Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40 struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 if (space < 0)
50 space += ring->size;
51 return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214 {
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281 }
282
283 static int
284 gen7_render_ring_flush(struct intel_ring_buffer *ring,
285 u32 invalidate_domains, u32 flush_domains)
286 {
287 u32 flags = 0;
288 struct pipe_control *pc = ring->private;
289 u32 scratch_addr = pc->gtt_offset + 128;
290 int ret;
291
292 /*
293 * Ensure that any following seqno writes only happen when the render
294 * cache is indeed flushed.
295 *
296 * Workaround: 4th PIPE_CONTROL command (except the ones with only
297 * read-cache invalidate bits set) must have the CS_STALL bit set. We
298 * don't try to be clever and just set it unconditionally.
299 */
300 flags |= PIPE_CONTROL_CS_STALL;
301
302 /* Just flush everything. Experiments have shown that reducing the
303 * number of bits based on the write domains has little performance
304 * impact.
305 */
306 if (flush_domains) {
307 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
308 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
309 }
310 if (invalidate_domains) {
311 flags |= PIPE_CONTROL_TLB_INVALIDATE;
312 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
317 /*
318 * TLB invalidate requires a post-sync write.
319 */
320 flags |= PIPE_CONTROL_QW_WRITE;
321 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322
323 /* Workaround: we must issue a pipe_control with CS-stall bit
324 * set before a pipe_control command that has the state cache
325 * invalidate bit set. */
326 gen7_render_ring_cs_stall_wa(ring);
327 }
328
329 ret = intel_ring_begin(ring, 4);
330 if (ret)
331 return ret;
332
333 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
334 intel_ring_emit(ring, flags);
335 intel_ring_emit(ring, scratch_addr);
336 intel_ring_emit(ring, 0);
337 intel_ring_advance(ring);
338
339 return 0;
340 }
341
342 static void ring_write_tail(struct intel_ring_buffer *ring,
343 u32 value)
344 {
345 drm_i915_private_t *dev_priv = ring->dev->dev_private;
346 I915_WRITE_TAIL(ring, value);
347 }
348
349 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
350 {
351 drm_i915_private_t *dev_priv = ring->dev->dev_private;
352 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
353 RING_ACTHD(ring->mmio_base) : ACTHD;
354
355 return I915_READ(acthd_reg);
356 }
357
358 static int init_ring_common(struct intel_ring_buffer *ring)
359 {
360 struct drm_device *dev = ring->dev;
361 drm_i915_private_t *dev_priv = dev->dev_private;
362 struct drm_i915_gem_object *obj = ring->obj;
363 int ret = 0;
364 u32 head;
365
366 if (HAS_FORCE_WAKE(dev))
367 gen6_gt_force_wake_get(dev_priv);
368
369 /* Stop the ring if it's running. */
370 I915_WRITE_CTL(ring, 0);
371 I915_WRITE_HEAD(ring, 0);
372 ring->write_tail(ring, 0);
373
374 head = I915_READ_HEAD(ring) & HEAD_ADDR;
375
376 /* G45 ring initialization fails to reset head to zero */
377 if (head != 0) {
378 DRM_DEBUG_KMS("%s head not reset to zero "
379 "ctl %08x head %08x tail %08x start %08x\n",
380 ring->name,
381 I915_READ_CTL(ring),
382 I915_READ_HEAD(ring),
383 I915_READ_TAIL(ring),
384 I915_READ_START(ring));
385
386 I915_WRITE_HEAD(ring, 0);
387
388 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
389 DRM_ERROR("failed to set %s head to zero "
390 "ctl %08x head %08x tail %08x start %08x\n",
391 ring->name,
392 I915_READ_CTL(ring),
393 I915_READ_HEAD(ring),
394 I915_READ_TAIL(ring),
395 I915_READ_START(ring));
396 }
397 }
398
399 /* Initialize the ring. This must happen _after_ we've cleared the ring
400 * registers with the above sequence (the readback of the HEAD registers
401 * also enforces ordering), otherwise the hw might lose the new ring
402 * register values. */
403 I915_WRITE_START(ring, obj->gtt_offset);
404 I915_WRITE_CTL(ring,
405 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
406 | RING_VALID);
407
408 /* If the head is still not zero, the ring is dead */
409 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
410 I915_READ_START(ring) == obj->gtt_offset &&
411 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
412 DRM_ERROR("%s initialization failed "
413 "ctl %08x head %08x tail %08x start %08x\n",
414 ring->name,
415 I915_READ_CTL(ring),
416 I915_READ_HEAD(ring),
417 I915_READ_TAIL(ring),
418 I915_READ_START(ring));
419 ret = -EIO;
420 goto out;
421 }
422
423 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
424 i915_kernel_lost_context(ring->dev);
425 else {
426 ring->head = I915_READ_HEAD(ring);
427 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
428 ring->space = ring_space(ring);
429 ring->last_retired_head = -1;
430 }
431
432 out:
433 if (HAS_FORCE_WAKE(dev))
434 gen6_gt_force_wake_put(dev_priv);
435
436 return ret;
437 }
438
439 static int
440 init_pipe_control(struct intel_ring_buffer *ring)
441 {
442 struct pipe_control *pc;
443 struct drm_i915_gem_object *obj;
444 int ret;
445
446 if (ring->private)
447 return 0;
448
449 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
450 if (!pc)
451 return -ENOMEM;
452
453 obj = i915_gem_alloc_object(ring->dev, 4096);
454 if (obj == NULL) {
455 DRM_ERROR("Failed to allocate seqno page\n");
456 ret = -ENOMEM;
457 goto err;
458 }
459
460 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
461
462 ret = i915_gem_object_pin(obj, 4096, true, false);
463 if (ret)
464 goto err_unref;
465
466 pc->gtt_offset = obj->gtt_offset;
467 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
468 if (pc->cpu_page == NULL)
469 goto err_unpin;
470
471 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
472 ring->name, pc->gtt_offset);
473
474 pc->obj = obj;
475 ring->private = pc;
476 return 0;
477
478 err_unpin:
479 i915_gem_object_unpin(obj);
480 err_unref:
481 drm_gem_object_unreference(&obj->base);
482 err:
483 kfree(pc);
484 return ret;
485 }
486
487 static void
488 cleanup_pipe_control(struct intel_ring_buffer *ring)
489 {
490 struct pipe_control *pc = ring->private;
491 struct drm_i915_gem_object *obj;
492
493 if (!ring->private)
494 return;
495
496 obj = pc->obj;
497
498 kunmap(sg_page(obj->pages->sgl));
499 i915_gem_object_unpin(obj);
500 drm_gem_object_unreference(&obj->base);
501
502 kfree(pc);
503 ring->private = NULL;
504 }
505
506 static int init_render_ring(struct intel_ring_buffer *ring)
507 {
508 struct drm_device *dev = ring->dev;
509 struct drm_i915_private *dev_priv = dev->dev_private;
510 int ret = init_ring_common(ring);
511
512 if (INTEL_INFO(dev)->gen > 3)
513 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
514
515 /* We need to disable the AsyncFlip performance optimisations in order
516 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
517 * programmed to '1' on all products.
