drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21
22 /*
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
27 *
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
31 *
32 * LOCKING:
33 *
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
36 *
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
41 *
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
44 *
45 * See Documentation/dmaengine.txt for more details
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/dma-mapping.h>
51 #include <linux/init.h>
52 #include <linux/module.h>
53 #include <linux/mm.h>
54 #include <linux/device.h>
55 #include <linux/dmaengine.h>
56 #include <linux/hardirq.h>
57 #include <linux/spinlock.h>
58 #include <linux/percpu.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/jiffies.h>
62 #include <linux/rculist.h>
63 #include <linux/idr.h>
64 #include <linux/slab.h>
65 #include <linux/acpi.h>
66 #include <linux/acpi_dma.h>
67 #include <linux/of_dma.h>
68
69 static DEFINE_MUTEX(dma_list_mutex);
70 static DEFINE_IDR(dma_idr);
71 static LIST_HEAD(dma_device_list);
72 static long dmaengine_ref_count;
73
74 /* --- sysfs implementation --- */
75
76 /**
77 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
78 * @dev - device node
79 *
80 * Must be called under dma_list_mutex
81 */
82 static struct dma_chan *dev_to_dma_chan(struct device *dev)
83 {
84 struct dma_chan_dev *chan_dev;
85
86 chan_dev = container_of(dev, typeof(*chan_dev), device);
87 return chan_dev->chan;
88 }
89
90 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
91 {
92 struct dma_chan *chan;
93 unsigned long count = 0;
94 int i;
95 int err;
96
97 mutex_lock(&dma_list_mutex);
98 chan = dev_to_dma_chan(dev);
99 if (chan) {
100 for_each_possible_cpu(i)
101 count += per_cpu_ptr(chan->local, i)->memcpy_count;
102 err = sprintf(buf, "%lu\n", count);
103 } else
104 err = -ENODEV;
105 mutex_unlock(&dma_list_mutex);
106
107 return err;
108 }
109
110 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
111 char *buf)
112 {
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
117
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
127
128 return err;
129 }
130
131 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
132 {
133 struct dma_chan *chan;
134 int err;
135
136 mutex_lock(&dma_list_mutex);
137 chan = dev_to_dma_chan(dev);
138 if (chan)
139 err = sprintf(buf, "%d\n", chan->client_count);
140 else
141 err = -ENODEV;
142 mutex_unlock(&dma_list_mutex);
143
144 return err;
145 }
146
147 static struct device_attribute dma_attrs[] = {
148 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
149 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
150 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
151 __ATTR_NULL
152 };
153
154 static void chan_dev_release(struct device *dev)
155 {
156 struct dma_chan_dev *chan_dev;
157
158 chan_dev = container_of(dev, typeof(*chan_dev), device);
159 if (atomic_dec_and_test(chan_dev->idr_ref)) {
160 mutex_lock(&dma_list_mutex);
161 idr_remove(&dma_idr, chan_dev->dev_id);
162 mutex_unlock(&dma_list_mutex);
163 kfree(chan_dev->idr_ref);
164 }
165 kfree(chan_dev);
166 }
167
168 static struct class dma_devclass = {
169 .name = "dma",
170 .dev_attrs = dma_attrs,
171 .dev_release = chan_dev_release,
172 };
173
174 /* --- client and device registration --- */
175
176 #define dma_device_satisfies_mask(device, mask) \
177 __dma_device_satisfies_mask((device), &(mask))
178 static int
179 __dma_device_satisfies_mask(struct dma_device *device,
180 const dma_cap_mask_t *want)
181 {
182 dma_cap_mask_t has;
183
184 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
185 DMA_TX_TYPE_END);
186 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
187 }
188
189 static struct module *dma_chan_to_owner(struct dma_chan *chan)
190 {
191 return chan->device->dev->driver->owner;
192 }
193
194 /**
195 * balance_ref_count - catch up the channel reference count
196 * @chan - channel to balance ->client_count versus dmaengine_ref_count
197 *
198 * balance_ref_count must be called under dma_list_mutex
199 */
200 static void balance_ref_count(struct dma_chan *chan)
201 {
202 struct module *owner = dma_chan_to_owner(chan);
203
204 while (chan->client_count < dmaengine_ref_count) {
205 __module_get(owner);
206 chan->client_count++;
207 }
208 }
209
210 /**
211 * dma_chan_get - try to grab a dma channel's parent driver module
212 * @chan - channel to grab
213 *
214 * Must be called under dma_list_mutex
215 */
216 static int dma_chan_get(struct dma_chan *chan)
217 {
218 int err = -ENODEV;
219 struct module *owner = dma_chan_to_owner(chan);
220
221 if (chan->client_count) {
222 __module_get(owner);
223 err = 0;
224 } else if (try_module_get(owner))
225 err = 0;
226
227 if (err == 0)
228 chan->client_count++;
229
230 /* allocate upon first client reference */
231 if (chan->client_count == 1 && err == 0) {
232 int desc_cnt = chan->device->device_alloc_chan_resources(chan);
233
234 if (desc_cnt < 0) {
235 err = desc_cnt;
236 chan->client_count = 0;
237 module_put(owner);
238 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
239 balance_ref_count(chan);
240 }
241
