Merge tag 'v3.10.57' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 MA 02110-1301 USA. */
19 /* ------------------------------------------------------------------------- */
20
21 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
22 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
23 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
24 Jean Delvare <khali@linux-fr.org>
25 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
26 Michael Lawnick <michael.lawnick.ext@nsn.com> */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/delay.h>
31 #include <linux/errno.h>
32 #include <linux/gpio.h>
33 #include <linux/slab.h>
34 #include <linux/i2c.h>
35 #include <linux/init.h>
36 #include <linux/idr.h>
37 #include <linux/mutex.h>
38 #include <linux/of_device.h>
39 #include <linux/completion.h>
40 #include <linux/hardirq.h>
41 #include <linux/irqflags.h>
42 #include <linux/rwsem.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/acpi.h>
45 #include <asm/uaccess.h>
46
47 #include "i2c-core.h"
48
49
50 /* core_lock protects i2c_adapter_idr, and guarantees
51 that device detection, deletion of detected devices, and attach_adapter
52 calls are serialized */
53 static DEFINE_MUTEX(core_lock);
54 static DEFINE_IDR(i2c_adapter_idr);
55
56 static struct device_type i2c_client_type;
57 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
58
59 /* ------------------------------------------------------------------------- */
60
61 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
62 const struct i2c_client *client)
63 {
64 while (id->name[0]) {
65 if (strcmp(client->name, id->name) == 0)
66 return id;
67 id++;
68 }
69 return NULL;
70 }
71
72 static int i2c_device_match(struct device *dev, struct device_driver *drv)
73 {
74 struct i2c_client *client = i2c_verify_client(dev);
75 struct i2c_driver *driver;
76
77 if (!client)
78 return 0;
79
80 /* Attempt an OF style match */
81 if (of_driver_match_device(dev, drv))
82 return 1;
83
84 /* Then ACPI style match */
85 if (acpi_driver_match_device(dev, drv))
86 return 1;
87
88 driver = to_i2c_driver(drv);
89 /* match on an id table if there is one */
90 if (driver->id_table)
91 return i2c_match_id(driver->id_table, client) != NULL;
92
93 return 0;
94 }
95
96
97 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
98 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
99 {
100 struct i2c_client *client = to_i2c_client(dev);
101
102 if (add_uevent_var(env, "MODALIAS=%s%s",
103 I2C_MODULE_PREFIX, client->name))
104 return -ENOMEM;
105 dev_dbg(dev, "uevent\n");
106 return 0;
107 }
108
109 /* i2c bus recovery routines */
110 static int get_scl_gpio_value(struct i2c_adapter *adap)
111 {
112 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
113 }
114
115 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
116 {
117 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
118 }
119
120 static int get_sda_gpio_value(struct i2c_adapter *adap)
121 {
122 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
123 }
124
125 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
126 {
127 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
128 struct device *dev = &adap->dev;
129 int ret = 0;
130
131 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
132 GPIOF_OUT_INIT_HIGH, "i2c-scl");
133 if (ret) {
134 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
135 return ret;
136 }
137
138 if (bri->get_sda) {
139 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
140 /* work without SDA polling */
141 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
142 bri->sda_gpio);
143 bri->get_sda = NULL;
144 }
145 }
146
147 return ret;
148 }
149
150 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
151 {
152 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
153
154 if (bri->get_sda)
155 gpio_free(bri->sda_gpio);
156
157 gpio_free(bri->scl_gpio);
158 }
159
160 /*
161 * We are generating clock pulses. ndelay() determines durating of clk pulses.
162 * We will generate clock with rate 100 KHz and so duration of both clock levels
163 * is: delay in ns = (10^6 / 100) / 2
164 */
165 #define RECOVERY_NDELAY 5000
166 #define RECOVERY_CLK_CNT 9
167
168 static int i2c_generic_recovery(struct i2c_adapter *adap)
169 {
170 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
171 int i = 0, val = 1, ret = 0;
172
173 if (bri->prepare_recovery)
174 bri->prepare_recovery(bri);
175
176 /*
177 * By this time SCL is high, as we need to give 9 falling-rising edges
178 */
179 while (i++ < RECOVERY_CLK_CNT * 2) {
180 if (val) {
181 /* Break if SDA is high */
182 if (bri->get_sda && bri->get_sda(adap))
183 break;
184 /* SCL shouldn't be low here */
185 if (!bri->get_scl(adap)) {
186 dev_err(&adap->dev,
187 "SCL is stuck low, exit recovery\n");
188 ret = -EBUSY;
189 break;
190 }
191 }
192
193 val = !val;
194 bri->set_scl(adap, val);
195 ndelay(RECOVERY_NDELAY);
196 }
197
198 if (bri->unprepare_recovery)
199 bri->unprepare_recovery(bri);
200
201 return ret;
202 }
203
204 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
205 {
206 adap->bus_recovery_info->set_scl(adap, 1);
207 return i2c_generic_recovery(adap);
208 }
209
210 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
211 {
212 int ret;
213
214 ret = i2c_get_gpios_for_recovery(adap);
215 if (ret)
216 return ret;
217
218 ret = i2c_generic_recovery(adap);
219 i2c_put_gpios_for_recovery(adap);
220
221 return ret;
222 }
223
224 int i2c_recover_bus(struct i2c_adapter *adap)
225 {
226 if (!adap->bus_recovery_info)
227 return -EOPNOTSUPP;
228
229 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
230 return adap->bus_recovery_info->recover_bus(adap);
231 }
232
233 static int i2c_device_probe(struct device *dev)
234 {
235 struct i2c_client *client = i2c_verify_client(dev);
236 struct i2c_driver *driver;
237 int status;
238
239 if (!client)
240 return 0;
241
242 driver = to_i2c_driver(dev->driver);
243 if (!driver->probe || !driver->id_table)
244 return -ENODEV;
245 client->driver = driver;
246 if (!device_can_wakeup(&client->dev))
247 device_init_wakeup(&client->dev,
248 client->flags & I2C_CLIENT_WAKE);
249 dev_dbg(dev, "probe\n");
250
251 status = driver->probe(client, i2c_match_id(driver->id_table, client));
252 if (status) {
253 client->driver = NULL;
254 i2c_set_clientdata(client, NULL);
255 }
256 return status;
257 }
258
259 static int i2c_device_remove(struct device *dev)
260 {
261 struct i2c_client *client = i2c_verify_client(dev);
262 struct i2c_driver *driver;
263 int status;
264
265 if (!client || !dev->driver)
266 return 0;
267
268 driver = to_i2c_driver(dev->driver);
269 if (driver->remove) {
270 dev_dbg(dev, "remove\n");
271 status = driver->remove(client);
272 } else {
273 dev->driver = NULL;
274 status = 0;
275 }
276 if (status == 0) {
277 client->driver = NULL;
278 i2c_set_clientdata(client, NULL);
279 }
280 return status;
281 }
282
283 static void i2c_device_shutdown(struct device *dev)
284 {
285 struct i2c_client *client = i2c_verify_client(dev);
286 struct i2c_driver *driver;
287
288 if (!client || !dev->driver)
289 return;
290 driver = to_i2c_driver(dev->driver);
291 if (driver->shutdown)
292 driver->shutdown(client);
293 }
294
295 #ifdef CONFIG_PM_SLEEP
296 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
297 {
298 struct i2c_client *client = i2c_verify_client(dev);
299 struct i2c_driver *driver;
300
301 if (!client || !dev->driver)
302 return 0;
303 driver = to_i2c_driver(dev->driver);
304 if (!driver->suspend)
305 return 0;
306 return driver->suspend(client, mesg);
307 }
308
309 static int i2c_legacy_resume(struct device *dev)
310 {
311 struct i2c_client *client = i2c_verify_client(dev);
312 struct i2c_driver *driver;
313
314 if (!client || !dev->driver)
315 return 0;
316 driver = to_i2c_driver(dev->driver);
317 if (!driver->resume)
318 return 0;
319 return driver->resume(client);
320 }
321
322 static int i2c_device_pm_suspend(struct device *dev)
323 {
324 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
325
326 if (pm)
327 return pm_generic_suspend(dev);
328 else
329 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
330 }
331
332 static int i2c_device_pm_resume(struct device *dev)
333 {
334 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
335
336 if (pm)
337 return pm_generic_resume(dev);
338 else
339 return i2c_legacy_resume(dev);