518 */
519 if (INTEL_INFO(dev)->gen >= 6)
520 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
521
522 /* Required for the hardware to program scanline values for waiting */
523 if (INTEL_INFO(dev)->gen == 6)
524 I915_WRITE(GFX_MODE,
525 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
526
527 if (IS_GEN7(dev))
528 I915_WRITE(GFX_MODE_GEN7,
529 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
530 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
531
532 if (INTEL_INFO(dev)->gen >= 5) {
533 ret = init_pipe_control(ring);
534 if (ret)
535 return ret;
536 }
537
538 if (IS_GEN6(dev)) {
539 /* From the Sandybridge PRM, volume 1 part 3, page 24:
540 * "If this bit is set, STCunit will have LRA as replacement
541 * policy. [...] This bit must be reset. LRA replacement
542 * policy is not supported."
543 */
544 I915_WRITE(CACHE_MODE_0,
545 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
546
547 /* This is not explicitly set for GEN6, so read the register.
548 * see intel_ring_mi_set_context() for why we care.
549 * TODO: consider explicitly setting the bit for GEN5
550 */
551 ring->itlb_before_ctx_switch =
552 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
553 }
554
555 if (INTEL_INFO(dev)->gen >= 6)
556 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
557
558 if (HAS_L3_GPU_CACHE(dev))
559 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
560
561 return ret;
562 }
563
564 static void render_ring_cleanup(struct intel_ring_buffer *ring)
565 {
566 struct drm_device *dev = ring->dev;
567
568 if (!ring->private)
569 return;
570
571 if (HAS_BROKEN_CS_TLB(dev))
572 drm_gem_object_unreference(to_gem_object(ring->private));
573
574 cleanup_pipe_control(ring);
575 }
576
577 static void
578 update_mboxes(struct intel_ring_buffer *ring,
579 u32 mmio_offset)
580 {
581 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
582 intel_ring_emit(ring, mmio_offset);
583 intel_ring_emit(ring, ring->outstanding_lazy_request);
584 }
585
586 /**
587 * gen6_add_request - Update the semaphore mailbox registers
588 *
589 * @ring - ring that is adding a request
590 * @seqno - return seqno stuck into the ring
591 *
592 * Update the mailbox registers in the *other* rings with the current seqno.
593 * This acts like a signal in the canonical semaphore.
594 */
595 static int
596 gen6_add_request(struct intel_ring_buffer *ring)
597 {
598 u32 mbox1_reg;
599 u32 mbox2_reg;
600 int ret;
601
602 ret = intel_ring_begin(ring, 10);
603 if (ret)
604 return ret;
605
606 mbox1_reg = ring->signal_mbox[0];
607 mbox2_reg = ring->signal_mbox[1];
608
609 update_mboxes(ring, mbox1_reg);
610 update_mboxes(ring, mbox2_reg);
611 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
612 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
613 intel_ring_emit(ring, ring->outstanding_lazy_request);
614 intel_ring_emit(ring, MI_USER_INTERRUPT);
615 intel_ring_advance(ring);
616
617 return 0;
618 }
619
620 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
621 u32 seqno)
622 {
623 struct drm_i915_private *dev_priv = dev->dev_private;
624 return dev_priv->last_seqno < seqno;
625 }
626
627 /**
628 * intel_ring_sync - sync the waiter to the signaller on seqno
629 *
630 * @waiter - ring that is waiting
631 * @signaller - ring which has, or will signal
632 * @seqno - seqno which the waiter will block on
633 */
634 static int
635 gen6_ring_sync(struct intel_ring_buffer *waiter,
636 struct intel_ring_buffer *signaller,
637 u32 seqno)
638 {
639 int ret;
640 u32 dw1 = MI_SEMAPHORE_MBOX |
641 MI_SEMAPHORE_COMPARE |
642 MI_SEMAPHORE_REGISTER;
643
644 /* Throughout all of the GEM code, seqno passed implies our current
645 * seqno is >= the last seqno executed. However for hardware the
646 * comparison is strictly greater than.
647 */
648 seqno -= 1;
649
650 WARN_ON(signaller->semaphore_register[waiter->id] ==
651 MI_SEMAPHORE_SYNC_INVALID);
652
653 ret = intel_ring_begin(waiter, 4);
654 if (ret)
655 return ret;
656
657 /* If seqno wrap happened, omit the wait with no-ops */
658 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
659 intel_ring_emit(waiter,
660 dw1 |
661 signaller->semaphore_register[waiter->id]);
662 intel_ring_emit(waiter, seqno);
663 intel_ring_emit(waiter, 0);
664 intel_ring_emit(waiter, MI_NOOP);
665 } else {
666 intel_ring_emit(waiter, MI_NOOP);
667 intel_ring_emit(waiter, MI_NOOP);
668 intel_ring_emit(waiter, MI_NOOP);
669 intel_ring_emit(waiter, MI_NOOP);
670 }
671 intel_ring_advance(waiter);
672
673 return 0;
674 }
675
676 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
677 do { \
678 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
679 PIPE_CONTROL_DEPTH_STALL); \
680 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
681 intel_ring_emit(ring__, 0); \
682 intel_ring_emit(ring__, 0); \
683 } while (0)
684
685 static int
686 pc_render_add_request(struct intel_ring_buffer *ring)
687 {
688 struct pipe_control *pc = ring->private;
689 u32 scratch_addr = pc->gtt_offset + 128;
690 int ret;
691
692 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
693 * incoherent with writes to memory, i.e. completely fubar,
694 * so we need to use PIPE_NOTIFY instead.
