ARM: 7463/1: topology: Update cpu_power according to DT information
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/scatterlist.h>
28 #include <linux/of.h>
29
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN 8
32 #define PL330_MAX_IRQS 32
33 #define PL330_MAX_PERI 32
34
35 enum pl330_srccachectrl {
36 SCCTRL0, /* Noncacheable and nonbufferable */
37 SCCTRL1, /* Bufferable only */
38 SCCTRL2, /* Cacheable, but do not allocate */
39 SCCTRL3, /* Cacheable and bufferable, but do not allocate */
40 SINVALID1,
41 SINVALID2,
42 SCCTRL6, /* Cacheable write-through, allocate on reads only */
43 SCCTRL7, /* Cacheable write-back, allocate on reads only */
44 };
45
46 enum pl330_dstcachectrl {
47 DCCTRL0, /* Noncacheable and nonbufferable */
48 DCCTRL1, /* Bufferable only */
49 DCCTRL2, /* Cacheable, but do not allocate */
50 DCCTRL3, /* Cacheable and bufferable, but do not allocate */
51 DINVALID1, /* AWCACHE = 0x1000 */
52 DINVALID2,
53 DCCTRL6, /* Cacheable write-through, allocate on writes only */
54 DCCTRL7, /* Cacheable write-back, allocate on writes only */
55 };
56
57 enum pl330_byteswap {
58 SWAP_NO,
59 SWAP_2,
60 SWAP_4,
61 SWAP_8,
62 SWAP_16,
63 };
64
65 enum pl330_reqtype {
66 MEMTOMEM,
67 MEMTODEV,
68 DEVTOMEM,
69 DEVTODEV,
70 };
71
72 /* Register and Bit field Definitions */
73 #define DS 0x0
74 #define DS_ST_STOP 0x0
75 #define DS_ST_EXEC 0x1
76 #define DS_ST_CMISS 0x2
77 #define DS_ST_UPDTPC 0x3
78 #define DS_ST_WFE 0x4
79 #define DS_ST_ATBRR 0x5
80 #define DS_ST_QBUSY 0x6
81 #define DS_ST_WFP 0x7
82 #define DS_ST_KILL 0x8
83 #define DS_ST_CMPLT 0x9
84 #define DS_ST_FLTCMP 0xe
85 #define DS_ST_FAULT 0xf
86
87 #define DPC 0x4
88 #define INTEN 0x20
89 #define ES 0x24
90 #define INTSTATUS 0x28
91 #define INTCLR 0x2c
92 #define FSM 0x30
93 #define FSC 0x34
94 #define FTM 0x38
95
96 #define _FTC 0x40
97 #define FTC(n) (_FTC + (n)*0x4)
98
99 #define _CS 0x100
100 #define CS(n) (_CS + (n)*0x8)
101 #define CS_CNS (1 << 21)
102
103 #define _CPC 0x104
104 #define CPC(n) (_CPC + (n)*0x8)
105
106 #define _SA 0x400
107 #define SA(n) (_SA + (n)*0x20)
108
109 #define _DA 0x404
110 #define DA(n) (_DA + (n)*0x20)
111
112 #define _CC 0x408
113 #define CC(n) (_CC + (n)*0x20)
114
115 #define CC_SRCINC (1 << 0)
116 #define CC_DSTINC (1 << 14)
117 #define CC_SRCPRI (1 << 8)
118 #define CC_DSTPRI (1 << 22)
119 #define CC_SRCNS (1 << 9)
120 #define CC_DSTNS (1 << 23)
121 #define CC_SRCIA (1 << 10)
122 #define CC_DSTIA (1 << 24)
123 #define CC_SRCBRSTLEN_SHFT 4
124 #define CC_DSTBRSTLEN_SHFT 18
125 #define CC_SRCBRSTSIZE_SHFT 1
126 #define CC_DSTBRSTSIZE_SHFT 15
127 #define CC_SRCCCTRL_SHFT 11
128 #define CC_SRCCCTRL_MASK 0x7
129 #define CC_DSTCCTRL_SHFT 25
130 #define CC_DRCCCTRL_MASK 0x7
131 #define CC_SWAP_SHFT 28
132
133 #define _LC0 0x40c
134 #define LC0(n) (_LC0 + (n)*0x20)
135
136 #define _LC1 0x410
137 #define LC1(n) (_LC1 + (n)*0x20)
138
139 #define DBGSTATUS 0xd00
140 #define DBG_BUSY (1 << 0)
141
142 #define DBGCMD 0xd04
143 #define DBGINST0 0xd08
144 #define DBGINST1 0xd0c
145
146 #define CR0 0xe00
147 #define CR1 0xe04
148 #define CR2 0xe08
149 #define CR3 0xe0c
150 #define CR4 0xe10
151 #define CRD 0xe14
152
153 #define PERIPH_ID 0xfe0
154 #define PERIPH_REV_SHIFT 20
155 #define PERIPH_REV_MASK 0xf
156 #define PERIPH_REV_R0P0 0
157 #define PERIPH_REV_R1P0 1
158 #define PERIPH_REV_R1P1 2
159 #define PCELL_ID 0xff0
160
161 #define CR0_PERIPH_REQ_SET (1 << 0)
162 #define CR0_BOOT_EN_SET (1 << 1)
163 #define CR0_BOOT_MAN_NS (1 << 2)
164 #define CR0_NUM_CHANS_SHIFT 4
165 #define CR0_NUM_CHANS_MASK 0x7
166 #define CR0_NUM_PERIPH_SHIFT 12
167 #define CR0_NUM_PERIPH_MASK 0x1f
168 #define CR0_NUM_EVENTS_SHIFT 17
169 #define CR0_NUM_EVENTS_MASK 0x1f
170
171 #define CR1_ICACHE_LEN_SHIFT 0
172 #define CR1_ICACHE_LEN_MASK 0x7
173 #define CR1_NUM_ICACHELINES_SHIFT 4
174 #define CR1_NUM_ICACHELINES_MASK 0xf
175
176 #define CRD_DATA_WIDTH_SHIFT 0
177 #define CRD_DATA_WIDTH_MASK 0x7
178 #define CRD_WR_CAP_SHIFT 4
179 #define CRD_WR_CAP_MASK 0x7
180 #define CRD_WR_Q_DEP_SHIFT 8
181 #define CRD_WR_Q_DEP_MASK 0xf
182 #define CRD_RD_CAP_SHIFT 12
183 #define CRD_RD_CAP_MASK 0x7
184 #define CRD_RD_Q_DEP_SHIFT 16
185 #define CRD_RD_Q_DEP_MASK 0xf
186 #define CRD_DATA_BUFF_SHIFT 20
187 #define CRD_DATA_BUFF_MASK 0x3ff
188
189 #define PART 0x330
190 #define DESIGNER 0x41
191 #define REVISION 0x0
192 #define INTEG_CFG 0x0
193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
194
195 #define PCELL_ID_VAL 0xb105f00d
196
197 #define PL330_STATE_STOPPED (1 << 0)
198 #define PL330_STATE_EXECUTING (1 << 1)
199 #define PL330_STATE_WFE (1 << 2)
200 #define PL330_STATE_FAULTING (1 << 3)
201 #define PL330_STATE_COMPLETING (1 << 4)
202 #define PL330_STATE_WFP (1 << 5)
203 #define PL330_STATE_KILLING (1 << 6)
204 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
205 #define PL330_STATE_CACHEMISS (1 << 8)
206 #define PL330_STATE_UPDTPC (1 << 9)
207 #define PL330_STATE_ATBARRIER (1 << 10)
208 #define PL330_STATE_QUEUEBUSY (1 << 11)
209 #define PL330_STATE_INVALID (1 << 15)
210
211 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
212 | PL330_STATE_WFE | PL330_STATE_FAULTING)
213
214 #define CMD_DMAADDH 0x54
215 #define CMD_DMAEND 0x00
216 #define CMD_DMAFLUSHP 0x35
217 #define CMD_DMAGO 0xa0
218 #define CMD_DMALD 0x04
219 #define CMD_DMALDP 0x25
220 #define CMD_DMALP 0x20
221 #define CMD_DMALPEND 0x28
222 #define CMD_DMAKILL 0x01
223 #define CMD_DMAMOV 0xbc
224 #define CMD_DMANOP 0x18
225 #define CMD_DMARMB 0x12
226 #define CMD_DMASEV 0x34
227 #define CMD_DMAST 0x08
228 #define CMD_DMASTP 0x29
229 #define CMD_DMASTZ 0x0c
230 #define CMD_DMAWFE 0x36
231 #define CMD_DMAWFP 0x30
232 #define CMD_DMAWMB 0x13
233
234 #define SZ_DMAADDH 3
235 #define SZ_DMAEND 1
236 #define SZ_DMAFLUSHP 2
237 #define SZ_DMALD 1
238 #define SZ_DMALDP 2
239 #define SZ_DMALP 2
240 #define SZ_DMALPEND 2
241 #define SZ_DMAKILL 1
242 #define SZ_DMAMOV 6
243 #define SZ_DMANOP 1
244 #define SZ_DMARMB 1
245 #define SZ_DMASEV 2
246 #define SZ_DMAST 1
247 #define SZ_DMASTP 2
248 #define SZ_DMASTZ 1
249 #define SZ_DMAWFE 2
250 #define SZ_DMAWFP 2
251 #define SZ_DMAWMB 1
252 #define SZ_DMAGO 6
253
254 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
255 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
256
257 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
258 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
259
260 /*
261 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
262 * at 1byte/burst for P<->M and M<->M respectively.
263 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
264 * should be enough for P<->M and M<->M respectively.
265 */
266 #define MCODE_BUFF_PER_REQ 256
267
268 /* If the _pl330_req is available to the client */
269 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
270
271 /* Use this _only_ to wait on transient states */
272 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
273
274 #ifdef PL330_DEBUG_MCGEN
275 static unsigned cmd_line;
276 #define PL330_DBGCMD_DUMP(off, x...) do { \
277 printk("%x:", cmd_line); \
278 printk(x); \
279 cmd_line += off; \
280 } while (0)
281 #define PL330_DBGMC_START(addr) (cmd_line = addr)
282 #else
283 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
284 #define PL330_DBGMC_START(addr) do {} while (0)
285 #endif
286
287 /* The number of default descriptors */
288
289 #define NR_DEFAULT_DESC 16
290
291 /* Populated by the PL330 core driver for DMA API driver's info */
292 struct pl330_config {
293 u32 periph_id;
294 u32 pcell_id;
295 #define DMAC_MODE_NS (1 << 0)
296 unsigned int mode;
297 unsigned int data_bus_width:10; /* In number of bits */
298 unsigned int data_buf_dep:10;
299 unsigned int num_chan:4;
300 unsigned int num_peri:6;
301 u32 peri_ns;
302 unsigned int num_events:6;
303 u32 irq_ns;
304 };
305
306 /* Handle to the DMAC provided to the PL330 core */
307 struct pl330_info {
308 /* Owning device */
309 struct device *dev;
310 /* Size of MicroCode buffers for each channel. */
311 unsigned mcbufsz;
312 /* ioremap'ed address of PL330 registers. */
313 void __iomem *base;
314 /* Client can freely use it. */
315 void *client_data;
316 /* PL330 core data, Client must not touch it. */
317 void *pl330_data;
318 /* Populated by the PL330 core driver during pl330_add */
319 struct pl330_config pcfg;
320 /*
321 * If the DMAC has some reset mechanism, then the
322 * client may want to provide pointer to the method.