340 }
341
342 static int i2c_device_pm_freeze(struct device *dev)
343 {
344 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
345
346 if (pm)
347 return pm_generic_freeze(dev);
348 else
349 return i2c_legacy_suspend(dev, PMSG_FREEZE);
350 }
351
352 static int i2c_device_pm_thaw(struct device *dev)
353 {
354 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
355
356 if (pm)
357 return pm_generic_thaw(dev);
358 else
359 return i2c_legacy_resume(dev);
360 }
361
362 static int i2c_device_pm_poweroff(struct device *dev)
363 {
364 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
365
366 if (pm)
367 return pm_generic_poweroff(dev);
368 else
369 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
370 }
371
372 static int i2c_device_pm_restore(struct device *dev)
373 {
374 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
375
376 if (pm)
377 return pm_generic_restore(dev);
378 else
379 return i2c_legacy_resume(dev);
380 }
381 #else /* !CONFIG_PM_SLEEP */
382 #define i2c_device_pm_suspend NULL
383 #define i2c_device_pm_resume NULL
384 #define i2c_device_pm_freeze NULL
385 #define i2c_device_pm_thaw NULL
386 #define i2c_device_pm_poweroff NULL
387 #define i2c_device_pm_restore NULL
388 #endif /* !CONFIG_PM_SLEEP */
389
390 static void i2c_client_dev_release(struct device *dev)
391 {
392 kfree(to_i2c_client(dev));
393 }
394
395 static ssize_t
396 show_name(struct device *dev, struct device_attribute *attr, char *buf)
397 {
398 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
399 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
400 }
401
402 static ssize_t
403 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
404 {
405 struct i2c_client *client = to_i2c_client(dev);
406 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
407 }
408
409 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
410 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
411
412 static struct attribute *i2c_dev_attrs[] = {
413 &dev_attr_name.attr,
414 /* modalias helps coldplug: modprobe $(cat .../modalias) */
415 &dev_attr_modalias.attr,
416 NULL
417 };
418
419 static struct attribute_group i2c_dev_attr_group = {
420 .attrs = i2c_dev_attrs,
421 };
422
423 static const struct attribute_group *i2c_dev_attr_groups[] = {
424 &i2c_dev_attr_group,
425 NULL
426 };
427
428 static const struct dev_pm_ops i2c_device_pm_ops = {
429 .suspend = i2c_device_pm_suspend,
430 .resume = i2c_device_pm_resume,
431 .freeze = i2c_device_pm_freeze,
432 .thaw = i2c_device_pm_thaw,
433 .poweroff = i2c_device_pm_poweroff,
434 .restore = i2c_device_pm_restore,
435 SET_RUNTIME_PM_OPS(
436 pm_generic_runtime_suspend,
437 pm_generic_runtime_resume,
438 pm_generic_runtime_idle
439 )
440 };
441
442 struct bus_type i2c_bus_type = {
443 .name = "i2c",
444 .match = i2c_device_match,
445 .probe = i2c_device_probe,
446 .remove = i2c_device_remove,
447 .shutdown = i2c_device_shutdown,
448 .pm = &i2c_device_pm_ops,
449 };
450 EXPORT_SYMBOL_GPL(i2c_bus_type);
451
452 static struct device_type i2c_client_type = {
453 .groups = i2c_dev_attr_groups,
454 .uevent = i2c_device_uevent,
455 .release = i2c_client_dev_release,
456 };
457
458
459 /**
460 * i2c_verify_client - return parameter as i2c_client, or NULL
461 * @dev: device, probably from some driver model iterator
462 *
463 * When traversing the driver model tree, perhaps using driver model
464 * iterators like @device_for_each_child(), you can't assume very much
465 * about the nodes you find. Use this function to avoid oopses caused
466 * by wrongly treating some non-I2C device as an i2c_client.
467 */
468 struct i2c_client *i2c_verify_client(struct device *dev)
469 {
470 return (dev->type == &i2c_client_type)
471 ? to_i2c_client(dev)
472 : NULL;
473 }
474 EXPORT_SYMBOL(i2c_verify_client);
475
476
477 /* This is a permissive address validity check, I2C address map constraints
478 * are purposely not enforced, except for the general call address. */
479 static int i2c_check_client_addr_validity(const struct i2c_client *client)
480 {
481 if (client->flags & I2C_CLIENT_TEN) {
482 /* 10-bit address, all values are valid */
483 if (client->addr > 0x3ff)
484 return -EINVAL;
485 } else {
486 /* 7-bit address, reject the general call address */
487 if (client->addr == 0x00 || client->addr > 0x7f)
488 return -EINVAL;
489 }
490 return 0;
491 }
492
493 /* And this is a strict address validity check, used when probing. If a
494 * device uses a reserved address, then it shouldn't be probed. 7-bit
495 * addressing is assumed, 10-bit address devices are rare and should be
496 * explicitly enumerated. */
497 static int i2c_check_addr_validity(unsigned short addr)
498 {
499 /*
500 * Reserved addresses per I2C specification:
501 * 0x00 General call address / START byte
502 * 0x01 CBUS address
503 * 0x02 Reserved for different bus format
504 * 0x03 Reserved for future purposes
505 * 0x04-0x07 Hs-mode master code
506 * 0x78-0x7b 10-bit slave addressing
507 * 0x7c-0x7f Reserved for future purposes
508 */
509 if (addr < 0x08 || addr > 0x77)
510 return -EINVAL;
511 return 0;
512 }
513
514 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
515 {
516 struct i2c_client *client = i2c_verify_client(dev);
517 int addr = *(int *)addrp;
518
519 if (client && client->addr == addr)
520 return -EBUSY;
521 return 0;
522 }
523
524 /* walk up mux tree */
525 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
526 {
527 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
528 int result;
529
530 result = device_for_each_child(&adapter->dev, &addr,
531 __i2c_check_addr_busy);
532
533 if (!result && parent)
534 result = i2c_check_mux_parents(parent, addr);
535
536 return result;
537 }
538
539 /* recurse down mux tree */
540 static int i2c_check_mux_children(struct device *dev, void *addrp)
541 {
542 int result;
543
544 if (dev->type == &i2c_adapter_type)
545 result = device_for_each_child(dev, addrp,
546 i2c_check_mux_children);
547 else
548 result = __i2c_check_addr_busy(dev, addrp);
549
550 return result;
551 }
552
553 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
554 {
555 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
556 int result = 0;
557
558 if (parent)
559 result = i2c_check_mux_parents(parent, addr);
560
561 if (!result)
562 result = device_for_each_child(&adapter->dev, &addr,
563 i2c_check_mux_children);
564
565 return result;
566 }
567
568 /**
569 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
570 * @adapter: Target I2C bus segment
571 */
572 void i2c_lock_adapter(struct i2c_adapter *adapter)
573 {
574 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
575
576 if (parent)
577 i2c_lock_adapter(parent);
578 else
579 rt_mutex_lock(&adapter->bus_lock);
580 }
581 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
582
583 /**
584 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
585 * @adapter: Target I2C bus segment
586 */
587 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
588 {
589 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
590
591 if (parent)
592 return i2c_trylock_adapter(parent);
593 else
594 return rt_mutex_trylock(&adapter->bus_lock);
595 }
596
597 /**
598 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
599 * @adapter: Target I2C bus segment
600 */
601 void i2c_unlock_adapter(struct i2c_adapter *adapter)
602 {
603 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
604
605 if (parent)
606 i2c_unlock_adapter(parent);
607 else
608 rt_mutex_unlock(&adapter->bus_lock);
609 }
610 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
611
612 /**
613 * i2c_new_device - instantiate an i2c device
614 * @adap: the adapter managing the device
615 * @info: describes one I2C device; bus_num is ignored
616 * Context: can sleep
617 *
618 * Create an i2c device. Binding is handled through driver model
619 * probe()/remove() methods. A driver may be bound to this device when we
620 * return from this function, or any later moment (e.g. maybe hotplugging will
621 * load the driver module). This call is not appropriate for use by mainboard
622 * initialization logic, which usually runs during an arch_initcall() long
623 * before any i2c_adapter could exist.
624 *
625 * This returns the new i2c client, which may be saved for later use with
626 * i2c_unregister_device(); or NULL to indicate an error.
