Merge branches 'x86-alternatives-for-linus', 'x86-fpu-for-linus', 'x86-hwmon-for...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / edac_core.h
1 /*
2 * Defines, structures, APIs for edac_core module
3 *
4 * (C) 2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written by Thayne Harbaugh
9 * Based on work by Dan Hollis <goemon at anime dot net> and others.
10 * http://www.anime.net/~goemon/linux-ecc/
11 *
12 * NMI handling support added by
13 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
14 *
15 * Refactored for multi-source files:
16 * Doug Thompson <norsk5@xmission.com>
17 *
18 */
19
20 #ifndef _EDAC_CORE_H_
21 #define _EDAC_CORE_H_
22
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/pci.h>
29 #include <linux/time.h>
30 #include <linux/nmi.h>
31 #include <linux/rcupdate.h>
32 #include <linux/completion.h>
33 #include <linux/kobject.h>
34 #include <linux/platform_device.h>
35 #include <linux/sysdev.h>
36 #include <linux/workqueue.h>
37
38 #define EDAC_MC_LABEL_LEN 31
39 #define EDAC_DEVICE_NAME_LEN 31
40 #define EDAC_ATTRIB_VALUE_LEN 15
41 #define MC_PROC_NAME_MAX_LEN 7
42
43 #if PAGE_SHIFT < 20
44 #define PAGES_TO_MiB(pages) ((pages) >> (20 - PAGE_SHIFT))
45 #define MiB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
46 #else /* PAGE_SHIFT > 20 */
47 #define PAGES_TO_MiB(pages) ((pages) << (PAGE_SHIFT - 20))
48 #define MiB_TO_PAGES(mb) ((mb) >> (PAGE_SHIFT - 20))
49 #endif
50
51 #define edac_printk(level, prefix, fmt, arg...) \
52 printk(level "EDAC " prefix ": " fmt, ##arg)
53
54 #define edac_mc_printk(mci, level, fmt, arg...) \
55 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
56
57 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
58 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
59
60 #define edac_device_printk(ctl, level, fmt, arg...) \
61 printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
62
63 #define edac_pci_printk(ctl, level, fmt, arg...) \
64 printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)
65
66 /* prefixes for edac_printk() and edac_mc_printk() */
67 #define EDAC_MC "MC"
68 #define EDAC_PCI "PCI"
69 #define EDAC_DEBUG "DEBUG"
70
71 #ifdef CONFIG_EDAC_DEBUG
72 extern int edac_debug_level;
73 extern const char *edac_mem_types[];
74
75 #define edac_debug_printk(level, fmt, arg...) \
76 do { \
77 if (level <= edac_debug_level) \
78 edac_printk(KERN_DEBUG, EDAC_DEBUG, \
79 "%s: " fmt, __func__, ##arg); \
80 } while (0)
81
82 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
83 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
84 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
85 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
86 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
87
88 #else /* !CONFIG_EDAC_DEBUG */
89
90 #define debugf0( ... )
91 #define debugf1( ... )
92 #define debugf2( ... )
93 #define debugf3( ... )
94 #define debugf4( ... )
95
96 #endif /* !CONFIG_EDAC_DEBUG */
97
98 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
99 PCI_DEVICE_ID_ ## vend ## _ ## dev
100
101 #define edac_dev_name(dev) (dev)->dev_name
102
103 /* memory devices */
104 enum dev_type {
105 DEV_UNKNOWN = 0,
106 DEV_X1,
107 DEV_X2,
108 DEV_X4,
109 DEV_X8,
110 DEV_X16,
111 DEV_X32, /* Do these parts exist? */
112 DEV_X64 /* Do these parts exist? */
113 };
114
115 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
116 #define DEV_FLAG_X1 BIT(DEV_X1)
117 #define DEV_FLAG_X2 BIT(DEV_X2)
118 #define DEV_FLAG_X4 BIT(DEV_X4)
119 #define DEV_FLAG_X8 BIT(DEV_X8)
120 #define DEV_FLAG_X16 BIT(DEV_X16)
121 #define DEV_FLAG_X32 BIT(DEV_X32)
122 #define DEV_FLAG_X64 BIT(DEV_X64)
123
124 /* memory types */
125 enum mem_type {
126 MEM_EMPTY = 0, /* Empty csrow */
127 MEM_RESERVED, /* Reserved csrow type */
128 MEM_UNKNOWN, /* Unknown csrow type */
129 MEM_FPM, /* Fast page mode */
130 MEM_EDO, /* Extended data out */
131 MEM_BEDO, /* Burst Extended data out */
132 MEM_SDR, /* Single data rate SDRAM */
133 MEM_RDR, /* Registered single data rate SDRAM */
134 MEM_DDR, /* Double data rate SDRAM */
135 MEM_RDDR, /* Registered Double data rate SDRAM */
136 MEM_RMBS, /* Rambus DRAM */
137 MEM_DDR2, /* DDR2 RAM */
138 MEM_FB_DDR2, /* fully buffered DDR2 */
139 MEM_RDDR2, /* Registered DDR2 RAM */
140 MEM_XDR, /* Rambus XDR */
