Merge tag 'drm-intel-next-2012-02-07' of git://people.freedesktop.org/~danvet/drm...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *match_clock,
87 intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90 int target, int refclk, intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105 if (IS_GEN5(dev)) {
106 struct drm_i915_private *dev_priv = dev->dev_private;
107 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108 } else
109 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113 .dot = { .min = 25000, .max = 350000 },
114 .vco = { .min = 930000, .max = 1400000 },
115 .n = { .min = 3, .max = 16 },
116 .m = { .min = 96, .max = 140 },
117 .m1 = { .min = 18, .max = 26 },
118 .m2 = { .min = 6, .max = 16 },
119 .p = { .min = 4, .max = 128 },
120 .p1 = { .min = 2, .max = 33 },
121 .p2 = { .dot_limit = 165000,
122 .p2_slow = 4, .p2_fast = 2 },
123 .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 1, .max = 6 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 14, .p2_fast = 7 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141 .dot = { .min = 20000, .max = 400000 },
142 .vco = { .min = 1400000, .max = 2800000 },
143 .n = { .min = 1, .max = 6 },
144 .m = { .min = 70, .max = 120 },
145 .m1 = { .min = 10, .max = 22 },
146 .m2 = { .min = 5, .max = 9 },
147 .p = { .min = 5, .max = 80 },
148 .p1 = { .min = 1, .max = 8 },
149 .p2 = { .dot_limit = 200000,
150 .p2_slow = 10, .p2_fast = 5 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 7, .max = 98 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 112000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170 .dot = { .min = 25000, .max = 270000 },
171 .vco = { .min = 1750000, .max = 3500000},
172 .n = { .min = 1, .max = 4 },
173 .m = { .min = 104, .max = 138 },
174 .m1 = { .min = 17, .max = 23 },
175 .m2 = { .min = 5, .max = 11 },
176 .p = { .min = 10, .max = 30 },
177 .p1 = { .min = 1, .max = 3},
178 .p2 = { .dot_limit = 270000,
179 .p2_slow = 10,
180 .p2_fast = 10
181 },
182 .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186 .dot = { .min = 22000, .max = 400000 },
187 .vco = { .min = 1750000, .max = 3500000},
188 .n = { .min = 1, .max = 4 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 16, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 5, .max = 80 },
193 .p1 = { .min = 1, .max = 8},
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 10, .p2_fast = 5 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200 .dot = { .min = 20000, .max = 115000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 28, .max = 112 },
207 .p1 = { .min = 2, .max = 8 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 14, .p2_fast = 14
210 },
211 .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
225 },
226 .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230 .dot = { .min = 161670, .max = 227000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 2 },
233 .m = { .min = 97, .max = 108 },
234 .m1 = { .min = 0x10, .max = 0x12 },
235 .m2 = { .min = 0x05, .max = 0x06 },
236 .p = { .min = 10, .max = 20 },
237 .p1 = { .min = 1, .max = 2},
238 .p2 = { .dot_limit = 0,
239 .p2_slow = 10, .p2_fast = 10 },
240 .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244 .dot = { .min = 20000, .max = 400000},
245 .vco = { .min = 1700000, .max = 3500000 },
246 /* Pineview's Ncounter is a ring counter */
247 .n = { .min = 3, .max = 6 },
248 .m = { .min = 2, .max = 256 },
249 /* Pineview only has one combined m divider, which we treat as m2. */
250 .m1 = { .min = 0, .max = 0 },
251 .m2 = { .min = 0, .max = 254 },
252 .p = { .min = 5, .max = 80 },
253 .p1 = { .min = 1, .max = 8 },
254 .p2 = { .dot_limit = 200000,
255 .p2_slow = 10, .p2_fast = 5 },
256 .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260 .dot = { .min = 20000, .max = 400000 },
261 .vco = { .min = 1700000, .max = 3500000 },
262 .n = { .min = 3, .max = 6 },
263 .m = { .min = 2, .max = 256 },
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 7, .max = 112 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 112000,
269 .p2_slow = 14, .p2_fast = 14 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274 *
275 * We calculate clock using (register_value + 2) for N/M1/M2, so here
276 * the range value for them is (actual_value - 2).
277 */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279 .dot = { .min = 25000, .max = 350000 },
280 .vco = { .min = 1760000, .max = 3510000 },
281 .n = { .min = 1, .max = 5 },
282 .m = { .min = 79, .max = 127 },
283 .m1 = { .min = 12, .max = 22 },
284 .m2 = { .min = 5, .max = 9 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 225000,
288 .p2_slow = 10, .p2_fast = 5 },
289 .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 3 },
296 .m = { .min = 79, .max = 118 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 28, .max = 112 },
300 .p1 = { .min = 2, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 14, .p2_fast = 14 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 14, .max = 56 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 7, .p2_fast = 7 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322 .dot = { .min = 25000, .max = 350000 },
323 .vco = { .min = 1760000, .max = 3510000 },
324 .n = { .min = 1, .max = 2 },
325 .m = { .min = 79, .max = 126 },
326 .m1 = { .min = 12, .max = 22 },
327 .m2 = { .min = 5, .max = 9 },
328 .p = { .min = 28, .max = 112 },
329 .p1 = { .min = 2, .max = 8 },
330 .p2 = { .dot_limit = 225000,
331 .p2_slow = 14, .p2_fast = 14 },
332 .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 42 },
343 .p1 = { .min = 2, .max = 6 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000},
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 81, .max = 90 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 10, .max = 20 },
357 .p1 = { .min = 1, .max = 2},
358 .p2 = { .dot_limit = 0,
359 .p2_slow = 10, .p2_fast = 10 },
360 .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
364 int refclk)
365 {
366 struct drm_device *dev = crtc->dev;
367 struct drm_i915_private *dev_priv = dev->dev_private;
368 const intel_limit_t *limit;
369
370 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
371 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
372 LVDS_CLKB_POWER_UP) {
373 /* LVDS dual channel */
374 if (refclk == 100000)
375 limit = &intel_limits_ironlake_dual_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_dual_lvds;
378 } else {
379 if (refclk == 100000)
380 limit = &intel_limits_ironlake_single_lvds_100m;
381 else
382 limit = &intel_limits_ironlake_single_lvds;
383 }
384 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
385 HAS_eDP)
386 limit = &intel_limits_ironlake_display_port;
387 else
388 limit = &intel_limits_ironlake_dac;
389
390 return limit;
391 }
392
393 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
394 {
395 struct drm_device *dev = crtc->dev;
396 struct drm_i915_private *dev_priv = dev->dev_private;
397 const intel_limit_t *limit;
398
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
400 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
401 LVDS_CLKB_POWER_UP)
402 /* LVDS with dual channel */
403 limit = &intel_limits_g4x_dual_channel_lvds;
404 else
405 /* LVDS with dual channel */
406 limit = &intel_limits_g4x_single_channel_lvds;
407 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
408 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
409 limit = &intel_limits_g4x_hdmi;
410 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
411 limit = &intel_limits_g4x_sdvo;
412 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
413 limit = &intel_limits_g4x_display_port;
414 } else /* The option is for other outputs */
415 limit = &intel_limits_i9xx_sdvo;
416
417 return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422 struct drm_device *dev = crtc->dev;
423 const intel_limit_t *limit;
424
425 if (HAS_PCH_SPLIT(dev))
426 limit = intel_ironlake_limit(crtc, refclk);
427 else if (IS_G4X(dev)) {
428 limit = intel_g4x_limit(crtc);
429 } else if (IS_PINEVIEW(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_pineview_lvds;
432 else
433 limit = &intel_limits_pineview_sdvo;
434 } else if (!IS_GEN2(dev)) {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436 limit = &intel_limits_i9xx_lvds;
437 else
438 limit = &intel_limits_i9xx_sdvo;
439 } else {
440 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
441 limit = &intel_limits_i8xx_lvds;
442 else
443 limit = &intel_limits_i8xx_dvo;
444 }
445 return limit;
446 }
447
448 /* m1 is reserved as 0 in Pineview, n is a ring counter */
449 static void pineview_clock(int refclk, intel_clock_t *clock)
450 {
451 clock->m = clock->m2 + 2;
452 clock->p = clock->p1 * clock->p2;
453 clock->vco = refclk * clock->m / clock->n;
454 clock->dot = clock->vco / clock->p;
455 }
456
457 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
458 {
459 if (IS_PINEVIEW(dev)) {
460 pineview_clock(refclk, clock);
461 return;
462 }
463 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
464 clock->p = clock->p1 * clock->p2;
465 clock->vco = refclk * clock->m / (clock->n + 2);
466 clock->dot = clock->vco / clock->p;
467 }
468
469 /**
470 * Returns whether any output on the specified pipe is of the specified type
471 */
472 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
473 {
474 struct drm_device *dev = crtc->dev;
475 struct drm_mode_config *mode_config = &dev->mode_config;
476 struct intel_encoder *encoder;
477
478 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
479 if (encoder->base.crtc == crtc && encoder->type == type)
480 return true;
481
482 return false;
483 }
484
485 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
486 /**
487 * Returns whether the given set of divisors are valid for a given refclk with
488 * the given connectors.
489 */
490
491 static bool intel_PLL_is_valid(struct drm_device *dev,
492 const intel_limit_t *limit,
493 const intel_clock_t *clock)
494 {
495 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
496 INTELPllInvalid("p1 out of range\n");
497 if (clock->p < limit->p.min || limit->p.max < clock->p)
498 INTELPllInvalid("p out of range\n");
499 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
500 INTELPllInvalid("m2 out of range\n");
501 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
502 INTELPllInvalid("m1 out of range\n");
503 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
504 INTELPllInvalid("m1 <= m2\n");
505 if (clock->m < limit->m.min || limit->m.max < clock->m)
506 INTELPllInvalid("m out of range\n");
507 if (clock->n < limit->n.min || limit->n.max < clock->n)
508 INTELPllInvalid("n out of range\n");
509 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
510 INTELPllInvalid("vco out of range\n");
511 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
512 * connector, etc., rather than just a single range.
513 */
514 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
515 INTELPllInvalid("dot out of range\n");
516
517 return true;
518 }
519
520 static bool
521 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
522 int target, int refclk, intel_clock_t *match_clock,
523 intel_clock_t *best_clock)
524
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 intel_clock_t clock;
529 int err = target;
530
531 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
532 (I915_READ(LVDS)) != 0) {
533 /*
534 * For LVDS, if the panel is on, just rely on its current
535 * settings for dual-channel. We haven't figured out how to
536 * reliably set up different single/dual channel state, if we
537 * even can.
538 */
539 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
540 LVDS_CLKB_POWER_UP)
541 clock.p2 = limit->p2.p2_fast;
542 else
543 clock.p2 = limit->p2.p2_slow;
544 } else {
545 if (target < limit->p2.dot_limit)
546 clock.p2 = limit->p2.p2_slow;
547 else
548 clock.p2 = limit->p2.p2_fast;
549 }
550
551 memset(best_clock, 0, sizeof(*best_clock));
552
553 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
554 clock.m1++) {
555 for (clock.m2 = limit->m2.min;
556 clock.m2 <= limit->m2.max; clock.m2++) {
557 /* m1 is always 0 in Pineview */
558 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
559 break;
560 for (clock.n = limit->n.min;
561 clock.n <= limit->n.max; clock.n++) {
562 for (clock.p1 = limit->p1.min;
563 clock.p1 <= limit->p1.max; clock.p1++) {
564 int this_err;
565
566 intel_clock(dev, refclk, &clock);
567 if (!intel_PLL_is_valid(dev, limit,
568 &clock))
569 continue;
570 if (match_clock &&
571 clock.p != match_clock->p)
572 continue;
573
574 this_err = abs(clock.dot - target);
575 if (this_err < err) {
576 *best_clock = clock;
577 err = this_err;
578 }
579 }
580 }
581 }
582 }
583
584 return (err != target);
585 }
586
587 static bool
588 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
589 int target, int refclk, intel_clock_t *match_clock,
590 intel_clock_t *best_clock)
591 {
592 struct drm_device *dev = crtc->dev;
593 struct drm_i915_private *dev_priv = dev->dev_private;
594 intel_clock_t clock;
595 int max_n;
596 bool found;
597 /* approximately equals target * 0.00585 */
598 int err_most = (target >> 8) + (target >> 9);
599 found = false;
600
601 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
602 int lvds_reg;
603
604 if (HAS_PCH_SPLIT(dev))
605 lvds_reg = PCH_LVDS;
606 else
607 lvds_reg = LVDS;
608 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
609 LVDS_CLKB_POWER_UP)
610 clock.p2 = limit->p2.p2_fast;
611 else
612 clock.p2 = limit->p2.p2_slow;
613 } else {
614 if (target < limit->p2.dot_limit)
615 clock.p2 = limit->p2.p2_slow;
616 else
617 clock.p2 = limit->p2.p2_fast;
618 }
619
620 memset(best_clock, 0, sizeof(*best_clock));
621 max_n = limit->n.max;
622 /* based on hardware requirement, prefer smaller n to precision */
623 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
624 /* based on hardware requirement, prefere larger m1,m2 */
625 for (clock.m1 = limit->m1.max;
626 clock.m1 >= limit->m1.min; clock.m1--) {
627 for (clock.m2 = limit->m2.max;
628 clock.m2 >= limit->m2.min; clock.m2--) {
629 for (clock.p1 = limit->p1.max;
630 clock.p1 >= limit->p1.min; clock.p1--) {
631 int this_err;
632
633 intel_clock(dev, refclk, &clock);
634 if (!intel_PLL_is_valid(dev, limit,
635 &clock))
636 continue;
637 if (match_clock &&
638 clock.p != match_clock->p)
639 continue;
640
641 this_err = abs(clock.dot - target);
642 if (this_err < err_most) {
643 *best_clock = clock;
644 err_most = this_err;
645 max_n = clock.n;
646 found = true;
647 }
648 }
649 }
650 }
651 }
652 return found;
653 }
654
655 static bool
656 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
657 int target, int refclk, intel_clock_t *match_clock,
658 intel_clock_t *best_clock)
659 {
660 struct drm_device *dev = crtc->dev;
661 intel_clock_t clock;
662
663 if (target < 200000) {
664 clock.n = 1;
665 clock.p1 = 2;
666 clock.p2 = 10;
667 clock.m1 = 12;
668 clock.m2 = 9;
669 } else {
670 clock.n = 2;
671 clock.p1 = 1;
672 clock.p2 = 10;
673 clock.m1 = 14;
674 clock.m2 = 8;
675 }
676 intel_clock(dev, refclk, &clock);
677 memcpy(best_clock, &clock, sizeof(intel_clock_t));
678 return true;
679 }
680
681 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
682 static bool
683 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
686 {
687 intel_clock_t clock;
688 if (target < 200000) {
689 clock.p1 = 2;
690 clock.p2 = 10;
691 clock.n = 2;
692 clock.m1 = 23;
693 clock.m2 = 8;
694 } else {
695 clock.p1 = 1;
696 clock.p2 = 10;
697 clock.n = 1;
698 clock.m1 = 14;
699 clock.m2 = 2;
700 }
701 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
702 clock.p = (clock.p1 * clock.p2);
703 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
704 clock.vco = 0;
705 memcpy(best_clock, &clock, sizeof(intel_clock_t));
706 return true;
707 }
708
709 /**
710 * intel_wait_for_vblank - wait for vblank on a given pipe
711 * @dev: drm device
712 * @pipe: pipe to wait for
713 *
714 * Wait for vblank to occur on a given pipe. Needed for various bits of
715 * mode setting code.
716 */
717 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
718 {
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 int pipestat_reg = PIPESTAT(pipe);
721
722 /* Clear existing vblank status. Note this will clear any other
723 * sticky status fields as well.
724 *
725 * This races with i915_driver_irq_handler() with the result
726 * that either function could miss a vblank event. Here it is not
727 * fatal, as we will either wait upon the next vblank interrupt or
728 * timeout. Generally speaking intel_wait_for_vblank() is only
729 * called during modeset at which time the GPU should be idle and
730 * should *not* be performing page flips and thus not waiting on
731 * vblanks...
732 * Currently, the result of us stealing a vblank from the irq
733 * handler is that a single frame will be skipped during swapbuffers.
734 */
735 I915_WRITE(pipestat_reg,
736 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
737
738 /* Wait for vblank interrupt bit to set */
739 if (wait_for(I915_READ(pipestat_reg) &
740 PIPE_VBLANK_INTERRUPT_STATUS,
741 50))
742 DRM_DEBUG_KMS("vblank wait timed out\n");
743 }
744
745 /*
746 * intel_wait_for_pipe_off - wait for pipe to turn off
747 * @dev: drm device
748 * @pipe: pipe to wait for
749 *
750 * After disabling a pipe, we can't wait for vblank in the usual way,
751 * spinning on the vblank interrupt status bit, since we won't actually
752 * see an interrupt when the pipe is disabled.
753 *
754 * On Gen4 and above:
755 * wait for the pipe register state bit to turn off
756 *
757 * Otherwise:
758 * wait for the display line value to settle (it usually
759 * ends up stopping at the start of the next frame).
760 *
761 */
762 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765
766 if (INTEL_INFO(dev)->gen >= 4) {
767 int reg = PIPECONF(pipe);
768
769 /* Wait for the Pipe State to go off */
770 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
771 100))
772 DRM_DEBUG_KMS("pipe_off wait timed out\n");
773 } else {
774 u32 last_line;
775 int reg = PIPEDSL(pipe);
776 unsigned long timeout = jiffies + msecs_to_jiffies(100);
777
778 /* Wait for the display line to settle */
779 do {
780 last_line = I915_READ(reg) & DSL_LINEMASK;
781 mdelay(5);
782 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
783 time_after(timeout, jiffies));
784 if (time_after(jiffies, timeout))
785 DRM_DEBUG_KMS("pipe_off wait timed out\n");
786 }
787 }
788
789 static const char *state_string(bool enabled)
790 {
791 return enabled ? "on" : "off";
792 }
793
794 /* Only for pre-ILK configs */
795 static void assert_pll(struct drm_i915_private *dev_priv,
796 enum pipe pipe, bool state)
797 {
798 int reg;
799 u32 val;
800 bool cur_state;
801
802 reg = DPLL(pipe);
803 val = I915_READ(reg);
804 cur_state = !!(val & DPLL_VCO_ENABLE);
805 WARN(cur_state != state,
806 "PLL state assertion failure (expected %s, current %s)\n",
807 state_string(state), state_string(cur_state));
808 }
809 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
810 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
811
812 /* For ILK+ */
813 static void assert_pch_pll(struct drm_i915_private *dev_priv,
814 enum pipe pipe, bool state)
815 {
816 int reg;
817 u32 val;
818 bool cur_state;
819
820 if (HAS_PCH_CPT(dev_priv->dev)) {
821 u32 pch_dpll;
822
823 pch_dpll = I915_READ(PCH_DPLL_SEL);
824
825 /* Make sure the selected PLL is enabled to the transcoder */
826 WARN(!((pch_dpll >> (4 * pipe)) & 8),
827 "transcoder %d PLL not enabled\n", pipe);
828
829 /* Convert the transcoder pipe number to a pll pipe number */
830 pipe = (pch_dpll >> (4 * pipe)) & 1;
831 }
832
833 reg = PCH_DPLL(pipe);
834 val = I915_READ(reg);
835 cur_state = !!(val & DPLL_VCO_ENABLE);
836 WARN(cur_state != state,
837 "PCH PLL state assertion failure (expected %s, current %s)\n",
838 state_string(state), state_string(cur_state));
839 }
840 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
841 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
842
843 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
844 enum pipe pipe, bool state)
845 {
846 int reg;
847 u32 val;
848 bool cur_state;
849
850 reg = FDI_TX_CTL(pipe);
851 val = I915_READ(reg);
852 cur_state = !!(val & FDI_TX_ENABLE);
853 WARN(cur_state != state,
854 "FDI TX state assertion failure (expected %s, current %s)\n",
855 state_string(state), state_string(cur_state));
856 }
857 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
858 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
859
860 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
861 enum pipe pipe, bool state)
862 {
863 int reg;
864 u32 val;
865 bool cur_state;
866
867 reg = FDI_RX_CTL(pipe);
868 val = I915_READ(reg);
869 cur_state = !!(val & FDI_RX_ENABLE);
870 WARN(cur_state != state,
871 "FDI RX state assertion failure (expected %s, current %s)\n",
872 state_string(state), state_string(cur_state));
873 }
874 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
875 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
876
877 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879 {
880 int reg;
881 u32 val;
882
883 /* ILK FDI PLL is always enabled */
884 if (dev_priv->info->gen == 5)
885 return;
886
887 reg = FDI_TX_CTL(pipe);
888 val = I915_READ(reg);
889 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
890 }
891
892 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
893 enum pipe pipe)
894 {
895 int reg;
896 u32 val;
897
898 reg = FDI_RX_CTL(pipe);
899 val = I915_READ(reg);
900 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905 {
906 int pp_reg, lvds_reg;
907 u32 val;
908 enum pipe panel_pipe = PIPE_A;
909 bool locked = true;
910
911 if (HAS_PCH_SPLIT(dev_priv->dev)) {
912 pp_reg = PCH_PP_CONTROL;
913 lvds_reg = PCH_LVDS;
914 } else {
915 pp_reg = PP_CONTROL;
916 lvds_reg = LVDS;
917 }
918
919 val = I915_READ(pp_reg);
920 if (!(val & PANEL_POWER_ON) ||
921 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922 locked = false;
923
924 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925 panel_pipe = PIPE_B;
926
927 WARN(panel_pipe == pipe && locked,
928 "panel assertion failure, pipe %c regs locked\n",
929 pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933 enum pipe pipe, bool state)
934 {
935 int reg;
936 u32 val;
937 bool cur_state;
938
939 /* if we need the pipe A quirk it must be always on */
940 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941 state = true;
942
943 reg = PIPECONF(pipe);
944 val = I915_READ(reg);
945 cur_state = !!(val & PIPECONF_ENABLE);
946 WARN(cur_state != state,
947 "pipe %c assertion failure (expected %s, current %s)\n",
948 pipe_name(pipe), state_string(state), state_string(cur_state));
949 }
950
951 static void assert_plane(struct drm_i915_private *dev_priv,
952 enum plane plane, bool state)
953 {
954 int reg;
955 u32 val;
956 bool cur_state;
957
958 reg = DSPCNTR(plane);
959 val = I915_READ(reg);
960 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961 WARN(cur_state != state,
962 "plane %c assertion failure (expected %s, current %s)\n",
963 plane_name(plane), state_string(state), state_string(cur_state));
964 }
965
966 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
967 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970 enum pipe pipe)
971 {
972 int reg, i;
973 u32 val;
974 int cur_pipe;
975
976 /* Planes are fixed to pipes on ILK+ */
977 if (HAS_PCH_SPLIT(dev_priv->dev)) {
978 reg = DSPCNTR(pipe);
979 val = I915_READ(reg);
980 WARN((val & DISPLAY_PLANE_ENABLE),
981 "plane %c assertion failure, should be disabled but not\n",
982 plane_name(pipe));
983 return;
984 }
985
986 /* Need to check both planes against the pipe */
987 for (i = 0; i < 2; i++) {
988 reg = DSPCNTR(i);
989 val = I915_READ(reg);
990 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991 DISPPLANE_SEL_PIPE_SHIFT;
992 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
993 "plane %c assertion failure, should be off on pipe %c but is still active\n",
994 plane_name(i), pipe_name(pipe));
995 }
996 }
997
998 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999 {
1000 u32 val;
1001 bool enabled;
1002
1003 val = I915_READ(PCH_DREF_CONTROL);
1004 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005 DREF_SUPERSPREAD_SOURCE_MASK));
1006 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1007 }
1008
1009 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1010 enum pipe pipe)
1011 {
1012 int reg;
1013 u32 val;
1014 bool enabled;
1015
1016 reg = TRANSCONF(pipe);
1017 val = I915_READ(reg);
1018 enabled = !!(val & TRANS_ENABLE);
1019 WARN(enabled,
1020 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1021 pipe_name(pipe));
1022 }
1023
1024 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1025 enum pipe pipe, u32 port_sel, u32 val)
1026 {
1027 if ((val & DP_PORT_EN) == 0)
1028 return false;
1029
1030 if (HAS_PCH_CPT(dev_priv->dev)) {
1031 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1032 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1033 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1034 return false;
1035 } else {
1036 if ((val & DP_PIPE_MASK) != (pipe << 30))
1037 return false;
1038 }
1039 return true;
1040 }
1041
1042 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1043 enum pipe pipe, u32 val)
1044 {
1045 if ((val & PORT_ENABLE) == 0)
1046 return false;
1047
1048 if (HAS_PCH_CPT(dev_priv->dev)) {
1049 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1050 return false;
1051 } else {
1052 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1053 return false;
1054 }
1055 return true;
1056 }
1057
1058 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, u32 val)
1060 {
1061 if ((val & LVDS_PORT_EN) == 0)
1062 return false;
1063
1064 if (HAS_PCH_CPT(dev_priv->dev)) {
1065 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1066 return false;
1067 } else {
1068 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1069 return false;
1070 }
1071 return true;
1072 }
1073
1074 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1075 enum pipe pipe, u32 val)
1076 {
1077 if ((val & ADPA_DAC_ENABLE) == 0)
1078 return false;
1079 if (HAS_PCH_CPT(dev_priv->dev)) {
1080 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1081 return false;
1082 } else {
1083 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1084 return false;
1085 }
1086 return true;
1087 }
1088
1089 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, int reg, u32 port_sel)
1091 {
1092 u32 val = I915_READ(reg);
1093 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1094 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1095 reg, pipe_name(pipe));
1096 }
1097
1098 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1099 enum pipe pipe, int reg)
1100 {
1101 u32 val = I915_READ(reg);
1102 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1103 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1104 reg, pipe_name(pipe));
1105 }
1106
1107 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1108 enum pipe pipe)
1109 {
1110 int reg;
1111 u32 val;
1112
1113 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1114 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1115 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1116
1117 reg = PCH_ADPA;
1118 val = I915_READ(reg);
1119 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1120 "PCH VGA enabled on transcoder %c, should be disabled\n",
1121 pipe_name(pipe));
1122
1123 reg = PCH_LVDS;
1124 val = I915_READ(reg);
1125 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1126 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1127 pipe_name(pipe));
1128
1129 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1130 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1131 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1132 }
1133
1134 /**
1135 * intel_enable_pll - enable a PLL
1136 * @dev_priv: i915 private structure
1137 * @pipe: pipe PLL to enable
1138 *
1139 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1140 * make sure the PLL reg is writable first though, since the panel write
1141 * protect mechanism may be enabled.
1142 *
1143 * Note! This is for pre-ILK only.
1144 */
1145 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1146 {
1147 int reg;
1148 u32 val;
1149
1150 /* No really, not for ILK+ */
1151 BUG_ON(dev_priv->info->gen >= 5);
1152
1153 /* PLL is protected by panel, make sure we can write it */
1154 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1155 assert_panel_unlocked(dev_priv, pipe);
1156
1157 reg = DPLL(pipe);
1158 val = I915_READ(reg);
1159 val |= DPLL_VCO_ENABLE;
1160
1161 /* We do this three times for luck */
1162 I915_WRITE(reg, val);
1163 POSTING_READ(reg);
1164 udelay(150); /* wait for warmup */
1165 I915_WRITE(reg, val);
1166 POSTING_READ(reg);
1167 udelay(150); /* wait for warmup */
1168 I915_WRITE(reg, val);
1169 POSTING_READ(reg);
1170 udelay(150); /* wait for warmup */
1171 }
1172
1173 /**
1174 * intel_disable_pll - disable a PLL
1175 * @dev_priv: i915 private structure
1176 * @pipe: pipe PLL to disable
1177 *
1178 * Disable the PLL for @pipe, making sure the pipe is off first.
1179 *
1180 * Note! This is for pre-ILK only.
1181 */
1182 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1183 {
1184 int reg;
1185 u32 val;
1186
1187 /* Don't disable pipe A or pipe A PLLs if needed */
1188 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1189 return;
1190
1191 /* Make sure the pipe isn't still relying on us */
1192 assert_pipe_disabled(dev_priv, pipe);
1193
1194 reg = DPLL(pipe);
1195 val = I915_READ(reg);
1196 val &= ~DPLL_VCO_ENABLE;
1197 I915_WRITE(reg, val);
1198 POSTING_READ(reg);
1199 }
1200
1201 /**
1202 * intel_enable_pch_pll - enable PCH PLL
1203 * @dev_priv: i915 private structure
1204 * @pipe: pipe PLL to enable
1205 *
1206 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1207 * drives the transcoder clock.
1208 */
1209 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1210 enum pipe pipe)
1211 {
1212 int reg;
1213 u32 val;
1214
1215 if (pipe > 1)
1216 return;
1217
1218 /* PCH only available on ILK+ */
1219 BUG_ON(dev_priv->info->gen < 5);
1220
1221 /* PCH refclock must be enabled first */
1222 assert_pch_refclk_enabled(dev_priv);
1223
1224 reg = PCH_DPLL(pipe);
1225 val = I915_READ(reg);
1226 val |= DPLL_VCO_ENABLE;
1227 I915_WRITE(reg, val);
1228 POSTING_READ(reg);
1229 udelay(200);
1230 }
1231
1232 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 int reg;
1236 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1237 pll_sel = TRANSC_DPLL_ENABLE;
1238
1239 if (pipe > 1)
1240 return;
1241
1242 /* PCH only available on ILK+ */
1243 BUG_ON(dev_priv->info->gen < 5);
1244
1245 /* Make sure transcoder isn't still depending on us */
1246 assert_transcoder_disabled(dev_priv, pipe);
1247
1248 if (pipe == 0)
1249 pll_sel |= TRANSC_DPLLA_SEL;
1250 else if (pipe == 1)
1251 pll_sel |= TRANSC_DPLLB_SEL;
1252
1253
1254 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1255 return;
1256
1257 reg = PCH_DPLL(pipe);
1258 val = I915_READ(reg);
1259 val &= ~DPLL_VCO_ENABLE;
1260 I915_WRITE(reg, val);
1261 POSTING_READ(reg);
1262 udelay(200);
1263 }
1264
1265 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267 {
1268 int reg;
1269 u32 val;
1270
1271 /* PCH only available on ILK+ */
1272 BUG_ON(dev_priv->info->gen < 5);
1273
1274 /* Make sure PCH DPLL is enabled */
1275 assert_pch_pll_enabled(dev_priv, pipe);
1276
1277 /* FDI must be feeding us bits for PCH ports */
1278 assert_fdi_tx_enabled(dev_priv, pipe);
1279 assert_fdi_rx_enabled(dev_priv, pipe);
1280
1281 reg = TRANSCONF(pipe);
1282 val = I915_READ(reg);
1283
1284 if (HAS_PCH_IBX(dev_priv->dev)) {
1285 /*
1286 * make the BPC in transcoder be consistent with
1287 * that in pipeconf reg.
1288 */
1289 val &= ~PIPE_BPC_MASK;
1290 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1291 }
1292 I915_WRITE(reg, val | TRANS_ENABLE);
1293 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1294 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1295 }
1296
1297 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1298 enum pipe pipe)
1299 {
1300 int reg;
1301 u32 val;
1302
1303 /* FDI relies on the transcoder */
1304 assert_fdi_tx_disabled(dev_priv, pipe);
1305 assert_fdi_rx_disabled(dev_priv, pipe);
1306
1307 /* Ports must be off as well */
1308 assert_pch_ports_disabled(dev_priv, pipe);
1309
1310 reg = TRANSCONF(pipe);
1311 val = I915_READ(reg);
1312 val &= ~TRANS_ENABLE;
1313 I915_WRITE(reg, val);
1314 /* wait for PCH transcoder off, transcoder state */
1315 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1316 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1317 }
1318
1319 /**
1320 * intel_enable_pipe - enable a pipe, asserting requirements
1321 * @dev_priv: i915 private structure
1322 * @pipe: pipe to enable
1323 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1324 *
1325 * Enable @pipe, making sure that various hardware specific requirements
1326 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1327 *
1328 * @pipe should be %PIPE_A or %PIPE_B.
1329 *
1330 * Will wait until the pipe is actually running (i.e. first vblank) before
1331 * returning.
1332 */
1333 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1334 bool pch_port)
1335 {
1336 int reg;
1337 u32 val;
1338
1339 /*
1340 * A pipe without a PLL won't actually be able to drive bits from
1341 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1342 * need the check.
1343 */
1344 if (!HAS_PCH_SPLIT(dev_priv->dev))
1345 assert_pll_enabled(dev_priv, pipe);
1346 else {
1347 if (pch_port) {
1348 /* if driving the PCH, we need FDI enabled */
1349 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1350 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1351 }
1352 /* FIXME: assert CPU port conditions for SNB+ */
1353 }
1354
1355 reg = PIPECONF(pipe);
1356 val = I915_READ(reg);
1357 if (val & PIPECONF_ENABLE)
1358 return;
1359
1360 I915_WRITE(reg, val | PIPECONF_ENABLE);
1361 intel_wait_for_vblank(dev_priv->dev, pipe);
1362 }
1363
1364 /**
1365 * intel_disable_pipe - disable a pipe, asserting requirements
1366 * @dev_priv: i915 private structure
1367 * @pipe: pipe to disable
1368 *
1369 * Disable @pipe, making sure that various hardware specific requirements
1370 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1371 *
1372 * @pipe should be %PIPE_A or %PIPE_B.
1373 *
1374 * Will wait until the pipe has shut down before returning.
1375 */
1376 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1377 enum pipe pipe)
1378 {
1379 int reg;
1380 u32 val;
1381
1382 /*
1383 * Make sure planes won't keep trying to pump pixels to us,
1384 * or we might hang the display.
1385 */
1386 assert_planes_disabled(dev_priv, pipe);
1387
1388 /* Don't disable pipe A or pipe A PLLs if needed */
1389 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1390 return;
1391
1392 reg = PIPECONF(pipe);
1393 val = I915_READ(reg);
1394 if ((val & PIPECONF_ENABLE) == 0)
1395 return;
1396
1397 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1398 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1399 }
1400
1401 /*
1402 * Plane regs are double buffered, going from enabled->disabled needs a
1403 * trigger in order to latch. The display address reg provides this.
1404 */
1405 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1406 enum plane plane)
1407 {
1408 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1409 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1410 }
1411
1412 /**
1413 * intel_enable_plane - enable a display plane on a given pipe
1414 * @dev_priv: i915 private structure
1415 * @plane: plane to enable
1416 * @pipe: pipe being fed
1417 *
1418 * Enable @plane on @pipe, making sure that @pipe is running first.