627 */
628 struct i2c_client *
629 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
630 {
631 struct i2c_client *client;
632 int status;
633
634 client = kzalloc(sizeof *client, GFP_KERNEL);
635 if (!client)
636 return NULL;
637
638 client->adapter = adap;
639
640 client->dev.platform_data = info->platform_data;
641
642 if (info->archdata)
643 client->dev.archdata = *info->archdata;
644
645 client->flags = info->flags;
646 client->addr = info->addr;
647 client->irq = info->irq;
648
649 strlcpy(client->name, info->type, sizeof(client->name));
650
651 /* Check for address validity */
652 status = i2c_check_client_addr_validity(client);
653 if (status) {
654 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
655 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
656 goto out_err_silent;
657 }
658
659 /* Check for address business */
660 status = i2c_check_addr_busy(adap, client->addr);
661 if (status)
662 goto out_err;
663
664 client->dev.parent = &client->adapter->dev;
665 client->dev.bus = &i2c_bus_type;
666 client->dev.type = &i2c_client_type;
667 client->dev.of_node = info->of_node;
668 ACPI_HANDLE_SET(&client->dev, info->acpi_node.handle);
669
670 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
671 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
672 client->addr | ((client->flags & I2C_CLIENT_TEN)
673 ? 0xa000 : 0));
674 status = device_register(&client->dev);
675 if (status)
676 goto out_err;
677
678 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
679 client->name, dev_name(&client->dev));
680
681 return client;
682
683 out_err:
684 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
685 "(%d)\n", client->name, client->addr, status);
686 out_err_silent:
687 kfree(client);
688 return NULL;
689 }
690 EXPORT_SYMBOL_GPL(i2c_new_device);
691
692
693 /**
694 * i2c_unregister_device - reverse effect of i2c_new_device()
695 * @client: value returned from i2c_new_device()
696 * Context: can sleep
697 */
698 void i2c_unregister_device(struct i2c_client *client)
699 {
700 device_unregister(&client->dev);
701 }
702 EXPORT_SYMBOL_GPL(i2c_unregister_device);
703
704
705 static const struct i2c_device_id dummy_id[] = {
706 { "dummy", 0 },
707 { },
708 };
709
710 static int dummy_probe(struct i2c_client *client,
711 const struct i2c_device_id *id)
712 {
713 return 0;
714 }
715
716 static int dummy_remove(struct i2c_client *client)
717 {
718 return 0;
719 }
720
721 static struct i2c_driver dummy_driver = {
722 .driver.name = "dummy",
723 .probe = dummy_probe,
724 .remove = dummy_remove,
725 .id_table = dummy_id,
726 };
727
728 /**
729 * i2c_new_dummy - return a new i2c device bound to a dummy driver
730 * @adapter: the adapter managing the device
731 * @address: seven bit address to be used
732 * Context: can sleep
733 *
734 * This returns an I2C client bound to the "dummy" driver, intended for use
735 * with devices that consume multiple addresses. Examples of such chips
736 * include various EEPROMS (like 24c04 and 24c08 models).
737 *
738 * These dummy devices have two main uses. First, most I2C and SMBus calls
739 * except i2c_transfer() need a client handle; the dummy will be that handle.
740 * And second, this prevents the specified address from being bound to a
741 * different driver.
742 *
743 * This returns the new i2c client, which should be saved for later use with
744 * i2c_unregister_device(); or NULL to indicate an error.
745 */
746 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
747 {
748 struct i2c_board_info info = {
749 I2C_BOARD_INFO("dummy", address),
750 };
751
752 return i2c_new_device(adapter, &info);
753 }
754 EXPORT_SYMBOL_GPL(i2c_new_dummy);
755
756 /* ------------------------------------------------------------------------- */
757
758 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
759
760 static void i2c_adapter_dev_release(struct device *dev)
761 {
762 struct i2c_adapter *adap = to_i2c_adapter(dev);
763 complete(&adap->dev_released);
764 }
765
766 /*
767 * This function is only needed for mutex_lock_nested, so it is never
768 * called unless locking correctness checking is enabled. Thus we
769 * make it inline to avoid a compiler warning. That's what gcc ends up
770 * doing anyway.
771 */
772 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
773 {
774 unsigned int depth = 0;
775
776 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
777 depth++;
778
779 return depth;
780 }
781
782 /*
783 * Let users instantiate I2C devices through sysfs. This can be used when
784 * platform initialization code doesn't contain the proper data for
785 * whatever reason. Also useful for drivers that do device detection and
786 * detection fails, either because the device uses an unexpected address,
787 * or this is a compatible device with different ID register values.
788 *
789 * Parameter checking may look overzealous, but we really don't want
790 * the user to provide incorrect parameters.
791 */
792 static ssize_t
793 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
794 const char *buf, size_t count)
795 {
796 struct i2c_adapter *adap = to_i2c_adapter(dev);
797 struct i2c_board_info info;
798 struct i2c_client *client;
799 char *blank, end;
800 int res;
801
802 memset(&info, 0, sizeof(struct i2c_board_info));
803
804 blank = strchr(buf, ' ');
805 if (!blank) {
806 dev_err(dev, "%s: Missing parameters\n", "new_device");
807 return -EINVAL;
808 }
809 if (blank - buf > I2C_NAME_SIZE - 1) {
810 dev_err(dev, "%s: Invalid device name\n", "new_device");
811 return -EINVAL;
812 }
813 memcpy(info.type, buf, blank - buf);
814
815 /* Parse remaining parameters, reject extra parameters */
816 res = sscanf(++blank, "%hi%c", &info.addr, &end);
817 if (res < 1) {
818 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
819 return -EINVAL;
820 }
821 if (res > 1 && end != '\n') {
822 dev_err(dev, "%s: Extra parameters\n", "new_device");
823 return -EINVAL;
824 }
825
826 client = i2c_new_device(adap, &info);
827 if (!client)
828 return -EINVAL;
829
830 /* Keep track of the added device */
831 mutex_lock(&adap->userspace_clients_lock);
832 list_add_tail(&client->detected, &adap->userspace_clients);
833 mutex_unlock(&adap->userspace_clients_lock);
834 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
835 info.type, info.addr);
836
837 return count;
838 }
839
840 /*
841 * And of course let the users delete the devices they instantiated, if
842 * they got it wrong. This interface can only be used to delete devices
843 * instantiated by i2c_sysfs_new_device above. This guarantees that we
844 * don't delete devices to which some kernel code still has references.
845 *
846 * Parameter checking may look overzealous, but we really don't want
847 * the user to delete the wrong device.
848 */
849 static ssize_t
850 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
851 const char *buf, size_t count)
852 {
853 struct i2c_adapter *adap = to_i2c_adapter(dev);
854 struct i2c_client *client, *next;
855 unsigned short addr;
856 char end;
857 int res;
858
859 /* Parse parameters, reject extra parameters */
860 res = sscanf(buf, "%hi%c", &addr, &end);
861 if (res < 1) {
862 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
863 return -EINVAL;
864 }
865 if (res > 1 && end != '\n') {
866 dev_err(dev, "%s: Extra parameters\n", "delete_device");
867 return -EINVAL;
868 }
869
870 /* Make sure the device was added through sysfs */
871 res = -ENOENT;
872 mutex_lock_nested(&adap->userspace_clients_lock,
873 i2c_adapter_depth(adap));
874 list_for_each_entry_safe(client, next, &adap->userspace_clients,
875 detected) {
876 if (client->addr == addr) {
877 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
878 "delete_device", client->name, client->addr);
879
880 list_del(&client->detected);
881 i2c_unregister_device(client);
882 res = count;
883 break;
884 }
885 }
886 mutex_unlock(&adap->userspace_clients_lock);
887
888 if (res < 0)
889 dev_err(dev, "%s: Can't find device in list\n",
890 "delete_device");
891 return res;
892 }
893
894 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
895 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
896 i2c_sysfs_delete_device);
897
898 static struct attribute *i2c_adapter_attrs[] = {
899 &dev_attr_name.attr,
900 &dev_attr_new_device.attr,
901 &dev_attr_delete_device.attr,
902 NULL
903 };
904
905 static struct attribute_group i2c_adapter_attr_group = {
906 .attrs = i2c_adapter_attrs,
907 };
908
909 static const struct attribute_group *i2c_adapter_attr_groups[] = {
910 &i2c_adapter_attr_group,
911 NULL
912 };
913
914 struct device_type i2c_adapter_type = {
915 .groups = i2c_adapter_attr_groups,
916 .release = i2c_adapter_dev_release,
917 };
918 EXPORT_SYMBOL_GPL(i2c_adapter_type);
919
920 /**
921 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
922 * @dev: device, probably from some driver model iterator
923 *
924 * When traversing the driver model tree, perhaps using driver model
925 * iterators like @device_for_each_child(), you can't assume very much
926 * about the nodes you find. Use this function to avoid oopses caused
927 * by wrongly treating some non-I2C device as an i2c_adapter.