141 MEM_DDR3, /* DDR3 RAM */
142 MEM_RDDR3, /* Registered DDR3 RAM */
143 };
144
145 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
146 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
147 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
148 #define MEM_FLAG_FPM BIT(MEM_FPM)
149 #define MEM_FLAG_EDO BIT(MEM_EDO)
150 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
151 #define MEM_FLAG_SDR BIT(MEM_SDR)
152 #define MEM_FLAG_RDR BIT(MEM_RDR)
153 #define MEM_FLAG_DDR BIT(MEM_DDR)
154 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
155 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
156 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
157 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
158 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
159 #define MEM_FLAG_XDR BIT(MEM_XDR)
160 #define MEM_FLAG_DDR3 BIT(MEM_DDR3)
161 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
162
163 /* chipset Error Detection and Correction capabilities and mode */
164 enum edac_type {
165 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
166 EDAC_NONE, /* Doesnt support ECC */
167 EDAC_RESERVED, /* Reserved ECC type */
168 EDAC_PARITY, /* Detects parity errors */
169 EDAC_EC, /* Error Checking - no correction */
170 EDAC_SECDED, /* Single bit error correction, Double detection */
171 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
172 EDAC_S4ECD4ED, /* Chipkill x4 devices */
173 EDAC_S8ECD8ED, /* Chipkill x8 devices */
174 EDAC_S16ECD16ED, /* Chipkill x16 devices */
175 };
176
177 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
178 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
179 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
180 #define EDAC_FLAG_EC BIT(EDAC_EC)
181 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
182 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
183 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
184 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
185 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
186
187 /* scrubbing capabilities */
188 enum scrub_type {
189 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
190 SCRUB_NONE, /* No scrubber */
191 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
192 SCRUB_SW_SRC, /* Software scrub only errors */
193 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
194 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
195 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
196 SCRUB_HW_SRC, /* Hardware scrub only errors */
197 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
198 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
199 };
200
201 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
202 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
203 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
204 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
205 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
206 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
207 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
208 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
209
210 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
211
212 /* EDAC internal operation states */
213 #define OP_ALLOC 0x100
214 #define OP_RUNNING_POLL 0x201
215 #define OP_RUNNING_INTERRUPT 0x202
216 #define OP_RUNNING_POLL_INTR 0x203
217 #define OP_OFFLINE 0x300
218
219 /*
220 * There are several things to be aware of that aren't at all obvious:
221 *
222 *
223 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
224 *
225 * These are some of the many terms that are thrown about that don't always
226 * mean what people think they mean (Inconceivable!). In the interest of
227 * creating a common ground for discussion, terms and their definitions
228 * will be established.
229 *
230 * Memory devices: The individual chip on a memory stick. These devices
231 * commonly output 4 and 8 bits each. Grouping several
232 * of these in parallel provides 64 bits which is common
233 * for a memory stick.
234 *
235 * Memory Stick: A printed circuit board that agregates multiple
236 * memory devices in parallel. This is the atomic
237 * memory component that is purchaseable by Joe consumer
238 * and loaded into a memory socket.
