index < cnt; index++)
384 if (dev == devices[index])
385 return 1;
386
387 /* Check our parent */
388 dev = dev->bus->self;
389 }
390
391 return 0;
392 }
393
394 struct dmar_drhd_unit *
395 dmar_find_matched_drhd_unit(struct pci_dev *dev)
396 {
397 struct dmar_drhd_unit *dmaru = NULL;
398 struct acpi_dmar_hardware_unit *drhd;
399
400 dev = pci_physfn(dev);
401
402 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
403 drhd = container_of(dmaru->hdr,
404 struct acpi_dmar_hardware_unit,
405 header);
406
407 if (dmaru->include_all &&
408 drhd->segment == pci_domain_nr(dev->bus))
409 return dmaru;
410
411 if (dmar_pci_device_match(dmaru->devices,
412 dmaru->devices_cnt, dev))
413 return dmaru;
414 }
415
416 return NULL;
417 }
418
419 int __init dmar_dev_scope_init(void)
420 {
421 static int dmar_dev_scope_initialized;
422 struct dmar_drhd_unit *drhd, *drhd_n;
423 int ret = -ENODEV;
424
425 if (dmar_dev_scope_initialized)
426 return dmar_dev_scope_initialized;
427
428 if (list_empty(&dmar_drhd_units))
429 goto fail;
430
431 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
432 ret = dmar_parse_dev(drhd);
433 if (ret)
434 goto fail;
435 }
436
437 ret = dmar_parse_rmrr_atsr_dev();
438 if (ret)
439 goto fail;
440
441 dmar_dev_scope_initialized = 1;
442 return 0;
443
444 fail:
445 dmar_dev_scope_initialized = ret;
446 return ret;
447 }
448
449
450 int __init dmar_table_init(void)
451 {
452 static int dmar_table_initialized;
453 int ret;
454
455 if (dmar_table_initialized)
456 return 0;
457
458 dmar_table_initialized = 1;
459
460 ret = parse_dmar_table();
461 if (ret) {
462 if (ret != -ENODEV)
463 pr_info("parse DMAR table failure.\n");
464 return ret;
465 }
466
467 if (list_empty(&dmar_drhd_units)) {
468 pr_info("No DMAR devices found\n");
469 return -ENODEV;
470 }
471
472 return 0;
473 }
474
475 static void warn_invalid_dmar(u64 addr, const char *message)
476 {
477 WARN_TAINT_ONCE(
478 1, TAINT_FIRMWARE_WORKAROUND,
479 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
480 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
481 addr, message,
482 dmi_get_system_info(DMI_BIOS_VENDOR),
483 dmi_get_system_info(DMI_BIOS_VERSION),
484 dmi_get_system_info(DMI_PRODUCT_VERSION));
485 }
486
487 int __init check_zero_address(void)
488 {
489 struct acpi_table_dmar *dmar;
490 struct acpi_dmar_header *entry_header;
491 struct acpi_dmar_hardware_unit *drhd;
492
493 dmar = (struct acpi_table_dmar *)dmar_tbl;
494 entry_header = (struct acpi_dmar_header *)(dmar + 1);
495
496 while (((unsigned long)entry_header) <
497 (((unsigned long)dmar) + dmar_tbl->length)) {
498 /* Avoid looping forever on bad ACPI tables */
499 if (entry_header->length == 0) {
500 pr_warn("Invalid 0-length structure\n");
501 return 0;
502 }
503
504 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
505 void __iomem *addr;
506 u64 cap, ecap;
507
508 drhd = (void *)entry_header;
509 if (!drhd->address) {
510 warn_invalid_dmar(0, "");
511 goto failed;
512 }
513
514 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
515 if (!addr ) {
516 printk("IOMMU: can't validate: %llx\n", drhd->address);
517 goto failed;
518 }
519 cap = dmar_readq(addr + DMAR_CAP_REG);
520 ecap = dmar_readq(addr + DMAR_ECAP_REG);
521 early_iounmap(addr, VTD_PAGE_SIZE);
522 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