928 */
929 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
930 {
931 return (dev->type == &i2c_adapter_type)
932 ? to_i2c_adapter(dev)
933 : NULL;
934 }
935 EXPORT_SYMBOL(i2c_verify_adapter);
936
937 #ifdef CONFIG_I2C_COMPAT
938 static struct class_compat *i2c_adapter_compat_class;
939 #endif
940
941 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
942 {
943 struct i2c_devinfo *devinfo;
944
945 down_read(&__i2c_board_lock);
946 list_for_each_entry(devinfo, &__i2c_board_list, list) {
947 if (devinfo->busnum == adapter->nr
948 && !i2c_new_device(adapter,
949 &devinfo->board_info))
950 dev_err(&adapter->dev,
951 "Can't create device at 0x%02x\n",
952 devinfo->board_info.addr);
953 }
954 up_read(&__i2c_board_lock);
955 }
956
957 static int i2c_do_add_adapter(struct i2c_driver *driver,
958 struct i2c_adapter *adap)
959 {
960 /* Detect supported devices on that bus, and instantiate them */
961 i2c_detect(adap, driver);
962
963 /* Let legacy drivers scan this bus for matching devices */
964 if (driver->attach_adapter) {
965 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
966 driver->driver.name);
967 dev_warn(&adap->dev, "Please use another way to instantiate "
968 "your i2c_client\n");
969 /* We ignore the return code; if it fails, too bad */
970 driver->attach_adapter(adap);
971 }
972 return 0;
973 }
974
975 static int __process_new_adapter(struct device_driver *d, void *data)
976 {
977 return i2c_do_add_adapter(to_i2c_driver(d), data);
978 }
979
980 static int i2c_register_adapter(struct i2c_adapter *adap)
981 {
982 int res = 0;
983
984 /* Can't register until after driver model init */
985 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
986 res = -EAGAIN;
987 goto out_list;
988 }
989
990 /* Sanity checks */
991 if (unlikely(adap->name[0] == '\0')) {
992 pr_err("i2c-core: Attempt to register an adapter with "
993 "no name!\n");
994 return -EINVAL;
995 }
996 if (unlikely(!adap->algo)) {
997 pr_err("i2c-core: Attempt to register adapter '%s' with "
998 "no algo!\n", adap->name);
999 return -EINVAL;
1000 }
1001
1002 rt_mutex_init(&adap->bus_lock);
1003 mutex_init(&adap->userspace_clients_lock);
1004 INIT_LIST_HEAD(&adap->userspace_clients);
1005
1006 /* Set default timeout to 1 second if not already set */
1007 if (adap->timeout == 0)
1008 adap->timeout = HZ;
1009
1010 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1011 adap->dev.bus = &i2c_bus_type;
1012 adap->dev.type = &i2c_adapter_type;
1013 res = device_register(&adap->dev);
1014 if (res)
1015 goto out_list;
1016
1017 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1018
1019 #ifdef CONFIG_I2C_COMPAT
1020 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1021 adap->dev.parent);
1022 if (res)
1023 dev_warn(&adap->dev,
1024 "Failed to create compatibility class link\n");
1025 #endif
1026
1027 /* bus recovery specific initialization */
1028 if (adap->bus_recovery_info) {
1029 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1030
1031 if (!bri->recover_bus) {
1032 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1033 adap->bus_recovery_info = NULL;
1034 goto exit_recovery;
1035 }
1036
1037 /* Generic GPIO recovery */
1038 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1039 if (!gpio_is_valid(bri->scl_gpio)) {
1040 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1041 adap->bus_recovery_info = NULL;
1042 goto exit_recovery;
1043 }
1044
1045 if (gpio_is_valid(bri->sda_gpio))
1046 bri->get_sda = get_sda_gpio_value;
1047 else
1048 bri->get_sda = NULL;
1049
1050 bri->get_scl = get_scl_gpio_value;
1051 bri->set_scl = set_scl_gpio_value;
1052 } else if (!bri->set_scl || !bri->get_scl) {
1053 /* Generic SCL recovery */
1054 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1055 adap->bus_recovery_info = NULL;
1056 }
1057 }
1058
1059 exit_recovery:
1060 /* create pre-declared device nodes */
1061 if (adap->nr < __i2c_first_dynamic_bus_num)
1062 i2c_scan_static_board_info(adap);
1063
1064 /* Notify drivers */
1065 mutex_lock(&core_lock);
1066 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1067 mutex_unlock(&core_lock);
1068
1069 return 0;
1070
1071 out_list:
1072 mutex_lock(&core_lock);
1073 idr_remove(&i2c_adapter_idr, adap->nr);
1074 mutex_unlock(&core_lock);
1075 return res;
1076 }
1077
1078 /**
1079 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1080 * @adap: the adapter to register (with adap->nr initialized)
1081 * Context: can sleep
1082 *
1083 * See i2c_add_numbered_adapter() for details.
1084 */
1085 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1086 {
1087 int id;
1088
1089 mutex_lock(&core_lock);
1090 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1091 GFP_KERNEL);
1092 mutex_unlock(&core_lock);
1093 if (id < 0)
1094 return id == -ENOSPC ? -EBUSY : id;
1095
1096 return i2c_register_adapter(adap);
1097 }
1098
1099 /**
1100 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1101 * @adapter: the adapter to add
1102 * Context: can sleep
1103 *
1104 * This routine is used to declare an I2C adapter when its bus number
1105 * doesn't matter or when its bus number is specified by an dt alias.
1106 * Examples of bases when the bus number doesn't matter: I2C adapters
1107 * dynamically added by USB links or PCI plugin cards.
1108 *
1109 * When this returns zero, a new bus number was allocated and stored
1110 * in adap->nr, and the specified adapter became available for clients.
1111 * Otherwise, a negative errno value is returned.
1112 */
1113 int i2c_add_adapter(struct i2c_adapter *adapter)
1114 {
1115 struct device *dev = &adapter->dev;
1116 int id;
1117
1118 if (dev->of_node) {
1119 id = of_alias_get_id(dev->of_node, "i2c");
1120 if (id >= 0) {
1121 adapter->nr = id;
1122 return __i2c_add_numbered_adapter(adapter);
1123 }
1124 }
1125
1126 mutex_lock(&core_lock);
1127 id = idr_alloc(&i2c_adapter_idr, adapter,
1128 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1129 mutex_unlock(&core_lock);
1130 if (id < 0)
1131 return id;
1132
1133 adapter->nr = id;
1134
1135 return i2c_register_adapter(adapter);
1136 }
1137 EXPORT_SYMBOL(i2c_add_adapter);
1138
1139 /**
1140 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1141 * @adap: the adapter to register (with adap->nr initialized)
1142 * Context: can sleep
1143 *
1144 * This routine is used to declare an I2C adapter when its bus number
1145 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1146 * or otherwise built in to the system's mainboard, and where i2c_board_info
1147 * is used to properly configure I2C devices.
1148 *
1149 * If the requested bus number is set to -1, then this function will behave
1150 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1151 *
1152 * If no devices have pre-been declared for this bus, then be sure to
1153 * register the adapter before any dynamically allocated ones. Otherwise
1154 * the required bus ID may not be available.
1155 *
1156 * When this returns zero, the specified adapter became available for
1157 * clients using the bus number provided in adap->nr. Also, the table
1158 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1159 * and the appropriate driver model device nodes are created. Otherwise, a
1160 * negative errno value is returned.
1161 */
1162 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1163 {
1164 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1165 return i2c_add_adapter(adap);
1166
1167 return __i2c_add_numbered_adapter(adap);
1168 }
1169 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1170
1171 static void i2c_do_del_adapter(struct i2c_driver *driver,
1172 struct i2c_adapter *adapter)
1173 {
1174 struct i2c_client *client, *_n;
1175
1176 /* Remove the devices we created ourselves as the result of hardware
1177 * probing (using a driver's detect method) */
1178 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1179 if (client->adapter == adapter) {
1180 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1181 client->name, client->addr);
1182 list_del(&client->detected);
1183 i2c_unregister_device(client);
1184 }
1185 }
1186 }
1187
1188 static int __unregister_client(struct device *dev, void *dummy)
1189 {
1190 struct i2c_client *client = i2c_verify_client(dev);
1191 if (client && strcmp(client->name, "dummy"))
1192 i2c_unregister_device(client);
1193 return 0;
1194 }
1195
1196 static int __unregister_dummy(struct device *dev, void *dummy)
1197 {
1198 struct i2c_client *client = i2c_verify_client(dev);
1199 if (client)
1200 i2c_unregister_device(client);
1201 return 0;
1202 }
1203
1204 static int __process_removed_adapter(struct device_driver *d, void *data)
1205 {
1206 i2c_do_del_adapter(to_i2c_driver(d), data);
1207 return 0;
1208 }
1209
1210 /**
1211 * i2c_del_adapter - unregister I2C adapter
1212 * @adap: the adapter being unregistered
1213 * Context: can sleep
1214 *
1215 * This unregisters an I2C adapter which was previously registered
1216 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1217 */
1218 void i2c_del_adapter(struct i2c_adapter *adap)
1219 {
1220 struct i2c_adapter *found;
1221 struct i2c_client *client, *next;
1222
1223 /* First make sure that this adapter was ever added */
1224 mutex_lock(&core_lock);
1225 found = idr_find(&i2c_adapter_idr, adap->nr);
1226 mutex_unlock(&core_lock);
1227 if (found != adap) {
1228 pr_debug("i2c-core: attempting to delete unregistered "
1229 "adapter [%s]\n", adap->name);
1230 return;
1231 }
1232
1233 /* Tell drivers about this removal */
1234 mutex_lock(&core_lock);
1235 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1236 __process_removed_adapter);
1237 mutex_unlock(&core_lock);
1238
1239 /* Remove devices instantiated from sysfs */
1240 mutex_lock_nested(&adap->userspace_clients_lock,
1241 i2c_adapter_depth(adap));
1242 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1243 detected) {
1244 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1245 client->addr);
1246 list_del(&client->detected);
1247 i2c_unregister_device(client);
1248 }
1249 mutex_unlock(&adap->userspace_clients_lock);
1250
1251 /* Detach any active clients. This can't fail, thus we do not
1252 * check the returned value. This is a two-pass process, because
1253 * we can't remove the dummy devices during the first pass: they
1254 * could have been instantiated by real devices wishing to clean
1255 * them up properly, so we give them a chance to do that first. */
1256 device_for_each_child(&adap->dev, NULL, __unregister_client);
1257 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1258
1259 #ifdef CONFIG_I2C_COMPAT
1260 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1261 adap->dev.parent);
1262 #endif
1263
1264 /* device name is gone after device_unregister */
1265 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1266
1267 /* clean up the sysfs representation */
1268 init_completion(&adap->dev_released);
1269 device_unregister(&adap->dev);
1270
1271 /* wait for sysfs to drop all references */
1272 wait_for_completion(&adap->dev_released);
1273
1274 /* free bus id */
1275 mutex_lock(&core_lock);
1276 idr_remove(&i2c_adapter_idr, adap->nr);
1277 mutex_unlock(&core_lock);
1278
1279 /* Clear the device structure in case this adapter is ever going to be
1280 added again */
1281 memset(&adap->dev, 0, sizeof(adap->dev));
1282 }
1283 EXPORT_SYMBOL(i2c_del_adapter);
1284
1285
1286 /* ------------------------------------------------------------------------- */
1287
1288 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1289 {
1290 int res;
1291
1292 mutex_lock(&core_lock);
1293 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1294 mutex_unlock(&core_lock);
1295
1296 return res;
1297 }
1298 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1299
1300 static int __process_new_driver(struct device *dev, void *data)
1301 {
1302 if (dev->type != &i2c_adapter_type)
1303 return 0;
1304 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1305 }
1306
1307 /*
1308 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1309 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1310 */
1311
1312 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1313 {
1314 int res;
1315
1316 /* Can't register until after driver model init */
1317 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1318 return -EAGAIN;
1319
1320 /* add the driver to the list of i2c drivers in the driver core */
1321 driver->driver.owner = owner;
1322 driver->driver.bus = &i2c_bus_type;
1323
1324 /* When registration returns, the driver core
1325 * will have called probe() for all matching-but-unbound devices.