239 *
240 * Socket: A physical connector on the motherboard that accepts
241 * a single memory stick.
242 *
243 * Channel: Set of memory devices on a memory stick that must be
244 * grouped in parallel with one or more additional
245 * channels from other memory sticks. This parallel
246 * grouping of the output from multiple channels are
247 * necessary for the smallest granularity of memory access.
248 * Some memory controllers are capable of single channel -
249 * which means that memory sticks can be loaded
250 * individually. Other memory controllers are only
251 * capable of dual channel - which means that memory
252 * sticks must be loaded as pairs (see "socket set").
253 *
254 * Chip-select row: All of the memory devices that are selected together.
255 * for a single, minimum grain of memory access.
256 * This selects all of the parallel memory devices across
257 * all of the parallel channels. Common chip-select rows
258 * for single channel are 64 bits, for dual channel 128
259 * bits.
260 *
261 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
262 * Motherboards commonly drive two chip-select pins to
263 * a memory stick. A single-ranked stick, will occupy
264 * only one of those rows. The other will be unused.
265 *
266 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
267 * access different sets of memory devices. The two
268 * rows cannot be accessed concurrently.
269 *
270 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
271 * A double-sided stick has two chip-select rows which
272 * access different sets of memory devices. The two
273 * rows cannot be accessed concurrently. "Double-sided"
274 * is irrespective of the memory devices being mounted
275 * on both sides of the memory stick.
276 *
277 * Socket set: All of the memory sticks that are required for
278 * a single memory access or all of the memory sticks
279 * spanned by a chip-select row. A single socket set
280 * has two chip-select rows and if double-sided sticks
281 * are used these will occupy those chip-select rows.
282 *
283 * Bank: This term is avoided because it is unclear when
284 * needing to distinguish between chip-select rows and
285 * socket sets.
286 *
287 * Controller pages:
288 *
289 * Physical pages:
290 *
291 * Virtual pages:
292 *
293 *
294 * STRUCTURE ORGANIZATION AND CHOICES
295 *
296 *
297 *
298 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
299 */
300
301 struct channel_info {
302 int chan_idx; /* channel index */
303 u32 ce_count; /* Correctable Errors for this CHANNEL */
304 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
305 struct csrow_info *csrow; /* the parent */
306 };
307
308 struct csrow_info {
309 unsigned long first_page; /* first page number in dimm */
310 unsigned long last_page; /* last page number in dimm */
311 unsigned long page_mask; /* used for interleaving -
312 * 0UL for non intlv
313 */
314 u32 nr_pages; /* number of pages in csrow */
315 u32 grain; /* granularity of reported error in bytes */
316 int csrow_idx; /* the chip-select row */
317 enum dev_type dtype; /* memory device type */
318 u32 ue_count; /* Uncorrectable Errors for this csrow */
319 u32 ce_count; /* Correctable Errors for this csrow */
320 enum mem_type mtype; /* memory csrow type */
321 enum edac_type edac_mode; /* EDAC mode for this csrow */
322 struct mem_ctl_info *mci; /* the parent */
323
324 struct kobject kobj; /* sysfs kobject for this csrow */
325
326 /* channel information for this csrow */
327 u32 nr_channels;
328 struct channel_info *channels;
329 };
330
331 struct mcidev_sysfs_group {
332 const char *name; /* group name */
333 const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */
334 };
335
336 struct mcidev_sysfs_group_kobj {
337 struct list_head list; /* list for all instances within a mc */
338
339 struct kobject kobj; /* kobj for the group */
340
341 const struct mcidev_sysfs_group *grp; /* group description table */
342 struct mem_ctl_info *mci; /* the parent */
343 };
344
345 /* mcidev_sysfs_attribute structure
346 * used for driver sysfs attributes and in mem_ctl_info
347 * sysfs top level entries
348 */
349 struct mcidev_sysfs_attribute {
350 /* It should use either attr or grp */
351 struct attribute attr;
352 const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */
353
354 /* Ops for show/store values at the attribute - not used on group */
355 ssize_t (*show)(struct mem_ctl_info *,char *);
356 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
357 };
358
359 /* MEMORY controller information structure
360 */
361 struct mem_ctl_info {
362 struct list_head link; /* for global list of mem_ctl_info structs */
363
364 struct module *owner; /* Module owner of this control struct */
365
366 unsigned long mtype_cap; /* memory types supported by mc */
367 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
368 unsigned long edac_cap; /* configuration capabilities - this is
369 * closely related to edac_ctl_cap. The
370 * difference is that the controller may be
371 * capable of s4ecd4ed which would be listed
372 * in edac_ctl_cap, but if channels aren't
373 * capable of s4ecd4ed then the edac_cap would
374 * not have that capability.