695 *
696 * However, we also need to workaround the qword write
697 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
698 * memory before requesting an interrupt.
699 */
700 ret = intel_ring_begin(ring, 32);
701 if (ret)
702 return ret;
703
704 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
705 PIPE_CONTROL_WRITE_FLUSH |
706 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
707 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
708 intel_ring_emit(ring, ring->outstanding_lazy_request);
709 intel_ring_emit(ring, 0);
710 PIPE_CONTROL_FLUSH(ring, scratch_addr);
711 scratch_addr += 128; /* write to separate cachelines */
712 PIPE_CONTROL_FLUSH(ring, scratch_addr);
713 scratch_addr += 128;
714 PIPE_CONTROL_FLUSH(ring, scratch_addr);
715 scratch_addr += 128;
716 PIPE_CONTROL_FLUSH(ring, scratch_addr);
717 scratch_addr += 128;
718 PIPE_CONTROL_FLUSH(ring, scratch_addr);
719 scratch_addr += 128;
720 PIPE_CONTROL_FLUSH(ring, scratch_addr);
721
722 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
723 PIPE_CONTROL_WRITE_FLUSH |
724 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
725 PIPE_CONTROL_NOTIFY);
726 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
727 intel_ring_emit(ring, ring->outstanding_lazy_request);
728 intel_ring_emit(ring, 0);
729 intel_ring_advance(ring);
730
731 return 0;
732 }
733
734 static u32
735 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
736 {
737 /* Workaround to force correct ordering between irq and seqno writes on
738 * ivb (and maybe also on snb) by reading from a CS register (like
739 * ACTHD) before reading the status page. */
740 if (!lazy_coherency)
741 intel_ring_get_active_head(ring);
742 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
743 }
744
745 static u32
746 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
747 {
748 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
749 }
750
751 static void
752 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
753 {
754 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
755 }
756
757 static u32
758 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
759 {
760 struct pipe_control *pc = ring->private;
761 return pc->cpu_page[0];
762 }
763
764 static void
765 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
766 {
767 struct pipe_control *pc = ring->private;
768 pc->cpu_page[0] = seqno;
769 }
770
771 static bool
772 gen5_ring_get_irq(struct intel_ring_buffer *ring)
773 {
774 struct drm_device *dev = ring->dev;
775 drm_i915_private_t *dev_priv = dev->dev_private;
776 unsigned long flags;
777
778 if (!dev->irq_enabled)
779 return false;
780
781 spin_lock_irqsave(&dev_priv->irq_lock, flags);
782 if (ring->irq_refcount++ == 0) {
783 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
784 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
785 POSTING_READ(GTIMR);
786 }
787 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
788
789 return true;
790 }
791
792 static void
793 gen5_ring_put_irq(struct intel_ring_buffer *ring)
794 {
795 struct drm_device *dev = ring->dev;
796 drm_i915_private_t *dev_priv = dev->dev_private;
797 unsigned long flags;
798
799 spin_lock_irqsave(&dev_priv->irq_lock, flags);
800 if (--ring->irq_refcount == 0) {
801 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
802 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
803 POSTING_READ(GTIMR);
804 }
805 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
806 }
807
808 static bool
809 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
810 {
811 struct drm_device *dev = ring->dev;
812 drm_i915_private_t *dev_priv = dev->dev_private;
813 unsigned long flags;
814
815 if (!dev->irq_enabled)
816 return false;
817
818 spin_lock_irqsave(&dev_priv->irq_lock, flags);
819 if (ring->irq_refcount++ == 0) {
820 dev_priv->irq_mask &= ~ring->irq_enable_mask;
821 I915_WRITE(IMR, dev_priv->irq_mask);
822 POSTING_READ(IMR);
823 }
824 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
825
826 return true;
827 }
828
829 static void
830 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
831 {
832 struct drm_device *dev = ring->dev;
833 drm_i915_private_t *dev_priv = dev->dev_private;
834 unsigned long flags;
835
836 spin_lock_irqsave(&dev_priv->irq_lock, flags);
837 if (--ring->irq_refcount == 0) {
838 dev_priv->irq_mask |= ring->irq_enable_mask;
839 I915_WRITE(IMR, dev_priv->irq_mask);
840 POSTING_READ(IMR);
841 }
842 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
843 }
844
845 static bool
846 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
847 {
848 struct drm_device *dev = ring->dev;
849 drm_i915_private_t *dev_priv = dev->dev_private;
850 unsigned long flags;
851
852 if (!dev->irq_enabled)
853 return false;
854
855 spin_lock_irqsave(&dev_priv->irq_lock, flags);
856 if (ring->irq_refcount++ == 0) {
857 dev_priv->irq_mask &= ~ring->irq_enable_mask;
858 I915_WRITE16(IMR, dev_priv->irq_mask);
859 POSTING_READ16(IMR);
860 }
861 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
862
863 return true;
864 }
865
866 static void
867 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
868 {
869 struct drm_device *dev = ring->dev;
870 drm_i915_private_t *dev_priv = dev->dev_private;
871 unsigned long flags;
872
873 spin_lock_irqsave(&dev_priv->irq_lock, flags);
874 if (--ring->irq_refcount == 0) {
875 dev_priv->irq_mask |= ring->irq_enable_mask;
876 I915_WRITE16(IMR, dev_priv->irq_mask);
877 POSTING_READ16(IMR);
878 }
879 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
880 }
881
882 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
883 {
884 struct drm_device *dev = ring->dev;
885 drm_i915_private_t *dev_priv = ring->dev->dev_private;
886 u32 mmio = 0;
887
888 /* The ring status page addresses are no longer next to the rest of
889 * the ring registers as of gen7.
