drm/mgag200: Fix framebuffer base address programming
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83 return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 static int
113 intel_dp_max_link_bw(struct intel_dp *intel_dp)
114 {
115 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
116
117 switch (max_link_bw) {
118 case DP_LINK_BW_1_62:
119 case DP_LINK_BW_2_7:
120 break;
121 default:
122 max_link_bw = DP_LINK_BW_1_62;
123 break;
124 }
125 return max_link_bw;
126 }
127
128 /*
129 * The units on the numbers in the next two are... bizarre. Examples will
130 * make it clearer; this one parallels an example in the eDP spec.
131 *
132 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
133 *
134 * 270000 * 1 * 8 / 10 == 216000
135 *
136 * The actual data capacity of that configuration is 2.16Gbit/s, so the
137 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
138 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
139 * 119000. At 18bpp that's 2142000 kilobits per second.
140 *
141 * Thus the strange-looking division by 10 in intel_dp_link_required, to
142 * get the result in decakilobits instead of kilobits.
143 */
144
145 static int
146 intel_dp_link_required(int pixel_clock, int bpp)
147 {
148 return (pixel_clock * bpp + 9) / 10;
149 }
150
151 static int
152 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
153 {
154 return (max_link_clock * max_lanes * 8) / 10;
155 }
156
157 static int
158 intel_dp_mode_valid(struct drm_connector *connector,
159 struct drm_display_mode *mode)
160 {
161 struct intel_dp *intel_dp = intel_attached_dp(connector);
162 struct intel_connector *intel_connector = to_intel_connector(connector);
163 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
164 int target_clock = mode->clock;
165 int max_rate, mode_rate, max_lanes, max_link_clock;
166
167 if (is_edp(intel_dp) && fixed_mode) {
168 if (mode->hdisplay > fixed_mode->hdisplay)
169 return MODE_PANEL;
170
171 if (mode->vdisplay > fixed_mode->vdisplay)
172 return MODE_PANEL;
173
174 target_clock = fixed_mode->clock;
175 }
176
177 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
178 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
179
180 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
181 mode_rate = intel_dp_link_required(target_clock, 18);
182
183 if (mode_rate > max_rate)
184 return MODE_CLOCK_HIGH;
185
186 if (mode->clock < 10000)
187 return MODE_CLOCK_LOW;
188
189 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
190 return MODE_H_ILLEGAL;
191
192 return MODE_OK;
193 }
194
195 static uint32_t
196 pack_aux(uint8_t *src, int src_bytes)
197 {
198 int i;
199 uint32_t v = 0;
200
201 if (src_bytes > 4)
202 src_bytes = 4;
203 for (i = 0; i < src_bytes; i++)
204 v |= ((uint32_t) src[i]) << ((3-i) * 8);
205 return v;
206 }
207
208 static void
209 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
210 {
211 int i;
212 if (dst_bytes > 4)
213 dst_bytes = 4;
214 for (i = 0; i < dst_bytes; i++)
215 dst[i] = src >> ((3-i) * 8);
216 }
217
218 /* hrawclock is 1/4 the FSB frequency */
219 static int
220 intel_hrawclk(struct drm_device *dev)
221 {
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 uint32_t clkcfg;
224
225 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
226 if (IS_VALLEYVIEW(dev))
227 return 200;
228
229 clkcfg = I915_READ(CLKCFG);
230 switch (clkcfg & CLKCFG_FSB_MASK) {
231 case CLKCFG_FSB_400:
232 return 100;
233 case CLKCFG_FSB_533:
234 return 133;
235 case CLKCFG_FSB_667:
236 return 166;
237 case CLKCFG_FSB_800:
238 return 200;
239 case CLKCFG_FSB_1067:
240 return 266;
241 case CLKCFG_FSB_1333:
242 return 333;
243 /* these two are just a guess; one of them might be right */
244 case CLKCFG_FSB_1600:
245 case CLKCFG_FSB_1600_ALT:
246 return 400;
247 default:
248 return 133;
249 }
250 }
251
252 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
253 {
254 struct drm_device *dev = intel_dp_to_dev(intel_dp);
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 u32 pp_stat_reg;
257
258 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
259 return (I915_READ(pp_stat_reg) & PP_ON) != 0;
260 }
261
262 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
263 {
264 struct drm_device *dev = intel_dp_to_dev(intel_dp);
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 u32 pp_ctrl_reg;
267
268 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
269 return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
270 }
271
272 static void
273 intel_dp_check_edp(struct intel_dp *intel_dp)
274 {
275 struct drm_device *dev = intel_dp_to_dev(intel_dp);
276 struct drm_i915_private *dev_priv = dev->dev_private;
277 u32 pp_stat_reg, pp_ctrl_reg;
278
279 if (!is_edp(intel_dp))
280 return;
281
282 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
283 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
284
285 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
286 WARN(1, "eDP powered off while attempting aux channel communication.\n");
287 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
288 I915_READ(pp_stat_reg),
289 I915_READ(pp_ctrl_reg));
290 }
291 }
292
293 static uint32_t
294 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_device *dev = intel_dig_port->base.base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
300 uint32_t status;
301 bool done;
302
303 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
304 if (has_aux_irq)
305 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
306 msecs_to_jiffies(10));
307 else
308 done = wait_for_atomic(C, 10) == 0;
309 if (!done)
310 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
311 has_aux_irq);
312 #undef C
313
314 return status;
315 }
316
317 static int
318 intel_dp_aux_ch(struct intel_dp *intel_dp,
319 uint8_t *send, int send_bytes,
320 uint8_t *recv, int recv_size)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
326 uint32_t ch_data = ch_ctl + 4;
327 int i, ret, recv_bytes;
328 uint32_t status;
329 uint32_t aux_clock_divider;
330 int try, precharge;
331 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
332
333 /* dp aux is extremely sensitive to irq latency, hence request the
334 * lowest possible wakeup latency and so prevent the cpu from going into
335 * deep sleep states.
336 */
337 pm_qos_update_request(&dev_priv->pm_qos, 0);
338
339 intel_dp_check_edp(intel_dp);
340 /* The clock divider is based off the hrawclk,
341 * and would like to run at 2MHz. So, take the
342 * hrawclk value and divide by 2 and use that
343 *
344 * Note that PCH attached eDP panels should use a 125MHz input
345 * clock divider.
346 */
347 if (is_cpu_edp(intel_dp)) {
348 if (HAS_DDI(dev))
349 aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
350 else if (IS_VALLEYVIEW(dev))
351 aux_clock_divider = 100;
352 else if (IS_GEN6(dev) || IS_GEN7(dev))
353 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
354 else
355 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
356 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
357 /* Workaround for non-ULT HSW */
358 aux_clock_divider = 74;
359 } else if (HAS_PCH_SPLIT(dev)) {
360 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
361 } else {
362 aux_clock_divider = intel_hrawclk(dev) / 2;
363 }
364
365 if (IS_GEN6(dev))
366 precharge = 3;
367 else
368 precharge = 5;
369
370 /* Try to wait for any previous AUX channel activity */
371 for (try = 0; try < 3; try++) {
372 status = I915_READ_NOTRACE(ch_ctl);
373 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
374 break;
375 msleep(1);
376 }
377
378 if (try == 3) {
379 WARN(1, "dp_aux_ch not started status 0x%08x\n",
380 I915_READ(ch_ctl));
381 ret = -EBUSY;
382 goto out;
383 }
384
385 /* Must try at least 3 times according to DP spec */
386 for (try = 0; try < 5; try++) {
387 /* Load the send data into the aux channel data registers */
388 for (i = 0; i < send_bytes; i += 4)
389 I915_WRITE(ch_data + i,
390 pack_aux(send + i, send_bytes - i));
391
392 /* Send the command and wait for it to complete */
393 I915_WRITE(ch_ctl,
394 DP_AUX_CH_CTL_SEND_BUSY |
395 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
396 DP_AUX_CH_CTL_TIME_OUT_400us |
397 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
398 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
399 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
400 DP_AUX_CH_CTL_DONE |
401 DP_AUX_CH_CTL_TIME_OUT_ERROR |
402 DP_AUX_CH_CTL_RECEIVE_ERROR);
403
404 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
405
406 /* Clear done status and any errors */
407 I915_WRITE(ch_ctl,
408 status |
409 DP_AUX_CH_CTL_DONE |
410 DP_AUX_CH_CTL_TIME_OUT_ERROR |
411 DP_AUX_CH_CTL_RECEIVE_ERROR);
412
413 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
414 DP_AUX_CH_CTL_RECEIVE_ERROR))
415 continue;
416 if (status & DP_AUX_CH_CTL_DONE)
417 break;
418 }
419
420 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
421 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
422 ret = -EBUSY;
423 goto out;
424 }
425
426 /* Check for timeout or receive error.