323 */
324 void (*dmac_reset)(struct pl330_info *pi);
325 };
326
327 /**
328 * Request Configuration.
329 * The PL330 core does not modify this and uses the last
330 * working configuration if the request doesn't provide any.
331 *
332 * The Client may want to provide this info only for the
333 * first request and a request with new settings.
334 */
335 struct pl330_reqcfg {
336 /* Address Incrementing */
337 unsigned dst_inc:1;
338 unsigned src_inc:1;
339
340 /*
341 * For now, the SRC & DST protection levels
342 * and burst size/length are assumed same.
343 */
344 bool nonsecure;
345 bool privileged;
346 bool insnaccess;
347 unsigned brst_len:5;
348 unsigned brst_size:3; /* in power of 2 */
349
350 enum pl330_dstcachectrl dcctl;
351 enum pl330_srccachectrl scctl;
352 enum pl330_byteswap swap;
353 struct pl330_config *pcfg;
354 };
355
356 /*
357 * One cycle of DMAC operation.
358 * There may be more than one xfer in a request.
359 */
360 struct pl330_xfer {
361 u32 src_addr;
362 u32 dst_addr;
363 /* Size to xfer */
364 u32 bytes;
365 /*
366 * Pointer to next xfer in the list.
367 * The last xfer in the req must point to NULL.
368 */
369 struct pl330_xfer *next;
370 };
371
372 /* The xfer callbacks are made with one of these arguments. */
373 enum pl330_op_err {
374 /* The all xfers in the request were success. */
375 PL330_ERR_NONE,
376 /* If req aborted due to global error. */
377 PL330_ERR_ABORT,
378 /* If req failed due to problem with Channel. */
379 PL330_ERR_FAIL,
380 };
381
382 /* A request defining Scatter-Gather List ending with NULL xfer. */
383 struct pl330_req {
384 enum pl330_reqtype rqtype;
385 /* Index of peripheral for the xfer. */
386 unsigned peri:5;
387 /* Unique token for this xfer, set by the client. */
388 void *token;
389 /* Callback to be called after xfer. */
390 void (*xfer_cb)(void *token, enum pl330_op_err err);
391 /* If NULL, req will be done at last set parameters. */
392 struct pl330_reqcfg *cfg;
393 /* Pointer to first xfer in the request. */
394 struct pl330_xfer *x;
395 };
396
397 /*
398 * To know the status of the channel and DMAC, the client
399 * provides a pointer to this structure. The PL330 core
400 * fills it with current information.
401 */
402 struct pl330_chanstatus {
403 /*
404 * If the DMAC engine halted due to some error,
405 * the client should remove-add DMAC.
406 */
407 bool dmac_halted;
408 /*
409 * If channel is halted due to some error,
410 * the client should ABORT/FLUSH and START the channel.
411 */
412 bool faulting;
413 /* Location of last load */
414 u32 src_addr;
415 /* Location of last store */
416 u32 dst_addr;
417 /*
418 * Pointer to the currently active req, NULL if channel is
419 * inactive, even though the requests may be present.
420 */
421 struct pl330_req *top_req;
422 /* Pointer to req waiting second in the queue if any. */
423 struct pl330_req *wait_req;
424 };
425
426 enum pl330_chan_op {
427 /* Start the channel */
428 PL330_OP_START,
429 /* Abort the active xfer */
430 PL330_OP_ABORT,
431 /* Stop xfer and flush queue */
432 PL330_OP_FLUSH,
433 };
434
435 struct _xfer_spec {
436 u32 ccr;
437 struct pl330_req *r;
438 struct pl330_xfer *x;
439 };
440
441 enum dmamov_dst {
442 SAR = 0,
443 CCR,
444 DAR,
445 };
446
447 enum pl330_dst {
448 SRC = 0,
449 DST,
450 };
451
452 enum pl330_cond {
453 SINGLE,
454 BURST,
455 ALWAYS,
456 };
457
458 struct _pl330_req {
459 u32 mc_bus;
460 void *mc_cpu;
461 /* Number of bytes taken to setup MC for the req */
462 u32 mc_len;
463 struct pl330_req *r;
464 /* Hook to attach to DMAC's list of reqs with due callback */
465 struct list_head rqd;
466 };
467
468 /* ToBeDone for tasklet */
469 struct _pl330_tbd {
470 bool reset_dmac;
471 bool reset_mngr;
472 u8 reset_chan;
473 };
474
475 /* A DMAC Thread */
476 struct pl330_thread {
477 u8 id;
478 int ev;
479 /* If the channel is not yet acquired by any client */
480 bool free;
481 /* Parent DMAC */
482 struct pl330_dmac *dmac;
483 /* Only two at a time */
484 struct _pl330_req req[2];
485 /* Index of the last enqueued request */
486 unsigned lstenq;
487 /* Index of the last submitted request or -1 if the DMA is stopped */
488 int req_running;
489 };
490
491 enum pl330_dmac_state {
492 UNINIT,
493 INIT,
494 DYING,
495 };
496
497 /* A DMAC */
498 struct pl330_dmac {
499 spinlock_t lock;
500 /* Holds list of reqs with due callbacks */
501 struct list_head req_done;
502 /* Pointer to platform specific stuff */
503 struct pl330_info *pinfo;
504 /* Maximum possible events/irqs */
505 int events[32];
506 /* BUS address of MicroCode buffer */
507 u32 mcode_bus;
508 /* CPU address of MicroCode buffer */
509 void *mcode_cpu;
510 /* List of all Channel threads */
511 struct pl330_thread *channels;
512 /* Pointer to the MANAGER thread */
513 struct pl330_thread *manager;
514 /* To handle bad news in interrupt */
515 struct tasklet_struct tasks;
516 struct _pl330_tbd dmac_tbd;
517 /* State of DMAC operation */
518 enum pl330_dmac_state state;
519 };
520
521 enum desc_status {
522 /* In the DMAC pool */
523 FREE,
524 /*
525 * Allocted to some channel during prep_xxx
526 * Also may be sitting on the work_list.
527 */
528 PREP,
529 /*
530 * Sitting on the work_list and already submitted
531 * to the PL330 core. Not more than two descriptors
532 * of a channel can be BUSY at any time.
533 */
534 BUSY,
535 /*
536 * Sitting on the channel work_list but xfer done
537 * by PL330 core
538 */
539 DONE,
540 };
541
542 struct dma_pl330_chan {
543 /* Schedule desc completion */
544 struct tasklet_struct task;
545
546 /* DMA-Engine Channel */
547 struct dma_chan chan;
548
549 /* List of to be xfered descriptors */
550 struct list_head work_list;
551
552 /* Pointer to the DMAC that manages this channel,
553 * NULL if the channel is available to be acquired.
554 * As the parent, this DMAC also provides descriptors
555 * to the channel.
556 */
557 struct dma_pl330_dmac *dmac;
558
559 /* To protect channel manipulation */
560 spinlock_t lock;
561
562 /* Token of a hardware channel thread of PL330 DMAC
563 * NULL if the channel is available to be acquired.
564 */
565 void *pl330_chid;
566
567 /* For D-to-M and M-to-D channels */
568 int burst_sz; /* the peripheral fifo width */
569 int burst_len; /* the number of burst */
570 dma_addr_t fifo_addr;
571
572 /* for cyclic capability */
573 bool cyclic;
574 };
575
576 struct dma_pl330_dmac {
577 struct pl330_info pif;
578
579 /* DMA-Engine Device */
580 struct dma_device ddma;
581
582 /* Pool of descriptors available for the DMAC's channels */
583 struct list_head desc_pool;
584 /* To protect desc_pool manipulation */
585 spinlock_t pool_lock;
586
587 /* Peripheral channels connected to this DMAC */
588 struct dma_pl330_chan *peripherals; /* keep at end */
589
590 struct clk *clk;
591 };
592
593 struct dma_pl330_desc {
594 /* To attach to a queue as child */
595 struct list_head node;
596
597 /* Descriptor for the DMA Engine API */
598 struct dma_async_tx_descriptor txd;
599
600 /* Xfer for PL330 core */
601 struct pl330_xfer px;
602
603 struct pl330_reqcfg rqcfg;
604 struct pl330_req req;
605
606 enum desc_status status;
607
608 /* The channel which currently holds this desc */
609 struct dma_pl330_chan *pchan;
610 };
611
612 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
613 {
614 if (r && r->xfer_cb)
615 r->xfer_cb(r->token, err);
616 }
617
618 static inline bool _queue_empty(struct pl330_thread *thrd)
619 {
620 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
621 ? true : false;
622 }
623
624 static inline bool _queue_full(struct pl330_thread *thrd)
625 {
626 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
627 ? false : true;
628 }
629
630 static inline bool is_manager(struct pl330_thread *thrd)
631 {
632 struct pl330_dmac *pl330 = thrd->dmac;
633
634 /* MANAGER is indexed at the end */
635 if (thrd->id == pl330->pinfo->pcfg.num_chan)
636 return true;
637 else
638 return false;
639 }
640
641 /* If manager of the thread is in Non-Secure mode */
642 static inline bool _manager_ns(struct pl330_thread *thrd)
643 {
644 struct pl330_dmac *pl330 = thrd->dmac;
645
646 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
647 }
648
649 static inline u32 get_id(struct pl330_info *pi, u32 off)
650 {
651 void __iomem *regs = pi->base;
652 u32 id = 0;
653
654 id |= (readb(regs + off + 0x0) << 0);
655 id |= (readb(regs + off + 0x4) << 8);
656 id |= (readb(regs + off + 0x8) << 16);
657 id |= (readb(regs + off + 0xc) << 24);
658
659 return id;
660 }
661
662 static inline u32 get_revision(u32 periph_id)
663 {
664 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
665 }
666
667 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
668 enum pl330_dst da, u16 val)
669 {
670 if (dry_run)
671 return SZ_DMAADDH;
672
673 buf[0] = CMD_DMAADDH;
674 buf[0] |= (da << 1);
675 *((u16 *)&buf[1]) = val;
676
677 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
678 da == 1 ? "DA" : "SA", val);
679
680 return SZ_DMAADDH;
681 }
682
683 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
684 {
685 if (dry_run)
686 return SZ_DMAEND;
687
688 buf[0] = CMD_DMAEND;
689
690 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
691
692 return SZ_DMAEND;
693 }
694
695 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
696 {
697 if (dry_run)
698 return SZ_DMAFLUSHP;
699
700 buf[0] = CMD_DMAFLUSHP;
701
702 peri &= 0x1f;
703 peri <<= 3;
704 buf[1] = peri;
705
706 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
707
708 return SZ_DMAFLUSHP;
709 }
710
711 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
712 {
713 if (dry_run)
714 return SZ_DMALD;
715
716 buf[0] = CMD_DMALD;
717
718 if (cond == SINGLE)