890 */
891 if (IS_GEN7(dev)) {
892 switch (ring->id) {
893 case RCS:
894 mmio = RENDER_HWS_PGA_GEN7;
895 break;
896 case BCS:
897 mmio = BLT_HWS_PGA_GEN7;
898 break;
899 case VCS:
900 mmio = BSD_HWS_PGA_GEN7;
901 break;
902 }
903 } else if (IS_GEN6(ring->dev)) {
904 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
905 } else {
906 mmio = RING_HWS_PGA(ring->mmio_base);
907 }
908
909 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
910 POSTING_READ(mmio);
911 }
912
913 static int
914 bsd_ring_flush(struct intel_ring_buffer *ring,
915 u32 invalidate_domains,
916 u32 flush_domains)
917 {
918 int ret;
919
920 ret = intel_ring_begin(ring, 2);
921 if (ret)
922 return ret;
923
924 intel_ring_emit(ring, MI_FLUSH);
925 intel_ring_emit(ring, MI_NOOP);
926 intel_ring_advance(ring);
927 return 0;
928 }
929
930 static int
931 i9xx_add_request(struct intel_ring_buffer *ring)
932 {
933 int ret;
934
935 ret = intel_ring_begin(ring, 4);
936 if (ret)
937 return ret;
938
939 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
940 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
941 intel_ring_emit(ring, ring->outstanding_lazy_request);
942 intel_ring_emit(ring, MI_USER_INTERRUPT);
943 intel_ring_advance(ring);
944
945 return 0;
946 }
947
948 static bool
949 gen6_ring_get_irq(struct intel_ring_buffer *ring)
950 {
951 struct drm_device *dev = ring->dev;
952 drm_i915_private_t *dev_priv = dev->dev_private;
953 unsigned long flags;
954
955 if (!dev->irq_enabled)
956 return false;
957
958 /* It looks like we need to prevent the gt from suspending while waiting
959 * for an notifiy irq, otherwise irqs seem to get lost on at least the
960 * blt/bsd rings on ivb. */
961 gen6_gt_force_wake_get(dev_priv);
962
963 spin_lock_irqsave(&dev_priv->irq_lock, flags);
964 if (ring->irq_refcount++ == 0) {
965 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
966 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
967 GEN6_RENDER_L3_PARITY_ERROR));
968 else
969 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
970 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
971 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
972 POSTING_READ(GTIMR);
973 }
974 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
975
976 return true;
977 }
978
979 static void
980 gen6_ring_put_irq(struct intel_ring_buffer *ring)
981 {
982 struct drm_device *dev = ring->dev;
983 drm_i915_private_t *dev_priv = dev->dev_private;
984 unsigned long flags;
985
986 spin_lock_irqsave(&dev_priv->irq_lock, flags);
987 if (--ring->irq_refcount == 0) {
988 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
989 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
990 else
991 I915_WRITE_IMR(ring, ~0);
992 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
993 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
994 POSTING_READ(GTIMR);
995 }
996 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
997
998 gen6_gt_force_wake_put(dev_priv);
999 }
1000
1001 static int
1002 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1003 u32 offset, u32 length,
1004 unsigned flags)
1005 {
1006 int ret;
1007
1008 ret = intel_ring_begin(ring, 2);
1009 if (ret)
1010 return ret;
1011
1012 intel_ring_emit(ring,
1013 MI_BATCH_BUFFER_START |
1014 MI_BATCH_GTT |
1015 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1016 intel_ring_emit(ring, offset);
1017 intel_ring_advance(ring);
1018
1019 return 0;
1020 }
1021
1022 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1023 #define I830_BATCH_LIMIT (256*1024)
1024 static int
1025 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1026 u32 offset, u32 len,
1027 unsigned flags)
1028 {
1029 int ret;
1030
1031 if (flags & I915_DISPATCH_PINNED) {
1032 ret = intel_ring_begin(ring, 4);
1033 if (ret)
1034 return ret;
1035
1036 intel_ring_emit(ring, MI_BATCH_BUFFER);
1037 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1038 intel_ring_emit(ring, offset + len - 8);
1039 intel_ring_emit(ring, MI_NOOP);
1040 intel_ring_advance(ring);
1041 } else {
1042 struct drm_i915_gem_object *obj = ring->private;
1043 u32 cs_offset = obj->gtt_offset;
1044
1045 if (len > I830_BATCH_LIMIT)
1046 return -ENOSPC;
1047
1048 ret = intel_ring_begin(ring, 9+3);
1049 if (ret)
1050 return ret;
1051 /* Blit the batch (which has now all relocs applied) to the stable batch
1052 * scratch bo area (so that the CS never stumbles over its tlb
1053 * invalidation bug) ... */
1054 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1055 XY_SRC_COPY_BLT_WRITE_ALPHA |
1056 XY_SRC_COPY_BLT_WRITE_RGB);
1057 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1058 intel_ring_emit(ring, 0);
1059 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1060 intel_ring_emit(ring, cs_offset);
1061 intel_ring_emit(ring, 0);
1062 intel_ring_emit(ring, 4096);
1063 intel_ring_emit(ring, offset);
1064 intel_ring_emit(ring, MI_FLUSH);
1065
1066 /* ... and execute it. */
1067 intel_ring_emit(ring, MI_BATCH_BUFFER);
1068 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1069 intel_ring_emit(ring, cs_offset + len - 8);
1070 intel_ring_advance(ring);
1071 }
1072
1073 return 0;
1074 }
1075
1076 static int
1077 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1078 u32 offset, u32 len,
1079 unsigned flags)
1080 {
1081 int ret;
1082
1083 ret = intel_ring_begin(ring, 2);
1084 if (ret)
1085 return ret;
1086
1087 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1088 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1089 intel_ring_advance(ring);
1090
1091 return 0;
1092 }
1093
1094 static void cleanup_status_page(struct intel_ring_buffer *ring)
1095 {
1096 struct drm_i915_gem_object *obj;
1097
1098 obj = ring->status_page.obj;
1099 if (obj == NULL)
1100 return;
1101
1102 kunmap(sg_page(obj->pages->sgl));
1103 i915_gem_object_unpin(obj);
1104 drm_gem_object_unreference(&obj->base);
