Merge branches 'devel-stable', 'entry', 'fixes', 'mach-types', 'misc' and 'smp-hotplu...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83 return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 void
113 intel_edp_link_config(struct intel_encoder *intel_encoder,
114 int *lane_num, int *link_bw)
115 {
116 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118 *lane_num = intel_dp->lane_count;
119 *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124 struct drm_display_mode *mode)
125 {
126 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127 struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129 if (intel_connector->panel.fixed_mode)
130 return intel_connector->panel.fixed_mode->clock;
131 else
132 return mode->clock;
133 }
134
135 static int
136 intel_dp_max_link_bw(struct intel_dp *intel_dp)
137 {
138 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140 switch (max_link_bw) {
141 case DP_LINK_BW_1_62:
142 case DP_LINK_BW_2_7:
143 break;
144 default:
145 max_link_bw = DP_LINK_BW_1_62;
146 break;
147 }
148 return max_link_bw;
149 }
150
151 /*
152 * The units on the numbers in the next two are... bizarre. Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 * 270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000. At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168 static int
169 intel_dp_link_required(int pixel_clock, int bpp)
170 {
171 return (pixel_clock * bpp + 9) / 10;
172 }
173
174 static int
175 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176 {
177 return (max_link_clock * max_lanes * 8) / 10;
178 }
179
180 static bool
181 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182 struct drm_display_mode *mode,
183 bool adjust_mode)
184 {
185 int max_link_clock =
186 drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187 int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188 int max_rate, mode_rate;
189
190 mode_rate = intel_dp_link_required(mode->clock, 24);
191 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193 if (mode_rate > max_rate) {
194 mode_rate = intel_dp_link_required(mode->clock, 18);
195 if (mode_rate > max_rate)
196 return false;
197
198 if (adjust_mode)
199 mode->private_flags
200 |= INTEL_MODE_DP_FORCE_6BPC;
201
202 return true;
203 }
204
205 return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210 struct drm_display_mode *mode)
211 {
212 struct intel_dp *intel_dp = intel_attached_dp(connector);
213 struct intel_connector *intel_connector = to_intel_connector(connector);
214 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216 if (is_edp(intel_dp) && fixed_mode) {
217 if (mode->hdisplay > fixed_mode->hdisplay)
218 return MODE_PANEL;
219
220 if (mode->vdisplay > fixed_mode->vdisplay)
221 return MODE_PANEL;
222 }
223
224 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225 return MODE_CLOCK_HIGH;
226
227 if (mode->clock < 10000)
228 return MODE_CLOCK_LOW;
229
230 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231 return MODE_H_ILLEGAL;
232
233 return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239 int i;
240 uint32_t v = 0;
241
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295 struct drm_device *dev = intel_dp_to_dev(intel_dp);
296 struct drm_i915_private *dev_priv = dev->dev_private;
297
298 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
304 struct drm_i915_private *dev_priv = dev->dev_private;
305
306 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312 struct drm_device *dev = intel_dp_to_dev(intel_dp);
313 struct drm_i915_private *dev_priv = dev->dev_private;
314
315 if (!is_edp(intel_dp))
316 return;
317 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320 I915_READ(PCH_PP_STATUS),
321 I915_READ(PCH_PP_CONTROL));
322 }
323 }
324
325 static uint32_t
326 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332 uint32_t status;
333 bool done;
334
335 if (IS_HASWELL(dev)) {
336 switch (intel_dig_port->port) {
337 case PORT_A:
338 ch_ctl = DPA_AUX_CH_CTL;
339 break;
340 case PORT_B:
341 ch_ctl = PCH_DPB_AUX_CH_CTL;
342 break;
343 case PORT_C:
344 ch_ctl = PCH_DPC_AUX_CH_CTL;
345 break;
346 case PORT_D:
347 ch_ctl = PCH_DPD_AUX_CH_CTL;
348 break;
349 default:
350 BUG();
351 }
352 }
353
354 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355 if (has_aux_irq)
356 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
357 msecs_to_jiffies(10));
358 else
359 done = wait_for_atomic(C, 10) == 0;
360 if (!done)
361 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
362 has_aux_irq);
363 #undef C
364
365 return status;
366 }
367
368 static int
369 intel_dp_aux_ch(struct intel_dp *intel_dp,
370 uint8_t *send, int send_bytes,
371 uint8_t *recv, int recv_size)
372 {
373 uint32_t output_reg = intel_dp->output_reg;
374 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375 struct drm_device *dev = intel_dig_port->base.base.dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 uint32_t ch_ctl = output_reg + 0x10;
378 uint32_t ch_data = ch_ctl + 4;
379 int i, ret, recv_bytes;
380 uint32_t status;
381 uint32_t aux_clock_divider;
382 int try, precharge;
383 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
384
385 /* dp aux is extremely sensitive to irq latency, hence request the
386 * lowest possible wakeup latency and so prevent the cpu from going into
387 * deep sleep states.
388 */
389 pm_qos_update_request(&dev_priv->pm_qos, 0);
390
391 if (IS_HASWELL(dev)) {
392 switch (intel_dig_port->port) {
393 case PORT_A:
394 ch_ctl = DPA_AUX_CH_CTL;
395 ch_data = DPA_AUX_CH_DATA1;
396 break;
397 case PORT_B:
398 ch_ctl = PCH_DPB_AUX_CH_CTL;
399 ch_data = PCH_DPB_AUX_CH_DATA1;
400 break;
401 case PORT_C:
402 ch_ctl = PCH_DPC_AUX_CH_CTL;
403 ch_data = PCH_DPC_AUX_CH_DATA1;
404 break;
405 case PORT_D:
406 ch_ctl = PCH_DPD_AUX_CH_CTL;
407 ch_data = PCH_DPD_AUX_CH_DATA1;
408 break;
409 default:
410 BUG();
411 }
412 }
413
414 intel_dp_check_edp(intel_dp);
415 /* The clock divider is based off the hrawclk,
416 * and would like to run at 2MHz. So, take the
417 * hrawclk value and divide by 2 and use that
418 *
419 * Note that PCH attached eDP panels should use a 125MHz input
420 * clock divider.
421 */
422 if (is_cpu_edp(intel_dp)) {
423 if (HAS_DDI(dev))
424 aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
425 else if (IS_VALLEYVIEW(dev))
426 aux_clock_divider = 100;
427 else if (IS_GEN6(dev) || IS_GEN7(dev))
428 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
429 else
430 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
431 } else if (HAS_PCH_SPLIT(dev))
432 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433 else
434 aux_clock_divider = intel_hrawclk(dev) / 2;
435
436 if (IS_GEN6(dev))
437 precharge = 3;
438 else
439 precharge = 5;
440
441 /* Try to wait for any previous AUX channel activity */
442 for (try = 0; try < 3; try++) {
443 status = I915_READ_NOTRACE(ch_ctl);
444 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
445 break;
446 msleep(1);
447 }
448
449 if (try == 3) {
450 WARN(1, "dp_aux_ch not started status 0x%08x\n",
451 I915_READ(ch_ctl));
452 ret = -EBUSY;
453 goto out;
454 }
455
456 /* Must try at least 3 times according to DP spec */
457 for (try = 0; try < 5; try++) {
458 /* Load the send data into the aux channel data registers */
459 for (i = 0; i < send_bytes; i += 4)
460 I915_WRITE(ch_data + i,
461 pack_aux(send + i, send_bytes - i));
462
463 /* Send the command and wait for it to complete */
464 I915_WRITE(ch_ctl,
465 DP_AUX_CH_CTL_SEND_BUSY |
466 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
467 DP_AUX_CH_CTL_TIME_OUT_400us |
468 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
469 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
470 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
471 DP_AUX_CH_CTL_DONE |
472 DP_AUX_CH_CTL_TIME_OUT_ERROR |
473 DP_AUX_CH_CTL_RECEIVE_ERROR);
474
475 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
476
477 /* Clear done status and any errors */
478 I915_WRITE(ch_ctl,
479 status |
480 DP_AUX_CH_CTL_DONE |
481 DP_AUX_CH_CTL_TIME_OUT_ERROR |
482 DP_AUX_CH_CTL_RECEIVE_ERROR);
483
484 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
485 DP_AUX_CH_CTL_RECEIVE_ERROR))
486 continue;
487 if (status & DP_AUX_CH_CTL_DONE)
488 break;
489 }
490
491 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
492 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
493 ret = -EBUSY;
494 goto out;
495 }
496
497 /* Check for timeout or receive error.