375 */
376 unsigned long scrub_cap; /* chipset scrub capabilities */
377 enum scrub_type scrub_mode; /* current scrub mode */
378
379 /* Translates sdram memory scrub rate given in bytes/sec to the
380 internal representation and configures whatever else needs
381 to be configured.
382 */
383 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
384
385 /* Get the current sdram memory scrub rate from the internal
386 representation and converts it to the closest matching
387 bandwith in bytes/sec.
388 */
389 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
390
391
392 /* pointer to edac checking routine */
393 void (*edac_check) (struct mem_ctl_info * mci);
394
395 /*
396 * Remaps memory pages: controller pages to physical pages.
397 * For most MC's, this will be NULL.
398 */
399 /* FIXME - why not send the phys page to begin with? */
400 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
401 unsigned long page);
402 int mc_idx;
403 int nr_csrows;
404 struct csrow_info *csrows;
405 /*
406 * FIXME - what about controllers on other busses? - IDs must be
407 * unique. dev pointer should be sufficiently unique, but
408 * BUS:SLOT.FUNC numbers may not be unique.
409 */
410 struct device *dev;
411 const char *mod_name;
412 const char *mod_ver;
413 const char *ctl_name;
414 const char *dev_name;
415 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
416 void *pvt_info;
417 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
418 u32 ce_noinfo_count; /* Correctable Errors w/o info */
419 u32 ue_count; /* Total Uncorrectable Errors for this MC */
420 u32 ce_count; /* Total Correctable Errors for this MC */
421 unsigned long start_time; /* mci load start time (in jiffies) */
422
423 /* this stuff is for safe removal of mc devices from global list while
424 * NMI handlers may be traversing list
425 */
426 struct rcu_head rcu;
427 struct completion complete;
428
429 /* edac sysfs device control */
430 struct kobject edac_mci_kobj;
431
432 /* list for all grp instances within a mc */
433 struct list_head grp_kobj_list;
434
435 /* Additional top controller level attributes, but specified
436 * by the low level driver.
437 *
438 * Set by the low level driver to provide attributes at the
439 * controller level, same level as 'ue_count' and 'ce_count' above.
440 * An array of structures, NULL terminated
441 *
442 * If attributes are desired, then set to array of attributes
443 * If no attributes are desired, leave NULL
444 */
445 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
446
447 /* work struct for this MC */
448 struct delayed_work work;
449
450 /* the internal state of this controller instance */
451 int op_state;
452 };
453
454 /*
455 * The following are the structures to provide for a generic
456 * or abstract 'edac_device'. This set of structures and the
457 * code that implements the APIs for the same, provide for
458 * registering EDAC type devices which are NOT standard memory.
459 *
460 * CPU caches (L1 and L2)
461 * DMA engines
462 * Core CPU swithces
463 * Fabric switch units
464 * PCIe interface controllers
465 * other EDAC/ECC type devices that can be monitored for
466 * errors, etc.
467 *
468 * It allows for a 2 level set of hiearchry. For example:
469 *
470 * cache could be composed of L1, L2 and L3 levels of cache.
471 * Each CPU core would have its own L1 cache, while sharing
472 * L2 and maybe L3 caches.
473 *
474 * View them arranged, via the sysfs presentation:
475 * /sys/devices/system/edac/..