242 return err;
243 }
244
245 /**
246 * dma_chan_put - drop a reference to a dma channel's parent driver module
247 * @chan - channel to release
248 *
249 * Must be called under dma_list_mutex
250 */
251 static void dma_chan_put(struct dma_chan *chan)
252 {
253 if (!chan->client_count)
254 return; /* this channel failed alloc_chan_resources */
255 chan->client_count--;
256 module_put(dma_chan_to_owner(chan));
257 if (chan->client_count == 0)
258 chan->device->device_free_chan_resources(chan);
259 }
260
261 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
262 {
263 enum dma_status status;
264 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
265
266 dma_async_issue_pending(chan);
267 do {
268 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
269 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
270 pr_err("%s: timeout!\n", __func__);
271 return DMA_ERROR;
272 }
273 if (status != DMA_IN_PROGRESS)
274 break;
275 cpu_relax();
276 } while (1);
277
278 return status;
279 }
280 EXPORT_SYMBOL(dma_sync_wait);
281
282 /**
283 * dma_cap_mask_all - enable iteration over all operation types
284 */
285 static dma_cap_mask_t dma_cap_mask_all;
286
287 /**
288 * dma_chan_tbl_ent - tracks channel allocations per core/operation
289 * @chan - associated channel for this entry
290 */
291 struct dma_chan_tbl_ent {
292 struct dma_chan *chan;
293 };
294
295 /**
296 * channel_table - percpu lookup table for memory-to-memory offload providers
297 */
298 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
299
300 static int __init dma_channel_table_init(void)
301 {
302 enum dma_transaction_type cap;
303 int err = 0;
304
305 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
306
307 /* 'interrupt', 'private', and 'slave' are channel capabilities,
308 * but are not associated with an operation so they do not need
309 * an entry in the channel_table
310 */
311 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
312 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
313 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
314
315 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
316 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
317 if (!channel_table[cap]) {
318 err = -ENOMEM;
319 break;
320 }
321 }
322
323 if (err) {
324 pr_err("initialization failure\n");
325 for_each_dma_cap_mask(cap, dma_cap_mask_all)
326 if (channel_table[cap])
327 free_percpu(channel_table[cap]);
328 }
329
330 return err;
331 }
332 arch_initcall(dma_channel_table_init);
333
334 /**
335 * dma_find_channel - find a channel to carry out the operation
336 * @tx_type: transaction type
337 */
338 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
339 {
340 return this_cpu_read(channel_table[tx_type]->chan);
341 }
342 EXPORT_SYMBOL(dma_find_channel);
343
344 /*
345 * net_dma_find_channel - find a channel for net_dma
346 * net_dma has alignment requirements
347 */
348 struct dma_chan *net_dma_find_channel(void)
349 {
350 struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
351 if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
352 return NULL;
353
354 return chan;
355 }
356 EXPORT_SYMBOL(net_dma_find_channel);
357
358 /**
359 * dma_issue_pending_all - flush all pending operations across all channels
360 */
361 void dma_issue_pending_all(void)
362 {
363 struct dma_device *device;
364 struct dma_chan *chan;
365
366 rcu_read_lock();
367 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
368 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
369 continue;
370 list_for_each_entry(chan, &device->channels, device_node)
371 if (chan->client_count)
372 device->device_issue_pending(chan);
373 }
374 rcu_read_unlock();
375 }
376 EXPORT_SYMBOL(dma_issue_pending_all);
377
378 /**
379 * nth_chan - returns the nth channel of the given capability
380 * @cap: capability to match
381 * @n: nth channel desired
382 *
383 * Defaults to returning the channel with the desired capability and the
384 * lowest reference count when 'n' cannot be satisfied. Must be called
385 * under dma_list_mutex.
386 */
387 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
388 {
389 struct dma_device *device;
390 struct dma_chan *chan;
391 struct dma_chan *ret = NULL;
392 struct dma_chan *min = NULL;
393
394 list_for_each_entry(device, &dma_device_list, global_node) {
395 if (!dma_has_cap(cap, device->cap_mask) ||
396 dma_has_cap(DMA_PRIVATE, device->cap_mask))
397 continue;
398 list_for_each_entry(chan, &device->channels, device_node) {
399 if (!chan->client_count)
400 continue;
401 if (!min)
402 min = chan;
403 else if (chan->table_count < min->table_count)
404 min = chan;
405
406 if (n-- == 0) {
407 ret = chan;
408 break; /* done */
409 }
410 }
411 if (ret)
412 break; /* done */
413 }
414
415 if (!ret)
416 ret = min;
417
418 if (ret)
419 ret->table_count++;
420
421 return ret;
422 }
423
424 /**
425 * dma_channel_rebalance - redistribute the available channels
426 *
427 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
428 * operation type) in the SMP case, and operation isolation (avoid
429 * multi-tasking channels) in the non-SMP case. Must be called under
430 * dma_list_mutex.