523 warn_invalid_dmar(drhd->address,
524 " returns all ones");
525 goto failed;
526 }
527 }
528
529 entry_header = ((void *)entry_header + entry_header->length);
530 }
531 return 1;
532
533 failed:
534 return 0;
535 }
536
537 int __init detect_intel_iommu(void)
538 {
539 int ret;
540
541 ret = dmar_table_detect();
542 if (ret)
543 ret = check_zero_address();
544 {
545 struct acpi_table_dmar *dmar;
546
547 dmar = (struct acpi_table_dmar *) dmar_tbl;
548
549 if (ret && irq_remapping_enabled && cpu_has_x2apic &&
550 dmar->flags & 0x1)
551 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
552
553 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
554 iommu_detected = 1;
555 /* Make sure ACS will be enabled */
556 pci_request_acs();
557 }
558
559 #ifdef CONFIG_X86
560 if (ret)
561 x86_init.iommu.iommu_init = intel_iommu_init;
562 #endif
563 }
564 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
565 dmar_tbl = NULL;
566
567 return ret ? 1 : -ENODEV;
568 }
569
570
571 static void unmap_iommu(struct intel_iommu *iommu)
572 {
573 iounmap(iommu->reg);
574 release_mem_region(iommu->reg_phys, iommu->reg_size);
575 }
576
577 /**
578 * map_iommu: map the iommu's registers
579 * @iommu: the iommu to map
580 * @phys_addr: the physical address of the base resgister
581 *
582 * Memory map the iommu's registers. Start w/ a single page, and
583 * possibly expand if that turns out to be insufficent.
584 */
585 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
586 {
587 int map_size, err=0;
588
589 iommu->reg_phys = phys_addr;
590 iommu->reg_size = VTD_PAGE_SIZE;
591
592 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
593 pr_err("IOMMU: can't reserve memory\n");
594 err = -EBUSY;
595 goto out;
596 }
597
598 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
599 if (!iommu->reg) {
600 pr_err("IOMMU: can't map the region\n");
601 err = -ENOMEM;
602 goto release;
603 }
604
605 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
606 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
607
608 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
609 err = -EINVAL;
610 warn_invalid_dmar(phys_addr, " returns all ones");
611 goto unmap;
612 }
613
614 /* the registers might be more than one page */
615 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
616 cap_max_fault_reg_offset(iommu->cap));
617 map_size = VTD_PAGE_ALIGN(map_size);
618 if (map_size > iommu->reg_size) {
619 iounmap(iommu->reg);
620 release_mem_region(iommu->reg_phys, iommu->reg_size);
621 iommu->reg_size = map_size;
622 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
623 iommu->name)) {
624 pr_err("IOMMU: can't reserve memory\n");
625 err = -EBUSY;
626 goto out;
627 }
628 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
629 if (!iommu->reg) {
630 pr_err("IOMMU: can't map the region\n");
631 err = -ENOMEM;
632 goto release;
633 }
634 }
635 err = 0;
636 goto out;
637
638 unmap:
639 iounmap(iommu->reg);
640 release:
641 release_mem_region(iommu->reg_phys, iommu->reg_size);
642 out:
643 return err;
644 }
645
646 int alloc_iommu(struct dmar_drhd_unit *drhd)
647 {
648 struct intel_iommu *iommu;
649 u32 ver, sts;
650 static int iommu_allocated = 0;
651 int agaw = 0;
652 int msagaw = 0;
653 int err;
654
655 if (!drhd->reg_base_addr) {
656 warn_invalid_dmar(0, "");