719 buf[0] |= (0 << 1) | (1 << 0);
720 else if (cond == BURST)
721 buf[0] |= (1 << 1) | (1 << 0);
722
723 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
724 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
725
726 return SZ_DMALD;
727 }
728
729 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
730 enum pl330_cond cond, u8 peri)
731 {
732 if (dry_run)
733 return SZ_DMALDP;
734
735 buf[0] = CMD_DMALDP;
736
737 if (cond == BURST)
738 buf[0] |= (1 << 1);
739
740 peri &= 0x1f;
741 peri <<= 3;
742 buf[1] = peri;
743
744 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
745 cond == SINGLE ? 'S' : 'B', peri >> 3);
746
747 return SZ_DMALDP;
748 }
749
750 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
751 unsigned loop, u8 cnt)
752 {
753 if (dry_run)
754 return SZ_DMALP;
755
756 buf[0] = CMD_DMALP;
757
758 if (loop)
759 buf[0] |= (1 << 1);
760
761 cnt--; /* DMAC increments by 1 internally */
762 buf[1] = cnt;
763
764 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
765
766 return SZ_DMALP;
767 }
768
769 struct _arg_LPEND {
770 enum pl330_cond cond;
771 bool forever;
772 unsigned loop;
773 u8 bjump;
774 };
775
776 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
777 const struct _arg_LPEND *arg)
778 {
779 enum pl330_cond cond = arg->cond;
780 bool forever = arg->forever;
781 unsigned loop = arg->loop;
782 u8 bjump = arg->bjump;
783
784 if (dry_run)
785 return SZ_DMALPEND;
786
787 buf[0] = CMD_DMALPEND;
788
789 if (loop)
790 buf[0] |= (1 << 2);
791
792 if (!forever)
793 buf[0] |= (1 << 4);
794
795 if (cond == SINGLE)
796 buf[0] |= (0 << 1) | (1 << 0);
797 else if (cond == BURST)
798 buf[0] |= (1 << 1) | (1 << 0);
799
800 buf[1] = bjump;
801
802 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
803 forever ? "FE" : "END",
804 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
805 loop ? '1' : '0',
806 bjump);
807
808 return SZ_DMALPEND;
809 }
810
811 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
812 {
813 if (dry_run)
814 return SZ_DMAKILL;
815
816 buf[0] = CMD_DMAKILL;
817
818 return SZ_DMAKILL;
819 }
820
821 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
822 enum dmamov_dst dst, u32 val)
823 {
824 if (dry_run)
825 return SZ_DMAMOV;
826
827 buf[0] = CMD_DMAMOV;
828 buf[1] = dst;
829 *((u32 *)&buf[2]) = val;
830
831 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
832 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
833
834 return SZ_DMAMOV;
835 }
836
837 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
838 {
839 if (dry_run)
840 return SZ_DMANOP;
841
842 buf[0] = CMD_DMANOP;
843
844 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
845
846 return SZ_DMANOP;
847 }
848
849 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
850 {
851 if (dry_run)
852 return SZ_DMARMB;
853
854 buf[0] = CMD_DMARMB;
855
856 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
857
858 return SZ_DMARMB;
859 }
860
861 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
862 {
863 if (dry_run)
864 return SZ_DMASEV;
865
866 buf[0] = CMD_DMASEV;
867
868 ev &= 0x1f;
869 ev <<= 3;
870 buf[1] = ev;
871
872 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
873
874 return SZ_DMASEV;
875 }
876
877 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
878 {
879 if (dry_run)
880 return SZ_DMAST;
881
882 buf[0] = CMD_DMAST;
883
884 if (cond == SINGLE)
885 buf[0] |= (0 << 1) | (1 << 0);
886 else if (cond == BURST)
887 buf[0] |= (1 << 1) | (1 << 0);
888
889 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
890 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
891
892 return SZ_DMAST;
893 }
894
895 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
896 enum pl330_cond cond, u8 peri)
897 {
898 if (dry_run)
899 return SZ_DMASTP;
900
901 buf[0] = CMD_DMASTP;
902
903 if (cond == BURST)
904 buf[0] |= (1 << 1);
905
906 peri &= 0x1f;
907 peri <<= 3;
908 buf[1] = peri;
909
910 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
911 cond == SINGLE ? 'S' : 'B', peri >> 3);
912
913 return SZ_DMASTP;
914 }
915
916 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
917 {
918 if (dry_run)
919 return SZ_DMASTZ;
920
921 buf[0] = CMD_DMASTZ;
922
923 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
924
925 return SZ_DMASTZ;
926 }
927
928 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
929 unsigned invalidate)
930 {
931 if (dry_run)
932 return SZ_DMAWFE;
933
934 buf[0] = CMD_DMAWFE;
935
936 ev &= 0x1f;
937 ev <<= 3;
938 buf[1] = ev;
939
940 if (invalidate)
941 buf[1] |= (1 << 1);
942
943 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
944 ev >> 3, invalidate ? ", I" : "");
945
946 return SZ_DMAWFE;
947 }
948
949 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
950 enum pl330_cond cond, u8 peri)
951 {
952 if (dry_run)
953 return SZ_DMAWFP;
954
955 buf[0] = CMD_DMAWFP;
956
957 if (cond == SINGLE)
958 buf[0] |= (0 << 1) | (0 << 0);
959 else if (cond == BURST)
960 buf[0] |= (1 << 1) | (0 << 0);
961 else
962 buf[0] |= (0 << 1) | (1 << 0);
963
964 peri &= 0x1f;
965 peri <<= 3;
966 buf[1] = peri;
967
968 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
969 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
970
971 return SZ_DMAWFP;
972 }
973
974 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
975 {
976 if (dry_run)
977 return SZ_DMAWMB;
978
979 buf[0] = CMD_DMAWMB;
980
981 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
982
983 return SZ_DMAWMB;
984 }
985
986 struct _arg_GO {
987 u8 chan;
988 u32 addr;
989 unsigned ns;
990 };
991
992 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
993 const struct _arg_GO *arg)
994 {
995 u8 chan = arg->chan;
996 u32 addr = arg->addr;
997 unsigned ns = arg->ns;
998
999 if (dry_run)
1000 return SZ_DMAGO;
1001
1002 buf[0] = CMD_DMAGO;
1003 buf[0] |= (ns << 1);
1004
1005 buf[1] = chan & 0x7;
1006
1007 *((u32 *)&buf[2]) = addr;
1008
1009 return SZ_DMAGO;
1010 }
1011
1012 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1013
1014 /* Returns Time-Out */
1015 static bool _until_dmac_idle(struct pl330_thread *thrd)
1016 {
1017 void __iomem *regs = thrd->dmac->pinfo->base;
1018 unsigned long loops = msecs_to_loops(5);
1019
1020 do {
1021 /* Until Manager is Idle */
1022 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1023 break;
1024
1025 cpu_relax();
1026 } while (--loops);
1027
1028 if (!loops)
1029 return true;
1030
1031 return false;
1032 }
1033
1034 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1035 u8 insn[], bool as_manager)
1036 {
1037 void __iomem *regs = thrd->dmac->pinfo->base;
1038 u32 val;
1039
1040 val = (insn[0] << 16) | (insn[1] << 24);
1041 if (!as_manager) {
1042 val |= (1 << 0);
1043 val |= (thrd->id << 8); /* Channel Number */
1044 }
1045 writel(val, regs + DBGINST0);
1046
1047 val = *((u32 *)&insn[2]);
1048 writel(val, regs + DBGINST1);
1049
1050 /* If timed out due to halted state-machine */
1051 if (_until_dmac_idle(thrd)) {
1052 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1053 return;
1054 }
1055
1056 /* Get going */
1057 writel(0, regs + DBGCMD);
1058 }
1059
1060 /*
1061 * Mark a _pl330_req as free.
1062 * We do it by writing DMAEND as the first instruction
1063 * because no valid request is going to have DMAEND as
1064 * its first instruction to execute.
1065 */
1066 static void mark_free(struct pl330_thread *thrd, int idx)
1067 {
1068 struct _pl330_req *req = &thrd->req[idx];
1069
1070 _emit_END(0, req->mc_cpu);
1071 req->mc_len = 0;
1072
1073 thrd->req_running = -1;
1074 }
1075
1076 static inline u32 _state(struct pl330_thread *thrd)
1077 {
1078 void __iomem *regs = thrd->dmac->pinfo->base;
1079 u32 val;
1080
1081 if (is_manager(thrd))
1082 val = readl(regs + DS) & 0xf;
1083 else
1084 val = readl(regs + CS(thrd->id)) & 0xf;
1085
1086 switch (val) {
1087 case DS_ST_STOP:
1088 return PL330_STATE_STOPPED;
1089 case DS_ST_EXEC:
1090 return PL330_STATE_EXECUTING;
1091 case DS_ST_CMISS:
1092 return PL330_STATE_CACHEMISS;
1093 case DS_ST_UPDTPC:
1094 return PL330_STATE_UPDTPC;
1095 case DS_ST_WFE:
1096 return PL330_STATE_WFE;
1097 case DS_ST_FAULT:
1098 return PL330_STATE_FAULTING;
1099 case DS_ST_ATBRR:
1100 if (is_manager(thrd))
1101 return PL330_STATE_INVALID;
1102 else
1103 return PL330_STATE_ATBARRIER;
1104 case DS_ST_QBUSY:
1105 if (is_manager(thrd))
1106 return PL330_STATE_INVALID;
1107 else
1108 return PL330_STATE_QUEUEBUSY;
1109 case DS_ST_WFP:
1110 if (is_manager(thrd))
1111 return PL330_STATE_INVALID;
1112 else
1113 return PL330_STATE_WFP;
1114 case DS_ST_KILL:
1115 if (is_manager(thrd))
1116 return PL330_STATE_INVALID;
1117 else
1118 return PL330_STATE_KILLING;
1119 case DS_ST_CMPLT:
1120 if (is_manager(thrd))
1121 return PL330_STATE_INVALID;
1122 else
1123 return PL330_STATE_COMPLETING;
1124 case DS_ST_FLTCMP:
1125 if (is_manager(thrd))
1126 return PL330_STATE_INVALID;
1127 else
1128 return PL330_STATE_FAULT_COMPLETING;
1129 default:
1130 return PL330_STATE_INVALID;
1131 }
1132 }
1133
1134 static void _stop(struct pl330_thread *thrd)
1135 {
1136 void __iomem *regs = thrd->dmac->pinfo->base;
1137 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1138
1139 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1140 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1141
1142 /* Return if nothing needs to be done */
1143 if (_state(thrd) == PL330_STATE_COMPLETING
1144 || _state(thrd) == PL330_STATE_KILLING
1145 || _state(thrd) == PL330_STATE_STOPPED)
1146 return;
1147
1148 _emit_KILL(0, insn);
1149
1150 /* Stop generating interrupts for SEV */
1151 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1152
1153 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1154 }
1155
