406fca50d036f0f261fed384b9a207a5d8428cc6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / infiniband / hw / qib / qib_file_ops.c
1 /*
2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
3 * All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/pci.h>
36 #include <linux/poll.h>
37 #include <linux/cdev.h>
38 #include <linux/swap.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/io.h>
42 #include <linux/uio.h>
43 #include <linux/jiffies.h>
44 #include <asm/pgtable.h>
45 #include <linux/delay.h>
46
47 #include "qib.h"
48 #include "qib_common.h"
49 #include "qib_user_sdma.h"
50
51 static int qib_open(struct inode *, struct file *);
52 static int qib_close(struct inode *, struct file *);
53 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
54 static ssize_t qib_aio_write(struct kiocb *, const struct iovec *,
55 unsigned long, loff_t);
56 static unsigned int qib_poll(struct file *, struct poll_table_struct *);
57 static int qib_mmapf(struct file *, struct vm_area_struct *);
58
59 static const struct file_operations qib_file_ops = {
60 .owner = THIS_MODULE,
61 .write = qib_write,
62 .aio_write = qib_aio_write,
63 .open = qib_open,
64 .release = qib_close,
65 .poll = qib_poll,
66 .mmap = qib_mmapf,
67 .llseek = noop_llseek,
68 };
69
70 /*
71 * Convert kernel virtual addresses to physical addresses so they don't
72 * potentially conflict with the chip addresses used as mmap offsets.
73 * It doesn't really matter what mmap offset we use as long as we can
74 * interpret it correctly.
75 */
76 static u64 cvt_kvaddr(void *p)
77 {
78 struct page *page;
79 u64 paddr = 0;
80
81 page = vmalloc_to_page(p);
82 if (page)
83 paddr = page_to_pfn(page) << PAGE_SHIFT;
84
85 return paddr;
86 }
87
88 static int qib_get_base_info(struct file *fp, void __user *ubase,
89 size_t ubase_size)
90 {
91 struct qib_ctxtdata *rcd = ctxt_fp(fp);
92 int ret = 0;
93 struct qib_base_info *kinfo = NULL;
94 struct qib_devdata *dd = rcd->dd;
95 struct qib_pportdata *ppd = rcd->ppd;
96 unsigned subctxt_cnt;
97 int shared, master;
98 size_t sz;
99
100 subctxt_cnt = rcd->subctxt_cnt;
101 if (!subctxt_cnt) {
102 shared = 0;
103 master = 0;
104 subctxt_cnt = 1;
105 } else {
106 shared = 1;
107 master = !subctxt_fp(fp);
108 }
109
110 sz = sizeof(*kinfo);
111 /* If context sharing is not requested, allow the old size structure */
112 if (!shared)
113 sz -= 7 * sizeof(u64);
114 if (ubase_size < sz) {
115 ret = -EINVAL;
116 goto bail;
117 }
118
119 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
120 if (kinfo == NULL) {
121 ret = -ENOMEM;
122 goto bail;
123 }
124
125 ret = dd->f_get_base_info(rcd, kinfo);
126 if (ret < 0)
127 goto bail;
128
129 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
130 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
131 kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
132 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
133 /*
134 * have to mmap whole thing
135 */
136 kinfo->spi_rcv_egrbuftotlen =
137 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
138 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
139 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
140 rcd->rcvegrbuf_chunks;
141 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
142 if (master)
143 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
144 /*
145 * for this use, may be cfgctxts summed over all chips that
146 * are are configured and present
147 */
148 kinfo->spi_nctxts = dd->cfgctxts;
149 /* unit (chip/board) our context is on */
150 kinfo->spi_unit = dd->unit;
151 kinfo->spi_port = ppd->port;
152 /* for now, only a single page */
153 kinfo->spi_tid_maxsize = PAGE_SIZE;
154
155 /*
156 * Doing this per context, and based on the skip value, etc. This has
157 * to be the actual buffer size, since the protocol code treats it
158 * as an array.
159 *
160 * These have to be set to user addresses in the user code via mmap.
161 * These values are used on return to user code for the mmap target
162 * addresses only. For 32 bit, same 44 bit address problem, so use
163 * the physical address, not virtual. Before 2.6.11, using the
164 * page_address() macro worked, but in 2.6.11, even that returns the
165 * full 64 bit address (upper bits all 1's). So far, using the
166 * physical addresses (or chip offsets, for chip mapping) works, but
167 * no doubt some future kernel release will change that, and we'll be
168 * on to yet another method of dealing with this.
169 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful
170 * since the chips with non-zero rhf_offset don't normally
171 * enable tail register updates to host memory, but for testing,
172 * both can be enabled and used.
173 */
174 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
175 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
176 kinfo->spi_rhf_offset = dd->rhf_offset;
177 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
178 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
179 /* setup per-unit (not port) status area for user programs */
180 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
181 (char *) ppd->statusp -
182 (char *) dd->pioavailregs_dma;
183 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
184 if (!shared) {
185 kinfo->spi_piocnt = rcd->piocnt;
186 kinfo->spi_piobufbase = (u64) rcd->piobufs;
187 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
188 } else if (master) {
189 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
190 (rcd->piocnt % subctxt_cnt);
191 /* Master's PIO buffers are after all the slave's */
192 kinfo->spi_piobufbase = (u64) rcd->piobufs +
193 dd->palign *
194 (rcd->piocnt - kinfo->spi_piocnt);
195 } else {
196 unsigned slave = subctxt_fp(fp) - 1;
197
198 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
199 kinfo->spi_piobufbase = (u64) rcd->piobufs +
200 dd->palign * kinfo->spi_piocnt * slave;
201 }
202
203 if (shared) {
204 kinfo->spi_sendbuf_status =
205 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
206 /* only spi_subctxt_* fields should be set in this block! */
207 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
208
209 kinfo->spi_subctxt_rcvegrbuf =
210 cvt_kvaddr(rcd->subctxt_rcvegrbuf);
211 kinfo->spi_subctxt_rcvhdr_base =
212 cvt_kvaddr(rcd->subctxt_rcvhdr_base);
213 }
214
215 /*
216 * All user buffers are 2KB buffers. If we ever support
217 * giving 4KB buffers to user processes, this will need some
218 * work. Can't use piobufbase directly, because it has
219 * both 2K and 4K buffer base values.
220 */
221 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
222 dd->palign;
223 kinfo->spi_pioalign = dd->palign;
224 kinfo->spi_qpair = QIB_KD_QP;
225 /*
226 * user mode PIO buffers are always 2KB, even when 4KB can
227 * be received, and sent via the kernel; this is ibmaxlen
228 * for 2K MTU.
229 */
230 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
231 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
232 kinfo->spi_ctxt = rcd->ctxt;
233 kinfo->spi_subctxt = subctxt_fp(fp);
234 kinfo->spi_sw_version = QIB_KERN_SWVERSION;
235 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
236 kinfo->spi_hw_version = dd->revision;
237
238 if (master)
239 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
240
241 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
242 if (copy_to_user(ubase, kinfo, sz))
243 ret = -EFAULT;
244 bail:
245 kfree(kinfo);
246 return ret;
247 }
248
249 /**
250 * qib_tid_update - update a context TID
251 * @rcd: the context
252 * @fp: the qib device file
253 * @ti: the TID information
254 *
255 * The new implementation as of Oct 2004 is that the driver assigns
256 * the tid and returns it to the caller. To reduce search time, we
257 * keep a cursor for each context, walking the shadow tid array to find
258 * one that's not in use.
259 *
260 * For now, if we can't allocate the full list, we fail, although
261 * in the long run, we'll allocate as many as we can, and the
262 * caller will deal with that by trying the remaining pages later.
263 * That means that when we fail, we have to mark the tids as not in
264 * use again, in our shadow copy.
265 *
266 * It's up to the caller to free the tids when they are done.
267 * We'll unlock the pages as they free them.
268 *
269 * Also, right now we are locking one page at a time, but since
270 * the intended use of this routine is for a single group of
271 * virtually contiguous pages, that should change to improve
272 * performance.
