drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / core-iso.c
1 /*
2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
5 *
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
33
34 #include <asm/byteorder.h>
35
36 #include "core.h"
37
38 /*
39 * Isochronous DMA context management
40 */
41
42 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
43 {
44 int i;
45
46 buffer->page_count = 0;
47 buffer->page_count_mapped = 0;
48 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
49 GFP_KERNEL);
50 if (buffer->pages == NULL)
51 return -ENOMEM;
52
53 for (i = 0; i < page_count; i++) {
54 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
55 if (buffer->pages[i] == NULL)
56 break;
57 }
58 buffer->page_count = i;
59 if (i < page_count) {
60 fw_iso_buffer_destroy(buffer, NULL);
61 return -ENOMEM;
62 }
63
64 return 0;
65 }
66
67 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
68 enum dma_data_direction direction)
69 {
70 dma_addr_t address;
71 int i;
72
73 buffer->direction = direction;
74
75 for (i = 0; i < buffer->page_count; i++) {
76 address = dma_map_page(card->device, buffer->pages[i],
77 0, PAGE_SIZE, direction);
78 if (dma_mapping_error(card->device, address))
79 break;
80
81 set_page_private(buffer->pages[i], address);
82 }
83 buffer->page_count_mapped = i;
84 if (i < buffer->page_count)
85 return -ENOMEM;
86
87 return 0;
88 }
89
90 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
91 int page_count, enum dma_data_direction direction)
92 {
93 int ret;
94
95 ret = fw_iso_buffer_alloc(buffer, page_count);
96 if (ret < 0)
97 return ret;
98
99 ret = fw_iso_buffer_map_dma(buffer, card, direction);
100 if (ret < 0)
101 fw_iso_buffer_destroy(buffer, card);
102
103 return ret;
104 }
105 EXPORT_SYMBOL(fw_iso_buffer_init);
106
107 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
108 struct vm_area_struct *vma)
109 {
110 unsigned long uaddr;
111 int i, err;
112
113 uaddr = vma->vm_start;
114 for (i = 0; i < buffer->page_count; i++) {
115 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
116 if (err)
117 return err;
118
119 uaddr += PAGE_SIZE;
120 }
121
122 return 0;
123 }
124
125 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
126 struct fw_card *card)
127 {
128 int i;
129 dma_addr_t address;
130
131 for (i = 0; i < buffer->page_count_mapped; i++) {
132 address = page_private(buffer->pages[i]);
133 dma_unmap_page(card->device, address,
134 PAGE_SIZE, buffer->direction);
135 }
136 for (i = 0; i < buffer->page_count; i++)
137 __free_page(buffer->pages[i]);
138
139 kfree(buffer->pages);
140 buffer->pages = NULL;
141 buffer->page_count = 0;
142 buffer->page_count_mapped = 0;
143 }
144 EXPORT_SYMBOL(fw_iso_buffer_destroy);
145
146 /* Convert DMA address to offset into virtually contiguous buffer. */
147 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
148 {
149 size_t i;
150 dma_addr_t address;
151 ssize_t offset;
152
153 for (i = 0; i < buffer->page_count; i++) {
154 address = page_private(buffer->pages[i]);
155 offset = (ssize_t)completed - (ssize_t)address;
156 if (offset > 0 && offset <= PAGE_SIZE)
157 return (i << PAGE_SHIFT) + offset;
158 }
159
160 return 0;
161 }
162
163 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
164 int type, int channel, int speed, size_t header_size,
165 fw_iso_callback_t callback, void *callback_data)
166 {
167 struct fw_iso_context *ctx;
168
169 ctx = card->driver->allocate_iso_context(card,
170 type, channel, header_size);
171 if (IS_ERR(ctx))
172 return ctx;
173
174 ctx->card = card;
175 ctx->type = type;
176 ctx->channel = channel;
177 ctx->speed = speed;
178 ctx->header_size = header_size;
179 ctx->callback.sc = callback;
180 ctx->callback_data = callback_data;
181
182 return ctx;
183 }
184 EXPORT_SYMBOL(fw_iso_context_create);
185
186 void fw_iso_context_destroy(struct fw_iso_context *ctx)
187 {
188 ctx->card->driver->free_iso_context(ctx);
189 }
190 EXPORT_SYMBOL(fw_iso_context_destroy);
191
192 int fw_iso_context_start(struct fw_iso_context *ctx,
193 int cycle, int sync, int tags)
194 {
195 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
196 }
197 EXPORT_SYMBOL(fw_iso_context_start);
198
199 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
200 {
201 return ctx->card->driver->set_iso_channels(ctx, channels);
202 }
203
204 int fw_iso_context_queue(struct fw_iso_context *ctx,
205 struct fw_iso_packet *packet,
206 struct fw_iso_buffer *buffer,
207 unsigned long payload)
208 {
209 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
210 }
211 EXPORT_SYMBOL(fw_iso_context_queue);
212
213 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
214 {
215 ctx->card->driver->flush_queue_iso(ctx);
216 }
217 EXPORT_SYMBOL(fw_iso_context_queue_flush);
218
219 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
220 {
221 return ctx->card->driver->flush_iso_completions(ctx);
222 }
223 EXPORT_SYMBOL(fw_iso_context_flush_completions);
224
225 int fw_iso_context_stop(struct fw_iso_context *ctx)
226 {
227 return ctx->card->driver->stop_iso(ctx);
228 }
229 EXPORT_SYMBOL(fw_iso_context_stop);
230
231 /*
232 * Isochronous bus resource management (channels, bandwidth), client side
233 */
234
235 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
236 int bandwidth, bool allocate)
237 {
238 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
239 __be32 data[2];
240
241 /*
242 * On a 1394a IRM with low contention, try < 1 is enough.