427 * Timeouts occur when the sink is not connected
428 */
429 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
430 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
431 ret = -EIO;
432 goto out;
433 }
434
435 /* Timeouts occur when the device isn't connected, so they're
436 * "normal" -- don't fill the kernel log with these */
437 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
438 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
439 ret = -ETIMEDOUT;
440 goto out;
441 }
442
443 /* Unload any bytes sent back from the other side */
444 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
445 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
446 if (recv_bytes > recv_size)
447 recv_bytes = recv_size;
448
449 for (i = 0; i < recv_bytes; i += 4)
450 unpack_aux(I915_READ(ch_data + i),
451 recv + i, recv_bytes - i);
452
453 ret = recv_bytes;
454 out:
455 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
456
457 return ret;
458 }
459
460 /* Write data to the aux channel in native mode */
461 static int
462 intel_dp_aux_native_write(struct intel_dp *intel_dp,
463 uint16_t address, uint8_t *send, int send_bytes)
464 {
465 int ret;
466 uint8_t msg[20];
467 int msg_bytes;
468 uint8_t ack;
469
470 intel_dp_check_edp(intel_dp);
471 if (send_bytes > 16)
472 return -1;
473 msg[0] = AUX_NATIVE_WRITE << 4;
474 msg[1] = address >> 8;
475 msg[2] = address & 0xff;
476 msg[3] = send_bytes - 1;
477 memcpy(&msg[4], send, send_bytes);
478 msg_bytes = send_bytes + 4;
479 for (;;) {
480 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
481 if (ret < 0)
482 return ret;
483 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
484 break;
485 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
486 udelay(100);
487 else
488 return -EIO;
489 }
490 return send_bytes;
491 }
492
493 /* Write a single byte to the aux channel in native mode */
494 static int
495 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
496 uint16_t address, uint8_t byte)
497 {
498 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
499 }
500
501 /* read bytes from a native aux channel */
502 static int
503 intel_dp_aux_native_read(struct intel_dp *intel_dp,
504 uint16_t address, uint8_t *recv, int recv_bytes)
505 {
506 uint8_t msg[4];
507 int msg_bytes;
508 uint8_t reply[20];
509 int reply_bytes;
510 uint8_t ack;
511 int ret;
512
513 intel_dp_check_edp(intel_dp);
514 msg[0] = AUX_NATIVE_READ << 4;
515 msg[1] = address >> 8;
516 msg[2] = address & 0xff;
517 msg[3] = recv_bytes - 1;
518
519 msg_bytes = 4;
520 reply_bytes = recv_bytes + 1;
521
522 for (;;) {
523 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
524 reply, reply_bytes);
525 if (ret == 0)
526 return -EPROTO;
527 if (ret < 0)
528 return ret;
529 ack = reply[0];
530 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
531 memcpy(recv, reply + 1, ret - 1);
532 return ret - 1;
533 }
534 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
535 udelay(100);
536 else
537 return -EIO;
538 }
539 }
540
541 static int
542 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
543 uint8_t write_byte, uint8_t *read_byte)
544 {
545 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
546 struct intel_dp *intel_dp = container_of(adapter,
547 struct intel_dp,
548 adapter);
549 uint16_t address = algo_data->address;
550 uint8_t msg[5];
551 uint8_t reply[2];
552 unsigned retry;
553 int msg_bytes;
554 int reply_bytes;
555 int ret;
556
557 intel_dp_check_edp(intel_dp);
558 /* Set up the command byte */
559 if (mode & MODE_I2C_READ)
560 msg[0] = AUX_I2C_READ << 4;
561 else
562 msg[0] = AUX_I2C_WRITE << 4;
563
564 if (!(mode & MODE_I2C_STOP))
565 msg[0] |= AUX_I2C_MOT << 4;
566
567 msg[1] = address >> 8;
568 msg[2] = address;
569
570 switch (mode) {
571 case MODE_I2C_WRITE:
572 msg[3] = 0;
573 msg[4] = write_byte;
574 msg_bytes = 5;
575 reply_bytes = 1;
576 break;
577 case MODE_I2C_READ:
578 msg[3] = 0;
579 msg_bytes = 4;
580 reply_bytes = 2;
581 break;
582 default:
583 msg_bytes = 3;
584 reply_bytes = 1;
585 break;
586 }
587
588 for (retry = 0; retry < 5; retry++) {
589 ret = intel_dp_aux_ch(intel_dp,
590 msg, msg_bytes,
591 reply, reply_bytes);
592 if (ret < 0) {
593 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
594 return ret;
595 }
596
597 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
598 case AUX_NATIVE_REPLY_ACK:
599 /* I2C-over-AUX Reply field is only valid
600 * when paired with AUX ACK.
601 */
602 break;
603 case AUX_NATIVE_REPLY_NACK:
604 DRM_DEBUG_KMS("aux_ch native nack\n");
605 return -EREMOTEIO;
606 case AUX_NATIVE_REPLY_DEFER:
607 udelay(100);
608 continue;
609 default:
610 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
611 reply[0]);
612 return -EREMOTEIO;
613 }
614
615 switch (reply[0] & AUX_I2C_REPLY_MASK) {
616 case AUX_I2C_REPLY_ACK:
617 if (mode == MODE_I2C_READ) {
618 *read_byte = reply[1];
619 }
620 return reply_bytes - 1;
621 case AUX_I2C_REPLY_NACK:
622 DRM_DEBUG_KMS("aux_i2c nack\n");
623 return -EREMOTEIO;
624 case AUX_I2C_REPLY_DEFER:
625 DRM_DEBUG_KMS("aux_i2c defer\n");
626 udelay(100);
627 break;
628 default:
629 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
630 return -EREMOTEIO;
631 }
632 }
633
634 DRM_ERROR("too many retries, giving up\n");
635 return -EREMOTEIO;
636 }
637
638 static int
639 intel_dp_i2c_init(struct intel_dp *intel_dp,
640 struct intel_connector *intel_connector, const char *name)
641 {
642 int ret;
643
644 DRM_DEBUG_KMS("i2c_init %s\n", name);
645 intel_dp->algo.running = false;
646 intel_dp->algo.address = 0;
647 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
648
649 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
650 intel_dp->adapter.owner = THIS_MODULE;
651 intel_dp->adapter.class = I2C_CLASS_DDC;
652 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
653 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
654 intel_dp->adapter.algo_data = &intel_dp->algo;
655 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
656
657 ironlake_edp_panel_vdd_on(intel_dp);
658 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
659 ironlake_edp_panel_vdd_off(intel_dp, false);
660 return ret;
661 }
662
663 bool
664 intel_dp_compute_config(struct intel_encoder *encoder,
665 struct intel_crtc_config *pipe_config)
666 {
667 struct drm_device *dev = encoder->base.dev;
668 struct drm_i915_private *dev_priv = dev->dev_private;
669 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
670 struct drm_display_mode *mode = &pipe_config->requested_mode;
671 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
672 struct intel_connector *intel_connector = intel_dp->attached_connector;
673 int lane_count, clock;
674 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
675 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
676 int bpp, mode_rate;
677 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
678 int target_clock, link_avail, link_clock;
679
680 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && !is_cpu_edp(intel_dp))
681 pipe_config->has_pch_encoder = true;
682
683 pipe_config->has_dp_encoder = true;
684
685 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
686 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
687 adjusted_mode);
688 intel_pch_panel_fitting(dev,
689 intel_connector->panel.fitting_mode,
690 mode, adjusted_mode);
691 }
692 /* We need to take the panel's fixed mode into account. */
693 target_clock = adjusted_mode->clock;
694
695 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
696 return false;
697
698 DRM_DEBUG_KMS("DP link computation with max lane count %i "
699 "max bw %02x pixel clock %iKHz\n",
700 max_lane_count, bws[max_clock], adjusted_mode->clock);
701
702 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
703 * bpc in between. */
704 bpp = min_t(int, 8*3, pipe_config->pipe_bpp);
705 if (is_edp(intel_dp) && dev_priv->edp.bpp)
706 bpp = min_t(int, bpp, dev_priv->edp.bpp);
707
708 for (; bpp >= 6*3; bpp -= 2*3) {
709 mode_rate = intel_dp_link_required(target_clock, bpp);
710
711 for (clock = 0; clock <= max_clock; clock++) {
712 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
713 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
714 link_avail = intel_dp_max_data_rate(link_clock,
715 lane_count);
716
717 if (mode_rate <= link_avail) {
718 goto found;
719 }
720 }
721 }
722 }
723
724 return false;
725
726 found:
727 if (intel_dp->color_range_auto) {
728 /*
729 * See:
730 * CEA-861-E - 5.1 Default Encoding Parameters
731 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
732 */
733 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
734 intel_dp->color_range = DP_COLOR_RANGE_16_235;
735 else
736 intel_dp->color_range = 0;
737 }
738
739 if (intel_dp->color_range)
740 pipe_config->limited_color_range = true;
741
742 intel_dp->link_bw = bws[clock];
743 intel_dp->lane_count = lane_count;
744 adjusted_mode->clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
745 pipe_config->pipe_bpp = bpp;
746 pipe_config->pixel_target_clock = target_clock;
747
748 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
749 intel_dp->link_bw, intel_dp->lane_count,
750 adjusted_mode->clock, bpp);
751 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
752 mode_rate, link_avail);
753
754 intel_link_compute_m_n(bpp, lane_count,
755 target_clock, adjusted_mode->clock,
756 &pipe_config->dp_m_n);
757
758 return true;
759 }
760
761 void intel_dp_init_link_config(struct intel_dp *intel_dp)
762 {
763 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
764 intel_dp->link_configuration[0] = intel_dp->link_bw;
765 intel_dp->link_configuration[1] = intel_dp->lane_count;
766 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
767 /*
768 * Check for DPCD version > 1.1 and enhanced framing support
769 */
770 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
771 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
772 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
773 }
774 }
775
776 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
777 {
778 struct drm_device *dev = crtc->dev;
779 struct drm_i915_private *dev_priv = dev->dev_private;
780 u32 dpa_ctl;
781
782 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
783 dpa_ctl = I915_READ(DP_A);
784 dpa_ctl &= ~DP_PLL_FREQ_MASK;
785
786 if (clock < 200000) {
787 /* For a long time we've carried around a ILK-DevA w/a for the
788 * 160MHz clock. If we're really unlucky, it's still required.
789 */
790 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
791 dpa_ctl |= DP_PLL_FREQ_160MHZ;
792 } else {
793 dpa_ctl |= DP_PLL_FREQ_270MHZ;
794 }
795
796 I915_WRITE(DP_A, dpa_ctl);
797
798 POSTING_READ(DP_A);
799 udelay(500);
800 }
801
802 static void
803 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
804 struct drm_display_mode *adjusted_mode)
805 {
806 struct drm_device *dev = encoder->dev;
807 struct drm_i915_private *dev_priv = dev->dev_private;
808 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
809 struct drm_crtc *crtc = encoder->crtc;
810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
811
812 /*
813 * There are four kinds of DP registers:
814 *
815 * IBX PCH
816 * SNB CPU
817 * IVB CPU
818 * CPT PCH
819 *
820 * IBX PCH and CPU are the same for almost everything,
821 * except that the CPU DP PLL is configured in this
822 * register
823 *
824 * CPT PCH is quite different, having many bits moved
825 * to the TRANS_DP_CTL register instead. That
826 * configuration happens (oddly) in ironlake_pch_enable
827 */
828
829 /* Preserve the BIOS-computed detected bit. This is
830 * supposed to be read-only.
