97e5c3dd044d05aacae220ab5b67d02c5fe2bce6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ieee1394 / eth1394.c
1 /*
2 * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3 *
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7 *
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26 * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27 * will ultimately support that method, but currently falls short in
28 * several areas.
29 *
30 * TODO:
31 * RFC 2734 related:
32 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 *
34 * Non-RFC 2734 related:
35 * - Handle fragmented skb's coming from the networking layer.
36 * - Move generic GASP reception to core 1394 code
37 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38 * - Stability improvements
39 * - Performance enhancements
40 * - Consider garbage collecting old partial datagrams after X amount of time
41 */
42
43
44 #include <linux/module.h>
45
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
53
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/unaligned.h>
68 #include <net/arp.h>
69
70 #include "config_roms.h"
71 #include "csr1212.h"
72 #include "eth1394.h"
73 #include "highlevel.h"
74 #include "ieee1394.h"
75 #include "ieee1394_core.h"
76 #include "ieee1394_hotplug.h"
77 #include "ieee1394_transactions.h"
78 #include "ieee1394_types.h"
79 #include "iso.h"
80 #include "nodemgr.h"
81
82 #define ETH1394_PRINT_G(level, fmt, args...) \
83 printk(level "%s: " fmt, driver_name, ## args)
84
85 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
86 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
87
88 #define DEBUG(fmt, args...) \
89 printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
90 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
91
92 struct fragment_info {
93 struct list_head list;
94 int offset;
95 int len;
96 };
97
98 struct partial_datagram {
99 struct list_head list;
100 u16 dgl;
101 u16 dg_size;
102 u16 ether_type;
103 struct sk_buff *skb;
104 char *pbuf;
105 struct list_head frag_info;
106 };
107
108 struct pdg_list {
109 struct list_head list; /* partial datagram list per node */
110 unsigned int sz; /* partial datagram list size per node */
111 spinlock_t lock; /* partial datagram lock */
112 };
113
114 struct eth1394_host_info {
115 struct hpsb_host *host;
116 struct net_device *dev;
117 };
118
119 struct eth1394_node_ref {
120 struct unit_directory *ud;
121 struct list_head list;
122 };
123
124 struct eth1394_node_info {
125 u16 maxpayload; /* Max payload */
126 u8 sspd; /* Max speed */
127 u64 fifo; /* FIFO address */
128 struct pdg_list pdg; /* partial RX datagram lists */
129 int dgl; /* Outgoing datagram label */
130 };
131
132 /* Our ieee1394 highlevel driver */
133 #define ETH1394_DRIVER_NAME "eth1394"
134 static const char driver_name[] = ETH1394_DRIVER_NAME;
135
136 static struct kmem_cache *packet_task_cache;
137
138 static struct hpsb_highlevel eth1394_highlevel;
139
140 /* Use common.lf to determine header len */
141 static const int hdr_type_len[] = {
142 sizeof (struct eth1394_uf_hdr),
143 sizeof (struct eth1394_ff_hdr),
144 sizeof (struct eth1394_sf_hdr),
145 sizeof (struct eth1394_sf_hdr)
146 };
147
148 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
149 #define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
150
151 /* For now, this needs to be 1500, so that XP works with us */
152 #define ETH1394_DATA_LEN ETH_DATA_LEN
153
154 static const u16 eth1394_speedto_maxpayload[] = {
155 /* S100, S200, S400, S800, S1600, S3200 */
156 512, 1024, 2048, 4096, 4096, 4096
157 };
158
159 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
160 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
161 MODULE_LICENSE("GPL");
162
163 /* The max_partial_datagrams parameter is the maximum number of fragmented
164 * datagrams per node that eth1394 will keep in memory. Providing an upper
165 * bound allows us to limit the amount of memory that partial datagrams
166 * consume in the event that some partial datagrams are never completed.
167 */
168 static int max_partial_datagrams = 25;
169 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
170 MODULE_PARM_DESC(max_partial_datagrams,
171 "Maximum number of partially received fragmented datagrams "
172 "(default = 25).");
173
174
175 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
176 unsigned short type, void *daddr, void *saddr,
177 unsigned len);
178 static int ether1394_rebuild_header(struct sk_buff *skb);
179 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
180 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
181 static void ether1394_header_cache_update(struct hh_cache *hh,
182 struct net_device *dev,
183 unsigned char * haddr);
184 static int ether1394_mac_addr(struct net_device *dev, void *p);
185
186 static void purge_partial_datagram(struct list_head *old);
187 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
188 static void ether1394_iso(struct hpsb_iso *iso);
189
190 static struct ethtool_ops ethtool_ops;
191
192 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
193 quadlet_t *data, u64 addr, size_t len, u16 flags);
194 static void ether1394_add_host (struct hpsb_host *host);
195 static void ether1394_remove_host (struct hpsb_host *host);
196 static void ether1394_host_reset (struct hpsb_host *host);
197
198 /* Function for incoming 1394 packets */
199 static struct hpsb_address_ops addr_ops = {
200 .write = ether1394_write,
201 };
202
203 /* Ieee1394 highlevel driver functions */
204 static struct hpsb_highlevel eth1394_highlevel = {
205 .name = driver_name,
206 .add_host = ether1394_add_host,
207 .remove_host = ether1394_remove_host,
208 .host_reset = ether1394_host_reset,
209 };
210
211
212 /* This is called after an "ifup" */
213 static int ether1394_open (struct net_device *dev)
214 {
215 struct eth1394_priv *priv = netdev_priv(dev);
216 int ret = 0;
217
218 /* Something bad happened, don't even try */
219 if (priv->bc_state == ETHER1394_BC_ERROR) {
220 /* we'll try again */
221 priv->iso = hpsb_iso_recv_init(priv->host,
222 ETHER1394_ISO_BUF_SIZE,
223 ETHER1394_GASP_BUFFERS,
224 priv->broadcast_channel,
225 HPSB_ISO_DMA_PACKET_PER_BUFFER,
226 1, ether1394_iso);
227 if (priv->iso == NULL) {
228 ETH1394_PRINT(KERN_ERR, dev->name,
229 "Could not allocate isochronous receive "
230 "context for the broadcast channel\n");
231 priv->bc_state = ETHER1394_BC_ERROR;
232 ret = -EAGAIN;
233 } else {
234 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
235 priv->bc_state = ETHER1394_BC_STOPPED;
236 else
237 priv->bc_state = ETHER1394_BC_RUNNING;
238 }
239 }
240
241 if (ret)
242 return ret;
243