431 */
432 static void dma_channel_rebalance(void)
433 {
434 struct dma_chan *chan;
435 struct dma_device *device;
436 int cpu;
437 int cap;
438 int n;
439
440 /* undo the last distribution */
441 for_each_dma_cap_mask(cap, dma_cap_mask_all)
442 for_each_possible_cpu(cpu)
443 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
444
445 list_for_each_entry(device, &dma_device_list, global_node) {
446 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
447 continue;
448 list_for_each_entry(chan, &device->channels, device_node)
449 chan->table_count = 0;
450 }
451
452 /* don't populate the channel_table if no clients are available */
453 if (!dmaengine_ref_count)
454 return;
455
456 /* redistribute available channels */
457 n = 0;
458 for_each_dma_cap_mask(cap, dma_cap_mask_all)
459 for_each_online_cpu(cpu) {
460 if (num_possible_cpus() > 1)
461 chan = nth_chan(cap, n++);
462 else
463 chan = nth_chan(cap, -1);
464
465 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
466 }
467 }
468
469 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
470 struct dma_device *dev,
471 dma_filter_fn fn, void *fn_param)
472 {
473 struct dma_chan *chan;
474
475 if (!__dma_device_satisfies_mask(dev, mask)) {
476 pr_debug("%s: wrong capabilities\n", __func__);
477 return NULL;
478 }
479 /* devices with multiple channels need special handling as we need to
480 * ensure that all channels are either private or public.
481 */
482 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
483 list_for_each_entry(chan, &dev->channels, device_node) {
484 /* some channels are already publicly allocated */
485 if (chan->client_count)
486 return NULL;
487 }
488
489 list_for_each_entry(chan, &dev->channels, device_node) {
490 if (chan->client_count) {
491 pr_debug("%s: %s busy\n",
492 __func__, dma_chan_name(chan));
493 continue;
494 }
495 if (fn && !fn(chan, fn_param)) {
496 pr_debug("%s: %s filter said false\n",
497 __func__, dma_chan_name(chan));
498 continue;
499 }
500 return chan;
501 }
502
503 return NULL;
504 }
505
506 /**
507 * dma_request_channel - try to allocate an exclusive channel
508 * @mask: capabilities that the channel must satisfy
509 * @fn: optional callback to disposition available channels
510 * @fn_param: opaque parameter to pass to dma_filter_fn
511 */
512 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
513 dma_filter_fn fn, void *fn_param)
514 {
515 struct dma_device *device, *_d;
516 struct dma_chan *chan = NULL;
517 int err;
518
519 /* Find a channel */
520 mutex_lock(&dma_list_mutex);
521 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
522 chan = private_candidate(mask, device, fn, fn_param);
523 if (chan) {
524 /* Found a suitable channel, try to grab, prep, and
525 * return it. We first set DMA_PRIVATE to disable
526 * balance_ref_count as this channel will not be
527 * published in the general-purpose allocator
528 */
529 dma_cap_set(DMA_PRIVATE, device->cap_mask);
530 device->privatecnt++;
531 err = dma_chan_get(chan);
532
533 if (err == -ENODEV) {
534 pr_debug("%s: %s module removed\n",
535 __func__, dma_chan_name(chan));
536 list_del_rcu(&device->global_node);
537 } else if (err)
538 pr_debug("%s: failed to get %s: (%d)\n",
539 __func__, dma_chan_name(chan), err);
540 else
541 break;
542 if (--device->privatecnt == 0)
543 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
544 chan = NULL;
545 }
546 }
547 mutex_unlock(&dma_list_mutex);
548
549 pr_debug("%s: %s (%s)\n",
550 __func__,
551 chan ? "success" : "fail",
552 chan ? dma_chan_name(chan) : NULL);
553
554 return chan;
555 }
556 EXPORT_SYMBOL_GPL(__dma_request_channel);
557
558 /**
559 * dma_request_slave_channel - try to allocate an exclusive slave channel
560 * @dev: pointer to client device structure
561 * @name: slave channel name
562 */
563 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name)
564 {
565 /* If device-tree is present get slave info from here */
566 if (dev->of_node)
567 return of_dma_request_slave_channel(dev->of_node, name);
568
569 /* If device was enumerated by ACPI get slave info from here */
570 if (ACPI_HANDLE(dev))
571 return acpi_dma_request_slave_chan_by_name(dev, name);
572
573 return NULL;
574 }
575 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
576
577 void dma_release_channel(struct dma_chan *chan)
578 {
579 mutex_lock(&dma_list_mutex);
580 WARN_ONCE(chan->client_count != 1,
581 "chan reference count %d != 1\n", chan->client_count);
582 dma_chan_put(chan);
583 /* drop PRIVATE cap enabled by __dma_request_channel() */
584 if (--chan->device->privatecnt == 0)
585 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
586 mutex_unlock(&dma_list_mutex);
587 }
588 EXPORT_SYMBOL_GPL(dma_release_channel);
589
590 /**