1156 /* Start doing req 'idx' of thread 'thrd' */
1157 static bool _trigger(struct pl330_thread *thrd)
1158 {
1159 void __iomem *regs = thrd->dmac->pinfo->base;
1160 struct _pl330_req *req;
1161 struct pl330_req *r;
1162 struct _arg_GO go;
1163 unsigned ns;
1164 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1165 int idx;
1166
1167 /* Return if already ACTIVE */
1168 if (_state(thrd) != PL330_STATE_STOPPED)
1169 return true;
1170
1171 idx = 1 - thrd->lstenq;
1172 if (!IS_FREE(&thrd->req[idx]))
1173 req = &thrd->req[idx];
1174 else {
1175 idx = thrd->lstenq;
1176 if (!IS_FREE(&thrd->req[idx]))
1177 req = &thrd->req[idx];
1178 else
1179 req = NULL;
1180 }
1181
1182 /* Return if no request */
1183 if (!req || !req->r)
1184 return true;
1185
1186 r = req->r;
1187
1188 if (r->cfg)
1189 ns = r->cfg->nonsecure ? 1 : 0;
1190 else if (readl(regs + CS(thrd->id)) & CS_CNS)
1191 ns = 1;
1192 else
1193 ns = 0;
1194
1195 /* See 'Abort Sources' point-4 at Page 2-25 */
1196 if (_manager_ns(thrd) && !ns)
1197 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1198 __func__, __LINE__);
1199
1200 go.chan = thrd->id;
1201 go.addr = req->mc_bus;
1202 go.ns = ns;
1203 _emit_GO(0, insn, &go);
1204
1205 /* Set to generate interrupts for SEV */
1206 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1207
1208 /* Only manager can execute GO */
1209 _execute_DBGINSN(thrd, insn, true);
1210
1211 thrd->req_running = idx;
1212
1213 return true;
1214 }
1215
1216 static bool _start(struct pl330_thread *thrd)
1217 {
1218 switch (_state(thrd)) {
1219 case PL330_STATE_FAULT_COMPLETING:
1220 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1221
1222 if (_state(thrd) == PL330_STATE_KILLING)
1223 UNTIL(thrd, PL330_STATE_STOPPED)
1224
1225 case PL330_STATE_FAULTING:
1226 _stop(thrd);
1227
1228 case PL330_STATE_KILLING:
1229 case PL330_STATE_COMPLETING:
1230 UNTIL(thrd, PL330_STATE_STOPPED)
1231
1232 case PL330_STATE_STOPPED:
1233 return _trigger(thrd);
1234
1235 case PL330_STATE_WFP:
1236 case PL330_STATE_QUEUEBUSY:
1237 case PL330_STATE_ATBARRIER:
1238 case PL330_STATE_UPDTPC:
1239 case PL330_STATE_CACHEMISS:
1240 case PL330_STATE_EXECUTING:
1241 return true;
1242
1243 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1244 default:
1245 return false;
1246 }
1247 }
1248
1249 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1250 const struct _xfer_spec *pxs, int cyc)
1251 {
1252 int off = 0;
1253 struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1254
1255 /* check lock-up free version */
1256 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1257 while (cyc--) {
1258 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1259 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1260 }
1261 } else {
1262 while (cyc--) {
1263 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1264 off += _emit_RMB(dry_run, &buf[off]);
1265 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1266 off += _emit_WMB(dry_run, &buf[off]);
1267 }
1268 }
1269
1270 return off;
1271 }
1272
1273 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1274 const struct _xfer_spec *pxs, int cyc)
1275 {
1276 int off = 0;
1277
1278 while (cyc--) {
1279 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1280 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1281 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1282 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1283 }
1284
1285 return off;
1286 }
1287
1288 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1289 const struct _xfer_spec *pxs, int cyc)
1290 {
1291 int off = 0;
1292
1293 while (cyc--) {
1294 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1295 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1296 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1297 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1298 }
1299
1300 return off;
1301 }
1302
1303 static int _bursts(unsigned dry_run, u8 buf[],
1304 const struct _xfer_spec *pxs, int cyc)
1305 {
1306 int off = 0;
1307
1308 switch (pxs->r->rqtype) {
1309 case MEMTODEV:
1310 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1311 break;
1312 case DEVTOMEM:
1313 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1314 break;
1315 case MEMTOMEM:
1316 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1317 break;
1318 default:
1319 off += 0x40000000; /* Scare off the Client */
1320 break;
1321 }
1322
1323 return off;
1324 }
1325
1326 /* Returns bytes consumed and updates bursts */
1327 static inline int _loop(unsigned dry_run, u8 buf[],
1328 unsigned long *bursts, const struct _xfer_spec *pxs)
1329 {
1330 int cyc, cycmax, szlp, szlpend, szbrst, off;
1331 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1332 struct _arg_LPEND lpend;
1333
1334 /* Max iterations possible in DMALP is 256 */
1335 if (*bursts >= 256*256) {
1336 lcnt1 = 256;
1337 lcnt0 = 256;
1338 cyc = *bursts / lcnt1 / lcnt0;
1339 } else if (*bursts > 256) {
1340 lcnt1 = 256;
1341 lcnt0 = *bursts / lcnt1;
1342 cyc = 1;
1343 } else {
1344 lcnt1 = *bursts;
1345 lcnt0 = 0;
1346 cyc = 1;
1347 }
1348
1349 szlp = _emit_LP(1, buf, 0, 0);
1350 szbrst = _bursts(1, buf, pxs, 1);
1351
1352 lpend.cond = ALWAYS;
1353 lpend.forever = false;
1354 lpend.loop = 0;
1355 lpend.bjump = 0;
1356 szlpend = _emit_LPEND(1, buf, &lpend);
1357
1358 if (lcnt0) {
1359 szlp *= 2;
1360 szlpend *= 2;
1361 }
1362
1363 /*
1364 * Max bursts that we can unroll due to limit on the
1365 * size of backward jump that can be encoded in DMALPEND
1366 * which is 8-bits and hence 255
1367 */
1368 cycmax = (255 - (szlp + szlpend)) / szbrst;
1369
1370 cyc = (cycmax < cyc) ? cycmax : cyc;
1371
1372 off = 0;
1373
1374 if (lcnt0) {
1375 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1376 ljmp0 = off;
1377 }
1378
1379 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1380 ljmp1 = off;
1381
1382 off += _bursts(dry_run, &buf[off], pxs, cyc);
1383
1384 lpend.cond = ALWAYS;
1385 lpend.forever = false;
1386 lpend.loop = 1;
1387 lpend.bjump = off - ljmp1;
1388 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1389
1390 if (lcnt0) {
1391 lpend.cond = ALWAYS;
1392 lpend.forever = false;
1393 lpend.loop = 0;
1394 lpend.bjump = off - ljmp0;
1395 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1396 }
1397
1398 *bursts = lcnt1 * cyc;
1399 if (lcnt0)
1400 *bursts *= lcnt0;
1401
1402 return off;
1403 }
1404
1405 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1406 const struct _xfer_spec *pxs)
1407 {
1408 struct pl330_xfer *x = pxs->x;
1409 u32 ccr = pxs->ccr;
1410 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1411 int off = 0;
1412
1413 while (bursts) {
1414 c = bursts;
1415 off += _loop(dry_run, &buf[off], &c, pxs);
1416 bursts -= c;
1417 }
1418
1419 return off;
1420 }
1421
1422 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1423 const struct _xfer_spec *pxs)
1424 {
1425 struct pl330_xfer *x = pxs->x;
1426 int off = 0;
1427
1428 /* DMAMOV SAR, x->src_addr */
1429 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1430 /* DMAMOV DAR, x->dst_addr */
1431 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1432
1433 /* Setup Loop(s) */
1434 off += _setup_loops(dry_run, &buf[off], pxs);
1435
1436 return off;
1437 }
1438
1439 /*
1440 * A req is a sequence of one or more xfer units.
1441 * Returns the number of bytes taken to setup the MC for the req.
1442 */
1443 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1444 unsigned index, struct _xfer_spec *pxs)
1445 {
1446 struct _pl330_req *req = &thrd->req[index];
1447 struct pl330_xfer *x;
1448 u8 *buf = req->mc_cpu;
1449 int off = 0;
1450
1451 PL330_DBGMC_START(req->mc_bus);
1452
1453 /* DMAMOV CCR, ccr */
1454 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1455
1456 x = pxs->r->x;
1457 do {
1458 /* Error if xfer length is not aligned at burst size */
1459 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1460 return -EINVAL;
1461
1462 pxs->x = x;
1463 off += _setup_xfer(dry_run, &buf[off], pxs);
1464
1465 x = x->next;
1466 } while (x);
1467
1468 /* DMASEV peripheral/event */
1469 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1470 /* DMAEND */
1471 off += _emit_END(dry_run, &buf[off]);
1472
1473 return off;
1474 }
1475
1476 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1477 {
1478 u32 ccr = 0;
1479
1480 if (rqc->src_inc)
1481 ccr |= CC_SRCINC;
1482
1483 if (rqc->dst_inc)
1484 ccr |= CC_DSTINC;
1485
1486 /* We set same protection levels for Src and DST for now */
1487 if (rqc->privileged)
1488 ccr |= CC_SRCPRI | CC_DSTPRI;
1489 if (rqc->nonsecure)
1490 ccr |= CC_SRCNS | CC_DSTNS;
1491 if (rqc->insnaccess)
1492 ccr |= CC_SRCIA | CC_DSTIA;
1493
1494 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1495 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1496
1497 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1498 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1499
1500 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1501 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1502
1503 ccr |= (rqc->swap << CC_SWAP_SHFT);
1504
1505 return ccr;
1506 }
1507
1508 static inline bool _is_valid(u32 ccr)
1509 {
1510 enum pl330_dstcachectrl dcctl;
1511 enum pl330_srccachectrl scctl;
1512
1513 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1514 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1515
1516 if (dcctl == DINVALID1 || dcctl == DINVALID2
1517 || scctl == SINVALID1 || scctl == SINVALID2)
1518 return false;
1519 else
1520 return true;
1521 }
1522
1523 /*
1524 * Submit a list of xfers after which the client wants notification.
1525 * Client is not notified after each xfer unit, just once after all
1526 * xfer units are done or some error occurs.