273 */
274 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
275 const struct qib_tid_info *ti)
276 {
277 int ret = 0, ntids;
278 u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
279 u16 *tidlist;
280 struct qib_devdata *dd = rcd->dd;
281 u64 physaddr;
282 unsigned long vaddr;
283 u64 __iomem *tidbase;
284 unsigned long tidmap[8];
285 struct page **pagep = NULL;
286 unsigned subctxt = subctxt_fp(fp);
287
288 if (!dd->pageshadow) {
289 ret = -ENOMEM;
290 goto done;
291 }
292
293 cnt = ti->tidcnt;
294 if (!cnt) {
295 ret = -EFAULT;
296 goto done;
297 }
298 ctxttid = rcd->ctxt * dd->rcvtidcnt;
299 if (!rcd->subctxt_cnt) {
300 tidcnt = dd->rcvtidcnt;
301 tid = rcd->tidcursor;
302 tidoff = 0;
303 } else if (!subctxt) {
304 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
305 (dd->rcvtidcnt % rcd->subctxt_cnt);
306 tidoff = dd->rcvtidcnt - tidcnt;
307 ctxttid += tidoff;
308 tid = tidcursor_fp(fp);
309 } else {
310 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
311 tidoff = tidcnt * (subctxt - 1);
312 ctxttid += tidoff;
313 tid = tidcursor_fp(fp);
314 }
315 if (cnt > tidcnt) {
316 /* make sure it all fits in tid_pg_list */
317 qib_devinfo(dd->pcidev, "Process tried to allocate %u "
318 "TIDs, only trying max (%u)\n", cnt, tidcnt);
319 cnt = tidcnt;
320 }
321 pagep = (struct page **) rcd->tid_pg_list;
322 tidlist = (u16 *) &pagep[dd->rcvtidcnt];
323 pagep += tidoff;
324 tidlist += tidoff;
325
326 memset(tidmap, 0, sizeof(tidmap));
327 /* before decrement; chip actual # */
328 ntids = tidcnt;
329 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
330 dd->rcvtidbase +
331 ctxttid * sizeof(*tidbase));
332
333 /* virtual address of first page in transfer */
334 vaddr = ti->tidvaddr;
335 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
336 cnt * PAGE_SIZE)) {
337 ret = -EFAULT;
338 goto done;
339 }
340 ret = qib_get_user_pages(vaddr, cnt, pagep);
341 if (ret) {
342 /*
343 * if (ret == -EBUSY)
344 * We can't continue because the pagep array won't be
345 * initialized. This should never happen,
346 * unless perhaps the user has mpin'ed the pages
347 * themselves.
348 */
349 qib_devinfo(dd->pcidev,
350 "Failed to lock addr %p, %u pages: "
351 "errno %d\n", (void *) vaddr, cnt, -ret);
352 goto done;
353 }
354 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
355 for (; ntids--; tid++) {
356 if (tid == tidcnt)
357 tid = 0;
358 if (!dd->pageshadow[ctxttid + tid])
359 break;
360 }
361 if (ntids < 0) {
362 /*
363 * Oops, wrapped all the way through their TIDs,
364 * and didn't have enough free; see comments at
365 * start of routine
366 */
367 i--; /* last tidlist[i] not filled in */
368 ret = -ENOMEM;
369 break;
370 }
371 tidlist[i] = tid + tidoff;
372 /* we "know" system pages and TID pages are same size */
373 dd->pageshadow[ctxttid + tid] = pagep[i];
374 dd->physshadow[ctxttid + tid] =
375 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE,
376 PCI_DMA_FROMDEVICE);
377 /*
378 * don't need atomic or it's overhead
379 */
380 __set_bit(tid, tidmap);
381 physaddr = dd->physshadow[ctxttid + tid];
382 /* PERFORMANCE: below should almost certainly be cached */
383 dd->f_put_tid(dd, &tidbase[tid],
384 RCVHQ_RCV_TYPE_EXPECTED, physaddr);
385 /*
386 * don't check this tid in qib_ctxtshadow, since we
387 * just filled it in; start with the next one.
388 */
389 tid++;
390 }
391
392 if (ret) {
393 u32 limit;
394 cleanup:
395 /* jump here if copy out of updated info failed... */
396 /* same code that's in qib_free_tid() */
397 limit = sizeof(tidmap) * BITS_PER_BYTE;
398 if (limit > tidcnt)
399 /* just in case size changes in future */
400 limit = tidcnt;
401 tid = find_first_bit((const unsigned long *)tidmap, limit);
402 for (; tid < limit; tid++) {
403 if (!test_bit(tid, tidmap))
404 continue;
405 if (dd->pageshadow[ctxttid + tid]) {
406 dma_addr_t phys;
407
408 phys = dd->physshadow[ctxttid + tid];
409 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
410 /* PERFORMANCE: below should almost certainly
411 * be cached
412 */
413 dd->f_put_tid(dd, &tidbase[tid],
414 RCVHQ_RCV_TYPE_EXPECTED,
415 dd->tidinvalid);
416 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
417 PCI_DMA_FROMDEVICE);
418 dd->pageshadow[ctxttid + tid] = NULL;
419 }
420 }
421 qib_release_user_pages(pagep, cnt);
422 } else {
423 /*
424 * Copy the updated array, with qib_tid's filled in, back
425 * to user. Since we did the copy in already, this "should
426 * never fail" If it does, we have to clean up...
427 */
428 if (copy_to_user((void __user *)
429 (unsigned long) ti->tidlist,
430 tidlist, cnt * sizeof(*tidlist))) {
431 ret = -EFAULT;
432 goto cleanup;
433 }
434 if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
435 tidmap, sizeof tidmap)) {
436 ret = -EFAULT;
437 goto cleanup;
438 }
439 if (tid == tidcnt)
440 tid = 0;
441 if (!rcd->subctxt_cnt)
442 rcd->tidcursor = tid;
443 else
444 tidcursor_fp(fp) = tid;
445 }
446
447 done:
448 return ret;
449 }
450
451 /**
452 * qib_tid_free - free a context TID
453 * @rcd: the context
454 * @subctxt: the subcontext
455 * @ti: the TID info
456 *
457 * right now we are unlocking one page at a time, but since
458 * the intended use of this routine is for a single group of
459 * virtually contiguous pages, that should change to improve
460 * performance. We check that the TID is in range for this context
461 * but otherwise don't check validity; if user has an error and
462 * frees the wrong tid, it's only their own data that can thereby
463 * be corrupted. We do check that the TID was in use, for sanity
464 * We always use our idea of the saved address, not the address that
465 * they pass in to us.
466 */
467 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
468 const struct qib_tid_info *ti)
469 {
470 int ret = 0;
471 u32 tid, ctxttid, cnt, limit, tidcnt;
472 struct qib_devdata *dd = rcd->dd;
473 u64 __iomem *tidbase;
474 unsigned long tidmap[8];
475
476 if (!dd->pageshadow) {
477 ret = -ENOMEM;
478 goto done;
479 }
480
481 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
482 sizeof tidmap)) {
483 ret = -EFAULT;
484 goto done;
485 }
486
487 ctxttid = rcd->ctxt * dd->rcvtidcnt;
488 if (!rcd->subctxt_cnt)
489 tidcnt = dd->rcvtidcnt;
490 else if (!subctxt) {
491 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
492 (dd->rcvtidcnt % rcd->subctxt_cnt);
493 ctxttid += dd->rcvtidcnt - tidcnt;
494 } else {
495 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
496 ctxttid += tidcnt * (subctxt - 1);
497 }
498 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
499 dd->rcvtidbase +
500 ctxttid * sizeof(*tidbase));
501
502 limit = sizeof(tidmap) * BITS_PER_BYTE;
503 if (limit > tidcnt)
504 /* just in case size changes in future */
505 limit = tidcnt;
506 tid = find_first_bit(tidmap, limit);
507 for (cnt = 0; tid < limit; tid++) {
508 /*
509 * small optimization; if we detect a run of 3 or so without
510 * any set, use find_first_bit again. That's mainly to
511 * accelerate the case where we wrapped, so we have some at
512 * the beginning, and some at the end, and a big gap
513 * in the middle.
514 */
515 if (!test_bit(tid, tidmap))
516 continue;
517 cnt++;
518 if (dd->pageshadow[ctxttid + tid]) {
519 struct page *p;
520 dma_addr_t phys;
521
522 p = dd->pageshadow[ctxttid + tid];
523 dd->pageshadow[ctxttid + tid] = NULL;
524 phys = dd->physshadow[ctxttid + tid];
525 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
526 /* PERFORMANCE: below should almost certainly be
527 * cached
528 */
529 dd->f_put_tid(dd, &tidbase[tid],
530 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
531 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
532 PCI_DMA_FROMDEVICE);
533 qib_release_user_pages(&p, 1);
534 }
535 }
536 done:
537 return ret;
538 }
539
540 /**
541 * qib_set_part_key - set a partition key
542 * @rcd: the context
543 * @key: the key
544 *
545 * We can have up to 4 active at a time (other than the default, which is
546 * always allowed). This is somewhat tricky, since multiple contexts may set
547 * the same key, so we reference count them, and clean up at exit. All 4
548 * partition keys are packed into a single qlogic_ib register. It's an
549 * error for a process to set the same pkey multiple times. We provide no
550 * mechanism to de-allocate a pkey at this time, we may eventually need to
551 * do that. I've used the atomic operations, and no locking, and only make
552 * a single pass through what's available. This should be more than
553 * adequate for some time. I'll think about spinlocks or the like if and as
554 * it's necessary.
555 */
556 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
557 {
558 struct qib_pportdata *ppd = rcd->ppd;
559 int i, any = 0, pidx = -1;
560 u16 lkey = key & 0x7FFF;
561 int ret;
562
563 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) {
564 /* nothing to do; this key always valid */
565 ret = 0;
566 goto bail;
567 }
568
569 if (!lkey) {
570 ret = -EINVAL;
571 goto bail;
572 }
573
574 /*
575 * Set the full membership bit, because it has to be
576 * set in the register or the packet, and it seems
577 * cleaner to set in the register than to force all
578 * callers to set it.