1419 */
1420 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1421 enum plane plane, enum pipe pipe)
1422 {
1423 int reg;
1424 u32 val;
1425
1426 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1427 assert_pipe_enabled(dev_priv, pipe);
1428
1429 reg = DSPCNTR(plane);
1430 val = I915_READ(reg);
1431 if (val & DISPLAY_PLANE_ENABLE)
1432 return;
1433
1434 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1435 intel_flush_display_plane(dev_priv, plane);
1436 intel_wait_for_vblank(dev_priv->dev, pipe);
1437 }
1438
1439 /**
1440 * intel_disable_plane - disable a display plane
1441 * @dev_priv: i915 private structure
1442 * @plane: plane to disable
1443 * @pipe: pipe consuming the data
1444 *
1445 * Disable @plane; should be an independent operation.
1446 */
1447 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1448 enum plane plane, enum pipe pipe)
1449 {
1450 int reg;
1451 u32 val;
1452
1453 reg = DSPCNTR(plane);
1454 val = I915_READ(reg);
1455 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1456 return;
1457
1458 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1459 intel_flush_display_plane(dev_priv, plane);
1460 intel_wait_for_vblank(dev_priv->dev, pipe);
1461 }
1462
1463 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1464 enum pipe pipe, int reg, u32 port_sel)
1465 {
1466 u32 val = I915_READ(reg);
1467 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1468 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1469 I915_WRITE(reg, val & ~DP_PORT_EN);
1470 }
1471 }
1472
1473 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1474 enum pipe pipe, int reg)
1475 {
1476 u32 val = I915_READ(reg);
1477 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1478 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1479 reg, pipe);
1480 I915_WRITE(reg, val & ~PORT_ENABLE);
1481 }
1482 }
1483
1484 /* Disable any ports connected to this transcoder */
1485 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1486 enum pipe pipe)
1487 {
1488 u32 reg, val;
1489
1490 val = I915_READ(PCH_PP_CONTROL);
1491 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1492
1493 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1494 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1495 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1496
1497 reg = PCH_ADPA;
1498 val = I915_READ(reg);
1499 if (adpa_pipe_enabled(dev_priv, val, pipe))
1500 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1501
1502 reg = PCH_LVDS;
1503 val = I915_READ(reg);
1504 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1505 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1506 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1507 POSTING_READ(reg);
1508 udelay(100);
1509 }
1510
1511 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1512 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1513 disable_pch_hdmi(dev_priv, pipe, HDMID);
1514 }
1515
1516 static void i8xx_disable_fbc(struct drm_device *dev)
1517 {
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519 u32 fbc_ctl;
1520
1521 /* Disable compression */
1522 fbc_ctl = I915_READ(FBC_CONTROL);
1523 if ((fbc_ctl & FBC_CTL_EN) == 0)
1524 return;
1525
1526 fbc_ctl &= ~FBC_CTL_EN;
1527 I915_WRITE(FBC_CONTROL, fbc_ctl);
1528
1529 /* Wait for compressing bit to clear */
1530 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1531 DRM_DEBUG_KMS("FBC idle timed out\n");
1532 return;
1533 }
1534
1535 DRM_DEBUG_KMS("disabled FBC\n");
1536 }
1537
1538 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1539 {
1540 struct drm_device *dev = crtc->dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 struct drm_framebuffer *fb = crtc->fb;
1543 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1544 struct drm_i915_gem_object *obj = intel_fb->obj;
1545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1546 int cfb_pitch;
1547 int plane, i;
1548 u32 fbc_ctl, fbc_ctl2;
1549
1550 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1551 if (fb->pitches[0] < cfb_pitch)
1552 cfb_pitch = fb->pitches[0];
1553
1554 /* FBC_CTL wants 64B units */
1555 cfb_pitch = (cfb_pitch / 64) - 1;
1556 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1557
1558 /* Clear old tags */
1559 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1560 I915_WRITE(FBC_TAG + (i * 4), 0);
1561
1562 /* Set it up... */
1563 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1564 fbc_ctl2 |= plane;
1565 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1566 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1567
1568 /* enable it... */
1569 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1570 if (IS_I945GM(dev))
1571 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1572 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1573 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1574 fbc_ctl |= obj->fence_reg;
1575 I915_WRITE(FBC_CONTROL, fbc_ctl);
1576
1577 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1578 cfb_pitch, crtc->y, intel_crtc->plane);
1579 }
1580
1581 static bool i8xx_fbc_enabled(struct drm_device *dev)
1582 {
1583 struct drm_i915_private *dev_priv = dev->dev_private;
1584
1585 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1586 }
1587
1588 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1589 {
1590 struct drm_device *dev = crtc->dev;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 struct drm_framebuffer *fb = crtc->fb;
1593 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1594 struct drm_i915_gem_object *obj = intel_fb->obj;
1595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1596 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1597 unsigned long stall_watermark = 200;
1598 u32 dpfc_ctl;
1599
1600 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1601 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1602 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1603
1604 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1605 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1606 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1607 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1608
1609 /* enable it... */
1610 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1611
1612 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 static void g4x_disable_fbc(struct drm_device *dev)
1616 {
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 u32 dpfc_ctl;
1619
1620 /* Disable compression */
1621 dpfc_ctl = I915_READ(DPFC_CONTROL);
1622 if (dpfc_ctl & DPFC_CTL_EN) {
1623 dpfc_ctl &= ~DPFC_CTL_EN;
1624 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1625
1626 DRM_DEBUG_KMS("disabled FBC\n");
1627 }
1628 }
1629
1630 static bool g4x_fbc_enabled(struct drm_device *dev)
1631 {
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1638 {
1639 struct drm_i915_private *dev_priv = dev->dev_private;
1640 u32 blt_ecoskpd;
1641
1642 /* Make sure blitter notifies FBC of writes */
1643 gen6_gt_force_wake_get(dev_priv);
1644 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1645 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1646 GEN6_BLITTER_LOCK_SHIFT;
1647 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1648 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1649 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1650 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1651 GEN6_BLITTER_LOCK_SHIFT);
1652 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1653 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1654 gen6_gt_force_wake_put(dev_priv);
1655 }
1656
1657 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1658 {
1659 struct drm_device *dev = crtc->dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 struct drm_framebuffer *fb = crtc->fb;
1662 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1663 struct drm_i915_gem_object *obj = intel_fb->obj;
1664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1665 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1666 unsigned long stall_watermark = 200;
1667 u32 dpfc_ctl;
1668
1669 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1670 dpfc_ctl &= DPFC_RESERVED;
1671 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1672 /* Set persistent mode for front-buffer rendering, ala X. */
1673 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1674 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1675 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1676
1677 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1678 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1679 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1680 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1681 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1682 /* enable it... */
1683 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1684
1685 if (IS_GEN6(dev)) {
1686 I915_WRITE(SNB_DPFC_CTL_SA,
1687 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1688 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1689 sandybridge_blit_fbc_update(dev);
1690 }
1691
1692 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1693 }
1694
1695 static void ironlake_disable_fbc(struct drm_device *dev)
1696 {
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 u32 dpfc_ctl;
1699
1700 /* Disable compression */
1701 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1702 if (dpfc_ctl & DPFC_CTL_EN) {
1703 dpfc_ctl &= ~DPFC_CTL_EN;
1704 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1705
1706 DRM_DEBUG_KMS("disabled FBC\n");
1707 }
1708 }
1709
1710 static bool ironlake_fbc_enabled(struct drm_device *dev)
1711 {
1712 struct drm_i915_private *dev_priv = dev->dev_private;
1713
1714 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1715 }
1716
1717 bool intel_fbc_enabled(struct drm_device *dev)
1718 {
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721 if (!dev_priv->display.fbc_enabled)
1722 return false;
1723
1724 return dev_priv->display.fbc_enabled(dev);
1725 }
1726
1727 static void intel_fbc_work_fn(struct work_struct *__work)
1728 {
1729 struct intel_fbc_work *work =
1730 container_of(to_delayed_work(__work),
1731 struct intel_fbc_work, work);
1732 struct drm_device *dev = work->crtc->dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734
1735 mutex_lock(&dev->struct_mutex);
1736 if (work == dev_priv->fbc_work) {
1737 /* Double check that we haven't switched fb without cancelling
1738 * the prior work.
1739 */
1740 if (work->crtc->fb == work->fb) {
1741 dev_priv->display.enable_fbc(work->crtc,
1742 work->interval);
1743
1744 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1745 dev_priv->cfb_fb = work->crtc->fb->base.id;
1746 dev_priv->cfb_y = work->crtc->y;
1747 }
1748
1749 dev_priv->fbc_work = NULL;
1750 }
1751 mutex_unlock(&dev->struct_mutex);
1752
1753 kfree(work);
1754 }
1755
1756 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1757 {
1758 if (dev_priv->fbc_work == NULL)
1759 return;
1760
1761 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1762
1763 /* Synchronisation is provided by struct_mutex and checking of
1764 * dev_priv->fbc_work, so we can perform the cancellation
1765 * entirely asynchronously.
1766 */
1767 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1768 /* tasklet was killed before being run, clean up */
1769 kfree(dev_priv->fbc_work);
1770
1771 /* Mark the work as no longer wanted so that if it does
1772 * wake-up (because the work was already running and waiting
1773 * for our mutex), it will discover that is no longer
1774 * necessary to run.
1775 */
1776 dev_priv->fbc_work = NULL;
1777 }
1778
1779 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1780 {
1781 struct intel_fbc_work *work;
1782 struct drm_device *dev = crtc->dev;
1783 struct drm_i915_private *dev_priv = dev->dev_private;
1784
1785 if (!dev_priv->display.enable_fbc)
1786 return;
1787
1788 intel_cancel_fbc_work(dev_priv);
1789
1790 work = kzalloc(sizeof *work, GFP_KERNEL);
1791 if (work == NULL) {
1792 dev_priv->display.enable_fbc(crtc, interval);
1793 return;
1794 }
1795
1796 work->crtc = crtc;
1797 work->fb = crtc->fb;
1798 work->interval = interval;
1799 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1800
1801 dev_priv->fbc_work = work;
1802
1803 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1804
1805 /* Delay the actual enabling to let pageflipping cease and the
1806 * display to settle before starting the compression. Note that
1807 * this delay also serves a second purpose: it allows for a
1808 * vblank to pass after disabling the FBC before we attempt
1809 * to modify the control registers.
1810 *
1811 * A more complicated solution would involve tracking vblanks
1812 * following the termination of the page-flipping sequence
1813 * and indeed performing the enable as a co-routine and not
1814 * waiting synchronously upon the vblank.
1815 */
1816 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1817 }
1818
1819 void intel_disable_fbc(struct drm_device *dev)
1820 {
1821 struct drm_i915_private *dev_priv = dev->dev_private;
1822
1823 intel_cancel_fbc_work(dev_priv);
1824
1825 if (!dev_priv->display.disable_fbc)
1826 return;
1827
1828 dev_priv->display.disable_fbc(dev);
1829 dev_priv->cfb_plane = -1;
1830 }
1831
1832 /**
1833 * intel_update_fbc - enable/disable FBC as needed
1834 * @dev: the drm_device
1835 *
1836 * Set up the framebuffer compression hardware at mode set time. We
1837 * enable it if possible:
1838 * - plane A only (on pre-965)
1839 * - no pixel mulitply/line duplication
1840 * - no alpha buffer discard
1841 * - no dual wide
1842 * - framebuffer <= 2048 in width, 1536 in height
1843 *
1844 * We can't assume that any compression will take place (worst case),
1845 * so the compressed buffer has to be the same size as the uncompressed
1846 * one. It also must reside (along with the line length buffer) in
1847 * stolen memory.
1848 *
1849 * We need to enable/disable FBC on a global basis.
1850 */
1851 static void intel_update_fbc(struct drm_device *dev)
1852 {
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 struct drm_crtc *crtc = NULL, *tmp_crtc;
1855 struct intel_crtc *intel_crtc;
1856 struct drm_framebuffer *fb;
1857 struct intel_framebuffer *intel_fb;
1858 struct drm_i915_gem_object *obj;
1859 int enable_fbc;
1860
1861 DRM_DEBUG_KMS("\n");
1862
1863 if (!i915_powersave)
1864 return;
1865
1866 if (!I915_HAS_FBC(dev))
1867 return;
1868
1869 /*
1870 * If FBC is already on, we just have to verify that we can
1871 * keep it that way...
1872 * Need to disable if:
1873 * - more than one pipe is active
1874 * - changing FBC params (stride, fence, mode)
1875 * - new fb is too large to fit in compressed buffer
1876 * - going to an unsupported config (interlace, pixel multiply, etc.)
1877 */
1878 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1879 if (tmp_crtc->enabled && tmp_crtc->fb) {
1880 if (crtc) {
1881 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1882 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1883 goto out_disable;
1884 }
1885 crtc = tmp_crtc;
1886 }
1887 }
1888
1889 if (!crtc || crtc->fb == NULL) {
1890 DRM_DEBUG_KMS("no output, disabling\n");
1891 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1892 goto out_disable;
1893 }
1894
1895 intel_crtc = to_intel_crtc(crtc);
1896 fb = crtc->fb;
1897 intel_fb = to_intel_framebuffer(fb);
1898 obj = intel_fb->obj;
1899
1900 enable_fbc = i915_enable_fbc;
1901 if (enable_fbc < 0) {
1902 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1903 enable_fbc = 1;
1904 if (INTEL_INFO(dev)->gen <= 5)
1905 enable_fbc = 0;
1906 }
1907 if (!enable_fbc) {
1908 DRM_DEBUG_KMS("fbc disabled per module param\n");
1909 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1910 goto out_disable;
1911 }
1912 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1913 DRM_DEBUG_KMS("framebuffer too large, disabling "
1914 "compression\n");
1915 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1916 goto out_disable;
1917 }
1918 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1919 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1920 DRM_DEBUG_KMS("mode incompatible with compression, "
1921 "disabling\n");
1922 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1923 goto out_disable;
1924 }
1925 if ((crtc->mode.hdisplay > 2048) ||
1926 (crtc->mode.vdisplay > 1536)) {
1927 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1928 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1929 goto out_disable;
1930 }
1931 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1932 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1933 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1934 goto out_disable;
1935 }
1936
1937 /* The use of a CPU fence is mandatory in order to detect writes
1938 * by the CPU to the scanout and trigger updates to the FBC.
1939 */
1940 if (obj->tiling_mode != I915_TILING_X ||
1941 obj->fence_reg == I915_FENCE_REG_NONE) {
1942 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1943 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1944 goto out_disable;
1945 }
1946
1947 /* If the kernel debugger is active, always disable compression */
1948 if (in_dbg_master())
1949 goto out_disable;
1950
1951 /* If the scanout has not changed, don't modify the FBC settings.
1952 * Note that we make the fundamental assumption that the fb->obj
1953 * cannot be unpinned (and have its GTT offset and fence revoked)
1954 * without first being decoupled from the scanout and FBC disabled.
1955 */
1956 if (dev_priv->cfb_plane == intel_crtc->plane &&
1957 dev_priv->cfb_fb == fb->base.id &&
1958 dev_priv->cfb_y == crtc->y)
1959 return;
1960
1961 if (intel_fbc_enabled(dev)) {
1962 /* We update FBC along two paths, after changing fb/crtc
1963 * configuration (modeswitching) and after page-flipping
1964 * finishes. For the latter, we know that not only did
1965 * we disable the FBC at the start of the page-flip
1966 * sequence, but also more than one vblank has passed.
1967 *
1968 * For the former case of modeswitching, it is possible
1969 * to switch between two FBC valid configurations
1970 * instantaneously so we do need to disable the FBC
1971 * before we can modify its control registers. We also
1972 * have to wait for the next vblank for that to take
1973 * effect. However, since we delay enabling FBC we can
1974 * assume that a vblank has passed since disabling and
1975 * that we can safely alter the registers in the deferred
1976 * callback.
1977 *
1978 * In the scenario that we go from a valid to invalid
1979 * and then back to valid FBC configuration we have
1980 * no strict enforcement that a vblank occurred since
1981 * disabling the FBC. However, along all current pipe
1982 * disabling paths we do need to wait for a vblank at
1983 * some point. And we wait before enabling FBC anyway.
1984 */
1985 DRM_DEBUG_KMS("disabling active FBC for update\n");
1986 intel_disable_fbc(dev);
1987 }
1988
1989 intel_enable_fbc(crtc, 500);
1990 return;
1991
1992 out_disable:
1993 /* Multiple disables should be harmless */
1994 if (intel_fbc_enabled(dev)) {
1995 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1996 intel_disable_fbc(dev);
1997 }
1998 }
1999
2000 int
2001 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2002 struct drm_i915_gem_object *obj,
2003 struct intel_ring_buffer *pipelined)
2004 {
2005 struct drm_i915_private *dev_priv = dev->dev_private;
2006 u32 alignment;
2007 int ret;
2008
2009 switch (obj->tiling_mode) {
2010 case I915_TILING_NONE:
2011 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2012 alignment = 128 * 1024;
2013 else if (INTEL_INFO(dev)->gen >= 4)
2014 alignment = 4 * 1024;
2015 else
2016 alignment = 64 * 1024;
2017 break;
2018 case I915_TILING_X:
2019 /* pin() will align the object as required by fence */
2020 alignment = 0;
2021 break;
2022 case I915_TILING_Y:
2023 /* FIXME: Is this true? */
2024 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2025 return -EINVAL;
2026 default:
2027 BUG();
2028 }
2029
2030 dev_priv->mm.interruptible = false;
2031 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2032 if (ret)
2033 goto err_interruptible;
2034
2035 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2036 * fence, whereas 965+ only requires a fence if using
2037 * framebuffer compression. For simplicity, we always install
2038 * a fence as the cost is not that onerous.
2039 */
2040 if (obj->tiling_mode != I915_TILING_NONE) {
2041 ret = i915_gem_object_get_fence(obj, pipelined);
2042 if (ret)
2043 goto err_unpin;
2044
2045 i915_gem_object_pin_fence(obj);
2046 }
2047
2048 dev_priv->mm.interruptible = true;
2049 return 0;
2050
2051 err_unpin:
2052 i915_gem_object_unpin(obj);
2053 err_interruptible:
2054 dev_priv->mm.interruptible = true;
2055 return ret;
2056 }
2057
2058 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2059 {
2060 i915_gem_object_unpin_fence(obj);
2061 i915_gem_object_unpin(obj);
2062 }
2063
2064 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2065 int x, int y)
2066 {
2067 struct drm_device *dev = crtc->dev;
2068 struct drm_i915_private *dev_priv = dev->dev_private;
2069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2070 struct intel_framebuffer *intel_fb;
2071 struct drm_i915_gem_object *obj;
2072 int plane = intel_crtc->plane;
2073 unsigned long Start, Offset;
2074 u32 dspcntr;
2075 u32 reg;
2076
2077 switch (plane) {
2078 case 0:
2079 case 1:
2080 break;
2081 default:
2082 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2083 return -EINVAL;
2084 }
2085
2086 intel_fb = to_intel_framebuffer(fb);
2087 obj = intel_fb->obj;
2088
2089 reg = DSPCNTR(plane);
2090 dspcntr = I915_READ(reg);
2091 /* Mask out pixel format bits in case we change it */
2092 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2093 switch (fb->bits_per_pixel) {
2094 case 8:
2095 dspcntr |= DISPPLANE_8BPP;
2096 break;
2097 case 16:
2098 if (fb->depth == 15)
2099 dspcntr |= DISPPLANE_15_16BPP;
2100 else
2101 dspcntr |= DISPPLANE_16BPP;
2102 break;
2103 case 24:
2104 case 32:
2105 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2106 break;
2107 default:
2108 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2109 return -EINVAL;
2110 }
2111 if (INTEL_INFO(dev)->gen >= 4) {
2112 if (obj->tiling_mode != I915_TILING_NONE)
2113 dspcntr |= DISPPLANE_TILED;
2114 else
2115 dspcntr &= ~DISPPLANE_TILED;
2116 }
2117
2118 I915_WRITE(reg, dspcntr);
2119
2120 Start = obj->gtt_offset;
2121 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2122
2123 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2124 Start, Offset, x, y, fb->pitches[0]);
2125 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2126 if (INTEL_INFO(dev)->gen >= 4) {
2127 I915_WRITE(DSPSURF(plane), Start);
2128 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2129 I915_WRITE(DSPADDR(plane), Offset);
2130 } else
2131 I915_WRITE(DSPADDR(plane), Start + Offset);
2132 POSTING_READ(reg);
2133
2134 return 0;
2135 }
2136
2137 static int ironlake_update_plane(struct drm_crtc *crtc,
2138 struct drm_framebuffer *fb, int x, int y)
2139 {
2140 struct drm_device *dev = crtc->dev;
2141 struct drm_i915_private *dev_priv = dev->dev_private;
2142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143 struct intel_framebuffer *intel_fb;
2144 struct drm_i915_gem_object *obj;
2145 int plane = intel_crtc->plane;
2146 unsigned long Start, Offset;
2147 u32 dspcntr;
2148 u32 reg;
2149
2150 switch (plane) {
2151 case 0:
2152 case 1:
2153 case 2:
2154 break;
2155 default:
2156 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2157 return -EINVAL;
2158 }
2159
2160 intel_fb = to_intel_framebuffer(fb);
2161 obj = intel_fb->obj;
2162
2163 reg = DSPCNTR(plane);
2164 dspcntr = I915_READ(reg);
2165 /* Mask out pixel format bits in case we change it */
2166 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2167 switch (fb->bits_per_pixel) {
2168 case 8:
2169 dspcntr |= DISPPLANE_8BPP;
2170 break;
2171 case 16:
2172 if (fb->depth != 16)
2173 return -EINVAL;
2174
2175 dspcntr |= DISPPLANE_16BPP;
2176 break;
2177 case 24:
2178 case 32:
2179 if (fb->depth == 24)
2180 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2181 else if (fb->depth == 30)
2182 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2183 else
2184 return -EINVAL;
2185 break;
2186 default:
2187 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2188 return -EINVAL;
2189 }
2190
2191 if (obj->tiling_mode != I915_TILING_NONE)
2192 dspcntr |= DISPPLANE_TILED;
2193 else
2194 dspcntr &= ~DISPPLANE_TILED;
2195
2196 /* must disable */
2197 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2198
2199 I915_WRITE(reg, dspcntr);
2200
2201 Start = obj->gtt_offset;
2202 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2203
2204 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2205 Start, Offset, x, y, fb->pitches[0]);
2206 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2207 I915_WRITE(DSPSURF(plane), Start);
2208 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2209 I915_WRITE(DSPADDR(plane), Offset);
2210 POSTING_READ(reg);
2211
2212 return 0;
2213 }
2214
2215 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2216 static int
2217 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2218 int x, int y, enum mode_set_atomic state)
2219 {
2220 struct drm_device *dev = crtc->dev;
2221 struct drm_i915_private *dev_priv = dev->dev_private;
2222 int ret;
2223
2224 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2225 if (ret)
2226 return ret;
2227
2228 intel_update_fbc(dev);
2229 intel_increase_pllclock(crtc);
2230
2231 return 0;
2232 }
2233
2234 static int
2235 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2236 struct drm_framebuffer *old_fb)
2237 {
2238 struct drm_device *dev = crtc->dev;
2239 struct drm_i915_master_private *master_priv;
2240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2241 int ret;
2242
2243 /* no fb bound */
2244 if (!crtc->fb) {
2245 DRM_ERROR("No FB bound\n");
2246 return 0;
2247 }
2248
2249 switch (intel_crtc->plane) {
2250 case 0:
2251 case 1:
2252 break;
2253 case 2:
2254 if (IS_IVYBRIDGE(dev))
2255 break;
2256 /* fall through otherwise */
2257 default:
2258 DRM_ERROR("no plane for crtc\n");
2259 return -EINVAL;
2260 }
2261
2262 mutex_lock(&dev->struct_mutex);
2263 ret = intel_pin_and_fence_fb_obj(dev,
2264 to_intel_framebuffer(crtc->fb)->obj,
2265 NULL);
2266 if (ret != 0) {
2267 mutex_unlock(&dev->struct_mutex);
2268 DRM_ERROR("pin & fence failed\n");
2269 return ret;
2270 }
2271
2272 if (old_fb) {
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2275
2276 wait_event(dev_priv->pending_flip_queue,
2277 atomic_read(&dev_priv->mm.wedged) ||
2278 atomic_read(&obj->pending_flip) == 0);
2279
2280 /* Big Hammer, we also need to ensure that any pending
2281 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2282 * current scanout is retired before unpinning the old
2283 * framebuffer.
2284 *
2285 * This should only fail upon a hung GPU, in which case we
2286 * can safely continue.
2287 */
2288 ret = i915_gem_object_finish_gpu(obj);
2289 (void) ret;
2290 }
2291
2292 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2293 LEAVE_ATOMIC_MODE_SET);
2294 if (ret) {
2295 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2296 mutex_unlock(&dev->struct_mutex);
2297 DRM_ERROR("failed to update base address\n");
2298 return ret;
2299 }
2300
2301 if (old_fb) {
2302 intel_wait_for_vblank(dev, intel_crtc->pipe);
2303 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2304 }
2305
2306 mutex_unlock(&dev->struct_mutex);
2307
2308 if (!dev->primary->master)
2309 return 0;
2310
2311 master_priv = dev->primary->master->driver_priv;
2312 if (!master_priv->sarea_priv)
2313 return 0;
2314
2315 if (intel_crtc->pipe) {
2316 master_priv->sarea_priv->pipeB_x = x;
2317 master_priv->sarea_priv->pipeB_y = y;
2318 } else {
2319 master_priv->sarea_priv->pipeA_x = x;
2320 master_priv->sarea_priv->pipeA_y = y;
2321 }
2322
2323 return 0;
2324 }
2325
2326 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2327 {
2328 struct drm_device *dev = crtc->dev;
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 u32 dpa_ctl;
2331
2332 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2333 dpa_ctl = I915_READ(DP_A);
2334 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2335
2336 if (clock < 200000) {
2337 u32 temp;
2338 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2339 /* workaround for 160Mhz:
2340 1) program 0x4600c bits 15:0 = 0x8124
2341 2) program 0x46010 bit 0 = 1
2342 3) program 0x46034 bit 24 = 1
2343 4) program 0x64000 bit 14 = 1
2344 */
2345 temp = I915_READ(0x4600c);
2346 temp &= 0xffff0000;
2347 I915_WRITE(0x4600c, temp | 0x8124);
2348
2349 temp = I915_READ(0x46010);
2350 I915_WRITE(0x46010, temp | 1);
2351
2352 temp = I915_READ(0x46034);
2353 I915_WRITE(0x46034, temp | (1 << 24));
2354 } else {
2355 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2356 }
2357 I915_WRITE(DP_A, dpa_ctl);
2358
2359 POSTING_READ(DP_A);
2360 udelay(500);
2361 }
2362
2363 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2364 {
2365 struct drm_device *dev = crtc->dev;
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368 int pipe = intel_crtc->pipe;
2369 u32 reg, temp;
2370
2371 /* enable normal train */
2372 reg = FDI_TX_CTL(pipe);
2373 temp = I915_READ(reg);
2374 if (IS_IVYBRIDGE(dev)) {
2375 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2376 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2377 } else {
2378 temp &= ~FDI_LINK_TRAIN_NONE;
2379 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2380 }
2381 I915_WRITE(reg, temp);
2382
2383 reg = FDI_RX_CTL(pipe);
2384 temp = I915_READ(reg);
2385 if (HAS_PCH_CPT(dev)) {
2386 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2387 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2388 } else {
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_NONE;
2391 }
2392 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2393
2394 /* wait one idle pattern time */
2395 POSTING_READ(reg);
2396 udelay(1000);
2397
2398 /* IVB wants error correction enabled */
2399 if (IS_IVYBRIDGE(dev))
2400 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2401 FDI_FE_ERRC_ENABLE);
2402 }
2403
2404 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2405 {
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 u32 flags = I915_READ(SOUTH_CHICKEN1);
2408
2409 flags |= FDI_PHASE_SYNC_OVR(pipe);
2410 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2411 flags |= FDI_PHASE_SYNC_EN(pipe);
2412 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2413 POSTING_READ(SOUTH_CHICKEN1);
2414 }
2415
2416 /* The FDI link training functions for ILK/Ibexpeak. */
2417 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2418 {
2419 struct drm_device *dev = crtc->dev;
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422 int pipe = intel_crtc->pipe;
2423 int plane = intel_crtc->plane;
2424 u32 reg, temp, tries;
2425
2426 /* FDI needs bits from pipe & plane first */
2427 assert_pipe_enabled(dev_priv, pipe);
2428 assert_plane_enabled(dev_priv, plane);
2429
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
2436 I915_WRITE(reg, temp);
2437 I915_READ(reg);
2438 udelay(150);
2439
2440 /* enable CPU FDI TX and PCH FDI RX */
2441 reg = FDI_TX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 temp &= ~(7 << 19);
2444 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2445 temp &= ~FDI_LINK_TRAIN_NONE;
2446 temp |= FDI_LINK_TRAIN_PATTERN_1;
2447 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2448
2449 reg = FDI_RX_CTL(pipe);
2450 temp = I915_READ(reg);
2451 temp &= ~FDI_LINK_TRAIN_NONE;
2452 temp |= FDI_LINK_TRAIN_PATTERN_1;
2453 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2454
2455 POSTING_READ(reg);
2456 udelay(150);
2457
2458 /* Ironlake workaround, enable clock pointer after FDI enable*/
2459 if (HAS_PCH_IBX(dev)) {
2460 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2461 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2462 FDI_RX_PHASE_SYNC_POINTER_EN);
2463 }
2464
2465 reg = FDI_RX_IIR(pipe);
2466 for (tries = 0; tries < 5; tries++) {
2467 temp = I915_READ(reg);
2468 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2469
2470 if ((temp & FDI_RX_BIT_LOCK)) {
2471 DRM_DEBUG_KMS("FDI train 1 done.\n");
2472 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2473 break;
2474 }
2475 }
2476 if (tries == 5)
2477 DRM_ERROR("FDI train 1 fail!\n");
2478
2479 /* Train 2 */
2480 reg = FDI_TX_CTL(pipe);
2481 temp = I915_READ(reg);
2482 temp &= ~FDI_LINK_TRAIN_NONE;
2483 temp |= FDI_LINK_TRAIN_PATTERN_2;
2484 I915_WRITE(reg, temp);
2485
2486 reg = FDI_RX_CTL(pipe);
2487 temp = I915_READ(reg);
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_2;
2490 I915_WRITE(reg, temp);
2491
2492 POSTING_READ(reg);
2493 udelay(150);
2494
2495 reg = FDI_RX_IIR(pipe);
2496 for (tries = 0; tries < 5; tries++) {
2497 temp = I915_READ(reg);
2498 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2499
2500 if (temp & FDI_RX_SYMBOL_LOCK) {
2501 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2502 DRM_DEBUG_KMS("FDI train 2 done.\n");
2503 break;
2504 }
2505 }
2506 if (tries == 5)
2507 DRM_ERROR("FDI train 2 fail!\n");
2508
2509 DRM_DEBUG_KMS("FDI train done\n");
2510
2511 }
2512
2513 static const int snb_b_fdi_train_param[] = {
2514 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2515 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2516 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2517 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2518 };
2519
2520 /* The FDI link training functions for SNB/Cougarpoint. */
2521 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2522 {
2523 struct drm_device *dev = crtc->dev;
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2526 int pipe = intel_crtc->pipe;
2527 u32 reg, temp, i;
2528
2529 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2530 for train result */
2531 reg = FDI_RX_IMR(pipe);
2532 temp = I915_READ(reg);
2533 temp &= ~FDI_RX_SYMBOL_LOCK;
2534 temp &= ~FDI_RX_BIT_LOCK;
2535 I915_WRITE(reg, temp);
2536
2537 POSTING_READ(reg);
2538 udelay(150);
2539
2540 /* enable CPU FDI TX and PCH FDI RX */
2541 reg = FDI_TX_CTL(pipe);
2542 temp = I915_READ(reg);
2543 temp &= ~(7 << 19);
2544 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2545 temp &= ~FDI_LINK_TRAIN_NONE;
2546 temp |= FDI_LINK_TRAIN_PATTERN_1;
2547 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2548 /* SNB-B */
2549 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2550 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2551
2552 reg = FDI_RX_CTL(pipe);
2553 temp = I915_READ(reg);
2554 if (HAS_PCH_CPT(dev)) {
2555 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2556 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2557 } else {
2558 temp &= ~FDI_LINK_TRAIN_NONE;
2559 temp |= FDI_LINK_TRAIN_PATTERN_1;
2560 }
2561 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2562
2563 POSTING_READ(reg);
2564 udelay(150);
2565
2566 if (HAS_PCH_CPT(dev))
2567 cpt_phase_pointer_enable(dev, pipe);
2568
2569 for (i = 0; i < 4; i++) {
2570 reg = FDI_TX_CTL(pipe);
2571 temp = I915_READ(reg);
2572 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2573 temp |= snb_b_fdi_train_param[i];
2574 I915_WRITE(reg, temp);
2575
2576 POSTING_READ(reg);
2577 udelay(500);
2578
2579 reg = FDI_RX_IIR(pipe);
2580 temp = I915_READ(reg);
2581 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2582
2583 if (temp & FDI_RX_BIT_LOCK) {
2584 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2585 DRM_DEBUG_KMS("FDI train 1 done.\n");
2586 break;
2587 }
2588 }
2589 if (i == 4)
2590 DRM_ERROR("FDI train 1 fail!\n");
2591
2592 /* Train 2 */
2593 reg = FDI_TX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 temp &= ~FDI_LINK_TRAIN_NONE;
2596 temp |= FDI_LINK_TRAIN_PATTERN_2;
2597 if (IS_GEN6(dev)) {
2598 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2599 /* SNB-B */
2600 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2601 }
2602 I915_WRITE(reg, temp);
2603
2604 reg = FDI_RX_CTL(pipe);
2605 temp = I915_READ(reg);
2606 if (HAS_PCH_CPT(dev)) {
2607 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2608 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2609 } else {
2610 temp &= ~FDI_LINK_TRAIN_NONE;
2611 temp |= FDI_LINK_TRAIN_PATTERN_2;
2612 }
2613 I915_WRITE(reg, temp);
2614
2615 POSTING_READ(reg);
2616 udelay(150);
2617
2618 for (i = 0; i < 4; i++) {
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 temp |= snb_b_fdi_train_param[i];
2623 I915_WRITE(reg, temp);
2624
2625 POSTING_READ(reg);
2626 udelay(500);
2627
2628 reg = FDI_RX_IIR(pipe);
2629 temp = I915_READ(reg);
2630 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2631
2632 if (temp & FDI_RX_SYMBOL_LOCK) {
2633 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2634 DRM_DEBUG_KMS("FDI train 2 done.\n");
2635 break;
2636 }
2637 }
2638 if (i == 4)
2639 DRM_ERROR("FDI train 2 fail!\n");
2640
2641 DRM_DEBUG_KMS("FDI train done.\n");
2642 }
2643
2644 /* Manual link training for Ivy Bridge A0 parts */
2645 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2646 {
2647 struct drm_device *dev = crtc->dev;
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2650 int pipe = intel_crtc->pipe;
2651 u32 reg, temp, i;
2652
2653 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2654 for train result */
2655 reg = FDI_RX_IMR(pipe);
2656 temp = I915_READ(reg);
2657 temp &= ~FDI_RX_SYMBOL_LOCK;
2658 temp &= ~FDI_RX_BIT_LOCK;
2659 I915_WRITE(reg, temp);
2660
2661 POSTING_READ(reg);
2662 udelay(150);
2663
2664 /* enable CPU FDI TX and PCH FDI RX */
2665 reg = FDI_TX_CTL(pipe);
2666 temp = I915_READ(reg);
2667 temp &= ~(7 << 19);
2668 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2669 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2670 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2671 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2673 temp |= FDI_COMPOSITE_SYNC;
2674 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2675
2676 reg = FDI_RX_CTL(pipe);
2677 temp = I915_READ(reg);
2678 temp &= ~FDI_LINK_TRAIN_AUTO;
2679 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2680 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2681 temp |= FDI_COMPOSITE_SYNC;
2682 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2683
2684 POSTING_READ(reg);
2685 udelay(150);
2686
2687 if (HAS_PCH_CPT(dev))
2688 cpt_phase_pointer_enable(dev, pipe);
2689
2690 for (i = 0; i < 4; i++) {
2691 reg = FDI_TX_CTL(pipe);
2692 temp = I915_READ(reg);
2693 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2694 temp |= snb_b_fdi_train_param[i];
2695 I915_WRITE(reg, temp);
2696
2697 POSTING_READ(reg);
2698 udelay(500);
2699
2700 reg = FDI_RX_IIR(pipe);
2701 temp = I915_READ(reg);
2702 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704 if (temp & FDI_RX_BIT_LOCK ||
2705 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707 DRM_DEBUG_KMS("FDI train 1 done.\n");
2708 break;
2709 }
2710 }
2711 if (i == 4)
2712 DRM_ERROR("FDI train 1 fail!\n");
2713
2714 /* Train 2 */
2715 reg = FDI_TX_CTL(pipe);
2716 temp = I915_READ(reg);
2717 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2718 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2719 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2720 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2721 I915_WRITE(reg, temp);
2722
2723 reg = FDI_RX_CTL(pipe);
2724 temp = I915_READ(reg);
2725 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2727 I915_WRITE(reg, temp);
2728
2729 POSTING_READ(reg);
2730 udelay(150);
2731
2732 for (i = 0; i < 4; i++) {
2733 reg = FDI_TX_CTL(pipe);
2734 temp = I915_READ(reg);
2735 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736 temp |= snb_b_fdi_train_param[i];
2737 I915_WRITE(reg, temp);
2738
2739 POSTING_READ(reg);
2740 udelay(500);
2741
2742 reg = FDI_RX_IIR(pipe);
2743 temp = I915_READ(reg);
2744 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2745
2746 if (temp & FDI_RX_SYMBOL_LOCK) {
2747 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2748 DRM_DEBUG_KMS("FDI train 2 done.\n");
2749 break;
2750 }
2751 }
2752 if (i == 4)
2753 DRM_ERROR("FDI train 2 fail!\n");
2754
2755 DRM_DEBUG_KMS("FDI train done.\n");
2756 }
2757
2758 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2759 {
2760 struct drm_device *dev = crtc->dev;
2761 struct drm_i915_private *dev_priv = dev->dev_private;
2762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2763 int pipe = intel_crtc->pipe;
2764 u32 reg, temp;
2765
2766 /* Write the TU size bits so error detection works */
2767 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2768 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2769
2770 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2771 reg = FDI_RX_CTL(pipe);
2772 temp = I915_READ(reg);
2773 temp &= ~((0x7 << 19) | (0x7 << 16));
2774 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2775 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2776 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2777
2778 POSTING_READ(reg);
2779 udelay(200);
2780
2781 /* Switch from Rawclk to PCDclk */
2782 temp = I915_READ(reg);
2783 I915_WRITE(reg, temp | FDI_PCDCLK);
2784
2785 POSTING_READ(reg);
2786 udelay(200);
2787
2788 /* Enable CPU FDI TX PLL, always on for Ironlake */
2789 reg = FDI_TX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2792 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2793
2794 POSTING_READ(reg);
2795 udelay(100);
2796 }
2797 }
2798
2799 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2800 {
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 u32 flags = I915_READ(SOUTH_CHICKEN1);
2803
2804 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2805 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2806 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2807 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2808 POSTING_READ(SOUTH_CHICKEN1);
2809 }
2810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2811 {
2812 struct drm_device *dev = crtc->dev;
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2815 int pipe = intel_crtc->pipe;
2816 u32 reg, temp;
2817
2818 /* disable CPU FDI tx and PCH FDI rx */
2819 reg = FDI_TX_CTL(pipe);
2820 temp = I915_READ(reg);
2821 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2822 POSTING_READ(reg);
2823
2824 reg = FDI_RX_CTL(pipe);
2825 temp = I915_READ(reg);
2826 temp &= ~(0x7 << 16);
2827 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2828 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2829
2830 POSTING_READ(reg);
2831 udelay(100);
2832
2833 /* Ironlake workaround, disable clock pointer after downing FDI */
2834 if (HAS_PCH_IBX(dev)) {
2835 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2836 I915_WRITE(FDI_RX_CHICKEN(pipe),
2837 I915_READ(FDI_RX_CHICKEN(pipe) &
2838 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2839 } else if (HAS_PCH_CPT(dev)) {
2840 cpt_phase_pointer_disable(dev, pipe);
2841 }
2842
2843 /* still set train pattern 1 */
2844 reg = FDI_TX_CTL(pipe);
2845 temp = I915_READ(reg);
2846 temp &= ~FDI_LINK_TRAIN_NONE;
2847 temp |= FDI_LINK_TRAIN_PATTERN_1;
2848 I915_WRITE(reg, temp);
2849
2850 reg = FDI_RX_CTL(pipe);
2851 temp = I915_READ(reg);
2852 if (HAS_PCH_CPT(dev)) {
2853 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2854 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2855 } else {
2856 temp &= ~FDI_LINK_TRAIN_NONE;
2857 temp |= FDI_LINK_TRAIN_PATTERN_1;
2858 }
2859 /* BPC in FDI rx is consistent with that in PIPECONF */
2860 temp &= ~(0x07 << 16);
2861 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2862 I915_WRITE(reg, temp);
2863
2864 POSTING_READ(reg);
2865 udelay(100);
2866 }
2867
2868 /*
2869 * When we disable a pipe, we need to clear any pending scanline wait events
2870 * to avoid hanging the ring, which we assume we are waiting on.