1527 */
1528 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1529 {
1530 struct pl330_thread *thrd = ch_id;
1531 struct pl330_dmac *pl330;
1532 struct pl330_info *pi;
1533 struct _xfer_spec xs;
1534 unsigned long flags;
1535 void __iomem *regs;
1536 unsigned idx;
1537 u32 ccr;
1538 int ret = 0;
1539
1540 /* No Req or Unacquired Channel or DMAC */
1541 if (!r || !thrd || thrd->free)
1542 return -EINVAL;
1543
1544 pl330 = thrd->dmac;
1545 pi = pl330->pinfo;
1546 regs = pi->base;
1547
1548 if (pl330->state == DYING
1549 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1550 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1551 __func__, __LINE__);
1552 return -EAGAIN;
1553 }
1554
1555 /* If request for non-existing peripheral */
1556 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1557 dev_info(thrd->dmac->pinfo->dev,
1558 "%s:%d Invalid peripheral(%u)!\n",
1559 __func__, __LINE__, r->peri);
1560 return -EINVAL;
1561 }
1562
1563 spin_lock_irqsave(&pl330->lock, flags);
1564
1565 if (_queue_full(thrd)) {
1566 ret = -EAGAIN;
1567 goto xfer_exit;
1568 }
1569
1570 /* Prefer Secure Channel */
1571 if (!_manager_ns(thrd))
1572 r->cfg->nonsecure = 0;
1573 else
1574 r->cfg->nonsecure = 1;
1575
1576 /* Use last settings, if not provided */
1577 if (r->cfg)
1578 ccr = _prepare_ccr(r->cfg);
1579 else
1580 ccr = readl(regs + CC(thrd->id));
1581
1582 /* If this req doesn't have valid xfer settings */
1583 if (!_is_valid(ccr)) {
1584 ret = -EINVAL;
1585 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1586 __func__, __LINE__, ccr);
1587 goto xfer_exit;
1588 }
1589
1590 idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1591
1592 xs.ccr = ccr;
1593 xs.r = r;
1594
1595 /* First dry run to check if req is acceptable */
1596 ret = _setup_req(1, thrd, idx, &xs);
1597 if (ret < 0)
1598 goto xfer_exit;
1599
1600 if (ret > pi->mcbufsz / 2) {
1601 dev_info(thrd->dmac->pinfo->dev,
1602 "%s:%d Trying increasing mcbufsz\n",
1603 __func__, __LINE__);
1604 ret = -ENOMEM;
1605 goto xfer_exit;
1606 }
1607
1608 /* Hook the request */
1609 thrd->lstenq = idx;
1610 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1611 thrd->req[idx].r = r;
1612
1613 ret = 0;
1614
1615 xfer_exit:
1616 spin_unlock_irqrestore(&pl330->lock, flags);
1617
1618 return ret;
1619 }
1620
1621 static void pl330_dotask(unsigned long data)
1622 {
1623 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1624 struct pl330_info *pi = pl330->pinfo;
1625 unsigned long flags;
1626 int i;
1627
1628 spin_lock_irqsave(&pl330->lock, flags);
1629
1630 /* The DMAC itself gone nuts */
1631 if (pl330->dmac_tbd.reset_dmac) {
1632 pl330->state = DYING;
1633 /* Reset the manager too */
1634 pl330->dmac_tbd.reset_mngr = true;
1635 /* Clear the reset flag */
1636 pl330->dmac_tbd.reset_dmac = false;
1637 }
1638
1639 if (pl330->dmac_tbd.reset_mngr) {
1640 _stop(pl330->manager);
1641 /* Reset all channels */
1642 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1643 /* Clear the reset flag */
1644 pl330->dmac_tbd.reset_mngr = false;
1645 }
1646
1647 for (i = 0; i < pi->pcfg.num_chan; i++) {
1648
1649 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1650 struct pl330_thread *thrd = &pl330->channels[i];
1651 void __iomem *regs = pi->base;
1652 enum pl330_op_err err;
1653
1654 _stop(thrd);
1655
1656 if (readl(regs + FSC) & (1 << thrd->id))
1657 err = PL330_ERR_FAIL;
1658 else
1659 err = PL330_ERR_ABORT;
1660
1661 spin_unlock_irqrestore(&pl330->lock, flags);
1662
1663 _callback(thrd->req[1 - thrd->lstenq].r, err);
1664 _callback(thrd->req[thrd->lstenq].r, err);
1665
1666 spin_lock_irqsave(&pl330->lock, flags);
1667
1668 thrd->req[0].r = NULL;
1669 thrd->req[1].r = NULL;
1670 mark_free(thrd, 0);
1671 mark_free(thrd, 1);
1672
1673 /* Clear the reset flag */
1674 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1675 }
1676 }
1677
1678 spin_unlock_irqrestore(&pl330->lock, flags);
1679
1680 return;
1681 }
1682
1683 /* Returns 1 if state was updated, 0 otherwise */
1684 static int pl330_update(const struct pl330_info *pi)
1685 {
1686 struct _pl330_req *rqdone;
1687 struct pl330_dmac *pl330;
1688 unsigned long flags;
1689 void __iomem *regs;
1690 u32 val;
1691 int id, ev, ret = 0;
1692
1693 if (!pi || !pi->pl330_data)
1694 return 0;
1695
1696 regs = pi->base;
1697 pl330 = pi->pl330_data;
1698
1699 spin_lock_irqsave(&pl330->lock, flags);
1700
1701 val = readl(regs + FSM) & 0x1;
1702 if (val)
1703 pl330->dmac_tbd.reset_mngr = true;
1704 else
1705 pl330->dmac_tbd.reset_mngr = false;
1706
1707 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1708 pl330->dmac_tbd.reset_chan |= val;
1709 if (val) {
1710 int i = 0;
1711 while (i < pi->pcfg.num_chan) {
1712 if (val & (1 << i)) {
1713 dev_info(pi->dev,
1714 "Reset Channel-%d\t CS-%x FTC-%x\n",
1715 i, readl(regs + CS(i)),
1716 readl(regs + FTC(i)));
1717 _stop(&pl330->channels[i]);
1718 }
1719 i++;
1720 }
1721 }
1722
1723 /* Check which event happened i.e, thread notified */
1724 val = readl(regs + ES);
1725 if (pi->pcfg.num_events < 32
1726 && val & ~((1 << pi->pcfg.num_events) - 1)) {
1727 pl330->dmac_tbd.reset_dmac = true;
1728 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1729 ret = 1;
1730 goto updt_exit;
1731 }
1732
1733 for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1734 if (val & (1 << ev)) { /* Event occurred */
1735 struct pl330_thread *thrd;
1736 u32 inten = readl(regs + INTEN);
1737 int active;
1738
1739 /* Clear the event */
1740 if (inten & (1 << ev))
1741 writel(1 << ev, regs + INTCLR);
1742
1743 ret = 1;
1744
1745 id = pl330->events[ev];
1746
1747 thrd = &pl330->channels[id];
1748
1749 active = thrd->req_running;
1750 if (active == -1) /* Aborted */
1751 continue;
1752
1753 rqdone = &thrd->req[active];
1754 mark_free(thrd, active);
1755
1756 /* Get going again ASAP */
1757 _start(thrd);
1758
1759 /* For now, just make a list of callbacks to be done */
1760 list_add_tail(&rqdone->rqd, &pl330->req_done);
1761 }
1762 }
1763
1764 /* Now that we are in no hurry, do the callbacks */
1765 while (!list_empty(&pl330->req_done)) {
1766 struct pl330_req *r;
1767
1768 rqdone = container_of(pl330->req_done.next,
1769 struct _pl330_req, rqd);
1770
1771 list_del_init(&rqdone->rqd);
1772
1773 /* Detach the req */
1774 r = rqdone->r;
1775 rqdone->r = NULL;
1776
1777 spin_unlock_irqrestore(&pl330->lock, flags);
1778 _callback(r, PL330_ERR_NONE);
1779 spin_lock_irqsave(&pl330->lock, flags);
1780 }
1781
1782 updt_exit:
1783 spin_unlock_irqrestore(&pl330->lock, flags);
1784
1785 if (pl330->dmac_tbd.reset_dmac
1786 || pl330->dmac_tbd.reset_mngr
1787 || pl330->dmac_tbd.reset_chan) {
1788 ret = 1;
1789 tasklet_schedule(&pl330->tasks);
1790 }
1791
1792 return ret;
1793 }
1794
1795 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1796 {
1797 struct pl330_thread *thrd = ch_id;
1798 struct pl330_dmac *pl330;
1799 unsigned long flags;
1800 int ret = 0, active;
1801
1802 if (!thrd || thrd->free || thrd->dmac->state == DYING)
1803 return -EINVAL;
1804
1805 pl330 = thrd->dmac;
1806 active = thrd->req_running;
1807
1808 spin_lock_irqsave(&pl330->lock, flags);
1809
1810 switch (op) {
1811 case PL330_OP_FLUSH:
1812 /* Make sure the channel is stopped */
1813 _stop(thrd);
1814
1815 thrd->req[0].r = NULL;
1816 thrd->req[1].r = NULL;
1817 mark_free(thrd, 0);
1818 mark_free(thrd, 1);
1819 break;
1820
1821 case PL330_OP_ABORT:
1822 /* Make sure the channel is stopped */
1823 _stop(thrd);
1824
1825 /* ABORT is only for the active req */
1826 if (active == -1)
1827 break;
1828
1829 thrd->req[active].r = NULL;
1830 mark_free(thrd, active);
1831
1832 /* Start the next */
1833 case PL330_OP_START:
1834 if ((active == -1) && !_start(thrd))
1835 ret = -EIO;
1836 break;
1837
1838 default:
1839 ret = -EINVAL;
1840 }
1841
1842 spin_unlock_irqrestore(&pl330->lock, flags);
1843 return ret;
1844 }
1845
1846 /* Reserve an event */
1847 static inline int _alloc_event(struct pl330_thread *thrd)
1848 {
1849 struct pl330_dmac *pl330 = thrd->dmac;
1850 struct pl330_info *pi = pl330->pinfo;
1851 int ev;
1852
1853 for (ev = 0; ev < pi->pcfg.num_events; ev++)
1854 if (pl330->events[ev] == -1) {
1855 pl330->events[ev] = thrd->id;
1856 return ev;
1857 }
1858
1859 return -1;
1860 }
1861
1862 static bool _chan_ns(const struct pl330_info *pi, int i)
1863 {
1864 return pi->pcfg.irq_ns & (1 << i);
1865 }
1866
1867 /* Upon success, returns IdentityToken for the
1868 * allocated channel, NULL otherwise.
1869 */
1870 static void *pl330_request_channel(const struct pl330_info *pi)
1871 {
1872 struct pl330_thread *thrd = NULL;
1873 struct pl330_dmac *pl330;
1874 unsigned long flags;
1875 int chans, i;
1876
1877 if (!pi || !pi->pl330_data)
1878 return NULL;
1879
1880 pl330 = pi->pl330_data;
1881
1882 if (pl330->state == DYING)
1883 return NULL;
1884
1885 chans = pi->pcfg.num_chan;
1886
1887 spin_lock_irqsave(&pl330->lock, flags);
1888
1889 for (i = 0; i < chans; i++) {
1890 thrd = &pl330->channels[i];
1891 if ((thrd->free) && (!_manager_ns(thrd) ||
1892 _chan_ns(pi, i))) {
1893 thrd->ev = _alloc_event(thrd);
1894 if (thrd->ev >= 0) {
1895 thrd->free = false;
1896 thrd->lstenq = 1;
1897 thrd->req[0].r = NULL;
1898 mark_free(thrd, 0);
1899 thrd->req[1].r = NULL;
1900 mark_free(thrd, 1);
1901 break;
1902 }
1903 }
1904 thrd = NULL;
1905 }
1906
1907 spin_unlock_irqrestore(&pl330->lock, flags);
1908
1909 return thrd;
1910 }
1911
1912 /* Release an event */
1913 static inline void _free_event(struct pl330_thread *thrd, int ev)
1914 {
1915 struct pl330_dmac *pl330 = thrd->dmac;
1916 struct pl330_info *pi = pl330->pinfo;
1917
1918 /* If the event is valid and was held by the thread */
1919 if (ev >= 0 && ev < pi->pcfg.num_events
1920 && pl330->events[ev] == thrd->id)
1921 pl330->events[ev] = -1;
1922 }
1923
1924 static void pl330_release_channel(void *ch_id)
1925 {
1926 struct pl330_thread *thrd = ch_id;
1927 struct pl330_dmac *pl330;
1928 unsigned long flags;
1929
1930 if (!thrd || thrd->free)
1931 return;
1932
1933 _stop(thrd);
1934
1935 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1936 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1937
1938 pl330 = thrd->dmac;
1939
1940 spin_lock_irqsave(&pl330->lock, flags);
1941 _free_event(thrd, thrd->ev);
1942 thrd->free = true;
1943 spin_unlock_irqrestore(&pl330->lock, flags);
1944 }
1945
1946 /* Initialize the structure for PL330 configuration, that can be used
1947 * by the client driver the make best use of the DMAC
1948 */
1949 static void read_dmac_config(struct pl330_info *pi)
1950 {
1951 void __iomem *regs = pi->base;
1952 u32 val;
1953
1954 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1955 val &= CRD_DATA_WIDTH_MASK;
1956 pi->pcfg.data_bus_width = 8 * (1 << val);
1957
1958 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1959 val &= CRD_DATA_BUFF_MASK;
1960 pi->pcfg.data_buf_dep = val + 1;
1961
1962 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1963 val &= CR0_NUM_CHANS_MASK;
1964 val += 1;
1965 pi->pcfg.num_chan = val;
1966
1967 val = readl(regs + CR0);
1968 if (val & CR0_PERIPH_REQ_SET) {
1969 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1970 val += 1;
1971 pi->pcfg.num_peri = val;
1972 pi->pcfg.peri_ns = readl(regs + CR4);
1973 } else {
1974 pi->pcfg.num_peri = 0;
1975 }
1976
1977 val = readl(regs + CR0);
1978 if (val & CR0_BOOT_MAN_NS)
1979 pi->pcfg.mode |= DMAC_MODE_NS;
1980 else
1981 pi->pcfg.mode &= ~DMAC_MODE_NS;
1982
1983 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1984 val &= CR0_NUM_EVENTS_MASK;
1985 val += 1;
1986 pi->pcfg.num_events = val;
1987
1988 pi->pcfg.irq_ns = readl(regs + CR3);
1989
1990 pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1991 pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1992 }
1993
1994 static inline void _reset_thread(struct pl330_thread *thrd)
1995 {
1996 struct pl330_dmac *pl330 = thrd->dmac;
1997 struct pl330_info *pi = pl330->pinfo;
1998
1999 thrd->req[0].mc_cpu = pl330->mcode_cpu
2000 + (thrd->id * pi->mcbufsz);
2001 thrd->req[0].mc_bus = pl330->mcode_bus
2002 + (thrd->id * pi->mcbufsz);
2003 thrd->req[0].r = NULL;
2004 mark_free(thrd, 0);
2005
2006 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2007 + pi->mcbufsz / 2;
2008 thrd->req[1].mc_bus = thrd->req[0].mc_bus
2009 + pi->mcbufsz / 2;
2010 thrd->req[1].r = NULL;
2011 mark_free(thrd, 1);
2012 }
2013
2014 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2015 {
2016 struct pl330_info *pi = pl330->pinfo;
2017 int chans = pi->pcfg.num_chan;
2018 struct pl330_thread *thrd;
2019 int i;
2020
2021 /* Allocate 1 Manager and 'chans' Channel threads */
2022 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2023 GFP_KERNEL);
2024 if (!pl330->channels)
2025 return -ENOMEM;
2026
2027 /* Init Channel threads */
2028 for (i = 0; i < chans; i++) {
2029 thrd = &pl330->channels[i];
2030 thrd->id = i;
2031 thrd->dmac = pl330;
2032 _reset_thread(thrd);
2033 thrd->free = true;
2034 }
2035
2036 /* MANAGER is indexed at the end */
2037 thrd = &pl330->channels[chans];
2038 thrd->id = chans;
2039 thrd->dmac = pl330;
2040 thrd->free = false;
2041 pl330->manager = thrd;
2042
2043 return 0;
2044 }
2045
2046 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2047 {
2048 struct pl330_info *pi = pl330->pinfo;
2049 int chans = pi->pcfg.num_chan;
2050 int ret;
2051
2052 /*
2053 * Alloc MicroCode buffer for 'chans' Channel threads.