579 */
580 key |= 0x8000;
581
582 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
583 if (!rcd->pkeys[i] && pidx == -1)
584 pidx = i;
585 if (rcd->pkeys[i] == key) {
586 ret = -EEXIST;
587 goto bail;
588 }
589 }
590 if (pidx == -1) {
591 ret = -EBUSY;
592 goto bail;
593 }
594 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
595 if (!ppd->pkeys[i]) {
596 any++;
597 continue;
598 }
599 if (ppd->pkeys[i] == key) {
600 atomic_t *pkrefs = &ppd->pkeyrefs[i];
601
602 if (atomic_inc_return(pkrefs) > 1) {
603 rcd->pkeys[pidx] = key;
604 ret = 0;
605 goto bail;
606 } else {
607 /*
608 * lost race, decrement count, catch below
609 */
610 atomic_dec(pkrefs);
611 any++;
612 }
613 }
614 if ((ppd->pkeys[i] & 0x7FFF) == lkey) {
615 /*
616 * It makes no sense to have both the limited and
617 * full membership PKEY set at the same time since
618 * the unlimited one will disable the limited one.
619 */
620 ret = -EEXIST;
621 goto bail;
622 }
623 }
624 if (!any) {
625 ret = -EBUSY;
626 goto bail;
627 }
628 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
629 if (!ppd->pkeys[i] &&
630 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
631 rcd->pkeys[pidx] = key;
632 ppd->pkeys[i] = key;
633 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
634 ret = 0;
635 goto bail;
636 }
637 }
638 ret = -EBUSY;
639
640 bail:
641 return ret;
642 }
643
644 /**
645 * qib_manage_rcvq - manage a context's receive queue
646 * @rcd: the context
647 * @subctxt: the subcontext
648 * @start_stop: action to carry out
649 *
650 * start_stop == 0 disables receive on the context, for use in queue
651 * overflow conditions. start_stop==1 re-enables, to be used to
652 * re-init the software copy of the head register
653 */
654 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
655 int start_stop)
656 {
657 struct qib_devdata *dd = rcd->dd;
658 unsigned int rcvctrl_op;
659
660 if (subctxt)
661 goto bail;
662 /* atomically clear receive enable ctxt. */
663 if (start_stop) {
664 /*
665 * On enable, force in-memory copy of the tail register to
666 * 0, so that protocol code doesn't have to worry about
667 * whether or not the chip has yet updated the in-memory
668 * copy or not on return from the system call. The chip
669 * always resets it's tail register back to 0 on a
670 * transition from disabled to enabled.
671 */
672 if (rcd->rcvhdrtail_kvaddr)
673 qib_clear_rcvhdrtail(rcd);
674 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
675 } else
676 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
677 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
678 /* always; new head should be equal to new tail; see above */
679 bail:
680 return 0;
681 }
682
683 static void qib_clean_part_key(struct qib_ctxtdata *rcd,
684 struct qib_devdata *dd)
685 {
686 int i, j, pchanged = 0;
687 u64 oldpkey;
688 struct qib_pportdata *ppd = rcd->ppd;
689
690 /* for debugging only */
691 oldpkey = (u64) ppd->pkeys[0] |
692 ((u64) ppd->pkeys[1] << 16) |
693 ((u64) ppd->pkeys[2] << 32) |
694 ((u64) ppd->pkeys[3] << 48);
695
696 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
697 if (!rcd->pkeys[i])
698 continue;
699 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
700 /* check for match independent of the global bit */
701 if ((ppd->pkeys[j] & 0x7fff) !=
702 (rcd->pkeys[i] & 0x7fff))
703 continue;
704 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
705 ppd->pkeys[j] = 0;
706 pchanged++;
707 }
708 break;
709 }
710 rcd->pkeys[i] = 0;
711 }
712 if (pchanged)
713 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
714 }
715
716 /* common code for the mappings on dma_alloc_coherent mem */
717 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
718 unsigned len, void *kvaddr, u32 write_ok, char *what)
719 {
720 struct qib_devdata *dd = rcd->dd;
721 unsigned long pfn;
722 int ret;
723
724 if ((vma->vm_end - vma->vm_start) > len) {
725 qib_devinfo(dd->pcidev,
726 "FAIL on %s: len %lx > %x\n", what,
727 vma->vm_end - vma->vm_start, len);
728 ret = -EFAULT;
729 goto bail;
730 }
731
732 /*
733 * shared context user code requires rcvhdrq mapped r/w, others
734 * only allowed readonly mapping.
735 */
736 if (!write_ok) {
737 if (vma->vm_flags & VM_WRITE) {
738 qib_devinfo(dd->pcidev,
739 "%s must be mapped readonly\n", what);
740 ret = -EPERM;
741 goto bail;
742 }
743
744 /* don't allow them to later change with mprotect */
745 vma->vm_flags &= ~VM_MAYWRITE;
746 }
747
748 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
749 ret = remap_pfn_range(vma, vma->vm_start, pfn,
750 len, vma->vm_page_prot);
751 if (ret)
752 qib_devinfo(dd->pcidev, "%s ctxt%u mmap of %lx, %x "
753 "bytes failed: %d\n", what, rcd->ctxt,
754 pfn, len, ret);
755 bail:
756 return ret;
757 }
758
759 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
760 u64 ureg)
761 {
762 unsigned long phys;
763 unsigned long sz;
764 int ret;
765
766 /*
767 * This is real hardware, so use io_remap. This is the mechanism
768 * for the user process to update the head registers for their ctxt
769 * in the chip.
770 */
771 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
772 if ((vma->vm_end - vma->vm_start) > sz) {
773 qib_devinfo(dd->pcidev, "FAIL mmap userreg: reqlen "
774 "%lx > PAGE\n", vma->vm_end - vma->vm_start);
775 ret = -EFAULT;
776 } else {
777 phys = dd->physaddr + ureg;
778 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
779
780 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
781 ret = io_remap_pfn_range(vma, vma->vm_start,
782 phys >> PAGE_SHIFT,
783 vma->vm_end - vma->vm_start,
784 vma->vm_page_prot);
785 }
786 return ret;
787 }
788
789 static int mmap_piobufs(struct vm_area_struct *vma,
790 struct qib_devdata *dd,
791 struct qib_ctxtdata *rcd,
792 unsigned piobufs, unsigned piocnt)
793 {
794 unsigned long phys;
795 int ret;
796
797 /*
798 * When we map the PIO buffers in the chip, we want to map them as
799 * writeonly, no read possible; unfortunately, x86 doesn't allow
800 * for this in hardware, but we still prevent users from asking
801 * for it.
802 */
803 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
804 qib_devinfo(dd->pcidev, "FAIL mmap piobufs: "
805 "reqlen %lx > PAGE\n",
806 vma->vm_end - vma->vm_start);
807 ret = -EINVAL;
808 goto bail;
809 }
810
811 phys = dd->physaddr + piobufs;
812
813 #if defined(__powerpc__)
814 /* There isn't a generic way to specify writethrough mappings */
815 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
816 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU;
817 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED;
818 #endif
819
820 /*
821 * don't allow them to later change to readable with mprotect (for when
822 * not initially mapped readable, as is normally the case)
823 */
824 vma->vm_flags &= ~VM_MAYREAD;
825 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
826
827 if (qib_wc_pat)
828 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
829
830 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
831 vma->vm_end - vma->vm_start,
832 vma->vm_page_prot);
833 bail:
834 return ret;
835 }
836
837 static int mmap_rcvegrbufs(struct vm_area_struct *vma,
838 struct qib_ctxtdata *rcd)
839 {
840 struct qib_devdata *dd = rcd->dd;
841 unsigned long start, size;
842 size_t total_size, i;
843 unsigned long pfn;
844 int ret;
845
846 size = rcd->rcvegrbuf_size;
847 total_size = rcd->rcvegrbuf_chunks * size;
848 if ((vma->vm_end - vma->vm_start) > total_size) {
849 qib_devinfo(dd->pcidev, "FAIL on egr bufs: "
850 "reqlen %lx > actual %lx\n",
851 vma->vm_end - vma->vm_start,
852 (unsigned long) total_size);
853 ret = -EINVAL;
854 goto bail;
855 }
856
857 if (vma->vm_flags & VM_WRITE) {
858 qib_devinfo(dd->pcidev, "Can't map eager buffers as "
859 "writable (flags=%lx)\n", vma->vm_flags);
860 ret = -EPERM;
861 goto bail;
862 }
863 /* don't allow them to later change to writeable with mprotect */
864 vma->vm_flags &= ~VM_MAYWRITE;
865
866 start = vma->vm_start;
867
868 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
869 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
870 ret = remap_pfn_range(vma, start, pfn, size,
871 vma->vm_page_prot);
872 if (ret < 0)
873 goto bail;
874 }
875 ret = 0;
876
877 bail:
878 return ret;
879 }
880
881 /*
882 * qib_file_vma_fault - handle a VMA page fault.
883 */
884 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
885 {
886 struct page *page;
887
888 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
889 if (!page)
890 return VM_FAULT_SIGBUS;
891
892 get_page(page);
893 vmf->page = page;
894
895 return 0;
896 }
897
898 static struct vm_operations_struct qib_file_vm_ops = {
899 .fault = qib_file_vma_fault,
900 };
901
902 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
903 struct qib_ctxtdata *rcd, unsigned subctxt)
904 {
905 struct qib_devdata *dd = rcd->dd;
906 unsigned subctxt_cnt;
907 unsigned long len;
908 void *addr;
909 size_t size;
910 int ret = 0;
911
912 subctxt_cnt = rcd->subctxt_cnt;
913 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
914
915 /*
916 * Each process has all the subctxt uregbase, rcvhdrq, and
917 * rcvegrbufs mmapped - as an array for all the processes,
918 * and also separately for this process.