831 */
832 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
833
834 /* Handle DP bits in common between all three register formats */
835 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
836
837 switch (intel_dp->lane_count) {
838 case 1:
839 intel_dp->DP |= DP_PORT_WIDTH_1;
840 break;
841 case 2:
842 intel_dp->DP |= DP_PORT_WIDTH_2;
843 break;
844 case 4:
845 intel_dp->DP |= DP_PORT_WIDTH_4;
846 break;
847 }
848 if (intel_dp->has_audio) {
849 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
850 pipe_name(intel_crtc->pipe));
851 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
852 intel_write_eld(encoder, adjusted_mode);
853 }
854
855 intel_dp_init_link_config(intel_dp);
856
857 /* Split out the IBX/CPU vs CPT settings */
858
859 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
860 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
861 intel_dp->DP |= DP_SYNC_HS_HIGH;
862 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
863 intel_dp->DP |= DP_SYNC_VS_HIGH;
864 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
865
866 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
867 intel_dp->DP |= DP_ENHANCED_FRAMING;
868
869 intel_dp->DP |= intel_crtc->pipe << 29;
870
871 /* don't miss out required setting for eDP */
872 if (adjusted_mode->clock < 200000)
873 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
874 else
875 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
876 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
877 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
878 intel_dp->DP |= intel_dp->color_range;
879
880 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
881 intel_dp->DP |= DP_SYNC_HS_HIGH;
882 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
883 intel_dp->DP |= DP_SYNC_VS_HIGH;
884 intel_dp->DP |= DP_LINK_TRAIN_OFF;
885
886 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
887 intel_dp->DP |= DP_ENHANCED_FRAMING;
888
889 if (intel_crtc->pipe == 1)
890 intel_dp->DP |= DP_PIPEB_SELECT;
891
892 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
893 /* don't miss out required setting for eDP */
894 if (adjusted_mode->clock < 200000)
895 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
896 else
897 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
898 }
899 } else {
900 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
901 }
902
903 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
904 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
905 }
906
907 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
908 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
909
910 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
911 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
912
913 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
914 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
915
916 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
917 u32 mask,
918 u32 value)
919 {
920 struct drm_device *dev = intel_dp_to_dev(intel_dp);
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 u32 pp_stat_reg, pp_ctrl_reg;
923
924 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
925 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
926
927 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
928 mask, value,
929 I915_READ(pp_stat_reg),
930 I915_READ(pp_ctrl_reg));
931
932 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
933 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
934 I915_READ(pp_stat_reg),
935 I915_READ(pp_ctrl_reg));
936 }
937 }
938
939 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
940 {
941 DRM_DEBUG_KMS("Wait for panel power on\n");
942 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
943 }
944
945 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
946 {
947 DRM_DEBUG_KMS("Wait for panel power off time\n");
948 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
949 }
950
951 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
952 {
953 DRM_DEBUG_KMS("Wait for panel power cycle\n");
954 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
955 }
956
957
958 /* Read the current pp_control value, unlocking the register if it
959 * is locked
960 */
961
962 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
963 {
964 struct drm_device *dev = intel_dp_to_dev(intel_dp);
965 struct drm_i915_private *dev_priv = dev->dev_private;
966 u32 control;
967 u32 pp_ctrl_reg;
968
969 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
970 control = I915_READ(pp_ctrl_reg);
971
972 control &= ~PANEL_UNLOCK_MASK;
973 control |= PANEL_UNLOCK_REGS;
974 return control;
975 }
976
977 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
978 {
979 struct drm_device *dev = intel_dp_to_dev(intel_dp);
980 struct drm_i915_private *dev_priv = dev->dev_private;
981 u32 pp;
982 u32 pp_stat_reg, pp_ctrl_reg;
983
984 if (!is_edp(intel_dp))
985 return;
986 DRM_DEBUG_KMS("Turn eDP VDD on\n");
987
988 WARN(intel_dp->want_panel_vdd,
989 "eDP VDD already requested on\n");
990
991 intel_dp->want_panel_vdd = true;
992
993 if (ironlake_edp_have_panel_vdd(intel_dp)) {
994 DRM_DEBUG_KMS("eDP VDD already on\n");
995 return;
996 }
997
998 if (!ironlake_edp_have_panel_power(intel_dp))
999 ironlake_wait_panel_power_cycle(intel_dp);
1000
1001 pp = ironlake_get_pp_control(intel_dp);
1002 pp |= EDP_FORCE_VDD;
1003
1004 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1005 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1006
1007 I915_WRITE(pp_ctrl_reg, pp);
1008 POSTING_READ(pp_ctrl_reg);
1009 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1010 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1011 /*
1012 * If the panel wasn't on, delay before accessing aux channel
1013 */
1014 if (!ironlake_edp_have_panel_power(intel_dp)) {
1015 DRM_DEBUG_KMS("eDP was not running\n");
1016 msleep(intel_dp->panel_power_up_delay);
1017 }
1018 }
1019
1020 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1021 {
1022 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1023 struct drm_i915_private *dev_priv = dev->dev_private;
1024 u32 pp;
1025 u32 pp_stat_reg, pp_ctrl_reg;
1026
1027 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1028
1029 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1030 pp = ironlake_get_pp_control(intel_dp);
1031 pp &= ~EDP_FORCE_VDD;
1032
1033 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1034 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1035
1036 I915_WRITE(pp_ctrl_reg, pp);
1037 POSTING_READ(pp_ctrl_reg);
1038
1039 /* Make sure sequencer is idle before allowing subsequent activity */
1040 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1041 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1042 msleep(intel_dp->panel_power_down_delay);
1043 }
1044 }
1045
1046 static void ironlake_panel_vdd_work(struct work_struct *__work)
1047 {
1048 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1049 struct intel_dp, panel_vdd_work);
1050 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1051
1052 mutex_lock(&dev->mode_config.mutex);
1053 ironlake_panel_vdd_off_sync(intel_dp);
1054 mutex_unlock(&dev->mode_config.mutex);
1055 }
1056
1057 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1058 {
1059 if (!is_edp(intel_dp))
1060 return;
1061
1062 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1063 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1064
1065 intel_dp->want_panel_vdd = false;
1066
1067 if (sync) {
1068 ironlake_panel_vdd_off_sync(intel_dp);
1069 } else {
1070 /*
1071 * Queue the timer to fire a long
1072 * time from now (relative to the power down delay)
1073 * to keep the panel power up across a sequence of operations
1074 */
1075 schedule_delayed_work(&intel_dp->panel_vdd_work,
1076 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1077 }
1078 }
1079
1080 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1081 {
1082 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1083 struct drm_i915_private *dev_priv = dev->dev_private;
1084 u32 pp;
1085 u32 pp_ctrl_reg;
1086
1087 if (!is_edp(intel_dp))
1088 return;
1089
1090 DRM_DEBUG_KMS("Turn eDP power on\n");
1091
1092 if (ironlake_edp_have_panel_power(intel_dp)) {
1093 DRM_DEBUG_KMS("eDP power already on\n");
1094 return;
1095 }
1096
1097 ironlake_wait_panel_power_cycle(intel_dp);
1098
1099 pp = ironlake_get_pp_control(intel_dp);
1100 if (IS_GEN5(dev)) {
1101 /* ILK workaround: disable reset around power sequence */
1102 pp &= ~PANEL_POWER_RESET;
1103 I915_WRITE(PCH_PP_CONTROL, pp);
1104 POSTING_READ(PCH_PP_CONTROL);
1105 }
1106
1107 pp |= POWER_TARGET_ON;
1108 if (!IS_GEN5(dev))
1109 pp |= PANEL_POWER_RESET;
1110
1111 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1112
1113 I915_WRITE(pp_ctrl_reg, pp);
1114 POSTING_READ(pp_ctrl_reg);
1115
1116 ironlake_wait_panel_on(intel_dp);
1117
1118 if (IS_GEN5(dev)) {
1119 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1120 I915_WRITE(PCH_PP_CONTROL, pp);
1121 POSTING_READ(PCH_PP_CONTROL);
1122 }
1123 }
1124
1125 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1126 {
1127 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129 u32 pp;
1130 u32 pp_ctrl_reg;
1131
1132 if (!is_edp(intel_dp))
1133 return;
1134
1135 DRM_DEBUG_KMS("Turn eDP power off\n");
1136
1137 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1138
1139 pp = ironlake_get_pp_control(intel_dp);
1140 /* We need to switch off panel power _and_ force vdd, for otherwise some
1141 * panels get very unhappy and cease to work. */
1142 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1143
1144 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1145
1146 I915_WRITE(pp_ctrl_reg, pp);
1147 POSTING_READ(pp_ctrl_reg);
1148
1149 intel_dp->want_panel_vdd = false;
1150
1151 ironlake_wait_panel_off(intel_dp);
1152 }
1153
1154 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1155 {
1156 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1157 struct drm_device *dev = intel_dig_port->base.base.dev;
1158 struct drm_i915_private *dev_priv = dev->dev_private;
1159 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1160 u32 pp;
1161 u32 pp_ctrl_reg;
1162
1163 if (!is_edp(intel_dp))
1164 return;
1165
1166 DRM_DEBUG_KMS("\n");
1167 /*
1168 * If we enable the backlight right away following a panel power
1169 * on, we may see slight flicker as the panel syncs with the eDP
1170 * link. So delay a bit to make sure the image is solid before
1171 * allowing it to appear.
1172 */
1173 msleep(intel_dp->backlight_on_delay);
1174 pp = ironlake_get_pp_control(intel_dp);
1175 pp |= EDP_BLC_ENABLE;
1176
1177 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1178
1179 I915_WRITE(pp_ctrl_reg, pp);
1180 POSTING_READ(pp_ctrl_reg);
1181
1182 intel_panel_enable_backlight(dev, pipe);
1183 }
1184
1185 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1186 {
1187 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 u32 pp;
1190 u32 pp_ctrl_reg;
1191
1192 if (!is_edp(intel_dp))
1193 return;
1194
1195 intel_panel_disable_backlight(dev);
1196
1197 DRM_DEBUG_KMS("\n");
1198 pp = ironlake_get_pp_control(intel_dp);
1199 pp &= ~EDP_BLC_ENABLE;
1200
1201 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1202
1203 I915_WRITE(pp_ctrl_reg, pp);
1204 POSTING_READ(pp_ctrl_reg);
1205 msleep(intel_dp->backlight_off_delay);
1206 }
1207
1208 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1209 {
1210 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1211 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1212 struct drm_device *dev = crtc->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 u32 dpa_ctl;
1215
1216 assert_pipe_disabled(dev_priv,
1217 to_intel_crtc(crtc)->pipe);
1218
1219 DRM_DEBUG_KMS("\n");
1220 dpa_ctl = I915_READ(DP_A);
1221 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1222 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1223
1224 /* We don't adjust intel_dp->DP while tearing down the link, to
1225 * facilitate link retraining (e.g. after hotplug). Hence clear all
1226 * enable bits here to ensure that we don't enable too much. */
1227 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1228 intel_dp->DP |= DP_PLL_ENABLE;
1229 I915_WRITE(DP_A, intel_dp->DP);
1230 POSTING_READ(DP_A);
1231 udelay(200);
1232 }
1233
1234 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1235 {
1236 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1237 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1238 struct drm_device *dev = crtc->dev;
1239 struct drm_i915_private *dev_priv = dev->dev_private;
1240 u32 dpa_ctl;
1241
1242 assert_pipe_disabled(dev_priv,
1243 to_intel_crtc(crtc)->pipe);
1244
1245 dpa_ctl = I915_READ(DP_A);
1246 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1247 "dp pll off, should be on\n");
1248 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1249
1250 /* We can't rely on the value tracked for the DP register in
1251 * intel_dp->DP because link_down must not change that (otherwise link
1252 * re-training will fail. */
1253 dpa_ctl &= ~DP_PLL_ENABLE;
1254 I915_WRITE(DP_A, dpa_ctl);
1255 POSTING_READ(DP_A);
1256 udelay(200);
1257 }
1258
1259 /* If the sink supports it, try to set the power state appropriately */
1260 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1261 {
1262 int ret, i;
1263
1264 /* Should have a valid DPCD by this point */
1265 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1266 return;
1267
1268 if (mode != DRM_MODE_DPMS_ON) {
1269 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1270 DP_SET_POWER_D3);
1271 if (ret != 1)
1272 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1273 } else {
1274 /*
1275 * When turning on, we need to retry for 1ms to give the sink
1276 * time to wake up.