244 netif_start_queue (dev);
245 return 0;
246 }
247
248 /* This is called after an "ifdown" */
249 static int ether1394_stop (struct net_device *dev)
250 {
251 netif_stop_queue (dev);
252 return 0;
253 }
254
255 /* Return statistics to the caller */
256 static struct net_device_stats *ether1394_stats (struct net_device *dev)
257 {
258 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
259 }
260
261 /* What to do if we timeout. I think a host reset is probably in order, so
262 * that's what we do. Should we increment the stat counters too? */
263 static void ether1394_tx_timeout (struct net_device *dev)
264 {
265 ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
266 ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
267
268 highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
269
270 netif_wake_queue (dev);
271 }
272
273 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
274 {
275 struct eth1394_priv *priv = netdev_priv(dev);
276
277 if ((new_mtu < 68) ||
278 (new_mtu > min(ETH1394_DATA_LEN,
279 (int)((1 << (priv->host->csr.max_rec + 1)) -
280 (sizeof(union eth1394_hdr) +
281 ETHER1394_GASP_OVERHEAD)))))
282 return -EINVAL;
283 dev->mtu = new_mtu;
284 return 0;
285 }
286
287 static void purge_partial_datagram(struct list_head *old)
288 {
289 struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
290 struct list_head *lh, *n;
291
292 list_for_each_safe(lh, n, &pd->frag_info) {
293 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
294 list_del(lh);
295 kfree(fi);
296 }
297 list_del(old);
298 kfree_skb(pd->skb);
299 kfree(pd);
300 }
301
302 /******************************************
303 * 1394 bus activity functions
304 ******************************************/
305
306 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
307 struct unit_directory *ud)
308 {
309 struct eth1394_node_ref *node;
310
311 list_for_each_entry(node, inl, list)
312 if (node->ud == ud)
313 return node;
314
315 return NULL;
316 }
317
318 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
319 u64 guid)
320 {
321 struct eth1394_node_ref *node;
322
323 list_for_each_entry(node, inl, list)
324 if (node->ud->ne->guid == guid)
325 return node;
326
327 return NULL;
328 }
329
330 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
331 nodeid_t nodeid)
332 {
333 struct eth1394_node_ref *node;
334 list_for_each_entry(node, inl, list) {
335 if (node->ud->ne->nodeid == nodeid)
336 return node;
337 }
338
339 return NULL;
340 }
341
342 static int eth1394_probe(struct device *dev)
343 {
344 struct unit_directory *ud;
345 struct eth1394_host_info *hi;
346 struct eth1394_priv *priv;
347 struct eth1394_node_ref *new_node;
348 struct eth1394_node_info *node_info;
349
350 ud = container_of(dev, struct unit_directory, device);
351
352 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
353 if (!hi)
354 return -ENOENT;
355
356 new_node = kmalloc(sizeof(*new_node),
357 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
358 if (!new_node)
359 return -ENOMEM;
360
361 node_info = kmalloc(sizeof(*node_info),
362 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
363 if (!node_info) {
364 kfree(new_node);
365 return -ENOMEM;
366 }
367
368 spin_lock_init(&node_info->pdg.lock);
369 INIT_LIST_HEAD(&node_info->pdg.list);
370 node_info->pdg.sz = 0;
371 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
372
373 ud->device.driver_data = node_info;
374 new_node->ud = ud;
375
376 priv = netdev_priv(hi->dev);
377 list_add_tail(&new_node->list, &priv->ip_node_list);
378
379 return 0;
380 }
381
382 static int eth1394_remove(struct device *dev)
383 {
384 struct unit_directory *ud;
385 struct eth1394_host_info *hi;
386 struct eth1394_priv *priv;
387 struct eth1394_node_ref *old_node;
388 struct eth1394_node_info *node_info;
389 struct list_head *lh, *n;
390 unsigned long flags;
391
392 ud = container_of(dev, struct unit_directory, device);
393 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
394 if (!hi)
395 return -ENOENT;
396
397 priv = netdev_priv(hi->dev);
398
399 old_node = eth1394_find_node(&priv->ip_node_list, ud);
400
401 if (old_node) {
402 list_del(&old_node->list);
403 kfree(old_node);
404
405 node_info = (struct eth1394_node_info*)ud->device.driver_data;
406
407 spin_lock_irqsave(&node_info->pdg.lock, flags);
408 /* The partial datagram list should be empty, but we'll just
409 * make sure anyway... */
410 list_for_each_safe(lh, n, &node_info->pdg.list) {
411 purge_partial_datagram(lh);
412 }
413 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
414
415 kfree(node_info);
416 ud->device.driver_data = NULL;
417 }
418 return 0;
419 }
420
421 static int eth1394_update(struct unit_directory *ud)
422 {
423 struct eth1394_host_info *hi;
424 struct eth1394_priv *priv;
425 struct eth1394_node_ref *node;
426 struct eth1394_node_info *node_info;
427
428 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
429 if (!hi)
430 return -ENOENT;
431
432 priv = netdev_priv(hi->dev);
433
434 node = eth1394_find_node(&priv->ip_node_list, ud);
435
436 if (!node) {
437 node = kmalloc(sizeof(*node),
438 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
439 if (!node)
440 return -ENOMEM;
441
442 node_info = kmalloc(sizeof(*node_info),
443 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
444 if (!node_info) {
445 kfree(node);
446 return -ENOMEM;
447 }
448
449 spin_lock_init(&node_info->pdg.lock);
450 INIT_LIST_HEAD(&node_info->pdg.list);
451 node_info->pdg.sz = 0;
452
453 ud->device.driver_data = node_info;
454 node->ud = ud;
455
456 priv = netdev_priv(hi->dev);
457 list_add_tail(&node->list, &priv->ip_node_list);
458 }
459
460 return 0;
461 }
462
463
464 static struct ieee1394_device_id eth1394_id_table[] = {
465 {
466 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
467 IEEE1394_MATCH_VERSION),
468 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
469 .version = ETHER1394_GASP_VERSION,
470 },
471 {}
472 };
473
474 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
475
476 static struct hpsb_protocol_driver eth1394_proto_driver = {
477 .name = ETH1394_DRIVER_NAME,
478 .id_table = eth1394_id_table,
479 .update = eth1394_update,
480 .driver = {
481 .probe = eth1394_probe,
482 .remove = eth1394_remove,
483 },
484 };
485
486
487 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
488 {
489 unsigned long flags;
490 int i;
491 struct eth1394_priv *priv = netdev_priv(dev);
492 struct hpsb_host *host = priv->host;
493 u64 guid = get_unaligned((u64*)&(host->csr.rom->bus_info_data[3]));
494 u16 maxpayload = 1 << (host->csr.max_rec + 1);
495 int max_speed = IEEE1394_SPEED_MAX;
496
497 spin_lock_irqsave (&priv->lock, flags);