2871 */
2872 static void intel_clear_scanline_wait(struct drm_device *dev)
2873 {
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 struct intel_ring_buffer *ring;
2876 u32 tmp;
2877
2878 if (IS_GEN2(dev))
2879 /* Can't break the hang on i8xx */
2880 return;
2881
2882 ring = LP_RING(dev_priv);
2883 tmp = I915_READ_CTL(ring);
2884 if (tmp & RING_WAIT)
2885 I915_WRITE_CTL(ring, tmp);
2886 }
2887
2888 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2889 {
2890 struct drm_i915_gem_object *obj;
2891 struct drm_i915_private *dev_priv;
2892
2893 if (crtc->fb == NULL)
2894 return;
2895
2896 obj = to_intel_framebuffer(crtc->fb)->obj;
2897 dev_priv = crtc->dev->dev_private;
2898 wait_event(dev_priv->pending_flip_queue,
2899 atomic_read(&obj->pending_flip) == 0);
2900 }
2901
2902 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2903 {
2904 struct drm_device *dev = crtc->dev;
2905 struct drm_mode_config *mode_config = &dev->mode_config;
2906 struct intel_encoder *encoder;
2907
2908 /*
2909 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2910 * must be driven by its own crtc; no sharing is possible.
2911 */
2912 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2913 if (encoder->base.crtc != crtc)
2914 continue;
2915
2916 switch (encoder->type) {
2917 case INTEL_OUTPUT_EDP:
2918 if (!intel_encoder_is_pch_edp(&encoder->base))
2919 return false;
2920 continue;
2921 }
2922 }
2923
2924 return true;
2925 }
2926
2927 /*
2928 * Enable PCH resources required for PCH ports:
2929 * - PCH PLLs
2930 * - FDI training & RX/TX
2931 * - update transcoder timings
2932 * - DP transcoding bits
2933 * - transcoder
2934 */
2935 static void ironlake_pch_enable(struct drm_crtc *crtc)
2936 {
2937 struct drm_device *dev = crtc->dev;
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2940 int pipe = intel_crtc->pipe;
2941 u32 reg, temp, transc_sel;
2942
2943 /* For PCH output, training FDI link */
2944 dev_priv->display.fdi_link_train(crtc);
2945
2946 intel_enable_pch_pll(dev_priv, pipe);
2947
2948 if (HAS_PCH_CPT(dev)) {
2949 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2950 TRANSC_DPLLB_SEL;
2951
2952 /* Be sure PCH DPLL SEL is set */
2953 temp = I915_READ(PCH_DPLL_SEL);
2954 if (pipe == 0) {
2955 temp &= ~(TRANSA_DPLLB_SEL);
2956 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2957 } else if (pipe == 1) {
2958 temp &= ~(TRANSB_DPLLB_SEL);
2959 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2960 } else if (pipe == 2) {
2961 temp &= ~(TRANSC_DPLLB_SEL);
2962 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2963 }
2964 I915_WRITE(PCH_DPLL_SEL, temp);
2965 }
2966
2967 /* set transcoder timing, panel must allow it */
2968 assert_panel_unlocked(dev_priv, pipe);
2969 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2970 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2971 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2972
2973 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2974 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2975 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2976
2977 intel_fdi_normal_train(crtc);
2978
2979 /* For PCH DP, enable TRANS_DP_CTL */
2980 if (HAS_PCH_CPT(dev) &&
2981 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2982 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2983 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2984 reg = TRANS_DP_CTL(pipe);
2985 temp = I915_READ(reg);
2986 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2987 TRANS_DP_SYNC_MASK |
2988 TRANS_DP_BPC_MASK);
2989 temp |= (TRANS_DP_OUTPUT_ENABLE |
2990 TRANS_DP_ENH_FRAMING);
2991 temp |= bpc << 9; /* same format but at 11:9 */
2992
2993 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2994 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2995 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2996 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2997
2998 switch (intel_trans_dp_port_sel(crtc)) {
2999 case PCH_DP_B:
3000 temp |= TRANS_DP_PORT_SEL_B;
3001 break;
3002 case PCH_DP_C:
3003 temp |= TRANS_DP_PORT_SEL_C;
3004 break;
3005 case PCH_DP_D:
3006 temp |= TRANS_DP_PORT_SEL_D;
3007 break;
3008 default:
3009 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3010 temp |= TRANS_DP_PORT_SEL_B;
3011 break;
3012 }
3013
3014 I915_WRITE(reg, temp);
3015 }
3016
3017 intel_enable_transcoder(dev_priv, pipe);
3018 }
3019
3020 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3021 {
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3024 u32 temp;
3025
3026 temp = I915_READ(dslreg);
3027 udelay(500);
3028 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3029 /* Without this, mode sets may fail silently on FDI */
3030 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3031 udelay(250);
3032 I915_WRITE(tc2reg, 0);
3033 if (wait_for(I915_READ(dslreg) != temp, 5))
3034 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3035 }
3036 }
3037
3038 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3039 {
3040 struct drm_device *dev = crtc->dev;
3041 struct drm_i915_private *dev_priv = dev->dev_private;
3042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3043 int pipe = intel_crtc->pipe;
3044 int plane = intel_crtc->plane;
3045 u32 temp;
3046 bool is_pch_port;
3047
3048 if (intel_crtc->active)
3049 return;
3050
3051 intel_crtc->active = true;
3052 intel_update_watermarks(dev);
3053
3054 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3055 temp = I915_READ(PCH_LVDS);
3056 if ((temp & LVDS_PORT_EN) == 0)
3057 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3058 }
3059
3060 is_pch_port = intel_crtc_driving_pch(crtc);
3061
3062 if (is_pch_port)
3063 ironlake_fdi_pll_enable(crtc);
3064 else
3065 ironlake_fdi_disable(crtc);
3066
3067 /* Enable panel fitting for LVDS */
3068 if (dev_priv->pch_pf_size &&
3069 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3070 /* Force use of hard-coded filter coefficients
3071 * as some pre-programmed values are broken,
3072 * e.g. x201.
3073 */
3074 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3075 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3076 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3077 }
3078
3079 /*
3080 * On ILK+ LUT must be loaded before the pipe is running but with
3081 * clocks enabled
3082 */
3083 intel_crtc_load_lut(crtc);
3084
3085 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3086 intel_enable_plane(dev_priv, plane, pipe);
3087
3088 if (is_pch_port)
3089 ironlake_pch_enable(crtc);
3090
3091 mutex_lock(&dev->struct_mutex);
3092 intel_update_fbc(dev);
3093 mutex_unlock(&dev->struct_mutex);
3094
3095 intel_crtc_update_cursor(crtc, true);
3096 }
3097
3098 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3099 {
3100 struct drm_device *dev = crtc->dev;
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3103 int pipe = intel_crtc->pipe;
3104 int plane = intel_crtc->plane;
3105 u32 reg, temp;
3106
3107 if (!intel_crtc->active)
3108 return;
3109
3110 intel_crtc_wait_for_pending_flips(crtc);
3111 drm_vblank_off(dev, pipe);
3112 intel_crtc_update_cursor(crtc, false);
3113
3114 intel_disable_plane(dev_priv, plane, pipe);
3115
3116 if (dev_priv->cfb_plane == plane)
3117 intel_disable_fbc(dev);
3118
3119 intel_disable_pipe(dev_priv, pipe);
3120
3121 /* Disable PF */
3122 I915_WRITE(PF_CTL(pipe), 0);
3123 I915_WRITE(PF_WIN_SZ(pipe), 0);
3124
3125 ironlake_fdi_disable(crtc);
3126
3127 /* This is a horrible layering violation; we should be doing this in
3128 * the connector/encoder ->prepare instead, but we don't always have
3129 * enough information there about the config to know whether it will
3130 * actually be necessary or just cause undesired flicker.
3131 */
3132 intel_disable_pch_ports(dev_priv, pipe);
3133
3134 intel_disable_transcoder(dev_priv, pipe);
3135
3136 if (HAS_PCH_CPT(dev)) {
3137 /* disable TRANS_DP_CTL */
3138 reg = TRANS_DP_CTL(pipe);
3139 temp = I915_READ(reg);
3140 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3141 temp |= TRANS_DP_PORT_SEL_NONE;
3142 I915_WRITE(reg, temp);
3143
3144 /* disable DPLL_SEL */
3145 temp = I915_READ(PCH_DPLL_SEL);
3146 switch (pipe) {
3147 case 0:
3148 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3149 break;
3150 case 1:
3151 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3152 break;
3153 case 2:
3154 /* C shares PLL A or B */
3155 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3156 break;
3157 default:
3158 BUG(); /* wtf */
3159 }
3160 I915_WRITE(PCH_DPLL_SEL, temp);
3161 }
3162
3163 /* disable PCH DPLL */
3164 if (!intel_crtc->no_pll)
3165 intel_disable_pch_pll(dev_priv, pipe);
3166
3167 /* Switch from PCDclk to Rawclk */
3168 reg = FDI_RX_CTL(pipe);
3169 temp = I915_READ(reg);
3170 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3171
3172 /* Disable CPU FDI TX PLL */
3173 reg = FDI_TX_CTL(pipe);
3174 temp = I915_READ(reg);
3175 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3176
3177 POSTING_READ(reg);
3178 udelay(100);
3179
3180 reg = FDI_RX_CTL(pipe);
3181 temp = I915_READ(reg);
3182 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3183
3184 /* Wait for the clocks to turn off. */
3185 POSTING_READ(reg);
3186 udelay(100);
3187
3188 intel_crtc->active = false;
3189 intel_update_watermarks(dev);
3190
3191 mutex_lock(&dev->struct_mutex);
3192 intel_update_fbc(dev);
3193 intel_clear_scanline_wait(dev);
3194 mutex_unlock(&dev->struct_mutex);
3195 }
3196
3197 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3198 {
3199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200 int pipe = intel_crtc->pipe;
3201 int plane = intel_crtc->plane;
3202
3203 /* XXX: When our outputs are all unaware of DPMS modes other than off
3204 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3205 */
3206 switch (mode) {
3207 case DRM_MODE_DPMS_ON:
3208 case DRM_MODE_DPMS_STANDBY:
3209 case DRM_MODE_DPMS_SUSPEND:
3210 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3211 ironlake_crtc_enable(crtc);
3212 break;
3213
3214 case DRM_MODE_DPMS_OFF:
3215 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3216 ironlake_crtc_disable(crtc);
3217 break;
3218 }
3219 }
3220
3221 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3222 {
3223 if (!enable && intel_crtc->overlay) {
3224 struct drm_device *dev = intel_crtc->base.dev;
3225 struct drm_i915_private *dev_priv = dev->dev_private;
3226
3227 mutex_lock(&dev->struct_mutex);
3228 dev_priv->mm.interruptible = false;
3229 (void) intel_overlay_switch_off(intel_crtc->overlay);
3230 dev_priv->mm.interruptible = true;
3231 mutex_unlock(&dev->struct_mutex);
3232 }
3233
3234 /* Let userspace switch the overlay on again. In most cases userspace
3235 * has to recompute where to put it anyway.
3236 */
3237 }
3238
3239 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3240 {
3241 struct drm_device *dev = crtc->dev;
3242 struct drm_i915_private *dev_priv = dev->dev_private;
3243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3244 int pipe = intel_crtc->pipe;
3245 int plane = intel_crtc->plane;
3246
3247 if (intel_crtc->active)
3248 return;
3249
3250 intel_crtc->active = true;
3251 intel_update_watermarks(dev);
3252
3253 intel_enable_pll(dev_priv, pipe);
3254 intel_enable_pipe(dev_priv, pipe, false);
3255 intel_enable_plane(dev_priv, plane, pipe);
3256
3257 intel_crtc_load_lut(crtc);
3258 intel_update_fbc(dev);
3259
3260 /* Give the overlay scaler a chance to enable if it's on this pipe */
3261 intel_crtc_dpms_overlay(intel_crtc, true);
3262 intel_crtc_update_cursor(crtc, true);
3263 }
3264
3265 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3266 {
3267 struct drm_device *dev = crtc->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270 int pipe = intel_crtc->pipe;
3271 int plane = intel_crtc->plane;
3272
3273 if (!intel_crtc->active)
3274 return;
3275
3276 /* Give the overlay scaler a chance to disable if it's on this pipe */
3277 intel_crtc_wait_for_pending_flips(crtc);
3278 drm_vblank_off(dev, pipe);
3279 intel_crtc_dpms_overlay(intel_crtc, false);
3280 intel_crtc_update_cursor(crtc, false);
3281
3282 if (dev_priv->cfb_plane == plane)
3283 intel_disable_fbc(dev);
3284
3285 intel_disable_plane(dev_priv, plane, pipe);
3286 intel_disable_pipe(dev_priv, pipe);
3287 intel_disable_pll(dev_priv, pipe);
3288
3289 intel_crtc->active = false;
3290 intel_update_fbc(dev);
3291 intel_update_watermarks(dev);
3292 intel_clear_scanline_wait(dev);
3293 }
3294
3295 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3296 {
3297 /* XXX: When our outputs are all unaware of DPMS modes other than off
3298 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3299 */
3300 switch (mode) {
3301 case DRM_MODE_DPMS_ON:
3302 case DRM_MODE_DPMS_STANDBY:
3303 case DRM_MODE_DPMS_SUSPEND:
3304 i9xx_crtc_enable(crtc);
3305 break;
3306 case DRM_MODE_DPMS_OFF:
3307 i9xx_crtc_disable(crtc);
3308 break;
3309 }
3310 }
3311
3312 /**
3313 * Sets the power management mode of the pipe and plane.
3314 */
3315 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3316 {
3317 struct drm_device *dev = crtc->dev;
3318 struct drm_i915_private *dev_priv = dev->dev_private;
3319 struct drm_i915_master_private *master_priv;
3320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3321 int pipe = intel_crtc->pipe;
3322 bool enabled;
3323
3324 if (intel_crtc->dpms_mode == mode)
3325 return;
3326
3327 intel_crtc->dpms_mode = mode;
3328
3329 dev_priv->display.dpms(crtc, mode);
3330
3331 if (!dev->primary->master)
3332 return;
3333
3334 master_priv = dev->primary->master->driver_priv;
3335 if (!master_priv->sarea_priv)
3336 return;
3337
3338 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3339
3340 switch (pipe) {
3341 case 0:
3342 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3343 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3344 break;
3345 case 1:
3346 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3347 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3348 break;
3349 default:
3350 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3351 break;
3352 }
3353 }
3354
3355 static void intel_crtc_disable(struct drm_crtc *crtc)
3356 {
3357 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3358 struct drm_device *dev = crtc->dev;
3359
3360 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3361 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3362 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3363
3364 if (crtc->fb) {
3365 mutex_lock(&dev->struct_mutex);
3366 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3367 mutex_unlock(&dev->struct_mutex);
3368 }
3369 }
3370
3371 /* Prepare for a mode set.
3372 *
3373 * Note we could be a lot smarter here. We need to figure out which outputs
3374 * will be enabled, which disabled (in short, how the config will changes)
3375 * and perform the minimum necessary steps to accomplish that, e.g. updating
3376 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3377 * panel fitting is in the proper state, etc.
3378 */
3379 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3380 {
3381 i9xx_crtc_disable(crtc);
3382 }
3383
3384 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3385 {
3386 i9xx_crtc_enable(crtc);
3387 }
3388
3389 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3390 {
3391 ironlake_crtc_disable(crtc);
3392 }
3393
3394 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3395 {
3396 ironlake_crtc_enable(crtc);
3397 }
3398
3399 void intel_encoder_prepare(struct drm_encoder *encoder)
3400 {
3401 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3402 /* lvds has its own version of prepare see intel_lvds_prepare */
3403 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3404 }
3405
3406 void intel_encoder_commit(struct drm_encoder *encoder)
3407 {
3408 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3409 struct drm_device *dev = encoder->dev;
3410 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3411 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3412
3413 /* lvds has its own version of commit see intel_lvds_commit */
3414 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3415
3416 if (HAS_PCH_CPT(dev))
3417 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3418 }
3419
3420 void intel_encoder_destroy(struct drm_encoder *encoder)
3421 {
3422 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3423
3424 drm_encoder_cleanup(encoder);
3425 kfree(intel_encoder);
3426 }
3427
3428 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3429 struct drm_display_mode *mode,
3430 struct drm_display_mode *adjusted_mode)
3431 {
3432 struct drm_device *dev = crtc->dev;
3433
3434 if (HAS_PCH_SPLIT(dev)) {
3435 /* FDI link clock is fixed at 2.7G */
3436 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3437 return false;
3438 }
3439
3440 /* XXX some encoders set the crtcinfo, others don't.
3441 * Obviously we need some form of conflict resolution here...
3442 */
3443 if (adjusted_mode->crtc_htotal == 0)
3444 drm_mode_set_crtcinfo(adjusted_mode, 0);
3445
3446 return true;
3447 }
3448
3449 static int i945_get_display_clock_speed(struct drm_device *dev)
3450 {
3451 return 400000;
3452 }
3453
3454 static int i915_get_display_clock_speed(struct drm_device *dev)
3455 {
3456 return 333000;
3457 }
3458
3459 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3460 {
3461 return 200000;
3462 }
3463
3464 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3465 {
3466 u16 gcfgc = 0;
3467
3468 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3469
3470 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3471 return 133000;
3472 else {
3473 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3474 case GC_DISPLAY_CLOCK_333_MHZ:
3475 return 333000;
3476 default:
3477 case GC_DISPLAY_CLOCK_190_200_MHZ:
3478 return 190000;
3479 }
3480 }
3481 }
3482
3483 static int i865_get_display_clock_speed(struct drm_device *dev)
3484 {
3485 return 266000;
3486 }
3487
3488 static int i855_get_display_clock_speed(struct drm_device *dev)
3489 {
3490 u16 hpllcc = 0;
3491 /* Assume that the hardware is in the high speed state. This
3492 * should be the default.
3493 */
3494 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3495 case GC_CLOCK_133_200:
3496 case GC_CLOCK_100_200:
3497 return 200000;
3498 case GC_CLOCK_166_250:
3499 return 250000;
3500 case GC_CLOCK_100_133:
3501 return 133000;
3502 }
3503
3504 /* Shouldn't happen */
3505 return 0;
3506 }
3507
3508 static int i830_get_display_clock_speed(struct drm_device *dev)
3509 {
3510 return 133000;
3511 }
3512
3513 struct fdi_m_n {
3514 u32 tu;
3515 u32 gmch_m;
3516 u32 gmch_n;
3517 u32 link_m;
3518 u32 link_n;
3519 };
3520
3521 static void
3522 fdi_reduce_ratio(u32 *num, u32 *den)
3523 {
3524 while (*num > 0xffffff || *den > 0xffffff) {
3525 *num >>= 1;
3526 *den >>= 1;
3527 }
3528 }
3529
3530 static void
3531 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3532 int link_clock, struct fdi_m_n *m_n)
3533 {
3534 m_n->tu = 64; /* default size */
3535
3536 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3537 m_n->gmch_m = bits_per_pixel * pixel_clock;
3538 m_n->gmch_n = link_clock * nlanes * 8;
3539 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3540
3541 m_n->link_m = pixel_clock;
3542 m_n->link_n = link_clock;
3543 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3544 }
3545
3546
3547 struct intel_watermark_params {
3548 unsigned long fifo_size;
3549 unsigned long max_wm;
3550 unsigned long default_wm;
3551 unsigned long guard_size;
3552 unsigned long cacheline_size;
3553 };
3554
3555 /* Pineview has different values for various configs */
3556 static const struct intel_watermark_params pineview_display_wm = {
3557 PINEVIEW_DISPLAY_FIFO,
3558 PINEVIEW_MAX_WM,
3559 PINEVIEW_DFT_WM,
3560 PINEVIEW_GUARD_WM,
3561 PINEVIEW_FIFO_LINE_SIZE
3562 };
3563 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3564 PINEVIEW_DISPLAY_FIFO,
3565 PINEVIEW_MAX_WM,
3566 PINEVIEW_DFT_HPLLOFF_WM,
3567 PINEVIEW_GUARD_WM,
3568 PINEVIEW_FIFO_LINE_SIZE
3569 };
3570 static const struct intel_watermark_params pineview_cursor_wm = {
3571 PINEVIEW_CURSOR_FIFO,
3572 PINEVIEW_CURSOR_MAX_WM,
3573 PINEVIEW_CURSOR_DFT_WM,
3574 PINEVIEW_CURSOR_GUARD_WM,
3575 PINEVIEW_FIFO_LINE_SIZE,
3576 };
3577 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3578 PINEVIEW_CURSOR_FIFO,
3579 PINEVIEW_CURSOR_MAX_WM,
3580 PINEVIEW_CURSOR_DFT_WM,
3581 PINEVIEW_CURSOR_GUARD_WM,
3582 PINEVIEW_FIFO_LINE_SIZE
3583 };
3584 static const struct intel_watermark_params g4x_wm_info = {
3585 G4X_FIFO_SIZE,
3586 G4X_MAX_WM,
3587 G4X_MAX_WM,
3588 2,
3589 G4X_FIFO_LINE_SIZE,
3590 };
3591 static const struct intel_watermark_params g4x_cursor_wm_info = {
3592 I965_CURSOR_FIFO,
3593 I965_CURSOR_MAX_WM,
3594 I965_CURSOR_DFT_WM,
3595 2,
3596 G4X_FIFO_LINE_SIZE,
3597 };
3598 static const struct intel_watermark_params i965_cursor_wm_info = {
3599 I965_CURSOR_FIFO,
3600 I965_CURSOR_MAX_WM,
3601 I965_CURSOR_DFT_WM,
3602 2,
3603 I915_FIFO_LINE_SIZE,
3604 };
3605 static const struct intel_watermark_params i945_wm_info = {
3606 I945_FIFO_SIZE,
3607 I915_MAX_WM,
3608 1,
3609 2,
3610 I915_FIFO_LINE_SIZE
3611 };
3612 static const struct intel_watermark_params i915_wm_info = {
3613 I915_FIFO_SIZE,
3614 I915_MAX_WM,
3615 1,
3616 2,
3617 I915_FIFO_LINE_SIZE
3618 };
3619 static const struct intel_watermark_params i855_wm_info = {
3620 I855GM_FIFO_SIZE,
3621 I915_MAX_WM,
3622 1,
3623 2,
3624 I830_FIFO_LINE_SIZE
3625 };
3626 static const struct intel_watermark_params i830_wm_info = {
3627 I830_FIFO_SIZE,
3628 I915_MAX_WM,
3629 1,
3630 2,
3631 I830_FIFO_LINE_SIZE
3632 };
3633
3634 static const struct intel_watermark_params ironlake_display_wm_info = {
3635 ILK_DISPLAY_FIFO,
3636 ILK_DISPLAY_MAXWM,
3637 ILK_DISPLAY_DFTWM,
3638 2,
3639 ILK_FIFO_LINE_SIZE
3640 };
3641 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3642 ILK_CURSOR_FIFO,
3643 ILK_CURSOR_MAXWM,
3644 ILK_CURSOR_DFTWM,
3645 2,
3646 ILK_FIFO_LINE_SIZE
3647 };
3648 static const struct intel_watermark_params ironlake_display_srwm_info = {
3649 ILK_DISPLAY_SR_FIFO,
3650 ILK_DISPLAY_MAX_SRWM,
3651 ILK_DISPLAY_DFT_SRWM,
3652 2,
3653 ILK_FIFO_LINE_SIZE
3654 };
3655 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3656 ILK_CURSOR_SR_FIFO,
3657 ILK_CURSOR_MAX_SRWM,
3658 ILK_CURSOR_DFT_SRWM,
3659 2,
3660 ILK_FIFO_LINE_SIZE
3661 };
3662
3663 static const struct intel_watermark_params sandybridge_display_wm_info = {
3664 SNB_DISPLAY_FIFO,
3665 SNB_DISPLAY_MAXWM,
3666 SNB_DISPLAY_DFTWM,
3667 2,
3668 SNB_FIFO_LINE_SIZE
3669 };
3670 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3671 SNB_CURSOR_FIFO,
3672 SNB_CURSOR_MAXWM,
3673 SNB_CURSOR_DFTWM,
3674 2,
3675 SNB_FIFO_LINE_SIZE
3676 };
3677 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3678 SNB_DISPLAY_SR_FIFO,
3679 SNB_DISPLAY_MAX_SRWM,
3680 SNB_DISPLAY_DFT_SRWM,
3681 2,
3682 SNB_FIFO_LINE_SIZE
3683 };
3684 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3685 SNB_CURSOR_SR_FIFO,
3686 SNB_CURSOR_MAX_SRWM,
3687 SNB_CURSOR_DFT_SRWM,
3688 2,
3689 SNB_FIFO_LINE_SIZE
3690 };
3691
3692
3693 /**
3694 * intel_calculate_wm - calculate watermark level
3695 * @clock_in_khz: pixel clock
3696 * @wm: chip FIFO params
3697 * @pixel_size: display pixel size
3698 * @latency_ns: memory latency for the platform
3699 *
3700 * Calculate the watermark level (the level at which the display plane will
3701 * start fetching from memory again). Each chip has a different display
3702 * FIFO size and allocation, so the caller needs to figure that out and pass
3703 * in the correct intel_watermark_params structure.
3704 *
3705 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3706 * on the pixel size. When it reaches the watermark level, it'll start
3707 * fetching FIFO line sized based chunks from memory until the FIFO fills
3708 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3709 * will occur, and a display engine hang could result.
3710 */
3711 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3712 const struct intel_watermark_params *wm,
3713 int fifo_size,
3714 int pixel_size,
3715 unsigned long latency_ns)
3716 {
3717 long entries_required, wm_size;
3718
3719 /*
3720 * Note: we need to make sure we don't overflow for various clock &
3721 * latency values.
3722 * clocks go from a few thousand to several hundred thousand.
3723 * latency is usually a few thousand
3724 */
3725 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3726 1000;
3727 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3728
3729 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3730
3731 wm_size = fifo_size - (entries_required + wm->guard_size);
3732
3733 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3734
3735 /* Don't promote wm_size to unsigned... */
3736 if (wm_size > (long)wm->max_wm)
3737 wm_size = wm->max_wm;
3738 if (wm_size <= 0)
3739 wm_size = wm->default_wm;
3740 return wm_size;
3741 }
3742
3743 struct cxsr_latency {
3744 int is_desktop;
3745 int is_ddr3;
3746 unsigned long fsb_freq;
3747 unsigned long mem_freq;
3748 unsigned long display_sr;
3749 unsigned long display_hpll_disable;
3750 unsigned long cursor_sr;
3751 unsigned long cursor_hpll_disable;
3752 };
3753
3754 static const struct cxsr_latency cxsr_latency_table[] = {
3755 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3756 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3757 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3758 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3759 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3760
3761 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3762 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3763 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3764 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3765 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3766
3767 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3768 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3769 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3770 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3771 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3772
3773 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3774 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3775 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3776 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3777 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3778
3779 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3780 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3781 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3782 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3783 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3784
3785 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3786 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3787 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3788 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3789 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3790 };
3791
3792 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3793 int is_ddr3,
3794 int fsb,
3795 int mem)
3796 {
3797 const struct cxsr_latency *latency;
3798 int i;
3799
3800 if (fsb == 0 || mem == 0)
3801 return NULL;
3802
3803 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3804 latency = &cxsr_latency_table[i];
3805 if (is_desktop == latency->is_desktop &&
3806 is_ddr3 == latency->is_ddr3 &&
3807 fsb == latency->fsb_freq && mem == latency->mem_freq)
3808 return latency;
3809 }
3810
3811 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3812
3813 return NULL;
3814 }
3815
3816 static void pineview_disable_cxsr(struct drm_device *dev)
3817 {
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819
3820 /* deactivate cxsr */
3821 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3822 }
3823
3824 /*
3825 * Latency for FIFO fetches is dependent on several factors:
3826 * - memory configuration (speed, channels)
3827 * - chipset
3828 * - current MCH state
3829 * It can be fairly high in some situations, so here we assume a fairly
3830 * pessimal value. It's a tradeoff between extra memory fetches (if we
3831 * set this value too high, the FIFO will fetch frequently to stay full)
3832 * and power consumption (set it too low to save power and we might see
3833 * FIFO underruns and display "flicker").