1277 */
1278 for (i = 0; i < 3; i++) {
1279 ret = intel_dp_aux_native_write_1(intel_dp,
1280 DP_SET_POWER,
1281 DP_SET_POWER_D0);
1282 if (ret == 1)
1283 break;
1284 msleep(1);
1285 }
1286 }
1287 }
1288
1289 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1290 enum pipe *pipe)
1291 {
1292 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1293 struct drm_device *dev = encoder->base.dev;
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1295 u32 tmp = I915_READ(intel_dp->output_reg);
1296
1297 if (!(tmp & DP_PORT_EN))
1298 return false;
1299
1300 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1301 *pipe = PORT_TO_PIPE_CPT(tmp);
1302 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1303 *pipe = PORT_TO_PIPE(tmp);
1304 } else {
1305 u32 trans_sel;
1306 u32 trans_dp;
1307 int i;
1308
1309 switch (intel_dp->output_reg) {
1310 case PCH_DP_B:
1311 trans_sel = TRANS_DP_PORT_SEL_B;
1312 break;
1313 case PCH_DP_C:
1314 trans_sel = TRANS_DP_PORT_SEL_C;
1315 break;
1316 case PCH_DP_D:
1317 trans_sel = TRANS_DP_PORT_SEL_D;
1318 break;
1319 default:
1320 return true;
1321 }
1322
1323 for_each_pipe(i) {
1324 trans_dp = I915_READ(TRANS_DP_CTL(i));
1325 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1326 *pipe = i;
1327 return true;
1328 }
1329 }
1330
1331 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1332 intel_dp->output_reg);
1333 }
1334
1335 return true;
1336 }
1337
1338 static void intel_disable_dp(struct intel_encoder *encoder)
1339 {
1340 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1341
1342 /* Make sure the panel is off before trying to change the mode. But also
1343 * ensure that we have vdd while we switch off the panel. */
1344 ironlake_edp_panel_vdd_on(intel_dp);
1345 ironlake_edp_backlight_off(intel_dp);
1346 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1347 ironlake_edp_panel_off(intel_dp);
1348
1349 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1350 if (!is_cpu_edp(intel_dp))
1351 intel_dp_link_down(intel_dp);
1352 }
1353
1354 static void intel_post_disable_dp(struct intel_encoder *encoder)
1355 {
1356 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1357 struct drm_device *dev = encoder->base.dev;
1358
1359 if (is_cpu_edp(intel_dp)) {
1360 intel_dp_link_down(intel_dp);
1361 if (!IS_VALLEYVIEW(dev))
1362 ironlake_edp_pll_off(intel_dp);
1363 }
1364 }
1365
1366 static void intel_enable_dp(struct intel_encoder *encoder)
1367 {
1368 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1369 struct drm_device *dev = encoder->base.dev;
1370 struct drm_i915_private *dev_priv = dev->dev_private;
1371 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1372
1373 if (WARN_ON(dp_reg & DP_PORT_EN))
1374 return;
1375
1376 ironlake_edp_panel_vdd_on(intel_dp);
1377 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1378 intel_dp_start_link_train(intel_dp);
1379 ironlake_edp_panel_on(intel_dp);
1380 ironlake_edp_panel_vdd_off(intel_dp, true);
1381 intel_dp_complete_link_train(intel_dp);
1382 intel_dp_stop_link_train(intel_dp);
1383 ironlake_edp_backlight_on(intel_dp);
1384 }
1385
1386 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1387 {
1388 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1389 struct drm_device *dev = encoder->base.dev;
1390
1391 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
1392 ironlake_edp_pll_on(intel_dp);
1393 }
1394
1395 /*
1396 * Native read with retry for link status and receiver capability reads for
1397 * cases where the sink may still be asleep.
1398 */
1399 static bool
1400 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1401 uint8_t *recv, int recv_bytes)
1402 {
1403 int ret, i;
1404
1405 /*
1406 * Sinks are *supposed* to come up within 1ms from an off state,
1407 * but we're also supposed to retry 3 times per the spec.
1408 */
1409 for (i = 0; i < 3; i++) {
1410 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1411 recv_bytes);
1412 if (ret == recv_bytes)
1413 return true;
1414 msleep(1);
1415 }
1416
1417 return false;
1418 }
1419
1420 /*
1421 * Fetch AUX CH registers 0x202 - 0x207 which contain
1422 * link status information
1423 */
1424 static bool
1425 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1426 {
1427 return intel_dp_aux_native_read_retry(intel_dp,
1428 DP_LANE0_1_STATUS,
1429 link_status,
1430 DP_LINK_STATUS_SIZE);
1431 }
1432
1433 #if 0
1434 static char *voltage_names[] = {
1435 "0.4V", "0.6V", "0.8V", "1.2V"
1436 };
1437 static char *pre_emph_names[] = {
1438 "0dB", "3.5dB", "6dB", "9.5dB"
1439 };
1440 static char *link_train_names[] = {
1441 "pattern 1", "pattern 2", "idle", "off"
1442 };
1443 #endif
1444
1445 /*
1446 * These are source-specific values; current Intel hardware supports
1447 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1448 */
1449
1450 static uint8_t
1451 intel_dp_voltage_max(struct intel_dp *intel_dp)
1452 {
1453 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1454
1455 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1456 return DP_TRAIN_VOLTAGE_SWING_800;
1457 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1458 return DP_TRAIN_VOLTAGE_SWING_1200;
1459 else
1460 return DP_TRAIN_VOLTAGE_SWING_800;
1461 }
1462
1463 static uint8_t
1464 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1465 {
1466 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1467
1468 if (HAS_DDI(dev)) {
1469 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1470 case DP_TRAIN_VOLTAGE_SWING_400:
1471 return DP_TRAIN_PRE_EMPHASIS_9_5;
1472 case DP_TRAIN_VOLTAGE_SWING_600:
1473 return DP_TRAIN_PRE_EMPHASIS_6;
1474 case DP_TRAIN_VOLTAGE_SWING_800:
1475 return DP_TRAIN_PRE_EMPHASIS_3_5;
1476 case DP_TRAIN_VOLTAGE_SWING_1200:
1477 default:
1478 return DP_TRAIN_PRE_EMPHASIS_0;
1479 }
1480 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1481 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1482 case DP_TRAIN_VOLTAGE_SWING_400:
1483 return DP_TRAIN_PRE_EMPHASIS_6;
1484 case DP_TRAIN_VOLTAGE_SWING_600:
1485 case DP_TRAIN_VOLTAGE_SWING_800:
1486 return DP_TRAIN_PRE_EMPHASIS_3_5;
1487 default:
1488 return DP_TRAIN_PRE_EMPHASIS_0;
1489 }
1490 } else {
1491 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1492 case DP_TRAIN_VOLTAGE_SWING_400:
1493 return DP_TRAIN_PRE_EMPHASIS_6;
1494 case DP_TRAIN_VOLTAGE_SWING_600:
1495 return DP_TRAIN_PRE_EMPHASIS_6;
1496 case DP_TRAIN_VOLTAGE_SWING_800:
1497 return DP_TRAIN_PRE_EMPHASIS_3_5;
1498 case DP_TRAIN_VOLTAGE_SWING_1200:
1499 default:
1500 return DP_TRAIN_PRE_EMPHASIS_0;
1501 }
1502 }
1503 }
1504
1505 static void
1506 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1507 {
1508 uint8_t v = 0;
1509 uint8_t p = 0;
1510 int lane;
1511 uint8_t voltage_max;
1512 uint8_t preemph_max;
1513
1514 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1515 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1516 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1517
1518 if (this_v > v)
1519 v = this_v;
1520 if (this_p > p)
1521 p = this_p;
1522 }
1523
1524 voltage_max = intel_dp_voltage_max(intel_dp);
1525 if (v >= voltage_max)
1526 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1527
1528 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1529 if (p >= preemph_max)
1530 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1531
1532 for (lane = 0; lane < 4; lane++)
1533 intel_dp->train_set[lane] = v | p;
1534 }
1535
1536 static uint32_t
1537 intel_gen4_signal_levels(uint8_t train_set)
1538 {
1539 uint32_t signal_levels = 0;
1540
1541 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1542 case DP_TRAIN_VOLTAGE_SWING_400:
1543 default:
1544 signal_levels |= DP_VOLTAGE_0_4;
1545 break;
1546 case DP_TRAIN_VOLTAGE_SWING_600:
1547 signal_levels |= DP_VOLTAGE_0_6;
1548 break;
1549 case DP_TRAIN_VOLTAGE_SWING_800:
1550 signal_levels |= DP_VOLTAGE_0_8;
1551 break;
1552 case DP_TRAIN_VOLTAGE_SWING_1200:
1553 signal_levels |= DP_VOLTAGE_1_2;
1554 break;
1555 }
1556 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1557 case DP_TRAIN_PRE_EMPHASIS_0:
1558 default:
1559 signal_levels |= DP_PRE_EMPHASIS_0;
1560 break;
1561 case DP_TRAIN_PRE_EMPHASIS_3_5:
1562 signal_levels |= DP_PRE_EMPHASIS_3_5;
1563 break;
1564 case DP_TRAIN_PRE_EMPHASIS_6:
1565 signal_levels |= DP_PRE_EMPHASIS_6;
1566 break;
1567 case DP_TRAIN_PRE_EMPHASIS_9_5:
1568 signal_levels |= DP_PRE_EMPHASIS_9_5;
1569 break;
1570 }
1571 return signal_levels;
1572 }
1573
1574 /* Gen6's DP voltage swing and pre-emphasis control */
1575 static uint32_t
1576 intel_gen6_edp_signal_levels(uint8_t train_set)
1577 {
1578 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1579 DP_TRAIN_PRE_EMPHASIS_MASK);
1580 switch (signal_levels) {
1581 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1582 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1583 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1584 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1586 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1587 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1588 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1589 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1590 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1591 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1592 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1593 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1594 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1595 default:
1596 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1597 "0x%x\n", signal_levels);
1598 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1599 }
1600 }
1601
1602 /* Gen7's DP voltage swing and pre-emphasis control */
1603 static uint32_t
1604 intel_gen7_edp_signal_levels(uint8_t train_set)
1605 {
1606 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1607 DP_TRAIN_PRE_EMPHASIS_MASK);
1608 switch (signal_levels) {
1609 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1610 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1611 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1612 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1613 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1614 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1615
1616 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1617 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1618 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1619 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1620
1621 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1622 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1623 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1624 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1625
1626 default:
1627 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1628 "0x%x\n", signal_levels);
1629 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1630 }
1631 }
1632
1633 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1634 static uint32_t
1635 intel_hsw_signal_levels(uint8_t train_set)
1636 {
1637 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1638 DP_TRAIN_PRE_EMPHASIS_MASK);
1639 switch (signal_levels) {
1640 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1641 return DDI_BUF_EMP_400MV_0DB_HSW;