2054 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2055 */
2056 pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2057 chans * pi->mcbufsz,
2058 &pl330->mcode_bus, GFP_KERNEL);
2059 if (!pl330->mcode_cpu) {
2060 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2061 __func__, __LINE__);
2062 return -ENOMEM;
2063 }
2064
2065 ret = dmac_alloc_threads(pl330);
2066 if (ret) {
2067 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2068 __func__, __LINE__);
2069 dma_free_coherent(pi->dev,
2070 chans * pi->mcbufsz,
2071 pl330->mcode_cpu, pl330->mcode_bus);
2072 return ret;
2073 }
2074
2075 return 0;
2076 }
2077
2078 static int pl330_add(struct pl330_info *pi)
2079 {
2080 struct pl330_dmac *pl330;
2081 void __iomem *regs;
2082 int i, ret;
2083
2084 if (!pi || !pi->dev)
2085 return -EINVAL;
2086
2087 /* If already added */
2088 if (pi->pl330_data)
2089 return -EINVAL;
2090
2091 /*
2092 * If the SoC can perform reset on the DMAC, then do it
2093 * before reading its configuration.
2094 */
2095 if (pi->dmac_reset)
2096 pi->dmac_reset(pi);
2097
2098 regs = pi->base;
2099
2100 /* Check if we can handle this DMAC */
2101 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2102 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2103 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2104 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2105 return -EINVAL;
2106 }
2107
2108 /* Read the configuration of the DMAC */
2109 read_dmac_config(pi);
2110
2111 if (pi->pcfg.num_events == 0) {
2112 dev_err(pi->dev, "%s:%d Can't work without events!\n",
2113 __func__, __LINE__);
2114 return -EINVAL;
2115 }
2116
2117 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2118 if (!pl330) {
2119 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2120 __func__, __LINE__);
2121 return -ENOMEM;
2122 }
2123
2124 /* Assign the info structure and private data */
2125 pl330->pinfo = pi;
2126 pi->pl330_data = pl330;
2127
2128 spin_lock_init(&pl330->lock);
2129
2130 INIT_LIST_HEAD(&pl330->req_done);
2131
2132 /* Use default MC buffer size if not provided */
2133 if (!pi->mcbufsz)
2134 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2135
2136 /* Mark all events as free */
2137 for (i = 0; i < pi->pcfg.num_events; i++)
2138 pl330->events[i] = -1;
2139
2140 /* Allocate resources needed by the DMAC */
2141 ret = dmac_alloc_resources(pl330);
2142 if (ret) {
2143 dev_err(pi->dev, "Unable to create channels for DMAC\n");
2144 kfree(pl330);
2145 return ret;
2146 }
2147
2148 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2149
2150 pl330->state = INIT;
2151
2152 return 0;
2153 }
2154
2155 static int dmac_free_threads(struct pl330_dmac *pl330)
2156 {
2157 struct pl330_info *pi = pl330->pinfo;
2158 int chans = pi->pcfg.num_chan;
2159 struct pl330_thread *thrd;
2160 int i;
2161
2162 /* Release Channel threads */
2163 for (i = 0; i < chans; i++) {
2164 thrd = &pl330->channels[i];
2165 pl330_release_channel((void *)thrd);
2166 }
2167
2168 /* Free memory */
2169 kfree(pl330->channels);
2170
2171 return 0;
2172 }
2173
2174 static void dmac_free_resources(struct pl330_dmac *pl330)
2175 {
2176 struct pl330_info *pi = pl330->pinfo;
2177 int chans = pi->pcfg.num_chan;
2178
2179 dmac_free_threads(pl330);
2180
2181 dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2182 pl330->mcode_cpu, pl330->mcode_bus);
2183 }
2184
2185 static void pl330_del(struct pl330_info *pi)
2186 {
2187 struct pl330_dmac *pl330;
2188
2189 if (!pi || !pi->pl330_data)
2190 return;
2191
2192 pl330 = pi->pl330_data;
2193
2194 pl330->state = UNINIT;
2195
2196 tasklet_kill(&pl330->tasks);
2197
2198 /* Free DMAC resources */
2199 dmac_free_resources(pl330);
2200
2201 kfree(pl330);
2202 pi->pl330_data = NULL;
2203 }
2204
2205 /* forward declaration */
2206 static struct amba_driver pl330_driver;
2207
2208 static inline struct dma_pl330_chan *
2209 to_pchan(struct dma_chan *ch)
2210 {
2211 if (!ch)
2212 return NULL;
2213
2214 return container_of(ch, struct dma_pl330_chan, chan);
2215 }
2216
2217 static inline struct dma_pl330_desc *
2218 to_desc(struct dma_async_tx_descriptor *tx)
2219 {
2220 return container_of(tx, struct dma_pl330_desc, txd);
2221 }
2222
2223 static inline void free_desc_list(struct list_head *list)
2224 {
2225 struct dma_pl330_dmac *pdmac;
2226 struct dma_pl330_desc *desc;
2227 struct dma_pl330_chan *pch = NULL;
2228 unsigned long flags;
2229
2230 /* Finish off the work list */
2231 list_for_each_entry(desc, list, node) {
2232 dma_async_tx_callback callback;
2233 void *param;
2234
2235 /* All desc in a list belong to same channel */
2236 pch = desc->pchan;
2237 callback = desc->txd.callback;
2238 param = desc->txd.callback_param;
2239
2240 if (callback)
2241 callback(param);
2242
2243 desc->pchan = NULL;
2244 }
2245
2246 /* pch will be unset if list was empty */
2247 if (!pch)
2248 return;
2249
2250 pdmac = pch->dmac;
2251
2252 spin_lock_irqsave(&pdmac->pool_lock, flags);
2253 list_splice_tail_init(list, &pdmac->desc_pool);
2254 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2255 }
2256
2257 static inline void handle_cyclic_desc_list(struct list_head *list)
2258 {
2259 struct dma_pl330_desc *desc;
2260 struct dma_pl330_chan *pch = NULL;
2261 unsigned long flags;
2262
2263 list_for_each_entry(desc, list, node) {
2264 dma_async_tx_callback callback;
2265
2266 /* Change status to reload it */
2267 desc->status = PREP;
2268 pch = desc->pchan;
2269 callback = desc->txd.callback;
2270 if (callback)
2271 callback(desc->txd.callback_param);
2272 }
2273
2274 /* pch will be unset if list was empty */
2275 if (!pch)
2276 return;
2277
2278 spin_lock_irqsave(&pch->lock, flags);
2279 list_splice_tail_init(list, &pch->work_list);
2280 spin_unlock_irqrestore(&pch->lock, flags);
2281 }
2282
2283 static inline void fill_queue(struct dma_pl330_chan *pch)
2284 {
2285 struct dma_pl330_desc *desc;
2286 int ret;
2287
2288 list_for_each_entry(desc, &pch->work_list, node) {
2289
2290 /* If already submitted */
2291 if (desc->status == BUSY)
2292 break;
2293
2294 ret = pl330_submit_req(pch->pl330_chid,
2295 &desc->req);
2296 if (!ret) {
2297 desc->status = BUSY;
2298 break;
2299 } else if (ret == -EAGAIN) {
2300 /* QFull or DMAC Dying */
2301 break;
2302 } else {
2303 /* Unacceptable request */
2304 desc->status = DONE;
2305 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2306 __func__, __LINE__, desc->txd.cookie);
2307 tasklet_schedule(&pch->task);
2308 }
2309 }
2310 }
2311
2312 static void pl330_tasklet(unsigned long data)
2313 {
2314 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2315 struct dma_pl330_desc *desc, *_dt;
2316 unsigned long flags;
2317 LIST_HEAD(list);
2318
2319 spin_lock_irqsave(&pch->lock, flags);
2320
2321 /* Pick up ripe tomatoes */
2322 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2323 if (desc->status == DONE) {
2324 if (pch->cyclic)
2325 dma_cookie_complete(&desc->txd);
2326 list_move_tail(&desc->node, &list);
2327 }
2328
2329 /* Try to submit a req imm. next to the last completed cookie */
2330 fill_queue(pch);
2331
2332 /* Make sure the PL330 Channel thread is active */
2333 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2334
2335 spin_unlock_irqrestore(&pch->lock, flags);
2336
2337 if (pch->cyclic)
2338 handle_cyclic_desc_list(&list);
2339 else
2340 free_desc_list(&list);
2341 }
2342
2343 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2344 {
2345 struct dma_pl330_desc *desc = token;
2346 struct dma_pl330_chan *pch = desc->pchan;
2347 unsigned long flags;
2348
2349 /* If desc aborted */
2350 if (!pch)
2351 return;
2352
2353 spin_lock_irqsave(&pch->lock, flags);
2354
2355 desc->status = DONE;
2356
2357 spin_unlock_irqrestore(&pch->lock, flags);
2358
2359 tasklet_schedule(&pch->task);
2360 }
2361
2362 bool pl330_filter(struct dma_chan *chan, void *param)
2363 {
2364 u8 *peri_id;
2365
2366 if (chan->device->dev->driver != &pl330_driver.drv)
2367 return false;
2368
2369 #ifdef CONFIG_OF
2370 if (chan->device->dev->of_node) {