1326 */
1327 res = driver_register(&driver->driver);
1328 if (res)
1329 return res;
1330
1331 /* Drivers should switch to dev_pm_ops instead. */
1332 if (driver->suspend)
1333 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1334 driver->driver.name);
1335 if (driver->resume)
1336 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1337 driver->driver.name);
1338
1339 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1340
1341 INIT_LIST_HEAD(&driver->clients);
1342 /* Walk the adapters that are already present */
1343 i2c_for_each_dev(driver, __process_new_driver);
1344
1345 return 0;
1346 }
1347 EXPORT_SYMBOL(i2c_register_driver);
1348
1349 static int __process_removed_driver(struct device *dev, void *data)
1350 {
1351 if (dev->type == &i2c_adapter_type)
1352 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1353 return 0;
1354 }
1355
1356 /**
1357 * i2c_del_driver - unregister I2C driver
1358 * @driver: the driver being unregistered
1359 * Context: can sleep
1360 */
1361 void i2c_del_driver(struct i2c_driver *driver)
1362 {
1363 i2c_for_each_dev(driver, __process_removed_driver);
1364
1365 driver_unregister(&driver->driver);
1366 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1367 }
1368 EXPORT_SYMBOL(i2c_del_driver);
1369
1370 /* ------------------------------------------------------------------------- */
1371
1372 /**
1373 * i2c_use_client - increments the reference count of the i2c client structure
1374 * @client: the client being referenced
1375 *
1376 * Each live reference to a client should be refcounted. The driver model does
1377 * that automatically as part of driver binding, so that most drivers don't
1378 * need to do this explicitly: they hold a reference until they're unbound
1379 * from the device.
1380 *
1381 * A pointer to the client with the incremented reference counter is returned.
1382 */
1383 struct i2c_client *i2c_use_client(struct i2c_client *client)
1384 {
1385 if (client && get_device(&client->dev))
1386 return client;
1387 return NULL;
1388 }
1389 EXPORT_SYMBOL(i2c_use_client);
1390
1391 /**
1392 * i2c_release_client - release a use of the i2c client structure
1393 * @client: the client being no longer referenced
1394 *
1395 * Must be called when a user of a client is finished with it.
1396 */
1397 void i2c_release_client(struct i2c_client *client)
1398 {
1399 if (client)
1400 put_device(&client->dev);
1401 }
1402 EXPORT_SYMBOL(i2c_release_client);
1403
1404 struct i2c_cmd_arg {
1405 unsigned cmd;
1406 void *arg;
1407 };
1408
1409 static int i2c_cmd(struct device *dev, void *_arg)
1410 {
1411 struct i2c_client *client = i2c_verify_client(dev);
1412 struct i2c_cmd_arg *arg = _arg;
1413
1414 if (client && client->driver && client->driver->command)
1415 client->driver->command(client, arg->cmd, arg->arg);
1416 return 0;
1417 }
1418
1419 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1420 {
1421 struct i2c_cmd_arg cmd_arg;
1422
1423 cmd_arg.cmd = cmd;
1424 cmd_arg.arg = arg;
1425 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1426 }
1427 EXPORT_SYMBOL(i2c_clients_command);
1428
1429 static int __init i2c_init(void)
1430 {
1431 int retval;
1432
1433 retval = bus_register(&i2c_bus_type);
1434 if (retval)
1435 return retval;
1436 #ifdef CONFIG_I2C_COMPAT
1437 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1438 if (!i2c_adapter_compat_class) {
1439 retval = -ENOMEM;
1440 goto bus_err;
1441 }
1442 #endif
1443 retval = i2c_add_driver(&dummy_driver);
1444 if (retval)
1445 goto class_err;
1446 return 0;
1447
1448 class_err:
1449 #ifdef CONFIG_I2C_COMPAT
1450 class_compat_unregister(i2c_adapter_compat_class);
1451 bus_err:
1452 #endif
1453 bus_unregister(&i2c_bus_type);
1454 return retval;
1455 }
1456
1457 static void __exit i2c_exit(void)
1458 {
1459 i2c_del_driver(&dummy_driver);
1460 #ifdef CONFIG_I2C_COMPAT
1461 class_compat_unregister(i2c_adapter_compat_class);
1462 #endif
1463 bus_unregister(&i2c_bus_type);
1464 }
1465
1466 /* We must initialize early, because some subsystems register i2c drivers
1467 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1468 */
1469 postcore_initcall(i2c_init);
1470 module_exit(i2c_exit);
1471
1472 /* ----------------------------------------------------
1473 * the functional interface to the i2c busses.
1474 * ----------------------------------------------------
1475 */
1476
1477 /**
1478 * __i2c_transfer - unlocked flavor of i2c_transfer
1479 * @adap: Handle to I2C bus
1480 * @msgs: One or more messages to execute before STOP is issued to
1481 * terminate the operation; each message begins with a START.
1482 * @num: Number of messages to be executed.
1483 *
1484 * Returns negative errno, else the number of messages executed.
1485 *
1486 * Adapter lock must be held when calling this function. No debug logging
1487 * takes place. adap->algo->master_xfer existence isn't checked.
1488 */
1489 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1490 {
1491 unsigned long orig_jiffies;
1492 int ret, try;
1493
1494 /* Retry automatically on arbitration loss */
1495 orig_jiffies = jiffies;
1496 for (ret = 0, try = 0; try <= adap->retries; try++) {
1497 ret = adap->algo->master_xfer(adap, msgs, num);
1498 if (ret != -EAGAIN)
1499 break;
1500 if (time_after(jiffies, orig_jiffies + adap->timeout))
1501 break;
1502 }
1503
1504 return ret;
1505 }
1506 EXPORT_SYMBOL(__i2c_transfer);
1507
1508 /**
1509 * i2c_transfer - execute a single or combined I2C message
1510 * @adap: Handle to I2C bus
1511 * @msgs: One or more messages to execute before STOP is issued to
1512 * terminate the operation; each message begins with a START.
1513 * @num: Number of messages to be executed.
1514 *
1515 * Returns negative errno, else the number of messages executed.
1516 *
1517 * Note that there is no requirement that each message be sent to
1518 * the same slave address, although that is the most common model.
1519 */
1520 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1521 {
1522 int ret;
1523
1524 /* REVISIT the fault reporting model here is weak:
1525 *
1526 * - When we get an error after receiving N bytes from a slave,
1527 * there is no way to report "N".
1528 *
1529 * - When we get a NAK after transmitting N bytes to a slave,
1530 * there is no way to report "N" ... or to let the master
1531 * continue executing the rest of this combined message, if
1532 * that's the appropriate response.
1533 *
1534 * - When for example "num" is two and we successfully complete
1535 * the first message but get an error part way through the
1536 * second, it's unclear whether that should be reported as
1537 * one (discarding status on the second message) or errno
1538 * (discarding status on the first one).