919 */
920 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
921 addr = rcd->subctxt_uregbase;
922 size = PAGE_SIZE * subctxt_cnt;
923 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
924 addr = rcd->subctxt_rcvhdr_base;
925 size = rcd->rcvhdrq_size * subctxt_cnt;
926 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
927 addr = rcd->subctxt_rcvegrbuf;
928 size *= subctxt_cnt;
929 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
930 PAGE_SIZE * subctxt)) {
931 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
932 size = PAGE_SIZE;
933 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
934 rcd->rcvhdrq_size * subctxt)) {
935 addr = rcd->subctxt_rcvhdr_base +
936 rcd->rcvhdrq_size * subctxt;
937 size = rcd->rcvhdrq_size;
938 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
939 addr = rcd->user_event_mask;
940 size = PAGE_SIZE;
941 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
942 size * subctxt)) {
943 addr = rcd->subctxt_rcvegrbuf + size * subctxt;
944 /* rcvegrbufs are read-only on the slave */
945 if (vma->vm_flags & VM_WRITE) {
946 qib_devinfo(dd->pcidev,
947 "Can't map eager buffers as "
948 "writable (flags=%lx)\n", vma->vm_flags);
949 ret = -EPERM;
950 goto bail;
951 }
952 /*
953 * Don't allow permission to later change to writeable
954 * with mprotect.
955 */
956 vma->vm_flags &= ~VM_MAYWRITE;
957 } else
958 goto bail;
959 len = vma->vm_end - vma->vm_start;
960 if (len > size) {
961 ret = -EINVAL;
962 goto bail;
963 }
964
965 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
966 vma->vm_ops = &qib_file_vm_ops;
967 vma->vm_flags |= VM_RESERVED | VM_DONTEXPAND;
968 ret = 1;
969
970 bail:
971 return ret;
972 }
973
974 /**
975 * qib_mmapf - mmap various structures into user space
976 * @fp: the file pointer
977 * @vma: the VM area
978 *
979 * We use this to have a shared buffer between the kernel and the user code
980 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio
981 * buffers in the chip. We have the open and close entries so we can bump
982 * the ref count and keep the driver from being unloaded while still mapped.
983 */
984 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
985 {
986 struct qib_ctxtdata *rcd;
987 struct qib_devdata *dd;
988 u64 pgaddr, ureg;
989 unsigned piobufs, piocnt;
990 int ret, match = 1;
991
992 rcd = ctxt_fp(fp);
993 if (!rcd || !(vma->vm_flags & VM_SHARED)) {
994 ret = -EINVAL;
995 goto bail;
996 }
997 dd = rcd->dd;
998
999 /*
1000 * This is the qib_do_user_init() code, mapping the shared buffers
1001 * and per-context user registers into the user process. The address
1002 * referred to by vm_pgoff is the file offset passed via mmap().
1003 * For shared contexts, this is the kernel vmalloc() address of the
1004 * pages to share with the master.
1005 * For non-shared or master ctxts, this is a physical address.
1006 * We only do one mmap for each space mapped.
1007 */
1008 pgaddr = vma->vm_pgoff << PAGE_SHIFT;
1009
1010 /*
1011 * Check for 0 in case one of the allocations failed, but user
1012 * called mmap anyway.
1013 */
1014 if (!pgaddr) {
1015 ret = -EINVAL;
1016 goto bail;
1017 }
1018
1019 /*
1020 * Physical addresses must fit in 40 bits for our hardware.
1021 * Check for kernel virtual addresses first, anything else must
1022 * match a HW or memory address.
1023 */
1024 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
1025 if (ret) {
1026 if (ret > 0)
1027 ret = 0;
1028 goto bail;
1029 }
1030
1031 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
1032 if (!rcd->subctxt_cnt) {
1033 /* ctxt is not shared */
1034 piocnt = rcd->piocnt;
1035 piobufs = rcd->piobufs;
1036 } else if (!subctxt_fp(fp)) {
1037 /* caller is the master */
1038 piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
1039 (rcd->piocnt % rcd->subctxt_cnt);
1040 piobufs = rcd->piobufs +
1041 dd->palign * (rcd->piocnt - piocnt);
1042 } else {
1043 unsigned slave = subctxt_fp(fp) - 1;
1044
1045 /* caller is a slave */
1046 piocnt = rcd->piocnt / rcd->subctxt_cnt;
1047 piobufs = rcd->piobufs + dd->palign * piocnt * slave;
1048 }
1049
1050 if (pgaddr == ureg)
1051 ret = mmap_ureg(vma, dd, ureg);
1052 else if (pgaddr == piobufs)
1053 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
1054 else if (pgaddr == dd->pioavailregs_phys)
1055 /* in-memory copy of pioavail registers */
1056 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1057 (void *) dd->pioavailregs_dma, 0,
1058 "pioavail registers");
1059 else if (pgaddr == rcd->rcvegr_phys)
1060 ret = mmap_rcvegrbufs(vma, rcd);
1061 else if (pgaddr == (u64) rcd->rcvhdrq_phys)
1062 /*
1063 * The rcvhdrq itself; multiple pages, contiguous
1064 * from an i/o perspective. Shared contexts need
1065 * to map r/w, so we allow writing.
1066 */
1067 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
1068 rcd->rcvhdrq, 1, "rcvhdrq");
1069 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
1070 /* in-memory copy of rcvhdrq tail register */
1071 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1072 rcd->rcvhdrtail_kvaddr, 0,
1073 "rcvhdrq tail");
1074 else
1075 match = 0;
1076 if (!match)
1077 ret = -EINVAL;
1078
1079 vma->vm_private_data = NULL;
1080
1081 if (ret < 0)
1082 qib_devinfo(dd->pcidev,
1083 "mmap Failure %d: off %llx len %lx\n",
1084 -ret, (unsigned long long)pgaddr,
1085 vma->vm_end - vma->vm_start);
1086 bail:
1087 return ret;
1088 }
1089
1090 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd,
1091 struct file *fp,
1092 struct poll_table_struct *pt)
1093 {
1094 struct qib_devdata *dd = rcd->dd;
1095 unsigned pollflag;
1096
1097 poll_wait(fp, &rcd->wait, pt);
1098
1099 spin_lock_irq(&dd->uctxt_lock);
1100 if (rcd->urgent != rcd->urgent_poll) {
1101 pollflag = POLLIN | POLLRDNORM;
1102 rcd->urgent_poll = rcd->urgent;
1103 } else {
1104 pollflag = 0;
1105 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
1106 }
1107 spin_unlock_irq(&dd->uctxt_lock);
1108
1109 return pollflag;
1110 }
1111
1112 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd,
1113 struct file *fp,
1114 struct poll_table_struct *pt)
1115 {
1116 struct qib_devdata *dd = rcd->dd;
1117 unsigned pollflag;
1118
1119 poll_wait(fp, &rcd->wait, pt);
1120
1121 spin_lock_irq(&dd->uctxt_lock);
1122 if (dd->f_hdrqempty(rcd)) {
1123 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
1124 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
1125 pollflag = 0;
1126 } else
1127 pollflag = POLLIN | POLLRDNORM;
1128 spin_unlock_irq(&dd->uctxt_lock);
1129
1130 return pollflag;
1131 }
1132
1133 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt)
1134 {
1135 struct qib_ctxtdata *rcd;
1136 unsigned pollflag;
1137
1138 rcd = ctxt_fp(fp);
1139 if (!rcd)
1140 pollflag = POLLERR;
1141 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
1142 pollflag = qib_poll_urgent(rcd, fp, pt);
1143 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
1144 pollflag = qib_poll_next(rcd, fp, pt);
1145 else /* invalid */
1146 pollflag = POLLERR;
1147
1148 return pollflag;
1149 }
1150
1151 /*
1152 * Check that userland and driver are compatible for subcontexts.
1153 */
1154 static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
1155 {
1156 /* this code is written long-hand for clarity */
1157 if (QIB_USER_SWMAJOR != user_swmajor) {
1158 /* no promise of compatibility if major mismatch */
1159 return 0;
1160 }
1161 if (QIB_USER_SWMAJOR == 1) {
1162 switch (QIB_USER_SWMINOR) {
1163 case 0:
1164 case 1:
1165 case 2:
1166 /* no subctxt implementation so cannot be compatible */
1167 return 0;
1168 case 3:
1169 /* 3 is only compatible with itself */
1170 return user_swminor == 3;
1171 default:
1172 /* >= 4 are compatible (or are expected to be) */
1173 return user_swminor >= 4;
1174 }
1175 }
1176 /* make no promises yet for future major versions */
1177 return 0;
1178 }
1179
1180 static int init_subctxts(struct qib_devdata *dd,
1181 struct qib_ctxtdata *rcd,
1182 const struct qib_user_info *uinfo)
1183 {
1184 int ret = 0;
1185 unsigned num_subctxts;
1186 size_t size;
1187
1188 /*
1189 * If the user is requesting zero subctxts,
1190 * skip the subctxt allocation.