498
499 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
500 priv->bc_maxpayload = 512;
501
502 /* Determine speed limit */
503 for (i = 0; i < host->node_count; i++)
504 if (max_speed > host->speed[i])
505 max_speed = host->speed[i];
506 priv->bc_sspd = max_speed;
507
508 /* We'll use our maxpayload as the default mtu */
509 if (set_mtu) {
510 dev->mtu = min(ETH1394_DATA_LEN,
511 (int)(maxpayload -
512 (sizeof(union eth1394_hdr) +
513 ETHER1394_GASP_OVERHEAD)));
514
515 /* Set our hardware address while we're at it */
516 memcpy(dev->dev_addr, &guid, sizeof(u64));
517 memset(dev->broadcast, 0xff, sizeof(u64));
518 }
519
520 spin_unlock_irqrestore (&priv->lock, flags);
521 }
522
523 /* This function is called right before register_netdev */
524 static void ether1394_init_dev (struct net_device *dev)
525 {
526 /* Our functions */
527 dev->open = ether1394_open;
528 dev->stop = ether1394_stop;
529 dev->hard_start_xmit = ether1394_tx;
530 dev->get_stats = ether1394_stats;
531 dev->tx_timeout = ether1394_tx_timeout;
532 dev->change_mtu = ether1394_change_mtu;
533
534 dev->hard_header = ether1394_header;
535 dev->rebuild_header = ether1394_rebuild_header;
536 dev->hard_header_cache = ether1394_header_cache;
537 dev->header_cache_update= ether1394_header_cache_update;
538 dev->hard_header_parse = ether1394_header_parse;
539 dev->set_mac_address = ether1394_mac_addr;
540 SET_ETHTOOL_OPS(dev, &ethtool_ops);
541
542 /* Some constants */
543 dev->watchdog_timeo = ETHER1394_TIMEOUT;
544 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
545 dev->features = NETIF_F_HIGHDMA;
546 dev->addr_len = ETH1394_ALEN;
547 dev->hard_header_len = ETH1394_HLEN;
548 dev->type = ARPHRD_IEEE1394;
549
550 ether1394_reset_priv (dev, 1);
551 }
552
553 /*
554 * This function is called every time a card is found. It is generally called
555 * when the module is installed. This is where we add all of our ethernet
556 * devices. One for each host.
557 */
558 static void ether1394_add_host (struct hpsb_host *host)
559 {
560 struct eth1394_host_info *hi = NULL;
561 struct net_device *dev = NULL;
562 struct eth1394_priv *priv;
563 u64 fifo_addr;
564
565 if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
566 return;
567
568 fifo_addr = hpsb_allocate_and_register_addrspace(
569 &eth1394_highlevel, host, &addr_ops,
570 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
571 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
572 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
573 goto out;
574
575 /* We should really have our own alloc_hpsbdev() function in
576 * net_init.c instead of calling the one for ethernet then hijacking
577 * it for ourselves. That way we'd be a real networking device. */
578 dev = alloc_etherdev(sizeof (struct eth1394_priv));
579
580 if (dev == NULL) {
581 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
582 "etherdevice for IEEE 1394 device %s-%d\n",
583 host->driver->name, host->id);
584 goto out;
585 }
586
587 SET_MODULE_OWNER(dev);
588 SET_NETDEV_DEV(dev, &host->device);
589
590 priv = netdev_priv(dev);
591
592 INIT_LIST_HEAD(&priv->ip_node_list);
593
594 spin_lock_init(&priv->lock);
595 priv->host = host;
596 priv->local_fifo = fifo_addr;
597
598 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
599
600 if (hi == NULL) {
601 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
602 "hostinfo for IEEE 1394 device %s-%d\n",
603 host->driver->name, host->id);
604 goto out;
605 }
606
607 ether1394_init_dev(dev);
608
609 if (register_netdev (dev)) {
610 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
611 goto out;
612 }
613
614 ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
615 host->id);
616
617 hi->host = host;
618 hi->dev = dev;
619
620 /* Ignore validity in hopes that it will be set in the future. It'll
621 * be checked when the eth device is opened. */
622 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
623
624 priv->iso = hpsb_iso_recv_init(host,
625 ETHER1394_ISO_BUF_SIZE,
626 ETHER1394_GASP_BUFFERS,
627 priv->broadcast_channel,
628 HPSB_ISO_DMA_PACKET_PER_BUFFER,
629 1, ether1394_iso);
630 if (priv->iso == NULL) {
631 ETH1394_PRINT(KERN_ERR, dev->name,
632 "Could not allocate isochronous receive context "
633 "for the broadcast channel\n");
634 priv->bc_state = ETHER1394_BC_ERROR;
635 } else {
636 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
637 priv->bc_state = ETHER1394_BC_STOPPED;
638 else
639 priv->bc_state = ETHER1394_BC_RUNNING;
640 }
641
642 return;
643
644 out:
645 if (dev != NULL)
646 free_netdev(dev);
647 if (hi)
648 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
649
650 return;
651 }
652
653 /* Remove a card from our list */
654 static void ether1394_remove_host (struct hpsb_host *host)
655 {
656 struct eth1394_host_info *hi;
657
658 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
659 if (hi != NULL) {
660 struct eth1394_priv *priv = netdev_priv(hi->dev);
661
662 hpsb_unregister_addrspace(&eth1394_highlevel, host,
663 priv->local_fifo);
664
665 if (priv->iso != NULL)
666 hpsb_iso_shutdown(priv->iso);
667
668 if (hi->dev) {
669 unregister_netdev (hi->dev);
670 free_netdev(hi->dev);
671 }
672 }
673
674 return;
675 }
676
677 /* A reset has just arisen */
678 static void ether1394_host_reset (struct hpsb_host *host)
679 {
680 struct eth1394_host_info *hi;
681 struct eth1394_priv *priv;
682 struct net_device *dev;
683 struct list_head *lh, *n;
684 struct eth1394_node_ref *node;
685 struct eth1394_node_info *node_info;
686 unsigned long flags;
687
688 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
689
690 /* This can happen for hosts that we don't use */
691 if (hi == NULL)
692 return;
693
694 dev = hi->dev;
695 priv = (struct eth1394_priv *)netdev_priv(dev);
696
697 /* Reset our private host data, but not our mtu */
698 netif_stop_queue (dev);
699 ether1394_reset_priv (dev, 0);
700
701 list_for_each_entry(node, &priv->ip_node_list, list) {
702 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
703
704 spin_lock_irqsave(&node_info->pdg.lock, flags);
705
706 list_for_each_safe(lh, n, &node_info->pdg.list) {
707 purge_partial_datagram(lh);
708 }
709
710 INIT_LIST_HEAD(&(node_info->pdg.list));
711 node_info->pdg.sz = 0;
712
713 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
714 }
715
716 netif_wake_queue (dev);
717 }
718
719 /******************************************
720 * HW Header net device functions
721 ******************************************/
722 /* These functions have been adapted from net/ethernet/eth.c */
723
724
725 /* Create a fake MAC header for an arbitrary protocol layer.