3834 *
3835 * A value of 5us seems to be a good balance; safe for very low end
3836 * platforms but not overly aggressive on lower latency configs.
3837 */
3838 static const int latency_ns = 5000;
3839
3840 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3841 {
3842 struct drm_i915_private *dev_priv = dev->dev_private;
3843 uint32_t dsparb = I915_READ(DSPARB);
3844 int size;
3845
3846 size = dsparb & 0x7f;
3847 if (plane)
3848 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3849
3850 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3851 plane ? "B" : "A", size);
3852
3853 return size;
3854 }
3855
3856 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3857 {
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 uint32_t dsparb = I915_READ(DSPARB);
3860 int size;
3861
3862 size = dsparb & 0x1ff;
3863 if (plane)
3864 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3865 size >>= 1; /* Convert to cachelines */
3866
3867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3868 plane ? "B" : "A", size);
3869
3870 return size;
3871 }
3872
3873 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3874 {
3875 struct drm_i915_private *dev_priv = dev->dev_private;
3876 uint32_t dsparb = I915_READ(DSPARB);
3877 int size;
3878
3879 size = dsparb & 0x7f;
3880 size >>= 2; /* Convert to cachelines */
3881
3882 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3883 plane ? "B" : "A",
3884 size);
3885
3886 return size;
3887 }
3888
3889 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3890 {
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 uint32_t dsparb = I915_READ(DSPARB);
3893 int size;
3894
3895 size = dsparb & 0x7f;
3896 size >>= 1; /* Convert to cachelines */
3897
3898 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3899 plane ? "B" : "A", size);
3900
3901 return size;
3902 }
3903
3904 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3905 {
3906 struct drm_crtc *crtc, *enabled = NULL;
3907
3908 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3909 if (crtc->enabled && crtc->fb) {
3910 if (enabled)
3911 return NULL;
3912 enabled = crtc;
3913 }
3914 }
3915
3916 return enabled;
3917 }
3918
3919 static void pineview_update_wm(struct drm_device *dev)
3920 {
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922 struct drm_crtc *crtc;
3923 const struct cxsr_latency *latency;
3924 u32 reg;
3925 unsigned long wm;
3926
3927 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3928 dev_priv->fsb_freq, dev_priv->mem_freq);
3929 if (!latency) {
3930 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3931 pineview_disable_cxsr(dev);
3932 return;
3933 }
3934
3935 crtc = single_enabled_crtc(dev);
3936 if (crtc) {
3937 int clock = crtc->mode.clock;
3938 int pixel_size = crtc->fb->bits_per_pixel / 8;
3939
3940 /* Display SR */
3941 wm = intel_calculate_wm(clock, &pineview_display_wm,
3942 pineview_display_wm.fifo_size,
3943 pixel_size, latency->display_sr);
3944 reg = I915_READ(DSPFW1);
3945 reg &= ~DSPFW_SR_MASK;
3946 reg |= wm << DSPFW_SR_SHIFT;
3947 I915_WRITE(DSPFW1, reg);
3948 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3949
3950 /* cursor SR */
3951 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3952 pineview_display_wm.fifo_size,
3953 pixel_size, latency->cursor_sr);
3954 reg = I915_READ(DSPFW3);
3955 reg &= ~DSPFW_CURSOR_SR_MASK;
3956 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3957 I915_WRITE(DSPFW3, reg);
3958
3959 /* Display HPLL off SR */
3960 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3961 pineview_display_hplloff_wm.fifo_size,
3962 pixel_size, latency->display_hpll_disable);
3963 reg = I915_READ(DSPFW3);
3964 reg &= ~DSPFW_HPLL_SR_MASK;
3965 reg |= wm & DSPFW_HPLL_SR_MASK;
3966 I915_WRITE(DSPFW3, reg);
3967
3968 /* cursor HPLL off SR */
3969 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3970 pineview_display_hplloff_wm.fifo_size,
3971 pixel_size, latency->cursor_hpll_disable);
3972 reg = I915_READ(DSPFW3);
3973 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3974 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3975 I915_WRITE(DSPFW3, reg);
3976 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3977
3978 /* activate cxsr */
3979 I915_WRITE(DSPFW3,
3980 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3981 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3982 } else {
3983 pineview_disable_cxsr(dev);
3984 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3985 }
3986 }
3987
3988 static bool g4x_compute_wm0(struct drm_device *dev,
3989 int plane,
3990 const struct intel_watermark_params *display,
3991 int display_latency_ns,
3992 const struct intel_watermark_params *cursor,
3993 int cursor_latency_ns,
3994 int *plane_wm,
3995 int *cursor_wm)
3996 {
3997 struct drm_crtc *crtc;
3998 int htotal, hdisplay, clock, pixel_size;
3999 int line_time_us, line_count;
4000 int entries, tlb_miss;
4001
4002 crtc = intel_get_crtc_for_plane(dev, plane);
4003 if (crtc->fb == NULL || !crtc->enabled) {
4004 *cursor_wm = cursor->guard_size;
4005 *plane_wm = display->guard_size;
4006 return false;
4007 }
4008
4009 htotal = crtc->mode.htotal;
4010 hdisplay = crtc->mode.hdisplay;
4011 clock = crtc->mode.clock;
4012 pixel_size = crtc->fb->bits_per_pixel / 8;
4013
4014 /* Use the small buffer method to calculate plane watermark */
4015 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4016 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4017 if (tlb_miss > 0)
4018 entries += tlb_miss;
4019 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4020 *plane_wm = entries + display->guard_size;
4021 if (*plane_wm > (int)display->max_wm)
4022 *plane_wm = display->max_wm;
4023
4024 /* Use the large buffer method to calculate cursor watermark */
4025 line_time_us = ((htotal * 1000) / clock);
4026 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4027 entries = line_count * 64 * pixel_size;
4028 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4029 if (tlb_miss > 0)
4030 entries += tlb_miss;
4031 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4032 *cursor_wm = entries + cursor->guard_size;
4033 if (*cursor_wm > (int)cursor->max_wm)
4034 *cursor_wm = (int)cursor->max_wm;
4035
4036 return true;
4037 }
4038
4039 /*
4040 * Check the wm result.
4041 *
4042 * If any calculated watermark values is larger than the maximum value that
4043 * can be programmed into the associated watermark register, that watermark
4044 * must be disabled.
4045 */
4046 static bool g4x_check_srwm(struct drm_device *dev,
4047 int display_wm, int cursor_wm,
4048 const struct intel_watermark_params *display,
4049 const struct intel_watermark_params *cursor)
4050 {
4051 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4052 display_wm, cursor_wm);
4053
4054 if (display_wm > display->max_wm) {
4055 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4056 display_wm, display->max_wm);
4057 return false;
4058 }
4059
4060 if (cursor_wm > cursor->max_wm) {
4061 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4062 cursor_wm, cursor->max_wm);
4063 return false;
4064 }
4065
4066 if (!(display_wm || cursor_wm)) {
4067 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4068 return false;
4069 }
4070
4071 return true;
4072 }
4073
4074 static bool g4x_compute_srwm(struct drm_device *dev,
4075 int plane,
4076 int latency_ns,
4077 const struct intel_watermark_params *display,
4078 const struct intel_watermark_params *cursor,
4079 int *display_wm, int *cursor_wm)
4080 {
4081 struct drm_crtc *crtc;
4082 int hdisplay, htotal, pixel_size, clock;
4083 unsigned long line_time_us;
4084 int line_count, line_size;
4085 int small, large;
4086 int entries;
4087
4088 if (!latency_ns) {
4089 *display_wm = *cursor_wm = 0;
4090 return false;
4091 }
4092
4093 crtc = intel_get_crtc_for_plane(dev, plane);
4094 hdisplay = crtc->mode.hdisplay;
4095 htotal = crtc->mode.htotal;
4096 clock = crtc->mode.clock;
4097 pixel_size = crtc->fb->bits_per_pixel / 8;
4098
4099 line_time_us = (htotal * 1000) / clock;
4100 line_count = (latency_ns / line_time_us + 1000) / 1000;
4101 line_size = hdisplay * pixel_size;
4102
4103 /* Use the minimum of the small and large buffer method for primary */
4104 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4105 large = line_count * line_size;
4106
4107 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4108 *display_wm = entries + display->guard_size;
4109
4110 /* calculate the self-refresh watermark for display cursor */
4111 entries = line_count * pixel_size * 64;
4112 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4113 *cursor_wm = entries + cursor->guard_size;
4114
4115 return g4x_check_srwm(dev,
4116 *display_wm, *cursor_wm,
4117 display, cursor);
4118 }
4119
4120 #define single_plane_enabled(mask) is_power_of_2(mask)
4121
4122 static void g4x_update_wm(struct drm_device *dev)
4123 {
4124 static const int sr_latency_ns = 12000;
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4127 int plane_sr, cursor_sr;
4128 unsigned int enabled = 0;
4129
4130 if (g4x_compute_wm0(dev, 0,
4131 &g4x_wm_info, latency_ns,
4132 &g4x_cursor_wm_info, latency_ns,
4133 &planea_wm, &cursora_wm))
4134 enabled |= 1;
4135
4136 if (g4x_compute_wm0(dev, 1,
4137 &g4x_wm_info, latency_ns,
4138 &g4x_cursor_wm_info, latency_ns,
4139 &planeb_wm, &cursorb_wm))
4140 enabled |= 2;
4141
4142 plane_sr = cursor_sr = 0;
4143 if (single_plane_enabled(enabled) &&
4144 g4x_compute_srwm(dev, ffs(enabled) - 1,
4145 sr_latency_ns,
4146 &g4x_wm_info,
4147 &g4x_cursor_wm_info,
4148 &plane_sr, &cursor_sr))
4149 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4150 else
4151 I915_WRITE(FW_BLC_SELF,
4152 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4153
4154 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4155 planea_wm, cursora_wm,
4156 planeb_wm, cursorb_wm,
4157 plane_sr, cursor_sr);
4158
4159 I915_WRITE(DSPFW1,
4160 (plane_sr << DSPFW_SR_SHIFT) |
4161 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4162 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4163 planea_wm);
4164 I915_WRITE(DSPFW2,
4165 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4166 (cursora_wm << DSPFW_CURSORA_SHIFT));
4167 /* HPLL off in SR has some issues on G4x... disable it */
4168 I915_WRITE(DSPFW3,
4169 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4170 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4171 }
4172
4173 static void i965_update_wm(struct drm_device *dev)
4174 {
4175 struct drm_i915_private *dev_priv = dev->dev_private;
4176 struct drm_crtc *crtc;
4177 int srwm = 1;
4178 int cursor_sr = 16;
4179
4180 /* Calc sr entries for one plane configs */
4181 crtc = single_enabled_crtc(dev);
4182 if (crtc) {
4183 /* self-refresh has much higher latency */
4184 static const int sr_latency_ns = 12000;
4185 int clock = crtc->mode.clock;
4186 int htotal = crtc->mode.htotal;
4187 int hdisplay = crtc->mode.hdisplay;
4188 int pixel_size = crtc->fb->bits_per_pixel / 8;
4189 unsigned long line_time_us;
4190 int entries;
4191
4192 line_time_us = ((htotal * 1000) / clock);
4193
4194 /* Use ns/us then divide to preserve precision */
4195 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4196 pixel_size * hdisplay;
4197 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4198 srwm = I965_FIFO_SIZE - entries;
4199 if (srwm < 0)
4200 srwm = 1;
4201 srwm &= 0x1ff;
4202 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4203 entries, srwm);
4204
4205 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4206 pixel_size * 64;
4207 entries = DIV_ROUND_UP(entries,
4208 i965_cursor_wm_info.cacheline_size);
4209 cursor_sr = i965_cursor_wm_info.fifo_size -
4210 (entries + i965_cursor_wm_info.guard_size);
4211
4212 if (cursor_sr > i965_cursor_wm_info.max_wm)
4213 cursor_sr = i965_cursor_wm_info.max_wm;
4214
4215 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4216 "cursor %d\n", srwm, cursor_sr);
4217
4218 if (IS_CRESTLINE(dev))
4219 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4220 } else {
4221 /* Turn off self refresh if both pipes are enabled */
4222 if (IS_CRESTLINE(dev))
4223 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4224 & ~FW_BLC_SELF_EN);
4225 }
4226
4227 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4228 srwm);
4229
4230 /* 965 has limitations... */
4231 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4232 (8 << 16) | (8 << 8) | (8 << 0));
4233 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4234 /* update cursor SR watermark */
4235 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4236 }
4237
4238 static void i9xx_update_wm(struct drm_device *dev)
4239 {
4240 struct drm_i915_private *dev_priv = dev->dev_private;
4241 const struct intel_watermark_params *wm_info;
4242 uint32_t fwater_lo;
4243 uint32_t fwater_hi;
4244 int cwm, srwm = 1;
4245 int fifo_size;
4246 int planea_wm, planeb_wm;
4247 struct drm_crtc *crtc, *enabled = NULL;
4248
4249 if (IS_I945GM(dev))
4250 wm_info = &i945_wm_info;
4251 else if (!IS_GEN2(dev))
4252 wm_info = &i915_wm_info;
4253 else
4254 wm_info = &i855_wm_info;
4255
4256 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4257 crtc = intel_get_crtc_for_plane(dev, 0);
4258 if (crtc->enabled && crtc->fb) {
4259 planea_wm = intel_calculate_wm(crtc->mode.clock,
4260 wm_info, fifo_size,
4261 crtc->fb->bits_per_pixel / 8,
4262 latency_ns);
4263 enabled = crtc;
4264 } else
4265 planea_wm = fifo_size - wm_info->guard_size;
4266
4267 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4268 crtc = intel_get_crtc_for_plane(dev, 1);
4269 if (crtc->enabled && crtc->fb) {
4270 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4271 wm_info, fifo_size,
4272 crtc->fb->bits_per_pixel / 8,
4273 latency_ns);
4274 if (enabled == NULL)
4275 enabled = crtc;
4276 else
4277 enabled = NULL;
4278 } else
4279 planeb_wm = fifo_size - wm_info->guard_size;
4280
4281 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4282
4283 /*
4284 * Overlay gets an aggressive default since video jitter is bad.
4285 */
4286 cwm = 2;
4287
4288 /* Play safe and disable self-refresh before adjusting watermarks. */
4289 if (IS_I945G(dev) || IS_I945GM(dev))
4290 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4291 else if (IS_I915GM(dev))
4292 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4293
4294 /* Calc sr entries for one plane configs */
4295 if (HAS_FW_BLC(dev) && enabled) {
4296 /* self-refresh has much higher latency */
4297 static const int sr_latency_ns = 6000;
4298 int clock = enabled->mode.clock;
4299 int htotal = enabled->mode.htotal;
4300 int hdisplay = enabled->mode.hdisplay;
4301 int pixel_size = enabled->fb->bits_per_pixel / 8;
4302 unsigned long line_time_us;
4303 int entries;
4304
4305 line_time_us = (htotal * 1000) / clock;
4306
4307 /* Use ns/us then divide to preserve precision */
4308 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4309 pixel_size * hdisplay;
4310 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4311 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4312 srwm = wm_info->fifo_size - entries;
4313 if (srwm < 0)
4314 srwm = 1;
4315
4316 if (IS_I945G(dev) || IS_I945GM(dev))
4317 I915_WRITE(FW_BLC_SELF,
4318 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4319 else if (IS_I915GM(dev))
4320 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4321 }
4322
4323 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4324 planea_wm, planeb_wm, cwm, srwm);
4325
4326 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4327 fwater_hi = (cwm & 0x1f);
4328
4329 /* Set request length to 8 cachelines per fetch */
4330 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4331 fwater_hi = fwater_hi | (1 << 8);
4332
4333 I915_WRITE(FW_BLC, fwater_lo);
4334 I915_WRITE(FW_BLC2, fwater_hi);
4335
4336 if (HAS_FW_BLC(dev)) {
4337 if (enabled) {
4338 if (IS_I945G(dev) || IS_I945GM(dev))
4339 I915_WRITE(FW_BLC_SELF,
4340 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4341 else if (IS_I915GM(dev))
4342 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4343 DRM_DEBUG_KMS("memory self refresh enabled\n");
4344 } else
4345 DRM_DEBUG_KMS("memory self refresh disabled\n");
4346 }
4347 }
4348
4349 static void i830_update_wm(struct drm_device *dev)
4350 {
4351 struct drm_i915_private *dev_priv = dev->dev_private;
4352 struct drm_crtc *crtc;
4353 uint32_t fwater_lo;
4354 int planea_wm;
4355
4356 crtc = single_enabled_crtc(dev);
4357 if (crtc == NULL)
4358 return;
4359
4360 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4361 dev_priv->display.get_fifo_size(dev, 0),
4362 crtc->fb->bits_per_pixel / 8,
4363 latency_ns);
4364 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4365 fwater_lo |= (3<<8) | planea_wm;
4366
4367 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4368
4369 I915_WRITE(FW_BLC, fwater_lo);
4370 }
4371
4372 #define ILK_LP0_PLANE_LATENCY 700
4373 #define ILK_LP0_CURSOR_LATENCY 1300
4374
4375 /*
4376 * Check the wm result.
4377 *
4378 * If any calculated watermark values is larger than the maximum value that
4379 * can be programmed into the associated watermark register, that watermark
4380 * must be disabled.
4381 */
4382 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4383 int fbc_wm, int display_wm, int cursor_wm,
4384 const struct intel_watermark_params *display,
4385 const struct intel_watermark_params *cursor)
4386 {
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388
4389 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4390 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4391
4392 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4393 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4394 fbc_wm, SNB_FBC_MAX_SRWM, level);
4395
4396 /* fbc has it's own way to disable FBC WM */
4397 I915_WRITE(DISP_ARB_CTL,
4398 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4399 return false;
4400 }
4401
4402 if (display_wm > display->max_wm) {
4403 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4404 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4405 return false;
4406 }
4407
4408 if (cursor_wm > cursor->max_wm) {
4409 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4410 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4411 return false;
4412 }
4413
4414 if (!(fbc_wm || display_wm || cursor_wm)) {
4415 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4416 return false;
4417 }
4418
4419 return true;
4420 }
4421
4422 /*
4423 * Compute watermark values of WM[1-3],
4424 */
4425 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4426 int latency_ns,
4427 const struct intel_watermark_params *display,
4428 const struct intel_watermark_params *cursor,
4429 int *fbc_wm, int *display_wm, int *cursor_wm)
4430 {
4431 struct drm_crtc *crtc;
4432 unsigned long line_time_us;
4433 int hdisplay, htotal, pixel_size, clock;
4434 int line_count, line_size;
4435 int small, large;
4436 int entries;
4437
4438 if (!latency_ns) {
4439 *fbc_wm = *display_wm = *cursor_wm = 0;
4440 return false;
4441 }
4442
4443 crtc = intel_get_crtc_for_plane(dev, plane);
4444 hdisplay = crtc->mode.hdisplay;
4445 htotal = crtc->mode.htotal;
4446 clock = crtc->mode.clock;
4447 pixel_size = crtc->fb->bits_per_pixel / 8;
4448
4449 line_time_us = (htotal * 1000) / clock;
4450 line_count = (latency_ns / line_time_us + 1000) / 1000;
4451 line_size = hdisplay * pixel_size;
4452
4453 /* Use the minimum of the small and large buffer method for primary */
4454 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4455 large = line_count * line_size;
4456
4457 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4458 *display_wm = entries + display->guard_size;
4459
4460 /*
4461 * Spec says:
4462 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4463 */
4464 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4465
4466 /* calculate the self-refresh watermark for display cursor */
4467 entries = line_count * pixel_size * 64;
4468 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4469 *cursor_wm = entries + cursor->guard_size;
4470
4471 return ironlake_check_srwm(dev, level,
4472 *fbc_wm, *display_wm, *cursor_wm,
4473 display, cursor);
4474 }
4475
4476 static void ironlake_update_wm(struct drm_device *dev)
4477 {
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479 int fbc_wm, plane_wm, cursor_wm;
4480 unsigned int enabled;
4481
4482 enabled = 0;
4483 if (g4x_compute_wm0(dev, 0,
4484 &ironlake_display_wm_info,
4485 ILK_LP0_PLANE_LATENCY,
4486 &ironlake_cursor_wm_info,
4487 ILK_LP0_CURSOR_LATENCY,
4488 &plane_wm, &cursor_wm)) {
4489 I915_WRITE(WM0_PIPEA_ILK,
4490 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4491 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4492 " plane %d, " "cursor: %d\n",
4493 plane_wm, cursor_wm);
4494 enabled |= 1;
4495 }
4496
4497 if (g4x_compute_wm0(dev, 1,
4498 &ironlake_display_wm_info,
4499 ILK_LP0_PLANE_LATENCY,
4500 &ironlake_cursor_wm_info,
4501 ILK_LP0_CURSOR_LATENCY,
4502 &plane_wm, &cursor_wm)) {
4503 I915_WRITE(WM0_PIPEB_ILK,
4504 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4505 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4506 " plane %d, cursor: %d\n",
4507 plane_wm, cursor_wm);
4508 enabled |= 2;
4509 }
4510
4511 /*
4512 * Calculate and update the self-refresh watermark only when one
4513 * display plane is used.
4514 */
4515 I915_WRITE(WM3_LP_ILK, 0);
4516 I915_WRITE(WM2_LP_ILK, 0);
4517 I915_WRITE(WM1_LP_ILK, 0);
4518
4519 if (!single_plane_enabled(enabled))
4520 return;
4521 enabled = ffs(enabled) - 1;
4522
4523 /* WM1 */
4524 if (!ironlake_compute_srwm(dev, 1, enabled,
4525 ILK_READ_WM1_LATENCY() * 500,
4526 &ironlake_display_srwm_info,
4527 &ironlake_cursor_srwm_info,
4528 &fbc_wm, &plane_wm, &cursor_wm))
4529 return;
4530
4531 I915_WRITE(WM1_LP_ILK,
4532 WM1_LP_SR_EN |
4533 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4534 (fbc_wm << WM1_LP_FBC_SHIFT) |
4535 (plane_wm << WM1_LP_SR_SHIFT) |
4536 cursor_wm);
4537
4538 /* WM2 */
4539 if (!ironlake_compute_srwm(dev, 2, enabled,
4540 ILK_READ_WM2_LATENCY() * 500,
4541 &ironlake_display_srwm_info,
4542 &ironlake_cursor_srwm_info,
4543 &fbc_wm, &plane_wm, &cursor_wm))
4544 return;
4545
4546 I915_WRITE(WM2_LP_ILK,
4547 WM2_LP_EN |
4548 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4549 (fbc_wm << WM1_LP_FBC_SHIFT) |
4550 (plane_wm << WM1_LP_SR_SHIFT) |
4551 cursor_wm);
4552
4553 /*
4554 * WM3 is unsupported on ILK, probably because we don't have latency
4555 * data for that power state
4556 */
4557 }
4558
4559 void sandybridge_update_wm(struct drm_device *dev)
4560 {
4561 struct drm_i915_private *dev_priv = dev->dev_private;
4562 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4563 u32 val;
4564 int fbc_wm, plane_wm, cursor_wm;
4565 unsigned int enabled;
4566
4567 enabled = 0;
4568 if (g4x_compute_wm0(dev, 0,
4569 &sandybridge_display_wm_info, latency,
4570 &sandybridge_cursor_wm_info, latency,
4571 &plane_wm, &cursor_wm)) {
4572 val = I915_READ(WM0_PIPEA_ILK);
4573 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4574 I915_WRITE(WM0_PIPEA_ILK, val |
4575 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4576 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4577 " plane %d, " "cursor: %d\n",
4578 plane_wm, cursor_wm);
4579 enabled |= 1;
4580 }
4581
4582 if (g4x_compute_wm0(dev, 1,
4583 &sandybridge_display_wm_info, latency,
4584 &sandybridge_cursor_wm_info, latency,
4585 &plane_wm, &cursor_wm)) {
4586 val = I915_READ(WM0_PIPEB_ILK);
4587 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4588 I915_WRITE(WM0_PIPEB_ILK, val |
4589 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4590 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4591 " plane %d, cursor: %d\n",
4592 plane_wm, cursor_wm);
4593 enabled |= 2;
4594 }
4595
4596 /* IVB has 3 pipes */
4597 if (IS_IVYBRIDGE(dev) &&
4598 g4x_compute_wm0(dev, 2,
4599 &sandybridge_display_wm_info, latency,
4600 &sandybridge_cursor_wm_info, latency,
4601 &plane_wm, &cursor_wm)) {
4602 val = I915_READ(WM0_PIPEC_IVB);
4603 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4604 I915_WRITE(WM0_PIPEC_IVB, val |
4605 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4606 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4607 " plane %d, cursor: %d\n",
4608 plane_wm, cursor_wm);
4609 enabled |= 3;
4610 }
4611
4612 /*
4613 * Calculate and update the self-refresh watermark only when one
4614 * display plane is used.
4615 *
4616 * SNB support 3 levels of watermark.
4617 *
4618 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4619 * and disabled in the descending order
4620 *
4621 */
4622 I915_WRITE(WM3_LP_ILK, 0);
4623 I915_WRITE(WM2_LP_ILK, 0);
4624 I915_WRITE(WM1_LP_ILK, 0);
4625
4626 if (!single_plane_enabled(enabled) ||
4627 dev_priv->sprite_scaling_enabled)
4628 return;
4629 enabled = ffs(enabled) - 1;
4630
4631 /* WM1 */
4632 if (!ironlake_compute_srwm(dev, 1, enabled,
4633 SNB_READ_WM1_LATENCY() * 500,
4634 &sandybridge_display_srwm_info,
4635 &sandybridge_cursor_srwm_info,
4636 &fbc_wm, &plane_wm, &cursor_wm))
4637 return;
4638
4639 I915_WRITE(WM1_LP_ILK,
4640 WM1_LP_SR_EN |
4641 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4642 (fbc_wm << WM1_LP_FBC_SHIFT) |
4643 (plane_wm << WM1_LP_SR_SHIFT) |
4644 cursor_wm);
4645
4646 /* WM2 */
4647 if (!ironlake_compute_srwm(dev, 2, enabled,
4648 SNB_READ_WM2_LATENCY() * 500,
4649 &sandybridge_display_srwm_info,
4650 &sandybridge_cursor_srwm_info,
4651 &fbc_wm, &plane_wm, &cursor_wm))
4652 return;
4653
4654 I915_WRITE(WM2_LP_ILK,
4655 WM2_LP_EN |
4656 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4657 (fbc_wm << WM1_LP_FBC_SHIFT) |
4658 (plane_wm << WM1_LP_SR_SHIFT) |
4659 cursor_wm);
4660
4661 /* WM3 */
4662 if (!ironlake_compute_srwm(dev, 3, enabled,
4663 SNB_READ_WM3_LATENCY() * 500,
4664 &sandybridge_display_srwm_info,
4665 &sandybridge_cursor_srwm_info,
4666 &fbc_wm, &plane_wm, &cursor_wm))
4667 return;
4668
4669 I915_WRITE(WM3_LP_ILK,
4670 WM3_LP_EN |
4671 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4672 (fbc_wm << WM1_LP_FBC_SHIFT) |
4673 (plane_wm << WM1_LP_SR_SHIFT) |
4674 cursor_wm);
4675 }
4676
4677 static bool
4678 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4679 uint32_t sprite_width, int pixel_size,
4680 const struct intel_watermark_params *display,
4681 int display_latency_ns, int *sprite_wm)
4682 {
4683 struct drm_crtc *crtc;
4684 int clock;
4685 int entries, tlb_miss;
4686
4687 crtc = intel_get_crtc_for_plane(dev, plane);
4688 if (crtc->fb == NULL || !crtc->enabled) {
4689 *sprite_wm = display->guard_size;
4690 return false;
4691 }
4692
4693 clock = crtc->mode.clock;
4694
4695 /* Use the small buffer method to calculate the sprite watermark */
4696 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4697 tlb_miss = display->fifo_size*display->cacheline_size -
4698 sprite_width * 8;
4699 if (tlb_miss > 0)
4700 entries += tlb_miss;
4701 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4702 *sprite_wm = entries + display->guard_size;
4703 if (*sprite_wm > (int)display->max_wm)
4704 *sprite_wm = display->max_wm;
4705
4706 return true;
4707 }
4708
4709 static bool
4710 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4711 uint32_t sprite_width, int pixel_size,
4712 const struct intel_watermark_params *display,
4713 int latency_ns, int *sprite_wm)
4714 {
4715 struct drm_crtc *crtc;
4716 unsigned long line_time_us;
4717 int clock;
4718 int line_count, line_size;
4719 int small, large;
4720 int entries;
4721
4722 if (!latency_ns) {
4723 *sprite_wm = 0;
4724 return false;
4725 }
4726
4727 crtc = intel_get_crtc_for_plane(dev, plane);
4728 clock = crtc->mode.clock;
4729
4730 line_time_us = (sprite_width * 1000) / clock;
4731 line_count = (latency_ns / line_time_us + 1000) / 1000;
4732 line_size = sprite_width * pixel_size;
4733
4734 /* Use the minimum of the small and large buffer method for primary */
4735 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4736 large = line_count * line_size;
4737
4738 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4739 *sprite_wm = entries + display->guard_size;
4740
4741 return *sprite_wm > 0x3ff ? false : true;
4742 }
4743
4744 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4745 uint32_t sprite_width, int pixel_size)
4746 {
4747 struct drm_i915_private *dev_priv = dev->dev_private;
4748 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4749 u32 val;
4750 int sprite_wm, reg;
4751 int ret;
4752
4753 switch (pipe) {
4754 case 0:
4755 reg = WM0_PIPEA_ILK;
4756 break;
4757 case 1:
4758 reg = WM0_PIPEB_ILK;
4759 break;
4760 case 2:
4761 reg = WM0_PIPEC_IVB;
4762 break;
4763 default:
4764 return; /* bad pipe */
4765 }
4766
4767 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4768 &sandybridge_display_wm_info,
4769 latency, &sprite_wm);
4770 if (!ret) {
4771 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4772 pipe);
4773 return;
4774 }
4775
4776 val = I915_READ(reg);
4777 val &= ~WM0_PIPE_SPRITE_MASK;
4778 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4779 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4780
4781
4782 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4783 pixel_size,
4784 &sandybridge_display_srwm_info,
4785 SNB_READ_WM1_LATENCY() * 500,
4786 &sprite_wm);
4787 if (!ret) {
4788 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4789 pipe);
4790 return;
4791 }
4792 I915_WRITE(WM1S_LP_ILK, sprite_wm);
4793
4794 /* Only IVB has two more LP watermarks for sprite */
4795 if (!IS_IVYBRIDGE(dev))
4796 return;
4797
4798 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4799 pixel_size,
4800 &sandybridge_display_srwm_info,
4801 SNB_READ_WM2_LATENCY() * 500,
4802 &sprite_wm);
4803 if (!ret) {
4804 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4805 pipe);
4806 return;
4807 }
4808 I915_WRITE(WM2S_LP_IVB, sprite_wm);
4809
4810 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4811 pixel_size,
4812 &sandybridge_display_srwm_info,
4813 SNB_READ_WM3_LATENCY() * 500,
4814 &sprite_wm);
4815 if (!ret) {
4816 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4817 pipe);
4818 return;
4819 }
4820 I915_WRITE(WM3S_LP_IVB, sprite_wm);
4821 }
4822
4823 /**
4824 * intel_update_watermarks - update FIFO watermark values based on current modes
4825 *
4826 * Calculate watermark values for the various WM regs based on current mode
4827 * and plane configuration.
4828 *
4829 * There are several cases to deal with here:
4830 * - normal (i.e. non-self-refresh)
4831 * - self-refresh (SR) mode
4832 * - lines are large relative to FIFO size (buffer can hold up to 2)
4833 * - lines are small relative to FIFO size (buffer can hold more than 2
4834 * lines), so need to account for TLB latency
4835 *
4836 * The normal calculation is:
4837 * watermark = dotclock * bytes per pixel * latency
4838 * where latency is platform & configuration dependent (we assume pessimal
4839 * values here).
4840 *
4841 * The SR calculation is:
4842 * watermark = (trunc(latency/line time)+1) * surface width *
4843 * bytes per pixel
4844 * where
4845 * line time = htotal / dotclock
4846 * surface width = hdisplay for normal plane and 64 for cursor
4847 * and latency is assumed to be high, as above.
4848 *
4849 * The final value programmed to the register should always be rounded up,
4850 * and include an extra 2 entries to account for clock crossings.
4851 *
4852 * We don't use the sprite, so we can ignore that. And on Crestline we have
4853 * to set the non-SR watermarks to 8.
4854 */
4855 static void intel_update_watermarks(struct drm_device *dev)
4856 {
4857 struct drm_i915_private *dev_priv = dev->dev_private;
4858
4859 if (dev_priv->display.update_wm)
4860 dev_priv->display.update_wm(dev);
4861 }
4862
4863 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4864 uint32_t sprite_width, int pixel_size)
4865 {
4866 struct drm_i915_private *dev_priv = dev->dev_private;
4867
4868 if (dev_priv->display.update_sprite_wm)
4869 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4870 pixel_size);
4871 }
4872
4873 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4874 {
4875 if (i915_panel_use_ssc >= 0)
4876 return i915_panel_use_ssc != 0;
4877 return dev_priv->lvds_use_ssc
4878 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4879 }
4880
4881 /**
4882 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4883 * @crtc: CRTC structure
4884 * @mode: requested mode
4885 *
4886 * A pipe may be connected to one or more outputs. Based on the depth of the
4887 * attached framebuffer, choose a good color depth to use on the pipe.
4888 *
4889 * If possible, match the pipe depth to the fb depth. In some cases, this
4890 * isn't ideal, because the connected output supports a lesser or restricted
4891 * set of depths. Resolve that here:
4892 * LVDS typically supports only 6bpc, so clamp down in that case
4893 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4894 * Displays may support a restricted set as well, check EDID and clamp as
4895 * appropriate.