657 return -EINVAL;
658 }
659
660 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
661 if (!iommu)
662 return -ENOMEM;
663
664 iommu->seq_id = iommu_allocated++;
665 sprintf (iommu->name, "dmar%d", iommu->seq_id);
666
667 err = map_iommu(iommu, drhd->reg_base_addr);
668 if (err) {
669 pr_err("IOMMU: failed to map %s\n", iommu->name);
670 goto error;
671 }
672
673 err = -EINVAL;
674 agaw = iommu_calculate_agaw(iommu);
675 if (agaw < 0) {
676 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
677 iommu->seq_id);
678 goto err_unmap;
679 }
680 msagaw = iommu_calculate_max_sagaw(iommu);
681 if (msagaw < 0) {
682 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
683 iommu->seq_id);
684 goto err_unmap;
685 }
686 iommu->agaw = agaw;
687 iommu->msagaw = msagaw;
688
689 iommu->node = -1;
690
691 ver = readl(iommu->reg + DMAR_VER_REG);
692 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
693 iommu->seq_id,
694 (unsigned long long)drhd->reg_base_addr,
695 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
696 (unsigned long long)iommu->cap,
697 (unsigned long long)iommu->ecap);
698
699 /* Reflect status in gcmd */
700 sts = readl(iommu->reg + DMAR_GSTS_REG);
701 if (sts & DMA_GSTS_IRES)
702 iommu->gcmd |= DMA_GCMD_IRE;
703 if (sts & DMA_GSTS_TES)
704 iommu->gcmd |= DMA_GCMD_TE;
705 if (sts & DMA_GSTS_QIES)
706 iommu->gcmd |= DMA_GCMD_QIE;
707
708 raw_spin_lock_init(&iommu->register_lock);
709
710 drhd->iommu = iommu;
711 return 0;
712
713 err_unmap:
714 unmap_iommu(iommu);
715 error:
716 kfree(iommu);
717 return err;
718 }
719
720 void free_iommu(struct intel_iommu *iommu)
721 {
722 if (!iommu)
723 return;
724
725 free_dmar_iommu(iommu);
726
727 if (iommu->reg)
728 unmap_iommu(iommu);
729
730 kfree(iommu);
731 }
732
733 /*
734 * Reclaim all the submitted descriptors which have completed its work.
735 */
736 static inline void reclaim_free_desc(struct q_inval *qi)
737 {
738 while (qi->desc_status[qi->free_tail] == QI_DONE ||
739 qi->desc_status[qi->free_tail] == QI_ABORT) {
740 qi->desc_status[qi->free_tail] = QI_FREE;
741 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
742 qi->free_cnt++;
743 }
744 }
745
746 static int qi_check_fault(struct intel_iommu *iommu, int index)
747 {
748 u32 fault;
749 int head, tail;
750 struct q_inval *qi = iommu->qi;
751 int wait_index = (index + 1) % QI_LENGTH;
752
753 if (qi->desc_status[wait_index] == QI_ABORT)
754 return -EAGAIN;
755
756 fault = readl(iommu->reg + DMAR_FSTS_REG);
757
758 /*
759 * If IQE happens, the head points to the descriptor associated
760 * with the error. No new descriptors are fetched until the IQE
761 * is cleared.
762 */
763 if (fault & DMA_FSTS_IQE) {
764 head = readl(iommu->reg + DMAR_IQH_REG);
765 if ((head >> DMAR_IQ_SHIFT) == index) {
766 pr_err("VT-d detected invalid descriptor: "
767 "low=%llx, high=%llx\n",
768 (unsigned long long)qi->desc[index].low,
769 (unsigned long long)qi->desc[index].high);
770 memcpy(&qi->desc[index], &qi->desc[wait_index],
771 sizeof(struct qi_desc));
772 __iommu_flush_cache(iommu, &qi->desc[index],
773 sizeof(struct qi_desc));
774 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
775 return -EINVAL;
776 }
777 }
778
779 /*
780 * If ITE happens, all pending wait_desc commands are aborted.
781 * No new descriptors are fetched until the ITE is cleared.