726 * saddr=NULL means use device source address
727 * daddr=NULL means leave destination address (eg unresolved arp). */
728 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
729 unsigned short type, void *daddr, void *saddr,
730 unsigned len)
731 {
732 struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
733
734 eth->h_proto = htons(type);
735
736 if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
737 memset(eth->h_dest, 0, dev->addr_len);
738 return(dev->hard_header_len);
739 }
740
741 if (daddr) {
742 memcpy(eth->h_dest,daddr,dev->addr_len);
743 return dev->hard_header_len;
744 }
745
746 return -dev->hard_header_len;
747
748 }
749
750
751 /* Rebuild the faked MAC header. This is called after an ARP
752 * (or in future other address resolution) has completed on this
753 * sk_buff. We now let ARP fill in the other fields.
754 *
755 * This routine CANNOT use cached dst->neigh!
756 * Really, it is used only when dst->neigh is wrong.
757 */
758 static int ether1394_rebuild_header(struct sk_buff *skb)
759 {
760 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
761 struct net_device *dev = skb->dev;
762
763 switch (eth->h_proto) {
764
765 #ifdef CONFIG_INET
766 case __constant_htons(ETH_P_IP):
767 return arp_find((unsigned char*)&eth->h_dest, skb);
768 #endif
769 default:
770 ETH1394_PRINT(KERN_DEBUG, dev->name,
771 "unable to resolve type %04x addresses.\n",
772 ntohs(eth->h_proto));
773 break;
774 }
775
776 return 0;
777 }
778
779 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
780 {
781 struct net_device *dev = skb->dev;
782 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
783 return ETH1394_ALEN;
784 }
785
786
787 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
788 {
789 unsigned short type = hh->hh_type;
790 struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
791 (16 - ETH1394_HLEN));
792 struct net_device *dev = neigh->dev;
793
794 if (type == htons(ETH_P_802_3))
795 return -1;
796
797 eth->h_proto = type;
798 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
799
800 hh->hh_len = ETH1394_HLEN;
801 return 0;
802 }
803
804 /* Called by Address Resolution module to notify changes in address. */
805 static void ether1394_header_cache_update(struct hh_cache *hh,
806 struct net_device *dev,
807 unsigned char * haddr)
808 {
809 memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
810 }
811
812 static int ether1394_mac_addr(struct net_device *dev, void *p)
813 {
814 if (netif_running(dev))
815 return -EBUSY;
816
817 /* Not going to allow setting the MAC address, we really need to use
818 * the real one supplied by the hardware */
819 return -EINVAL;
820 }
821
822
823
824 /******************************************
825 * Datagram reception code
826 ******************************************/
827
828 /* Copied from net/ethernet/eth.c */
829 static inline u16 ether1394_type_trans(struct sk_buff *skb,
830 struct net_device *dev)
831 {
832 struct eth1394hdr *eth;
833 unsigned char *rawp;
834
835 skb->mac.raw = skb->data;
836 skb_pull (skb, ETH1394_HLEN);
837 eth = eth1394_hdr(skb);
838
839 if (*eth->h_dest & 1) {
840 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
841 skb->pkt_type = PACKET_BROADCAST;
842 #if 0
843 else
844 skb->pkt_type = PACKET_MULTICAST;
845 #endif
846 } else {
847 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
848 skb->pkt_type = PACKET_OTHERHOST;
849 }
850
851 if (ntohs (eth->h_proto) >= 1536)
852 return eth->h_proto;
853
854 rawp = skb->data;
855
856 if (*(unsigned short *)rawp == 0xFFFF)
857 return htons (ETH_P_802_3);
858
859 return htons (ETH_P_802_2);
860 }
861
862 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
863 * We also perform ARP translation here, if need be. */
864 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
865 struct net_device *dev,
866 nodeid_t srcid, nodeid_t destid,
867 u16 ether_type)
868 {
869 struct eth1394_priv *priv = netdev_priv(dev);
870 u64 dest_hw;
871 unsigned short ret = 0;
872
873 /* Setup our hw addresses. We use these to build the
874 * ethernet header. */
875 if (destid == (LOCAL_BUS | ALL_NODES))
876 dest_hw = ~0ULL; /* broadcast */
877 else
878 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
879 priv->host->csr.guid_lo);
880
881 /* If this is an ARP packet, convert it. First, we want to make
882 * use of some of the fields, since they tell us a little bit
883 * about the sending machine. */
884 if (ether_type == htons(ETH_P_ARP)) {
885 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
886 struct arphdr *arp = (struct arphdr *)skb->data;
887 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
888 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
889 ntohl(arp1394->fifo_lo);
890 u8 max_rec = min(priv->host->csr.max_rec,
891 (u8)(arp1394->max_rec));
892 int sspd = arp1394->sspd;
893 u16 maxpayload;
894 struct eth1394_node_ref *node;
895 struct eth1394_node_info *node_info;
896 __be64 guid;
897
898 /* Sanity check. MacOSX seems to be sending us 131 in this
899 * field (atleast on my Panther G5). Not sure why. */
900 if (sspd > 5 || sspd < 0)
901 sspd = 0;
902
903 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
904
905 guid = get_unaligned(&arp1394->s_uniq_id);
906 node = eth1394_find_node_guid(&priv->ip_node_list,
907 be64_to_cpu(guid));
908 if (!node) {
909 return 0;
910 }
911
912 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
913
914 /* Update our speed/payload/fifo_offset table */
915 node_info->maxpayload = maxpayload;
916 node_info->sspd = sspd;
917 node_info->fifo = fifo_addr;
918
919 /* Now that we're done with the 1394 specific stuff, we'll
920 * need to alter some of the data. Believe it or not, all
921 * that needs to be done is sender_IP_address needs to be
922 * moved, the destination hardware address get stuffed
923 * in and the hardware address length set to 8.