4896 * DP may want to dither down to 6bpc to fit larger modes
4897 *
4898 * RETURNS:
4899 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4900 * true if they don't match).
4901 */
4902 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4903 unsigned int *pipe_bpp,
4904 struct drm_display_mode *mode)
4905 {
4906 struct drm_device *dev = crtc->dev;
4907 struct drm_i915_private *dev_priv = dev->dev_private;
4908 struct drm_encoder *encoder;
4909 struct drm_connector *connector;
4910 unsigned int display_bpc = UINT_MAX, bpc;
4911
4912 /* Walk the encoders & connectors on this crtc, get min bpc */
4913 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4914 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4915
4916 if (encoder->crtc != crtc)
4917 continue;
4918
4919 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4920 unsigned int lvds_bpc;
4921
4922 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4923 LVDS_A3_POWER_UP)
4924 lvds_bpc = 8;
4925 else
4926 lvds_bpc = 6;
4927
4928 if (lvds_bpc < display_bpc) {
4929 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4930 display_bpc = lvds_bpc;
4931 }
4932 continue;
4933 }
4934
4935 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4936 /* Use VBT settings if we have an eDP panel */
4937 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4938
4939 if (edp_bpc < display_bpc) {
4940 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4941 display_bpc = edp_bpc;
4942 }
4943 continue;
4944 }
4945
4946 /* Not one of the known troublemakers, check the EDID */
4947 list_for_each_entry(connector, &dev->mode_config.connector_list,
4948 head) {
4949 if (connector->encoder != encoder)
4950 continue;
4951
4952 /* Don't use an invalid EDID bpc value */
4953 if (connector->display_info.bpc &&
4954 connector->display_info.bpc < display_bpc) {
4955 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4956 display_bpc = connector->display_info.bpc;
4957 }
4958 }
4959
4960 /*
4961 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4962 * through, clamp it down. (Note: >12bpc will be caught below.)
4963 */
4964 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4965 if (display_bpc > 8 && display_bpc < 12) {
4966 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4967 display_bpc = 12;
4968 } else {
4969 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4970 display_bpc = 8;
4971 }
4972 }
4973 }
4974
4975 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4976 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4977 display_bpc = 6;
4978 }
4979
4980 /*
4981 * We could just drive the pipe at the highest bpc all the time and
4982 * enable dithering as needed, but that costs bandwidth. So choose
4983 * the minimum value that expresses the full color range of the fb but
4984 * also stays within the max display bpc discovered above.
4985 */
4986
4987 switch (crtc->fb->depth) {
4988 case 8:
4989 bpc = 8; /* since we go through a colormap */
4990 break;
4991 case 15:
4992 case 16:
4993 bpc = 6; /* min is 18bpp */
4994 break;
4995 case 24:
4996 bpc = 8;
4997 break;
4998 case 30:
4999 bpc = 10;
5000 break;
5001 case 48:
5002 bpc = 12;
5003 break;
5004 default:
5005 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5006 bpc = min((unsigned int)8, display_bpc);
5007 break;
5008 }
5009
5010 display_bpc = min(display_bpc, bpc);
5011
5012 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5013 bpc, display_bpc);
5014
5015 *pipe_bpp = display_bpc * 3;
5016
5017 return display_bpc != bpc;
5018 }
5019
5020 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5021 {
5022 struct drm_device *dev = crtc->dev;
5023 struct drm_i915_private *dev_priv = dev->dev_private;
5024 int refclk;
5025
5026 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5027 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5028 refclk = dev_priv->lvds_ssc_freq * 1000;
5029 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5030 refclk / 1000);
5031 } else if (!IS_GEN2(dev)) {
5032 refclk = 96000;
5033 } else {
5034 refclk = 48000;
5035 }
5036
5037 return refclk;
5038 }
5039
5040 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5041 intel_clock_t *clock)
5042 {
5043 /* SDVO TV has fixed PLL values depend on its clock range,
5044 this mirrors vbios setting. */
5045 if (adjusted_mode->clock >= 100000
5046 && adjusted_mode->clock < 140500) {
5047 clock->p1 = 2;
5048 clock->p2 = 10;
5049 clock->n = 3;
5050 clock->m1 = 16;
5051 clock->m2 = 8;
5052 } else if (adjusted_mode->clock >= 140500
5053 && adjusted_mode->clock <= 200000) {
5054 clock->p1 = 1;
5055 clock->p2 = 10;
5056 clock->n = 6;
5057 clock->m1 = 12;
5058 clock->m2 = 8;
5059 }
5060 }
5061
5062 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5063 intel_clock_t *clock,
5064 intel_clock_t *reduced_clock)
5065 {
5066 struct drm_device *dev = crtc->dev;
5067 struct drm_i915_private *dev_priv = dev->dev_private;
5068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5069 int pipe = intel_crtc->pipe;
5070 u32 fp, fp2 = 0;
5071
5072 if (IS_PINEVIEW(dev)) {
5073 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5074 if (reduced_clock)
5075 fp2 = (1 << reduced_clock->n) << 16 |
5076 reduced_clock->m1 << 8 | reduced_clock->m2;
5077 } else {
5078 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5079 if (reduced_clock)
5080 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5081 reduced_clock->m2;
5082 }
5083
5084 I915_WRITE(FP0(pipe), fp);
5085
5086 intel_crtc->lowfreq_avail = false;
5087 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5088 reduced_clock && i915_powersave) {
5089 I915_WRITE(FP1(pipe), fp2);
5090 intel_crtc->lowfreq_avail = true;
5091 } else {
5092 I915_WRITE(FP1(pipe), fp);
5093 }
5094 }
5095
5096 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5097 struct drm_display_mode *mode,
5098 struct drm_display_mode *adjusted_mode,
5099 int x, int y,
5100 struct drm_framebuffer *old_fb)
5101 {
5102 struct drm_device *dev = crtc->dev;
5103 struct drm_i915_private *dev_priv = dev->dev_private;
5104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5105 int pipe = intel_crtc->pipe;
5106 int plane = intel_crtc->plane;
5107 int refclk, num_connectors = 0;
5108 intel_clock_t clock, reduced_clock;
5109 u32 dpll, dspcntr, pipeconf;
5110 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5111 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5112 struct drm_mode_config *mode_config = &dev->mode_config;
5113 struct intel_encoder *encoder;
5114 const intel_limit_t *limit;
5115 int ret;
5116 u32 temp;
5117 u32 lvds_sync = 0;
5118
5119 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5120 if (encoder->base.crtc != crtc)
5121 continue;
5122
5123 switch (encoder->type) {
5124 case INTEL_OUTPUT_LVDS:
5125 is_lvds = true;
5126 break;
5127 case INTEL_OUTPUT_SDVO:
5128 case INTEL_OUTPUT_HDMI:
5129 is_sdvo = true;
5130 if (encoder->needs_tv_clock)
5131 is_tv = true;
5132 break;
5133 case INTEL_OUTPUT_DVO:
5134 is_dvo = true;
5135 break;
5136 case INTEL_OUTPUT_TVOUT:
5137 is_tv = true;
5138 break;
5139 case INTEL_OUTPUT_ANALOG:
5140 is_crt = true;
5141 break;
5142 case INTEL_OUTPUT_DISPLAYPORT:
5143 is_dp = true;
5144 break;
5145 }
5146
5147 num_connectors++;
5148 }
5149
5150 refclk = i9xx_get_refclk(crtc, num_connectors);
5151
5152 /*
5153 * Returns a set of divisors for the desired target clock with the given
5154 * refclk, or FALSE. The returned values represent the clock equation:
5155 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5156 */
5157 limit = intel_limit(crtc, refclk);
5158 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5159 &clock);
5160 if (!ok) {
5161 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5162 return -EINVAL;
5163 }
5164
5165 /* Ensure that the cursor is valid for the new mode before changing... */
5166 intel_crtc_update_cursor(crtc, true);
5167
5168 if (is_lvds && dev_priv->lvds_downclock_avail) {
5169 /*
5170 * Ensure we match the reduced clock's P to the target clock.
5171 * If the clocks don't match, we can't switch the display clock
5172 * by using the FP0/FP1. In such case we will disable the LVDS
5173 * downclock feature.
5174 */
5175 has_reduced_clock = limit->find_pll(limit, crtc,
5176 dev_priv->lvds_downclock,
5177 refclk,
5178 &clock,
5179 &reduced_clock);
5180 }
5181
5182 if (is_sdvo && is_tv)
5183 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5184
5185 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5186 &reduced_clock : NULL);
5187
5188 dpll = DPLL_VGA_MODE_DIS;
5189
5190 if (!IS_GEN2(dev)) {
5191 if (is_lvds)
5192 dpll |= DPLLB_MODE_LVDS;
5193 else
5194 dpll |= DPLLB_MODE_DAC_SERIAL;
5195 if (is_sdvo) {
5196 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5197 if (pixel_multiplier > 1) {
5198 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5199 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5200 }
5201 dpll |= DPLL_DVO_HIGH_SPEED;
5202 }
5203 if (is_dp)
5204 dpll |= DPLL_DVO_HIGH_SPEED;
5205
5206 /* compute bitmask from p1 value */
5207 if (IS_PINEVIEW(dev))
5208 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5209 else {
5210 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5211 if (IS_G4X(dev) && has_reduced_clock)
5212 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5213 }
5214 switch (clock.p2) {
5215 case 5:
5216 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5217 break;
5218 case 7:
5219 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5220 break;
5221 case 10:
5222 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5223 break;
5224 case 14:
5225 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5226 break;
5227 }
5228 if (INTEL_INFO(dev)->gen >= 4)
5229 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5230 } else {
5231 if (is_lvds) {
5232 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5233 } else {
5234 if (clock.p1 == 2)
5235 dpll |= PLL_P1_DIVIDE_BY_TWO;
5236 else
5237 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5238 if (clock.p2 == 4)
5239 dpll |= PLL_P2_DIVIDE_BY_4;
5240 }
5241 }
5242
5243 if (is_sdvo && is_tv)
5244 dpll |= PLL_REF_INPUT_TVCLKINBC;
5245 else if (is_tv)
5246 /* XXX: just matching BIOS for now */
5247 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5248 dpll |= 3;
5249 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5250 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5251 else
5252 dpll |= PLL_REF_INPUT_DREFCLK;
5253
5254 /* setup pipeconf */
5255 pipeconf = I915_READ(PIPECONF(pipe));
5256
5257 /* Set up the display plane register */
5258 dspcntr = DISPPLANE_GAMMA_ENABLE;
5259
5260 if (pipe == 0)
5261 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5262 else
5263 dspcntr |= DISPPLANE_SEL_PIPE_B;
5264
5265 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5266 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5267 * core speed.
5268 *
5269 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5270 * pipe == 0 check?
5271 */
5272 if (mode->clock >
5273 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5274 pipeconf |= PIPECONF_DOUBLE_WIDE;
5275 else
5276 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5277 }
5278
5279 /* default to 8bpc */
5280 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5281 if (is_dp) {
5282 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5283 pipeconf |= PIPECONF_BPP_6 |
5284 PIPECONF_DITHER_EN |
5285 PIPECONF_DITHER_TYPE_SP;
5286 }
5287 }
5288
5289 dpll |= DPLL_VCO_ENABLE;
5290
5291 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5292 drm_mode_debug_printmodeline(mode);
5293
5294 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5295
5296 POSTING_READ(DPLL(pipe));
5297 udelay(150);
5298
5299 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5300 * This is an exception to the general rule that mode_set doesn't turn
5301 * things on.
5302 */
5303 if (is_lvds) {
5304 temp = I915_READ(LVDS);
5305 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5306 if (pipe == 1) {
5307 temp |= LVDS_PIPEB_SELECT;
5308 } else {
5309 temp &= ~LVDS_PIPEB_SELECT;
5310 }
5311 /* set the corresponsding LVDS_BORDER bit */
5312 temp |= dev_priv->lvds_border_bits;
5313 /* Set the B0-B3 data pairs corresponding to whether we're going to
5314 * set the DPLLs for dual-channel mode or not.
5315 */
5316 if (clock.p2 == 7)
5317 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5318 else
5319 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5320
5321 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5322 * appropriately here, but we need to look more thoroughly into how
5323 * panels behave in the two modes.
5324 */
5325 /* set the dithering flag on LVDS as needed */
5326 if (INTEL_INFO(dev)->gen >= 4) {
5327 if (dev_priv->lvds_dither)
5328 temp |= LVDS_ENABLE_DITHER;
5329 else
5330 temp &= ~LVDS_ENABLE_DITHER;
5331 }
5332 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5333 lvds_sync |= LVDS_HSYNC_POLARITY;
5334 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5335 lvds_sync |= LVDS_VSYNC_POLARITY;
5336 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5337 != lvds_sync) {
5338 char flags[2] = "-+";
5339 DRM_INFO("Changing LVDS panel from "
5340 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5341 flags[!(temp & LVDS_HSYNC_POLARITY)],
5342 flags[!(temp & LVDS_VSYNC_POLARITY)],
5343 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5344 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5345 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5346 temp |= lvds_sync;
5347 }
5348 I915_WRITE(LVDS, temp);
5349 }
5350
5351 if (is_dp) {
5352 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5353 }
5354
5355 I915_WRITE(DPLL(pipe), dpll);
5356
5357 /* Wait for the clocks to stabilize. */
5358 POSTING_READ(DPLL(pipe));
5359 udelay(150);
5360
5361 if (INTEL_INFO(dev)->gen >= 4) {
5362 temp = 0;
5363 if (is_sdvo) {
5364 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5365 if (temp > 1)
5366 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5367 else
5368 temp = 0;
5369 }
5370 I915_WRITE(DPLL_MD(pipe), temp);
5371 } else {
5372 /* The pixel multiplier can only be updated once the
5373 * DPLL is enabled and the clocks are stable.
5374 *
5375 * So write it again.
5376 */
5377 I915_WRITE(DPLL(pipe), dpll);
5378 }
5379
5380 if (HAS_PIPE_CXSR(dev)) {
5381 if (intel_crtc->lowfreq_avail) {
5382 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5383 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5384 } else {
5385 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5386 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5387 }
5388 }
5389
5390 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5391 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5392 /* the chip adds 2 halflines automatically */
5393 adjusted_mode->crtc_vdisplay -= 1;
5394 adjusted_mode->crtc_vtotal -= 1;
5395 adjusted_mode->crtc_vblank_start -= 1;
5396 adjusted_mode->crtc_vblank_end -= 1;
5397 adjusted_mode->crtc_vsync_end -= 1;
5398 adjusted_mode->crtc_vsync_start -= 1;
5399 } else
5400 pipeconf &= ~PIPECONF_INTERLACE_MASK; /* progressive */
5401
5402 I915_WRITE(HTOTAL(pipe),
5403 (adjusted_mode->crtc_hdisplay - 1) |
5404 ((adjusted_mode->crtc_htotal - 1) << 16));
5405 I915_WRITE(HBLANK(pipe),
5406 (adjusted_mode->crtc_hblank_start - 1) |
5407 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5408 I915_WRITE(HSYNC(pipe),
5409 (adjusted_mode->crtc_hsync_start - 1) |
5410 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5411
5412 I915_WRITE(VTOTAL(pipe),
5413 (adjusted_mode->crtc_vdisplay - 1) |
5414 ((adjusted_mode->crtc_vtotal - 1) << 16));
5415 I915_WRITE(VBLANK(pipe),
5416 (adjusted_mode->crtc_vblank_start - 1) |
5417 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5418 I915_WRITE(VSYNC(pipe),
5419 (adjusted_mode->crtc_vsync_start - 1) |
5420 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5421
5422 /* pipesrc and dspsize control the size that is scaled from,
5423 * which should always be the user's requested size.
5424 */
5425 I915_WRITE(DSPSIZE(plane),
5426 ((mode->vdisplay - 1) << 16) |
5427 (mode->hdisplay - 1));
5428 I915_WRITE(DSPPOS(plane), 0);
5429 I915_WRITE(PIPESRC(pipe),
5430 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5431
5432 I915_WRITE(PIPECONF(pipe), pipeconf);
5433 POSTING_READ(PIPECONF(pipe));
5434 intel_enable_pipe(dev_priv, pipe, false);
5435
5436 intel_wait_for_vblank(dev, pipe);
5437
5438 I915_WRITE(DSPCNTR(plane), dspcntr);
5439 POSTING_READ(DSPCNTR(plane));
5440 intel_enable_plane(dev_priv, plane, pipe);
5441
5442 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5443
5444 intel_update_watermarks(dev);
5445
5446 return ret;
5447 }
5448
5449 /*
5450 * Initialize reference clocks when the driver loads
5451 */
5452 void ironlake_init_pch_refclk(struct drm_device *dev)
5453 {
5454 struct drm_i915_private *dev_priv = dev->dev_private;
5455 struct drm_mode_config *mode_config = &dev->mode_config;
5456 struct intel_encoder *encoder;
5457 u32 temp;
5458 bool has_lvds = false;
5459 bool has_cpu_edp = false;
5460 bool has_pch_edp = false;
5461 bool has_panel = false;
5462 bool has_ck505 = false;
5463 bool can_ssc = false;
5464
5465 /* We need to take the global config into account */
5466 list_for_each_entry(encoder, &mode_config->encoder_list,
5467 base.head) {
5468 switch (encoder->type) {
5469 case INTEL_OUTPUT_LVDS:
5470 has_panel = true;
5471 has_lvds = true;
5472 break;
5473 case INTEL_OUTPUT_EDP:
5474 has_panel = true;
5475 if (intel_encoder_is_pch_edp(&encoder->base))
5476 has_pch_edp = true;
5477 else
5478 has_cpu_edp = true;
5479 break;
5480 }
5481 }
5482
5483 if (HAS_PCH_IBX(dev)) {
5484 has_ck505 = dev_priv->display_clock_mode;
5485 can_ssc = has_ck505;
5486 } else {
5487 has_ck505 = false;
5488 can_ssc = true;
5489 }
5490
5491 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5492 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5493 has_ck505);
5494
5495 /* Ironlake: try to setup display ref clock before DPLL
5496 * enabling. This is only under driver's control after
5497 * PCH B stepping, previous chipset stepping should be
5498 * ignoring this setting.
5499 */
5500 temp = I915_READ(PCH_DREF_CONTROL);
5501 /* Always enable nonspread source */
5502 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5503
5504 if (has_ck505)
5505 temp |= DREF_NONSPREAD_CK505_ENABLE;
5506 else
5507 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5508
5509 if (has_panel) {
5510 temp &= ~DREF_SSC_SOURCE_MASK;
5511 temp |= DREF_SSC_SOURCE_ENABLE;
5512
5513 /* SSC must be turned on before enabling the CPU output */
5514 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5515 DRM_DEBUG_KMS("Using SSC on panel\n");
5516 temp |= DREF_SSC1_ENABLE;
5517 }
5518
5519 /* Get SSC going before enabling the outputs */
5520 I915_WRITE(PCH_DREF_CONTROL, temp);
5521 POSTING_READ(PCH_DREF_CONTROL);
5522 udelay(200);
5523
5524 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5525
5526 /* Enable CPU source on CPU attached eDP */
5527 if (has_cpu_edp) {
5528 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5529 DRM_DEBUG_KMS("Using SSC on eDP\n");
5530 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5531 }
5532 else
5533 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5534 } else
5535 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5536
5537 I915_WRITE(PCH_DREF_CONTROL, temp);
5538 POSTING_READ(PCH_DREF_CONTROL);
5539 udelay(200);
5540 } else {
5541 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5542
5543 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5544
5545 /* Turn off CPU output */
5546 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5547
5548 I915_WRITE(PCH_DREF_CONTROL, temp);
5549 POSTING_READ(PCH_DREF_CONTROL);
5550 udelay(200);
5551
5552 /* Turn off the SSC source */
5553 temp &= ~DREF_SSC_SOURCE_MASK;
5554 temp |= DREF_SSC_SOURCE_DISABLE;
5555
5556 /* Turn off SSC1 */
5557 temp &= ~ DREF_SSC1_ENABLE;
5558
5559 I915_WRITE(PCH_DREF_CONTROL, temp);
5560 POSTING_READ(PCH_DREF_CONTROL);
5561 udelay(200);
5562 }
5563 }
5564
5565 static int ironlake_get_refclk(struct drm_crtc *crtc)
5566 {
5567 struct drm_device *dev = crtc->dev;
5568 struct drm_i915_private *dev_priv = dev->dev_private;
5569 struct intel_encoder *encoder;
5570 struct drm_mode_config *mode_config = &dev->mode_config;
5571 struct intel_encoder *edp_encoder = NULL;
5572 int num_connectors = 0;
5573 bool is_lvds = false;
5574
5575 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5576 if (encoder->base.crtc != crtc)
5577 continue;
5578
5579 switch (encoder->type) {
5580 case INTEL_OUTPUT_LVDS:
5581 is_lvds = true;
5582 break;
5583 case INTEL_OUTPUT_EDP:
5584 edp_encoder = encoder;
5585 break;
5586 }
5587 num_connectors++;
5588 }
5589
5590 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5591 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5592 dev_priv->lvds_ssc_freq);
5593 return dev_priv->lvds_ssc_freq * 1000;
5594 }
5595
5596 return 120000;
5597 }
5598
5599 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5600 struct drm_display_mode *mode,
5601 struct drm_display_mode *adjusted_mode,
5602 int x, int y,
5603 struct drm_framebuffer *old_fb)
5604 {
5605 struct drm_device *dev = crtc->dev;
5606 struct drm_i915_private *dev_priv = dev->dev_private;
5607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5608 int pipe = intel_crtc->pipe;
5609 int plane = intel_crtc->plane;
5610 int refclk, num_connectors = 0;
5611 intel_clock_t clock, reduced_clock;
5612 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5613 bool ok, has_reduced_clock = false, is_sdvo = false;
5614 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5615 struct intel_encoder *has_edp_encoder = NULL;
5616 struct drm_mode_config *mode_config = &dev->mode_config;
5617 struct intel_encoder *encoder;
5618 const intel_limit_t *limit;
5619 int ret;
5620 struct fdi_m_n m_n = {0};
5621 u32 temp;
5622 u32 lvds_sync = 0;
5623 int target_clock, pixel_multiplier, lane, link_bw, factor;
5624 unsigned int pipe_bpp;
5625 bool dither;
5626
5627 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5628 if (encoder->base.crtc != crtc)
5629 continue;
5630
5631 switch (encoder->type) {
5632 case INTEL_OUTPUT_LVDS:
5633 is_lvds = true;
5634 break;
5635 case INTEL_OUTPUT_SDVO:
5636 case INTEL_OUTPUT_HDMI:
5637 is_sdvo = true;
5638 if (encoder->needs_tv_clock)
5639 is_tv = true;
5640 break;
5641 case INTEL_OUTPUT_TVOUT:
5642 is_tv = true;
5643 break;
5644 case INTEL_OUTPUT_ANALOG:
5645 is_crt = true;
5646 break;
5647 case INTEL_OUTPUT_DISPLAYPORT:
5648 is_dp = true;
5649 break;
5650 case INTEL_OUTPUT_EDP:
5651 has_edp_encoder = encoder;
5652 break;
5653 }
5654
5655 num_connectors++;
5656 }
5657
5658 refclk = ironlake_get_refclk(crtc);
5659
5660 /*
5661 * Returns a set of divisors for the desired target clock with the given
5662 * refclk, or FALSE. The returned values represent the clock equation:
5663 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5664 */
5665 limit = intel_limit(crtc, refclk);
5666 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5667 &clock);
5668 if (!ok) {
5669 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5670 return -EINVAL;
5671 }
5672
5673 /* Ensure that the cursor is valid for the new mode before changing... */
5674 intel_crtc_update_cursor(crtc, true);
5675
5676 if (is_lvds && dev_priv->lvds_downclock_avail) {
5677 /*
5678 * Ensure we match the reduced clock's P to the target clock.
5679 * If the clocks don't match, we can't switch the display clock
5680 * by using the FP0/FP1. In such case we will disable the LVDS
5681 * downclock feature.
5682 */
5683 has_reduced_clock = limit->find_pll(limit, crtc,
5684 dev_priv->lvds_downclock,
5685 refclk,
5686 &clock,
5687 &reduced_clock);
5688 }
5689 /* SDVO TV has fixed PLL values depend on its clock range,
5690 this mirrors vbios setting. */
5691 if (is_sdvo && is_tv) {
5692 if (adjusted_mode->clock >= 100000
5693 && adjusted_mode->clock < 140500) {
5694 clock.p1 = 2;
5695 clock.p2 = 10;
5696 clock.n = 3;
5697 clock.m1 = 16;
5698 clock.m2 = 8;
5699 } else if (adjusted_mode->clock >= 140500
5700 && adjusted_mode->clock <= 200000) {
5701 clock.p1 = 1;
5702 clock.p2 = 10;
5703 clock.n = 6;
5704 clock.m1 = 12;
5705 clock.m2 = 8;
5706 }
5707 }
5708
5709 /* FDI link */
5710 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5711 lane = 0;
5712 /* CPU eDP doesn't require FDI link, so just set DP M/N
5713 according to current link config */
5714 if (has_edp_encoder &&
5715 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5716 target_clock = mode->clock;
5717 intel_edp_link_config(has_edp_encoder,
5718 &lane, &link_bw);
5719 } else {
5720 /* [e]DP over FDI requires target mode clock
5721 instead of link clock */
5722 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5723 target_clock = mode->clock;
5724 else
5725 target_clock = adjusted_mode->clock;
5726
5727 /* FDI is a binary signal running at ~2.7GHz, encoding
5728 * each output octet as 10 bits. The actual frequency
5729 * is stored as a divider into a 100MHz clock, and the
5730 * mode pixel clock is stored in units of 1KHz.
5731 * Hence the bw of each lane in terms of the mode signal
5732 * is:
5733 */
5734 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5735 }
5736
5737 /* determine panel color depth */
5738 temp = I915_READ(PIPECONF(pipe));
5739 temp &= ~PIPE_BPC_MASK;
5740 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5741 switch (pipe_bpp) {
5742 case 18:
5743 temp |= PIPE_6BPC;
5744 break;
5745 case 24:
5746 temp |= PIPE_8BPC;
5747 break;
5748 case 30:
5749 temp |= PIPE_10BPC;
5750 break;
5751 case 36:
5752 temp |= PIPE_12BPC;
5753 break;
5754 default:
5755 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5756 pipe_bpp);
5757 temp |= PIPE_8BPC;
5758 pipe_bpp = 24;
5759 break;
5760 }
5761
5762 intel_crtc->bpp = pipe_bpp;
5763 I915_WRITE(PIPECONF(pipe), temp);
5764
5765 if (!lane) {
5766 /*
5767 * Account for spread spectrum to avoid
5768 * oversubscribing the link. Max center spread
5769 * is 2.5%; use 5% for safety's sake.
5770 */
5771 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5772 lane = bps / (link_bw * 8) + 1;
5773 }
5774
5775 intel_crtc->fdi_lanes = lane;
5776
5777 if (pixel_multiplier > 1)
5778 link_bw *= pixel_multiplier;
5779 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5780 &m_n);
5781
5782 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5783 if (has_reduced_clock)
5784 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5785 reduced_clock.m2;
5786
5787 /* Enable autotuning of the PLL clock (if permissible) */
5788 factor = 21;
5789 if (is_lvds) {
5790 if ((intel_panel_use_ssc(dev_priv) &&
5791 dev_priv->lvds_ssc_freq == 100) ||
5792 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5793 factor = 25;
5794 } else if (is_sdvo && is_tv)
5795 factor = 20;
5796
5797 if (clock.m < factor * clock.n)
5798 fp |= FP_CB_TUNE;
5799
5800 dpll = 0;
5801
5802 if (is_lvds)
5803 dpll |= DPLLB_MODE_LVDS;
5804 else
5805 dpll |= DPLLB_MODE_DAC_SERIAL;
5806 if (is_sdvo) {
5807 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5808 if (pixel_multiplier > 1) {
5809 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5810 }
5811 dpll |= DPLL_DVO_HIGH_SPEED;
5812 }
5813 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5814 dpll |= DPLL_DVO_HIGH_SPEED;
5815
5816 /* compute bitmask from p1 value */
5817 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5818 /* also FPA1 */
5819 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5820
5821 switch (clock.p2) {
5822 case 5:
5823 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5824 break;
5825 case 7:
5826 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5827 break;
5828 case 10:
5829 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5830 break;
5831 case 14:
5832 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5833 break;
5834 }
5835
5836 if (is_sdvo && is_tv)
5837 dpll |= PLL_REF_INPUT_TVCLKINBC;
5838 else if (is_tv)
5839 /* XXX: just matching BIOS for now */
5840 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5841 dpll |= 3;
5842 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5843 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5844 else
5845 dpll |= PLL_REF_INPUT_DREFCLK;
5846
5847 /* setup pipeconf */
5848 pipeconf = I915_READ(PIPECONF(pipe));
5849
5850 /* Set up the display plane register */
5851 dspcntr = DISPPLANE_GAMMA_ENABLE;
5852
5853 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5854 drm_mode_debug_printmodeline(mode);
5855
5856 /* PCH eDP needs FDI, but CPU eDP does not */
5857 if (!intel_crtc->no_pll) {
5858 if (!has_edp_encoder ||
5859 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5860 I915_WRITE(PCH_FP0(pipe), fp);
5861 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5862
5863 POSTING_READ(PCH_DPLL(pipe));
5864 udelay(150);
5865 }
5866 } else {
5867 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5868 fp == I915_READ(PCH_FP0(0))) {
5869 intel_crtc->use_pll_a = true;
5870 DRM_DEBUG_KMS("using pipe a dpll\n");
5871 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5872 fp == I915_READ(PCH_FP0(1))) {
5873 intel_crtc->use_pll_a = false;
5874 DRM_DEBUG_KMS("using pipe b dpll\n");
5875 } else {
5876 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5877 return -EINVAL;
5878 }
5879 }
5880
5881 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5882 * This is an exception to the general rule that mode_set doesn't turn
5883 * things on.
5884 */
5885 if (is_lvds) {
5886 temp = I915_READ(PCH_LVDS);
5887 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5888 if (HAS_PCH_CPT(dev)) {
5889 temp &= ~PORT_TRANS_SEL_MASK;
5890 temp |= PORT_TRANS_SEL_CPT(pipe);
5891 } else {
5892 if (pipe == 1)
5893 temp |= LVDS_PIPEB_SELECT;
5894 else
5895 temp &= ~LVDS_PIPEB_SELECT;
5896 }
5897
5898 /* set the corresponsding LVDS_BORDER bit */
5899 temp |= dev_priv->lvds_border_bits;
5900 /* Set the B0-B3 data pairs corresponding to whether we're going to
5901 * set the DPLLs for dual-channel mode or not.
5902 */
5903 if (clock.p2 == 7)
5904 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5905 else
5906 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5907
5908 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5909 * appropriately here, but we need to look more thoroughly into how
5910 * panels behave in the two modes.
5911 */
5912 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5913 lvds_sync |= LVDS_HSYNC_POLARITY;
5914 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5915 lvds_sync |= LVDS_VSYNC_POLARITY;
5916 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5917 != lvds_sync) {
5918 char flags[2] = "-+";
5919 DRM_INFO("Changing LVDS panel from "
5920 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5921 flags[!(temp & LVDS_HSYNC_POLARITY)],
5922 flags[!(temp & LVDS_VSYNC_POLARITY)],
5923 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5924 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5925 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5926 temp |= lvds_sync;
5927 }
5928 I915_WRITE(PCH_LVDS, temp);
5929 }
5930
5931 pipeconf &= ~PIPECONF_DITHER_EN;
5932 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5933 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5934 pipeconf |= PIPECONF_DITHER_EN;
5935 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5936 }
5937 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5938 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5939 } else {
5940 /* For non-DP output, clear any trans DP clock recovery setting.*/
5941 I915_WRITE(TRANSDATA_M1(pipe), 0);
5942 I915_WRITE(TRANSDATA_N1(pipe), 0);
5943 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5944 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5945 }
5946
5947 if (!intel_crtc->no_pll &&
5948 (!has_edp_encoder ||
5949 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5950 I915_WRITE(PCH_DPLL(pipe), dpll);
5951
5952 /* Wait for the clocks to stabilize. */
5953 POSTING_READ(PCH_DPLL(pipe));
5954 udelay(150);
5955
5956 /* The pixel multiplier can only be updated once the
5957 * DPLL is enabled and the clocks are stable.
5958 *
5959 * So write it again.
5960 */
5961 I915_WRITE(PCH_DPLL(pipe), dpll);
5962 }
5963
5964 intel_crtc->lowfreq_avail = false;
5965 if (!intel_crtc->no_pll) {
5966 if (is_lvds && has_reduced_clock && i915_powersave) {
5967 I915_WRITE(PCH_FP1(pipe), fp2);
5968 intel_crtc->lowfreq_avail = true;
5969 if (HAS_PIPE_CXSR(dev)) {
5970 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5971 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5972 }
5973 } else {
5974 I915_WRITE(PCH_FP1(pipe), fp);
5975 if (HAS_PIPE_CXSR(dev)) {
5976 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5977 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5978 }
5979 }
5980 }
5981
5982 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5983 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5984 /* the chip adds 2 halflines automatically */
5985 adjusted_mode->crtc_vdisplay -= 1;
5986 adjusted_mode->crtc_vtotal -= 1;
5987 adjusted_mode->crtc_vblank_start -= 1;
5988 adjusted_mode->crtc_vblank_end -= 1;
5989 adjusted_mode->crtc_vsync_end -= 1;
5990 adjusted_mode->crtc_vsync_start -= 1;
5991 } else
5992 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5993
5994 I915_WRITE(HTOTAL(pipe),
5995 (adjusted_mode->crtc_hdisplay - 1) |
5996 ((adjusted_mode->crtc_htotal - 1) << 16));
5997 I915_WRITE(HBLANK(pipe),
5998 (adjusted_mode->crtc_hblank_start - 1) |
5999 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6000 I915_WRITE(HSYNC(pipe),
6001 (adjusted_mode->crtc_hsync_start - 1) |
6002 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6003
6004 I915_WRITE(VTOTAL(pipe),
6005 (adjusted_mode->crtc_vdisplay - 1) |
6006 ((adjusted_mode->crtc_vtotal - 1) << 16));
6007 I915_WRITE(VBLANK(pipe),
6008 (adjusted_mode->crtc_vblank_start - 1) |
6009 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6010 I915_WRITE(VSYNC(pipe),
6011 (adjusted_mode->crtc_vsync_start - 1) |
6012 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6013
6014 /* pipesrc controls the size that is scaled from, which should
6015 * always be the user's requested size.