2371 const __be32 *prop_value;
2372 phandle phandle;
2373 struct device_node *node;
2374
2375 prop_value = ((struct property *)param)->value;
2376 phandle = be32_to_cpup(prop_value++);
2377 node = of_find_node_by_phandle(phandle);
2378 return ((chan->private == node) &&
2379 (chan->chan_id == be32_to_cpup(prop_value)));
2380 }
2381 #endif
2382
2383 peri_id = chan->private;
2384 return *peri_id == (unsigned)param;
2385 }
2386 EXPORT_SYMBOL(pl330_filter);
2387
2388 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2389 {
2390 struct dma_pl330_chan *pch = to_pchan(chan);
2391 struct dma_pl330_dmac *pdmac = pch->dmac;
2392 unsigned long flags;
2393
2394 spin_lock_irqsave(&pch->lock, flags);
2395
2396 dma_cookie_init(chan);
2397 pch->cyclic = false;
2398
2399 pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2400 if (!pch->pl330_chid) {
2401 spin_unlock_irqrestore(&pch->lock, flags);
2402 return 0;
2403 }
2404
2405 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2406
2407 spin_unlock_irqrestore(&pch->lock, flags);
2408
2409 return 1;
2410 }
2411
2412 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2413 {
2414 struct dma_pl330_chan *pch = to_pchan(chan);
2415 struct dma_pl330_desc *desc, *_dt;
2416 unsigned long flags;
2417 struct dma_pl330_dmac *pdmac = pch->dmac;
2418 struct dma_slave_config *slave_config;
2419 LIST_HEAD(list);
2420
2421 switch (cmd) {
2422 case DMA_TERMINATE_ALL:
2423 spin_lock_irqsave(&pch->lock, flags);
2424
2425 /* FLUSH the PL330 Channel thread */
2426 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2427
2428 /* Mark all desc done */
2429 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2430 desc->status = DONE;
2431 list_move_tail(&desc->node, &list);
2432 }
2433
2434 list_splice_tail_init(&list, &pdmac->desc_pool);
2435 spin_unlock_irqrestore(&pch->lock, flags);
2436 break;
2437 case DMA_SLAVE_CONFIG:
2438 slave_config = (struct dma_slave_config *)arg;
2439
2440 if (slave_config->direction == DMA_MEM_TO_DEV) {
2441 if (slave_config->dst_addr)
2442 pch->fifo_addr = slave_config->dst_addr;
2443 if (slave_config->dst_addr_width)
2444 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2445 if (slave_config->dst_maxburst)
2446 pch->burst_len = slave_config->dst_maxburst;
2447 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2448 if (slave_config->src_addr)
2449 pch->fifo_addr = slave_config->src_addr;
2450 if (slave_config->src_addr_width)
2451 pch->burst_sz = __ffs(slave_config->src_addr_width);
2452 if (slave_config->src_maxburst)
2453 pch->burst_len = slave_config->src_maxburst;
2454 }
2455 break;
2456 default:
2457 dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2458 return -ENXIO;
2459 }
2460
2461 return 0;
2462 }
2463
2464 static void pl330_free_chan_resources(struct dma_chan *chan)
2465 {
2466 struct dma_pl330_chan *pch = to_pchan(chan);
2467 unsigned long flags;
2468
2469 spin_lock_irqsave(&pch->lock, flags);
2470
2471 tasklet_kill(&pch->task);
2472
2473 pl330_release_channel(pch->pl330_chid);
2474 pch->pl330_chid = NULL;
2475
2476 if (pch->cyclic)
2477 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2478
2479 spin_unlock_irqrestore(&pch->lock, flags);
2480 }
2481
2482 static enum dma_status
2483 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2484 struct dma_tx_state *txstate)
2485 {
2486 return dma_cookie_status(chan, cookie, txstate);
2487 }
2488
2489 static void pl330_issue_pending(struct dma_chan *chan)
2490 {
2491 pl330_tasklet((unsigned long) to_pchan(chan));
2492 }
2493
2494 /*
2495 * We returned the last one of the circular list of descriptor(s)
2496 * from prep_xxx, so the argument to submit corresponds to the last
2497 * descriptor of the list.
2498 */
2499 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2500 {
2501 struct dma_pl330_desc *desc, *last = to_desc(tx);
2502 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2503 dma_cookie_t cookie;
2504 unsigned long flags;
2505
2506 spin_lock_irqsave(&pch->lock, flags);
2507
2508 /* Assign cookies to all nodes */
2509 while (!list_empty(&last->node)) {
2510 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2511
2512 dma_cookie_assign(&desc->txd);
2513
2514 list_move_tail(&desc->node, &pch->work_list);
2515 }
2516
2517 cookie = dma_cookie_assign(&last->txd);
2518 list_add_tail(&last->node, &pch->work_list);
2519 spin_unlock_irqrestore(&pch->lock, flags);
2520
2521 return cookie;
2522 }
2523
2524 static inline void _init_desc(struct dma_pl330_desc *desc)
2525 {
2526 desc->pchan = NULL;
2527 desc->req.x = &desc->px;
2528 desc->req.token = desc;
2529 desc->rqcfg.swap = SWAP_NO;
2530 desc->rqcfg.privileged = 0;
2531 desc->rqcfg.insnaccess = 0;
2532 desc->rqcfg.scctl = SCCTRL0;
2533 desc->rqcfg.dcctl = DCCTRL0;
2534 desc->req.cfg = &desc->rqcfg;
2535 desc->req.xfer_cb = dma_pl330_rqcb;
2536 desc->txd.tx_submit = pl330_tx_submit;
2537
2538 INIT_LIST_HEAD(&desc->node);
2539 }
2540
2541 /* Returns the number of descriptors added to the DMAC pool */
2542 int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2543 {
2544 struct dma_pl330_desc *desc;
2545 unsigned long flags;
2546 int i;
2547
2548 if (!pdmac)
2549 return 0;
2550
2551 desc = kmalloc(count * sizeof(*desc), flg);
2552 if (!desc)
2553 return 0;
2554
2555 spin_lock_irqsave(&pdmac->pool_lock, flags);
2556
2557 for (i = 0; i < count; i++) {
2558 _init_desc(&desc[i]);
2559 list_add_tail(&desc[i].node, &pdmac->desc_pool);
2560 }
2561
2562 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2563
2564 return count;
2565 }
2566
2567 static struct dma_pl330_desc *
2568 pluck_desc(struct dma_pl330_dmac *pdmac)
2569 {
2570 struct dma_pl330_desc *desc = NULL;
2571 unsigned long flags;
2572
2573 if (!pdmac)
2574 return NULL;
2575
2576 spin_lock_irqsave(&pdmac->pool_lock, flags);
2577
2578 if (!list_empty(&pdmac->desc_pool)) {
2579 desc = list_entry(pdmac->desc_pool.next,
2580 struct dma_pl330_desc, node);
2581
2582 list_del_init(&desc->node);
2583
2584 desc->status = PREP;
2585 desc->txd.callback = NULL;
2586 }
2587
2588 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2589
2590 return desc;
2591 }
2592
2593 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2594 {
2595 struct dma_pl330_dmac *pdmac = pch->dmac;
2596 u8 *peri_id = pch->chan.private;
2597 struct dma_pl330_desc *desc;
2598
2599 /* Pluck one desc from the pool of DMAC */
2600 desc = pluck_desc(pdmac);
2601
2602 /* If the DMAC pool is empty, alloc new */
2603 if (!desc) {
2604 if (!add_desc(pdmac, GFP_ATOMIC, 1))
2605 return NULL;
2606
2607 /* Try again */
2608 desc = pluck_desc(pdmac);
2609 if (!desc) {
2610 dev_err(pch->dmac->pif.dev,
2611 "%s:%d ALERT!\n", __func__, __LINE__);
2612 return NULL;
2613 }
2614 }
2615
2616 /* Initialize the descriptor */
2617 desc->pchan = pch;
2618 desc->txd.cookie = 0;
2619 async_tx_ack(&desc->txd);
2620
2621 desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2622 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2623
2624 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2625
2626 return desc;
2627 }
2628
2629 static inline void fill_px(struct pl330_xfer *px,
2630 dma_addr_t dst, dma_addr_t src, size_t len)
2631 {
2632 px->next = NULL;
2633 px->bytes = len;
2634 px->dst_addr = dst;
2635 px->src_addr = src;
2636 }
2637
2638 static struct dma_pl330_desc *
2639 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2640 dma_addr_t src, size_t len)
2641 {
2642 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2643
2644 if (!desc) {
2645 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2646 __func__, __LINE__);
2647 return NULL;
2648 }
2649
2650 /*
2651 * Ideally we should lookout for reqs bigger than
2652 * those that can be programmed with 256 bytes of
2653 * MC buffer, but considering a req size is seldom
2654 * going to be word-unaligned and more than 200MB,
2655 * we take it easy.
2656 * Also, should the limit is reached we'd rather
2657 * have the platform increase MC buffer size than
2658 * complicating this API driver.