924 *
925 * IMPORTANT: The code below overwrites 1394 specific data
926 * needed above so keep the munging of the data for the
927 * higher level IP stack last. */
928
929 arp->ar_hln = 8;
930 arp_ptr += arp->ar_hln; /* skip over sender unique id */
931 *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
932 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
933
934 if (arp->ar_op == htons(ARPOP_REQUEST))
935 memset(arp_ptr, 0, sizeof(u64));
936 else
937 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
938 }
939
940 /* Now add the ethernet header. */
941 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
942 skb->len) >= 0)
943 ret = ether1394_type_trans(skb, dev);
944
945 return ret;
946 }
947
948 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
949 {
950 struct fragment_info *fi;
951
952 list_for_each_entry(fi, frag_list, list) {
953 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
954 ((offset + len - 1) < fi->offset)))
955 return 1;
956 }
957 return 0;
958 }
959
960 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
961 {
962 struct partial_datagram *pd;
963
964 list_for_each_entry(pd, pdgl, list) {
965 if (pd->dgl == dgl)
966 return &pd->list;
967 }
968 return NULL;
969 }
970
971 /* Assumes that new fragment does not overlap any existing fragments */
972 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
973 {
974 struct list_head *lh;
975 struct fragment_info *fi, *fi2, *new;
976
977 list_for_each(lh, frag_info) {
978 fi = list_entry(lh, struct fragment_info, list);
979 if ((fi->offset + fi->len) == offset) {
980 /* The new fragment can be tacked on to the end */
981 fi->len += len;
982 /* Did the new fragment plug a hole? */
983 fi2 = list_entry(lh->next, struct fragment_info, list);
984 if ((fi->offset + fi->len) == fi2->offset) {
985 /* glue fragments together */
986 fi->len += fi2->len;
987 list_del(lh->next);
988 kfree(fi2);
989 }
990 return 0;
991 } else if ((offset + len) == fi->offset) {
992 /* The new fragment can be tacked on to the beginning */
993 fi->offset = offset;
994 fi->len += len;
995 /* Did the new fragment plug a hole? */
996 fi2 = list_entry(lh->prev, struct fragment_info, list);
997 if ((fi2->offset + fi2->len) == fi->offset) {
998 /* glue fragments together */
999 fi2->len += fi->len;
1000 list_del(lh);
1001 kfree(fi);
1002 }
1003 return 0;
1004 } else if (offset > (fi->offset + fi->len)) {
1005 break;
1006 } else if ((offset + len) < fi->offset) {
1007 lh = lh->prev;
1008 break;
1009 }
1010 }
1011
1012 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1013 if (!new)
1014 return -ENOMEM;
1015
1016 new->offset = offset;
1017 new->len = len;
1018
1019 list_add(&new->list, lh);
1020
1021 return 0;
1022 }
1023
1024 static inline int new_partial_datagram(struct net_device *dev,
1025 struct list_head *pdgl, int dgl,
1026 int dg_size, char *frag_buf,
1027 int frag_off, int frag_len)
1028 {
1029 struct partial_datagram *new;
1030
1031 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1032 if (!new)
1033 return -ENOMEM;
1034
1035 INIT_LIST_HEAD(&new->frag_info);
1036
1037 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1038 kfree(new);
1039 return -ENOMEM;
1040 }
1041
1042 new->dgl = dgl;
1043 new->dg_size = dg_size;
1044
1045 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1046 if (!new->skb) {
1047 struct fragment_info *fi = list_entry(new->frag_info.next,
1048 struct fragment_info,
1049 list);
1050 kfree(fi);
1051 kfree(new);
1052 return -ENOMEM;
1053 }
1054
1055 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1056 new->pbuf = skb_put(new->skb, dg_size);
1057 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1058
1059 list_add(&new->list, pdgl);
1060
1061 return 0;
1062 }
1063
1064 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1065 char *frag_buf, int frag_off, int frag_len)
1066 {
1067 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1068
1069 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1070 return -ENOMEM;
1071 }
1072
1073 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1074
1075 /* Move list entry to beginnig of list so that oldest partial
1076 * datagrams percolate to the end of the list */
1077 list_move(lh, pdgl);
1078
1079 return 0;
1080 }
1081
1082 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1083 {
1084 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1085 struct fragment_info *fi = list_entry(pd->frag_info.next,
1086 struct fragment_info, list);
1087
1088 return (fi->len == dg_size);
1089 }
1090
1091 /* Packet reception. We convert the IP1394 encapsulation header to an
1092 * ethernet header, and fill it with some of our other fields. This is
1093 * an incoming packet from the 1394 bus. */
1094 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1095 char *buf, int len)
1096 {
1097 struct sk_buff *skb;
1098 unsigned long flags;
1099 struct eth1394_priv *priv = netdev_priv(dev);
1100 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1101 u16 ether_type = 0; /* initialized to clear warning */
1102 int hdr_len;
1103 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1104 struct eth1394_node_info *node_info;
1105
1106 if (!ud) {
1107 struct eth1394_node_ref *node;
1108 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1109 if (!node) {
1110 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1111 "lookup failure: " NODE_BUS_FMT,
1112 NODE_BUS_ARGS(priv->host, srcid));
1113 priv->stats.rx_dropped++;
1114 return -1;
1115 }
1116 ud = node->ud;
1117
1118 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1119 }
1120
1121 node_info = (struct eth1394_node_info*)ud->device.driver_data;
1122
1123 /* First, did we receive a fragmented or unfragmented datagram? */
1124 hdr->words.word1 = ntohs(hdr->words.word1);
1125
1126 hdr_len = hdr_type_len[hdr->common.lf];
1127
1128 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1129 /* An unfragmented datagram has been received by the ieee1394
1130 * bus. Build an skbuff around it so we can pass it to the
1131 * high level network layer. */
1132
1133 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1134 if (!skb) {
1135 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1136 priv->stats.rx_dropped++;
1137 return -1;
1138 }
1139 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1140 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1141 ether_type = hdr->uf.ether_type;
1142 } else {
1143 /* A datagram fragment has been received, now the fun begins. */