1642 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1643 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1644 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1645 return DDI_BUF_EMP_400MV_6DB_HSW;
1646 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1647 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1648
1649 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1650 return DDI_BUF_EMP_600MV_0DB_HSW;
1651 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1652 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1653 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1654 return DDI_BUF_EMP_600MV_6DB_HSW;
1655
1656 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1657 return DDI_BUF_EMP_800MV_0DB_HSW;
1658 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1659 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1660 default:
1661 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1662 "0x%x\n", signal_levels);
1663 return DDI_BUF_EMP_400MV_0DB_HSW;
1664 }
1665 }
1666
1667 /* Properly updates "DP" with the correct signal levels. */
1668 static void
1669 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1670 {
1671 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1672 struct drm_device *dev = intel_dig_port->base.base.dev;
1673 uint32_t signal_levels, mask;
1674 uint8_t train_set = intel_dp->train_set[0];
1675
1676 if (HAS_DDI(dev)) {
1677 signal_levels = intel_hsw_signal_levels(train_set);
1678 mask = DDI_BUF_EMP_MASK;
1679 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1680 signal_levels = intel_gen7_edp_signal_levels(train_set);
1681 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1682 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1683 signal_levels = intel_gen6_edp_signal_levels(train_set);
1684 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1685 } else {
1686 signal_levels = intel_gen4_signal_levels(train_set);
1687 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1688 }
1689
1690 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1691
1692 *DP = (*DP & ~mask) | signal_levels;
1693 }
1694
1695 static bool
1696 intel_dp_set_link_train(struct intel_dp *intel_dp,
1697 uint32_t dp_reg_value,
1698 uint8_t dp_train_pat)
1699 {
1700 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1701 struct drm_device *dev = intel_dig_port->base.base.dev;
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 enum port port = intel_dig_port->port;
1704 int ret;
1705
1706 if (HAS_DDI(dev)) {
1707 uint32_t temp = I915_READ(DP_TP_CTL(port));
1708
1709 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1710 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1711 else
1712 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1713
1714 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1715 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1716 case DP_TRAINING_PATTERN_DISABLE:
1717 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1718
1719 break;
1720 case DP_TRAINING_PATTERN_1:
1721 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1722 break;
1723 case DP_TRAINING_PATTERN_2:
1724 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1725 break;
1726 case DP_TRAINING_PATTERN_3:
1727 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1728 break;
1729 }
1730 I915_WRITE(DP_TP_CTL(port), temp);
1731
1732 } else if (HAS_PCH_CPT(dev) &&
1733 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1734 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1735
1736 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1737 case DP_TRAINING_PATTERN_DISABLE:
1738 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1739 break;
1740 case DP_TRAINING_PATTERN_1:
1741 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1742 break;
1743 case DP_TRAINING_PATTERN_2:
1744 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1745 break;
1746 case DP_TRAINING_PATTERN_3:
1747 DRM_ERROR("DP training pattern 3 not supported\n");
1748 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1749 break;
1750 }
1751
1752 } else {
1753 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1754
1755 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1756 case DP_TRAINING_PATTERN_DISABLE:
1757 dp_reg_value |= DP_LINK_TRAIN_OFF;
1758 break;
1759 case DP_TRAINING_PATTERN_1:
1760 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1761 break;
1762 case DP_TRAINING_PATTERN_2:
1763 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1764 break;
1765 case DP_TRAINING_PATTERN_3:
1766 DRM_ERROR("DP training pattern 3 not supported\n");
1767 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1768 break;
1769 }
1770 }
1771
1772 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1773 POSTING_READ(intel_dp->output_reg);
1774
1775 intel_dp_aux_native_write_1(intel_dp,
1776 DP_TRAINING_PATTERN_SET,
1777 dp_train_pat);
1778
1779 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1780 DP_TRAINING_PATTERN_DISABLE) {
1781 ret = intel_dp_aux_native_write(intel_dp,
1782 DP_TRAINING_LANE0_SET,
1783 intel_dp->train_set,
1784 intel_dp->lane_count);
1785 if (ret != intel_dp->lane_count)
1786 return false;
1787 }
1788
1789 return true;
1790 }
1791
1792 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
1793 {
1794 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1795 struct drm_device *dev = intel_dig_port->base.base.dev;
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 enum port port = intel_dig_port->port;
1798 uint32_t val;
1799
1800 if (!HAS_DDI(dev))
1801 return;
1802
1803 val = I915_READ(DP_TP_CTL(port));
1804 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1805 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
1806 I915_WRITE(DP_TP_CTL(port), val);
1807
1808 /*
1809 * On PORT_A we can have only eDP in SST mode. There the only reason
1810 * we need to set idle transmission mode is to work around a HW issue
1811 * where we enable the pipe while not in idle link-training mode.
1812 * In this case there is requirement to wait for a minimum number of
1813 * idle patterns to be sent.
1814 */
1815 if (port == PORT_A)
1816 return;
1817
1818 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
1819 1))
1820 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1821 }
1822
1823 /* Enable corresponding port and start training pattern 1 */
1824 void
1825 intel_dp_start_link_train(struct intel_dp *intel_dp)
1826 {
1827 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1828 struct drm_device *dev = encoder->dev;
1829 int i;
1830 uint8_t voltage;
1831 bool clock_recovery = false;
1832 int voltage_tries, loop_tries;
1833 uint32_t DP = intel_dp->DP;
1834
1835 if (HAS_DDI(dev))
1836 intel_ddi_prepare_link_retrain(encoder);
1837
1838 /* Write the link configuration data */
1839 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1840 intel_dp->link_configuration,
1841 DP_LINK_CONFIGURATION_SIZE);
1842
1843 DP |= DP_PORT_EN;
1844
1845 memset(intel_dp->train_set, 0, 4);
1846 voltage = 0xff;
1847 voltage_tries = 0;
1848 loop_tries = 0;
1849 clock_recovery = false;
1850 for (;;) {
1851 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1852 uint8_t link_status[DP_LINK_STATUS_SIZE];
1853
1854 intel_dp_set_signal_levels(intel_dp, &DP);
1855
1856 /* Set training pattern 1 */
1857 if (!intel_dp_set_link_train(intel_dp, DP,
1858 DP_TRAINING_PATTERN_1 |
1859 DP_LINK_SCRAMBLING_DISABLE))
1860 break;
1861
1862 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1863 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1864 DRM_ERROR("failed to get link status\n");
1865 break;
1866 }
1867
1868 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1869 DRM_DEBUG_KMS("clock recovery OK\n");
1870 clock_recovery = true;
1871 break;
1872 }
1873
1874 /* Check to see if we've tried the max voltage */
1875 for (i = 0; i < intel_dp->lane_count; i++)
1876 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1877 break;
1878 if (i == intel_dp->lane_count) {
1879 ++loop_tries;
1880 if (loop_tries == 5) {
1881 DRM_DEBUG_KMS("too many full retries, give up\n");
1882 break;
1883 }
1884 memset(intel_dp->train_set, 0, 4);
1885 voltage_tries = 0;
1886 continue;
1887 }
1888
1889 /* Check to see if we've tried the same voltage 5 times */
1890 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1891 ++voltage_tries;
1892 if (voltage_tries == 5) {
1893 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1894 break;
1895 }
1896 } else
1897 voltage_tries = 0;
1898 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1899
1900 /* Compute new intel_dp->train_set as requested by target */
1901 intel_get_adjust_train(intel_dp, link_status);
1902 }
1903
1904 intel_dp->DP = DP;
1905 }
1906
1907 void
1908 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1909 {
1910 bool channel_eq = false;
1911 int tries, cr_tries;
1912 uint32_t DP = intel_dp->DP;
1913
1914 /* channel equalization */
1915 tries = 0;
1916 cr_tries = 0;
1917 channel_eq = false;
1918 for (;;) {
1919 uint8_t link_status[DP_LINK_STATUS_SIZE];
1920
1921 if (cr_tries > 5) {
1922 DRM_ERROR("failed to train DP, aborting\n");
1923 intel_dp_link_down(intel_dp);
1924 break;
1925 }
1926
1927 intel_dp_set_signal_levels(intel_dp, &DP);
1928
1929 /* channel eq pattern */
1930 if (!intel_dp_set_link_train(intel_dp, DP,
1931 DP_TRAINING_PATTERN_2 |
1932 DP_LINK_SCRAMBLING_DISABLE))
1933 break;
1934
1935 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1936 if (!intel_dp_get_link_status(intel_dp, link_status))
1937 break;
1938
1939 /* Make sure clock is still ok */
1940 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1941 intel_dp_start_link_train(intel_dp);
1942 cr_tries++;
1943 continue;
1944 }
1945
1946 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1947 channel_eq = true;
1948 break;
1949 }
1950
1951 /* Try 5 times, then try clock recovery if that fails */
1952 if (tries > 5) {
1953 intel_dp_link_down(intel_dp);
1954 intel_dp_start_link_train(intel_dp);
1955 tries = 0;
1956 cr_tries++;
1957 continue;
1958 }
1959
1960 /* Compute new intel_dp->train_set as requested by target */
1961 intel_get_adjust_train(intel_dp, link_status);
1962 ++tries;
1963 }
1964
1965 intel_dp_set_idle_link_train(intel_dp);
1966
1967 intel_dp->DP = DP;
1968
1969 if (channel_eq)
1970 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1971
1972 }
1973
1974 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
1975 {
1976 intel_dp_set_link_train(intel_dp, intel_dp->DP,
1977 DP_TRAINING_PATTERN_DISABLE);
1978 }
1979
1980 static void
1981 intel_dp_link_down(struct intel_dp *intel_dp)
1982 {
1983 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1984 struct drm_device *dev = intel_dig_port->base.base.dev;
1985 struct drm_i915_private *dev_priv = dev->dev_private;
1986 struct intel_crtc *intel_crtc =
1987 to_intel_crtc(intel_dig_port->base.base.crtc);
1988 uint32_t DP = intel_dp->DP;
1989
1990 /*
1991 * DDI code has a strict mode set sequence and we should try to respect
1992 * it, otherwise we might hang the machine in many different ways. So we
1993 * really should be disabling the port only on a complete crtc_disable
1994 * sequence. This function is just called under two conditions on DDI
1995 * code:
1996 * - Link train failed while doing crtc_enable, and on this case we
1997 * really should respect the mode set sequence and wait for a
1998 * crtc_disable.