6016 */
6017 I915_WRITE(PIPESRC(pipe),
6018 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6019
6020 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6021 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6022 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6023 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6024
6025 if (has_edp_encoder &&
6026 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6027 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6028 }
6029
6030 I915_WRITE(PIPECONF(pipe), pipeconf);
6031 POSTING_READ(PIPECONF(pipe));
6032
6033 intel_wait_for_vblank(dev, pipe);
6034
6035 if (IS_GEN5(dev)) {
6036 /* enable address swizzle for tiling buffer */
6037 temp = I915_READ(DISP_ARB_CTL);
6038 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
6039 }
6040
6041 I915_WRITE(DSPCNTR(plane), dspcntr);
6042 POSTING_READ(DSPCNTR(plane));
6043
6044 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6045
6046 intel_update_watermarks(dev);
6047
6048 return ret;
6049 }
6050
6051 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6052 struct drm_display_mode *mode,
6053 struct drm_display_mode *adjusted_mode,
6054 int x, int y,
6055 struct drm_framebuffer *old_fb)
6056 {
6057 struct drm_device *dev = crtc->dev;
6058 struct drm_i915_private *dev_priv = dev->dev_private;
6059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6060 int pipe = intel_crtc->pipe;
6061 int ret;
6062
6063 drm_vblank_pre_modeset(dev, pipe);
6064
6065 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6066 x, y, old_fb);
6067 drm_vblank_post_modeset(dev, pipe);
6068
6069 if (ret)
6070 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6071 else
6072 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6073
6074 return ret;
6075 }
6076
6077 static bool intel_eld_uptodate(struct drm_connector *connector,
6078 int reg_eldv, uint32_t bits_eldv,
6079 int reg_elda, uint32_t bits_elda,
6080 int reg_edid)
6081 {
6082 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6083 uint8_t *eld = connector->eld;
6084 uint32_t i;
6085
6086 i = I915_READ(reg_eldv);
6087 i &= bits_eldv;
6088
6089 if (!eld[0])
6090 return !i;
6091
6092 if (!i)
6093 return false;
6094
6095 i = I915_READ(reg_elda);
6096 i &= ~bits_elda;
6097 I915_WRITE(reg_elda, i);
6098
6099 for (i = 0; i < eld[2]; i++)
6100 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6101 return false;
6102
6103 return true;
6104 }
6105
6106 static void g4x_write_eld(struct drm_connector *connector,
6107 struct drm_crtc *crtc)
6108 {
6109 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6110 uint8_t *eld = connector->eld;
6111 uint32_t eldv;
6112 uint32_t len;
6113 uint32_t i;
6114
6115 i = I915_READ(G4X_AUD_VID_DID);
6116
6117 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6118 eldv = G4X_ELDV_DEVCL_DEVBLC;
6119 else
6120 eldv = G4X_ELDV_DEVCTG;
6121
6122 if (intel_eld_uptodate(connector,
6123 G4X_AUD_CNTL_ST, eldv,
6124 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6125 G4X_HDMIW_HDMIEDID))
6126 return;
6127
6128 i = I915_READ(G4X_AUD_CNTL_ST);
6129 i &= ~(eldv | G4X_ELD_ADDR);
6130 len = (i >> 9) & 0x1f; /* ELD buffer size */
6131 I915_WRITE(G4X_AUD_CNTL_ST, i);
6132
6133 if (!eld[0])
6134 return;
6135
6136 len = min_t(uint8_t, eld[2], len);
6137 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6138 for (i = 0; i < len; i++)
6139 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6140
6141 i = I915_READ(G4X_AUD_CNTL_ST);
6142 i |= eldv;
6143 I915_WRITE(G4X_AUD_CNTL_ST, i);
6144 }
6145
6146 static void ironlake_write_eld(struct drm_connector *connector,
6147 struct drm_crtc *crtc)
6148 {
6149 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6150 uint8_t *eld = connector->eld;
6151 uint32_t eldv;
6152 uint32_t i;
6153 int len;
6154 int hdmiw_hdmiedid;
6155 int aud_config;
6156 int aud_cntl_st;
6157 int aud_cntrl_st2;
6158
6159 if (HAS_PCH_IBX(connector->dev)) {
6160 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6161 aud_config = IBX_AUD_CONFIG_A;
6162 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6163 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6164 } else {
6165 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6166 aud_config = CPT_AUD_CONFIG_A;
6167 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6168 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6169 }
6170
6171 i = to_intel_crtc(crtc)->pipe;
6172 hdmiw_hdmiedid += i * 0x100;
6173 aud_cntl_st += i * 0x100;
6174 aud_config += i * 0x100;
6175
6176 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6177
6178 i = I915_READ(aud_cntl_st);
6179 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6180 if (!i) {
6181 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6182 /* operate blindly on all ports */
6183 eldv = IBX_ELD_VALIDB;
6184 eldv |= IBX_ELD_VALIDB << 4;
6185 eldv |= IBX_ELD_VALIDB << 8;
6186 } else {
6187 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6188 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6189 }
6190
6191 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6192 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6193 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6194 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6195 } else
6196 I915_WRITE(aud_config, 0);
6197
6198 if (intel_eld_uptodate(connector,
6199 aud_cntrl_st2, eldv,
6200 aud_cntl_st, IBX_ELD_ADDRESS,
6201 hdmiw_hdmiedid))
6202 return;
6203
6204 i = I915_READ(aud_cntrl_st2);
6205 i &= ~eldv;
6206 I915_WRITE(aud_cntrl_st2, i);
6207
6208 if (!eld[0])
6209 return;
6210
6211 i = I915_READ(aud_cntl_st);
6212 i &= ~IBX_ELD_ADDRESS;
6213 I915_WRITE(aud_cntl_st, i);
6214
6215 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6216 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6217 for (i = 0; i < len; i++)
6218 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6219
6220 i = I915_READ(aud_cntrl_st2);
6221 i |= eldv;
6222 I915_WRITE(aud_cntrl_st2, i);
6223 }
6224
6225 void intel_write_eld(struct drm_encoder *encoder,
6226 struct drm_display_mode *mode)
6227 {
6228 struct drm_crtc *crtc = encoder->crtc;
6229 struct drm_connector *connector;
6230 struct drm_device *dev = encoder->dev;
6231 struct drm_i915_private *dev_priv = dev->dev_private;
6232
6233 connector = drm_select_eld(encoder, mode);
6234 if (!connector)
6235 return;
6236
6237 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6238 connector->base.id,
6239 drm_get_connector_name(connector),
6240 connector->encoder->base.id,
6241 drm_get_encoder_name(connector->encoder));
6242
6243 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6244
6245 if (dev_priv->display.write_eld)
6246 dev_priv->display.write_eld(connector, crtc);
6247 }
6248
6249 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6250 void intel_crtc_load_lut(struct drm_crtc *crtc)
6251 {
6252 struct drm_device *dev = crtc->dev;
6253 struct drm_i915_private *dev_priv = dev->dev_private;
6254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255 int palreg = PALETTE(intel_crtc->pipe);
6256 int i;
6257
6258 /* The clocks have to be on to load the palette. */
6259 if (!crtc->enabled)
6260 return;
6261
6262 /* use legacy palette for Ironlake */
6263 if (HAS_PCH_SPLIT(dev))
6264 palreg = LGC_PALETTE(intel_crtc->pipe);
6265
6266 for (i = 0; i < 256; i++) {
6267 I915_WRITE(palreg + 4 * i,
6268 (intel_crtc->lut_r[i] << 16) |
6269 (intel_crtc->lut_g[i] << 8) |
6270 intel_crtc->lut_b[i]);
6271 }
6272 }
6273
6274 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6275 {
6276 struct drm_device *dev = crtc->dev;
6277 struct drm_i915_private *dev_priv = dev->dev_private;
6278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6279 bool visible = base != 0;
6280 u32 cntl;
6281
6282 if (intel_crtc->cursor_visible == visible)
6283 return;
6284
6285 cntl = I915_READ(_CURACNTR);
6286 if (visible) {
6287 /* On these chipsets we can only modify the base whilst
6288 * the cursor is disabled.
6289 */
6290 I915_WRITE(_CURABASE, base);
6291
6292 cntl &= ~(CURSOR_FORMAT_MASK);
6293 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6294 cntl |= CURSOR_ENABLE |
6295 CURSOR_GAMMA_ENABLE |
6296 CURSOR_FORMAT_ARGB;
6297 } else
6298 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6299 I915_WRITE(_CURACNTR, cntl);
6300
6301 intel_crtc->cursor_visible = visible;
6302 }
6303
6304 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6305 {
6306 struct drm_device *dev = crtc->dev;
6307 struct drm_i915_private *dev_priv = dev->dev_private;
6308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6309 int pipe = intel_crtc->pipe;
6310 bool visible = base != 0;
6311
6312 if (intel_crtc->cursor_visible != visible) {
6313 uint32_t cntl = I915_READ(CURCNTR(pipe));
6314 if (base) {
6315 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6316 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6317 cntl |= pipe << 28; /* Connect to correct pipe */
6318 } else {
6319 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6320 cntl |= CURSOR_MODE_DISABLE;
6321 }
6322 I915_WRITE(CURCNTR(pipe), cntl);
6323
6324 intel_crtc->cursor_visible = visible;
6325 }
6326 /* and commit changes on next vblank */
6327 I915_WRITE(CURBASE(pipe), base);
6328 }
6329
6330 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6331 {
6332 struct drm_device *dev = crtc->dev;
6333 struct drm_i915_private *dev_priv = dev->dev_private;
6334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6335 int pipe = intel_crtc->pipe;
6336 bool visible = base != 0;
6337
6338 if (intel_crtc->cursor_visible != visible) {
6339 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6340 if (base) {
6341 cntl &= ~CURSOR_MODE;
6342 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6343 } else {
6344 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6345 cntl |= CURSOR_MODE_DISABLE;
6346 }
6347 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6348
6349 intel_crtc->cursor_visible = visible;
6350 }
6351 /* and commit changes on next vblank */
6352 I915_WRITE(CURBASE_IVB(pipe), base);
6353 }
6354
6355 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6356 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6357 bool on)
6358 {
6359 struct drm_device *dev = crtc->dev;
6360 struct drm_i915_private *dev_priv = dev->dev_private;
6361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6362 int pipe = intel_crtc->pipe;
6363 int x = intel_crtc->cursor_x;
6364 int y = intel_crtc->cursor_y;
6365 u32 base, pos;
6366 bool visible;
6367
6368 pos = 0;
6369
6370 if (on && crtc->enabled && crtc->fb) {
6371 base = intel_crtc->cursor_addr;
6372 if (x > (int) crtc->fb->width)
6373 base = 0;
6374
6375 if (y > (int) crtc->fb->height)
6376 base = 0;
6377 } else
6378 base = 0;
6379
6380 if (x < 0) {
6381 if (x + intel_crtc->cursor_width < 0)
6382 base = 0;
6383
6384 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6385 x = -x;
6386 }
6387 pos |= x << CURSOR_X_SHIFT;
6388
6389 if (y < 0) {
6390 if (y + intel_crtc->cursor_height < 0)
6391 base = 0;
6392
6393 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6394 y = -y;
6395 }
6396 pos |= y << CURSOR_Y_SHIFT;
6397
6398 visible = base != 0;
6399 if (!visible && !intel_crtc->cursor_visible)
6400 return;
6401
6402 if (IS_IVYBRIDGE(dev)) {
6403 I915_WRITE(CURPOS_IVB(pipe), pos);
6404 ivb_update_cursor(crtc, base);
6405 } else {
6406 I915_WRITE(CURPOS(pipe), pos);
6407 if (IS_845G(dev) || IS_I865G(dev))
6408 i845_update_cursor(crtc, base);
6409 else
6410 i9xx_update_cursor(crtc, base);
6411 }
6412
6413 if (visible)
6414 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6415 }
6416
6417 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6418 struct drm_file *file,
6419 uint32_t handle,
6420 uint32_t width, uint32_t height)
6421 {
6422 struct drm_device *dev = crtc->dev;
6423 struct drm_i915_private *dev_priv = dev->dev_private;
6424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6425 struct drm_i915_gem_object *obj;
6426 uint32_t addr;
6427 int ret;
6428
6429 DRM_DEBUG_KMS("\n");
6430
6431 /* if we want to turn off the cursor ignore width and height */
6432 if (!handle) {
6433 DRM_DEBUG_KMS("cursor off\n");
6434 addr = 0;
6435 obj = NULL;
6436 mutex_lock(&dev->struct_mutex);
6437 goto finish;
6438 }
6439
6440 /* Currently we only support 64x64 cursors */
6441 if (width != 64 || height != 64) {
6442 DRM_ERROR("we currently only support 64x64 cursors\n");
6443 return -EINVAL;
6444 }
6445
6446 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6447 if (&obj->base == NULL)
6448 return -ENOENT;
6449
6450 if (obj->base.size < width * height * 4) {
6451 DRM_ERROR("buffer is to small\n");
6452 ret = -ENOMEM;
6453 goto fail;
6454 }
6455
6456 /* we only need to pin inside GTT if cursor is non-phy */
6457 mutex_lock(&dev->struct_mutex);
6458 if (!dev_priv->info->cursor_needs_physical) {
6459 if (obj->tiling_mode) {
6460 DRM_ERROR("cursor cannot be tiled\n");
6461 ret = -EINVAL;
6462 goto fail_locked;
6463 }
6464
6465 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6466 if (ret) {
6467 DRM_ERROR("failed to move cursor bo into the GTT\n");
6468 goto fail_locked;
6469 }
6470
6471 ret = i915_gem_object_put_fence(obj);
6472 if (ret) {
6473 DRM_ERROR("failed to release fence for cursor");
6474 goto fail_unpin;
6475 }
6476
6477 addr = obj->gtt_offset;
6478 } else {
6479 int align = IS_I830(dev) ? 16 * 1024 : 256;
6480 ret = i915_gem_attach_phys_object(dev, obj,
6481 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6482 align);
6483 if (ret) {
6484 DRM_ERROR("failed to attach phys object\n");
6485 goto fail_locked;
6486 }
6487 addr = obj->phys_obj->handle->busaddr;
6488 }
6489
6490 if (IS_GEN2(dev))
6491 I915_WRITE(CURSIZE, (height << 12) | width);
6492
6493 finish:
6494 if (intel_crtc->cursor_bo) {
6495 if (dev_priv->info->cursor_needs_physical) {
6496 if (intel_crtc->cursor_bo != obj)
6497 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6498 } else
6499 i915_gem_object_unpin(intel_crtc->cursor_bo);
6500 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6501 }
6502
6503 mutex_unlock(&dev->struct_mutex);
6504
6505 intel_crtc->cursor_addr = addr;
6506 intel_crtc->cursor_bo = obj;
6507 intel_crtc->cursor_width = width;
6508 intel_crtc->cursor_height = height;
6509
6510 intel_crtc_update_cursor(crtc, true);
6511
6512 return 0;
6513 fail_unpin:
6514 i915_gem_object_unpin(obj);
6515 fail_locked:
6516 mutex_unlock(&dev->struct_mutex);
6517 fail:
6518 drm_gem_object_unreference_unlocked(&obj->base);
6519 return ret;
6520 }
6521
6522 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6523 {
6524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6525
6526 intel_crtc->cursor_x = x;
6527 intel_crtc->cursor_y = y;
6528
6529 intel_crtc_update_cursor(crtc, true);
6530
6531 return 0;
6532 }
6533
6534 /** Sets the color ramps on behalf of RandR */
6535 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6536 u16 blue, int regno)
6537 {
6538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6539
6540 intel_crtc->lut_r[regno] = red >> 8;
6541 intel_crtc->lut_g[regno] = green >> 8;
6542 intel_crtc->lut_b[regno] = blue >> 8;
6543 }
6544
6545 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6546 u16 *blue, int regno)
6547 {
6548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6549
6550 *red = intel_crtc->lut_r[regno] << 8;
6551 *green = intel_crtc->lut_g[regno] << 8;
6552 *blue = intel_crtc->lut_b[regno] << 8;
6553 }
6554
6555 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6556 u16 *blue, uint32_t start, uint32_t size)
6557 {
6558 int end = (start + size > 256) ? 256 : start + size, i;
6559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6560
6561 for (i = start; i < end; i++) {
6562 intel_crtc->lut_r[i] = red[i] >> 8;
6563 intel_crtc->lut_g[i] = green[i] >> 8;
6564 intel_crtc->lut_b[i] = blue[i] >> 8;
6565 }
6566
6567 intel_crtc_load_lut(crtc);
6568 }
6569
6570 /**
6571 * Get a pipe with a simple mode set on it for doing load-based monitor
6572 * detection.
6573 *
6574 * It will be up to the load-detect code to adjust the pipe as appropriate for
6575 * its requirements. The pipe will be connected to no other encoders.
6576 *
6577 * Currently this code will only succeed if there is a pipe with no encoders
6578 * configured for it. In the future, it could choose to temporarily disable
6579 * some outputs to free up a pipe for its use.
6580 *
6581 * \return crtc, or NULL if no pipes are available.
6582 */
6583
6584 /* VESA 640x480x72Hz mode to set on the pipe */
6585 static struct drm_display_mode load_detect_mode = {
6586 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6587 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6588 };
6589
6590 static struct drm_framebuffer *
6591 intel_framebuffer_create(struct drm_device *dev,
6592 struct drm_mode_fb_cmd2 *mode_cmd,
6593 struct drm_i915_gem_object *obj)
6594 {
6595 struct intel_framebuffer *intel_fb;
6596 int ret;
6597
6598 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6599 if (!intel_fb) {
6600 drm_gem_object_unreference_unlocked(&obj->base);
6601 return ERR_PTR(-ENOMEM);
6602 }
6603
6604 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6605 if (ret) {
6606 drm_gem_object_unreference_unlocked(&obj->base);
6607 kfree(intel_fb);
6608 return ERR_PTR(ret);
6609 }
6610
6611 return &intel_fb->base;
6612 }
6613
6614 static u32
6615 intel_framebuffer_pitch_for_width(int width, int bpp)
6616 {
6617 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6618 return ALIGN(pitch, 64);
6619 }
6620
6621 static u32
6622 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6623 {
6624 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6625 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6626 }
6627
6628 static struct drm_framebuffer *
6629 intel_framebuffer_create_for_mode(struct drm_device *dev,
6630 struct drm_display_mode *mode,
6631 int depth, int bpp)
6632 {
6633 struct drm_i915_gem_object *obj;
6634 struct drm_mode_fb_cmd2 mode_cmd;
6635
6636 obj = i915_gem_alloc_object(dev,
6637 intel_framebuffer_size_for_mode(mode, bpp));
6638 if (obj == NULL)
6639 return ERR_PTR(-ENOMEM);
6640
6641 mode_cmd.width = mode->hdisplay;
6642 mode_cmd.height = mode->vdisplay;
6643 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6644 bpp);
6645 mode_cmd.pixel_format = 0;
6646
6647 return intel_framebuffer_create(dev, &mode_cmd, obj);
6648 }
6649
6650 static struct drm_framebuffer *
6651 mode_fits_in_fbdev(struct drm_device *dev,
6652 struct drm_display_mode *mode)
6653 {
6654 struct drm_i915_private *dev_priv = dev->dev_private;
6655 struct drm_i915_gem_object *obj;
6656 struct drm_framebuffer *fb;
6657
6658 if (dev_priv->fbdev == NULL)
6659 return NULL;
6660
6661 obj = dev_priv->fbdev->ifb.obj;
6662 if (obj == NULL)
6663 return NULL;
6664
6665 fb = &dev_priv->fbdev->ifb.base;
6666 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6667 fb->bits_per_pixel))
6668 return NULL;
6669
6670 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6671 return NULL;
6672
6673 return fb;
6674 }
6675
6676 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6677 struct drm_connector *connector,
6678 struct drm_display_mode *mode,
6679 struct intel_load_detect_pipe *old)
6680 {
6681 struct intel_crtc *intel_crtc;
6682 struct drm_crtc *possible_crtc;
6683 struct drm_encoder *encoder = &intel_encoder->base;
6684 struct drm_crtc *crtc = NULL;
6685 struct drm_device *dev = encoder->dev;
6686 struct drm_framebuffer *old_fb;
6687 int i = -1;
6688
6689 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6690 connector->base.id, drm_get_connector_name(connector),
6691 encoder->base.id, drm_get_encoder_name(encoder));
6692
6693 /*
6694 * Algorithm gets a little messy:
6695 *
6696 * - if the connector already has an assigned crtc, use it (but make
6697 * sure it's on first)
6698 *
6699 * - try to find the first unused crtc that can drive this connector,
6700 * and use that if we find one
6701 */
6702
6703 /* See if we already have a CRTC for this connector */
6704 if (encoder->crtc) {
6705 crtc = encoder->crtc;
6706
6707 intel_crtc = to_intel_crtc(crtc);
6708 old->dpms_mode = intel_crtc->dpms_mode;
6709 old->load_detect_temp = false;
6710
6711 /* Make sure the crtc and connector are running */
6712 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6713 struct drm_encoder_helper_funcs *encoder_funcs;
6714 struct drm_crtc_helper_funcs *crtc_funcs;
6715
6716 crtc_funcs = crtc->helper_private;
6717 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6718
6719 encoder_funcs = encoder->helper_private;
6720 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6721 }
6722
6723 return true;
6724 }
6725
6726 /* Find an unused one (if possible) */
6727 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6728 i++;
6729 if (!(encoder->possible_crtcs & (1 << i)))
6730 continue;
6731 if (!possible_crtc->enabled) {
6732 crtc = possible_crtc;
6733 break;
6734 }
6735 }
6736
6737 /*
6738 * If we didn't find an unused CRTC, don't use any.
6739 */
6740 if (!crtc) {
6741 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6742 return false;
6743 }
6744
6745 encoder->crtc = crtc;
6746 connector->encoder = encoder;
6747
6748 intel_crtc = to_intel_crtc(crtc);
6749 old->dpms_mode = intel_crtc->dpms_mode;
6750 old->load_detect_temp = true;
6751 old->release_fb = NULL;
6752
6753 if (!mode)
6754 mode = &load_detect_mode;
6755
6756 old_fb = crtc->fb;
6757
6758 /* We need a framebuffer large enough to accommodate all accesses
6759 * that the plane may generate whilst we perform load detection.
6760 * We can not rely on the fbcon either being present (we get called
6761 * during its initialisation to detect all boot displays, or it may
6762 * not even exist) or that it is large enough to satisfy the
6763 * requested mode.
6764 */
6765 crtc->fb = mode_fits_in_fbdev(dev, mode);
6766 if (crtc->fb == NULL) {
6767 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6768 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6769 old->release_fb = crtc->fb;
6770 } else
6771 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6772 if (IS_ERR(crtc->fb)) {
6773 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6774 crtc->fb = old_fb;
6775 return false;
6776 }
6777
6778 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6779 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6780 if (old->release_fb)
6781 old->release_fb->funcs->destroy(old->release_fb);
6782 crtc->fb = old_fb;
6783 return false;
6784 }
6785
6786 /* let the connector get through one full cycle before testing */
6787 intel_wait_for_vblank(dev, intel_crtc->pipe);
6788
6789 return true;
6790 }
6791
6792 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6793 struct drm_connector *connector,
6794 struct intel_load_detect_pipe *old)
6795 {
6796 struct drm_encoder *encoder = &intel_encoder->base;
6797 struct drm_device *dev = encoder->dev;
6798 struct drm_crtc *crtc = encoder->crtc;
6799 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6800 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6801
6802 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6803 connector->base.id, drm_get_connector_name(connector),
6804 encoder->base.id, drm_get_encoder_name(encoder));
6805
6806 if (old->load_detect_temp) {
6807 connector->encoder = NULL;
6808 drm_helper_disable_unused_functions(dev);
6809
6810 if (old->release_fb)
6811 old->release_fb->funcs->destroy(old->release_fb);
6812
6813 return;
6814 }
6815
6816 /* Switch crtc and encoder back off if necessary */
6817 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6818 encoder_funcs->dpms(encoder, old->dpms_mode);
6819 crtc_funcs->dpms(crtc, old->dpms_mode);
6820 }
6821 }
6822
6823 /* Returns the clock of the currently programmed mode of the given pipe. */
6824 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6825 {
6826 struct drm_i915_private *dev_priv = dev->dev_private;
6827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6828 int pipe = intel_crtc->pipe;
6829 u32 dpll = I915_READ(DPLL(pipe));
6830 u32 fp;
6831 intel_clock_t clock;
6832
6833 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6834 fp = I915_READ(FP0(pipe));
6835 else
6836 fp = I915_READ(FP1(pipe));
6837
6838 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6839 if (IS_PINEVIEW(dev)) {
6840 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6841 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6842 } else {
6843 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6844 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6845 }
6846
6847 if (!IS_GEN2(dev)) {
6848 if (IS_PINEVIEW(dev))
6849 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6850 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6851 else
6852 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6853 DPLL_FPA01_P1_POST_DIV_SHIFT);
6854
6855 switch (dpll & DPLL_MODE_MASK) {
6856 case DPLLB_MODE_DAC_SERIAL:
6857 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6858 5 : 10;
6859 break;
6860 case DPLLB_MODE_LVDS:
6861 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6862 7 : 14;
6863 break;
6864 default:
6865 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6866 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6867 return 0;
6868 }
6869
6870 /* XXX: Handle the 100Mhz refclk */
6871 intel_clock(dev, 96000, &clock);
6872 } else {
6873 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6874
6875 if (is_lvds) {
6876 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6877 DPLL_FPA01_P1_POST_DIV_SHIFT);
6878 clock.p2 = 14;
6879
6880 if ((dpll & PLL_REF_INPUT_MASK) ==
6881 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6882 /* XXX: might not be 66MHz */
6883 intel_clock(dev, 66000, &clock);
6884 } else
6885 intel_clock(dev, 48000, &clock);
6886 } else {
6887 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6888 clock.p1 = 2;
6889 else {
6890 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6891 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6892 }
6893 if (dpll & PLL_P2_DIVIDE_BY_4)
6894 clock.p2 = 4;
6895 else
6896 clock.p2 = 2;
6897
6898 intel_clock(dev, 48000, &clock);
6899 }
6900 }
6901
6902 /* XXX: It would be nice to validate the clocks, but we can't reuse
6903 * i830PllIsValid() because it relies on the xf86_config connector
6904 * configuration being accurate, which it isn't necessarily.
6905 */
6906
6907 return clock.dot;
6908 }
6909
6910 /** Returns the currently programmed mode of the given pipe. */
6911 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6912 struct drm_crtc *crtc)
6913 {
6914 struct drm_i915_private *dev_priv = dev->dev_private;
6915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6916 int pipe = intel_crtc->pipe;
6917 struct drm_display_mode *mode;
6918 int htot = I915_READ(HTOTAL(pipe));
6919 int hsync = I915_READ(HSYNC(pipe));
6920 int vtot = I915_READ(VTOTAL(pipe));
6921 int vsync = I915_READ(VSYNC(pipe));
6922
6923 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6924 if (!mode)
6925 return NULL;
6926
6927 mode->clock = intel_crtc_clock_get(dev, crtc);
6928 mode->hdisplay = (htot & 0xffff) + 1;
6929 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6930 mode->hsync_start = (hsync & 0xffff) + 1;
6931 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6932 mode->vdisplay = (vtot & 0xffff) + 1;
6933 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6934 mode->vsync_start = (vsync & 0xffff) + 1;
6935 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6936
6937 drm_mode_set_name(mode);
6938 drm_mode_set_crtcinfo(mode, 0);
6939
6940 return mode;
6941 }
6942
6943 #define GPU_IDLE_TIMEOUT 500 /* ms */
6944
6945 /* When this timer fires, we've been idle for awhile */
6946 static void intel_gpu_idle_timer(unsigned long arg)
6947 {
6948 struct drm_device *dev = (struct drm_device *)arg;
6949 drm_i915_private_t *dev_priv = dev->dev_private;
6950
6951 if (!list_empty(&dev_priv->mm.active_list)) {
6952 /* Still processing requests, so just re-arm the timer. */
6953 mod_timer(&dev_priv->idle_timer, jiffies +
6954 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6955 return;
6956 }
6957
6958 dev_priv->busy = false;
6959 queue_work(dev_priv->wq, &dev_priv->idle_work);
6960 }
6961
6962 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6963
6964 static void intel_crtc_idle_timer(unsigned long arg)
6965 {
6966 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6967 struct drm_crtc *crtc = &intel_crtc->base;
6968 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6969 struct intel_framebuffer *intel_fb;
6970
6971 intel_fb = to_intel_framebuffer(crtc->fb);
6972 if (intel_fb && intel_fb->obj->active) {
6973 /* The framebuffer is still being accessed by the GPU. */
6974 mod_timer(&intel_crtc->idle_timer, jiffies +
6975 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6976 return;
6977 }
6978
6979 intel_crtc->busy = false;
6980 queue_work(dev_priv->wq, &dev_priv->idle_work);
6981 }
6982
6983 static void intel_increase_pllclock(struct drm_crtc *crtc)
6984 {
6985 struct drm_device *dev = crtc->dev;
6986 drm_i915_private_t *dev_priv = dev->dev_private;
6987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6988 int pipe = intel_crtc->pipe;
6989 int dpll_reg = DPLL(pipe);
6990 int dpll;
6991
6992 if (HAS_PCH_SPLIT(dev))
6993 return;
6994
6995 if (!dev_priv->lvds_downclock_avail)
6996 return;
6997
6998 dpll = I915_READ(dpll_reg);
6999 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7000 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7001
7002 /* Unlock panel regs */
7003 I915_WRITE(PP_CONTROL,
7004 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
7005
7006 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7007 I915_WRITE(dpll_reg, dpll);
7008 intel_wait_for_vblank(dev, pipe);
7009
7010 dpll = I915_READ(dpll_reg);
7011 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7012 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7013
7014 /* ...and lock them again */
7015 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
7016 }
7017
7018 /* Schedule downclock */
7019 mod_timer(&intel_crtc->idle_timer, jiffies +
7020 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7021 }
7022
7023 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7024 {
7025 struct drm_device *dev = crtc->dev;
7026 drm_i915_private_t *dev_priv = dev->dev_private;
7027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7028 int pipe = intel_crtc->pipe;
7029 int dpll_reg = DPLL(pipe);
7030 int dpll = I915_READ(dpll_reg);
7031
7032 if (HAS_PCH_SPLIT(dev))
7033 return;
7034
7035 if (!dev_priv->lvds_downclock_avail)
7036 return;
7037
7038 /*
7039 * Since this is called by a timer, we should never get here in
7040 * the manual case.
7041 */
7042 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7043 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7044
7045 /* Unlock panel regs */
7046 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
7047 PANEL_UNLOCK_REGS);
7048
7049 dpll |= DISPLAY_RATE_SELECT_FPA1;
7050 I915_WRITE(dpll_reg, dpll);
7051 intel_wait_for_vblank(dev, pipe);
7052 dpll = I915_READ(dpll_reg);
7053 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7054 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7055
7056 /* ...and lock them again */
7057 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
7058 }
7059
7060 }
7061
7062 /**
7063 * intel_idle_update - adjust clocks for idleness
7064 * @work: work struct
7065 *
7066 * Either the GPU or display (or both) went idle. Check the busy status
7067 * here and adjust the CRTC and GPU clocks as necessary.
7068 */
7069 static void intel_idle_update(struct work_struct *work)
7070 {
7071 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7072 idle_work);
7073 struct drm_device *dev = dev_priv->dev;
7074 struct drm_crtc *crtc;
7075 struct intel_crtc *intel_crtc;
7076
7077 if (!i915_powersave)
7078 return;
7079
7080 mutex_lock(&dev->struct_mutex);
7081
7082 i915_update_gfx_val(dev_priv);
7083
7084 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7085 /* Skip inactive CRTCs */
7086 if (!crtc->fb)
7087 continue;
7088
7089 intel_crtc = to_intel_crtc(crtc);
7090 if (!intel_crtc->busy)
7091 intel_decrease_pllclock(crtc);
7092 }
7093
7094
7095 mutex_unlock(&dev->struct_mutex);
7096 }
7097
7098 /**
7099 * intel_mark_busy - mark the GPU and possibly the display busy
7100 * @dev: drm device
7101 * @obj: object we're operating on
7102 *
7103 * Callers can use this function to indicate that the GPU is busy processing
7104 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7105 * buffer), we'll also mark the display as busy, so we know to increase its
7106 * clock frequency.
7107 */
7108 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7109 {
7110 drm_i915_private_t *dev_priv = dev->dev_private;
7111 struct drm_crtc *crtc = NULL;
7112 struct intel_framebuffer *intel_fb;
7113 struct intel_crtc *intel_crtc;
7114
7115 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7116 return;
7117
7118 if (!dev_priv->busy)
7119 dev_priv->busy = true;
7120 else
7121 mod_timer(&dev_priv->idle_timer, jiffies +
7122 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7123
7124 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7125 if (!crtc->fb)
7126 continue;
7127
7128 intel_crtc = to_intel_crtc(crtc);
7129 intel_fb = to_intel_framebuffer(crtc->fb);
7130 if (intel_fb->obj == obj) {
7131 if (!intel_crtc->busy) {
7132 /* Non-busy -> busy, upclock */
7133 intel_increase_pllclock(crtc);
7134 intel_crtc->busy = true;
7135 } else {
7136 /* Busy -> busy, put off timer */
7137 mod_timer(&intel_crtc->idle_timer, jiffies +
7138 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7139 }
7140 }
7141 }
7142 }
7143
7144 static void intel_crtc_destroy(struct drm_crtc *crtc)
7145 {
7146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7147 struct drm_device *dev = crtc->dev;
7148 struct intel_unpin_work *work;
7149 unsigned long flags;
7150
7151 spin_lock_irqsave(&dev->event_lock, flags);
7152 work = intel_crtc->unpin_work;
7153 intel_crtc->unpin_work = NULL;
7154 spin_unlock_irqrestore(&dev->event_lock, flags);
7155
7156 if (work) {
7157 cancel_work_sync(&work->work);
7158 kfree(work);
7159 }
7160
7161 drm_crtc_cleanup(crtc);
7162
7163 kfree(intel_crtc);
7164 }
7165
7166 static void intel_unpin_work_fn(struct work_struct *__work)
7167 {
7168 struct intel_unpin_work *work =
7169 container_of(__work, struct intel_unpin_work, work);
7170
7171 mutex_lock(&work->dev->struct_mutex);
7172 intel_unpin_fb_obj(work->old_fb_obj);
7173 drm_gem_object_unreference(&work->pending_flip_obj->base);
7174 drm_gem_object_unreference(&work->old_fb_obj->base);
7175
7176 intel_update_fbc(work->dev);
7177 mutex_unlock(&work->dev->struct_mutex);
7178 kfree(work);
7179 }
7180
7181 static void do_intel_finish_page_flip(struct drm_device *dev,
7182 struct drm_crtc *crtc)
7183 {
7184 drm_i915_private_t *dev_priv = dev->dev_private;
7185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7186 struct intel_unpin_work *work;
7187 struct drm_i915_gem_object *obj;
7188 struct drm_pending_vblank_event *e;
7189 struct timeval tnow, tvbl;
7190 unsigned long flags;
7191
7192 /* Ignore early vblank irqs */
7193 if (intel_crtc == NULL)
7194 return;
7195
7196 do_gettimeofday(&tnow);
7197
7198 spin_lock_irqsave(&dev->event_lock, flags);
7199 work = intel_crtc->unpin_work;
7200 if (work == NULL || !work->pending) {
7201 spin_unlock_irqrestore(&dev->event_lock, flags);
7202 return;
7203 }
7204
7205 intel_crtc->unpin_work = NULL;
7206
7207 if (work->event) {
7208 e = work->event;
7209 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7210
7211 /* Called before vblank count and timestamps have
7212 * been updated for the vblank interval of flip
7213 * completion? Need to increment vblank count and
7214 * add one videorefresh duration to returned timestamp
7215 * to account for this. We assume this happened if we
7216 * get called over 0.9 frame durations after the last
7217 * timestamped vblank.