1191 */
1192 if (uinfo->spu_subctxt_cnt <= 0)
1193 goto bail;
1194 num_subctxts = uinfo->spu_subctxt_cnt;
1195
1196 /* Check for subctxt compatibility */
1197 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
1198 uinfo->spu_userversion & 0xffff)) {
1199 qib_devinfo(dd->pcidev,
1200 "Mismatched user version (%d.%d) and driver "
1201 "version (%d.%d) while context sharing. Ensure "
1202 "that driver and library are from the same "
1203 "release.\n",
1204 (int) (uinfo->spu_userversion >> 16),
1205 (int) (uinfo->spu_userversion & 0xffff),
1206 QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
1207 goto bail;
1208 }
1209 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
1210 ret = -EINVAL;
1211 goto bail;
1212 }
1213
1214 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
1215 if (!rcd->subctxt_uregbase) {
1216 ret = -ENOMEM;
1217 goto bail;
1218 }
1219 /* Note: rcd->rcvhdrq_size isn't initialized yet. */
1220 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
1221 sizeof(u32), PAGE_SIZE) * num_subctxts;
1222 rcd->subctxt_rcvhdr_base = vmalloc_user(size);
1223 if (!rcd->subctxt_rcvhdr_base) {
1224 ret = -ENOMEM;
1225 goto bail_ureg;
1226 }
1227
1228 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
1229 rcd->rcvegrbuf_size *
1230 num_subctxts);
1231 if (!rcd->subctxt_rcvegrbuf) {
1232 ret = -ENOMEM;
1233 goto bail_rhdr;
1234 }
1235
1236 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
1237 rcd->subctxt_id = uinfo->spu_subctxt_id;
1238 rcd->active_slaves = 1;
1239 rcd->redirect_seq_cnt = 1;
1240 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1241 goto bail;
1242
1243 bail_rhdr:
1244 vfree(rcd->subctxt_rcvhdr_base);
1245 bail_ureg:
1246 vfree(rcd->subctxt_uregbase);
1247 rcd->subctxt_uregbase = NULL;
1248 bail:
1249 return ret;
1250 }
1251
1252 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
1253 struct file *fp, const struct qib_user_info *uinfo)
1254 {
1255 struct qib_devdata *dd = ppd->dd;
1256 struct qib_ctxtdata *rcd;
1257 void *ptmp = NULL;
1258 int ret;
1259
1260 rcd = qib_create_ctxtdata(ppd, ctxt);
1261
1262 /*
1263 * Allocate memory for use in qib_tid_update() at open to
1264 * reduce cost of expected send setup per message segment
1265 */
1266 if (rcd)
1267 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
1268 dd->rcvtidcnt * sizeof(struct page **),
1269 GFP_KERNEL);
1270
1271 if (!rcd || !ptmp) {
1272 qib_dev_err(dd, "Unable to allocate ctxtdata "
1273 "memory, failing open\n");
1274 ret = -ENOMEM;
1275 goto bailerr;
1276 }
1277 rcd->userversion = uinfo->spu_userversion;
1278 ret = init_subctxts(dd, rcd, uinfo);
1279 if (ret)
1280 goto bailerr;
1281 rcd->tid_pg_list = ptmp;
1282 rcd->pid = current->pid;
1283 init_waitqueue_head(&dd->rcd[ctxt]->wait);
1284 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm));
1285 ctxt_fp(fp) = rcd;
1286 qib_stats.sps_ctxts++;
1287 ret = 0;
1288 goto bail;
1289
1290 bailerr:
1291 dd->rcd[ctxt] = NULL;
1292 kfree(rcd);
1293 kfree(ptmp);
1294 bail:
1295 return ret;
1296 }
1297
1298 static inline int usable(struct qib_pportdata *ppd)
1299 {
1300 struct qib_devdata *dd = ppd->dd;
1301
1302 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
1303 (ppd->lflags & QIBL_LINKACTIVE);
1304 }
1305
1306 /*
1307 * Select a context on the given device, either using a requested port
1308 * or the port based on the context number.
1309 */
1310 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
1311 const struct qib_user_info *uinfo)
1312 {
1313 struct qib_pportdata *ppd = NULL;
1314 int ret, ctxt;
1315
1316 if (port) {
1317 if (!usable(dd->pport + port - 1)) {
1318 ret = -ENETDOWN;
1319 goto done;
1320 } else
1321 ppd = dd->pport + port - 1;
1322 }
1323 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
1324 ctxt++)
1325 ;
1326 if (ctxt == dd->cfgctxts) {
1327 ret = -EBUSY;
1328 goto done;
1329 }
1330 if (!ppd) {
1331 u32 pidx = ctxt % dd->num_pports;
1332 if (usable(dd->pport + pidx))
1333 ppd = dd->pport + pidx;
1334 else {
1335 for (pidx = 0; pidx < dd->num_pports && !ppd;
1336 pidx++)
1337 if (usable(dd->pport + pidx))
1338 ppd = dd->pport + pidx;
1339 }
1340 }
1341 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
1342 done:
1343 return ret;
1344 }
1345
1346 static int find_free_ctxt(int unit, struct file *fp,
1347 const struct qib_user_info *uinfo)
1348 {
1349 struct qib_devdata *dd = qib_lookup(unit);
1350 int ret;
1351
1352 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
1353 ret = -ENODEV;
1354 else
1355 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
1356
1357 return ret;
1358 }
1359
1360 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
1361 unsigned alg)
1362 {
1363 struct qib_devdata *udd = NULL;
1364 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
1365 u32 port = uinfo->spu_port, ctxt;
1366
1367 devmax = qib_count_units(&npresent, &nup);
1368 if (!npresent) {
1369 ret = -ENXIO;
1370 goto done;
1371 }
1372 if (nup == 0) {
1373 ret = -ENETDOWN;
1374 goto done;
1375 }
1376
1377 if (alg == QIB_PORT_ALG_ACROSS) {
1378 unsigned inuse = ~0U;
1379 /* find device (with ACTIVE ports) with fewest ctxts in use */
1380 for (ndev = 0; ndev < devmax; ndev++) {
1381 struct qib_devdata *dd = qib_lookup(ndev);
1382 unsigned cused = 0, cfree = 0, pusable = 0;
1383 if (!dd)
1384 continue;
1385 if (port && port <= dd->num_pports &&
1386 usable(dd->pport + port - 1))
1387 pusable = 1;
1388 else
1389 for (i = 0; i < dd->num_pports; i++)
1390 if (usable(dd->pport + i))
1391 pusable++;
1392 if (!pusable)
1393 continue;
1394 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
1395 ctxt++)
1396 if (dd->rcd[ctxt])
1397 cused++;
1398 else
1399 cfree++;
1400 if (pusable && cfree && cused < inuse) {
1401 udd = dd;
1402 inuse = cused;
1403 }
1404 }
1405 if (udd) {
1406 ret = choose_port_ctxt(fp, udd, port, uinfo);
1407 goto done;
1408 }
1409 } else {
1410 for (ndev = 0; ndev < devmax; ndev++) {
1411 struct qib_devdata *dd = qib_lookup(ndev);
1412 if (dd) {
1413 ret = choose_port_ctxt(fp, dd, port, uinfo);
1414 if (!ret)
1415 goto done;
1416 if (ret == -EBUSY)
1417 dusable++;
1418 }
1419 }
1420 }
1421 ret = dusable ? -EBUSY : -ENETDOWN;
1422
1423 done:
1424 return ret;
1425 }
1426
1427 static int find_shared_ctxt(struct file *fp,
1428 const struct qib_user_info *uinfo)
1429 {
1430 int devmax, ndev, i;
1431 int ret = 0;
1432
1433 devmax = qib_count_units(NULL, NULL);
1434
1435 for (ndev = 0; ndev < devmax; ndev++) {
1436 struct qib_devdata *dd = qib_lookup(ndev);
1437
1438 /* device portion of usable() */
1439 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
1440 continue;
1441 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
1442 struct qib_ctxtdata *rcd = dd->rcd[i];
1443
1444 /* Skip ctxts which are not yet open */
1445 if (!rcd || !rcd->cnt)
1446 continue;
1447 /* Skip ctxt if it doesn't match the requested one */
1448 if (rcd->subctxt_id != uinfo->spu_subctxt_id)
1449 continue;
1450 /* Verify the sharing process matches the master */
1451 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
1452 rcd->userversion != uinfo->spu_userversion ||
1453 rcd->cnt >= rcd->subctxt_cnt) {
1454 ret = -EINVAL;
1455 goto done;
1456 }
1457 ctxt_fp(fp) = rcd;
1458 subctxt_fp(fp) = rcd->cnt++;
1459 rcd->subpid[subctxt_fp(fp)] = current->pid;
1460 tidcursor_fp(fp) = 0;
1461 rcd->active_slaves |= 1 << subctxt_fp(fp);
1462 ret = 1;
1463 goto done;
1464 }
1465 }
1466
1467 done:
1468 return ret;
1469 }
1470
1471 static int qib_open(struct inode *in, struct file *fp)
1472 {
1473 /* The real work is performed later in qib_assign_ctxt() */
1474 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
1475 if (fp->private_data) /* no cpu affinity by default */
1476 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
1477 return fp->private_data ? 0 : -ENOMEM;
1478 }
1479
1480 /*
1481 * Get ctxt early, so can set affinity prior to memory allocation.