782 */
783 if (fault & DMA_FSTS_ITE) {
784 head = readl(iommu->reg + DMAR_IQH_REG);
785 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
786 head |= 1;
787 tail = readl(iommu->reg + DMAR_IQT_REG);
788 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
789
790 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
791
792 do {
793 if (qi->desc_status[head] == QI_IN_USE)
794 qi->desc_status[head] = QI_ABORT;
795 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
796 } while (head != tail);
797
798 if (qi->desc_status[wait_index] == QI_ABORT)
799 return -EAGAIN;
800 }
801
802 if (fault & DMA_FSTS_ICE)
803 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
804
805 return 0;
806 }
807
808 /*
809 * Submit the queued invalidation descriptor to the remapping
810 * hardware unit and wait for its completion.
811 */
812 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
813 {
814 int rc;
815 struct q_inval *qi = iommu->qi;
816 struct qi_desc *hw, wait_desc;
817 int wait_index, index;
818 unsigned long flags;
819
820 if (!qi)
821 return 0;
822
823 hw = qi->desc;
824
825 restart:
826 rc = 0;
827
828 raw_spin_lock_irqsave(&qi->q_lock, flags);
829 while (qi->free_cnt < 3) {
830 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
831 cpu_relax();
832 raw_spin_lock_irqsave(&qi->q_lock, flags);
833 }
834
835 index = qi->free_head;
836 wait_index = (index + 1) % QI_LENGTH;
837
838 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
839
840 hw[index] = *desc;
841
842 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
843 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
844 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
845
846 hw[wait_index] = wait_desc;
847
848 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
849 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
850
851 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
852 qi->free_cnt -= 2;
853
854 /*
855 * update the HW tail register indicating the presence of
856 * new descriptors.
857 */
858 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
859
860 while (qi->desc_status[wait_index] != QI_DONE) {
861 /*
862 * We will leave the interrupts disabled, to prevent interrupt
863 * context to queue another cmd while a cmd is already submitted
864 * and waiting for completion on this cpu. This is to avoid
865 * a deadlock where the interrupt context can wait indefinitely
866 * for free slots in the queue.
867 */
868 rc = qi_check_fault(iommu, index);
869 if (rc)
870 break;
871
872 raw_spin_unlock(&qi->q_lock);
873 cpu_relax();
874 raw_spin_lock(&qi->q_lock);
875 }
876
877 qi->desc_status[index] = QI_DONE;
878
879 reclaim_free_desc(qi);
880 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
881
882 if (rc == -EAGAIN)
883 goto restart;
884
885 return rc;
886 }
887
888 /*
889 * Flush the global interrupt entry cache.
890 */
891 void qi_global_iec(struct intel_iommu *iommu)
892 {
893 struct qi_desc desc;
894
895 desc.low = QI_IEC_TYPE;
896 desc.high = 0;
897
898 /* should never fail */
899 qi_submit_sync(&desc, iommu);
900 }
901
902 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
903 u64 type)
904 {
905 struct qi_desc desc;
906
907 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
908 | QI_CC_GRAN(type) | QI_CC_TYPE;
909 desc.high = 0;
910
911 qi_submit_sync(&desc, iommu);
912 }
913
914 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
915 unsigned int size_order, u64 type)
916 {
917 u8 dw = 0, dr = 0;
918
919 struct qi_desc desc;
920 int ih = 0;
921
922 if (cap_write_drain(iommu->cap))
923 dw = 1;
924
925 if (cap_read_drain(iommu->cap))
926 dr = 1;
927
928 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
929 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
930 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
931 | QI_IOTLB_AM(size_order);
932
933 qi_submit_sync(&desc, iommu);
934 }
935
936 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
937 u64 addr, unsigned mask)
938 {
939 struct qi_desc desc;
940
941 if (mask) {
942 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
943 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
944 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
945 } else
946 desc.high = QI_DEV_IOTLB_ADDR(addr);
947
948 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
949 qdep = 0;
950
951 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
952 QI_DIOTLB_TYPE;
953
954 qi_submit_sync(&desc, iommu);
955 }
956
957 /*
958 * Disable Queued Invalidation interface.