7218 *
7219 * This calculation can not be used with vrefresh rates
7220 * below 5Hz (10Hz to be on the safe side) without
7221 * promoting to 64 integers.
7222 */
7223 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7224 9 * crtc->framedur_ns) {
7225 e->event.sequence++;
7226 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7227 crtc->framedur_ns);
7228 }
7229
7230 e->event.tv_sec = tvbl.tv_sec;
7231 e->event.tv_usec = tvbl.tv_usec;
7232
7233 list_add_tail(&e->base.link,
7234 &e->base.file_priv->event_list);
7235 wake_up_interruptible(&e->base.file_priv->event_wait);
7236 }
7237
7238 drm_vblank_put(dev, intel_crtc->pipe);
7239
7240 spin_unlock_irqrestore(&dev->event_lock, flags);
7241
7242 obj = work->old_fb_obj;
7243
7244 atomic_clear_mask(1 << intel_crtc->plane,
7245 &obj->pending_flip.counter);
7246 if (atomic_read(&obj->pending_flip) == 0)
7247 wake_up(&dev_priv->pending_flip_queue);
7248
7249 schedule_work(&work->work);
7250
7251 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7252 }
7253
7254 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7255 {
7256 drm_i915_private_t *dev_priv = dev->dev_private;
7257 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7258
7259 do_intel_finish_page_flip(dev, crtc);
7260 }
7261
7262 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7263 {
7264 drm_i915_private_t *dev_priv = dev->dev_private;
7265 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7266
7267 do_intel_finish_page_flip(dev, crtc);
7268 }
7269
7270 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7271 {
7272 drm_i915_private_t *dev_priv = dev->dev_private;
7273 struct intel_crtc *intel_crtc =
7274 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7275 unsigned long flags;
7276
7277 spin_lock_irqsave(&dev->event_lock, flags);
7278 if (intel_crtc->unpin_work) {
7279 if ((++intel_crtc->unpin_work->pending) > 1)
7280 DRM_ERROR("Prepared flip multiple times\n");
7281 } else {
7282 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7283 }
7284 spin_unlock_irqrestore(&dev->event_lock, flags);
7285 }
7286
7287 static int intel_gen2_queue_flip(struct drm_device *dev,
7288 struct drm_crtc *crtc,
7289 struct drm_framebuffer *fb,
7290 struct drm_i915_gem_object *obj)
7291 {
7292 struct drm_i915_private *dev_priv = dev->dev_private;
7293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7294 unsigned long offset;
7295 u32 flip_mask;
7296 int ret;
7297
7298 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7299 if (ret)
7300 goto out;
7301
7302 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7303 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7304
7305 ret = BEGIN_LP_RING(6);
7306 if (ret)
7307 goto out;
7308
7309 /* Can't queue multiple flips, so wait for the previous
7310 * one to finish before executing the next.
7311 */
7312 if (intel_crtc->plane)
7313 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7314 else
7315 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7316 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7317 OUT_RING(MI_NOOP);
7318 OUT_RING(MI_DISPLAY_FLIP |
7319 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7320 OUT_RING(fb->pitches[0]);
7321 OUT_RING(obj->gtt_offset + offset);
7322 OUT_RING(0); /* aux display base address, unused */
7323 ADVANCE_LP_RING();
7324 out:
7325 return ret;
7326 }
7327
7328 static int intel_gen3_queue_flip(struct drm_device *dev,
7329 struct drm_crtc *crtc,
7330 struct drm_framebuffer *fb,
7331 struct drm_i915_gem_object *obj)
7332 {
7333 struct drm_i915_private *dev_priv = dev->dev_private;
7334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7335 unsigned long offset;
7336 u32 flip_mask;
7337 int ret;
7338
7339 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7340 if (ret)
7341 goto out;
7342
7343 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7344 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7345
7346 ret = BEGIN_LP_RING(6);
7347 if (ret)
7348 goto out;
7349
7350 if (intel_crtc->plane)
7351 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7352 else
7353 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7354 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7355 OUT_RING(MI_NOOP);
7356 OUT_RING(MI_DISPLAY_FLIP_I915 |
7357 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7358 OUT_RING(fb->pitches[0]);
7359 OUT_RING(obj->gtt_offset + offset);
7360 OUT_RING(MI_NOOP);
7361
7362 ADVANCE_LP_RING();
7363 out:
7364 return ret;
7365 }
7366
7367 static int intel_gen4_queue_flip(struct drm_device *dev,
7368 struct drm_crtc *crtc,
7369 struct drm_framebuffer *fb,
7370 struct drm_i915_gem_object *obj)
7371 {
7372 struct drm_i915_private *dev_priv = dev->dev_private;
7373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7374 uint32_t pf, pipesrc;
7375 int ret;
7376
7377 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7378 if (ret)
7379 goto out;
7380
7381 ret = BEGIN_LP_RING(4);
7382 if (ret)
7383 goto out;
7384
7385 /* i965+ uses the linear or tiled offsets from the
7386 * Display Registers (which do not change across a page-flip)
7387 * so we need only reprogram the base address.
7388 */
7389 OUT_RING(MI_DISPLAY_FLIP |
7390 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7391 OUT_RING(fb->pitches[0]);
7392 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7393
7394 /* XXX Enabling the panel-fitter across page-flip is so far
7395 * untested on non-native modes, so ignore it for now.
7396 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7397 */
7398 pf = 0;
7399 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7400 OUT_RING(pf | pipesrc);
7401 ADVANCE_LP_RING();
7402 out:
7403 return ret;
7404 }
7405
7406 static int intel_gen6_queue_flip(struct drm_device *dev,
7407 struct drm_crtc *crtc,
7408 struct drm_framebuffer *fb,
7409 struct drm_i915_gem_object *obj)
7410 {
7411 struct drm_i915_private *dev_priv = dev->dev_private;
7412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7413 uint32_t pf, pipesrc;
7414 int ret;
7415
7416 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7417 if (ret)
7418 goto out;
7419
7420 ret = BEGIN_LP_RING(4);
7421 if (ret)
7422 goto out;
7423
7424 OUT_RING(MI_DISPLAY_FLIP |
7425 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7426 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7427 OUT_RING(obj->gtt_offset);
7428
7429 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7430 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7431 OUT_RING(pf | pipesrc);
7432 ADVANCE_LP_RING();
7433 out:
7434 return ret;
7435 }
7436
7437 /*
7438 * On gen7 we currently use the blit ring because (in early silicon at least)
7439 * the render ring doesn't give us interrpts for page flip completion, which
7440 * means clients will hang after the first flip is queued. Fortunately the
7441 * blit ring generates interrupts properly, so use it instead.
7442 */
7443 static int intel_gen7_queue_flip(struct drm_device *dev,
7444 struct drm_crtc *crtc,
7445 struct drm_framebuffer *fb,
7446 struct drm_i915_gem_object *obj)
7447 {
7448 struct drm_i915_private *dev_priv = dev->dev_private;
7449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7450 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7451 int ret;
7452
7453 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7454 if (ret)
7455 goto out;
7456
7457 ret = intel_ring_begin(ring, 4);
7458 if (ret)
7459 goto out;
7460
7461 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7462 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7463 intel_ring_emit(ring, (obj->gtt_offset));
7464 intel_ring_emit(ring, (MI_NOOP));
7465 intel_ring_advance(ring);
7466 out:
7467 return ret;
7468 }
7469
7470 static int intel_default_queue_flip(struct drm_device *dev,
7471 struct drm_crtc *crtc,
7472 struct drm_framebuffer *fb,
7473 struct drm_i915_gem_object *obj)
7474 {
7475 return -ENODEV;
7476 }
7477
7478 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7479 struct drm_framebuffer *fb,
7480 struct drm_pending_vblank_event *event)
7481 {
7482 struct drm_device *dev = crtc->dev;
7483 struct drm_i915_private *dev_priv = dev->dev_private;
7484 struct intel_framebuffer *intel_fb;
7485 struct drm_i915_gem_object *obj;
7486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7487 struct intel_unpin_work *work;
7488 unsigned long flags;
7489 int ret;
7490
7491 work = kzalloc(sizeof *work, GFP_KERNEL);
7492 if (work == NULL)
7493 return -ENOMEM;
7494
7495 work->event = event;
7496 work->dev = crtc->dev;
7497 intel_fb = to_intel_framebuffer(crtc->fb);
7498 work->old_fb_obj = intel_fb->obj;
7499 INIT_WORK(&work->work, intel_unpin_work_fn);
7500
7501 ret = drm_vblank_get(dev, intel_crtc->pipe);
7502 if (ret)
7503 goto free_work;
7504
7505 /* We borrow the event spin lock for protecting unpin_work */
7506 spin_lock_irqsave(&dev->event_lock, flags);
7507 if (intel_crtc->unpin_work) {
7508 spin_unlock_irqrestore(&dev->event_lock, flags);
7509 kfree(work);
7510 drm_vblank_put(dev, intel_crtc->pipe);
7511
7512 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7513 return -EBUSY;
7514 }
7515 intel_crtc->unpin_work = work;
7516 spin_unlock_irqrestore(&dev->event_lock, flags);
7517
7518 intel_fb = to_intel_framebuffer(fb);
7519 obj = intel_fb->obj;
7520
7521 mutex_lock(&dev->struct_mutex);
7522
7523 /* Reference the objects for the scheduled work. */
7524 drm_gem_object_reference(&work->old_fb_obj->base);
7525 drm_gem_object_reference(&obj->base);
7526
7527 crtc->fb = fb;
7528
7529 work->pending_flip_obj = obj;
7530
7531 work->enable_stall_check = true;
7532
7533 /* Block clients from rendering to the new back buffer until
7534 * the flip occurs and the object is no longer visible.
7535 */
7536 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7537
7538 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7539 if (ret)
7540 goto cleanup_pending;
7541
7542 intel_disable_fbc(dev);
7543 mutex_unlock(&dev->struct_mutex);
7544
7545 trace_i915_flip_request(intel_crtc->plane, obj);
7546
7547 return 0;
7548
7549 cleanup_pending:
7550 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7551 drm_gem_object_unreference(&work->old_fb_obj->base);
7552 drm_gem_object_unreference(&obj->base);
7553 mutex_unlock(&dev->struct_mutex);
7554
7555 spin_lock_irqsave(&dev->event_lock, flags);
7556 intel_crtc->unpin_work = NULL;
7557 spin_unlock_irqrestore(&dev->event_lock, flags);
7558
7559 drm_vblank_put(dev, intel_crtc->pipe);
7560 free_work:
7561 kfree(work);
7562
7563 return ret;
7564 }
7565
7566 static void intel_sanitize_modesetting(struct drm_device *dev,
7567 int pipe, int plane)
7568 {
7569 struct drm_i915_private *dev_priv = dev->dev_private;
7570 u32 reg, val;
7571
7572 if (HAS_PCH_SPLIT(dev))
7573 return;
7574
7575 /* Who knows what state these registers were left in by the BIOS or
7576 * grub?
7577 *
7578 * If we leave the registers in a conflicting state (e.g. with the
7579 * display plane reading from the other pipe than the one we intend
7580 * to use) then when we attempt to teardown the active mode, we will
7581 * not disable the pipes and planes in the correct order -- leaving
7582 * a plane reading from a disabled pipe and possibly leading to
7583 * undefined behaviour.
7584 */
7585
7586 reg = DSPCNTR(plane);
7587 val = I915_READ(reg);
7588
7589 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7590 return;
7591 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7592 return;
7593
7594 /* This display plane is active and attached to the other CPU pipe. */
7595 pipe = !pipe;
7596
7597 /* Disable the plane and wait for it to stop reading from the pipe. */
7598 intel_disable_plane(dev_priv, plane, pipe);
7599 intel_disable_pipe(dev_priv, pipe);
7600 }
7601
7602 static void intel_crtc_reset(struct drm_crtc *crtc)
7603 {
7604 struct drm_device *dev = crtc->dev;
7605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7606
7607 /* Reset flags back to the 'unknown' status so that they
7608 * will be correctly set on the initial modeset.
7609 */
7610 intel_crtc->dpms_mode = -1;
7611
7612 /* We need to fix up any BIOS configuration that conflicts with
7613 * our expectations.
7614 */
7615 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7616 }
7617
7618 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7619 .dpms = intel_crtc_dpms,
7620 .mode_fixup = intel_crtc_mode_fixup,
7621 .mode_set = intel_crtc_mode_set,
7622 .mode_set_base = intel_pipe_set_base,
7623 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7624 .load_lut = intel_crtc_load_lut,
7625 .disable = intel_crtc_disable,
7626 };
7627
7628 static const struct drm_crtc_funcs intel_crtc_funcs = {
7629 .reset = intel_crtc_reset,
7630 .cursor_set = intel_crtc_cursor_set,
7631 .cursor_move = intel_crtc_cursor_move,
7632 .gamma_set = intel_crtc_gamma_set,
7633 .set_config = drm_crtc_helper_set_config,
7634 .destroy = intel_crtc_destroy,
7635 .page_flip = intel_crtc_page_flip,
7636 };
7637
7638 static void intel_crtc_init(struct drm_device *dev, int pipe)
7639 {
7640 drm_i915_private_t *dev_priv = dev->dev_private;
7641 struct intel_crtc *intel_crtc;
7642 int i;
7643
7644 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7645 if (intel_crtc == NULL)
7646 return;
7647
7648 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7649
7650 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7651 for (i = 0; i < 256; i++) {
7652 intel_crtc->lut_r[i] = i;
7653 intel_crtc->lut_g[i] = i;
7654 intel_crtc->lut_b[i] = i;
7655 }
7656
7657 /* Swap pipes & planes for FBC on pre-965 */
7658 intel_crtc->pipe = pipe;
7659 intel_crtc->plane = pipe;
7660 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7661 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7662 intel_crtc->plane = !pipe;
7663 }
7664
7665 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7666 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7667 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7668 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7669
7670 intel_crtc_reset(&intel_crtc->base);
7671 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7672 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7673
7674 if (HAS_PCH_SPLIT(dev)) {
7675 if (pipe == 2 && IS_IVYBRIDGE(dev))
7676 intel_crtc->no_pll = true;
7677 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7678 intel_helper_funcs.commit = ironlake_crtc_commit;
7679 } else {
7680 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7681 intel_helper_funcs.commit = i9xx_crtc_commit;
7682 }
7683
7684 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7685
7686 intel_crtc->busy = false;
7687
7688 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7689 (unsigned long)intel_crtc);
7690 }
7691
7692 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7693 struct drm_file *file)
7694 {
7695 drm_i915_private_t *dev_priv = dev->dev_private;
7696 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7697 struct drm_mode_object *drmmode_obj;
7698 struct intel_crtc *crtc;
7699
7700 if (!dev_priv) {
7701 DRM_ERROR("called with no initialization\n");
7702 return -EINVAL;
7703 }
7704
7705 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7706 DRM_MODE_OBJECT_CRTC);
7707
7708 if (!drmmode_obj) {
7709 DRM_ERROR("no such CRTC id\n");
7710 return -EINVAL;
7711 }
7712
7713 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7714 pipe_from_crtc_id->pipe = crtc->pipe;
7715
7716 return 0;
7717 }
7718
7719 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7720 {
7721 struct intel_encoder *encoder;
7722 int index_mask = 0;
7723 int entry = 0;
7724
7725 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7726 if (type_mask & encoder->clone_mask)
7727 index_mask |= (1 << entry);
7728 entry++;
7729 }
7730
7731 return index_mask;
7732 }
7733
7734 static bool has_edp_a(struct drm_device *dev)
7735 {
7736 struct drm_i915_private *dev_priv = dev->dev_private;
7737
7738 if (!IS_MOBILE(dev))
7739 return false;
7740
7741 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7742 return false;
7743
7744 if (IS_GEN5(dev) &&
7745 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7746 return false;
7747
7748 return true;
7749 }
7750
7751 static void intel_setup_outputs(struct drm_device *dev)
7752 {
7753 struct drm_i915_private *dev_priv = dev->dev_private;
7754 struct intel_encoder *encoder;
7755 bool dpd_is_edp = false;
7756 bool has_lvds = false;
7757
7758 if (IS_MOBILE(dev) && !IS_I830(dev))
7759 has_lvds = intel_lvds_init(dev);
7760 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7761 /* disable the panel fitter on everything but LVDS */
7762 I915_WRITE(PFIT_CONTROL, 0);
7763 }
7764
7765 if (HAS_PCH_SPLIT(dev)) {
7766 dpd_is_edp = intel_dpd_is_edp(dev);
7767
7768 if (has_edp_a(dev))
7769 intel_dp_init(dev, DP_A);
7770
7771 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7772 intel_dp_init(dev, PCH_DP_D);
7773 }
7774
7775 intel_crt_init(dev);
7776
7777 if (HAS_PCH_SPLIT(dev)) {
7778 int found;
7779
7780 if (I915_READ(HDMIB) & PORT_DETECTED) {
7781 /* PCH SDVOB multiplex with HDMIB */
7782 found = intel_sdvo_init(dev, PCH_SDVOB);
7783 if (!found)
7784 intel_hdmi_init(dev, HDMIB);
7785 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7786 intel_dp_init(dev, PCH_DP_B);
7787 }
7788
7789 if (I915_READ(HDMIC) & PORT_DETECTED)
7790 intel_hdmi_init(dev, HDMIC);
7791
7792 if (I915_READ(HDMID) & PORT_DETECTED)
7793 intel_hdmi_init(dev, HDMID);
7794
7795 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7796 intel_dp_init(dev, PCH_DP_C);
7797
7798 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7799 intel_dp_init(dev, PCH_DP_D);
7800
7801 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7802 bool found = false;
7803
7804 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7805 DRM_DEBUG_KMS("probing SDVOB\n");
7806 found = intel_sdvo_init(dev, SDVOB);
7807 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7808 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7809 intel_hdmi_init(dev, SDVOB);
7810 }
7811
7812 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7813 DRM_DEBUG_KMS("probing DP_B\n");
7814 intel_dp_init(dev, DP_B);
7815 }
7816 }
7817
7818 /* Before G4X SDVOC doesn't have its own detect register */
7819
7820 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7821 DRM_DEBUG_KMS("probing SDVOC\n");
7822 found = intel_sdvo_init(dev, SDVOC);
7823 }
7824
7825 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7826
7827 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7828 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7829 intel_hdmi_init(dev, SDVOC);
7830 }
7831 if (SUPPORTS_INTEGRATED_DP(dev)) {
7832 DRM_DEBUG_KMS("probing DP_C\n");
7833 intel_dp_init(dev, DP_C);
7834 }
7835 }
7836
7837 if (SUPPORTS_INTEGRATED_DP(dev) &&
7838 (I915_READ(DP_D) & DP_DETECTED)) {
7839 DRM_DEBUG_KMS("probing DP_D\n");
7840 intel_dp_init(dev, DP_D);
7841 }
7842 } else if (IS_GEN2(dev))
7843 intel_dvo_init(dev);
7844
7845 if (SUPPORTS_TV(dev))
7846 intel_tv_init(dev);
7847
7848 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7849 encoder->base.possible_crtcs = encoder->crtc_mask;
7850 encoder->base.possible_clones =
7851 intel_encoder_clones(dev, encoder->clone_mask);
7852 }
7853
7854 /* disable all the possible outputs/crtcs before entering KMS mode */
7855 drm_helper_disable_unused_functions(dev);
7856
7857 if (HAS_PCH_SPLIT(dev))
7858 ironlake_init_pch_refclk(dev);
7859 }
7860
7861 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7862 {
7863 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7864
7865 drm_framebuffer_cleanup(fb);
7866 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7867
7868 kfree(intel_fb);
7869 }
7870
7871 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7872 struct drm_file *file,
7873 unsigned int *handle)
7874 {
7875 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7876 struct drm_i915_gem_object *obj = intel_fb->obj;
7877
7878 return drm_gem_handle_create(file, &obj->base, handle);
7879 }
7880
7881 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7882 .destroy = intel_user_framebuffer_destroy,
7883 .create_handle = intel_user_framebuffer_create_handle,
7884 };
7885
7886 int intel_framebuffer_init(struct drm_device *dev,
7887 struct intel_framebuffer *intel_fb,
7888 struct drm_mode_fb_cmd2 *mode_cmd,
7889 struct drm_i915_gem_object *obj)
7890 {
7891 int ret;
7892
7893 if (obj->tiling_mode == I915_TILING_Y)
7894 return -EINVAL;
7895
7896 if (mode_cmd->pitches[0] & 63)
7897 return -EINVAL;
7898
7899 switch (mode_cmd->pixel_format) {
7900 case DRM_FORMAT_RGB332:
7901 case DRM_FORMAT_RGB565:
7902 case DRM_FORMAT_XRGB8888:
7903 case DRM_FORMAT_ARGB8888:
7904 case DRM_FORMAT_XRGB2101010:
7905 case DRM_FORMAT_ARGB2101010:
7906 /* RGB formats are common across chipsets */
7907 break;
7908 case DRM_FORMAT_YUYV:
7909 case DRM_FORMAT_UYVY:
7910 case DRM_FORMAT_YVYU:
7911 case DRM_FORMAT_VYUY:
7912 break;
7913 default:
7914 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7915 mode_cmd->pixel_format);
7916 return -EINVAL;
7917 }
7918
7919 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7920 if (ret) {
7921 DRM_ERROR("framebuffer init failed %d\n", ret);
7922 return ret;
7923 }
7924
7925 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7926 intel_fb->obj = obj;
7927 return 0;
7928 }
7929
7930 static struct drm_framebuffer *
7931 intel_user_framebuffer_create(struct drm_device *dev,
7932 struct drm_file *filp,
7933 struct drm_mode_fb_cmd2 *mode_cmd)
7934 {
7935 struct drm_i915_gem_object *obj;
7936
7937 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7938 mode_cmd->handles[0]));
7939 if (&obj->base == NULL)
7940 return ERR_PTR(-ENOENT);
7941
7942 return intel_framebuffer_create(dev, mode_cmd, obj);
7943 }
7944
7945 static const struct drm_mode_config_funcs intel_mode_funcs = {
7946 .fb_create = intel_user_framebuffer_create,
7947 .output_poll_changed = intel_fb_output_poll_changed,
7948 };
7949
7950 static struct drm_i915_gem_object *
7951 intel_alloc_context_page(struct drm_device *dev)
7952 {
7953 struct drm_i915_gem_object *ctx;
7954 int ret;
7955
7956 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7957
7958 ctx = i915_gem_alloc_object(dev, 4096);
7959 if (!ctx) {
7960 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7961 return NULL;
7962 }
7963
7964 ret = i915_gem_object_pin(ctx, 4096, true);
7965 if (ret) {
7966 DRM_ERROR("failed to pin power context: %d\n", ret);
7967 goto err_unref;
7968 }
7969
7970 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7971 if (ret) {
7972 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7973 goto err_unpin;
7974 }
7975
7976 return ctx;
7977
7978 err_unpin:
7979 i915_gem_object_unpin(ctx);
7980 err_unref:
7981 drm_gem_object_unreference(&ctx->base);
7982 mutex_unlock(&dev->struct_mutex);
7983 return NULL;
7984 }
7985
7986 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7987 {
7988 struct drm_i915_private *dev_priv = dev->dev_private;
7989 u16 rgvswctl;
7990
7991 rgvswctl = I915_READ16(MEMSWCTL);
7992 if (rgvswctl & MEMCTL_CMD_STS) {
7993 DRM_DEBUG("gpu busy, RCS change rejected\n");
7994 return false; /* still busy with another command */
7995 }
7996
7997 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7998 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7999 I915_WRITE16(MEMSWCTL, rgvswctl);
8000 POSTING_READ16(MEMSWCTL);
8001
8002 rgvswctl |= MEMCTL_CMD_STS;
8003 I915_WRITE16(MEMSWCTL, rgvswctl);
8004
8005 return true;
8006 }
8007
8008 void ironlake_enable_drps(struct drm_device *dev)
8009 {
8010 struct drm_i915_private *dev_priv = dev->dev_private;
8011 u32 rgvmodectl = I915_READ(MEMMODECTL);
8012 u8 fmax, fmin, fstart, vstart;
8013
8014 /* Enable temp reporting */
8015 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8016 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8017
8018 /* 100ms RC evaluation intervals */
8019 I915_WRITE(RCUPEI, 100000);
8020 I915_WRITE(RCDNEI, 100000);
8021
8022 /* Set max/min thresholds to 90ms and 80ms respectively */
8023 I915_WRITE(RCBMAXAVG, 90000);
8024 I915_WRITE(RCBMINAVG, 80000);
8025
8026 I915_WRITE(MEMIHYST, 1);
8027
8028 /* Set up min, max, and cur for interrupt handling */
8029 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8030 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8031 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8032 MEMMODE_FSTART_SHIFT;
8033
8034 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8035 PXVFREQ_PX_SHIFT;
8036
8037 dev_priv->fmax = fmax; /* IPS callback will increase this */
8038 dev_priv->fstart = fstart;
8039
8040 dev_priv->max_delay = fstart;
8041 dev_priv->min_delay = fmin;
8042 dev_priv->cur_delay = fstart;
8043
8044 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8045 fmax, fmin, fstart);
8046
8047 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8048
8049 /*
8050 * Interrupts will be enabled in ironlake_irq_postinstall
8051 */
8052
8053 I915_WRITE(VIDSTART, vstart);
8054 POSTING_READ(VIDSTART);
8055
8056 rgvmodectl |= MEMMODE_SWMODE_EN;
8057 I915_WRITE(MEMMODECTL, rgvmodectl);
8058
8059 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8060 DRM_ERROR("stuck trying to change perf mode\n");
8061 msleep(1);
8062
8063 ironlake_set_drps(dev, fstart);
8064
8065 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8066 I915_READ(0x112e0);
8067 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8068 dev_priv->last_count2 = I915_READ(0x112f4);
8069 getrawmonotonic(&dev_priv->last_time2);
8070 }
8071
8072 void ironlake_disable_drps(struct drm_device *dev)
8073 {
8074 struct drm_i915_private *dev_priv = dev->dev_private;
8075 u16 rgvswctl = I915_READ16(MEMSWCTL);
8076
8077 /* Ack interrupts, disable EFC interrupt */
8078 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8079 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8080 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8081 I915_WRITE(DEIIR, DE_PCU_EVENT);
8082 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8083
8084 /* Go back to the starting frequency */
8085 ironlake_set_drps(dev, dev_priv->fstart);
8086 msleep(1);
8087 rgvswctl |= MEMCTL_CMD_STS;
8088 I915_WRITE(MEMSWCTL, rgvswctl);
8089 msleep(1);
8090
8091 }
8092
8093 void gen6_set_rps(struct drm_device *dev, u8 val)
8094 {
8095 struct drm_i915_private *dev_priv = dev->dev_private;
8096 u32 swreq;
8097
8098 swreq = (val & 0x3ff) << 25;
8099 I915_WRITE(GEN6_RPNSWREQ, swreq);
8100 }
8101
8102 void gen6_disable_rps(struct drm_device *dev)
8103 {
8104 struct drm_i915_private *dev_priv = dev->dev_private;
8105
8106 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8107 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8108 I915_WRITE(GEN6_PMIER, 0);
8109 /* Complete PM interrupt masking here doesn't race with the rps work
8110 * item again unmasking PM interrupts because that is using a different
8111 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8112 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8113
8114 spin_lock_irq(&dev_priv->rps_lock);
8115 dev_priv->pm_iir = 0;
8116 spin_unlock_irq(&dev_priv->rps_lock);
8117
8118 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8119 }
8120
8121 static unsigned long intel_pxfreq(u32 vidfreq)
8122 {
8123 unsigned long freq;
8124 int div = (vidfreq & 0x3f0000) >> 16;
8125 int post = (vidfreq & 0x3000) >> 12;
8126 int pre = (vidfreq & 0x7);
8127
8128 if (!pre)
8129 return 0;
8130
8131 freq = ((div * 133333) / ((1<<post) * pre));
8132
8133 return freq;
8134 }
8135
8136 void intel_init_emon(struct drm_device *dev)
8137 {
8138 struct drm_i915_private *dev_priv = dev->dev_private;
8139 u32 lcfuse;
8140 u8 pxw[16];
8141 int i;
8142
8143 /* Disable to program */
8144 I915_WRITE(ECR, 0);
8145 POSTING_READ(ECR);
8146
8147 /* Program energy weights for various events */
8148 I915_WRITE(SDEW, 0x15040d00);
8149 I915_WRITE(CSIEW0, 0x007f0000);
8150 I915_WRITE(CSIEW1, 0x1e220004);
8151 I915_WRITE(CSIEW2, 0x04000004);
8152
8153 for (i = 0; i < 5; i++)
8154 I915_WRITE(PEW + (i * 4), 0);
8155 for (i = 0; i < 3; i++)
8156 I915_WRITE(DEW + (i * 4), 0);
8157
8158 /* Program P-state weights to account for frequency power adjustment */
8159 for (i = 0; i < 16; i++) {
8160 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8161 unsigned long freq = intel_pxfreq(pxvidfreq);
8162 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8163 PXVFREQ_PX_SHIFT;
8164 unsigned long val;
8165
8166 val = vid * vid;
8167 val *= (freq / 1000);
8168 val *= 255;
8169 val /= (127*127*900);
8170 if (val > 0xff)
8171 DRM_ERROR("bad pxval: %ld\n", val);
8172 pxw[i] = val;
8173 }
8174 /* Render standby states get 0 weight */
8175 pxw[14] = 0;
8176 pxw[15] = 0;
8177
8178 for (i = 0; i < 4; i++) {
8179 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8180 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8181 I915_WRITE(PXW + (i * 4), val);
8182 }
8183
8184 /* Adjust magic regs to magic values (more experimental results) */
8185 I915_WRITE(OGW0, 0);
8186 I915_WRITE(OGW1, 0);
8187 I915_WRITE(EG0, 0x00007f00);
8188 I915_WRITE(EG1, 0x0000000e);
8189 I915_WRITE(EG2, 0x000e0000);
8190 I915_WRITE(EG3, 0x68000300);
8191 I915_WRITE(EG4, 0x42000000);
8192 I915_WRITE(EG5, 0x00140031);
8193 I915_WRITE(EG6, 0);
8194 I915_WRITE(EG7, 0);
8195
8196 for (i = 0; i < 8; i++)
8197 I915_WRITE(PXWL + (i * 4), 0);
8198
8199 /* Enable PMON + select events */
8200 I915_WRITE(ECR, 0x80000019);
8201
8202 lcfuse = I915_READ(LCFUSE02);
8203
8204 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8205 }
8206
8207 static bool intel_enable_rc6(struct drm_device *dev)
8208 {
8209 /*
8210 * Respect the kernel parameter if it is set
8211 */
8212 if (i915_enable_rc6 >= 0)
8213 return i915_enable_rc6;
8214
8215 /*
8216 * Disable RC6 on Ironlake
8217 */
8218 if (INTEL_INFO(dev)->gen == 5)
8219 return 0;
8220
8221 /*
8222 * Disable rc6 on Sandybridge
8223 */
8224 if (INTEL_INFO(dev)->gen == 6) {
8225 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8226 return 0;
8227 }
8228 DRM_DEBUG_DRIVER("RC6 enabled\n");
8229 return 1;
8230 }
8231
8232 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8233 {
8234 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8235 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8236 u32 pcu_mbox, rc6_mask = 0;
8237 int cur_freq, min_freq, max_freq;
8238 int i;
8239
8240 /* Here begins a magic sequence of register writes to enable
8241 * auto-downclocking.
8242 *
8243 * Perhaps there might be some value in exposing these to
8244 * userspace...