1144
1145 struct list_head *pdgl, *lh;
1146 struct partial_datagram *pd;
1147 int fg_off;
1148 int fg_len = len - hdr_len;
1149 int dg_size;
1150 int dgl;
1151 int retval;
1152 struct pdg_list *pdg = &(node_info->pdg);
1153
1154 hdr->words.word3 = ntohs(hdr->words.word3);
1155 /* The 4th header word is reserved so no need to do ntohs() */
1156
1157 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1158 ether_type = hdr->ff.ether_type;
1159 dgl = hdr->ff.dgl;
1160 dg_size = hdr->ff.dg_size + 1;
1161 fg_off = 0;
1162 } else {
1163 hdr->words.word2 = ntohs(hdr->words.word2);
1164 dgl = hdr->sf.dgl;
1165 dg_size = hdr->sf.dg_size + 1;
1166 fg_off = hdr->sf.fg_off;
1167 }
1168 spin_lock_irqsave(&pdg->lock, flags);
1169
1170 pdgl = &(pdg->list);
1171 lh = find_partial_datagram(pdgl, dgl);
1172
1173 if (lh == NULL) {
1174 while (pdg->sz >= max_partial_datagrams) {
1175 /* remove the oldest */
1176 purge_partial_datagram(pdgl->prev);
1177 pdg->sz--;
1178 }
1179
1180 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1181 buf + hdr_len, fg_off,
1182 fg_len);
1183 if (retval < 0) {
1184 spin_unlock_irqrestore(&pdg->lock, flags);
1185 goto bad_proto;
1186 }
1187 pdg->sz++;
1188 lh = find_partial_datagram(pdgl, dgl);
1189 } else {
1190 struct partial_datagram *pd;
1191
1192 pd = list_entry(lh, struct partial_datagram, list);
1193
1194 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1195 /* Overlapping fragments, obliterate old
1196 * datagram and start new one. */
1197 purge_partial_datagram(lh);
1198 retval = new_partial_datagram(dev, pdgl, dgl,
1199 dg_size,
1200 buf + hdr_len,
1201 fg_off, fg_len);
1202 if (retval < 0) {
1203 pdg->sz--;
1204 spin_unlock_irqrestore(&pdg->lock, flags);
1205 goto bad_proto;
1206 }
1207 } else {
1208 retval = update_partial_datagram(pdgl, lh,
1209 buf + hdr_len,
1210 fg_off, fg_len);
1211 if (retval < 0) {
1212 /* Couldn't save off fragment anyway
1213 * so might as well obliterate the
1214 * datagram now. */
1215 purge_partial_datagram(lh);
1216 pdg->sz--;
1217 spin_unlock_irqrestore(&pdg->lock, flags);
1218 goto bad_proto;
1219 }
1220 } /* fragment overlap */
1221 } /* new datagram or add to existing one */
1222
1223 pd = list_entry(lh, struct partial_datagram, list);
1224
1225 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1226 pd->ether_type = ether_type;
1227 }
1228
1229 if (is_datagram_complete(lh, dg_size)) {
1230 ether_type = pd->ether_type;
1231 pdg->sz--;
1232 skb = skb_get(pd->skb);
1233 purge_partial_datagram(lh);
1234 spin_unlock_irqrestore(&pdg->lock, flags);
1235 } else {
1236 /* Datagram is not complete, we're done for the
1237 * moment. */
1238 spin_unlock_irqrestore(&pdg->lock, flags);
1239 return 0;
1240 }
1241 } /* unframgented datagram or fragmented one */
1242
1243 /* Write metadata, and then pass to the receive level */
1244 skb->dev = dev;
1245 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1246
1247 /* Parse the encapsulation header. This actually does the job of
1248 * converting to an ethernet frame header, aswell as arp
1249 * conversion if needed. ARP conversion is easier in this
1250 * direction, since we are using ethernet as our backend. */
1251 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1252 ether_type);
1253
1254
1255 spin_lock_irqsave(&priv->lock, flags);
1256 if (!skb->protocol) {
1257 priv->stats.rx_errors++;
1258 priv->stats.rx_dropped++;
1259 dev_kfree_skb_any(skb);
1260 goto bad_proto;
1261 }
1262
1263 if (netif_rx(skb) == NET_RX_DROP) {
1264 priv->stats.rx_errors++;
1265 priv->stats.rx_dropped++;
1266 goto bad_proto;
1267 }
1268
1269 /* Statistics */
1270 priv->stats.rx_packets++;
1271 priv->stats.rx_bytes += skb->len;
1272
1273 bad_proto:
1274 if (netif_queue_stopped(dev))
1275 netif_wake_queue(dev);
1276 spin_unlock_irqrestore(&priv->lock, flags);
1277
1278 dev->last_rx = jiffies;
1279
1280 return 0;
1281 }
1282
1283 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1284 quadlet_t *data, u64 addr, size_t len, u16 flags)
1285 {
1286 struct eth1394_host_info *hi;
1287
1288 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1289 if (hi == NULL) {
1290 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1291 host->driver->name);
1292 return RCODE_ADDRESS_ERROR;
1293 }
1294
1295 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1296 return RCODE_ADDRESS_ERROR;
1297 else
1298 return RCODE_COMPLETE;
1299 }
1300
1301 static void ether1394_iso(struct hpsb_iso *iso)
1302 {
1303 quadlet_t *data;
1304 char *buf;
1305 struct eth1394_host_info *hi;
1306 struct net_device *dev;
1307 struct eth1394_priv *priv;
1308 unsigned int len;
1309 u32 specifier_id;
1310 u16 source_id;
1311 int i;
1312 int nready;
1313
1314 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1315 if (hi == NULL) {
1316 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1317 iso->host->driver->name);
1318 return;
1319 }
1320
1321 dev = hi->dev;
1322
1323 nready = hpsb_iso_n_ready(iso);
1324 for (i = 0; i < nready; i++) {
1325 struct hpsb_iso_packet_info *info =
1326 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1327 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1328
1329 /* skip over GASP header */
1330 buf = (char *)data + 8;
1331 len = info->len - 8;
1332
1333 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1334 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1335 source_id = be32_to_cpu(data[0]) >> 16;
1336
1337 priv = netdev_priv(dev);
1338
1339 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1340 specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1341 /* This packet is not for us */
1342 continue;
1343 }
1344 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1345 buf, len);
1346 }
1347
1348 hpsb_iso_recv_release_packets(iso, i);
1349
1350 dev->last_rx = jiffies;
1351 }
1352
1353 /******************************************
1354 * Datagram transmission code
1355 ******************************************/
1356
1357 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1358 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1359 * needs to be munged a bit. The remainder of the arphdr is formatted based
1360 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1361 * judge.
1362 *
1363 * Now that the EUI is used for the hardware address all we need to do to make
1364 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1365 * speed, and unicast FIFO address information between the sender_unique_id
1366 * and the IP addresses.