1105 ring->status_page.obj = NULL;
1106 }
1107
1108 static int init_status_page(struct intel_ring_buffer *ring)
1109 {
1110 struct drm_device *dev = ring->dev;
1111 struct drm_i915_gem_object *obj;
1112 int ret;
1113
1114 obj = i915_gem_alloc_object(dev, 4096);
1115 if (obj == NULL) {
1116 DRM_ERROR("Failed to allocate status page\n");
1117 ret = -ENOMEM;
1118 goto err;
1119 }
1120
1121 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1122
1123 ret = i915_gem_object_pin(obj, 4096, true, false);
1124 if (ret != 0) {
1125 goto err_unref;
1126 }
1127
1128 ring->status_page.gfx_addr = obj->gtt_offset;
1129 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1130 if (ring->status_page.page_addr == NULL) {
1131 ret = -ENOMEM;
1132 goto err_unpin;
1133 }
1134 ring->status_page.obj = obj;
1135 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1136
1137 intel_ring_setup_status_page(ring);
1138 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1139 ring->name, ring->status_page.gfx_addr);
1140
1141 return 0;
1142
1143 err_unpin:
1144 i915_gem_object_unpin(obj);
1145 err_unref:
1146 drm_gem_object_unreference(&obj->base);
1147 err:
1148 return ret;
1149 }
1150
1151 static int init_phys_hws_pga(struct intel_ring_buffer *ring)
1152 {
1153 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1154 u32 addr;
1155
1156 if (!dev_priv->status_page_dmah) {
1157 dev_priv->status_page_dmah =
1158 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1159 if (!dev_priv->status_page_dmah)
1160 return -ENOMEM;
1161 }
1162
1163 addr = dev_priv->status_page_dmah->busaddr;
1164 if (INTEL_INFO(ring->dev)->gen >= 4)
1165 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
1166 I915_WRITE(HWS_PGA, addr);
1167
1168 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1169 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1170
1171 return 0;
1172 }
1173
1174 static int intel_init_ring_buffer(struct drm_device *dev,
1175 struct intel_ring_buffer *ring)
1176 {
1177 struct drm_i915_gem_object *obj;
1178 struct drm_i915_private *dev_priv = dev->dev_private;
1179 int ret;
1180
1181 ring->dev = dev;
1182 INIT_LIST_HEAD(&ring->active_list);
1183 INIT_LIST_HEAD(&ring->request_list);
1184 ring->size = 32 * PAGE_SIZE;
1185 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1186
1187 init_waitqueue_head(&ring->irq_queue);
1188
1189 if (I915_NEED_GFX_HWS(dev)) {
1190 ret = init_status_page(ring);
1191 if (ret)
1192 return ret;
1193 } else {
1194 BUG_ON(ring->id != RCS);
1195 ret = init_phys_hws_pga(ring);
1196 if (ret)
1197 return ret;
1198 }
1199
1200 obj = NULL;
1201 if (!HAS_LLC(dev))
1202 obj = i915_gem_object_create_stolen(dev, ring->size);
1203 if (obj == NULL)
1204 obj = i915_gem_alloc_object(dev, ring->size);
1205 if (obj == NULL) {
1206 DRM_ERROR("Failed to allocate ringbuffer\n");
1207 ret = -ENOMEM;
1208 goto err_hws;
1209 }
1210
1211 ring->obj = obj;
1212
1213 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1214 if (ret)
1215 goto err_unref;
1216
1217 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1218 if (ret)
1219 goto err_unpin;
1220
1221 ring->virtual_start =
1222 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1223 ring->size);
1224 if (ring->virtual_start == NULL) {
1225 DRM_ERROR("Failed to map ringbuffer.\n");
1226 ret = -EINVAL;
1227 goto err_unpin;
1228 }
1229
1230 ret = ring->init(ring);
1231 if (ret)
1232 goto err_unmap;
1233
1234 /* Workaround an erratum on the i830 which causes a hang if
1235 * the TAIL pointer points to within the last 2 cachelines
1236 * of the buffer.
1237 */
1238 ring->effective_size = ring->size;
1239 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1240 ring->effective_size -= 128;
1241
1242 return 0;
1243
1244 err_unmap:
1245 iounmap(ring->virtual_start);
1246 err_unpin:
1247 i915_gem_object_unpin(obj);
1248 err_unref:
1249 drm_gem_object_unreference(&obj->base);
1250 ring->obj = NULL;
1251 err_hws:
1252 cleanup_status_page(ring);
1253 return ret;
1254 }
1255
1256 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1257 {
1258 struct drm_i915_private *dev_priv;
1259 int ret;
1260
1261 if (ring->obj == NULL)
1262 return;
1263
1264 /* Disable the ring buffer. The ring must be idle at this point */
1265 dev_priv = ring->dev->dev_private;
1266 ret = intel_ring_idle(ring);
1267 if (ret)
1268 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1269 ring->name, ret);
1270
1271 I915_WRITE_CTL(ring, 0);
1272
1273 iounmap(ring->virtual_start);
1274
1275 i915_gem_object_unpin(ring->obj);
1276 drm_gem_object_unreference(&ring->obj->base);
1277 ring->obj = NULL;
1278
1279 if (ring->cleanup)
1280 ring->cleanup(ring);
1281
1282 cleanup_status_page(ring);
1283 }
1284
1285 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1286 {
1287 int ret;
1288
1289 ret = i915_wait_seqno(ring, seqno);
1290 if (!ret)
1291 i915_gem_retire_requests_ring(ring);
1292
1293 return ret;
1294 }
1295
1296 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1297 {
1298 struct drm_i915_gem_request *request;
1299 u32 seqno = 0;
1300 int ret;
1301
1302 i915_gem_retire_requests_ring(ring);
1303
1304 if (ring->last_retired_head != -1) {
1305 ring->head = ring->last_retired_head;
1306 ring->last_retired_head = -1;
1307 ring->space = ring_space(ring);
1308 if (ring->space >= n)
1309 return 0;
1310 }
1311
1312 list_for_each_entry(request, &ring->request_list, list) {
1313 int space;
1314
1315 if (request->tail == -1)
1316 continue;
1317
1318 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1319 if (space < 0)
1320 space += ring->size;
1321 if (space >= n) {
1322 seqno = request->seqno;
1323 break;
1324 }
1325
1326 /* Consume this request in case we need more space than
1327 * is available and so need to prevent a race between
1328 * updating last_retired_head and direct reads of
1329 * I915_RING_HEAD. It also provides a nice sanity check.