476 *
477 * mc/ <existing memory device directory>
478 * cpu/cpu0/.. <L1 and L2 block directory>
479 * /L1-cache/ce_count
480 * /ue_count
481 * /L2-cache/ce_count
482 * /ue_count
483 * cpu/cpu1/.. <L1 and L2 block directory>
484 * /L1-cache/ce_count
485 * /ue_count
486 * /L2-cache/ce_count
487 * /ue_count
488 * ...
489 *
490 * the L1 and L2 directories would be "edac_device_block's"
491 */
492
493 struct edac_device_counter {
494 u32 ue_count;
495 u32 ce_count;
496 };
497
498 /* forward reference */
499 struct edac_device_ctl_info;
500 struct edac_device_block;
501
502 /* edac_dev_sysfs_attribute structure
503 * used for driver sysfs attributes in mem_ctl_info
504 * for extra controls and attributes:
505 * like high level error Injection controls
506 */
507 struct edac_dev_sysfs_attribute {
508 struct attribute attr;
509 ssize_t (*show)(struct edac_device_ctl_info *, char *);
510 ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t);
511 };
512
513 /* edac_dev_sysfs_block_attribute structure
514 *
515 * used in leaf 'block' nodes for adding controls/attributes
516 *
517 * each block in each instance of the containing control structure
518 * can have an array of the following. The show and store functions
519 * will be filled in with the show/store function in the
520 * low level driver.
521 *
522 * The 'value' field will be the actual value field used for
523 * counting
524 */
525 struct edac_dev_sysfs_block_attribute {
526 struct attribute attr;
527 ssize_t (*show)(struct kobject *, struct attribute *, char *);
528 ssize_t (*store)(struct kobject *, struct attribute *,
529 const char *, size_t);
530 struct edac_device_block *block;
531
532 unsigned int value;
533 };
534
535 /* device block control structure */
536 struct edac_device_block {
537 struct edac_device_instance *instance; /* Up Pointer */
538 char name[EDAC_DEVICE_NAME_LEN + 1];
539
540 struct edac_device_counter counters; /* basic UE and CE counters */
541
542 int nr_attribs; /* how many attributes */
543
544 /* this block's attributes, could be NULL */
545 struct edac_dev_sysfs_block_attribute *block_attributes;
546
547 /* edac sysfs device control */
548 struct kobject kobj;
549 };
550
551 /* device instance control structure */
552 struct edac_device_instance {
553 struct edac_device_ctl_info *ctl; /* Up pointer */
554 char name[EDAC_DEVICE_NAME_LEN + 4];
555
556 struct edac_device_counter counters; /* instance counters */
557
558 u32 nr_blocks; /* how many blocks */
559 struct edac_device_block *blocks; /* block array */
560
561 /* edac sysfs device control */
562 struct kobject kobj;
563 };
564
565
566 /*
567 * Abstract edac_device control info structure
568 *
569 */
570 struct edac_device_ctl_info {
571 /* for global list of edac_device_ctl_info structs */
572 struct list_head link;
573
574 struct module *owner; /* Module owner of this control struct */
575
576 int dev_idx;
577
578 /* Per instance controls for this edac_device */
579 int log_ue; /* boolean for logging UEs */
580 int log_ce; /* boolean for logging CEs */
581 int panic_on_ue; /* boolean for panic'ing on an UE */
582 unsigned poll_msec; /* number of milliseconds to poll interval */
583 unsigned long delay; /* number of jiffies for poll_msec */
584
585 /* Additional top controller level attributes, but specified
586 * by the low level driver.
587 *
588 * Set by the low level driver to provide attributes at the
589 * controller level, same level as 'ue_count' and 'ce_count' above.