498 * Timeouts occur when the sink is not connected
499 */
500 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
501 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
502 ret = -EIO;
503 goto out;
504 }
505
506 /* Timeouts occur when the device isn't connected, so they're
507 * "normal" -- don't fill the kernel log with these */
508 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
509 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
510 ret = -ETIMEDOUT;
511 goto out;
512 }
513
514 /* Unload any bytes sent back from the other side */
515 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
516 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
517 if (recv_bytes > recv_size)
518 recv_bytes = recv_size;
519
520 for (i = 0; i < recv_bytes; i += 4)
521 unpack_aux(I915_READ(ch_data + i),
522 recv + i, recv_bytes - i);
523
524 ret = recv_bytes;
525 out:
526 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
527
528 return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534 uint16_t address, uint8_t *send, int send_bytes)
535 {
536 int ret;
537 uint8_t msg[20];
538 int msg_bytes;
539 uint8_t ack;
540
541 intel_dp_check_edp(intel_dp);
542 if (send_bytes > 16)
543 return -1;
544 msg[0] = AUX_NATIVE_WRITE << 4;
545 msg[1] = address >> 8;
546 msg[2] = address & 0xff;
547 msg[3] = send_bytes - 1;
548 memcpy(&msg[4], send, send_bytes);
549 msg_bytes = send_bytes + 4;
550 for (;;) {
551 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
552 if (ret < 0)
553 return ret;
554 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
555 break;
556 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
557 udelay(100);
558 else
559 return -EIO;
560 }
561 return send_bytes;
562 }
563
564 /* Write a single byte to the aux channel in native mode */
565 static int
566 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
567 uint16_t address, uint8_t byte)
568 {
569 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
570 }
571
572 /* read bytes from a native aux channel */
573 static int
574 intel_dp_aux_native_read(struct intel_dp *intel_dp,
575 uint16_t address, uint8_t *recv, int recv_bytes)
576 {
577 uint8_t msg[4];
578 int msg_bytes;
579 uint8_t reply[20];
580 int reply_bytes;
581 uint8_t ack;
582 int ret;
583
584 intel_dp_check_edp(intel_dp);
585 msg[0] = AUX_NATIVE_READ << 4;
586 msg[1] = address >> 8;
587 msg[2] = address & 0xff;
588 msg[3] = recv_bytes - 1;
589
590 msg_bytes = 4;
591 reply_bytes = recv_bytes + 1;
592
593 for (;;) {
594 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
595 reply, reply_bytes);
596 if (ret == 0)
597 return -EPROTO;
598 if (ret < 0)
599 return ret;
600 ack = reply[0];
601 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
602 memcpy(recv, reply + 1, ret - 1);
603 return ret - 1;
604 }
605 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
606 udelay(100);
607 else
608 return -EIO;
609 }
610 }
611
612 static int
613 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
614 uint8_t write_byte, uint8_t *read_byte)
615 {
616 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
617 struct intel_dp *intel_dp = container_of(adapter,
618 struct intel_dp,
619 adapter);
620 uint16_t address = algo_data->address;
621 uint8_t msg[5];
622 uint8_t reply[2];
623 unsigned retry;
624 int msg_bytes;
625 int reply_bytes;
626 int ret;
627
628 intel_dp_check_edp(intel_dp);
629 /* Set up the command byte */
630 if (mode & MODE_I2C_READ)
631 msg[0] = AUX_I2C_READ << 4;
632 else
633 msg[0] = AUX_I2C_WRITE << 4;
634
635 if (!(mode & MODE_I2C_STOP))
636 msg[0] |= AUX_I2C_MOT << 4;
637
638 msg[1] = address >> 8;
639 msg[2] = address;
640
641 switch (mode) {
642 case MODE_I2C_WRITE:
643 msg[3] = 0;
644 msg[4] = write_byte;
645 msg_bytes = 5;
646 reply_bytes = 1;
647 break;
648 case MODE_I2C_READ:
649 msg[3] = 0;
650 msg_bytes = 4;
651 reply_bytes = 2;
652 break;
653 default:
654 msg_bytes = 3;
655 reply_bytes = 1;
656 break;
657 }
658
659 for (retry = 0; retry < 5; retry++) {
660 ret = intel_dp_aux_ch(intel_dp,
661 msg, msg_bytes,
662 reply, reply_bytes);
663 if (ret < 0) {
664 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
665 return ret;
666 }
667
668 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
669 case AUX_NATIVE_REPLY_ACK:
670 /* I2C-over-AUX Reply field is only valid
671 * when paired with AUX ACK.
672 */
673 break;
674 case AUX_NATIVE_REPLY_NACK:
675 DRM_DEBUG_KMS("aux_ch native nack\n");
676 return -EREMOTEIO;
677 case AUX_NATIVE_REPLY_DEFER:
678 udelay(100);
679 continue;
680 default:
681 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
682 reply[0]);
683 return -EREMOTEIO;
684 }
685
686 switch (reply[0] & AUX_I2C_REPLY_MASK) {
687 case AUX_I2C_REPLY_ACK:
688 if (mode == MODE_I2C_READ) {
689 *read_byte = reply[1];
690 }
691 return reply_bytes - 1;
692 case AUX_I2C_REPLY_NACK:
693 DRM_DEBUG_KMS("aux_i2c nack\n");
694 return -EREMOTEIO;
695 case AUX_I2C_REPLY_DEFER:
696 DRM_DEBUG_KMS("aux_i2c defer\n");
697 udelay(100);
698 break;
699 default:
700 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
701 return -EREMOTEIO;
702 }
703 }
704
705 DRM_ERROR("too many retries, giving up\n");
706 return -EREMOTEIO;
707 }
708
709 static int
710 intel_dp_i2c_init(struct intel_dp *intel_dp,
711 struct intel_connector *intel_connector, const char *name)
712 {
713 int ret;
714
715 DRM_DEBUG_KMS("i2c_init %s\n", name);
716 intel_dp->algo.running = false;
717 intel_dp->algo.address = 0;
718 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
719
720 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
721 intel_dp->adapter.owner = THIS_MODULE;
722 intel_dp->adapter.class = I2C_CLASS_DDC;
723 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
724 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
725 intel_dp->adapter.algo_data = &intel_dp->algo;
726 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
727
728 ironlake_edp_panel_vdd_on(intel_dp);
729 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
730 ironlake_edp_panel_vdd_off(intel_dp, false);
731 return ret;
732 }
733
734 bool
735 intel_dp_mode_fixup(struct drm_encoder *encoder,
736 const struct drm_display_mode *mode,
737 struct drm_display_mode *adjusted_mode)
738 {
739 struct drm_device *dev = encoder->dev;
740 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
741 struct intel_connector *intel_connector = intel_dp->attached_connector;
742 int lane_count, clock;
743 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
744 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
745 int bpp, mode_rate;
746 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
747
748 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
749 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
750 adjusted_mode);
751 intel_pch_panel_fitting(dev,
752 intel_connector->panel.fitting_mode,
753 mode, adjusted_mode);
754 }
755
756 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
757 return false;
758
759 DRM_DEBUG_KMS("DP link computation with max lane count %i "
760 "max bw %02x pixel clock %iKHz\n",
761 max_lane_count, bws[max_clock], adjusted_mode->clock);
762
763 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
764 return false;
765
766 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
767
768 if (intel_dp->color_range_auto) {
769 /*
770 * See:
771 * CEA-861-E - 5.1 Default Encoding Parameters
772 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
773 */
774 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
775 intel_dp->color_range = DP_COLOR_RANGE_16_235;
776 else
777 intel_dp->color_range = 0;
778 }
779
780 if (intel_dp->color_range)
781 adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
782
783 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
784
785 for (clock = 0; clock <= max_clock; clock++) {
786 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
787 int link_bw_clock =
788 drm_dp_bw_code_to_link_rate(bws[clock]);
789 int link_avail = intel_dp_max_data_rate(link_bw_clock,
790 lane_count);
791
792 if (mode_rate <= link_avail) {
793 intel_dp->link_bw = bws[clock];
794 intel_dp->lane_count = lane_count;
795 adjusted_mode->clock = link_bw_clock;
796 DRM_DEBUG_KMS("DP link bw %02x lane "
797 "count %d clock %d bpp %d\n",
798 intel_dp->link_bw, intel_dp->lane_count,
799 adjusted_mode->clock, bpp);
800 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
801 mode_rate, link_avail);
802 return true;
803 }
804 }
805 }
806
807 return false;
808 }
809
810 void
811 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
812 struct drm_display_mode *adjusted_mode)
813 {
814 struct drm_device *dev = crtc->dev;
815 struct intel_encoder *intel_encoder;
816 struct intel_dp *intel_dp;
817 struct drm_i915_private *dev_priv = dev->dev_private;
818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
819 int lane_count = 4;
820 struct intel_link_m_n m_n;
821 int pipe = intel_crtc->pipe;
822 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
823 int target_clock;
824
825 /*
826 * Find the lane count in the intel_encoder private
827 */
828 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
829 intel_dp = enc_to_intel_dp(&intel_encoder->base);
830
831 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
832 intel_encoder->type == INTEL_OUTPUT_EDP)
833 {
834 lane_count = intel_dp->lane_count;
835 break;
836 }
837 }
838
839 target_clock = mode->clock;
840 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
841 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
842 target_clock = intel_edp_target_clock(intel_encoder,
843 mode);
844 break;
845 }
846 }
847
848 /*
849 * Compute the GMCH and Link ratios. The '3' here is
850 * the number of bytes_per_pixel post-LUT, which we always
851 * set up for 8-bits of R/G/B, or 3 bytes total.
852 */
853 intel_link_compute_m_n(intel_crtc->bpp, lane_count,
854 target_clock, adjusted_mode->clock, &m_n);
855
856 if (IS_HASWELL(dev)) {
857 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
858 TU_SIZE(m_n.tu) | m_n.gmch_m);
859 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
860 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
861 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
862 } else if (HAS_PCH_SPLIT(dev)) {
863 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
864 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
865 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
866 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
867 } else if (IS_VALLEYVIEW(dev)) {
868 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
869 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
870 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
871 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
872 } else {
873 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
874 TU_SIZE(m_n.tu) | m_n.gmch_m);
875 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
876 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
877 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
878 }
879 }
880
881 void intel_dp_init_link_config(struct intel_dp *intel_dp)
882 {
883 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
884 intel_dp->link_configuration[0] = intel_dp->link_bw;
885 intel_dp->link_configuration[1] = intel_dp->lane_count;
886 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
887 /*
888 * Check for DPCD version > 1.1 and enhanced framing support
889 */
890 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
891 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
892 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
893 }
894 }
895
896 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
897 {
898 struct drm_device *dev = crtc->dev;
899 struct drm_i915_private *dev_priv = dev->dev_private;
900 u32 dpa_ctl;
901
902 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
903 dpa_ctl = I915_READ(DP_A);
904 dpa_ctl &= ~DP_PLL_FREQ_MASK;
905
906 if (clock < 200000) {
907 /* For a long time we've carried around a ILK-DevA w/a for the
908 * 160MHz clock. If we're really unlucky, it's still required.