2659 */
2660 fill_px(&desc->px, dst, src, len);
2661
2662 return desc;
2663 }
2664
2665 /* Call after fixing burst size */
2666 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2667 {
2668 struct dma_pl330_chan *pch = desc->pchan;
2669 struct pl330_info *pi = &pch->dmac->pif;
2670 int burst_len;
2671
2672 burst_len = pi->pcfg.data_bus_width / 8;
2673 burst_len *= pi->pcfg.data_buf_dep;
2674 burst_len >>= desc->rqcfg.brst_size;
2675
2676 /* src/dst_burst_len can't be more than 16 */
2677 if (burst_len > 16)
2678 burst_len = 16;
2679
2680 while (burst_len > 1) {
2681 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2682 break;
2683 burst_len--;
2684 }
2685
2686 return burst_len;
2687 }
2688
2689 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2690 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2691 size_t period_len, enum dma_transfer_direction direction,
2692 void *context)
2693 {
2694 struct dma_pl330_desc *desc;
2695 struct dma_pl330_chan *pch = to_pchan(chan);
2696 dma_addr_t dst;
2697 dma_addr_t src;
2698
2699 desc = pl330_get_desc(pch);
2700 if (!desc) {
2701 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2702 __func__, __LINE__);
2703 return NULL;
2704 }
2705
2706 switch (direction) {
2707 case DMA_MEM_TO_DEV:
2708 desc->rqcfg.src_inc = 1;
2709 desc->rqcfg.dst_inc = 0;
2710 desc->req.rqtype = MEMTODEV;
2711 src = dma_addr;
2712 dst = pch->fifo_addr;
2713 break;
2714 case DMA_DEV_TO_MEM:
2715 desc->rqcfg.src_inc = 0;
2716 desc->rqcfg.dst_inc = 1;
2717 desc->req.rqtype = DEVTOMEM;
2718 src = pch->fifo_addr;
2719 dst = dma_addr;
2720 break;
2721 default:
2722 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2723 __func__, __LINE__);
2724 return NULL;
2725 }
2726
2727 desc->rqcfg.brst_size = pch->burst_sz;
2728 desc->rqcfg.brst_len = 1;
2729
2730 pch->cyclic = true;
2731
2732 fill_px(&desc->px, dst, src, period_len);
2733
2734 return &desc->txd;
2735 }
2736
2737 static struct dma_async_tx_descriptor *
2738 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2739 dma_addr_t src, size_t len, unsigned long flags)
2740 {
2741 struct dma_pl330_desc *desc;
2742 struct dma_pl330_chan *pch = to_pchan(chan);
2743 struct pl330_info *pi;
2744 int burst;
2745
2746 if (unlikely(!pch || !len))
2747 return NULL;
2748
2749 pi = &pch->dmac->pif;
2750
2751 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2752 if (!desc)
2753 return NULL;
2754
2755 desc->rqcfg.src_inc = 1;
2756 desc->rqcfg.dst_inc = 1;
2757 desc->req.rqtype = MEMTOMEM;
2758
2759 /* Select max possible burst size */
2760 burst = pi->pcfg.data_bus_width / 8;
2761
2762 while (burst > 1) {
2763 if (!(len % burst))
2764 break;
2765 burst /= 2;
2766 }
2767
2768 desc->rqcfg.brst_size = 0;
2769 while (burst != (1 << desc->rqcfg.brst_size))
2770 desc->rqcfg.brst_size++;
2771
2772 desc->rqcfg.brst_len = get_burst_len(desc, len);
2773
2774 desc->txd.flags = flags;
2775
2776 return &desc->txd;
2777 }
2778
2779 static struct dma_async_tx_descriptor *
2780 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2781 unsigned int sg_len, enum dma_transfer_direction direction,
2782 unsigned long flg, void *context)
2783 {
2784 struct dma_pl330_desc *first, *desc = NULL;
2785 struct dma_pl330_chan *pch = to_pchan(chan);
2786 struct scatterlist *sg;
2787 unsigned long flags;
2788 int i;
2789 dma_addr_t addr;
2790
2791 if (unlikely(!pch || !sgl || !sg_len))
2792 return NULL;
2793
2794 addr = pch->fifo_addr;
2795
2796 first = NULL;
2797
2798 for_each_sg(sgl, sg, sg_len, i) {
2799
2800 desc = pl330_get_desc(pch);
2801 if (!desc) {
2802 struct dma_pl330_dmac *pdmac = pch->dmac;
2803
2804 dev_err(pch->dmac->pif.dev,
2805 "%s:%d Unable to fetch desc\n",
2806 __func__, __LINE__);
2807 if (!first)
2808 return NULL;
2809
2810 spin_lock_irqsave(&pdmac->pool_lock, flags);
2811
2812 while (!list_empty(&first->node)) {
2813 desc = list_entry(first->node.next,
2814 struct dma_pl330_desc, node);
2815 list_move_tail(&desc->node, &pdmac->desc_pool);
2816 }
2817
2818 list_move_tail(&first->node, &pdmac->desc_pool);
2819
2820 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2821
2822 return NULL;
2823 }
2824
2825 if (!first)
2826 first = desc;
2827 else
2828 list_add_tail(&desc->node, &first->node);
2829
2830 if (direction == DMA_MEM_TO_DEV) {
2831 desc->rqcfg.src_inc = 1;
2832 desc->rqcfg.dst_inc = 0;
2833 desc->req.rqtype = MEMTODEV;
2834 fill_px(&desc->px,
2835 addr, sg_dma_address(sg), sg_dma_len(sg));
2836 } else {
2837 desc->rqcfg.src_inc = 0;
2838 desc->rqcfg.dst_inc = 1;
2839 desc->req.rqtype = DEVTOMEM;
2840 fill_px(&desc->px,
2841 sg_dma_address(sg), addr, sg_dma_len(sg));
2842 }
2843
2844 desc->rqcfg.brst_size = pch->burst_sz;
2845 desc->rqcfg.brst_len = 1;
2846 }
2847
2848 /* Return the last desc in the chain */
2849 desc->txd.flags = flg;
2850 return &desc->txd;
2851 }
2852
2853 static irqreturn_t pl330_irq_handler(int irq, void *data)
2854 {
2855 if (pl330_update(data))
2856 return IRQ_HANDLED;
2857 else
2858 return IRQ_NONE;
2859 }
2860
2861 static int __devinit
2862 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2863 {
2864 struct dma_pl330_platdata *pdat;
2865 struct dma_pl330_dmac *pdmac;
2866 struct dma_pl330_chan *pch;
2867 struct pl330_info *pi;
2868 struct dma_device *pd;
2869 struct resource *res;
2870 int i, ret, irq;
2871 int num_chan;
2872
2873 pdat = adev->dev.platform_data;
2874
2875 /* Allocate a new DMAC and its Channels */
2876 pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL);
2877 if (!pdmac) {
2878 dev_err(&adev->dev, "unable to allocate mem\n");
2879 return -ENOMEM;
2880 }
2881
2882 pi = &pdmac->pif;
2883 pi->dev = &adev->dev;
2884 pi->pl330_data = NULL;
2885 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2886
2887 res = &adev->res;
2888 request_mem_region(res->start, resource_size(res), "dma-pl330");
2889
2890 pi->base = ioremap(res->start, resource_size(res));
2891 if (!pi->base) {
2892 ret = -ENXIO;
2893 goto probe_err1;
2894 }
2895
2896 pdmac->clk = clk_get(&adev->dev, "dma");
2897 if (IS_ERR(pdmac->clk)) {
2898 dev_err(&adev->dev, "Cannot get operation clock.\n");
2899 ret = -EINVAL;
2900 goto probe_err2;
2901 }
2902
2903 amba_set_drvdata(adev, pdmac);
2904
2905 #ifndef CONFIG_PM_RUNTIME
2906 /* enable dma clk */
2907 clk_enable(pdmac->clk);
2908 #endif
2909
2910 irq = adev->irq[0];
2911 ret = request_irq(irq, pl330_irq_handler, 0,
2912 dev_name(&adev->dev), pi);
2913 if (ret)
2914 goto probe_err3;
2915
2916 ret = pl330_add(pi);
2917 if (ret)
2918 goto probe_err4;
2919
2920 INIT_LIST_HEAD(&pdmac->desc_pool);
2921 spin_lock_init(&pdmac->pool_lock);
2922
2923 /* Create a descriptor pool of default size */
2924 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2925 dev_warn(&adev->dev, "unable to allocate desc\n");
2926
2927 pd = &pdmac->ddma;
2928 INIT_LIST_HEAD(&pd->channels);
2929
2930 /* Initialize channel parameters */
2931 if (pdat)
2932 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2933 else
2934 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2935
2936 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2937
2938 for (i = 0; i < num_chan; i++) {
2939 pch = &pdmac->peripherals[i];
2940 if (!adev->dev.of_node)
2941 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2942 else
2943 pch->chan.private = adev->dev.of_node;
2944
2945 INIT_LIST_HEAD(&pch->work_list);
2946 spin_lock_init(&pch->lock);
2947 pch->pl330_chid = NULL;
2948 pch->chan.device = pd;
2949 pch->dmac = pdmac;
2950
2951 /* Add the channel to the DMAC list */
2952 list_add_tail(&pch->chan.device_node, &pd->channels);
2953 }
2954
2955 pd->dev = &adev->dev;
2956 if (pdat) {
2957 pd->cap_mask = pdat->cap_mask;
2958 } else {
2959 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2960 if (pi->pcfg.num_peri) {
2961 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2962 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2963 }
2964 }
2965
2966 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2967 pd->device_free_chan_resources = pl330_free_chan_resources;
2968 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2969 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2970 pd->device_tx_status = pl330_tx_status;
2971 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2972 pd->device_control = pl330_control;
2973 pd->device_issue_pending = pl330_issue_pending;
2974
2975 ret = dma_async_device_register(pd);
2976 if (ret) {
2977 dev_err(&adev->dev, "unable to register DMAC\n");
2978 goto probe_err5;
2979 }
2980
2981 dev_info(&adev->dev,
2982 "Loaded driver for PL330 DMAC-%d\n", adev->periphid);
2983 dev_info(&adev->dev,
2984 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2985 pi->pcfg.data_buf_dep,
2986 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
2987 pi->pcfg.num_peri, pi->pcfg.num_events);
2988
2989 return 0;
2990
2991 probe_err5:
2992 pl330_del(pi);
2993 probe_err4:
2994 free_irq(irq, pi);
2995 probe_err3:
2996 #ifndef CONFIG_PM_RUNTIME
2997 clk_disable(pdmac->clk);
2998 #endif
2999 clk_put(pdmac->clk);
3000 probe_err2:
3001 iounmap(pi->base);
3002 probe_err1:
3003 release_mem_region(res->start, resource_size(res));
3004 kfree(pdmac);
3005
3006 return ret;
3007 }
3008
3009 static int __devexit pl330_remove(struct amba_device *adev)
3010 {
3011 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3012 struct dma_pl330_chan *pch, *_p;
3013 struct pl330_info *pi;
3014 struct resource *res;
3015 int irq;
3016
3017 if (!pdmac)
3018 return 0;
3019
3020 amba_set_drvdata(adev, NULL);
3021
3022 /* Idle the DMAC */
3023 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3024 chan.device_node) {
3025
3026 /* Remove the channel */
3027 list_del(&pch->chan.device_node);
3028
3029 /* Flush the channel */
3030 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3031 pl330_free_chan_resources(&pch->chan);
3032 }
3033
3034 pi = &pdmac->pif;
3035
3036 pl330_del(pi);
3037
3038 irq = adev->irq[0];
3039 free_irq(irq, pi);
3040
3041 iounmap(pi->base);
3042
3043 res = &adev->res;
3044 release_mem_region(res->start, resource_size(res));
3045
3046 #ifndef CONFIG_PM_RUNTIME
3047 clk_disable(pdmac->clk);
3048 #endif
3049
3050 kfree(pdmac);
3051
3052 return 0;
3053 }
3054
3055 static struct amba_id pl330_ids[] = {
3056 {
3057 .id = 0x00041330,
3058 .mask = 0x000fffff,
3059 },
3060 { 0, 0 },
3061 };
3062
3063 MODULE_DEVICE_TABLE(amba, pl330_ids);
3064
3065 #ifdef CONFIG_PM_RUNTIME
3066 static int pl330_runtime_suspend(struct device *dev)
3067 {
3068 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev);
3069
3070 if (!pdmac) {
3071 dev_err(dev, "failed to get dmac\n");
3072 return -ENODEV;
3073 }
3074
3075 clk_disable(pdmac->clk);
3076
3077 return 0;
3078 }
3079
3080 static int pl330_runtime_resume(struct device *dev)
3081 {
3082 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev);
3083
3084 if (!pdmac) {
3085 dev_err(dev, "failed to get dmac\n");
3086 return -ENODEV;
3087 }
3088
3089 clk_enable(pdmac->clk);
3090
3091 return 0;
3092 }
3093 #else
3094 #define pl330_runtime_suspend NULL
3095 #define pl330_runtime_resume NULL
3096 #endif /* CONFIG_PM_RUNTIME */
3097
3098 static const struct dev_pm_ops pl330_pm_ops = {
3099 .runtime_suspend = pl330_runtime_suspend,
3100 .runtime_resume = pl330_runtime_resume,
3101 };
3102
3103 static struct amba_driver pl330_driver = {
3104 .drv = {
3105 .owner = THIS_MODULE,
3106 .name = "dma-pl330",
3107 .pm = &pl330_pm_ops,
3108 },
3109 .id_table = pl330_ids,
3110 .probe = pl330_probe,
3111 .remove = pl330_remove,
3112 };
3113
3114 module_amba_driver(pl330_driver);
3115
3116 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3117 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3118 MODULE_LICENSE("GPL");