590 * An array of structures, NULL terminated
591 *
592 * If attributes are desired, then set to array of attributes
593 * If no attributes are desired, leave NULL
594 */
595 struct edac_dev_sysfs_attribute *sysfs_attributes;
596
597 /* pointer to main 'edac' class in sysfs */
598 struct sysdev_class *edac_class;
599
600 /* the internal state of this controller instance */
601 int op_state;
602 /* work struct for this instance */
603 struct delayed_work work;
604
605 /* pointer to edac polling checking routine:
606 * If NOT NULL: points to polling check routine
607 * If NULL: Then assumes INTERRUPT operation, where
608 * MC driver will receive events
609 */
610 void (*edac_check) (struct edac_device_ctl_info * edac_dev);
611
612 struct device *dev; /* pointer to device structure */
613
614 const char *mod_name; /* module name */
615 const char *ctl_name; /* edac controller name */
616 const char *dev_name; /* pci/platform/etc... name */
617
618 void *pvt_info; /* pointer to 'private driver' info */
619
620 unsigned long start_time; /* edac_device load start time (jiffies) */
621
622 /* these are for safe removal of mc devices from global list while
623 * NMI handlers may be traversing list
624 */
625 struct rcu_head rcu;
626 struct completion removal_complete;
627
628 /* sysfs top name under 'edac' directory
629 * and instance name:
630 * cpu/cpu0/...
631 * cpu/cpu1/...
632 * cpu/cpu2/...
633 * ...
634 */
635 char name[EDAC_DEVICE_NAME_LEN + 1];
636
637 /* Number of instances supported on this control structure
638 * and the array of those instances
639 */
640 u32 nr_instances;
641 struct edac_device_instance *instances;
642
643 /* Event counters for the this whole EDAC Device */
644 struct edac_device_counter counters;
645
646 /* edac sysfs device control for the 'name'
647 * device this structure controls
648 */
649 struct kobject kobj;
650 };
651
652 /* To get from the instance's wq to the beginning of the ctl structure */
653 #define to_edac_mem_ctl_work(w) \
654 container_of(w, struct mem_ctl_info, work)
655
656 #define to_edac_device_ctl_work(w) \
657 container_of(w,struct edac_device_ctl_info,work)
658
659 /*
660 * The alloc() and free() functions for the 'edac_device' control info
661 * structure. A MC driver will allocate one of these for each edac_device
662 * it is going to control/register with the EDAC CORE.
663 */
664 extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
665 unsigned sizeof_private,
666 char *edac_device_name, unsigned nr_instances,
667 char *edac_block_name, unsigned nr_blocks,
668 unsigned offset_value,
669 struct edac_dev_sysfs_block_attribute *block_attributes,
670 unsigned nr_attribs,
671 int device_index);
672
673 /* The offset value can be:
674 * -1 indicating no offset value
675 * 0 for zero-based block numbers
676 * 1 for 1-based block number
677 * other for other-based block number
678 */
679 #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1)
680
681 extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);
682
683 #ifdef CONFIG_PCI
684
685 struct edac_pci_counter {
686 atomic_t pe_count;
687 atomic_t npe_count;
688 };
689
690 /*
691 * Abstract edac_pci control info structure
692 *
693 */
694 struct edac_pci_ctl_info {
695 /* for global list of edac_pci_ctl_info structs */
696 struct list_head link;
697
698 int pci_idx;
699
700 struct sysdev_class *edac_class; /* pointer to class */
701
702 /* the internal state of this controller instance */
703 int op_state;
704 /* work struct for this instance */
705 struct delayed_work work;
706
707 /* pointer to edac polling checking routine:
708 * If NOT NULL: points to polling check routine
709 * If NULL: Then assumes INTERRUPT operation, where
710 * MC driver will receive events
711 */
712 void (*edac_check) (struct edac_pci_ctl_info * edac_dev);
713
714 struct device *dev; /* pointer to device structure */
715
716 const char *mod_name; /* module name */
717 const char *ctl_name; /* edac controller name */
718 const char *dev_name; /* pci/platform/etc... name */
719
720 void *pvt_info; /* pointer to 'private driver' info */
721
722 unsigned long start_time; /* edac_pci load start time (jiffies) */
723
724 /* these are for safe removal of devices from global list while
725 * NMI handlers may be traversing list
726 */
727 struct rcu_head rcu;
728 struct completion complete;
729
730 /* sysfs top name under 'edac' directory
731 * and instance name:
732 * cpu/cpu0/...
733 * cpu/cpu1/...
734 * cpu/cpu2/...
735 * ...