909 */
910 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
911 dpa_ctl |= DP_PLL_FREQ_160MHZ;
912 } else {
913 dpa_ctl |= DP_PLL_FREQ_270MHZ;
914 }
915
916 I915_WRITE(DP_A, dpa_ctl);
917
918 POSTING_READ(DP_A);
919 udelay(500);
920 }
921
922 static void
923 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
924 struct drm_display_mode *adjusted_mode)
925 {
926 struct drm_device *dev = encoder->dev;
927 struct drm_i915_private *dev_priv = dev->dev_private;
928 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
929 struct drm_crtc *crtc = encoder->crtc;
930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
931
932 /*
933 * There are four kinds of DP registers:
934 *
935 * IBX PCH
936 * SNB CPU
937 * IVB CPU
938 * CPT PCH
939 *
940 * IBX PCH and CPU are the same for almost everything,
941 * except that the CPU DP PLL is configured in this
942 * register
943 *
944 * CPT PCH is quite different, having many bits moved
945 * to the TRANS_DP_CTL register instead. That
946 * configuration happens (oddly) in ironlake_pch_enable
947 */
948
949 /* Preserve the BIOS-computed detected bit. This is
950 * supposed to be read-only.
951 */
952 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
953
954 /* Handle DP bits in common between all three register formats */
955 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
956
957 switch (intel_dp->lane_count) {
958 case 1:
959 intel_dp->DP |= DP_PORT_WIDTH_1;
960 break;
961 case 2:
962 intel_dp->DP |= DP_PORT_WIDTH_2;
963 break;
964 case 4:
965 intel_dp->DP |= DP_PORT_WIDTH_4;
966 break;
967 }
968 if (intel_dp->has_audio) {
969 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
970 pipe_name(intel_crtc->pipe));
971 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
972 intel_write_eld(encoder, adjusted_mode);
973 }
974
975 intel_dp_init_link_config(intel_dp);
976
977 /* Split out the IBX/CPU vs CPT settings */
978
979 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
980 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
981 intel_dp->DP |= DP_SYNC_HS_HIGH;
982 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
983 intel_dp->DP |= DP_SYNC_VS_HIGH;
984 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
985
986 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
987 intel_dp->DP |= DP_ENHANCED_FRAMING;
988
989 intel_dp->DP |= intel_crtc->pipe << 29;
990
991 /* don't miss out required setting for eDP */
992 if (adjusted_mode->clock < 200000)
993 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
994 else
995 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
996 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
997 if (!HAS_PCH_SPLIT(dev))
998 intel_dp->DP |= intel_dp->color_range;
999
1000 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1001 intel_dp->DP |= DP_SYNC_HS_HIGH;
1002 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1003 intel_dp->DP |= DP_SYNC_VS_HIGH;
1004 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1005
1006 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
1007 intel_dp->DP |= DP_ENHANCED_FRAMING;
1008
1009 if (intel_crtc->pipe == 1)
1010 intel_dp->DP |= DP_PIPEB_SELECT;
1011
1012 if (is_cpu_edp(intel_dp)) {
1013 /* don't miss out required setting for eDP */
1014 if (adjusted_mode->clock < 200000)
1015 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1016 else
1017 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1018 }
1019 } else {
1020 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1021 }
1022
1023 if (is_cpu_edp(intel_dp))
1024 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
1025 }
1026
1027 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1028 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1029
1030 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1031 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1032
1033 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1034 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1035
1036 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1037 u32 mask,
1038 u32 value)
1039 {
1040 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1041 struct drm_i915_private *dev_priv = dev->dev_private;
1042
1043 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1044 mask, value,
1045 I915_READ(PCH_PP_STATUS),
1046 I915_READ(PCH_PP_CONTROL));
1047
1048 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1049 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1050 I915_READ(PCH_PP_STATUS),
1051 I915_READ(PCH_PP_CONTROL));
1052 }
1053 }
1054
1055 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1056 {
1057 DRM_DEBUG_KMS("Wait for panel power on\n");
1058 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1059 }
1060
1061 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1062 {
1063 DRM_DEBUG_KMS("Wait for panel power off time\n");
1064 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1065 }
1066
1067 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1068 {
1069 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1070 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1071 }
1072
1073
1074 /* Read the current pp_control value, unlocking the register if it
1075 * is locked
1076 */
1077
1078 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1079 {
1080 u32 control = I915_READ(PCH_PP_CONTROL);
1081
1082 control &= ~PANEL_UNLOCK_MASK;
1083 control |= PANEL_UNLOCK_REGS;
1084 return control;
1085 }
1086
1087 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1088 {
1089 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1090 struct drm_i915_private *dev_priv = dev->dev_private;
1091 u32 pp;
1092
1093 if (!is_edp(intel_dp))
1094 return;
1095 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1096
1097 WARN(intel_dp->want_panel_vdd,
1098 "eDP VDD already requested on\n");
1099
1100 intel_dp->want_panel_vdd = true;
1101
1102 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1103 DRM_DEBUG_KMS("eDP VDD already on\n");
1104 return;
1105 }
1106
1107 if (!ironlake_edp_have_panel_power(intel_dp))
1108 ironlake_wait_panel_power_cycle(intel_dp);
1109
1110 pp = ironlake_get_pp_control(dev_priv);
1111 pp |= EDP_FORCE_VDD;
1112 I915_WRITE(PCH_PP_CONTROL, pp);
1113 POSTING_READ(PCH_PP_CONTROL);
1114 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1115 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1116
1117 /*
1118 * If the panel wasn't on, delay before accessing aux channel
1119 */
1120 if (!ironlake_edp_have_panel_power(intel_dp)) {
1121 DRM_DEBUG_KMS("eDP was not running\n");
1122 msleep(intel_dp->panel_power_up_delay);
1123 }
1124 }
1125
1126 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1127 {
1128 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 u32 pp;
1131
1132 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1133
1134 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1135 pp = ironlake_get_pp_control(dev_priv);
1136 pp &= ~EDP_FORCE_VDD;
1137 I915_WRITE(PCH_PP_CONTROL, pp);
1138 POSTING_READ(PCH_PP_CONTROL);
1139
1140 /* Make sure sequencer is idle before allowing subsequent activity */
1141 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1142 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1143
1144 msleep(intel_dp->panel_power_down_delay);
1145 }
1146 }
1147
1148 static void ironlake_panel_vdd_work(struct work_struct *__work)
1149 {
1150 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1151 struct intel_dp, panel_vdd_work);
1152 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153
1154 mutex_lock(&dev->mode_config.mutex);
1155 ironlake_panel_vdd_off_sync(intel_dp);
1156 mutex_unlock(&dev->mode_config.mutex);
1157 }
1158
1159 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1160 {
1161 if (!is_edp(intel_dp))
1162 return;
1163
1164 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1165 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1166
1167 intel_dp->want_panel_vdd = false;
1168
1169 if (sync) {
1170 ironlake_panel_vdd_off_sync(intel_dp);
1171 } else {
1172 /*
1173 * Queue the timer to fire a long
1174 * time from now (relative to the power down delay)
1175 * to keep the panel power up across a sequence of operations
1176 */
1177 schedule_delayed_work(&intel_dp->panel_vdd_work,
1178 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1179 }
1180 }
1181
1182 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1183 {
1184 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1185 struct drm_i915_private *dev_priv = dev->dev_private;
1186 u32 pp;
1187
1188 if (!is_edp(intel_dp))
1189 return;
1190
1191 DRM_DEBUG_KMS("Turn eDP power on\n");
1192
1193 if (ironlake_edp_have_panel_power(intel_dp)) {
1194 DRM_DEBUG_KMS("eDP power already on\n");
1195 return;
1196 }
1197
1198 ironlake_wait_panel_power_cycle(intel_dp);
1199
1200 pp = ironlake_get_pp_control(dev_priv);
1201 if (IS_GEN5(dev)) {
1202 /* ILK workaround: disable reset around power sequence */
1203 pp &= ~PANEL_POWER_RESET;
1204 I915_WRITE(PCH_PP_CONTROL, pp);
1205 POSTING_READ(PCH_PP_CONTROL);
1206 }
1207
1208 pp |= POWER_TARGET_ON;
1209 if (!IS_GEN5(dev))
1210 pp |= PANEL_POWER_RESET;
1211
1212 I915_WRITE(PCH_PP_CONTROL, pp);
1213 POSTING_READ(PCH_PP_CONTROL);
1214
1215 ironlake_wait_panel_on(intel_dp);
1216
1217 if (IS_GEN5(dev)) {
1218 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1219 I915_WRITE(PCH_PP_CONTROL, pp);
1220 POSTING_READ(PCH_PP_CONTROL);
1221 }
1222 }
1223
1224 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1225 {
1226 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 u32 pp;
1229
1230 if (!is_edp(intel_dp))
1231 return;
1232
1233 DRM_DEBUG_KMS("Turn eDP power off\n");
1234
1235 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1236
1237 pp = ironlake_get_pp_control(dev_priv);
1238 /* We need to switch off panel power _and_ force vdd, for otherwise some
1239 * panels get very unhappy and cease to work. */
1240 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1241 I915_WRITE(PCH_PP_CONTROL, pp);
1242 POSTING_READ(PCH_PP_CONTROL);
1243
1244 intel_dp->want_panel_vdd = false;
1245
1246 ironlake_wait_panel_off(intel_dp);
1247 }
1248
1249 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1250 {
1251 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1252 struct drm_device *dev = intel_dig_port->base.base.dev;
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1255 u32 pp;
1256
1257 if (!is_edp(intel_dp))
1258 return;
1259
1260 DRM_DEBUG_KMS("\n");
1261 /*
1262 * If we enable the backlight right away following a panel power
1263 * on, we may see slight flicker as the panel syncs with the eDP
1264 * link. So delay a bit to make sure the image is solid before
1265 * allowing it to appear.