1482 */
1483 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
1484 {
1485 int ret;
1486 int i_minor;
1487 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
1488
1489 /* Check to be sure we haven't already initialized this file */
1490 if (ctxt_fp(fp)) {
1491 ret = -EINVAL;
1492 goto done;
1493 }
1494
1495 /* for now, if major version is different, bail */
1496 swmajor = uinfo->spu_userversion >> 16;
1497 if (swmajor != QIB_USER_SWMAJOR) {
1498 ret = -ENODEV;
1499 goto done;
1500 }
1501
1502 swminor = uinfo->spu_userversion & 0xffff;
1503
1504 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
1505 alg = uinfo->spu_port_alg;
1506
1507 mutex_lock(&qib_mutex);
1508
1509 if (qib_compatible_subctxts(swmajor, swminor) &&
1510 uinfo->spu_subctxt_cnt) {
1511 ret = find_shared_ctxt(fp, uinfo);
1512 if (ret) {
1513 if (ret > 0)
1514 ret = 0;
1515 goto done_chk_sdma;
1516 }
1517 }
1518
1519 i_minor = iminor(fp->f_dentry->d_inode) - QIB_USER_MINOR_BASE;
1520 if (i_minor)
1521 ret = find_free_ctxt(i_minor - 1, fp, uinfo);
1522 else
1523 ret = get_a_ctxt(fp, uinfo, alg);
1524
1525 done_chk_sdma:
1526 if (!ret) {
1527 struct qib_filedata *fd = fp->private_data;
1528 const struct qib_ctxtdata *rcd = fd->rcd;
1529 const struct qib_devdata *dd = rcd->dd;
1530
1531 if (dd->flags & QIB_HAS_SEND_DMA) {
1532 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
1533 dd->unit,
1534 rcd->ctxt,
1535 fd->subctxt);
1536 if (!fd->pq)
1537 ret = -ENOMEM;
1538 }
1539
1540 /*
1541 * If process has NOT already set it's affinity, select and
1542 * reserve a processor for it, as a rendezvous for all
1543 * users of the driver. If they don't actually later
1544 * set affinity to this cpu, or set it to some other cpu,
1545 * it just means that sooner or later we don't recommend
1546 * a cpu, and let the scheduler do it's best.
1547 */
1548 if (!ret && cpus_weight(current->cpus_allowed) >=
1549 qib_cpulist_count) {
1550 int cpu;
1551 cpu = find_first_zero_bit(qib_cpulist,
1552 qib_cpulist_count);
1553 if (cpu != qib_cpulist_count) {
1554 __set_bit(cpu, qib_cpulist);
1555 fd->rec_cpu_num = cpu;
1556 }
1557 } else if (cpus_weight(current->cpus_allowed) == 1 &&
1558 test_bit(first_cpu(current->cpus_allowed),
1559 qib_cpulist))
1560 qib_devinfo(dd->pcidev, "%s PID %u affinity "
1561 "set to cpu %d; already allocated\n",
1562 current->comm, current->pid,
1563 first_cpu(current->cpus_allowed));
1564 }
1565
1566 mutex_unlock(&qib_mutex);
1567
1568 done:
1569 return ret;
1570 }
1571
1572
1573 static int qib_do_user_init(struct file *fp,
1574 const struct qib_user_info *uinfo)
1575 {
1576 int ret;
1577 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1578 struct qib_devdata *dd;
1579 unsigned uctxt;
1580
1581 /* Subctxts don't need to initialize anything since master did it. */
1582 if (subctxt_fp(fp)) {
1583 ret = wait_event_interruptible(rcd->wait,
1584 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
1585 goto bail;
1586 }
1587
1588 dd = rcd->dd;
1589
1590 /* some ctxts may get extra buffers, calculate that here */
1591 uctxt = rcd->ctxt - dd->first_user_ctxt;
1592 if (uctxt < dd->ctxts_extrabuf) {
1593 rcd->piocnt = dd->pbufsctxt + 1;
1594 rcd->pio_base = rcd->piocnt * uctxt;
1595 } else {
1596 rcd->piocnt = dd->pbufsctxt;
1597 rcd->pio_base = rcd->piocnt * uctxt +
1598 dd->ctxts_extrabuf;
1599 }
1600
1601 /*
1602 * All user buffers are 2KB buffers. If we ever support
1603 * giving 4KB buffers to user processes, this will need some
1604 * work. Can't use piobufbase directly, because it has
1605 * both 2K and 4K buffer base values. So check and handle.
1606 */
1607 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
1608 if (rcd->pio_base >= dd->piobcnt2k) {
1609 qib_dev_err(dd,
1610 "%u:ctxt%u: no 2KB buffers available\n",
1611 dd->unit, rcd->ctxt);
1612 ret = -ENOBUFS;
1613 goto bail;
1614 }
1615 rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
1616 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
1617 rcd->ctxt, rcd->piocnt);
1618 }
1619
1620 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
1621 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1622 TXCHK_CHG_TYPE_USER, rcd);
1623 /*
1624 * try to ensure that processes start up with consistent avail update
1625 * for their own range, at least. If system very quiet, it might
1626 * have the in-memory copy out of date at startup for this range of
1627 * buffers, when a context gets re-used. Do after the chg_pioavail
1628 * and before the rest of setup, so it's "almost certain" the dma
1629 * will have occurred (can't 100% guarantee, but should be many
1630 * decimals of 9s, with this ordering), given how much else happens
1631 * after this.
1632 */
1633 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
1634
1635 /*
1636 * Now allocate the rcvhdr Q and eager TIDs; skip the TID
1637 * array for time being. If rcd->ctxt > chip-supported,
1638 * we need to do extra stuff here to handle by handling overflow
1639 * through ctxt 0, someday
1640 */
1641 ret = qib_create_rcvhdrq(dd, rcd);
1642 if (!ret)
1643 ret = qib_setup_eagerbufs(rcd);
1644 if (ret)
1645 goto bail_pio;
1646
1647 rcd->tidcursor = 0; /* start at beginning after open */
1648
1649 /* initialize poll variables... */
1650 rcd->urgent = 0;
1651 rcd->urgent_poll = 0;
1652
1653 /*
1654 * Now enable the ctxt for receive.
1655 * For chips that are set to DMA the tail register to memory
1656 * when they change (and when the update bit transitions from
1657 * 0 to 1. So for those chips, we turn it off and then back on.
1658 * This will (very briefly) affect any other open ctxts, but the
1659 * duration is very short, and therefore isn't an issue. We
1660 * explicitly set the in-memory tail copy to 0 beforehand, so we
1661 * don't have to wait to be sure the DMA update has happened
1662 * (chip resets head/tail to 0 on transition to enable).
1663 */
1664 if (rcd->rcvhdrtail_kvaddr)
1665 qib_clear_rcvhdrtail(rcd);
1666
1667 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
1668 rcd->ctxt);
1669
1670 /* Notify any waiting slaves */
1671 if (rcd->subctxt_cnt) {
1672 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1673 wake_up(&rcd->wait);
1674 }
1675 return 0;
1676
1677 bail_pio:
1678 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1679 TXCHK_CHG_TYPE_KERN, rcd);
1680 bail:
1681 return ret;
1682 }
1683
1684 /**
1685 * unlock_exptid - unlock any expected TID entries context still had in use
1686 * @rcd: ctxt
1687 *
1688 * We don't actually update the chip here, because we do a bulk update
1689 * below, using f_clear_tids.
1690 */
1691 static void unlock_expected_tids(struct qib_ctxtdata *rcd)
1692 {
1693 struct qib_devdata *dd = rcd->dd;
1694 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
1695 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
1696
1697 for (i = ctxt_tidbase; i < maxtid; i++) {
1698 struct page *p = dd->pageshadow[i];
1699 dma_addr_t phys;
1700
1701 if (!p)
1702 continue;
1703
1704 phys = dd->physshadow[i];
1705 dd->physshadow[i] = dd->tidinvalid;
1706 dd->pageshadow[i] = NULL;
1707 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
1708 PCI_DMA_FROMDEVICE);
1709 qib_release_user_pages(&p, 1);
1710 cnt++;
1711 }
1712 }
1713
1714 static int qib_close(struct inode *in, struct file *fp)
1715 {
1716 int ret = 0;
1717 struct qib_filedata *fd;
1718 struct qib_ctxtdata *rcd;
1719 struct qib_devdata *dd;
1720 unsigned long flags;
1721 unsigned ctxt;
1722 pid_t pid;
1723
1724 mutex_lock(&qib_mutex);
1725
1726 fd = fp->private_data;
1727 fp->private_data = NULL;
1728 rcd = fd->rcd;
1729 if (!rcd) {
1730 mutex_unlock(&qib_mutex);
1731 goto bail;
1732 }
1733
1734 dd = rcd->dd;
1735
1736 /* ensure all pio buffer writes in progress are flushed */
1737 qib_flush_wc();
1738
1739 /* drain user sdma queue */
1740 if (fd->pq) {
1741 qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
1742 qib_user_sdma_queue_destroy(fd->pq);
1743 }
1744
1745 if (fd->rec_cpu_num != -1)
1746 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1747
1748 if (--rcd->cnt) {
1749 /*
1750 * XXX If the master closes the context before the slave(s),
1751 * revoke the mmap for the eager receive queue so
1752 * the slave(s) don't wait for receive data forever.