1539 */
1540
1541 if (adap->algo->master_xfer) {
1542 #ifdef DEBUG
1543 for (ret = 0; ret < num; ret++) {
1544 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1545 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1546 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1547 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1548 }
1549 #endif
1550
1551 if (in_atomic() || irqs_disabled()) {
1552 ret = i2c_trylock_adapter(adap);
1553 if (!ret)
1554 /* I2C activity is ongoing. */
1555 return -EAGAIN;
1556 } else {
1557 i2c_lock_adapter(adap);
1558 }
1559
1560 ret = __i2c_transfer(adap, msgs, num);
1561 i2c_unlock_adapter(adap);
1562
1563 return ret;
1564 } else {
1565 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1566 return -EOPNOTSUPP;
1567 }
1568 }
1569 EXPORT_SYMBOL(i2c_transfer);
1570
1571 /**
1572 * i2c_master_send - issue a single I2C message in master transmit mode
1573 * @client: Handle to slave device
1574 * @buf: Data that will be written to the slave
1575 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1576 *
1577 * Returns negative errno, or else the number of bytes written.
1578 */
1579 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1580 {
1581 int ret;
1582 struct i2c_adapter *adap = client->adapter;
1583 struct i2c_msg msg;
1584
1585 msg.addr = client->addr;
1586 msg.flags = client->flags & I2C_M_TEN;
1587 msg.len = count;
1588 msg.buf = (char *)buf;
1589 #ifdef USE_I2C_MTK_EXT
1590 msg.timing = client->timing;
1591 msg.ext_flag = client->ext_flag;
1592 #endif
1593 ret = i2c_transfer(adap, &msg, 1);
1594
1595 /*
1596 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1597 * transmitted, else error code.
1598 */
1599 return (ret == 1) ? count : ret;
1600 }
1601 EXPORT_SYMBOL(i2c_master_send);
1602
1603 /**
1604 * i2c_master_recv - issue a single I2C message in master receive mode
1605 * @client: Handle to slave device
1606 * @buf: Where to store data read from slave
1607 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1608 *
1609 * Returns negative errno, or else the number of bytes read.
1610 */
1611 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1612 {
1613 struct i2c_adapter *adap = client->adapter;
1614 struct i2c_msg msg;
1615 int ret;
1616
1617 msg.addr = client->addr;
1618 msg.flags = client->flags & I2C_M_TEN;
1619 msg.flags |= I2C_M_RD;
1620 msg.len = count;
1621 msg.buf = buf;
1622 #ifdef USE_I2C_MTK_EXT
1623 msg.timing = client->timing;
1624 msg.ext_flag = client->ext_flag;
1625 #endif
1626 ret = i2c_transfer(adap, &msg, 1);
1627
1628 /*
1629 * If everything went ok (i.e. 1 msg received), return #bytes received,
1630 * else error code.
1631 */
1632 return (ret == 1) ? count : ret;
1633 }
1634 EXPORT_SYMBOL(i2c_master_recv);
1635
1636 #ifdef USE_I2C_MTK_EXT
1637
1638 /**
1639 * mt_i2c_master_send - issue a single I2C message in master transmit mode
1640 * @client: Handle to slave device
1641 * @buf: Data that will be written to the slave
1642 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1643 * @ext_flag: Controller special flags, for example, if you want using DMA, ext_flag |= I2C_DMA_FLAG.
1644 * is the same to client->ext_flag
1645 *
1646 * Returns negative errno, or else the number of bytes written.
1647 */
1648 int mt_i2c_master_send(const struct i2c_client *client, const char *buf, int count, u32 ext_flag)
1649 {
1650 int ret;
1651 struct i2c_adapter *adap = client->adapter;
1652 struct i2c_msg msg;
1653
1654 msg.addr = client->addr;
1655 msg.flags = client->flags & I2C_M_TEN;
1656 msg.timing = client->timing;
1657 msg.len = count;
1658 msg.buf = (char *)buf;
1659 msg.ext_flag = ext_flag;
1660 ret = i2c_transfer(adap, &msg, 1);
1661
1662 /*
1663 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1664 * transmitted, else error code.
1665 */
1666 return (ret == 1) ? count : ret;
1667 }
1668 EXPORT_SYMBOL(mt_i2c_master_send);
1669
1670 /**
1671 * i2c_master_recv - issue a single I2C message in master receive mode
1672 * @client: Handle to slave device
1673 * @buf: Where to store data read from slave
1674 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1675 * @ext_flag: Controller special flags, for example, if you want using DMA, ext_flag |= I2C_DMA_FLAG.
1676 * is the same to client->ext_flag
1677 *
1678 * Returns negative errno, or else the number of bytes read.
1679 */
1680 int mt_i2c_master_recv(const struct i2c_client *client, char *buf, int count, u32 ext_flag)
1681 {
1682 struct i2c_adapter *adap = client->adapter;
1683 struct i2c_msg msg;
1684 int ret;
1685
1686 msg.addr = client->addr;
1687 msg.flags = client->flags & I2C_M_TEN;
1688 msg.flags |= I2C_M_RD;
1689 msg.timing = client->timing;
1690 msg.len = count;
1691 msg.buf = buf;
1692 msg.ext_flag = ext_flag;
1693 ret = i2c_transfer(adap, &msg, 1);
1694
1695 /*
1696 * If everything went ok (i.e. 1 msg received), return #bytes received,
1697 * else error code.
1698 */
1699 return (ret == 1) ? count : ret;
1700 }
1701 EXPORT_SYMBOL(mt_i2c_master_recv);
1702 #endif
1703 /* ----------------------------------------------------
1704 * the i2c address scanning function
1705 * Will not work for 10-bit addresses!
1706 * ----------------------------------------------------
1707 */
1708
1709 /*
1710 * Legacy default probe function, mostly relevant for SMBus. The default
1711 * probe method is a quick write, but it is known to corrupt the 24RF08
1712 * EEPROMs due to a state machine bug, and could also irreversibly
1713 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1714 * we use a short byte read instead. Also, some bus drivers don't implement
1715 * quick write, so we fallback to a byte read in that case too.
1716 * On x86, there is another special case for FSC hardware monitoring chips,
1717 * which want regular byte reads (address 0x73.) Fortunately, these are the
1718 * only known chips using this I2C address on PC hardware.
1719 * Returns 1 if probe succeeded, 0 if not.
1720 */
1721 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1722 {
1723 int err;
1724 union i2c_smbus_data dummy;
1725
1726 #ifdef CONFIG_X86
1727 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1728 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1729 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1730 I2C_SMBUS_BYTE_DATA, &dummy);
1731 else
1732 #endif
1733 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1734 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1735 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1736 I2C_SMBUS_QUICK, NULL);
1737 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1738 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1739 I2C_SMBUS_BYTE, &dummy);
1740 else {
1741 dev_warn(&adap->dev, "No suitable probing method supported\n");
1742 err = -EOPNOTSUPP;
1743 }
1744
1745 return err >= 0;
1746 }
1747
1748 static int i2c_detect_address(struct i2c_client *temp_client,
1749 struct i2c_driver *driver)
1750 {
1751 struct i2c_board_info info;
1752 struct i2c_adapter *adapter = temp_client->adapter;
1753 int addr = temp_client->addr;
1754 int err;
1755
1756 /* Make sure the address is valid */
1757 err = i2c_check_addr_validity(addr);
1758 if (err) {
1759 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1760 addr);
1761 return err;
1762 }
1763
1764 /* Skip if already in use */
1765 if (i2c_check_addr_busy(adapter, addr))
1766 return 0;
1767
1768 /* Make sure there is something at this address */
1769 if (!i2c_default_probe(adapter, addr))
1770 return 0;
1771
1772 /* Finally call the custom detection function */
1773 memset(&info, 0, sizeof(struct i2c_board_info));
1774 info.addr = addr;
1775 err = driver->detect(temp_client, &info);
1776 if (err) {
1777 /* -ENODEV is returned if the detection fails. We catch it
1778 here as this isn't an error. */
1779 return err == -ENODEV ? 0 : err;
1780 }
1781
1782 /* Consistency check */
1783 if (info.type[0] == '\0') {
1784 dev_err(&adapter->dev, "%s detection function provided "
1785 "no name for 0x%x\n", driver->driver.name,
1786 addr);
1787 } else {
1788 struct i2c_client *client;
1789
1790 /* Detection succeeded, instantiate the device */
1791 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1792 info.type, info.addr);
1793 client = i2c_new_device(adapter, &info);
1794 if (client)
1795 list_add_tail(&client->detected, &driver->clients);
1796 else
1797 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1798 info.type, info.addr);
1799 }
1800 return 0;
1801 }
1802
1803 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1804 {
1805 const unsigned short *address_list;
1806 struct i2c_client *temp_client;
1807 int i, err = 0;
1808 int adap_id = i2c_adapter_id(adapter);
1809
1810 address_list = driver->address_list;
1811 if (!driver->detect || !address_list)
1812 return 0;
1813
1814 /* Stop here if the classes do not match */
1815 if (!(adapter->class & driver->class))
1816 return 0;
1817
1818 /* Set up a temporary client to help detect callback */
1819 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1820 if (!temp_client)
1821 return -ENOMEM;
1822 temp_client->adapter = adapter;
1823