1266 */
1267 msleep(intel_dp->backlight_on_delay);
1268 pp = ironlake_get_pp_control(dev_priv);
1269 pp |= EDP_BLC_ENABLE;
1270 I915_WRITE(PCH_PP_CONTROL, pp);
1271 POSTING_READ(PCH_PP_CONTROL);
1272
1273 intel_panel_enable_backlight(dev, pipe);
1274 }
1275
1276 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1277 {
1278 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280 u32 pp;
1281
1282 if (!is_edp(intel_dp))
1283 return;
1284
1285 intel_panel_disable_backlight(dev);
1286
1287 DRM_DEBUG_KMS("\n");
1288 pp = ironlake_get_pp_control(dev_priv);
1289 pp &= ~EDP_BLC_ENABLE;
1290 I915_WRITE(PCH_PP_CONTROL, pp);
1291 POSTING_READ(PCH_PP_CONTROL);
1292 msleep(intel_dp->backlight_off_delay);
1293 }
1294
1295 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1296 {
1297 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1298 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1299 struct drm_device *dev = crtc->dev;
1300 struct drm_i915_private *dev_priv = dev->dev_private;
1301 u32 dpa_ctl;
1302
1303 assert_pipe_disabled(dev_priv,
1304 to_intel_crtc(crtc)->pipe);
1305
1306 DRM_DEBUG_KMS("\n");
1307 dpa_ctl = I915_READ(DP_A);
1308 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1309 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1310
1311 /* We don't adjust intel_dp->DP while tearing down the link, to
1312 * facilitate link retraining (e.g. after hotplug). Hence clear all
1313 * enable bits here to ensure that we don't enable too much. */
1314 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1315 intel_dp->DP |= DP_PLL_ENABLE;
1316 I915_WRITE(DP_A, intel_dp->DP);
1317 POSTING_READ(DP_A);
1318 udelay(200);
1319 }
1320
1321 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1322 {
1323 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1324 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1325 struct drm_device *dev = crtc->dev;
1326 struct drm_i915_private *dev_priv = dev->dev_private;
1327 u32 dpa_ctl;
1328
1329 assert_pipe_disabled(dev_priv,
1330 to_intel_crtc(crtc)->pipe);
1331
1332 dpa_ctl = I915_READ(DP_A);
1333 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1334 "dp pll off, should be on\n");
1335 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1336
1337 /* We can't rely on the value tracked for the DP register in
1338 * intel_dp->DP because link_down must not change that (otherwise link
1339 * re-training will fail. */
1340 dpa_ctl &= ~DP_PLL_ENABLE;
1341 I915_WRITE(DP_A, dpa_ctl);
1342 POSTING_READ(DP_A);
1343 udelay(200);
1344 }
1345
1346 /* If the sink supports it, try to set the power state appropriately */
1347 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1348 {
1349 int ret, i;
1350
1351 /* Should have a valid DPCD by this point */
1352 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1353 return;
1354
1355 if (mode != DRM_MODE_DPMS_ON) {
1356 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1357 DP_SET_POWER_D3);
1358 if (ret != 1)
1359 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1360 } else {
1361 /*
1362 * When turning on, we need to retry for 1ms to give the sink
1363 * time to wake up.
1364 */
1365 for (i = 0; i < 3; i++) {
1366 ret = intel_dp_aux_native_write_1(intel_dp,
1367 DP_SET_POWER,
1368 DP_SET_POWER_D0);
1369 if (ret == 1)
1370 break;
1371 msleep(1);
1372 }
1373 }
1374 }
1375
1376 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1377 enum pipe *pipe)
1378 {
1379 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1380 struct drm_device *dev = encoder->base.dev;
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 u32 tmp = I915_READ(intel_dp->output_reg);
1383
1384 if (!(tmp & DP_PORT_EN))
1385 return false;
1386
1387 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1388 *pipe = PORT_TO_PIPE_CPT(tmp);
1389 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1390 *pipe = PORT_TO_PIPE(tmp);
1391 } else {
1392 u32 trans_sel;
1393 u32 trans_dp;
1394 int i;
1395
1396 switch (intel_dp->output_reg) {
1397 case PCH_DP_B:
1398 trans_sel = TRANS_DP_PORT_SEL_B;
1399 break;
1400 case PCH_DP_C:
1401 trans_sel = TRANS_DP_PORT_SEL_C;
1402 break;
1403 case PCH_DP_D:
1404 trans_sel = TRANS_DP_PORT_SEL_D;
1405 break;
1406 default:
1407 return true;
1408 }
1409
1410 for_each_pipe(i) {
1411 trans_dp = I915_READ(TRANS_DP_CTL(i));
1412 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1413 *pipe = i;
1414 return true;
1415 }
1416 }
1417
1418 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1419 intel_dp->output_reg);
1420 }
1421
1422 return true;
1423 }
1424
1425 static void intel_disable_dp(struct intel_encoder *encoder)
1426 {
1427 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1428
1429 /* Make sure the panel is off before trying to change the mode. But also
1430 * ensure that we have vdd while we switch off the panel. */
1431 ironlake_edp_panel_vdd_on(intel_dp);
1432 ironlake_edp_backlight_off(intel_dp);
1433 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1434 ironlake_edp_panel_off(intel_dp);
1435
1436 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1437 if (!is_cpu_edp(intel_dp))
1438 intel_dp_link_down(intel_dp);
1439 }
1440
1441 static void intel_post_disable_dp(struct intel_encoder *encoder)
1442 {
1443 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1444
1445 if (is_cpu_edp(intel_dp)) {
1446 intel_dp_link_down(intel_dp);
1447 ironlake_edp_pll_off(intel_dp);
1448 }
1449 }
1450
1451 static void intel_enable_dp(struct intel_encoder *encoder)
1452 {
1453 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1454 struct drm_device *dev = encoder->base.dev;
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1457
1458 if (WARN_ON(dp_reg & DP_PORT_EN))
1459 return;
1460
1461 ironlake_edp_panel_vdd_on(intel_dp);
1462 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1463 intel_dp_start_link_train(intel_dp);
1464 ironlake_edp_panel_on(intel_dp);
1465 ironlake_edp_panel_vdd_off(intel_dp, true);
1466 intel_dp_complete_link_train(intel_dp);
1467 ironlake_edp_backlight_on(intel_dp);
1468 }
1469
1470 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1471 {
1472 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1473
1474 if (is_cpu_edp(intel_dp))
1475 ironlake_edp_pll_on(intel_dp);
1476 }
1477
1478 /*
1479 * Native read with retry for link status and receiver capability reads for
1480 * cases where the sink may still be asleep.
1481 */
1482 static bool
1483 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1484 uint8_t *recv, int recv_bytes)
1485 {
1486 int ret, i;
1487
1488 /*
1489 * Sinks are *supposed* to come up within 1ms from an off state,
1490 * but we're also supposed to retry 3 times per the spec.
1491 */
1492 for (i = 0; i < 3; i++) {
1493 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1494 recv_bytes);
1495 if (ret == recv_bytes)
1496 return true;
1497 msleep(1);
1498 }
1499
1500 return false;
1501 }
1502
1503 /*
1504 * Fetch AUX CH registers 0x202 - 0x207 which contain
1505 * link status information
1506 */
1507 static bool
1508 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1509 {
1510 return intel_dp_aux_native_read_retry(intel_dp,
1511 DP_LANE0_1_STATUS,
1512 link_status,
1513 DP_LINK_STATUS_SIZE);
1514 }
1515
1516 #if 0
1517 static char *voltage_names[] = {
1518 "0.4V", "0.6V", "0.8V", "1.2V"
1519 };
1520 static char *pre_emph_names[] = {
1521 "0dB", "3.5dB", "6dB", "9.5dB"
1522 };
1523 static char *link_train_names[] = {
1524 "pattern 1", "pattern 2", "idle", "off"
1525 };
1526 #endif
1527
1528 /*
1529 * These are source-specific values; current Intel hardware supports
1530 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1531 */
1532
1533 static uint8_t
1534 intel_dp_voltage_max(struct intel_dp *intel_dp)
1535 {
1536 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1537
1538 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1539 return DP_TRAIN_VOLTAGE_SWING_800;
1540 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1541 return DP_TRAIN_VOLTAGE_SWING_1200;
1542 else
1543 return DP_TRAIN_VOLTAGE_SWING_800;
1544 }
1545
1546 static uint8_t
1547 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1548 {
1549 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1550
1551 if (IS_HASWELL(dev)) {
1552 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1553 case DP_TRAIN_VOLTAGE_SWING_400:
1554 return DP_TRAIN_PRE_EMPHASIS_9_5;
1555 case DP_TRAIN_VOLTAGE_SWING_600:
1556 return DP_TRAIN_PRE_EMPHASIS_6;
1557 case DP_TRAIN_VOLTAGE_SWING_800:
1558 return DP_TRAIN_PRE_EMPHASIS_3_5;
1559 case DP_TRAIN_VOLTAGE_SWING_1200:
1560 default:
1561 return DP_TRAIN_PRE_EMPHASIS_0;
1562 }
1563 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1564 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1565 case DP_TRAIN_VOLTAGE_SWING_400:
1566 return DP_TRAIN_PRE_EMPHASIS_6;
1567 case DP_TRAIN_VOLTAGE_SWING_600:
1568 case DP_TRAIN_VOLTAGE_SWING_800:
1569 return DP_TRAIN_PRE_EMPHASIS_3_5;
1570 default:
1571 return DP_TRAIN_PRE_EMPHASIS_0;
1572 }
1573 } else {
1574 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1575 case DP_TRAIN_VOLTAGE_SWING_400:
1576 return DP_TRAIN_PRE_EMPHASIS_6;
1577 case DP_TRAIN_VOLTAGE_SWING_600:
1578 return DP_TRAIN_PRE_EMPHASIS_6;
1579 case DP_TRAIN_VOLTAGE_SWING_800:
1580 return DP_TRAIN_PRE_EMPHASIS_3_5;
1581 case DP_TRAIN_VOLTAGE_SWING_1200:
1582 default:
1583 return DP_TRAIN_PRE_EMPHASIS_0;
1584 }
1585 }
1586 }
1587
1588 static void
1589 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1590 {
1591 uint8_t v = 0;
1592 uint8_t p = 0;
1593 int lane;
1594 uint8_t voltage_max;
1595 uint8_t preemph_max;
1596
1597 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1598 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1599 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1600
1601 if (this_v > v)
1602 v = this_v;
1603 if (this_p > p)
1604 p = this_p;
1605 }
1606
1607 voltage_max = intel_dp_voltage_max(intel_dp);
1608 if (v >= voltage_max)
1609 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1610
1611 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1612 if (p >= preemph_max)
1613 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1614
1615 for (lane = 0; lane < 4; lane++)
1616 intel_dp->train_set[lane] = v | p;
1617 }
1618
1619 static uint32_t
1620 intel_gen4_signal_levels(uint8_t train_set)
1621 {
1622 uint32_t signal_levels = 0;
1623
1624 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1625 case DP_TRAIN_VOLTAGE_SWING_400:
1626 default:
1627 signal_levels |= DP_VOLTAGE_0_4;
1628 break;
1629 case DP_TRAIN_VOLTAGE_SWING_600:
1630 signal_levels |= DP_VOLTAGE_0_6;
1631 break;
1632 case DP_TRAIN_VOLTAGE_SWING_800:
1633 signal_levels |= DP_VOLTAGE_0_8;
1634 break;
1635 case DP_TRAIN_VOLTAGE_SWING_1200:
1636 signal_levels |= DP_VOLTAGE_1_2;
1637 break;
1638 }
1639 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1640 case DP_TRAIN_PRE_EMPHASIS_0:
1641 default:
1642 signal_levels |= DP_PRE_EMPHASIS_0;
1643 break;
1644 case DP_TRAIN_PRE_EMPHASIS_3_5:
1645 signal_levels |= DP_PRE_EMPHASIS_3_5;
1646 break;
1647 case DP_TRAIN_PRE_EMPHASIS_6:
1648 signal_levels |= DP_PRE_EMPHASIS_6;
1649 break;
1650 case DP_TRAIN_PRE_EMPHASIS_9_5:
1651 signal_levels |= DP_PRE_EMPHASIS_9_5;
1652 break;
1653 }
1654 return signal_levels;
1655 }
1656
1657 /* Gen6's DP voltage swing and pre-emphasis control */
1658 static uint32_t
1659 intel_gen6_edp_signal_levels(uint8_t train_set)
1660 {
1661 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1662 DP_TRAIN_PRE_EMPHASIS_MASK);
1663 switch (signal_levels) {
1664 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1665 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1666 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1667 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1668 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1669 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1670 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1671 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1672 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1673 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1674 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1675 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1676 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1677 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1678 default:
1679 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1680 "0x%x\n", signal_levels);
1681 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1682 }
1683 }
1684
1685 /* Gen7's DP voltage swing and pre-emphasis control */
1686 static uint32_t
1687 intel_gen7_edp_signal_levels(uint8_t train_set)
1688 {
1689 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1690 DP_TRAIN_PRE_EMPHASIS_MASK);
1691 switch (signal_levels) {
1692 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1693 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1694 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1695 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1696 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1697 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1698
1699 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1700 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1701 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1702 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1703
1704 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1705 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1706 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1707 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1708
1709 default:
1710 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1711 "0x%x\n", signal_levels);
1712 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1713 }
1714 }
1715
1716 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1717 static uint32_t
1718 intel_hsw_signal_levels(uint8_t train_set)
1719 {
1720 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1721 DP_TRAIN_PRE_EMPHASIS_MASK);
1722 switch (signal_levels) {
1723 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1724 return DDI_BUF_EMP_400MV_0DB_HSW;
1725 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1726 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1727 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1728 return DDI_BUF_EMP_400MV_6DB_HSW;
1729 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1730 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1731
1732 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1733 return DDI_BUF_EMP_600MV_0DB_HSW;
1734 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1735 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1736 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1737 return DDI_BUF_EMP_600MV_6DB_HSW;
1738
1739 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1740 return DDI_BUF_EMP_800MV_0DB_HSW;
1741 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1742 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1743 default:
1744 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1745 "0x%x\n", signal_levels);
1746 return DDI_BUF_EMP_400MV_0DB_HSW;
1747 }
1748 }
1749
1750 /* Properly updates "DP" with the correct signal levels. */
1751 static void
1752 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1753 {
1754 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1755 struct drm_device *dev = intel_dig_port->base.base.dev;
1756 uint32_t signal_levels, mask;
1757 uint8_t train_set = intel_dp->train_set[0];
1758
1759 if (IS_HASWELL(dev)) {
1760 signal_levels = intel_hsw_signal_levels(train_set);
1761 mask = DDI_BUF_EMP_MASK;
1762 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1763 signal_levels = intel_gen7_edp_signal_levels(train_set);
1764 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1765 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1766 signal_levels = intel_gen6_edp_signal_levels(train_set);
1767 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1768 } else {
1769 signal_levels = intel_gen4_signal_levels(train_set);
1770 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1771 }
1772
1773 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1774
1775 *DP = (*DP & ~mask) | signal_levels;
1776 }
1777
1778 static bool
1779 intel_dp_set_link_train(struct intel_dp *intel_dp,
1780 uint32_t dp_reg_value,
1781 uint8_t dp_train_pat)
1782 {
1783 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1784 struct drm_device *dev = intel_dig_port->base.base.dev;
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 enum port port = intel_dig_port->port;
1787 int ret;
1788 uint32_t temp;
1789
1790 if (IS_HASWELL(dev)) {
1791 temp = I915_READ(DP_TP_CTL(port));
1792
1793 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1794 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1795 else
1796 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1797
1798 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1799 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1800 case DP_TRAINING_PATTERN_DISABLE:
1801
1802 if (port != PORT_A) {
1803 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1804 I915_WRITE(DP_TP_CTL(port), temp);
1805
1806 if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1807 DP_TP_STATUS_IDLE_DONE), 1))
1808 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1809
1810 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1811 }
1812
1813 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1814
1815 break;
1816 case DP_TRAINING_PATTERN_1:
1817 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1818 break;
1819 case DP_TRAINING_PATTERN_2:
1820 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1821 break;
1822 case DP_TRAINING_PATTERN_3:
1823 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1824 break;
1825 }
1826 I915_WRITE(DP_TP_CTL(port), temp);
1827
1828 } else if (HAS_PCH_CPT(dev) &&
1829 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1830 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1831
1832 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1833 case DP_TRAINING_PATTERN_DISABLE:
1834 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1835 break;
1836 case DP_TRAINING_PATTERN_1:
1837 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1838 break;
1839 case DP_TRAINING_PATTERN_2:
1840 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1841 break;
1842 case DP_TRAINING_PATTERN_3:
1843 DRM_ERROR("DP training pattern 3 not supported\n");
1844 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1845 break;
1846 }
1847
1848 } else {
1849 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1850
1851 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1852 case DP_TRAINING_PATTERN_DISABLE:
1853 dp_reg_value |= DP_LINK_TRAIN_OFF;
1854 break;
1855 case DP_TRAINING_PATTERN_1:
1856 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1857 break;
1858 case DP_TRAINING_PATTERN_2:
1859 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1860 break;
1861 case DP_TRAINING_PATTERN_3:
1862 DRM_ERROR("DP training pattern 3 not supported\n");
1863 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1864 break;
1865 }
1866 }
1867
1868 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1869 POSTING_READ(intel_dp->output_reg);
1870
1871 intel_dp_aux_native_write_1(intel_dp,
1872 DP_TRAINING_PATTERN_SET,
1873 dp_train_pat);
1874
1875 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1876 DP_TRAINING_PATTERN_DISABLE) {
1877 ret = intel_dp_aux_native_write(intel_dp,
1878 DP_TRAINING_LANE0_SET,
1879 intel_dp->train_set,
1880 intel_dp->lane_count);
1881 if (ret != intel_dp->lane_count)
1882 return false;
1883 }
1884
1885 return true;
1886 }
1887
1888 /* Enable corresponding port and start training pattern 1 */
1889 void
1890 intel_dp_start_link_train(struct intel_dp *intel_dp)
1891 {
1892 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1893 struct drm_device *dev = encoder->dev;
1894 int i;
1895 uint8_t voltage;
1896 bool clock_recovery = false;
1897 int voltage_tries, loop_tries;
1898 uint32_t DP = intel_dp->DP;
1899
1900 if (HAS_DDI(dev))
1901 intel_ddi_prepare_link_retrain(encoder);
1902
1903 /* Write the link configuration data */
1904 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1905 intel_dp->link_configuration,
1906 DP_LINK_CONFIGURATION_SIZE);
1907
1908 DP |= DP_PORT_EN;
1909
1910 memset(intel_dp->train_set, 0, 4);
1911 voltage = 0xff;
1912 voltage_tries = 0;
1913 loop_tries = 0;
1914 clock_recovery = false;
1915 for (;;) {
1916 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1917 uint8_t link_status[DP_LINK_STATUS_SIZE];
1918
1919 intel_dp_set_signal_levels(intel_dp, &DP);
1920
1921 /* Set training pattern 1 */
1922 if (!intel_dp_set_link_train(intel_dp, DP,
1923 DP_TRAINING_PATTERN_1 |
1924 DP_LINK_SCRAMBLING_DISABLE))
1925 break;
1926
1927 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1928 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1929 DRM_ERROR("failed to get link status\n");
1930 break;
1931 }
1932
1933 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1934 DRM_DEBUG_KMS("clock recovery OK\n");
1935 clock_recovery = true;
1936 break;
1937 }
1938
1939 /* Check to see if we've tried the max voltage */
1940 for (i = 0; i < intel_dp->lane_count; i++)
1941 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1942 break;
1943 if (i == intel_dp->lane_count) {
1944 ++loop_tries;
1945 if (loop_tries == 5) {
1946 DRM_DEBUG_KMS("too many full retries, give up\n");
1947 break;
1948 }
1949 memset(intel_dp->train_set, 0, 4);
1950 voltage_tries = 0;
1951 continue;
1952 }
1953
1954 /* Check to see if we've tried the same voltage 5 times */
1955 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1956 ++voltage_tries;
1957 if (voltage_tries == 5) {
1958 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1959 break;
1960 }
1961 } else
1962 voltage_tries = 0;
1963 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1964
1965 /* Compute new intel_dp->train_set as requested by target */
1966 intel_get_adjust_train(intel_dp, link_status);
1967 }
1968
1969 intel_dp->DP = DP;
1970 }
1971
1972 void
1973 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1974 {
1975 bool channel_eq = false;
1976 int tries, cr_tries;
1977 uint32_t DP = intel_dp->DP;
1978
1979 /* channel equalization */
1980 tries = 0;
1981 cr_tries = 0;
1982 channel_eq = false;
1983 for (;;) {
1984 uint8_t link_status[DP_LINK_STATUS_SIZE];
1985
1986 if (cr_tries > 5) {
1987 DRM_ERROR("failed to train DP, aborting\n");
1988 intel_dp_link_down(intel_dp);
1989 break;
1990 }
1991
1992 intel_dp_set_signal_levels(intel_dp, &DP);
1993
1994 /* channel eq pattern */
1995 if (!intel_dp_set_link_train(intel_dp, DP,
1996 DP_TRAINING_PATTERN_2 |
1997 DP_LINK_SCRAMBLING_DISABLE))
1998 break;
1999
2000 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2001 if (!intel_dp_get_link_status(intel_dp, link_status))
2002 break;
2003
2004 /* Make sure clock is still ok */
2005 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2006 intel_dp_start_link_train(intel_dp);
2007 cr_tries++;
2008 continue;
2009 }
2010
2011 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2012 channel_eq = true;
2013 break;
2014 }
2015
2016 /* Try 5 times, then try clock recovery if that fails */
2017 if (tries > 5) {
2018 intel_dp_link_down(intel_dp);
2019 intel_dp_start_link_train(intel_dp);
2020 tries = 0;
2021 cr_tries++;
2022 continue;
2023 }
2024
2025 /* Compute new intel_dp->train_set as requested by target */
2026 intel_get_adjust_train(intel_dp, link_status);
2027 ++tries;
2028 }
2029
2030 if (channel_eq)
2031 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2032
2033 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2034 }
2035
2036 static void
2037 intel_dp_link_down(struct intel_dp *intel_dp)
2038 {
2039 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2040 struct drm_device *dev = intel_dig_port->base.base.dev;
2041 struct drm_i915_private *dev_priv = dev->dev_private;
2042 struct intel_crtc *intel_crtc =
2043 to_intel_crtc(intel_dig_port->base.base.crtc);
2044 uint32_t DP = intel_dp->DP;
2045
2046 /*
2047 * DDI code has a strict mode set sequence and we should try to respect
2048 * it, otherwise we might hang the machine in many different ways. So we
2049 * really should be disabling the port only on a complete crtc_disable
2050 * sequence. This function is just called under two conditions on DDI
2051 * code:
2052 * - Link train failed while doing crtc_enable, and on this case we
2053 * really should respect the mode set sequence and wait for a
2054 * crtc_disable.