1330 */
1331 request->tail = -1;
1332 }
1333
1334 if (seqno == 0)
1335 return -ENOSPC;
1336
1337 ret = intel_ring_wait_seqno(ring, seqno);
1338 if (ret)
1339 return ret;
1340
1341 if (WARN_ON(ring->last_retired_head == -1))
1342 return -ENOSPC;
1343
1344 ring->head = ring->last_retired_head;
1345 ring->last_retired_head = -1;
1346 ring->space = ring_space(ring);
1347 if (WARN_ON(ring->space < n))
1348 return -ENOSPC;
1349
1350 return 0;
1351 }
1352
1353 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1354 {
1355 struct drm_device *dev = ring->dev;
1356 struct drm_i915_private *dev_priv = dev->dev_private;
1357 unsigned long end;
1358 int ret;
1359
1360 ret = intel_ring_wait_request(ring, n);
1361 if (ret != -ENOSPC)
1362 return ret;
1363
1364 trace_i915_ring_wait_begin(ring);
1365 /* With GEM the hangcheck timer should kick us out of the loop,
1366 * leaving it early runs the risk of corrupting GEM state (due
1367 * to running on almost untested codepaths). But on resume
1368 * timers don't work yet, so prevent a complete hang in that
1369 * case by choosing an insanely large timeout. */
1370 end = jiffies + 60 * HZ;
1371
1372 do {
1373 ring->head = I915_READ_HEAD(ring);
1374 ring->space = ring_space(ring);
1375 if (ring->space >= n) {
1376 trace_i915_ring_wait_end(ring);
1377 return 0;
1378 }
1379
1380 if (dev->primary->master) {
1381 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1382 if (master_priv->sarea_priv)
1383 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1384 }
1385
1386 msleep(1);
1387
1388 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1389 dev_priv->mm.interruptible);
1390 if (ret)
1391 return ret;
1392 } while (!time_after(jiffies, end));
1393 trace_i915_ring_wait_end(ring);
1394 return -EBUSY;
1395 }
1396
1397 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1398 {
1399 uint32_t __iomem *virt;
1400 int rem = ring->size - ring->tail;
1401
1402 if (ring->space < rem) {
1403 int ret = ring_wait_for_space(ring, rem);
1404 if (ret)
1405 return ret;
1406 }
1407
1408 virt = ring->virtual_start + ring->tail;
1409 rem /= 4;
1410 while (rem--)
1411 iowrite32(MI_NOOP, virt++);
1412
1413 ring->tail = 0;
1414 ring->space = ring_space(ring);
1415
1416 return 0;
1417 }
1418
1419 int intel_ring_idle(struct intel_ring_buffer *ring)
1420 {
1421 u32 seqno;
1422 int ret;
1423
1424 /* We need to add any requests required to flush the objects and ring */
1425 if (ring->outstanding_lazy_request) {
1426 ret = i915_add_request(ring, NULL, NULL);
1427 if (ret)
1428 return ret;
1429 }
1430
1431 /* Wait upon the last request to be completed */
1432 if (list_empty(&ring->request_list))
1433 return 0;
1434
1435 seqno = list_entry(ring->request_list.prev,
1436 struct drm_i915_gem_request,
1437 list)->seqno;
1438
1439 return i915_wait_seqno(ring, seqno);
1440 }
1441
1442 static int
1443 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1444 {
1445 if (ring->outstanding_lazy_request)
1446 return 0;
1447
1448 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1449 }
1450
1451 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1452 int bytes)
1453 {
1454 int ret;
1455
1456 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1457 ret = intel_wrap_ring_buffer(ring);
1458 if (unlikely(ret))
1459 return ret;
1460 }
1461
1462 if (unlikely(ring->space < bytes)) {
1463 ret = ring_wait_for_space(ring, bytes);
1464 if (unlikely(ret))
1465 return ret;
1466 }
1467
1468 ring->space -= bytes;
1469 return 0;
1470 }
1471
1472 int intel_ring_begin(struct intel_ring_buffer *ring,
1473 int num_dwords)
1474 {
1475 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1476 int ret;
1477
1478 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1479 dev_priv->mm.interruptible);
1480 if (ret)
1481 return ret;
1482
1483 /* Preallocate the olr before touching the ring */
1484 ret = intel_ring_alloc_seqno(ring);
1485 if (ret)
1486 return ret;
1487
1488 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1489 }
1490
1491 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1492 {
1493 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1494
1495 BUG_ON(ring->outstanding_lazy_request);
1496
1497 if (INTEL_INFO(ring->dev)->gen >= 6) {
1498 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1499 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1500 }
1501
1502 ring->set_seqno(ring, seqno);
1503 }
1504
1505 void intel_ring_advance(struct intel_ring_buffer *ring)
1506 {
1507 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1508
1509 ring->tail &= ring->size - 1;
1510 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1511 return;
1512 ring->write_tail(ring, ring->tail);
1513 }
1514
1515
1516 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1517 u32 value)
1518 {
1519 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1520
1521 /* Every tail move must follow the sequence below */
1522
1523 /* Disable notification that the ring is IDLE. The GT
1524 * will then assume that it is busy and bring it out of rc6.
1525 */
1526 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1527 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1528
1529 /* Clear the context id. Here be magic! */
1530 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1531
1532 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1533 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1534 GEN6_BSD_SLEEP_INDICATOR) == 0,
1535 50))
1536 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1537
1538 /* Now that the ring is fully powered up, update the tail */
1539 I915_WRITE_TAIL(ring, value);
1540 POSTING_READ(RING_TAIL(ring->mmio_base));
1541
1542 /* Let the ring send IDLE messages to the GT again,
1543 * and so let it sleep to conserve power when idle.