1367 */
1368 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1369 struct net_device *dev)
1370 {
1371 struct eth1394_priv *priv = netdev_priv(dev);
1372
1373 struct arphdr *arp = (struct arphdr *)skb->data;
1374 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1375 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1376
1377 /* Believe it or not, all that need to happen is sender IP get moved
1378 * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
1379 arp1394->hw_addr_len = 16;
1380 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1381 arp1394->max_rec = priv->host->csr.max_rec;
1382 arp1394->sspd = priv->host->csr.lnk_spd;
1383 arp1394->fifo_hi = htons (priv->local_fifo >> 32);
1384 arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
1385
1386 return;
1387 }
1388
1389 /* We need to encapsulate the standard header with our own. We use the
1390 * ethernet header's proto for our own. */
1391 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1392 __be16 proto,
1393 union eth1394_hdr *hdr,
1394 u16 dg_size, u16 dgl)
1395 {
1396 unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1397
1398 /* Does it all fit in one packet? */
1399 if (dg_size <= adj_max_payload) {
1400 hdr->uf.lf = ETH1394_HDR_LF_UF;
1401 hdr->uf.ether_type = proto;
1402 } else {
1403 hdr->ff.lf = ETH1394_HDR_LF_FF;
1404 hdr->ff.ether_type = proto;
1405 hdr->ff.dg_size = dg_size - 1;
1406 hdr->ff.dgl = dgl;
1407 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1408 }
1409 return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1410 }
1411
1412 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1413 unsigned int max_payload,
1414 union eth1394_hdr *hdr)
1415 {
1416 union eth1394_hdr *bufhdr;
1417 int ftype = hdr->common.lf;
1418 int hdrsz = hdr_type_len[ftype];
1419 unsigned int adj_max_payload = max_payload - hdrsz;
1420
1421 switch(ftype) {
1422 case ETH1394_HDR_LF_UF:
1423 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1424 bufhdr->words.word1 = htons(hdr->words.word1);
1425 bufhdr->words.word2 = hdr->words.word2;
1426 break;
1427
1428 case ETH1394_HDR_LF_FF:
1429 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1430 bufhdr->words.word1 = htons(hdr->words.word1);
1431 bufhdr->words.word2 = hdr->words.word2;
1432 bufhdr->words.word3 = htons(hdr->words.word3);
1433 bufhdr->words.word4 = 0;
1434
1435 /* Set frag type here for future interior fragments */
1436 hdr->common.lf = ETH1394_HDR_LF_IF;
1437 hdr->sf.fg_off = 0;
1438 break;
1439
1440 default:
1441 hdr->sf.fg_off += adj_max_payload;
1442 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1443 if (max_payload >= skb->len)
1444 hdr->common.lf = ETH1394_HDR_LF_LF;
1445 bufhdr->words.word1 = htons(hdr->words.word1);
1446 bufhdr->words.word2 = htons(hdr->words.word2);
1447 bufhdr->words.word3 = htons(hdr->words.word3);
1448 bufhdr->words.word4 = 0;
1449 }
1450
1451 return min(max_payload, skb->len);
1452 }
1453
1454 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1455 {
1456 struct hpsb_packet *p;
1457
1458 p = hpsb_alloc_packet(0);
1459 if (p) {
1460 p->host = host;
1461 p->generation = get_hpsb_generation(host);
1462 p->type = hpsb_async;
1463 }
1464 return p;
1465 }
1466
1467 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1468 struct hpsb_host *host,
1469 nodeid_t node, u64 addr,
1470 void * data, int tx_len)
1471 {
1472 p->node_id = node;
1473 p->data = NULL;
1474
1475 p->tcode = TCODE_WRITEB;
1476 p->header[1] = (host->node_id << 16) | (addr >> 32);
1477 p->header[2] = addr & 0xffffffff;
1478
1479 p->header_size = 16;
1480 p->expect_response = 1;
1481
1482 if (hpsb_get_tlabel(p)) {
1483 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1484 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1485 return -1;
1486 }
1487 p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1488 | (1 << 8) | (TCODE_WRITEB << 4);
1489
1490 p->header[3] = tx_len << 16;
1491 p->data_size = (tx_len + 3) & ~3;
1492 p->data = (quadlet_t*)data;
1493
1494 return 0;
1495 }
1496
1497 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1498 struct eth1394_priv *priv,
1499 struct sk_buff *skb, int length)
1500 {
1501 p->header_size = 4;
1502 p->tcode = TCODE_STREAM_DATA;
1503
1504 p->header[0] = (length << 16) | (3 << 14)
1505 | ((priv->broadcast_channel) << 8)
1506 | (TCODE_STREAM_DATA << 4);
1507 p->data_size = length;
1508 p->data = ((quadlet_t*)skb->data) - 2;
1509 p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1510 ETHER1394_GASP_SPECIFIER_ID_HI);
1511 p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1512 ETHER1394_GASP_VERSION);
1513
1514 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1515 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1516 * value based on packet->node_id if packet->node_id is not set. */
1517 p->node_id = ALL_NODES;
1518 p->speed_code = priv->bc_sspd;
1519 }
1520
1521 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1522 {
1523 if (packet->tcode != TCODE_STREAM_DATA)
1524 hpsb_free_tlabel(packet);
1525 hpsb_free_packet(packet);
1526 }
1527
1528 static void ether1394_complete_cb(void *__ptask);
1529
1530 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1531 {
1532 struct eth1394_priv *priv = ptask->priv;
1533 struct hpsb_packet *packet = NULL;
1534
1535 packet = ether1394_alloc_common_packet(priv->host);
1536 if (!packet)
1537 return -1;
1538
1539 if (ptask->tx_type == ETH1394_GASP) {
1540 int length = tx_len + (2 * sizeof(quadlet_t));
1541
1542 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1543 } else if (ether1394_prep_write_packet(packet, priv->host,
1544 ptask->dest_node,
1545 ptask->addr, ptask->skb->data,
1546 tx_len)) {
1547 hpsb_free_packet(packet);
1548 return -1;
1549 }
1550
1551 ptask->packet = packet;
1552 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1553 ptask);
1554
1555 if (hpsb_send_packet(packet) < 0) {
1556 ether1394_free_packet(packet);
1557 return -1;
1558 }
1559
1560 return 0;
1561 }
1562
1563
1564 /* Task function to be run when a datagram transmission is completed */
1565 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1566 {
1567 struct sk_buff *skb = ptask->skb;
1568 struct net_device *dev = skb->dev;
1569 struct eth1394_priv *priv = netdev_priv(dev);
1570 unsigned long flags;