2055 * - Someone turned the monitor off and intel_dp_check_link_status
2056 * called us. We don't need to disable the whole port on this case, so
2057 * when someone turns the monitor on again,
2058 * intel_ddi_prepare_link_retrain will take care of redoing the link
2059 * train.
2060 */
2061 if (HAS_DDI(dev))
2062 return;
2063
2064 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2065 return;
2066
2067 DRM_DEBUG_KMS("\n");
2068
2069 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2070 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2071 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2072 } else {
2073 DP &= ~DP_LINK_TRAIN_MASK;
2074 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2075 }
2076 POSTING_READ(intel_dp->output_reg);
2077
2078 /* We don't really know why we're doing this */
2079 intel_wait_for_vblank(dev, intel_crtc->pipe);
2080
2081 if (HAS_PCH_IBX(dev) &&
2082 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2083 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2084
2085 /* Hardware workaround: leaving our transcoder select
2086 * set to transcoder B while it's off will prevent the
2087 * corresponding HDMI output on transcoder A.
2088 *
2089 * Combine this with another hardware workaround:
2090 * transcoder select bit can only be cleared while the
2091 * port is enabled.
2092 */
2093 DP &= ~DP_PIPEB_SELECT;
2094 I915_WRITE(intel_dp->output_reg, DP);
2095
2096 /* Changes to enable or select take place the vblank
2097 * after being written.
2098 */
2099 if (WARN_ON(crtc == NULL)) {
2100 /* We should never try to disable a port without a crtc
2101 * attached. For paranoia keep the code around for a
2102 * bit. */
2103 POSTING_READ(intel_dp->output_reg);
2104 msleep(50);
2105 } else
2106 intel_wait_for_vblank(dev, intel_crtc->pipe);
2107 }
2108
2109 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2110 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2111 POSTING_READ(intel_dp->output_reg);
2112 msleep(intel_dp->panel_power_down_delay);
2113 }
2114
2115 static bool
2116 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2117 {
2118 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2119
2120 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2121 sizeof(intel_dp->dpcd)) == 0)
2122 return false; /* aux transfer failed */
2123
2124 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2125 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2126 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2127
2128 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2129 return false; /* DPCD not present */
2130
2131 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2132 DP_DWN_STRM_PORT_PRESENT))
2133 return true; /* native DP sink */
2134
2135 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2136 return true; /* no per-port downstream info */
2137
2138 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2139 intel_dp->downstream_ports,
2140 DP_MAX_DOWNSTREAM_PORTS) == 0)
2141 return false; /* downstream port status fetch failed */
2142
2143 return true;
2144 }
2145
2146 static void
2147 intel_dp_probe_oui(struct intel_dp *intel_dp)
2148 {
2149 u8 buf[3];
2150
2151 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2152 return;
2153
2154 ironlake_edp_panel_vdd_on(intel_dp);
2155
2156 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2157 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2158 buf[0], buf[1], buf[2]);
2159
2160 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2161 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2162 buf[0], buf[1], buf[2]);
2163
2164 ironlake_edp_panel_vdd_off(intel_dp, false);
2165 }
2166
2167 static bool
2168 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2169 {
2170 int ret;
2171
2172 ret = intel_dp_aux_native_read_retry(intel_dp,
2173 DP_DEVICE_SERVICE_IRQ_VECTOR,
2174 sink_irq_vector, 1);
2175 if (!ret)
2176 return false;
2177
2178 return true;
2179 }
2180
2181 static void
2182 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2183 {
2184 /* NAK by default */
2185 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2186 }
2187
2188 /*
2189 * According to DP spec
2190 * 5.1.2:
2191 * 1. Read DPCD
2192 * 2. Configure link according to Receiver Capabilities
2193 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2194 * 4. Check link status on receipt of hot-plug interrupt
2195 */
2196
2197 void
2198 intel_dp_check_link_status(struct intel_dp *intel_dp)
2199 {
2200 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2201 u8 sink_irq_vector;
2202 u8 link_status[DP_LINK_STATUS_SIZE];
2203
2204 if (!intel_encoder->connectors_active)
2205 return;
2206
2207 if (WARN_ON(!intel_encoder->base.crtc))
2208 return;
2209
2210 /* Try to read receiver status if the link appears to be up */
2211 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2212 intel_dp_link_down(intel_dp);
2213 return;
2214 }
2215
2216 /* Now read the DPCD to see if it's actually running */
2217 if (!intel_dp_get_dpcd(intel_dp)) {
2218 intel_dp_link_down(intel_dp);
2219 return;
2220 }
2221
2222 /* Try to read the source of the interrupt */
2223 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2224 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2225 /* Clear interrupt source */
2226 intel_dp_aux_native_write_1(intel_dp,
2227 DP_DEVICE_SERVICE_IRQ_VECTOR,
2228 sink_irq_vector);
2229
2230 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2231 intel_dp_handle_test_request(intel_dp);
2232 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2233 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2234 }
2235
2236 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2237 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2238 drm_get_encoder_name(&intel_encoder->base));
2239 intel_dp_start_link_train(intel_dp);
2240 intel_dp_complete_link_train(intel_dp);
2241 }
2242 }
2243
2244 /* XXX this is probably wrong for multiple downstream ports */
2245 static enum drm_connector_status
2246 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2247 {
2248 uint8_t *dpcd = intel_dp->dpcd;
2249 bool hpd;
2250 uint8_t type;
2251
2252 if (!intel_dp_get_dpcd(intel_dp))
2253 return connector_status_disconnected;
2254
2255 /* if there's no downstream port, we're done */
2256 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2257 return connector_status_connected;
2258
2259 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2260 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2261 if (hpd) {
2262 uint8_t reg;
2263 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2264 &reg, 1))
2265 return connector_status_unknown;
2266 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2267 : connector_status_disconnected;
2268 }
2269
2270 /* If no HPD, poke DDC gently */
2271 if (drm_probe_ddc(&intel_dp->adapter))
2272 return connector_status_connected;
2273
2274 /* Well we tried, say unknown for unreliable port types */
2275 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2276 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2277 return connector_status_unknown;
2278
2279 /* Anything else is out of spec, warn and ignore */
2280 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2281 return connector_status_disconnected;
2282 }
2283
2284 static enum drm_connector_status
2285 ironlake_dp_detect(struct intel_dp *intel_dp)
2286 {
2287 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2290 enum drm_connector_status status;
2291
2292 /* Can't disconnect eDP, but you can close the lid... */
2293 if (is_edp(intel_dp)) {
2294 status = intel_panel_detect(dev);
2295 if (status == connector_status_unknown)
2296 status = connector_status_connected;
2297 return status;
2298 }
2299
2300 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2301 return connector_status_disconnected;
2302
2303 return intel_dp_detect_dpcd(intel_dp);
2304 }
2305
2306 static enum drm_connector_status
2307 g4x_dp_detect(struct intel_dp *intel_dp)
2308 {
2309 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2312 uint32_t bit;
2313
2314 switch (intel_dig_port->port) {
2315 case PORT_B:
2316 bit = PORTB_HOTPLUG_LIVE_STATUS;
2317 break;
2318 case PORT_C:
2319 bit = PORTC_HOTPLUG_LIVE_STATUS;
2320 break;
2321 case PORT_D:
2322 bit = PORTD_HOTPLUG_LIVE_STATUS;
2323 break;
2324 default:
2325 return connector_status_unknown;
2326 }
2327
2328 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2329 return connector_status_disconnected;
2330
2331 return intel_dp_detect_dpcd(intel_dp);
2332 }
2333
2334 static struct edid *
2335 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2336 {
2337 struct intel_connector *intel_connector = to_intel_connector(connector);
2338
2339 /* use cached edid if we have one */
2340 if (intel_connector->edid) {
2341 struct edid *edid;
2342 int size;
2343
2344 /* invalid edid */
2345 if (IS_ERR(intel_connector->edid))
2346 return NULL;
2347
2348 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2349 edid = kmalloc(size, GFP_KERNEL);
2350 if (!edid)
2351 return NULL;
2352
2353 memcpy(edid, intel_connector->edid, size);
2354 return edid;
2355 }
2356
2357 return drm_get_edid(connector, adapter);
2358 }
2359
2360 static int
2361 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2362 {
2363 struct intel_connector *intel_connector = to_intel_connector(connector);
2364
2365 /* use cached edid if we have one */
2366 if (intel_connector->edid) {
2367 /* invalid edid */
2368 if (IS_ERR(intel_connector->edid))
2369 return 0;
2370
2371 return intel_connector_update_modes(connector,
2372 intel_connector->edid);
2373 }
2374
2375 return intel_ddc_get_modes(connector, adapter);
2376 }
2377
2378 static enum drm_connector_status