1544 */
1545 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1546 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1547 }
1548
1549 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1550 u32 invalidate, u32 flush)
1551 {
1552 uint32_t cmd;
1553 int ret;
1554
1555 ret = intel_ring_begin(ring, 4);
1556 if (ret)
1557 return ret;
1558
1559 cmd = MI_FLUSH_DW;
1560 /*
1561 * Bspec vol 1c.5 - video engine command streamer:
1562 * "If ENABLED, all TLBs will be invalidated once the flush
1563 * operation is complete. This bit is only valid when the
1564 * Post-Sync Operation field is a value of 1h or 3h."
1565 */
1566 if (invalidate & I915_GEM_GPU_DOMAINS)
1567 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1568 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1569 intel_ring_emit(ring, cmd);
1570 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1571 intel_ring_emit(ring, 0);
1572 intel_ring_emit(ring, MI_NOOP);
1573 intel_ring_advance(ring);
1574 return 0;
1575 }
1576
1577 static int
1578 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1579 u32 offset, u32 len,
1580 unsigned flags)
1581 {
1582 int ret;
1583
1584 ret = intel_ring_begin(ring, 2);
1585 if (ret)
1586 return ret;
1587
1588 intel_ring_emit(ring,
1589 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1590 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1591 /* bit0-7 is the length on GEN6+ */
1592 intel_ring_emit(ring, offset);
1593 intel_ring_advance(ring);
1594
1595 return 0;
1596 }
1597
1598 static int
1599 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1600 u32 offset, u32 len,
1601 unsigned flags)
1602 {
1603 int ret;
1604
1605 ret = intel_ring_begin(ring, 2);
1606 if (ret)
1607 return ret;
1608
1609 intel_ring_emit(ring,
1610 MI_BATCH_BUFFER_START |
1611 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1612 /* bit0-7 is the length on GEN6+ */
1613 intel_ring_emit(ring, offset);
1614 intel_ring_advance(ring);
1615
1616 return 0;
1617 }
1618
1619 /* Blitter support (SandyBridge+) */
1620
1621 static int blt_ring_flush(struct intel_ring_buffer *ring,
1622 u32 invalidate, u32 flush)
1623 {
1624 uint32_t cmd;
1625 int ret;
1626
1627 ret = intel_ring_begin(ring, 4);
1628 if (ret)
1629 return ret;
1630
1631 cmd = MI_FLUSH_DW;
1632 /*
1633 * Bspec vol 1c.3 - blitter engine command streamer:
1634 * "If ENABLED, all TLBs will be invalidated once the flush
1635 * operation is complete. This bit is only valid when the
1636 * Post-Sync Operation field is a value of 1h or 3h."
1637 */
1638 if (invalidate & I915_GEM_DOMAIN_RENDER)
1639 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1640 MI_FLUSH_DW_OP_STOREDW;
1641 intel_ring_emit(ring, cmd);
1642 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1643 intel_ring_emit(ring, 0);
1644 intel_ring_emit(ring, MI_NOOP);
1645 intel_ring_advance(ring);
1646 return 0;
1647 }
1648
1649 int intel_init_render_ring_buffer(struct drm_device *dev)
1650 {
1651 drm_i915_private_t *dev_priv = dev->dev_private;
1652 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1653
1654 ring->name = "render ring";
1655 ring->id = RCS;
1656 ring->mmio_base = RENDER_RING_BASE;
1657
1658 if (INTEL_INFO(dev)->gen >= 6) {
1659 ring->add_request = gen6_add_request;
1660 ring->flush = gen7_render_ring_flush;
1661 if (INTEL_INFO(dev)->gen == 6)
1662 ring->flush = gen6_render_ring_flush;
1663 ring->irq_get = gen6_ring_get_irq;
1664 ring->irq_put = gen6_ring_put_irq;
1665 ring->irq_enable_mask = GT_USER_INTERRUPT;
1666 ring->get_seqno = gen6_ring_get_seqno;
1667 ring->set_seqno = ring_set_seqno;
1668 ring->sync_to = gen6_ring_sync;
1669 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1670 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1671 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1672 ring->signal_mbox[0] = GEN6_VRSYNC;
1673 ring->signal_mbox[1] = GEN6_BRSYNC;
1674 } else if (IS_GEN5(dev)) {
1675 ring->add_request = pc_render_add_request;
1676 ring->flush = gen4_render_ring_flush;
1677 ring->get_seqno = pc_render_get_seqno;
1678 ring->set_seqno = pc_render_set_seqno;
1679 ring->irq_get = gen5_ring_get_irq;
1680 ring->irq_put = gen5_ring_put_irq;
1681 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1682 } else {
1683 ring->add_request = i9xx_add_request;
1684 if (INTEL_INFO(dev)->gen < 4)
1685 ring->flush = gen2_render_ring_flush;
1686 else
1687 ring->flush = gen4_render_ring_flush;
1688 ring->get_seqno = ring_get_seqno;
1689 ring->set_seqno = ring_set_seqno;
1690 if (IS_GEN2(dev)) {
1691 ring->irq_get = i8xx_ring_get_irq;
1692 ring->irq_put = i8xx_ring_put_irq;
1693 } else {
1694 ring->irq_get = i9xx_ring_get_irq;
1695 ring->irq_put = i9xx_ring_put_irq;
1696 }
1697 ring->irq_enable_mask = I915_USER_INTERRUPT;
1698 }
1699 ring->write_tail = ring_write_tail;
1700 if (IS_HASWELL(dev))
1701 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1702 else if (INTEL_INFO(dev)->gen >= 6)
1703 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1704 else if (INTEL_INFO(dev)->gen >= 4)
1705 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1706 else if (IS_I830(dev) || IS_845G(dev))
1707 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1708 else
1709 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1710 ring->init = init_render_ring;
1711 ring->cleanup = render_ring_cleanup;
1712
1713 /* Workaround batchbuffer to combat CS tlb bug. */
1714 if (HAS_BROKEN_CS_TLB(dev)) {
1715 struct drm_i915_gem_object *obj;
1716 int ret;
1717
1718 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1719 if (obj == NULL) {
1720 DRM_ERROR("Failed to allocate batch bo\n");
1721 return -ENOMEM;
1722 }
1723
1724 ret = i915_gem_object_pin(obj, 0, true, false);
1725 if (ret != 0) {
1726 drm_gem_object_unreference(&obj->base);
1727 DRM_ERROR("Failed to ping batch bo\n");
1728 return ret;
1729 }
1730
1731 ring->private = obj;
1732 }
1733