1999 * - Someone turned the monitor off and intel_dp_check_link_status
2000 * called us. We don't need to disable the whole port on this case, so
2001 * when someone turns the monitor on again,
2002 * intel_ddi_prepare_link_retrain will take care of redoing the link
2003 * train.
2004 */
2005 if (HAS_DDI(dev))
2006 return;
2007
2008 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2009 return;
2010
2011 DRM_DEBUG_KMS("\n");
2012
2013 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2014 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2015 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2016 } else {
2017 DP &= ~DP_LINK_TRAIN_MASK;
2018 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2019 }
2020 POSTING_READ(intel_dp->output_reg);
2021
2022 /* We don't really know why we're doing this */
2023 intel_wait_for_vblank(dev, intel_crtc->pipe);
2024
2025 if (HAS_PCH_IBX(dev) &&
2026 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2027 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2028
2029 /* Hardware workaround: leaving our transcoder select
2030 * set to transcoder B while it's off will prevent the
2031 * corresponding HDMI output on transcoder A.
2032 *
2033 * Combine this with another hardware workaround:
2034 * transcoder select bit can only be cleared while the
2035 * port is enabled.
2036 */
2037 DP &= ~DP_PIPEB_SELECT;
2038 I915_WRITE(intel_dp->output_reg, DP);
2039
2040 /* Changes to enable or select take place the vblank
2041 * after being written.
2042 */
2043 if (WARN_ON(crtc == NULL)) {
2044 /* We should never try to disable a port without a crtc
2045 * attached. For paranoia keep the code around for a
2046 * bit. */
2047 POSTING_READ(intel_dp->output_reg);
2048 msleep(50);
2049 } else
2050 intel_wait_for_vblank(dev, intel_crtc->pipe);
2051 }
2052
2053 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2054 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2055 POSTING_READ(intel_dp->output_reg);
2056 msleep(intel_dp->panel_power_down_delay);
2057 }
2058
2059 static bool
2060 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2061 {
2062 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2063
2064 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2065 sizeof(intel_dp->dpcd)) == 0)
2066 return false; /* aux transfer failed */
2067
2068 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2069 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2070 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2071
2072 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2073 return false; /* DPCD not present */
2074
2075 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2076 DP_DWN_STRM_PORT_PRESENT))
2077 return true; /* native DP sink */
2078
2079 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2080 return true; /* no per-port downstream info */
2081
2082 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2083 intel_dp->downstream_ports,
2084 DP_MAX_DOWNSTREAM_PORTS) == 0)
2085 return false; /* downstream port status fetch failed */
2086
2087 return true;
2088 }
2089
2090 static void
2091 intel_dp_probe_oui(struct intel_dp *intel_dp)
2092 {
2093 u8 buf[3];
2094
2095 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2096 return;
2097
2098 ironlake_edp_panel_vdd_on(intel_dp);
2099
2100 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2101 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2102 buf[0], buf[1], buf[2]);
2103
2104 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2105 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2106 buf[0], buf[1], buf[2]);
2107
2108 ironlake_edp_panel_vdd_off(intel_dp, false);
2109 }
2110
2111 static bool
2112 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2113 {
2114 int ret;
2115
2116 ret = intel_dp_aux_native_read_retry(intel_dp,
2117 DP_DEVICE_SERVICE_IRQ_VECTOR,
2118 sink_irq_vector, 1);
2119 if (!ret)
2120 return false;
2121
2122 return true;
2123 }
2124
2125 static void
2126 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2127 {
2128 /* NAK by default */
2129 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2130 }
2131
2132 /*
2133 * According to DP spec
2134 * 5.1.2:
2135 * 1. Read DPCD
2136 * 2. Configure link according to Receiver Capabilities
2137 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2138 * 4. Check link status on receipt of hot-plug interrupt
2139 */
2140
2141 void
2142 intel_dp_check_link_status(struct intel_dp *intel_dp)
2143 {
2144 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2145 u8 sink_irq_vector;
2146 u8 link_status[DP_LINK_STATUS_SIZE];
2147
2148 if (!intel_encoder->connectors_active)
2149 return;
2150
2151 if (WARN_ON(!intel_encoder->base.crtc))
2152 return;
2153
2154 /* Try to read receiver status if the link appears to be up */
2155 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2156 intel_dp_link_down(intel_dp);
2157 return;
2158 }
2159
2160 /* Now read the DPCD to see if it's actually running */
2161 if (!intel_dp_get_dpcd(intel_dp)) {
2162 intel_dp_link_down(intel_dp);
2163 return;
2164 }
2165
2166 /* Try to read the source of the interrupt */
2167 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2168 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2169 /* Clear interrupt source */
2170 intel_dp_aux_native_write_1(intel_dp,
2171 DP_DEVICE_SERVICE_IRQ_VECTOR,
2172 sink_irq_vector);
2173
2174 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2175 intel_dp_handle_test_request(intel_dp);
2176 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2177 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2178 }
2179
2180 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2181 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2182 drm_get_encoder_name(&intel_encoder->base));
2183 intel_dp_start_link_train(intel_dp);
2184 intel_dp_complete_link_train(intel_dp);
2185 intel_dp_stop_link_train(intel_dp);
2186 }
2187 }
2188
2189 /* XXX this is probably wrong for multiple downstream ports */
2190 static enum drm_connector_status
2191 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2192 {
2193 uint8_t *dpcd = intel_dp->dpcd;
2194 bool hpd;
2195 uint8_t type;
2196
2197 if (!intel_dp_get_dpcd(intel_dp))
2198 return connector_status_disconnected;
2199
2200 /* if there's no downstream port, we're done */
2201 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2202 return connector_status_connected;
2203
2204 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2205 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2206 if (hpd) {
2207 uint8_t reg;
2208 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2209 &reg, 1))
2210 return connector_status_unknown;
2211 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2212 : connector_status_disconnected;
2213 }
2214
2215 /* If no HPD, poke DDC gently */
2216 if (drm_probe_ddc(&intel_dp->adapter))
2217 return connector_status_connected;
2218
2219 /* Well we tried, say unknown for unreliable port types */
2220 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2221 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2222 return connector_status_unknown;
2223
2224 /* Anything else is out of spec, warn and ignore */
2225 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2226 return connector_status_disconnected;
2227 }
2228
2229 static enum drm_connector_status
2230 ironlake_dp_detect(struct intel_dp *intel_dp)
2231 {
2232 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2235 enum drm_connector_status status;
2236
2237 /* Can't disconnect eDP, but you can close the lid... */
2238 if (is_edp(intel_dp)) {
2239 status = intel_panel_detect(dev);
2240 if (status == connector_status_unknown)
2241 status = connector_status_connected;
2242 return status;
2243 }
2244
2245 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2246 return connector_status_disconnected;
2247
2248 return intel_dp_detect_dpcd(intel_dp);
2249 }
2250
2251 static enum drm_connector_status
2252 g4x_dp_detect(struct intel_dp *intel_dp)
2253 {
2254 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2255 struct drm_i915_private *dev_priv = dev->dev_private;
2256 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2257 uint32_t bit;
2258
2259 /* Can't disconnect eDP, but you can close the lid... */
2260 if (is_edp(intel_dp)) {
2261 enum drm_connector_status status;
2262
2263 status = intel_panel_detect(dev);
2264 if (status == connector_status_unknown)
2265 status = connector_status_connected;
2266 return status;
2267 }
2268
2269 switch (intel_dig_port->port) {
2270 case PORT_B:
2271 bit = PORTB_HOTPLUG_LIVE_STATUS;
2272 break;
2273 case PORT_C:
2274 bit = PORTC_HOTPLUG_LIVE_STATUS;
2275 break;
2276 case PORT_D:
2277 bit = PORTD_HOTPLUG_LIVE_STATUS;
2278 break;
2279 default:
2280 return connector_status_unknown;
2281 }
2282
2283 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2284 return connector_status_disconnected;
2285
2286 return intel_dp_detect_dpcd(intel_dp);
2287 }
2288
2289 static struct edid *
2290 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2291 {
2292 struct intel_connector *intel_connector = to_intel_connector(connector);
2293
2294 /* use cached edid if we have one */
2295 if (intel_connector->edid) {
2296 struct edid *edid;
2297 int size;
2298
2299 /* invalid edid */
2300 if (IS_ERR(intel_connector->edid))
2301 return NULL;
2302
2303 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2304 edid = kmalloc(size, GFP_KERNEL);
2305 if (!edid)
2306 return NULL;
2307
2308 memcpy(edid, intel_connector->edid, size);
2309 return edid;
2310 }
2311
2312 return drm_get_edid(connector, adapter);
2313 }
2314
2315 static int
2316 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2317 {
2318 struct intel_connector *intel_connector = to_intel_connector(connector);
2319
2320 /* use cached edid if we have one */
2321 if (intel_connector->edid) {
2322 /* invalid edid */
2323 if (IS_ERR(intel_connector->edid))
2324 return 0;
2325
2326 return intel_connector_update_modes(connector,
2327 intel_connector->edid);
2328 }
2329
2330 return intel_ddc_get_modes(connector, adapter);
2331 }
2332
2333 static enum drm_connector_status
2334 intel_dp_detect(struct drm_connector *connector, bool force)
2335 {
2336 struct intel_dp *intel_dp = intel_attached_dp(connector);