2379 intel_dp_detect(struct drm_connector *connector, bool force)
2380 {
2381 struct intel_dp *intel_dp = intel_attached_dp(connector);
2382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2383 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2384 struct drm_device *dev = connector->dev;
2385 enum drm_connector_status status;
2386 struct edid *edid = NULL;
2387
2388 intel_dp->has_audio = false;
2389
2390 if (HAS_PCH_SPLIT(dev))
2391 status = ironlake_dp_detect(intel_dp);
2392 else
2393 status = g4x_dp_detect(intel_dp);
2394
2395 if (status != connector_status_connected)
2396 return status;
2397
2398 intel_dp_probe_oui(intel_dp);
2399
2400 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2401 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2402 } else {
2403 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2404 if (edid) {
2405 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2406 kfree(edid);
2407 }
2408 }
2409
2410 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2411 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2412 return connector_status_connected;
2413 }
2414
2415 static int intel_dp_get_modes(struct drm_connector *connector)
2416 {
2417 struct intel_dp *intel_dp = intel_attached_dp(connector);
2418 struct intel_connector *intel_connector = to_intel_connector(connector);
2419 struct drm_device *dev = connector->dev;
2420 int ret;
2421
2422 /* We should parse the EDID data and find out if it has an audio sink
2423 */
2424
2425 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2426 if (ret)
2427 return ret;
2428
2429 /* if eDP has no EDID, fall back to fixed mode */
2430 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2431 struct drm_display_mode *mode;
2432 mode = drm_mode_duplicate(dev,
2433 intel_connector->panel.fixed_mode);
2434 if (mode) {
2435 drm_mode_probed_add(connector, mode);
2436 return 1;
2437 }
2438 }
2439 return 0;
2440 }
2441
2442 static bool
2443 intel_dp_detect_audio(struct drm_connector *connector)
2444 {
2445 struct intel_dp *intel_dp = intel_attached_dp(connector);
2446 struct edid *edid;
2447 bool has_audio = false;
2448
2449 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2450 if (edid) {
2451 has_audio = drm_detect_monitor_audio(edid);
2452 kfree(edid);
2453 }
2454
2455 return has_audio;
2456 }
2457
2458 static int
2459 intel_dp_set_property(struct drm_connector *connector,
2460 struct drm_property *property,
2461 uint64_t val)
2462 {
2463 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2464 struct intel_connector *intel_connector = to_intel_connector(connector);
2465 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2466 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2467 int ret;
2468
2469 ret = drm_object_property_set_value(&connector->base, property, val);
2470 if (ret)
2471 return ret;
2472
2473 if (property == dev_priv->force_audio_property) {
2474 int i = val;
2475 bool has_audio;
2476
2477 if (i == intel_dp->force_audio)
2478 return 0;
2479
2480 intel_dp->force_audio = i;
2481
2482 if (i == HDMI_AUDIO_AUTO)
2483 has_audio = intel_dp_detect_audio(connector);
2484 else
2485 has_audio = (i == HDMI_AUDIO_ON);
2486
2487 if (has_audio == intel_dp->has_audio)
2488 return 0;
2489
2490 intel_dp->has_audio = has_audio;
2491 goto done;
2492 }
2493
2494 if (property == dev_priv->broadcast_rgb_property) {
2495 switch (val) {
2496 case INTEL_BROADCAST_RGB_AUTO:
2497 intel_dp->color_range_auto = true;
2498 break;
2499 case INTEL_BROADCAST_RGB_FULL:
2500 intel_dp->color_range_auto = false;
2501 intel_dp->color_range = 0;
2502 break;
2503 case INTEL_BROADCAST_RGB_LIMITED:
2504 intel_dp->color_range_auto = false;
2505 intel_dp->color_range = DP_COLOR_RANGE_16_235;
2506 break;
2507 default:
2508 return -EINVAL;
2509 }
2510 goto done;
2511 }
2512
2513 if (is_edp(intel_dp) &&
2514 property == connector->dev->mode_config.scaling_mode_property) {
2515 if (val == DRM_MODE_SCALE_NONE) {
2516 DRM_DEBUG_KMS("no scaling not supported\n");
2517 return -EINVAL;
2518 }
2519
2520 if (intel_connector->panel.fitting_mode == val) {
2521 /* the eDP scaling property is not changed */
2522 return 0;
2523 }
2524 intel_connector->panel.fitting_mode = val;
2525
2526 goto done;
2527 }
2528
2529 return -EINVAL;
2530
2531 done:
2532 if (intel_encoder->base.crtc)
2533 intel_crtc_restore_mode(intel_encoder->base.crtc);
2534
2535 return 0;
2536 }
2537
2538 static void
2539 intel_dp_destroy(struct drm_connector *connector)
2540 {
2541 struct drm_device *dev = connector->dev;
2542 struct intel_dp *intel_dp = intel_attached_dp(connector);
2543 struct intel_connector *intel_connector = to_intel_connector(connector);
2544
2545 if (!IS_ERR_OR_NULL(intel_connector->edid))
2546 kfree(intel_connector->edid);
2547
2548 if (is_edp(intel_dp)) {
2549 intel_panel_destroy_backlight(dev);
2550 intel_panel_fini(&intel_connector->panel);
2551 }
2552
2553 drm_sysfs_connector_remove(connector);
2554 drm_connector_cleanup(connector);
2555 kfree(connector);
2556 }
2557
2558 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2559 {
2560 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2561 struct intel_dp *intel_dp = &intel_dig_port->dp;
2562 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2563
2564 i2c_del_adapter(&intel_dp->adapter);
2565 drm_encoder_cleanup(encoder);
2566 if (is_edp(intel_dp)) {
2567 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2568 mutex_lock(&dev->mode_config.mutex);
2569 ironlake_panel_vdd_off_sync(intel_dp);
2570 mutex_unlock(&dev->mode_config.mutex);
2571 }
2572 kfree(intel_dig_port);
2573 }
2574
2575 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2576 .mode_fixup = intel_dp_mode_fixup,
2577 .mode_set = intel_dp_mode_set,
2578 };
2579
2580 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2581 .dpms = intel_connector_dpms,
2582 .detect = intel_dp_detect,
2583 .fill_modes = drm_helper_probe_single_connector_modes,
2584 .set_property = intel_dp_set_property,
2585 .destroy = intel_dp_destroy,
2586 };
2587
2588 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2589 .get_modes = intel_dp_get_modes,
2590 .mode_valid = intel_dp_mode_valid,
2591 .best_encoder = intel_best_encoder,
2592 };
2593
2594 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2595 .destroy = intel_dp_encoder_destroy,
2596 };
2597
2598 static void
2599 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2600 {
2601 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2602
2603 intel_dp_check_link_status(intel_dp);
2604 }
2605
2606 /* Return which DP Port should be selected for Transcoder DP control */
2607 int
2608 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2609 {
2610 struct drm_device *dev = crtc->dev;
2611 struct intel_encoder *intel_encoder;
2612 struct intel_dp *intel_dp;
2613
2614 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2615 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2616
2617 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2618 intel_encoder->type == INTEL_OUTPUT_EDP)
2619 return intel_dp->output_reg;
2620 }
2621
2622 return -1;
2623 }
2624
2625 /* check the VBT to see whether the eDP is on DP-D port */
2626 bool intel_dpd_is_edp(struct drm_device *dev)
2627 {
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 struct child_device_config *p_child;
2630 int i;
2631
2632 if (!dev_priv->child_dev_num)
2633 return false;
2634
2635 for (i = 0; i < dev_priv->child_dev_num; i++) {
2636 p_child = dev_priv->child_dev + i;
2637
2638 if (p_child->dvo_port == PORT_IDPD &&
2639 p_child->device_type == DEVICE_TYPE_eDP)
2640 return true;
2641 }
2642 return false;
2643 }
2644
2645 static void
2646 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2647 {
2648 struct intel_connector *intel_connector = to_intel_connector(connector);
2649
2650 intel_attach_force_audio_property(connector);
2651 intel_attach_broadcast_rgb_property(connector);
2652 intel_dp->color_range_auto = true;
2653
2654 if (is_edp(intel_dp)) {
2655 drm_mode_create_scaling_mode_property(connector->dev);
2656 drm_object_attach_property(
2657 &connector->base,
2658 connector->dev->mode_config.scaling_mode_property,
2659 DRM_MODE_SCALE_ASPECT);
2660 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2661 }
2662 }
2663
2664 static void
2665 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2666 struct intel_dp *intel_dp,
2667 struct edp_power_seq *out)
2668 {
2669 struct drm_i915_private *dev_priv = dev->dev_private;
2670 struct edp_power_seq cur, vbt, spec, final;
2671 u32 pp_on, pp_off, pp_div, pp;
2672
2673 /* Workaround: Need to write PP_CONTROL with the unlock key as
2674 * the very first thing. */
2675 pp = ironlake_get_pp_control(dev_priv);
2676 I915_WRITE(PCH_PP_CONTROL, pp);
2677
2678 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2679 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2680 pp_div = I915_READ(PCH_PP_DIVISOR);
2681
2682 /* Pull timing values out of registers */
2683 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2684 PANEL_POWER_UP_DELAY_SHIFT;
2685
2686 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2687 PANEL_LIGHT_ON_DELAY_SHIFT;
2688
2689 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2690 PANEL_LIGHT_OFF_DELAY_SHIFT;
2691
2692 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2693 PANEL_POWER_DOWN_DELAY_SHIFT;
2694
2695 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2696 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2697
2698 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2699 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2700
2701 vbt = dev_priv->edp.pps;
2702
2703 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2704 * our hw here, which are all in 100usec. */
2705 spec.t1_t3 = 210 * 10;