959 */
960 void dmar_disable_qi(struct intel_iommu *iommu)
961 {
962 unsigned long flags;
963 u32 sts;
964 cycles_t start_time = get_cycles();
965
966 if (!ecap_qis(iommu->ecap))
967 return;
968
969 raw_spin_lock_irqsave(&iommu->register_lock, flags);
970
971 sts = readl(iommu->reg + DMAR_GSTS_REG);
972 if (!(sts & DMA_GSTS_QIES))
973 goto end;
974
975 /*
976 * Give a chance to HW to complete the pending invalidation requests.
977 */
978 while ((readl(iommu->reg + DMAR_IQT_REG) !=
979 readl(iommu->reg + DMAR_IQH_REG)) &&
980 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
981 cpu_relax();
982
983 iommu->gcmd &= ~DMA_GCMD_QIE;
984 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
985
986 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
987 !(sts & DMA_GSTS_QIES), sts);
988 end:
989 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
990 }
991
992 /*
993 * Enable queued invalidation.
994 */
995 static void __dmar_enable_qi(struct intel_iommu *iommu)
996 {
997 u32 sts;
998 unsigned long flags;
999 struct q_inval *qi = iommu->qi;
1000
1001 qi->free_head = qi->free_tail = 0;
1002 qi->free_cnt = QI_LENGTH;
1003
1004 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1005
1006 /* write zero to the tail reg */
1007 writel(0, iommu->reg + DMAR_IQT_REG);
1008
1009 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1010
1011 iommu->gcmd |= DMA_GCMD_QIE;
1012 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1013
1014 /* Make sure hardware complete it */
1015 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1016
1017 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1018 }
1019
1020 /*
1021 * Enable Queued Invalidation interface. This is a must to support
1022 * interrupt-remapping. Also used by DMA-remapping, which replaces
1023 * register based IOTLB invalidation.
1024 */
1025 int dmar_enable_qi(struct intel_iommu *iommu)
1026 {
1027 struct q_inval *qi;
1028 struct page *desc_page;
1029
1030 if (!ecap_qis(iommu->ecap))
1031 return -ENOENT;
1032
1033 /*
1034 * queued invalidation is already setup and enabled.
1035 */
1036 if (iommu->qi)
1037 return 0;
1038
1039 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1040 if (!iommu->qi)
1041 return -ENOMEM;
1042
1043 qi = iommu->qi;
1044
1045
1046 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1047 if (!desc_page) {
1048 kfree(qi);
1049 iommu->qi = 0;
1050 return -ENOMEM;
1051 }
1052
1053 qi->desc = page_address(desc_page);
1054
1055 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1056 if (!qi->desc_status) {
1057 free_page((unsigned long) qi->desc);
1058 kfree(qi);
1059 iommu->qi = 0;
1060 return -ENOMEM;
1061 }
1062
1063 qi->free_head = qi->free_tail = 0;
1064 qi->free_cnt = QI_LENGTH;
1065
1066 raw_spin_lock_init(&qi->q_lock);
1067
1068 __dmar_enable_qi(iommu);
1069
1070 return 0;
1071 }
1072
1073 /* iommu interrupt handling. Most stuff are MSI-like. */
1074
1075 enum faulttype {
1076 DMA_REMAP,
1077 INTR_REMAP,
1078 UNKNOWN,
1079 };
1080
1081 static const char *dma_remap_fault_reasons[] =
1082 {
1083 "Software",
1084 "Present bit in root entry is clear",
1085 "Present bit in context entry is clear",
1086 "Invalid context entry",
1087 "Access beyond MGAW",
1088 "PTE Write access is not set",
1089 "PTE Read access is not set",
1090 "Next page table ptr is invalid",
1091 "Root table address invalid",
1092 "Context table ptr is invalid",
1093 "non-zero reserved fields in RTP",
1094 "non-zero reserved fields in CTP",
1095 "non-zero reserved fields in PTE",
1096 "PCE for translation request specifies blocking",
1097 };
1098
1099 static const char *irq_remap_fault_reasons[] =
1100 {
1101 "Detected reserved fields in the decoded interrupt-remapped request",
1102 "Interrupt index exceeded the interrupt-remapping table size",
1103 "Present field in the IRTE entry is clear",