1824 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1825 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1826 "addr 0x%02x\n", adap_id, address_list[i]);
1827 temp_client->addr = address_list[i];
1828 err = i2c_detect_address(temp_client, driver);
1829 if (unlikely(err))
1830 break;
1831 }
1832
1833 kfree(temp_client);
1834 return err;
1835 }
1836
1837 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1838 {
1839 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1840 I2C_SMBUS_QUICK, NULL) >= 0;
1841 }
1842 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1843
1844 struct i2c_client *
1845 i2c_new_probed_device(struct i2c_adapter *adap,
1846 struct i2c_board_info *info,
1847 unsigned short const *addr_list,
1848 int (*probe)(struct i2c_adapter *, unsigned short addr))
1849 {
1850 int i;
1851
1852 if (!probe)
1853 probe = i2c_default_probe;
1854
1855 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1856 /* Check address validity */
1857 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1858 dev_warn(&adap->dev, "Invalid 7-bit address "
1859 "0x%02x\n", addr_list[i]);
1860 continue;
1861 }
1862
1863 /* Check address availability */
1864 if (i2c_check_addr_busy(adap, addr_list[i])) {
1865 dev_dbg(&adap->dev, "Address 0x%02x already in "
1866 "use, not probing\n", addr_list[i]);
1867 continue;
1868 }
1869
1870 /* Test address responsiveness */
1871 if (probe(adap, addr_list[i]))
1872 break;
1873 }
1874
1875 if (addr_list[i] == I2C_CLIENT_END) {
1876 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1877 return NULL;
1878 }
1879
1880 info->addr = addr_list[i];
1881 return i2c_new_device(adap, info);
1882 }
1883 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1884
1885 struct i2c_adapter *i2c_get_adapter(int nr)
1886 {
1887 struct i2c_adapter *adapter;
1888
1889 mutex_lock(&core_lock);
1890 adapter = idr_find(&i2c_adapter_idr, nr);
1891 if (adapter && !try_module_get(adapter->owner))
1892 adapter = NULL;
1893
1894 mutex_unlock(&core_lock);
1895 return adapter;
1896 }
1897 EXPORT_SYMBOL(i2c_get_adapter);
1898
1899 void i2c_put_adapter(struct i2c_adapter *adap)
1900 {
1901 module_put(adap->owner);
1902 }
1903 EXPORT_SYMBOL(i2c_put_adapter);
1904
1905 /* The SMBus parts */
1906
1907 #define POLY (0x1070U << 3)
1908 static u8 crc8(u16 data)
1909 {
1910 int i;
1911
1912 for (i = 0; i < 8; i++) {
1913 if (data & 0x8000)
1914 data = data ^ POLY;
1915 data = data << 1;
1916 }
1917 return (u8)(data >> 8);
1918 }
1919
1920 /* Incremental CRC8 over count bytes in the array pointed to by p */
1921 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1922 {
1923 int i;
1924
1925 for (i = 0; i < count; i++)
1926 crc = crc8((crc ^ p[i]) << 8);
1927 return crc;
1928 }
1929
1930 /* Assume a 7-bit address, which is reasonable for SMBus */
1931 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1932 {
1933 /* The address will be sent first */
1934 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1935 pec = i2c_smbus_pec(pec, &addr, 1);
1936
1937 /* The data buffer follows */
1938 return i2c_smbus_pec(pec, msg->buf, msg->len);
1939 }
1940
1941 /* Used for write only transactions */
1942 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1943 {
1944 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1945 msg->len++;
1946 }
1947
1948 /* Return <0 on CRC error
1949 If there was a write before this read (most cases) we need to take the
1950 partial CRC from the write part into account.
1951 Note that this function does modify the message (we need to decrease the
1952 message length to hide the CRC byte from the caller). */
1953 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1954 {
1955 u8 rpec = msg->buf[--msg->len];
1956 cpec = i2c_smbus_msg_pec(cpec, msg);
1957
1958 if (rpec != cpec) {
1959 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1960 rpec, cpec);
1961 return -EBADMSG;
1962 }
1963 return 0;
1964 }
1965
1966 /**
1967 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1968 * @client: Handle to slave device
1969 *
1970 * This executes the SMBus "receive byte" protocol, returning negative errno
1971 * else the byte received from the device.
1972 */
1973 s32 i2c_smbus_read_byte(const struct i2c_client *client)
1974 {
1975 union i2c_smbus_data data;
1976 int status;
1977
1978 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1979 I2C_SMBUS_READ, 0,
1980 I2C_SMBUS_BYTE, &data);
1981 return (status < 0) ? status : data.byte;
1982 }
1983 EXPORT_SYMBOL(i2c_smbus_read_byte);
1984
1985 /**
1986 * i2c_smbus_write_byte - SMBus "send byte" protocol
1987 * @client: Handle to slave device
1988 * @value: Byte to be sent
1989 *
1990 * This executes the SMBus "send byte" protocol, returning negative errno
1991 * else zero on success.
1992 */
1993 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
1994 {
1995 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1996 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1997 }
1998 EXPORT_SYMBOL(i2c_smbus_write_byte);
1999
2000 /**
2001 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
2002 * @client: Handle to slave device
2003 * @command: Byte interpreted by slave
2004 *
2005 * This executes the SMBus "read byte" protocol, returning negative errno
2006 * else a data byte received from the device.
2007 */
2008 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
2009 {
2010 union i2c_smbus_data data;
2011 int status;
2012
2013 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2014 I2C_SMBUS_READ, command,
2015 I2C_SMBUS_BYTE_DATA, &data);
2016 return (status < 0) ? status : data.byte;
2017 }
2018 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
2019
2020 /**
2021 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
2022 * @client: Handle to slave device
2023 * @command: Byte interpreted by slave
2024 * @value: Byte being written
2025 *
2026 * This executes the SMBus "write byte" protocol, returning negative errno
2027 * else zero on success.
2028 */
2029 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
2030 u8 value)
2031 {
2032 union i2c_smbus_data data;
2033 data.byte = value;
2034 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2035 I2C_SMBUS_WRITE, command,
2036 I2C_SMBUS_BYTE_DATA, &data);
2037 }
2038 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
2039
2040 /**
2041 * i2c_smbus_read_word_data - SMBus "read word" protocol
2042 * @client: Handle to slave device
2043 * @command: Byte interpreted by slave
2044 *
2045 * This executes the SMBus "read word" protocol, returning negative errno
2046 * else a 16-bit unsigned "word" received from the device.
2047 */
2048 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
2049 {
2050 union i2c_smbus_data data;
2051 int status;
2052
2053 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2054 I2C_SMBUS_READ, command,
2055 I2C_SMBUS_WORD_DATA, &data);
2056 return (status < 0) ? status : data.word;
2057 }
2058 EXPORT_SYMBOL(i2c_smbus_read_word_data);
2059
2060 /**
2061 * i2c_smbus_write_word_data - SMBus "write word" protocol
2062 * @client: Handle to slave device
2063 * @command: Byte interpreted by slave
2064 * @value: 16-bit "word" being written
2065 *
2066 * This executes the SMBus "write word" protocol, returning negative errno
2067 * else zero on success.
2068 */
2069 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
2070 u16 value)
2071 {
2072 union i2c_smbus_data data;
2073 data.word = value;
2074 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2075 I2C_SMBUS_WRITE, command,
2076 I2C_SMBUS_WORD_DATA, &data);
2077 }
2078 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2079
2080 /**
2081 * i2c_smbus_read_block_data - SMBus "block read" protocol
2082 * @client: Handle to slave device
2083 * @command: Byte interpreted by slave
2084 * @values: Byte array into which data will be read; big enough to hold
2085 * the data returned by the slave. SMBus allows at most 32 bytes.
2086 *
2087 * This executes the SMBus "block read" protocol, returning negative errno
2088 * else the number of data bytes in the slave's response.
2089 *
2090 * Note that using this function requires that the client's adapter support
2091 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2092 * support this; its emulation through I2C messaging relies on a specific
2093 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2094 */
2095 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2096 u8 *values)
2097 {
2098 union i2c_smbus_data data;
2099 int status;
2100
2101 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2102 I2C_SMBUS_READ, command,
2103 I2C_SMBUS_BLOCK_DATA, &data);
2104 if (status)
2105 return status;
2106
2107 memcpy(values, &data.block[1], data.block[0]);
2108 return data.block[0];
2109 }
2110 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2111
2112 /**
2113 * i2c_smbus_write_block_data - SMBus "block write" protocol
2114 * @client: Handle to slave device
2115 * @command: Byte interpreted by slave
2116 * @length: Size of data block; SMBus allows at most 32 bytes
2117 * @values: Byte array which will be written.
2118 *
2119 * This executes the SMBus "block write" protocol, returning negative errno
2120 * else zero on success.