1734 return intel_init_ring_buffer(dev, ring);
1735 }
1736
1737 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1738 {
1739 drm_i915_private_t *dev_priv = dev->dev_private;
1740 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1741 int ret;
1742
1743 ring->name = "render ring";
1744 ring->id = RCS;
1745 ring->mmio_base = RENDER_RING_BASE;
1746
1747 if (INTEL_INFO(dev)->gen >= 6) {
1748 /* non-kms not supported on gen6+ */
1749 return -ENODEV;
1750 }
1751
1752 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1753 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1754 * the special gen5 functions. */
1755 ring->add_request = i9xx_add_request;
1756 if (INTEL_INFO(dev)->gen < 4)
1757 ring->flush = gen2_render_ring_flush;
1758 else
1759 ring->flush = gen4_render_ring_flush;
1760 ring->get_seqno = ring_get_seqno;
1761 ring->set_seqno = ring_set_seqno;
1762 if (IS_GEN2(dev)) {
1763 ring->irq_get = i8xx_ring_get_irq;
1764 ring->irq_put = i8xx_ring_put_irq;
1765 } else {
1766 ring->irq_get = i9xx_ring_get_irq;
1767 ring->irq_put = i9xx_ring_put_irq;
1768 }
1769 ring->irq_enable_mask = I915_USER_INTERRUPT;
1770 ring->write_tail = ring_write_tail;
1771 if (INTEL_INFO(dev)->gen >= 4)
1772 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1773 else if (IS_I830(dev) || IS_845G(dev))
1774 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1775 else
1776 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1777 ring->init = init_render_ring;
1778 ring->cleanup = render_ring_cleanup;
1779
1780 ring->dev = dev;
1781 INIT_LIST_HEAD(&ring->active_list);
1782 INIT_LIST_HEAD(&ring->request_list);
1783
1784 ring->size = size;
1785 ring->effective_size = ring->size;
1786 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1787 ring->effective_size -= 128;
1788
1789 ring->virtual_start = ioremap_wc(start, size);
1790 if (ring->virtual_start == NULL) {
1791 DRM_ERROR("can not ioremap virtual address for"
1792 " ring buffer\n");
1793 return -ENOMEM;
1794 }
1795
1796 if (!I915_NEED_GFX_HWS(dev)) {
1797 ret = init_phys_hws_pga(ring);
1798 if (ret)
1799 return ret;
1800 }
1801
1802 return 0;
1803 }
1804
1805 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1806 {
1807 drm_i915_private_t *dev_priv = dev->dev_private;
1808 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1809
1810 ring->name = "bsd ring";
1811 ring->id = VCS;
1812
1813 ring->write_tail = ring_write_tail;
1814 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1815 ring->mmio_base = GEN6_BSD_RING_BASE;
1816 /* gen6 bsd needs a special wa for tail updates */
1817 if (IS_GEN6(dev))
1818 ring->write_tail = gen6_bsd_ring_write_tail;
1819 ring->flush = gen6_ring_flush;
1820 ring->add_request = gen6_add_request;
1821 ring->get_seqno = gen6_ring_get_seqno;
1822 ring->set_seqno = ring_set_seqno;
1823 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1824 ring->irq_get = gen6_ring_get_irq;
1825 ring->irq_put = gen6_ring_put_irq;
1826 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1827 ring->sync_to = gen6_ring_sync;
1828 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1829 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1830 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1831 ring->signal_mbox[0] = GEN6_RVSYNC;
1832 ring->signal_mbox[1] = GEN6_BVSYNC;
1833 } else {
1834 ring->mmio_base = BSD_RING_BASE;
1835 ring->flush = bsd_ring_flush;
1836 ring->add_request = i9xx_add_request;
1837 ring->get_seqno = ring_get_seqno;
1838 ring->set_seqno = ring_set_seqno;
1839 if (IS_GEN5(dev)) {
1840 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1841 ring->irq_get = gen5_ring_get_irq;
1842 ring->irq_put = gen5_ring_put_irq;
1843 } else {
1844 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1845 ring->irq_get = i9xx_ring_get_irq;
1846 ring->irq_put = i9xx_ring_put_irq;
1847 }
1848 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1849 }
1850 ring->init = init_ring_common;
1851
1852 return intel_init_ring_buffer(dev, ring);
1853 }
1854
1855 int intel_init_blt_ring_buffer(struct drm_device *dev)
1856 {
1857 drm_i915_private_t *dev_priv = dev->dev_private;
1858 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1859
1860 ring->name = "blitter ring";
1861 ring->id = BCS;
1862
1863 ring->mmio_base = BLT_RING_BASE;
1864 ring->write_tail = ring_write_tail;
1865 ring->flush = blt_ring_flush;
1866 ring->add_request = gen6_add_request;
1867 ring->get_seqno = gen6_ring_get_seqno;
1868 ring->set_seqno = ring_set_seqno;
1869 ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1870 ring->irq_get = gen6_ring_get_irq;
1871 ring->irq_put = gen6_ring_put_irq;
1872 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1873 ring->sync_to = gen6_ring_sync;
1874 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1875 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1876 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1877 ring->signal_mbox[0] = GEN6_RBSYNC;
1878 ring->signal_mbox[1] = GEN6_VBSYNC;
1879 ring->init = init_ring_common;
1880
1881 return intel_init_ring_buffer(dev, ring);
1882 }
1883
1884 int
1885 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1886 {
1887 int ret;
1888
1889 if (!ring->gpu_caches_dirty)
1890 return 0;
1891
1892 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1893 if (ret)
1894 return ret;
1895
1896 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1897
1898 ring->gpu_caches_dirty = false;
1899 return 0;
1900 }
1901
1902 int
1903 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1904 {
1905 uint32_t flush_domains;
1906 int ret;
1907
1908 flush_domains = 0;
1909 if (ring->gpu_caches_dirty)
1910 flush_domains = I915_GEM_GPU_DOMAINS;
1911
1912 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1913 if (ret)
1914 return ret;
1915
1916 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1917
1918 ring->gpu_caches_dirty = false;
1919 return 0;
1920 }