8245 */
8246 I915_WRITE(GEN6_RC_STATE, 0);
8247 mutex_lock(&dev_priv->dev->struct_mutex);
8248 gen6_gt_force_wake_get(dev_priv);
8249
8250 /* disable the counters and set deterministic thresholds */
8251 I915_WRITE(GEN6_RC_CONTROL, 0);
8252
8253 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8254 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8255 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8256 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8257 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8258
8259 for (i = 0; i < I915_NUM_RINGS; i++)
8260 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8261
8262 I915_WRITE(GEN6_RC_SLEEP, 0);
8263 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8264 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8265 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8266 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8267
8268 if (intel_enable_rc6(dev_priv->dev))
8269 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
8270 GEN6_RC_CTL_RC6_ENABLE;
8271
8272 I915_WRITE(GEN6_RC_CONTROL,
8273 rc6_mask |
8274 GEN6_RC_CTL_EI_MODE(1) |
8275 GEN6_RC_CTL_HW_ENABLE);
8276
8277 I915_WRITE(GEN6_RPNSWREQ,
8278 GEN6_FREQUENCY(10) |
8279 GEN6_OFFSET(0) |
8280 GEN6_AGGRESSIVE_TURBO);
8281 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8282 GEN6_FREQUENCY(12));
8283
8284 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8285 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8286 18 << 24 |
8287 6 << 16);
8288 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8289 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8290 I915_WRITE(GEN6_RP_UP_EI, 100000);
8291 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8292 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8293 I915_WRITE(GEN6_RP_CONTROL,
8294 GEN6_RP_MEDIA_TURBO |
8295 GEN6_RP_MEDIA_HW_MODE |
8296 GEN6_RP_MEDIA_IS_GFX |
8297 GEN6_RP_ENABLE |
8298 GEN6_RP_UP_BUSY_AVG |
8299 GEN6_RP_DOWN_IDLE_CONT);
8300
8301 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8302 500))
8303 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8304
8305 I915_WRITE(GEN6_PCODE_DATA, 0);
8306 I915_WRITE(GEN6_PCODE_MAILBOX,
8307 GEN6_PCODE_READY |
8308 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8309 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8310 500))
8311 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8312
8313 min_freq = (rp_state_cap & 0xff0000) >> 16;
8314 max_freq = rp_state_cap & 0xff;
8315 cur_freq = (gt_perf_status & 0xff00) >> 8;
8316
8317 /* Check for overclock support */
8318 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8319 500))
8320 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8321 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8322 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8323 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8324 500))
8325 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8326 if (pcu_mbox & (1<<31)) { /* OC supported */
8327 max_freq = pcu_mbox & 0xff;
8328 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8329 }
8330
8331 /* In units of 100MHz */
8332 dev_priv->max_delay = max_freq;
8333 dev_priv->min_delay = min_freq;
8334 dev_priv->cur_delay = cur_freq;
8335
8336 /* requires MSI enabled */
8337 I915_WRITE(GEN6_PMIER,
8338 GEN6_PM_MBOX_EVENT |
8339 GEN6_PM_THERMAL_EVENT |
8340 GEN6_PM_RP_DOWN_TIMEOUT |
8341 GEN6_PM_RP_UP_THRESHOLD |
8342 GEN6_PM_RP_DOWN_THRESHOLD |
8343 GEN6_PM_RP_UP_EI_EXPIRED |
8344 GEN6_PM_RP_DOWN_EI_EXPIRED);
8345 spin_lock_irq(&dev_priv->rps_lock);
8346 WARN_ON(dev_priv->pm_iir != 0);
8347 I915_WRITE(GEN6_PMIMR, 0);
8348 spin_unlock_irq(&dev_priv->rps_lock);
8349 /* enable all PM interrupts */
8350 I915_WRITE(GEN6_PMINTRMSK, 0);
8351
8352 gen6_gt_force_wake_put(dev_priv);
8353 mutex_unlock(&dev_priv->dev->struct_mutex);
8354 }
8355
8356 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8357 {
8358 int min_freq = 15;
8359 int gpu_freq, ia_freq, max_ia_freq;
8360 int scaling_factor = 180;
8361
8362 max_ia_freq = cpufreq_quick_get_max(0);
8363 /*
8364 * Default to measured freq if none found, PCU will ensure we don't go
8365 * over
8366 */
8367 if (!max_ia_freq)
8368 max_ia_freq = tsc_khz;
8369
8370 /* Convert from kHz to MHz */
8371 max_ia_freq /= 1000;
8372
8373 mutex_lock(&dev_priv->dev->struct_mutex);
8374
8375 /*
8376 * For each potential GPU frequency, load a ring frequency we'd like
8377 * to use for memory access. We do this by specifying the IA frequency
8378 * the PCU should use as a reference to determine the ring frequency.
8379 */
8380 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8381 gpu_freq--) {
8382 int diff = dev_priv->max_delay - gpu_freq;
8383
8384 /*
8385 * For GPU frequencies less than 750MHz, just use the lowest
8386 * ring freq.
8387 */
8388 if (gpu_freq < min_freq)
8389 ia_freq = 800;
8390 else
8391 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8392 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8393
8394 I915_WRITE(GEN6_PCODE_DATA,
8395 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8396 gpu_freq);
8397 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8398 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8399 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8400 GEN6_PCODE_READY) == 0, 10)) {
8401 DRM_ERROR("pcode write of freq table timed out\n");
8402 continue;
8403 }
8404 }
8405
8406 mutex_unlock(&dev_priv->dev->struct_mutex);
8407 }
8408
8409 static void ironlake_init_clock_gating(struct drm_device *dev)
8410 {
8411 struct drm_i915_private *dev_priv = dev->dev_private;
8412 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8413
8414 /* Required for FBC */
8415 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8416 DPFCRUNIT_CLOCK_GATE_DISABLE |
8417 DPFDUNIT_CLOCK_GATE_DISABLE;
8418 /* Required for CxSR */
8419 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8420
8421 I915_WRITE(PCH_3DCGDIS0,
8422 MARIUNIT_CLOCK_GATE_DISABLE |
8423 SVSMUNIT_CLOCK_GATE_DISABLE);
8424 I915_WRITE(PCH_3DCGDIS1,
8425 VFMUNIT_CLOCK_GATE_DISABLE);
8426
8427 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8428
8429 /*
8430 * According to the spec the following bits should be set in
8431 * order to enable memory self-refresh
8432 * The bit 22/21 of 0x42004
8433 * The bit 5 of 0x42020
8434 * The bit 15 of 0x45000
8435 */
8436 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8437 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8438 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8439 I915_WRITE(ILK_DSPCLK_GATE,
8440 (I915_READ(ILK_DSPCLK_GATE) |
8441 ILK_DPARB_CLK_GATE));
8442 I915_WRITE(DISP_ARB_CTL,
8443 (I915_READ(DISP_ARB_CTL) |
8444 DISP_FBC_WM_DIS));
8445 I915_WRITE(WM3_LP_ILK, 0);
8446 I915_WRITE(WM2_LP_ILK, 0);
8447 I915_WRITE(WM1_LP_ILK, 0);
8448
8449 /*
8450 * Based on the document from hardware guys the following bits
8451 * should be set unconditionally in order to enable FBC.
8452 * The bit 22 of 0x42000
8453 * The bit 22 of 0x42004
8454 * The bit 7,8,9 of 0x42020.
8455 */
8456 if (IS_IRONLAKE_M(dev)) {
8457 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8458 I915_READ(ILK_DISPLAY_CHICKEN1) |
8459 ILK_FBCQ_DIS);
8460 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8461 I915_READ(ILK_DISPLAY_CHICKEN2) |
8462 ILK_DPARB_GATE);
8463 I915_WRITE(ILK_DSPCLK_GATE,
8464 I915_READ(ILK_DSPCLK_GATE) |
8465 ILK_DPFC_DIS1 |
8466 ILK_DPFC_DIS2 |
8467 ILK_CLK_FBC);
8468 }
8469
8470 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8471 I915_READ(ILK_DISPLAY_CHICKEN2) |
8472 ILK_ELPIN_409_SELECT);
8473 I915_WRITE(_3D_CHICKEN2,
8474 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8475 _3D_CHICKEN2_WM_READ_PIPELINED);
8476 }
8477
8478 static void gen6_init_clock_gating(struct drm_device *dev)
8479 {
8480 struct drm_i915_private *dev_priv = dev->dev_private;
8481 int pipe;
8482 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8483
8484 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8485
8486 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8487 I915_READ(ILK_DISPLAY_CHICKEN2) |
8488 ILK_ELPIN_409_SELECT);
8489
8490 I915_WRITE(WM3_LP_ILK, 0);
8491 I915_WRITE(WM2_LP_ILK, 0);
8492 I915_WRITE(WM1_LP_ILK, 0);
8493
8494 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8495 * gating disable must be set. Failure to set it results in
8496 * flickering pixels due to Z write ordering failures after
8497 * some amount of runtime in the Mesa "fire" demo, and Unigine
8498 * Sanctuary and Tropics, and apparently anything else with
8499 * alpha test or pixel discard.
8500 *
8501 * According to the spec, bit 11 (RCCUNIT) must also be set,
8502 * but we didn't debug actual testcases to find it out.
8503 */
8504 I915_WRITE(GEN6_UCGCTL2,
8505 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8506 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8507
8508 /*
8509 * According to the spec the following bits should be
8510 * set in order to enable memory self-refresh and fbc:
8511 * The bit21 and bit22 of 0x42000
8512 * The bit21 and bit22 of 0x42004
8513 * The bit5 and bit7 of 0x42020
8514 * The bit14 of 0x70180
8515 * The bit14 of 0x71180
8516 */
8517 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8518 I915_READ(ILK_DISPLAY_CHICKEN1) |
8519 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8520 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8521 I915_READ(ILK_DISPLAY_CHICKEN2) |
8522 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8523 I915_WRITE(ILK_DSPCLK_GATE,
8524 I915_READ(ILK_DSPCLK_GATE) |
8525 ILK_DPARB_CLK_GATE |
8526 ILK_DPFD_CLK_GATE);
8527
8528 for_each_pipe(pipe) {
8529 I915_WRITE(DSPCNTR(pipe),
8530 I915_READ(DSPCNTR(pipe)) |
8531 DISPPLANE_TRICKLE_FEED_DISABLE);
8532 intel_flush_display_plane(dev_priv, pipe);
8533 }
8534 }
8535
8536 static void ivybridge_init_clock_gating(struct drm_device *dev)
8537 {
8538 struct drm_i915_private *dev_priv = dev->dev_private;
8539 int pipe;
8540 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8541
8542 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8543
8544 I915_WRITE(WM3_LP_ILK, 0);
8545 I915_WRITE(WM2_LP_ILK, 0);
8546 I915_WRITE(WM1_LP_ILK, 0);
8547
8548 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8549
8550 I915_WRITE(IVB_CHICKEN3,
8551 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8552 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8553
8554 for_each_pipe(pipe) {
8555 I915_WRITE(DSPCNTR(pipe),
8556 I915_READ(DSPCNTR(pipe)) |
8557 DISPPLANE_TRICKLE_FEED_DISABLE);
8558 intel_flush_display_plane(dev_priv, pipe);
8559 }
8560 }
8561
8562 static void g4x_init_clock_gating(struct drm_device *dev)
8563 {
8564 struct drm_i915_private *dev_priv = dev->dev_private;
8565 uint32_t dspclk_gate;
8566
8567 I915_WRITE(RENCLK_GATE_D1, 0);
8568 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8569 GS_UNIT_CLOCK_GATE_DISABLE |
8570 CL_UNIT_CLOCK_GATE_DISABLE);
8571 I915_WRITE(RAMCLK_GATE_D, 0);
8572 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8573 OVRUNIT_CLOCK_GATE_DISABLE |
8574 OVCUNIT_CLOCK_GATE_DISABLE;
8575 if (IS_GM45(dev))
8576 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8577 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8578 }
8579
8580 static void crestline_init_clock_gating(struct drm_device *dev)
8581 {
8582 struct drm_i915_private *dev_priv = dev->dev_private;
8583
8584 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8585 I915_WRITE(RENCLK_GATE_D2, 0);
8586 I915_WRITE(DSPCLK_GATE_D, 0);
8587 I915_WRITE(RAMCLK_GATE_D, 0);
8588 I915_WRITE16(DEUC, 0);
8589 }
8590
8591 static void broadwater_init_clock_gating(struct drm_device *dev)
8592 {
8593 struct drm_i915_private *dev_priv = dev->dev_private;
8594
8595 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8596 I965_RCC_CLOCK_GATE_DISABLE |
8597 I965_RCPB_CLOCK_GATE_DISABLE |
8598 I965_ISC_CLOCK_GATE_DISABLE |
8599 I965_FBC_CLOCK_GATE_DISABLE);
8600 I915_WRITE(RENCLK_GATE_D2, 0);
8601 }
8602
8603 static void gen3_init_clock_gating(struct drm_device *dev)
8604 {
8605 struct drm_i915_private *dev_priv = dev->dev_private;
8606 u32 dstate = I915_READ(D_STATE);
8607
8608 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8609 DSTATE_DOT_CLOCK_GATING;
8610 I915_WRITE(D_STATE, dstate);
8611 }
8612
8613 static void i85x_init_clock_gating(struct drm_device *dev)
8614 {
8615 struct drm_i915_private *dev_priv = dev->dev_private;
8616
8617 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8618 }
8619
8620 static void i830_init_clock_gating(struct drm_device *dev)
8621 {
8622 struct drm_i915_private *dev_priv = dev->dev_private;
8623
8624 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8625 }
8626
8627 static void ibx_init_clock_gating(struct drm_device *dev)
8628 {
8629 struct drm_i915_private *dev_priv = dev->dev_private;
8630
8631 /*
8632 * On Ibex Peak and Cougar Point, we need to disable clock
8633 * gating for the panel power sequencer or it will fail to
8634 * start up when no ports are active.
8635 */
8636 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8637 }
8638
8639 static void cpt_init_clock_gating(struct drm_device *dev)
8640 {
8641 struct drm_i915_private *dev_priv = dev->dev_private;
8642 int pipe;
8643
8644 /*
8645 * On Ibex Peak and Cougar Point, we need to disable clock
8646 * gating for the panel power sequencer or it will fail to
8647 * start up when no ports are active.
8648 */
8649 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8650 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8651 DPLS_EDP_PPS_FIX_DIS);
8652 /* Without this, mode sets may fail silently on FDI */
8653 for_each_pipe(pipe)
8654 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8655 }
8656
8657 static void ironlake_teardown_rc6(struct drm_device *dev)
8658 {
8659 struct drm_i915_private *dev_priv = dev->dev_private;
8660
8661 if (dev_priv->renderctx) {
8662 i915_gem_object_unpin(dev_priv->renderctx);
8663 drm_gem_object_unreference(&dev_priv->renderctx->base);
8664 dev_priv->renderctx = NULL;
8665 }
8666
8667 if (dev_priv->pwrctx) {
8668 i915_gem_object_unpin(dev_priv->pwrctx);
8669 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8670 dev_priv->pwrctx = NULL;
8671 }
8672 }
8673
8674 static void ironlake_disable_rc6(struct drm_device *dev)
8675 {
8676 struct drm_i915_private *dev_priv = dev->dev_private;
8677
8678 if (I915_READ(PWRCTXA)) {
8679 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8680 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8681 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8682 50);
8683
8684 I915_WRITE(PWRCTXA, 0);
8685 POSTING_READ(PWRCTXA);
8686
8687 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8688 POSTING_READ(RSTDBYCTL);
8689 }
8690
8691 ironlake_teardown_rc6(dev);
8692 }
8693
8694 static int ironlake_setup_rc6(struct drm_device *dev)
8695 {
8696 struct drm_i915_private *dev_priv = dev->dev_private;
8697
8698 if (dev_priv->renderctx == NULL)
8699 dev_priv->renderctx = intel_alloc_context_page(dev);
8700 if (!dev_priv->renderctx)
8701 return -ENOMEM;
8702
8703 if (dev_priv->pwrctx == NULL)
8704 dev_priv->pwrctx = intel_alloc_context_page(dev);
8705 if (!dev_priv->pwrctx) {
8706 ironlake_teardown_rc6(dev);
8707 return -ENOMEM;
8708 }
8709
8710 return 0;
8711 }
8712
8713 void ironlake_enable_rc6(struct drm_device *dev)
8714 {
8715 struct drm_i915_private *dev_priv = dev->dev_private;
8716 int ret;
8717
8718 /* rc6 disabled by default due to repeated reports of hanging during
8719 * boot and resume.
8720 */
8721 if (!intel_enable_rc6(dev))
8722 return;
8723
8724 mutex_lock(&dev->struct_mutex);
8725 ret = ironlake_setup_rc6(dev);
8726 if (ret) {
8727 mutex_unlock(&dev->struct_mutex);
8728 return;
8729 }
8730
8731 /*
8732 * GPU can automatically power down the render unit if given a page
8733 * to save state.
8734 */
8735 ret = BEGIN_LP_RING(6);
8736 if (ret) {
8737 ironlake_teardown_rc6(dev);
8738 mutex_unlock(&dev->struct_mutex);
8739 return;
8740 }
8741
8742 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8743 OUT_RING(MI_SET_CONTEXT);
8744 OUT_RING(dev_priv->renderctx->gtt_offset |
8745 MI_MM_SPACE_GTT |
8746 MI_SAVE_EXT_STATE_EN |
8747 MI_RESTORE_EXT_STATE_EN |
8748 MI_RESTORE_INHIBIT);
8749 OUT_RING(MI_SUSPEND_FLUSH);
8750 OUT_RING(MI_NOOP);
8751 OUT_RING(MI_FLUSH);
8752 ADVANCE_LP_RING();
8753
8754 /*
8755 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8756 * does an implicit flush, combined with MI_FLUSH above, it should be
8757 * safe to assume that renderctx is valid
8758 */
8759 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8760 if (ret) {
8761 DRM_ERROR("failed to enable ironlake power power savings\n");
8762 ironlake_teardown_rc6(dev);
8763 mutex_unlock(&dev->struct_mutex);
8764 return;
8765 }
8766
8767 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8768 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8769 mutex_unlock(&dev->struct_mutex);
8770 }
8771
8772 void intel_init_clock_gating(struct drm_device *dev)
8773 {
8774 struct drm_i915_private *dev_priv = dev->dev_private;
8775
8776 dev_priv->display.init_clock_gating(dev);
8777
8778 if (dev_priv->display.init_pch_clock_gating)
8779 dev_priv->display.init_pch_clock_gating(dev);
8780 }
8781
8782 /* Set up chip specific display functions */
8783 static void intel_init_display(struct drm_device *dev)
8784 {
8785 struct drm_i915_private *dev_priv = dev->dev_private;
8786
8787 /* We always want a DPMS function */
8788 if (HAS_PCH_SPLIT(dev)) {
8789 dev_priv->display.dpms = ironlake_crtc_dpms;
8790 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8791 dev_priv->display.update_plane = ironlake_update_plane;
8792 } else {
8793 dev_priv->display.dpms = i9xx_crtc_dpms;
8794 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8795 dev_priv->display.update_plane = i9xx_update_plane;
8796 }
8797
8798 if (I915_HAS_FBC(dev)) {
8799 if (HAS_PCH_SPLIT(dev)) {
8800 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8801 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8802 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8803 } else if (IS_GM45(dev)) {
8804 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8805 dev_priv->display.enable_fbc = g4x_enable_fbc;
8806 dev_priv->display.disable_fbc = g4x_disable_fbc;
8807 } else if (IS_CRESTLINE(dev)) {
8808 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8809 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8810 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8811 }
8812 /* 855GM needs testing */
8813 }
8814
8815 /* Returns the core display clock speed */
8816 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8817 dev_priv->display.get_display_clock_speed =
8818 i945_get_display_clock_speed;
8819 else if (IS_I915G(dev))
8820 dev_priv->display.get_display_clock_speed =
8821 i915_get_display_clock_speed;
8822 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8823 dev_priv->display.get_display_clock_speed =
8824 i9xx_misc_get_display_clock_speed;
8825 else if (IS_I915GM(dev))
8826 dev_priv->display.get_display_clock_speed =
8827 i915gm_get_display_clock_speed;
8828 else if (IS_I865G(dev))
8829 dev_priv->display.get_display_clock_speed =
8830 i865_get_display_clock_speed;
8831 else if (IS_I85X(dev))
8832 dev_priv->display.get_display_clock_speed =
8833 i855_get_display_clock_speed;
8834 else /* 852, 830 */
8835 dev_priv->display.get_display_clock_speed =
8836 i830_get_display_clock_speed;
8837
8838 /* For FIFO watermark updates */
8839 if (HAS_PCH_SPLIT(dev)) {
8840 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8841 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8842
8843 /* IVB configs may use multi-threaded forcewake */
8844 if (IS_IVYBRIDGE(dev)) {
8845 u32 ecobus;
8846
8847 /* A small trick here - if the bios hasn't configured MT forcewake,
8848 * and if the device is in RC6, then force_wake_mt_get will not wake
8849 * the device and the ECOBUS read will return zero. Which will be
8850 * (correctly) interpreted by the test below as MT forcewake being
8851 * disabled.
8852 */
8853 mutex_lock(&dev->struct_mutex);
8854 __gen6_gt_force_wake_mt_get(dev_priv);
8855 ecobus = I915_READ_NOTRACE(ECOBUS);
8856 __gen6_gt_force_wake_mt_put(dev_priv);
8857 mutex_unlock(&dev->struct_mutex);
8858
8859 if (ecobus & FORCEWAKE_MT_ENABLE) {
8860 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8861 dev_priv->display.force_wake_get =
8862 __gen6_gt_force_wake_mt_get;
8863 dev_priv->display.force_wake_put =
8864 __gen6_gt_force_wake_mt_put;
8865 }
8866 }
8867
8868 if (HAS_PCH_IBX(dev))
8869 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8870 else if (HAS_PCH_CPT(dev))
8871 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8872
8873 if (IS_GEN5(dev)) {
8874 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8875 dev_priv->display.update_wm = ironlake_update_wm;
8876 else {
8877 DRM_DEBUG_KMS("Failed to get proper latency. "
8878 "Disable CxSR\n");
8879 dev_priv->display.update_wm = NULL;
8880 }
8881 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8882 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8883 dev_priv->display.write_eld = ironlake_write_eld;
8884 } else if (IS_GEN6(dev)) {
8885 if (SNB_READ_WM0_LATENCY()) {
8886 dev_priv->display.update_wm = sandybridge_update_wm;
8887 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8888 } else {
8889 DRM_DEBUG_KMS("Failed to read display plane latency. "
8890 "Disable CxSR\n");
8891 dev_priv->display.update_wm = NULL;
8892 }
8893 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8894 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8895 dev_priv->display.write_eld = ironlake_write_eld;
8896 } else if (IS_IVYBRIDGE(dev)) {
8897 /* FIXME: detect B0+ stepping and use auto training */
8898 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8899 if (SNB_READ_WM0_LATENCY()) {
8900 dev_priv->display.update_wm = sandybridge_update_wm;
8901 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8902 } else {
8903 DRM_DEBUG_KMS("Failed to read display plane latency. "
8904 "Disable CxSR\n");
8905 dev_priv->display.update_wm = NULL;
8906 }
8907 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8908 dev_priv->display.write_eld = ironlake_write_eld;
8909 } else
8910 dev_priv->display.update_wm = NULL;
8911 } else if (IS_PINEVIEW(dev)) {
8912 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8913 dev_priv->is_ddr3,
8914 dev_priv->fsb_freq,
8915 dev_priv->mem_freq)) {
8916 DRM_INFO("failed to find known CxSR latency "
8917 "(found ddr%s fsb freq %d, mem freq %d), "
8918 "disabling CxSR\n",
8919 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8920 dev_priv->fsb_freq, dev_priv->mem_freq);
8921 /* Disable CxSR and never update its watermark again */
8922 pineview_disable_cxsr(dev);
8923 dev_priv->display.update_wm = NULL;
8924 } else
8925 dev_priv->display.update_wm = pineview_update_wm;
8926 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8927 } else if (IS_G4X(dev)) {
8928 dev_priv->display.write_eld = g4x_write_eld;
8929 dev_priv->display.update_wm = g4x_update_wm;
8930 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8931 } else if (IS_GEN4(dev)) {
8932 dev_priv->display.update_wm = i965_update_wm;
8933 if (IS_CRESTLINE(dev))
8934 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8935 else if (IS_BROADWATER(dev))
8936 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8937 } else if (IS_GEN3(dev)) {
8938 dev_priv->display.update_wm = i9xx_update_wm;
8939 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8940 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8941 } else if (IS_I865G(dev)) {
8942 dev_priv->display.update_wm = i830_update_wm;
8943 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8944 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8945 } else if (IS_I85X(dev)) {
8946 dev_priv->display.update_wm = i9xx_update_wm;
8947 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8948 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8949 } else {
8950 dev_priv->display.update_wm = i830_update_wm;
8951 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8952 if (IS_845G(dev))
8953 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8954 else
8955 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8956 }
8957
8958 /* Default just returns -ENODEV to indicate unsupported */
8959 dev_priv->display.queue_flip = intel_default_queue_flip;
8960
8961 switch (INTEL_INFO(dev)->gen) {
8962 case 2:
8963 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8964 break;
8965
8966 case 3:
8967 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8968 break;
8969
8970 case 4:
8971 case 5:
8972 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8973 break;
8974
8975 case 6:
8976 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8977 break;
8978 case 7:
8979 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8980 break;
8981 }
8982 }
8983
8984 /*
8985 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8986 * resume, or other times. This quirk makes sure that's the case for
8987 * affected systems.
8988 */
8989 static void quirk_pipea_force(struct drm_device *dev)
8990 {
8991 struct drm_i915_private *dev_priv = dev->dev_private;
8992
8993 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8994 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8995 }
8996
8997 /*
8998 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8999 */
9000 static void quirk_ssc_force_disable(struct drm_device *dev)
9001 {
9002 struct drm_i915_private *dev_priv = dev->dev_private;
9003 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9004 }
9005
9006 struct intel_quirk {
9007 int device;
9008 int subsystem_vendor;
9009 int subsystem_device;
9010 void (*hook)(struct drm_device *dev);
9011 };
9012
9013 struct intel_quirk intel_quirks[] = {
9014 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
9015 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
9016 /* HP Mini needs pipe A force quirk (LP: #322104) */
9017 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9018
9019 /* Thinkpad R31 needs pipe A force quirk */
9020 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9021 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9022 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9023
9024 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9025 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9026 /* ThinkPad X40 needs pipe A force quirk */
9027
9028 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9029 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9030
9031 /* 855 & before need to leave pipe A & dpll A up */
9032 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9033 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9034
9035 /* Lenovo U160 cannot use SSC on LVDS */
9036 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9037
9038 /* Sony Vaio Y cannot use SSC on LVDS */
9039 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9040 };
9041
9042 static void intel_init_quirks(struct drm_device *dev)
9043 {
9044 struct pci_dev *d = dev->pdev;
9045 int i;
9046
9047 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9048 struct intel_quirk *q = &intel_quirks[i];
9049
9050 if (d->device == q->device &&
9051 (d->subsystem_vendor == q->subsystem_vendor ||
9052 q->subsystem_vendor == PCI_ANY_ID) &&
9053 (d->subsystem_device == q->subsystem_device ||
9054 q->subsystem_device == PCI_ANY_ID))
9055 q->hook(dev);
9056 }
9057 }
9058
9059 /* Disable the VGA plane that we never use */
9060 static void i915_disable_vga(struct drm_device *dev)
9061 {
9062 struct drm_i915_private *dev_priv = dev->dev_private;
9063 u8 sr1;
9064 u32 vga_reg;
9065
9066 if (HAS_PCH_SPLIT(dev))
9067 vga_reg = CPU_VGACNTRL;
9068 else
9069 vga_reg = VGACNTRL;
9070
9071 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9072 outb(1, VGA_SR_INDEX);
9073 sr1 = inb(VGA_SR_DATA);
9074 outb(sr1 | 1<<5, VGA_SR_DATA);
9075 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9076 udelay(300);
9077
9078 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9079 POSTING_READ(vga_reg);
9080 }
9081
9082 void intel_modeset_init(struct drm_device *dev)
9083 {
9084 struct drm_i915_private *dev_priv = dev->dev_private;
9085 int i, ret;
9086
9087 drm_mode_config_init(dev);
9088
9089 dev->mode_config.min_width = 0;
9090 dev->mode_config.min_height = 0;
9091
9092 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9093
9094 intel_init_quirks(dev);
9095
9096 intel_init_display(dev);
9097
9098 if (IS_GEN2(dev)) {
9099 dev->mode_config.max_width = 2048;
9100 dev->mode_config.max_height = 2048;
9101 } else if (IS_GEN3(dev)) {
9102 dev->mode_config.max_width = 4096;
9103 dev->mode_config.max_height = 4096;
9104 } else {
9105 dev->mode_config.max_width = 8192;
9106 dev->mode_config.max_height = 8192;
9107 }
9108 dev->mode_config.fb_base = dev->agp->base;
9109
9110 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9111 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9112
9113 for (i = 0; i < dev_priv->num_pipe; i++) {
9114 intel_crtc_init(dev, i);
9115 ret = intel_plane_init(dev, i);
9116 if (ret)
9117 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9118 }
9119
9120 /* Just disable it once at startup */
9121 i915_disable_vga(dev);
9122 intel_setup_outputs(dev);
9123
9124 intel_init_clock_gating(dev);
9125
9126 if (IS_IRONLAKE_M(dev)) {
9127 ironlake_enable_drps(dev);
9128 intel_init_emon(dev);
9129 }
9130
9131 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9132 gen6_enable_rps(dev_priv);
9133 gen6_update_ring_freq(dev_priv);
9134 }
9135
9136 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9137 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9138 (unsigned long)dev);
9139 }
9140
9141 void intel_modeset_gem_init(struct drm_device *dev)
9142 {
9143 if (IS_IRONLAKE_M(dev))
9144 ironlake_enable_rc6(dev);
9145
9146 intel_setup_overlay(dev);
9147 }
9148
9149 void intel_modeset_cleanup(struct drm_device *dev)
9150 {
9151 struct drm_i915_private *dev_priv = dev->dev_private;
9152 struct drm_crtc *crtc;
9153 struct intel_crtc *intel_crtc;
9154
9155 drm_kms_helper_poll_fini(dev);
9156 mutex_lock(&dev->struct_mutex);
9157
9158 intel_unregister_dsm_handler();
9159
9160
9161 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9162 /* Skip inactive CRTCs */
9163 if (!crtc->fb)
9164 continue;
9165
9166 intel_crtc = to_intel_crtc(crtc);
9167 intel_increase_pllclock(crtc);
9168 }
9169
9170 intel_disable_fbc(dev);
9171
9172 if (IS_IRONLAKE_M(dev))
9173 ironlake_disable_drps(dev);
9174 if (IS_GEN6(dev) || IS_GEN7(dev))
9175 gen6_disable_rps(dev);
9176
9177 if (IS_IRONLAKE_M(dev))
9178 ironlake_disable_rc6(dev);
9179
9180 mutex_unlock(&dev->struct_mutex);
9181
9182 /* Disable the irq before mode object teardown, for the irq might
9183 * enqueue unpin/hotplug work. */
9184 drm_irq_uninstall(dev);
9185 cancel_work_sync(&dev_priv->hotplug_work);
9186 cancel_work_sync(&dev_priv->rps_work);
9187
9188 /* flush any delayed tasks or pending work */
9189 flush_scheduled_work();
9190
9191 /* Shut off idle work before the crtcs get freed. */
9192 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9193 intel_crtc = to_intel_crtc(crtc);
9194 del_timer_sync(&intel_crtc->idle_timer);
9195 }
9196 del_timer_sync(&dev_priv->idle_timer);
9197 cancel_work_sync(&dev_priv->idle_work);
9198
9199 drm_mode_config_cleanup(dev);
9200 }
9201
9202 /*
9203 * Return which encoder is currently attached for connector.
9204 */
9205 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9206 {
9207 return &intel_attached_encoder(connector)->base;
9208 }
9209
9210 void intel_connector_attach_encoder(struct intel_connector *connector,
9211 struct intel_encoder *encoder)
9212 {
9213 connector->encoder = encoder;
9214 drm_mode_connector_attach_encoder(&connector->base,
9215 &encoder->base);
9216 }
9217
9218 /*
9219 * set vga decode state - true == enable VGA decode
9220 */
9221 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9222 {
9223 struct drm_i915_private *dev_priv = dev->dev_private;
9224 u16 gmch_ctrl;
9225
9226 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9227 if (state)
9228 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9229 else
9230 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9231 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9232 return 0;
9233 }
9234
9235 #ifdef CONFIG_DEBUG_FS
9236 #include <linux/seq_file.h>
9237
9238 struct intel_display_error_state {
9239 struct intel_cursor_error_state {
9240 u32 control;
9241 u32 position;
9242 u32 base;
9243 u32 size;
9244 } cursor[2];
9245
9246 struct intel_pipe_error_state {
9247 u32 conf;
9248 u32 source;
9249
9250 u32 htotal;
9251 u32 hblank;
9252 u32 hsync;
9253 u32 vtotal;
9254 u32 vblank;
9255 u32 vsync;
9256 } pipe[2];
9257
9258 struct intel_plane_error_state {
9259 u32 control;
9260 u32 stride;
9261 u32 size;
9262 u32 pos;
9263 u32 addr;
9264 u32 surface;
9265 u32 tile_offset;
9266 } plane[2];
9267 };
9268
9269 struct intel_display_error_state *
9270 intel_display_capture_error_state(struct drm_device *dev)
9271 {
9272 drm_i915_private_t *dev_priv = dev->dev_private;
9273 struct intel_display_error_state *error;
9274 int i;
9275
9276 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9277 if (error == NULL)
9278 return NULL;
9279
9280 for (i = 0; i < 2; i++) {
9281 error->cursor[i].control = I915_READ(CURCNTR(i));
9282 error->cursor[i].position = I915_READ(CURPOS(i));
9283 error->cursor[i].base = I915_READ(CURBASE(i));
9284
9285 error->plane[i].control = I915_READ(DSPCNTR(i));
9286 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9287 error->plane[i].size = I915_READ(DSPSIZE(i));
9288 error->plane[i].pos = I915_READ(DSPPOS(i));
9289 error->plane[i].addr = I915_READ(DSPADDR(i));
9290 if (INTEL_INFO(dev)->gen >= 4) {
9291 error->plane[i].surface = I915_READ(DSPSURF(i));
9292 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9293 }
9294
9295 error->pipe[i].conf = I915_READ(PIPECONF(i));
9296 error->pipe[i].source = I915_READ(PIPESRC(i));
9297 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9298 error->pipe[i].hblank = I915_READ(HBLANK(i));
9299 error->pipe[i].hsync = I915_READ(HSYNC(i));
9300 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9301 error->pipe[i].vblank = I915_READ(VBLANK(i));
9302 error->pipe[i].vsync = I915_READ(VSYNC(i));
9303 }
9304
9305 return error;
9306 }
9307
9308 void
9309 intel_display_print_error_state(struct seq_file *m,
9310 struct drm_device *dev,
9311 struct intel_display_error_state *error)
9312 {
9313 int i;
9314
9315 for (i = 0; i < 2; i++) {
9316 seq_printf(m, "Pipe [%d]:\n", i);
9317 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9318 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9319 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9320 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9321 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9322 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9323 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9324 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9325
9326 seq_printf(m, "Plane [%d]:\n", i);
9327 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9328 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9329 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9330 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9331 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9332 if (INTEL_INFO(dev)->gen >= 4) {
9333 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9334 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9335 }
9336
9337 seq_printf(m, "Cursor [%d]:\n", i);
9338 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9339 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9340 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9341 }
9342 }
9343 #endif