2706 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2707 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2708 spec.t10 = 500 * 10;
2709 /* This one is special and actually in units of 100ms, but zero
2710 * based in the hw (so we need to add 100 ms). But the sw vbt
2711 * table multiplies it with 1000 to make it in units of 100usec,
2712 * too. */
2713 spec.t11_t12 = (510 + 100) * 10;
2714
2715 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2716 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2717
2718 /* Use the max of the register settings and vbt. If both are
2719 * unset, fall back to the spec limits. */
2720 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2721 spec.field : \
2722 max(cur.field, vbt.field))
2723 assign_final(t1_t3);
2724 assign_final(t8);
2725 assign_final(t9);
2726 assign_final(t10);
2727 assign_final(t11_t12);
2728 #undef assign_final
2729
2730 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2731 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2732 intel_dp->backlight_on_delay = get_delay(t8);
2733 intel_dp->backlight_off_delay = get_delay(t9);
2734 intel_dp->panel_power_down_delay = get_delay(t10);
2735 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2736 #undef get_delay
2737
2738 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2739 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2740 intel_dp->panel_power_cycle_delay);
2741
2742 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2743 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2744
2745 if (out)
2746 *out = final;
2747 }
2748
2749 static void
2750 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2751 struct intel_dp *intel_dp,
2752 struct edp_power_seq *seq)
2753 {
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 u32 pp_on, pp_off, pp_div;
2756
2757 /* And finally store the new values in the power sequencer. */
2758 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2759 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2760 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2761 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2762 /* Compute the divisor for the pp clock, simply match the Bspec
2763 * formula. */
2764 pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2765 << PP_REFERENCE_DIVIDER_SHIFT;
2766 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2767 << PANEL_POWER_CYCLE_DELAY_SHIFT);
2768
2769 /* Haswell doesn't have any port selection bits for the panel
2770 * power sequencer any more. */
2771 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2772 if (is_cpu_edp(intel_dp))
2773 pp_on |= PANEL_POWER_PORT_DP_A;
2774 else
2775 pp_on |= PANEL_POWER_PORT_DP_D;
2776 }
2777
2778 I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2779 I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2780 I915_WRITE(PCH_PP_DIVISOR, pp_div);
2781
2782 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2783 I915_READ(PCH_PP_ON_DELAYS),
2784 I915_READ(PCH_PP_OFF_DELAYS),
2785 I915_READ(PCH_PP_DIVISOR));
2786 }
2787
2788 void
2789 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2790 struct intel_connector *intel_connector)
2791 {
2792 struct drm_connector *connector = &intel_connector->base;
2793 struct intel_dp *intel_dp = &intel_dig_port->dp;
2794 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2795 struct drm_device *dev = intel_encoder->base.dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 struct drm_display_mode *fixed_mode = NULL;
2798 struct edp_power_seq power_seq = { 0 };
2799 enum port port = intel_dig_port->port;
2800 const char *name = NULL;
2801 int type;
2802
2803 /* Preserve the current hw state. */
2804 intel_dp->DP = I915_READ(intel_dp->output_reg);
2805 intel_dp->attached_connector = intel_connector;
2806
2807 if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2808 if (intel_dpd_is_edp(dev))
2809 intel_dp->is_pch_edp = true;
2810
2811 /*
2812 * FIXME : We need to initialize built-in panels before external panels.
2813 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2814 */
2815 if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2816 type = DRM_MODE_CONNECTOR_eDP;
2817 intel_encoder->type = INTEL_OUTPUT_EDP;
2818 } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2819 type = DRM_MODE_CONNECTOR_eDP;
2820 intel_encoder->type = INTEL_OUTPUT_EDP;
2821 } else {
2822 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2823 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2824 * rewrite it.
2825 */
2826 type = DRM_MODE_CONNECTOR_DisplayPort;
2827 }
2828
2829 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2830 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2831
2832 connector->polled = DRM_CONNECTOR_POLL_HPD;
2833 connector->interlace_allowed = true;
2834 connector->doublescan_allowed = 0;
2835
2836 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2837 ironlake_panel_vdd_work);
2838
2839 intel_connector_attach_encoder(intel_connector, intel_encoder);
2840 drm_sysfs_connector_add(connector);
2841
2842 if (HAS_DDI(dev))
2843 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2844 else
2845 intel_connector->get_hw_state = intel_connector_get_hw_state;
2846
2847
2848 /* Set up the DDC bus. */
2849 switch (port) {
2850 case PORT_A:
2851 name = "DPDDC-A";
2852 break;
2853 case PORT_B:
2854 dev_priv->hotplug_supported_mask |= PORTB_HOTPLUG_INT_STATUS;
2855 name = "DPDDC-B";
2856 break;
2857 case PORT_C:
2858 dev_priv->hotplug_supported_mask |= PORTC_HOTPLUG_INT_STATUS;
2859 name = "DPDDC-C";
2860 break;
2861 case PORT_D:
2862 dev_priv->hotplug_supported_mask |= PORTD_HOTPLUG_INT_STATUS;
2863 name = "DPDDC-D";
2864 break;
2865 default:
2866 WARN(1, "Invalid port %c\n", port_name(port));
2867 break;
2868 }
2869
2870 if (is_edp(intel_dp))
2871 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2872
2873 intel_dp_i2c_init(intel_dp, intel_connector, name);
2874
2875 /* Cache DPCD and EDID for edp. */
2876 if (is_edp(intel_dp)) {
2877 bool ret;
2878 struct drm_display_mode *scan;
2879 struct edid *edid;
2880
2881 ironlake_edp_panel_vdd_on(intel_dp);
2882 ret = intel_dp_get_dpcd(intel_dp);
2883 ironlake_edp_panel_vdd_off(intel_dp, false);
2884
2885 if (ret) {
2886 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2887 dev_priv->no_aux_handshake =
2888 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2889 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2890 } else {
2891 /* if this fails, presume the device is a ghost */
2892 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2893 intel_dp_encoder_destroy(&intel_encoder->base);
2894 intel_dp_destroy(connector);
2895 return;
2896 }
2897
2898 /* We now know it's not a ghost, init power sequence regs. */
2899 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2900 &power_seq);
2901
2902 ironlake_edp_panel_vdd_on(intel_dp);
2903 edid = drm_get_edid(connector, &intel_dp->adapter);
2904 if (edid) {
2905 if (drm_add_edid_modes(connector, edid)) {
2906 drm_mode_connector_update_edid_property(connector, edid);
2907 drm_edid_to_eld(connector, edid);
2908 } else {
2909 kfree(edid);
2910 edid = ERR_PTR(-EINVAL);
2911 }
2912 } else {
2913 edid = ERR_PTR(-ENOENT);
2914 }
2915 intel_connector->edid = edid;
2916
2917 /* prefer fixed mode from EDID if available */
2918 list_for_each_entry(scan, &connector->probed_modes, head) {
2919 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2920 fixed_mode = drm_mode_duplicate(dev, scan);
2921 break;
2922 }
2923 }
2924
2925 /* fallback to VBT if available for eDP */
2926 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2927 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2928 if (fixed_mode)
2929 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2930 }
2931
2932 ironlake_edp_panel_vdd_off(intel_dp, false);
2933 }
2934
2935 if (is_edp(intel_dp)) {
2936 intel_panel_init(&intel_connector->panel, fixed_mode);
2937 intel_panel_setup_backlight(connector);
2938 }
2939
2940 intel_dp_add_properties(intel_dp, connector);
2941
2942 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2943 * 0xd. Failure to do so will result in spurious interrupts being
2944 * generated on the port when a cable is not attached.
2945 */
2946 if (IS_G4X(dev) && !IS_GM45(dev)) {
2947 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2948 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2949 }
2950 }
2951
2952 void
2953 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2954 {
2955 struct intel_digital_port *intel_dig_port;
2956 struct intel_encoder *intel_encoder;
2957 struct drm_encoder *encoder;
2958 struct intel_connector *intel_connector;
2959
2960 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2961 if (!intel_dig_port)
2962 return;
2963
2964 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2965 if (!intel_connector) {
2966 kfree(intel_dig_port);
2967 return;
2968 }
2969
2970 intel_encoder = &intel_dig_port->base;
2971 encoder = &intel_encoder->base;
2972
2973 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2974 DRM_MODE_ENCODER_TMDS);
2975 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2976
2977 intel_encoder->enable = intel_enable_dp;
2978 intel_encoder->pre_enable = intel_pre_enable_dp;
2979 intel_encoder->disable = intel_disable_dp;
2980 intel_encoder->post_disable = intel_post_disable_dp;
2981 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2982
2983 intel_dig_port->port = port;
2984 intel_dig_port->dp.output_reg = output_reg;
2985
2986 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2987 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2988 intel_encoder->cloneable = false;
2989 intel_encoder->hot_plug = intel_dp_hot_plug;
2990
2991 intel_dp_init_connector(intel_dig_port, intel_connector);
2992 }