1753 */
1754 rcd->active_slaves &= ~(1 << fd->subctxt);
1755 rcd->subpid[fd->subctxt] = 0;
1756 mutex_unlock(&qib_mutex);
1757 goto bail;
1758 }
1759
1760 /* early; no interrupt users after this */
1761 spin_lock_irqsave(&dd->uctxt_lock, flags);
1762 ctxt = rcd->ctxt;
1763 dd->rcd[ctxt] = NULL;
1764 pid = rcd->pid;
1765 rcd->pid = 0;
1766 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1767
1768 if (rcd->rcvwait_to || rcd->piowait_to ||
1769 rcd->rcvnowait || rcd->pionowait) {
1770 rcd->rcvwait_to = 0;
1771 rcd->piowait_to = 0;
1772 rcd->rcvnowait = 0;
1773 rcd->pionowait = 0;
1774 }
1775 if (rcd->flag)
1776 rcd->flag = 0;
1777
1778 if (dd->kregbase) {
1779 /* atomically clear receive enable ctxt and intr avail. */
1780 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
1781 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
1782
1783 /* clean up the pkeys for this ctxt user */
1784 qib_clean_part_key(rcd, dd);
1785 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
1786 qib_chg_pioavailkernel(dd, rcd->pio_base,
1787 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
1788
1789 dd->f_clear_tids(dd, rcd);
1790
1791 if (dd->pageshadow)
1792 unlock_expected_tids(rcd);
1793 qib_stats.sps_ctxts--;
1794 }
1795
1796 mutex_unlock(&qib_mutex);
1797 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
1798
1799 bail:
1800 kfree(fd);
1801 return ret;
1802 }
1803
1804 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
1805 {
1806 struct qib_ctxt_info info;
1807 int ret;
1808 size_t sz;
1809 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1810 struct qib_filedata *fd;
1811
1812 fd = fp->private_data;
1813
1814 info.num_active = qib_count_active_units();
1815 info.unit = rcd->dd->unit;
1816 info.port = rcd->ppd->port;
1817 info.ctxt = rcd->ctxt;
1818 info.subctxt = subctxt_fp(fp);
1819 /* Number of user ctxts available for this device. */
1820 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
1821 info.num_subctxts = rcd->subctxt_cnt;
1822 info.rec_cpu = fd->rec_cpu_num;
1823 sz = sizeof(info);
1824
1825 if (copy_to_user(uinfo, &info, sz)) {
1826 ret = -EFAULT;
1827 goto bail;
1828 }
1829 ret = 0;
1830
1831 bail:
1832 return ret;
1833 }
1834
1835 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
1836 u32 __user *inflightp)
1837 {
1838 const u32 val = qib_user_sdma_inflight_counter(pq);
1839
1840 if (put_user(val, inflightp))
1841 return -EFAULT;
1842
1843 return 0;
1844 }
1845
1846 static int qib_sdma_get_complete(struct qib_pportdata *ppd,
1847 struct qib_user_sdma_queue *pq,
1848 u32 __user *completep)
1849 {
1850 u32 val;
1851 int err;
1852
1853 if (!pq)
1854 return -EINVAL;
1855
1856 err = qib_user_sdma_make_progress(ppd, pq);
1857 if (err < 0)
1858 return err;
1859
1860 val = qib_user_sdma_complete_counter(pq);
1861 if (put_user(val, completep))
1862 return -EFAULT;
1863
1864 return 0;
1865 }
1866
1867 static int disarm_req_delay(struct qib_ctxtdata *rcd)
1868 {
1869 int ret = 0;
1870
1871 if (!usable(rcd->ppd)) {
1872 int i;
1873 /*
1874 * if link is down, or otherwise not usable, delay
1875 * the caller up to 30 seconds, so we don't thrash
1876 * in trying to get the chip back to ACTIVE, and
1877 * set flag so they make the call again.
1878 */
1879 if (rcd->user_event_mask) {
1880 /*
1881 * subctxt_cnt is 0 if not shared, so do base
1882 * separately, first, then remaining subctxt, if any
1883 */
1884 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1885 &rcd->user_event_mask[0]);
1886 for (i = 1; i < rcd->subctxt_cnt; i++)
1887 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1888 &rcd->user_event_mask[i]);
1889 }
1890 for (i = 0; !usable(rcd->ppd) && i < 300; i++)
1891 msleep(100);
1892 ret = -ENETDOWN;
1893 }
1894 return ret;
1895 }
1896
1897 /*
1898 * Find all user contexts in use, and set the specified bit in their
1899 * event mask.
1900 * See also find_ctxt() for a similar use, that is specific to send buffers.
1901 */
1902 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
1903 {
1904 struct qib_ctxtdata *rcd;
1905 unsigned ctxt;
1906 int ret = 0;
1907
1908 spin_lock(&ppd->dd->uctxt_lock);
1909 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
1910 ctxt++) {
1911 rcd = ppd->dd->rcd[ctxt];
1912 if (!rcd)
1913 continue;
1914 if (rcd->user_event_mask) {
1915 int i;
1916 /*
1917 * subctxt_cnt is 0 if not shared, so do base
1918 * separately, first, then remaining subctxt, if any
1919 */
1920 set_bit(evtbit, &rcd->user_event_mask[0]);
1921 for (i = 1; i < rcd->subctxt_cnt; i++)
1922 set_bit(evtbit, &rcd->user_event_mask[i]);
1923 }
1924 ret = 1;
1925 break;
1926 }
1927 spin_unlock(&ppd->dd->uctxt_lock);
1928
1929 return ret;
1930 }
1931
1932 /*
1933 * clear the event notifier events for this context.
1934 * For the DISARM_BUFS case, we also take action (this obsoletes
1935 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
1936 * compatibility.
1937 * Other bits don't currently require actions, just atomically clear.
1938 * User process then performs actions appropriate to bit having been
1939 * set, if desired, and checks again in future.
1940 */
1941 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
1942 unsigned long events)
1943 {
1944 int ret = 0, i;
1945
1946 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
1947 if (!test_bit(i, &events))
1948 continue;
1949 if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
1950 (void)qib_disarm_piobufs_ifneeded(rcd);
1951 ret = disarm_req_delay(rcd);
1952 } else
1953 clear_bit(i, &rcd->user_event_mask[subctxt]);
1954 }
1955 return ret;
1956 }
1957
1958 static ssize_t qib_write(struct file *fp, const char __user *data,
1959 size_t count, loff_t *off)
1960 {
1961 const struct qib_cmd __user *ucmd;
1962 struct qib_ctxtdata *rcd;
1963 const void __user *src;
1964 size_t consumed, copy = 0;
1965 struct qib_cmd cmd;
1966 ssize_t ret = 0;
1967 void *dest;
1968
1969 if (count < sizeof(cmd.type)) {
1970 ret = -EINVAL;
1971 goto bail;
1972 }
1973
1974 ucmd = (const struct qib_cmd __user *) data;
1975
1976 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
1977 ret = -EFAULT;
1978 goto bail;
1979 }
1980
1981 consumed = sizeof(cmd.type);
1982
1983 switch (cmd.type) {
1984 case QIB_CMD_ASSIGN_CTXT:
1985 case QIB_CMD_USER_INIT:
1986 copy = sizeof(cmd.cmd.user_info);
1987 dest = &cmd.cmd.user_info;
1988 src = &ucmd->cmd.user_info;
1989 break;
1990
1991 case QIB_CMD_RECV_CTRL:
1992 copy = sizeof(cmd.cmd.recv_ctrl);
1993 dest = &cmd.cmd.recv_ctrl;
1994 src = &ucmd->cmd.recv_ctrl;
1995 break;
1996
1997 case QIB_CMD_CTXT_INFO:
1998 copy = sizeof(cmd.cmd.ctxt_info);
1999 dest = &cmd.cmd.ctxt_info;
2000 src = &ucmd->cmd.ctxt_info;
2001 break;
2002
2003 case QIB_CMD_TID_UPDATE:
2004 case QIB_CMD_TID_FREE:
2005 copy = sizeof(cmd.cmd.tid_info);
2006 dest = &cmd.cmd.tid_info;
2007 src = &ucmd->cmd.tid_info;
2008 break;
2009
2010 case QIB_CMD_SET_PART_KEY:
2011 copy = sizeof(cmd.cmd.part_key);
2012 dest = &cmd.cmd.part_key;
2013 src = &ucmd->cmd.part_key;
2014 break;
2015
2016 case QIB_CMD_DISARM_BUFS:
2017 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
2018 copy = 0;
2019 src = NULL;
2020 dest = NULL;
2021 break;
2022
2023 case QIB_CMD_POLL_TYPE:
2024 copy = sizeof(cmd.cmd.poll_type);
2025 dest = &cmd.cmd.poll_type;