1104 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1105 "Detected reserved fields in the IRTE entry",
1106 "Blocked a compatibility format interrupt request",
1107 "Blocked an interrupt request due to source-id verification failure",
1108 };
1109
1110 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1111
1112 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1113 {
1114 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1115 ARRAY_SIZE(irq_remap_fault_reasons))) {
1116 *fault_type = INTR_REMAP;
1117 return irq_remap_fault_reasons[fault_reason - 0x20];
1118 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1119 *fault_type = DMA_REMAP;
1120 return dma_remap_fault_reasons[fault_reason];
1121 } else {
1122 *fault_type = UNKNOWN;
1123 return "Unknown";
1124 }
1125 }
1126
1127 void dmar_msi_unmask(struct irq_data *data)
1128 {
1129 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1130 unsigned long flag;
1131
1132 /* unmask it */
1133 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1134 writel(0, iommu->reg + DMAR_FECTL_REG);
1135 /* Read a reg to force flush the post write */
1136 readl(iommu->reg + DMAR_FECTL_REG);
1137 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1138 }
1139
1140 void dmar_msi_mask(struct irq_data *data)
1141 {
1142 unsigned long flag;
1143 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1144
1145 /* mask it */
1146 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1147 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1148 /* Read a reg to force flush the post write */
1149 readl(iommu->reg + DMAR_FECTL_REG);
1150 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1151 }
1152
1153 void dmar_msi_write(int irq, struct msi_msg *msg)
1154 {
1155 struct intel_iommu *iommu = irq_get_handler_data(irq);
1156 unsigned long flag;
1157
1158 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1159 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1160 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1161 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1162 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1163 }
1164
1165 void dmar_msi_read(int irq, struct msi_msg *msg)
1166 {
1167 struct intel_iommu *iommu = irq_get_handler_data(irq);
1168 unsigned long flag;
1169
1170 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1171 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1172 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1173 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1174 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1175 }
1176
1177 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1178 u8 fault_reason, u16 source_id, unsigned long long addr)
1179 {
1180 const char *reason;
1181 int fault_type;
1182
1183 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1184
1185 if (fault_type == INTR_REMAP)
1186 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1187 "fault index %llx\n"
1188 "INTR-REMAP:[fault reason %02d] %s\n",
1189 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1190 PCI_FUNC(source_id & 0xFF), addr >> 48,
1191 fault_reason, reason);
1192 else
1193 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1194 "fault addr %llx \n"
1195 "DMAR:[fault reason %02d] %s\n",
1196 (type ? "DMA Read" : "DMA Write"),
1197 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1198 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1199 return 0;
1200 }
1201
1202 #define PRIMARY_FAULT_REG_LEN (16)
1203 irqreturn_t dmar_fault(int irq, void *dev_id)
1204 {
1205 struct intel_iommu *iommu = dev_id;
1206 int reg, fault_index;
1207 u32 fault_status;
1208 unsigned long flag;
1209
1210 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1211 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1212 if (fault_status)