736 */
737 char name[EDAC_DEVICE_NAME_LEN + 1];
738
739 /* Event counters for the this whole EDAC Device */
740 struct edac_pci_counter counters;
741
742 /* edac sysfs device control for the 'name'
743 * device this structure controls
744 */
745 struct kobject kobj;
746 struct completion kobj_complete;
747 };
748
749 #define to_edac_pci_ctl_work(w) \
750 container_of(w, struct edac_pci_ctl_info,work)
751
752 /* write all or some bits in a byte-register*/
753 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
754 u8 mask)
755 {
756 if (mask != 0xff) {
757 u8 buf;
758
759 pci_read_config_byte(pdev, offset, &buf);
760 value &= mask;
761 buf &= ~mask;
762 value |= buf;
763 }
764
765 pci_write_config_byte(pdev, offset, value);
766 }
767
768 /* write all or some bits in a word-register*/
769 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
770 u16 value, u16 mask)
771 {
772 if (mask != 0xffff) {
773 u16 buf;
774
775 pci_read_config_word(pdev, offset, &buf);
776 value &= mask;
777 buf &= ~mask;
778 value |= buf;
779 }
780
781 pci_write_config_word(pdev, offset, value);
782 }
783
784 /*
785 * pci_write_bits32
786 *
787 * edac local routine to do pci_write_config_dword, but adds
788 * a mask parameter. If mask is all ones, ignore the mask.
789 * Otherwise utilize the mask to isolate specified bits
790 *
791 * write all or some bits in a dword-register
792 */
793 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
794 u32 value, u32 mask)
795 {
796 if (mask != 0xffffffff) {
797 u32 buf;
798
799 pci_read_config_dword(pdev, offset, &buf);
800 value &= mask;
801 buf &= ~mask;
802 value |= buf;
803 }
804
805 pci_write_config_dword(pdev, offset, value);
806 }
807
808 #endif /* CONFIG_PCI */
809
810 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
811 unsigned nr_chans, int edac_index);
812 extern int edac_mc_add_mc(struct mem_ctl_info *mci);
813 extern void edac_mc_free(struct mem_ctl_info *mci);
814 extern struct mem_ctl_info *edac_mc_find(int idx);
815 extern struct mem_ctl_info *find_mci_by_dev(struct device *dev);
816 extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
817 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
818 unsigned long page);
819
820 /*
821 * The no info errors are used when error overflows are reported.
822 * There are a limited number of error logging registers that can
823 * be exausted. When all registers are exhausted and an additional
824 * error occurs then an error overflow register records that an
825 * error occured and the type of error, but doesn't have any
826 * further information. The ce/ue versions make for cleaner
827 * reporting logic and function interface - reduces conditional
828 * statement clutter and extra function arguments.
829 */
830 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
831 unsigned long page_frame_number,
832 unsigned long offset_in_page,
833 unsigned long syndrome, int row, int channel,
834 const char *msg);
835 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
836 const char *msg);
837 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
838 unsigned long page_frame_number,
839 unsigned long offset_in_page, int row,
840 const char *msg);
841 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
842 const char *msg);
843 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow,
844 unsigned int channel0, unsigned int channel1,
845 char *msg);
846 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow,
847 unsigned int channel, char *msg);
848
849 /*
850 * edac_device APIs
851 */
852 extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
853 extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
854 extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
855 int inst_nr, int block_nr, const char *msg);
856 extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
857 int inst_nr, int block_nr, const char *msg);
858 extern int edac_device_alloc_index(void);
859
860 /*
861 * edac_pci APIs
862 */
863 extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
864 const char *edac_pci_name);
865
866 extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);
867
868 extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
869 unsigned long value);
870
871 extern int edac_pci_alloc_index(void);
872 extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
873 extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
874
875 extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
876 struct device *dev,
877 const char *mod_name);
878
879 extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
880 extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
881 extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);
882
883 /*
884 * edac misc APIs
885 */
886 extern char *edac_op_state_to_string(int op_state);
887
888 #endif /* _EDAC_CORE_H_ */