2026 src = &ucmd->cmd.poll_type;
2027 break;
2028
2029 case QIB_CMD_ARMLAUNCH_CTRL:
2030 copy = sizeof(cmd.cmd.armlaunch_ctrl);
2031 dest = &cmd.cmd.armlaunch_ctrl;
2032 src = &ucmd->cmd.armlaunch_ctrl;
2033 break;
2034
2035 case QIB_CMD_SDMA_INFLIGHT:
2036 copy = sizeof(cmd.cmd.sdma_inflight);
2037 dest = &cmd.cmd.sdma_inflight;
2038 src = &ucmd->cmd.sdma_inflight;
2039 break;
2040
2041 case QIB_CMD_SDMA_COMPLETE:
2042 copy = sizeof(cmd.cmd.sdma_complete);
2043 dest = &cmd.cmd.sdma_complete;
2044 src = &ucmd->cmd.sdma_complete;
2045 break;
2046
2047 case QIB_CMD_ACK_EVENT:
2048 copy = sizeof(cmd.cmd.event_mask);
2049 dest = &cmd.cmd.event_mask;
2050 src = &ucmd->cmd.event_mask;
2051 break;
2052
2053 default:
2054 ret = -EINVAL;
2055 goto bail;
2056 }
2057
2058 if (copy) {
2059 if ((count - consumed) < copy) {
2060 ret = -EINVAL;
2061 goto bail;
2062 }
2063 if (copy_from_user(dest, src, copy)) {
2064 ret = -EFAULT;
2065 goto bail;
2066 }
2067 consumed += copy;
2068 }
2069
2070 rcd = ctxt_fp(fp);
2071 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
2072 ret = -EINVAL;
2073 goto bail;
2074 }
2075
2076 switch (cmd.type) {
2077 case QIB_CMD_ASSIGN_CTXT:
2078 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
2079 if (ret)
2080 goto bail;
2081 break;
2082
2083 case QIB_CMD_USER_INIT:
2084 ret = qib_do_user_init(fp, &cmd.cmd.user_info);
2085 if (ret)
2086 goto bail;
2087 ret = qib_get_base_info(fp, (void __user *) (unsigned long)
2088 cmd.cmd.user_info.spu_base_info,
2089 cmd.cmd.user_info.spu_base_info_size);
2090 break;
2091
2092 case QIB_CMD_RECV_CTRL:
2093 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
2094 break;
2095
2096 case QIB_CMD_CTXT_INFO:
2097 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
2098 (unsigned long) cmd.cmd.ctxt_info);
2099 break;
2100
2101 case QIB_CMD_TID_UPDATE:
2102 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
2103 break;
2104
2105 case QIB_CMD_TID_FREE:
2106 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
2107 break;
2108
2109 case QIB_CMD_SET_PART_KEY:
2110 ret = qib_set_part_key(rcd, cmd.cmd.part_key);
2111 break;
2112
2113 case QIB_CMD_DISARM_BUFS:
2114 (void)qib_disarm_piobufs_ifneeded(rcd);
2115 ret = disarm_req_delay(rcd);
2116 break;
2117
2118 case QIB_CMD_PIOAVAILUPD:
2119 qib_force_pio_avail_update(rcd->dd);
2120 break;
2121
2122 case QIB_CMD_POLL_TYPE:
2123 rcd->poll_type = cmd.cmd.poll_type;
2124 break;
2125
2126 case QIB_CMD_ARMLAUNCH_CTRL:
2127 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
2128 break;
2129
2130 case QIB_CMD_SDMA_INFLIGHT:
2131 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
2132 (u32 __user *) (unsigned long)
2133 cmd.cmd.sdma_inflight);
2134 break;
2135
2136 case QIB_CMD_SDMA_COMPLETE:
2137 ret = qib_sdma_get_complete(rcd->ppd,
2138 user_sdma_queue_fp(fp),
2139 (u32 __user *) (unsigned long)
2140 cmd.cmd.sdma_complete);
2141 break;
2142
2143 case QIB_CMD_ACK_EVENT:
2144 ret = qib_user_event_ack(rcd, subctxt_fp(fp),
2145 cmd.cmd.event_mask);
2146 break;
2147 }
2148
2149 if (ret >= 0)
2150 ret = consumed;
2151
2152 bail:
2153 return ret;
2154 }
2155
2156 static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov,
2157 unsigned long dim, loff_t off)
2158 {
2159 struct qib_filedata *fp = iocb->ki_filp->private_data;
2160 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
2161 struct qib_user_sdma_queue *pq = fp->pq;
2162
2163 if (!dim || !pq)
2164 return -EINVAL;
2165
2166 return qib_user_sdma_writev(rcd, pq, iov, dim);
2167 }
2168
2169 static struct class *qib_class;
2170 static dev_t qib_dev;
2171
2172 int qib_cdev_init(int minor, const char *name,
2173 const struct file_operations *fops,
2174 struct cdev **cdevp, struct device **devp)
2175 {
2176 const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
2177 struct cdev *cdev;
2178 struct device *device = NULL;
2179 int ret;
2180
2181 cdev = cdev_alloc();
2182 if (!cdev) {
2183 printk(KERN_ERR QIB_DRV_NAME
2184 ": Could not allocate cdev for minor %d, %s\n",
2185 minor, name);
2186 ret = -ENOMEM;
2187 goto done;
2188 }
2189
2190 cdev->owner = THIS_MODULE;
2191 cdev->ops = fops;
2192 kobject_set_name(&cdev->kobj, name);
2193
2194 ret = cdev_add(cdev, dev, 1);
2195 if (ret < 0) {
2196 printk(KERN_ERR QIB_DRV_NAME
2197 ": Could not add cdev for minor %d, %s (err %d)\n",
2198 minor, name, -ret);
2199 goto err_cdev;
2200 }
2201
2202 device = device_create(qib_class, NULL, dev, NULL, name);
2203 if (!IS_ERR(device))
2204 goto done;
2205 ret = PTR_ERR(device);
2206 device = NULL;
2207 printk(KERN_ERR QIB_DRV_NAME ": Could not create "
2208 "device for minor %d, %s (err %d)\n",
2209 minor, name, -ret);
2210 err_cdev:
2211 cdev_del(cdev);
2212 cdev = NULL;
2213 done:
2214 *cdevp = cdev;
2215 *devp = device;
2216 return ret;
2217 }
2218
2219 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
2220 {
2221 struct device *device = *devp;
2222
2223 if (device) {
2224 device_unregister(device);
2225 *devp = NULL;
2226 }
2227
2228 if (*cdevp) {
2229 cdev_del(*cdevp);
2230 *cdevp = NULL;
2231 }
2232 }
2233
2234 static struct cdev *wildcard_cdev;
2235 static struct device *wildcard_device;
2236
2237 int __init qib_dev_init(void)
2238 {
2239 int ret;
2240
2241 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
2242 if (ret < 0) {
2243 printk(KERN_ERR QIB_DRV_NAME ": Could not allocate "
2244 "chrdev region (err %d)\n", -ret);
2245 goto done;
2246 }
2247
2248 qib_class = class_create(THIS_MODULE, "ipath");
2249 if (IS_ERR(qib_class)) {
2250 ret = PTR_ERR(qib_class);
2251 printk(KERN_ERR QIB_DRV_NAME ": Could not create "
2252 "device class (err %d)\n", -ret);
2253 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2254 }
2255
2256 done:
2257 return ret;
2258 }
2259
2260 void qib_dev_cleanup(void)
2261 {
2262 if (qib_class) {
2263 class_destroy(qib_class);
2264 qib_class = NULL;
2265 }
2266
2267 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2268 }
2269
2270 static atomic_t user_count = ATOMIC_INIT(0);
2271
2272 static void qib_user_remove(struct qib_devdata *dd)
2273 {
2274 if (atomic_dec_return(&user_count) == 0)
2275 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
2276
2277 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
2278 }
2279
2280 static int qib_user_add(struct qib_devdata *dd)
2281 {
2282 char name[10];
2283 int ret;
2284
2285 if (atomic_inc_return(&user_count) == 1) {
2286 ret = qib_cdev_init(0, "ipath", &qib_file_ops,
2287 &wildcard_cdev, &wildcard_device);
2288 if (ret)
2289 goto done;
2290 }
2291
2292 snprintf(name, sizeof(name), "ipath%d", dd->unit);
2293 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
2294 &dd->user_cdev, &dd->user_device);
2295 if (ret)
2296 qib_user_remove(dd);
2297 done:
2298 return ret;
2299 }
2300
2301 /*
2302 * Create per-unit files in /dev
2303 */
2304 int qib_device_create(struct qib_devdata *dd)
2305 {
2306 int r, ret;
2307
2308 r = qib_user_add(dd);
2309 ret = qib_diag_add(dd);
2310 if (r && !ret)
2311 ret = r;
2312 return ret;
2313 }
2314
2315 /*
2316 * Remove per-unit files in /dev
2317 * void, core kernel returns no errors for this stuff
2318 */
2319 void qib_device_remove(struct qib_devdata *dd)
2320 {
2321 qib_user_remove(dd);
2322 qib_diag_remove(dd);
2323 }