2337 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2338 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2339 struct drm_device *dev = connector->dev;
2340 enum drm_connector_status status;
2341 struct edid *edid = NULL;
2342
2343 intel_dp->has_audio = false;
2344
2345 if (HAS_PCH_SPLIT(dev))
2346 status = ironlake_dp_detect(intel_dp);
2347 else
2348 status = g4x_dp_detect(intel_dp);
2349
2350 if (status != connector_status_connected)
2351 return status;
2352
2353 intel_dp_probe_oui(intel_dp);
2354
2355 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2356 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2357 } else {
2358 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2359 if (edid) {
2360 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2361 kfree(edid);
2362 }
2363 }
2364
2365 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2366 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2367 return connector_status_connected;
2368 }
2369
2370 static int intel_dp_get_modes(struct drm_connector *connector)
2371 {
2372 struct intel_dp *intel_dp = intel_attached_dp(connector);
2373 struct intel_connector *intel_connector = to_intel_connector(connector);
2374 struct drm_device *dev = connector->dev;
2375 int ret;
2376
2377 /* We should parse the EDID data and find out if it has an audio sink
2378 */
2379
2380 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2381 if (ret)
2382 return ret;
2383
2384 /* if eDP has no EDID, fall back to fixed mode */
2385 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2386 struct drm_display_mode *mode;
2387 mode = drm_mode_duplicate(dev,
2388 intel_connector->panel.fixed_mode);
2389 if (mode) {
2390 drm_mode_probed_add(connector, mode);
2391 return 1;
2392 }
2393 }
2394 return 0;
2395 }
2396
2397 static bool
2398 intel_dp_detect_audio(struct drm_connector *connector)
2399 {
2400 struct intel_dp *intel_dp = intel_attached_dp(connector);
2401 struct edid *edid;
2402 bool has_audio = false;
2403
2404 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2405 if (edid) {
2406 has_audio = drm_detect_monitor_audio(edid);
2407 kfree(edid);
2408 }
2409
2410 return has_audio;
2411 }
2412
2413 static int
2414 intel_dp_set_property(struct drm_connector *connector,
2415 struct drm_property *property,
2416 uint64_t val)
2417 {
2418 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2419 struct intel_connector *intel_connector = to_intel_connector(connector);
2420 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2421 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2422 int ret;
2423
2424 ret = drm_object_property_set_value(&connector->base, property, val);
2425 if (ret)
2426 return ret;
2427
2428 if (property == dev_priv->force_audio_property) {
2429 int i = val;
2430 bool has_audio;
2431
2432 if (i == intel_dp->force_audio)
2433 return 0;
2434
2435 intel_dp->force_audio = i;
2436
2437 if (i == HDMI_AUDIO_AUTO)
2438 has_audio = intel_dp_detect_audio(connector);
2439 else
2440 has_audio = (i == HDMI_AUDIO_ON);
2441
2442 if (has_audio == intel_dp->has_audio)
2443 return 0;
2444
2445 intel_dp->has_audio = has_audio;
2446 goto done;
2447 }
2448
2449 if (property == dev_priv->broadcast_rgb_property) {
2450 bool old_auto = intel_dp->color_range_auto;
2451 uint32_t old_range = intel_dp->color_range;
2452
2453 switch (val) {
2454 case INTEL_BROADCAST_RGB_AUTO:
2455 intel_dp->color_range_auto = true;
2456 break;
2457 case INTEL_BROADCAST_RGB_FULL:
2458 intel_dp->color_range_auto = false;
2459 intel_dp->color_range = 0;
2460 break;
2461 case INTEL_BROADCAST_RGB_LIMITED:
2462 intel_dp->color_range_auto = false;
2463 intel_dp->color_range = DP_COLOR_RANGE_16_235;
2464 break;
2465 default:
2466 return -EINVAL;
2467 }
2468
2469 if (old_auto == intel_dp->color_range_auto &&
2470 old_range == intel_dp->color_range)
2471 return 0;
2472
2473 goto done;
2474 }
2475
2476 if (is_edp(intel_dp) &&
2477 property == connector->dev->mode_config.scaling_mode_property) {
2478 if (val == DRM_MODE_SCALE_NONE) {
2479 DRM_DEBUG_KMS("no scaling not supported\n");
2480 return -EINVAL;
2481 }
2482
2483 if (intel_connector->panel.fitting_mode == val) {
2484 /* the eDP scaling property is not changed */
2485 return 0;
2486 }
2487 intel_connector->panel.fitting_mode = val;
2488
2489 goto done;
2490 }
2491
2492 return -EINVAL;
2493
2494 done:
2495 if (intel_encoder->base.crtc)
2496 intel_crtc_restore_mode(intel_encoder->base.crtc);
2497
2498 return 0;
2499 }
2500
2501 static void
2502 intel_dp_destroy(struct drm_connector *connector)
2503 {
2504 struct intel_dp *intel_dp = intel_attached_dp(connector);
2505 struct intel_connector *intel_connector = to_intel_connector(connector);
2506
2507 if (!IS_ERR_OR_NULL(intel_connector->edid))
2508 kfree(intel_connector->edid);
2509
2510 if (is_edp(intel_dp))
2511 intel_panel_fini(&intel_connector->panel);
2512
2513 drm_sysfs_connector_remove(connector);
2514 drm_connector_cleanup(connector);
2515 kfree(connector);
2516 }
2517
2518 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2519 {
2520 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2521 struct intel_dp *intel_dp = &intel_dig_port->dp;
2522 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2523
2524 i2c_del_adapter(&intel_dp->adapter);
2525 drm_encoder_cleanup(encoder);
2526 if (is_edp(intel_dp)) {
2527 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2528 mutex_lock(&dev->mode_config.mutex);
2529 ironlake_panel_vdd_off_sync(intel_dp);
2530 mutex_unlock(&dev->mode_config.mutex);
2531 }
2532 kfree(intel_dig_port);
2533 }
2534
2535 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2536 .mode_set = intel_dp_mode_set,
2537 };
2538
2539 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2540 .dpms = intel_connector_dpms,
2541 .detect = intel_dp_detect,
2542 .fill_modes = drm_helper_probe_single_connector_modes,
2543 .set_property = intel_dp_set_property,
2544 .destroy = intel_dp_destroy,
2545 };
2546
2547 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2548 .get_modes = intel_dp_get_modes,
2549 .mode_valid = intel_dp_mode_valid,
2550 .best_encoder = intel_best_encoder,
2551 };
2552
2553 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2554 .destroy = intel_dp_encoder_destroy,
2555 };
2556
2557 static void
2558 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2559 {
2560 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2561
2562 intel_dp_check_link_status(intel_dp);
2563 }
2564
2565 /* Return which DP Port should be selected for Transcoder DP control */
2566 int
2567 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2568 {
2569 struct drm_device *dev = crtc->dev;
2570 struct intel_encoder *intel_encoder;
2571 struct intel_dp *intel_dp;
2572
2573 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2574 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2575
2576 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2577 intel_encoder->type == INTEL_OUTPUT_EDP)
2578 return intel_dp->output_reg;
2579 }
2580
2581 return -1;
2582 }
2583
2584 /* check the VBT to see whether the eDP is on DP-D port */
2585 bool intel_dpd_is_edp(struct drm_device *dev)
2586 {
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588 struct child_device_config *p_child;
2589 int i;
2590
2591 if (!dev_priv->child_dev_num)
2592 return false;
2593
2594 for (i = 0; i < dev_priv->child_dev_num; i++) {
2595 p_child = dev_priv->child_dev + i;
2596
2597 if (p_child->dvo_port == PORT_IDPD &&
2598 p_child->device_type == DEVICE_TYPE_eDP)
2599 return true;
2600 }
2601 return false;
2602 }
2603
2604 static void
2605 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2606 {
2607 struct intel_connector *intel_connector = to_intel_connector(connector);
2608
2609 intel_attach_force_audio_property(connector);
2610 intel_attach_broadcast_rgb_property(connector);
2611 intel_dp->color_range_auto = true;
2612
2613 if (is_edp(intel_dp)) {
2614 drm_mode_create_scaling_mode_property(connector->dev);
2615 drm_object_attach_property(
2616 &connector->base,
2617 connector->dev->mode_config.scaling_mode_property,
2618 DRM_MODE_SCALE_ASPECT);
2619 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2620 }
2621 }
2622
2623 static void
2624 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2625 struct intel_dp *intel_dp,
2626 struct edp_power_seq *out)
2627 {
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 struct edp_power_seq cur, vbt, spec, final;
2630 u32 pp_on, pp_off, pp_div, pp;
2631 int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
2632
2633 if (HAS_PCH_SPLIT(dev)) {
2634 pp_control_reg = PCH_PP_CONTROL;
2635 pp_on_reg = PCH_PP_ON_DELAYS;
2636 pp_off_reg = PCH_PP_OFF_DELAYS;
2637 pp_div_reg = PCH_PP_DIVISOR;
2638 } else {
2639 pp_control_reg = PIPEA_PP_CONTROL;
2640 pp_on_reg = PIPEA_PP_ON_DELAYS;
2641 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2642 pp_div_reg = PIPEA_PP_DIVISOR;
2643 }
2644
2645 /* Workaround: Need to write PP_CONTROL with the unlock key as
2646 * the very first thing. */
2647 pp = ironlake_get_pp_control(intel_dp);
2648 I915_WRITE(pp_control_reg, pp);
2649
2650 pp_on = I915_READ(pp_on_reg);
2651 pp_off = I915_READ(pp_off_reg);
2652 pp_div = I915_READ(pp_div_reg);
2653
2654 /* Pull timing values out of registers */
2655 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2656 PANEL_POWER_UP_DELAY_SHIFT;
2657
2658 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2659 PANEL_LIGHT_ON_DELAY_SHIFT;
2660
2661 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2662 PANEL_LIGHT_OFF_DELAY_SHIFT;
2663
2664 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2665 PANEL_POWER_DOWN_DELAY_SHIFT;
2666
2667 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2668 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2669
2670 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2671 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2672
2673 vbt = dev_priv->edp.pps;
2674
2675 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2676 * our hw here, which are all in 100usec. */
2677 spec.t1_t3 = 210 * 10;
2678 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2679 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2680 spec.t10 = 500 * 10;
2681 /* This one is special and actually in units of 100ms, but zero
2682 * based in the hw (so we need to add 100 ms). But the sw vbt