243 * On a 1394-1995 IRM, we need at least try < 2.
244 * Let's just do try < 5.
245 */
246 for (try = 0; try < 5; try++) {
247 new = allocate ? old - bandwidth : old + bandwidth;
248 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
249 return -EBUSY;
250
251 data[0] = cpu_to_be32(old);
252 data[1] = cpu_to_be32(new);
253 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
254 irm_id, generation, SCODE_100,
255 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
256 data, 8)) {
257 case RCODE_GENERATION:
258 /* A generation change frees all bandwidth. */
259 return allocate ? -EAGAIN : bandwidth;
260
261 case RCODE_COMPLETE:
262 if (be32_to_cpup(data) == old)
263 return bandwidth;
264
265 old = be32_to_cpup(data);
266 /* Fall through. */
267 }
268 }
269
270 return -EIO;
271 }
272
273 static int manage_channel(struct fw_card *card, int irm_id, int generation,
274 u32 channels_mask, u64 offset, bool allocate)
275 {
276 __be32 bit, all, old;
277 __be32 data[2];
278 int channel, ret = -EIO, retry = 5;
279
280 old = all = allocate ? cpu_to_be32(~0) : 0;
281
282 for (channel = 0; channel < 32; channel++) {
283 if (!(channels_mask & 1 << channel))
284 continue;
285
286 ret = -EBUSY;
287
288 bit = cpu_to_be32(1 << (31 - channel));
289 if ((old & bit) != (all & bit))
290 continue;
291
292 data[0] = old;
293 data[1] = old ^ bit;
294 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
295 irm_id, generation, SCODE_100,
296 offset, data, 8)) {
297 case RCODE_GENERATION:
298 /* A generation change frees all channels. */
299 return allocate ? -EAGAIN : channel;
300
301 case RCODE_COMPLETE:
302 if (data[0] == old)
303 return channel;
304
305 old = data[0];
306
307 /* Is the IRM 1394a-2000 compliant? */
308 if ((data[0] & bit) == (data[1] & bit))
309 continue;
310
311 /* 1394-1995 IRM, fall through to retry. */
312 default:
313 if (retry) {
314 retry--;
315 channel--;
316 } else {
317 ret = -EIO;
318 }
319 }
320 }
321
322 return ret;
323 }
324
325 static void deallocate_channel(struct fw_card *card, int irm_id,
326 int generation, int channel)
327 {
328 u32 mask;
329 u64 offset;
330
331 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
332 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
333 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
334
335 manage_channel(card, irm_id, generation, mask, offset, false);
336 }
337
338 /**
339 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
340 *
341 * In parameters: card, generation, channels_mask, bandwidth, allocate
342 * Out parameters: channel, bandwidth
343 * This function blocks (sleeps) during communication with the IRM.
344 *
345 * Allocates or deallocates at most one channel out of channels_mask.
346 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
347 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
348 * channel 0 and LSB for channel 63.)
349 * Allocates or deallocates as many bandwidth allocation units as specified.
350 *
351 * Returns channel < 0 if no channel was allocated or deallocated.
352 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
353 *
354 * If generation is stale, deallocations succeed but allocations fail with
355 * channel = -EAGAIN.
356 *
357 * If channel allocation fails, no bandwidth will be allocated either.
358 * If bandwidth allocation fails, no channel will be allocated either.
359 * But deallocations of channel and bandwidth are tried independently
360 * of each other's success.
361 */
362 void fw_iso_resource_manage(struct fw_card *card, int generation,
363 u64 channels_mask, int *channel, int *bandwidth,
364 bool allocate)
365 {
366 u32 channels_hi = channels_mask; /* channels 31...0 */
367 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
368 int irm_id, ret, c = -EINVAL;
369
370 spin_lock_irq(&card->lock);
371 irm_id = card->irm_node->node_id;
372 spin_unlock_irq(&card->lock);
373
374 if (channels_hi)
375 c = manage_channel(card, irm_id, generation, channels_hi,
376 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
377 allocate);
378 if (channels_lo && c < 0) {
379 c = manage_channel(card, irm_id, generation, channels_lo,
380 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
381 allocate);
382 if (c >= 0)
383 c += 32;
384 }
385 *channel = c;
386
387 if (allocate && channels_mask != 0 && c < 0)
388 *bandwidth = 0;
389
390 if (*bandwidth == 0)
391 return;
392
393 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
394 if (ret < 0)
395 *bandwidth = 0;
396
397 if (allocate && ret < 0) {
398 if (c >= 0)
399 deallocate_channel(card, irm_id, generation, c);
400 *channel = ret;
401 }
402 }
403 EXPORT_SYMBOL(fw_iso_resource_manage);