1571
1572 /* Statistics */
1573 spin_lock_irqsave(&priv->lock, flags);
1574 if (fail) {
1575 priv->stats.tx_dropped++;
1576 priv->stats.tx_errors++;
1577 } else {
1578 priv->stats.tx_bytes += skb->len;
1579 priv->stats.tx_packets++;
1580 }
1581 spin_unlock_irqrestore(&priv->lock, flags);
1582
1583 dev_kfree_skb_any(skb);
1584 kmem_cache_free(packet_task_cache, ptask);
1585 }
1586
1587
1588 /* Callback for when a packet has been sent and the status of that packet is
1589 * known */
1590 static void ether1394_complete_cb(void *__ptask)
1591 {
1592 struct packet_task *ptask = (struct packet_task *)__ptask;
1593 struct hpsb_packet *packet = ptask->packet;
1594 int fail = 0;
1595
1596 if (packet->tcode != TCODE_STREAM_DATA)
1597 fail = hpsb_packet_success(packet);
1598
1599 ether1394_free_packet(packet);
1600
1601 ptask->outstanding_pkts--;
1602 if (ptask->outstanding_pkts > 0 && !fail) {
1603 int tx_len;
1604
1605 /* Add the encapsulation header to the fragment */
1606 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1607 &ptask->hdr);
1608 if (ether1394_send_packet(ptask, tx_len))
1609 ether1394_dg_complete(ptask, 1);
1610 } else {
1611 ether1394_dg_complete(ptask, fail);
1612 }
1613 }
1614
1615
1616
1617 /* Transmit a packet (called by kernel) */
1618 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1619 {
1620 gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1621 struct eth1394hdr *eth;
1622 struct eth1394_priv *priv = netdev_priv(dev);
1623 __be16 proto;
1624 unsigned long flags;
1625 nodeid_t dest_node;
1626 eth1394_tx_type tx_type;
1627 int ret = 0;
1628 unsigned int tx_len;
1629 unsigned int max_payload;
1630 u16 dg_size;
1631 u16 dgl;
1632 struct packet_task *ptask;
1633 struct eth1394_node_ref *node;
1634 struct eth1394_node_info *node_info = NULL;
1635
1636 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1637 if (ptask == NULL) {
1638 ret = -ENOMEM;
1639 goto fail;
1640 }
1641
1642 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1643 * it does not set our validity bit. We need to compensate for
1644 * that somewhere else, but not in eth1394. */
1645 #if 0
1646 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1647 ret = -EAGAIN;
1648 goto fail;
1649 }
1650 #endif
1651
1652 if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1653 ret = -ENOMEM;
1654 goto fail;
1655 }
1656
1657 /* Get rid of the fake eth1394 header, but save a pointer */
1658 eth = (struct eth1394hdr*)skb->data;
1659 skb_pull(skb, ETH1394_HLEN);
1660
1661 proto = eth->h_proto;
1662 dg_size = skb->len;
1663
1664 /* Set the transmission type for the packet. ARP packets and IP
1665 * broadcast packets are sent via GASP. */
1666 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1667 proto == htons(ETH_P_ARP) ||
1668 (proto == htons(ETH_P_IP) &&
1669 IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
1670 tx_type = ETH1394_GASP;
1671 dest_node = LOCAL_BUS | ALL_NODES;
1672 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1673 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1674 dgl = priv->bc_dgl;
1675 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1676 priv->bc_dgl++;
1677 } else {
1678 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1679
1680 node = eth1394_find_node_guid(&priv->ip_node_list,
1681 be64_to_cpu(guid));
1682 if (!node) {
1683 ret = -EAGAIN;
1684 goto fail;
1685 }
1686 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1687 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1688 ret = -EAGAIN;
1689 goto fail;
1690 }
1691
1692 dest_node = node->ud->ne->nodeid;
1693 max_payload = node_info->maxpayload;
1694 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1695
1696 dgl = node_info->dgl;
1697 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1698 node_info->dgl++;
1699 tx_type = ETH1394_WRREQ;
1700 }
1701
1702 /* If this is an ARP packet, convert it */
1703 if (proto == htons(ETH_P_ARP))
1704 ether1394_arp_to_1394arp (skb, dev);
1705
1706 ptask->hdr.words.word1 = 0;
1707 ptask->hdr.words.word2 = 0;
1708 ptask->hdr.words.word3 = 0;
1709 ptask->hdr.words.word4 = 0;
1710 ptask->skb = skb;
1711 ptask->priv = priv;
1712 ptask->tx_type = tx_type;
1713
1714 if (tx_type != ETH1394_GASP) {
1715 u64 addr;
1716
1717 spin_lock_irqsave(&priv->lock, flags);
1718 addr = node_info->fifo;
1719 spin_unlock_irqrestore(&priv->lock, flags);
1720
1721 ptask->addr = addr;
1722 ptask->dest_node = dest_node;
1723 }
1724
1725 ptask->tx_type = tx_type;
1726 ptask->max_payload = max_payload;
1727 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1728 &ptask->hdr, dg_size,
1729 dgl);
1730
1731 /* Add the encapsulation header to the fragment */
1732 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1733 dev->trans_start = jiffies;
1734 if (ether1394_send_packet(ptask, tx_len))
1735 goto fail;
1736
1737 netif_wake_queue(dev);
1738 return 0;
1739 fail:
1740 if (ptask)
1741 kmem_cache_free(packet_task_cache, ptask);
1742
1743 if (skb != NULL)
1744 dev_kfree_skb(skb);
1745
1746 spin_lock_irqsave (&priv->lock, flags);
1747 priv->stats.tx_dropped++;
1748 priv->stats.tx_errors++;
1749 spin_unlock_irqrestore (&priv->lock, flags);
1750
1751 if (netif_queue_stopped(dev))
1752 netif_wake_queue(dev);
1753
1754 return 0; /* returning non-zero causes serious problems */
1755 }
1756
1757 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1758 {
1759 strcpy (info->driver, driver_name);
1760 /* FIXME XXX provide sane businfo */
1761 strcpy (info->bus_info, "ieee1394");
1762 }
1763
1764 static struct ethtool_ops ethtool_ops = {
1765 .get_drvinfo = ether1394_get_drvinfo
1766 };
1767
1768 static int __init ether1394_init_module (void)
1769 {
1770 packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1771 0, 0, NULL, NULL);
1772
1773 /* Register ourselves as a highlevel driver */
1774 hpsb_register_highlevel(&eth1394_highlevel);
1775
1776 return hpsb_register_protocol(&eth1394_proto_driver);
1777 }
1778
1779 static void __exit ether1394_exit_module (void)
1780 {
1781 hpsb_unregister_protocol(&eth1394_proto_driver);
1782 hpsb_unregister_highlevel(&eth1394_highlevel);
1783 kmem_cache_destroy(packet_task_cache);
1784 }
1785
1786 module_init(ether1394_init_module);
1787 module_exit(ether1394_exit_module);