2121 */
2122 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2123 u8 length, const u8 *values)
2124 {
2125 union i2c_smbus_data data;
2126
2127 if (length > I2C_SMBUS_BLOCK_MAX)
2128 length = I2C_SMBUS_BLOCK_MAX;
2129 data.block[0] = length;
2130 memcpy(&data.block[1], values, length);
2131 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2132 I2C_SMBUS_WRITE, command,
2133 I2C_SMBUS_BLOCK_DATA, &data);
2134 }
2135 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2136
2137 /* Returns the number of read bytes */
2138 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2139 u8 length, u8 *values)
2140 {
2141 union i2c_smbus_data data;
2142 int status;
2143
2144 if (length > I2C_SMBUS_BLOCK_MAX)
2145 length = I2C_SMBUS_BLOCK_MAX;
2146 data.block[0] = length;
2147 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2148 I2C_SMBUS_READ, command,
2149 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2150 if (status < 0)
2151 return status;
2152
2153 memcpy(values, &data.block[1], data.block[0]);
2154 return data.block[0];
2155 }
2156 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2157
2158 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2159 u8 length, const u8 *values)
2160 {
2161 union i2c_smbus_data data;
2162
2163 if (length > I2C_SMBUS_BLOCK_MAX)
2164 length = I2C_SMBUS_BLOCK_MAX;
2165 data.block[0] = length;
2166 memcpy(data.block + 1, values, length);
2167 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2168 I2C_SMBUS_WRITE, command,
2169 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2170 }
2171 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2172
2173 /* Simulate a SMBus command using the i2c protocol
2174 No checking of parameters is done! */
2175 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2176 unsigned short flags,
2177 char read_write, u8 command, int size,
2178 union i2c_smbus_data *data)
2179 {
2180 /* So we need to generate a series of msgs. In the case of writing, we
2181 need to use only one message; when reading, we need two. We initialize
2182 most things with sane defaults, to keep the code below somewhat
2183 simpler. */
2184 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2185 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2186 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2187 int i;
2188 u8 partial_pec = 0;
2189 int status;
2190 struct i2c_msg msg[2] = {
2191 {
2192 .addr = addr,
2193 .flags = flags,
2194 .len = 1,
2195 .buf = msgbuf0,
2196 }, {
2197 .addr = addr,
2198 .flags = flags | I2C_M_RD,
2199 .len = 0,
2200 .buf = msgbuf1,
2201 },
2202 };
2203
2204 msgbuf0[0] = command;
2205 switch (size) {
2206 case I2C_SMBUS_QUICK:
2207 msg[0].len = 0;
2208 /* Special case: The read/write field is used as data */
2209 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2210 I2C_M_RD : 0);
2211 num = 1;
2212 break;
2213 case I2C_SMBUS_BYTE:
2214 if (read_write == I2C_SMBUS_READ) {
2215 /* Special case: only a read! */
2216 msg[0].flags = I2C_M_RD | flags;
2217 num = 1;
2218 }
2219 break;
2220 case I2C_SMBUS_BYTE_DATA:
2221 if (read_write == I2C_SMBUS_READ)
2222 msg[1].len = 1;
2223 else {
2224 msg[0].len = 2;
2225 msgbuf0[1] = data->byte;
2226 }
2227 break;
2228 case I2C_SMBUS_WORD_DATA:
2229 if (read_write == I2C_SMBUS_READ)
2230 msg[1].len = 2;
2231 else {
2232 msg[0].len = 3;
2233 msgbuf0[1] = data->word & 0xff;
2234 msgbuf0[2] = data->word >> 8;
2235 }
2236 break;
2237 case I2C_SMBUS_PROC_CALL:
2238 num = 2; /* Special case */
2239 read_write = I2C_SMBUS_READ;
2240 msg[0].len = 3;
2241 msg[1].len = 2;
2242 msgbuf0[1] = data->word & 0xff;
2243 msgbuf0[2] = data->word >> 8;
2244 break;
2245 case I2C_SMBUS_BLOCK_DATA:
2246 if (read_write == I2C_SMBUS_READ) {
2247 msg[1].flags |= I2C_M_RECV_LEN;
2248 msg[1].len = 1; /* block length will be added by
2249 the underlying bus driver */
2250 } else {
2251 msg[0].len = data->block[0] + 2;
2252 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2253 dev_err(&adapter->dev,
2254 "Invalid block write size %d\n",
2255 data->block[0]);
2256 return -EINVAL;
2257 }
2258 for (i = 1; i < msg[0].len; i++)
2259 msgbuf0[i] = data->block[i-1];
2260 }
2261 break;
2262 case I2C_SMBUS_BLOCK_PROC_CALL:
2263 num = 2; /* Another special case */
2264 read_write = I2C_SMBUS_READ;
2265 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2266 dev_err(&adapter->dev,
2267 "Invalid block write size %d\n",
2268 data->block[0]);
2269 return -EINVAL;
2270 }
2271 msg[0].len = data->block[0] + 2;
2272 for (i = 1; i < msg[0].len; i++)
2273 msgbuf0[i] = data->block[i-1];
2274 msg[1].flags |= I2C_M_RECV_LEN;
2275 msg[1].len = 1; /* block length will be added by
2276 the underlying bus driver */
2277 break;
2278 case I2C_SMBUS_I2C_BLOCK_DATA:
2279 if (read_write == I2C_SMBUS_READ) {
2280 msg[1].len = data->block[0];
2281 } else {
2282 msg[0].len = data->block[0] + 1;
2283 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2284 dev_err(&adapter->dev,
2285 "Invalid block write size %d\n",
2286 data->block[0]);
2287 return -EINVAL;
2288 }
2289 for (i = 1; i <= data->block[0]; i++)
2290 msgbuf0[i] = data->block[i];
2291 }
2292 break;
2293 default:
2294 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2295 return -EOPNOTSUPP;
2296 }
2297
2298 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2299 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2300 if (i) {
2301 /* Compute PEC if first message is a write */
2302 if (!(msg[0].flags & I2C_M_RD)) {
2303 if (num == 1) /* Write only */
2304 i2c_smbus_add_pec(&msg[0]);
2305 else /* Write followed by read */
2306 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2307 }
2308 /* Ask for PEC if last message is a read */
2309 if (msg[num-1].flags & I2C_M_RD)
2310 msg[num-1].len++;
2311 }
2312
2313 status = i2c_transfer(adapter, msg, num);
2314 if (status < 0)
2315 return status;
2316
2317 /* Check PEC if last message is a read */
2318 if (i && (msg[num-1].flags & I2C_M_RD)) {
2319 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2320 if (status < 0)
2321 return status;
2322 }
2323
2324 if (read_write == I2C_SMBUS_READ)
2325 switch (size) {
2326 case I2C_SMBUS_BYTE:
2327 data->byte = msgbuf0[0];
2328 break;
2329 case I2C_SMBUS_BYTE_DATA:
2330 data->byte = msgbuf1[0];
2331 break;
2332 case I2C_SMBUS_WORD_DATA:
2333 case I2C_SMBUS_PROC_CALL:
2334 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2335 break;
2336 case I2C_SMBUS_I2C_BLOCK_DATA:
2337 for (i = 0; i < data->block[0]; i++)
2338 data->block[i+1] = msgbuf1[i];
2339 break;
2340 case I2C_SMBUS_BLOCK_DATA:
2341 case I2C_SMBUS_BLOCK_PROC_CALL:
2342 for (i = 0; i < msgbuf1[0] + 1; i++)
2343 data->block[i] = msgbuf1[i];
2344 break;
2345 }
2346 return 0;
2347 }
2348
2349 /**
2350 * i2c_smbus_xfer - execute SMBus protocol operations
2351 * @adapter: Handle to I2C bus
2352 * @addr: Address of SMBus slave on that bus
2353 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2354 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2355 * @command: Byte interpreted by slave, for protocols which use such bytes
2356 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2357 * @data: Data to be read or written
2358 *
2359 * This executes an SMBus protocol operation, and returns a negative
2360 * errno code else zero on success.
2361 */
2362 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2363 char read_write, u8 command, int protocol,
2364 union i2c_smbus_data *data)
2365 {
2366 unsigned long orig_jiffies;
2367 int try;
2368 s32 res;
2369
2370 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
2371
2372 if (adapter->algo->smbus_xfer) {
2373 i2c_lock_adapter(adapter);
2374
2375 /* Retry automatically on arbitration loss */
2376 orig_jiffies = jiffies;
2377 for (res = 0, try = 0; try <= adapter->retries; try++) {
2378 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2379 read_write, command,
2380 protocol, data);
2381 if (res != -EAGAIN)
2382 break;
2383 if (time_after(jiffies,
2384 orig_jiffies + adapter->timeout))
2385 break;
2386 }
2387 i2c_unlock_adapter(adapter);
2388
2389 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
2390 return res;
2391 /*
2392 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
2393 * implement native support for the SMBus operation.
2394 */
2395 }
2396
2397 return i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2398 command, protocol, data);
2399 }
2400 EXPORT_SYMBOL(i2c_smbus_xfer);
2401
2402 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2403 MODULE_DESCRIPTION("I2C-Bus main module");
2404 MODULE_LICENSE("GPL");