1213 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1214
1215 /* TBD: ignore advanced fault log currently */
1216 if (!(fault_status & DMA_FSTS_PPF))
1217 goto unlock_exit;
1218
1219 fault_index = dma_fsts_fault_record_index(fault_status);
1220 reg = cap_fault_reg_offset(iommu->cap);
1221 while (1) {
1222 u8 fault_reason;
1223 u16 source_id;
1224 u64 guest_addr;
1225 int type;
1226 u32 data;
1227
1228 /* highest 32 bits */
1229 data = readl(iommu->reg + reg +
1230 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1231 if (!(data & DMA_FRCD_F))
1232 break;
1233
1234 fault_reason = dma_frcd_fault_reason(data);
1235 type = dma_frcd_type(data);
1236
1237 data = readl(iommu->reg + reg +
1238 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1239 source_id = dma_frcd_source_id(data);
1240
1241 guest_addr = dmar_readq(iommu->reg + reg +
1242 fault_index * PRIMARY_FAULT_REG_LEN);
1243 guest_addr = dma_frcd_page_addr(guest_addr);
1244 /* clear the fault */
1245 writel(DMA_FRCD_F, iommu->reg + reg +
1246 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1247
1248 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1249
1250 dmar_fault_do_one(iommu, type, fault_reason,
1251 source_id, guest_addr);
1252
1253 fault_index++;
1254 if (fault_index >= cap_num_fault_regs(iommu->cap))
1255 fault_index = 0;
1256 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1257 }
1258
1259 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1260
1261 unlock_exit:
1262 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1263 return IRQ_HANDLED;
1264 }
1265
1266 int dmar_set_interrupt(struct intel_iommu *iommu)
1267 {
1268 int irq, ret;
1269
1270 /*
1271 * Check if the fault interrupt is already initialized.
1272 */
1273 if (iommu->irq)
1274 return 0;
1275
1276 irq = create_irq();
1277 if (!irq) {
1278 pr_err("IOMMU: no free vectors\n");
1279 return -EINVAL;
1280 }
1281
1282 irq_set_handler_data(irq, iommu);
1283 iommu->irq = irq;
1284
1285 ret = arch_setup_dmar_msi(irq);
1286 if (ret) {
1287 irq_set_handler_data(irq, NULL);
1288 iommu->irq = 0;
1289 destroy_irq(irq);
1290 return ret;
1291 }
1292
1293 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1294 if (ret)
1295 pr_err("IOMMU: can't request irq\n");
1296 return ret;
1297 }
1298
1299 int __init enable_drhd_fault_handling(void)
1300 {
1301 struct dmar_drhd_unit *drhd;
1302
1303 /*
1304 * Enable fault control interrupt.
1305 */
1306 for_each_drhd_unit(drhd) {
1307 int ret;
1308 struct intel_iommu *iommu = drhd->iommu;
1309 u32 fault_status;
1310 ret = dmar_set_interrupt(iommu);
1311
1312 if (ret) {
1313 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1314 (unsigned long long)drhd->reg_base_addr, ret);
1315 return -1;
1316 }
1317
1318 /*
1319 * Clear any previous faults.
1320 */
1321 dmar_fault(iommu->irq, iommu);
1322 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1323 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1324 }
1325
1326 return 0;
1327 }
1328
1329 /*
1330 * Re-enable Queued Invalidation interface.
1331 */
1332 int dmar_reenable_qi(struct intel_iommu *iommu)
1333 {
1334 if (!ecap_qis(iommu->ecap))
1335 return -ENOENT;
1336
1337 if (!iommu->qi)
1338 return -ENOENT;
1339
1340 /*
1341 * First disable queued invalidation.
1342 */
1343 dmar_disable_qi(iommu);
1344 /*
1345 * Then enable queued invalidation again. Since there is no pending
1346 * invalidation requests now, it's safe to re-enable queued
1347 * invalidation.
1348 */
1349 __dmar_enable_qi(iommu);
1350
1351 return 0;
1352 }
1353
1354 /*
1355 * Check interrupt remapping support in DMAR table description.
1356 */
1357 int __init dmar_ir_support(void)
1358 {
1359 struct acpi_table_dmar *dmar;
1360 dmar = (struct acpi_table_dmar *)dmar_tbl;
1361 if (!dmar)
1362 return 0;
1363 return dmar->flags & 0x1;
1364 }
1365 IOMMU_INIT_POST(detect_intel_iommu);