2683 * table multiplies it with 1000 to make it in units of 100usec,
2684 * too. */
2685 spec.t11_t12 = (510 + 100) * 10;
2686
2687 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2688 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2689
2690 /* Use the max of the register settings and vbt. If both are
2691 * unset, fall back to the spec limits. */
2692 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2693 spec.field : \
2694 max(cur.field, vbt.field))
2695 assign_final(t1_t3);
2696 assign_final(t8);
2697 assign_final(t9);
2698 assign_final(t10);
2699 assign_final(t11_t12);
2700 #undef assign_final
2701
2702 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2703 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2704 intel_dp->backlight_on_delay = get_delay(t8);
2705 intel_dp->backlight_off_delay = get_delay(t9);
2706 intel_dp->panel_power_down_delay = get_delay(t10);
2707 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2708 #undef get_delay
2709
2710 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2711 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2712 intel_dp->panel_power_cycle_delay);
2713
2714 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2715 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2716
2717 if (out)
2718 *out = final;
2719 }
2720
2721 static void
2722 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2723 struct intel_dp *intel_dp,
2724 struct edp_power_seq *seq)
2725 {
2726 struct drm_i915_private *dev_priv = dev->dev_private;
2727 u32 pp_on, pp_off, pp_div, port_sel = 0;
2728 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
2729 int pp_on_reg, pp_off_reg, pp_div_reg;
2730
2731 if (HAS_PCH_SPLIT(dev)) {
2732 pp_on_reg = PCH_PP_ON_DELAYS;
2733 pp_off_reg = PCH_PP_OFF_DELAYS;
2734 pp_div_reg = PCH_PP_DIVISOR;
2735 } else {
2736 pp_on_reg = PIPEA_PP_ON_DELAYS;
2737 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2738 pp_div_reg = PIPEA_PP_DIVISOR;
2739 }
2740
2741 if (IS_VALLEYVIEW(dev))
2742 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
2743
2744 /* And finally store the new values in the power sequencer. */
2745 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2746 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2747 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2748 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2749 /* Compute the divisor for the pp clock, simply match the Bspec
2750 * formula. */
2751 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
2752 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2753 << PANEL_POWER_CYCLE_DELAY_SHIFT);
2754
2755 /* Haswell doesn't have any port selection bits for the panel
2756 * power sequencer any more. */
2757 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2758 if (is_cpu_edp(intel_dp))
2759 port_sel = PANEL_POWER_PORT_DP_A;
2760 else
2761 port_sel = PANEL_POWER_PORT_DP_D;
2762 }
2763
2764 pp_on |= port_sel;
2765
2766 I915_WRITE(pp_on_reg, pp_on);
2767 I915_WRITE(pp_off_reg, pp_off);
2768 I915_WRITE(pp_div_reg, pp_div);
2769
2770 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2771 I915_READ(pp_on_reg),
2772 I915_READ(pp_off_reg),
2773 I915_READ(pp_div_reg));
2774 }
2775
2776 void
2777 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2778 struct intel_connector *intel_connector)
2779 {
2780 struct drm_connector *connector = &intel_connector->base;
2781 struct intel_dp *intel_dp = &intel_dig_port->dp;
2782 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2783 struct drm_device *dev = intel_encoder->base.dev;
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct drm_display_mode *fixed_mode = NULL;
2786 struct edp_power_seq power_seq = { 0 };
2787 enum port port = intel_dig_port->port;
2788 const char *name = NULL;
2789 int type;
2790
2791 /* Preserve the current hw state. */
2792 intel_dp->DP = I915_READ(intel_dp->output_reg);
2793 intel_dp->attached_connector = intel_connector;
2794
2795 if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2796 if (intel_dpd_is_edp(dev))
2797 intel_dp->is_pch_edp = true;
2798
2799 /*
2800 * FIXME : We need to initialize built-in panels before external panels.
2801 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2802 */
2803 if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2804 type = DRM_MODE_CONNECTOR_eDP;
2805 intel_encoder->type = INTEL_OUTPUT_EDP;
2806 } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2807 type = DRM_MODE_CONNECTOR_eDP;
2808 intel_encoder->type = INTEL_OUTPUT_EDP;
2809 } else {
2810 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2811 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2812 * rewrite it.
2813 */
2814 type = DRM_MODE_CONNECTOR_DisplayPort;
2815 }
2816
2817 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2818 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2819
2820 connector->interlace_allowed = true;
2821 connector->doublescan_allowed = 0;
2822
2823 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2824 ironlake_panel_vdd_work);
2825
2826 intel_connector_attach_encoder(intel_connector, intel_encoder);
2827 drm_sysfs_connector_add(connector);
2828
2829 if (HAS_DDI(dev))
2830 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2831 else
2832 intel_connector->get_hw_state = intel_connector_get_hw_state;
2833
2834 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
2835 if (HAS_DDI(dev)) {
2836 switch (intel_dig_port->port) {
2837 case PORT_A:
2838 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
2839 break;
2840 case PORT_B:
2841 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
2842 break;
2843 case PORT_C:
2844 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
2845 break;
2846 case PORT_D:
2847 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
2848 break;
2849 default:
2850 BUG();
2851 }
2852 }
2853
2854 /* Set up the DDC bus. */
2855 switch (port) {
2856 case PORT_A:
2857 intel_encoder->hpd_pin = HPD_PORT_A;
2858 name = "DPDDC-A";
2859 break;
2860 case PORT_B:
2861 intel_encoder->hpd_pin = HPD_PORT_B;
2862 name = "DPDDC-B";
2863 break;
2864 case PORT_C:
2865 intel_encoder->hpd_pin = HPD_PORT_C;
2866 name = "DPDDC-C";
2867 break;
2868 case PORT_D:
2869 intel_encoder->hpd_pin = HPD_PORT_D;
2870 name = "DPDDC-D";
2871 break;
2872 default:
2873 BUG();
2874 }
2875
2876 if (is_edp(intel_dp))
2877 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2878
2879 intel_dp_i2c_init(intel_dp, intel_connector, name);
2880
2881 /* Cache DPCD and EDID for edp. */
2882 if (is_edp(intel_dp)) {
2883 bool ret;
2884 struct drm_display_mode *scan;
2885 struct edid *edid;
2886
2887 ironlake_edp_panel_vdd_on(intel_dp);
2888 ret = intel_dp_get_dpcd(intel_dp);
2889 ironlake_edp_panel_vdd_off(intel_dp, false);
2890
2891 if (ret) {
2892 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2893 dev_priv->no_aux_handshake =
2894 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2895 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2896 } else {
2897 /* if this fails, presume the device is a ghost */
2898 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2899 intel_dp_encoder_destroy(&intel_encoder->base);
2900 intel_dp_destroy(connector);
2901 return;
2902 }
2903
2904 /* We now know it's not a ghost, init power sequence regs. */
2905 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2906 &power_seq);
2907
2908 ironlake_edp_panel_vdd_on(intel_dp);
2909 edid = drm_get_edid(connector, &intel_dp->adapter);
2910 if (edid) {
2911 if (drm_add_edid_modes(connector, edid)) {
2912 drm_mode_connector_update_edid_property(connector, edid);
2913 drm_edid_to_eld(connector, edid);
2914 } else {
2915 kfree(edid);
2916 edid = ERR_PTR(-EINVAL);
2917 }
2918 } else {
2919 edid = ERR_PTR(-ENOENT);
2920 }
2921 intel_connector->edid = edid;
2922
2923 /* prefer fixed mode from EDID if available */
2924 list_for_each_entry(scan, &connector->probed_modes, head) {
2925 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2926 fixed_mode = drm_mode_duplicate(dev, scan);
2927 break;
2928 }
2929 }
2930
2931 /* fallback to VBT if available for eDP */
2932 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2933 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2934 if (fixed_mode)
2935 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2936 }
2937
2938 ironlake_edp_panel_vdd_off(intel_dp, false);
2939 }
2940
2941 if (is_edp(intel_dp)) {
2942 intel_panel_init(&intel_connector->panel, fixed_mode);
2943 intel_panel_setup_backlight(connector);
2944 }
2945
2946 intel_dp_add_properties(intel_dp, connector);
2947
2948 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2949 * 0xd. Failure to do so will result in spurious interrupts being
2950 * generated on the port when a cable is not attached.
2951 */
2952 if (IS_G4X(dev) && !IS_GM45(dev)) {
2953 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2954 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2955 }
2956 }
2957
2958 void
2959 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2960 {
2961 struct intel_digital_port *intel_dig_port;
2962 struct intel_encoder *intel_encoder;
2963 struct drm_encoder *encoder;
2964 struct intel_connector *intel_connector;
2965
2966 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2967 if (!intel_dig_port)
2968 return;
2969
2970 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2971 if (!intel_connector) {
2972 kfree(intel_dig_port);
2973 return;
2974 }
2975
2976 intel_encoder = &intel_dig_port->base;
2977 encoder = &intel_encoder->base;
2978
2979 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2980 DRM_MODE_ENCODER_TMDS);
2981 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2982
2983 intel_encoder->compute_config = intel_dp_compute_config;
2984 intel_encoder->enable = intel_enable_dp;
2985 intel_encoder->pre_enable = intel_pre_enable_dp;
2986 intel_encoder->disable = intel_disable_dp;
2987 intel_encoder->post_disable = intel_post_disable_dp;
2988 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2989
2990 intel_dig_port->port = port;
2991 intel_dig_port->dp.output_reg = output_reg;
2992
2993 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2994 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2995 intel_encoder->cloneable = false;
2996 intel_encoder->hot_plug = intel_dp_hot_plug;
2997
2998 intel_dp_init_connector(intel_dig_port, intel_connector);
2999 }