591 * dmaengine_get - register interest in dma_channels
592 */
593 void dmaengine_get(void)
594 {
595 struct dma_device *device, *_d;
596 struct dma_chan *chan;
597 int err;
598
599 mutex_lock(&dma_list_mutex);
600 dmaengine_ref_count++;
601
602 /* try to grab channels */
603 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
604 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
605 continue;
606 list_for_each_entry(chan, &device->channels, device_node) {
607 err = dma_chan_get(chan);
608 if (err == -ENODEV) {
609 /* module removed before we could use it */
610 list_del_rcu(&device->global_node);
611 break;
612 } else if (err)
613 pr_debug("%s: failed to get %s: (%d)\n",
614 __func__, dma_chan_name(chan), err);
615 }
616 }
617
618 /* if this is the first reference and there were channels
619 * waiting we need to rebalance to get those channels
620 * incorporated into the channel table
621 */
622 if (dmaengine_ref_count == 1)
623 dma_channel_rebalance();
624 mutex_unlock(&dma_list_mutex);
625 }
626 EXPORT_SYMBOL(dmaengine_get);
627
628 /**
629 * dmaengine_put - let dma drivers be removed when ref_count == 0
630 */
631 void dmaengine_put(void)
632 {
633 struct dma_device *device;
634 struct dma_chan *chan;
635
636 mutex_lock(&dma_list_mutex);
637 dmaengine_ref_count--;
638 BUG_ON(dmaengine_ref_count < 0);
639 /* drop channel references */
640 list_for_each_entry(device, &dma_device_list, global_node) {
641 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
642 continue;
643 list_for_each_entry(chan, &device->channels, device_node)
644 dma_chan_put(chan);
645 }
646 mutex_unlock(&dma_list_mutex);
647 }
648 EXPORT_SYMBOL(dmaengine_put);
649
650 static bool device_has_all_tx_types(struct dma_device *device)
651 {
652 /* A device that satisfies this test has channels that will never cause
653 * an async_tx channel switch event as all possible operation types can
654 * be handled.
655 */
656 #ifdef CONFIG_ASYNC_TX_DMA
657 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
658 return false;
659 #endif
660
661 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
662 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
663 return false;
664 #endif
665
666 #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
667 if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
668 return false;
669 #endif
670
671 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
672 if (!dma_has_cap(DMA_XOR, device->cap_mask))
673 return false;
674
675 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
676 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
677 return false;
678 #endif
679 #endif
680
681 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
682 if (!dma_has_cap(DMA_PQ, device->cap_mask))
683 return false;
684
685 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
686 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
687 return false;
688 #endif
689 #endif
690
691 return true;
692 }
693
694 static int get_dma_id(struct dma_device *device)
695 {
696 int rc;
697
698 mutex_lock(&dma_list_mutex);
699
700 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
701 if (rc >= 0)
702 device->dev_id = rc;
703
704 mutex_unlock(&dma_list_mutex);
705 return rc < 0 ? rc : 0;
706 }
707
708 /**
709 * dma_async_device_register - registers DMA devices found
710 * @device: &dma_device
711 */
712 int dma_async_device_register(struct dma_device *device)
713 {
714 int chancnt = 0, rc;
715 struct dma_chan* chan;
716 atomic_t *idr_ref;
717
718 if (!device)
719 return -ENODEV;
720
721 /* validate device routines */
722 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
723 !device->device_prep_dma_memcpy);
724 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
725 !device->device_prep_dma_xor);
726 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
727 !device->device_prep_dma_xor_val);
728 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
729 !device->device_prep_dma_pq);
730 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
731 !device->device_prep_dma_pq_val);
732 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
733 !device->device_prep_dma_memset);
734 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
735 !device->device_prep_dma_interrupt);
736 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
737 !device->device_prep_dma_sg);
738 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
739 !device->device_prep_dma_cyclic);
740 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
741 !device->device_control);
742 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
743 !device->device_prep_interleaved_dma);
744
745 BUG_ON(!device->device_alloc_chan_resources);
746 BUG_ON(!device->device_free_chan_resources);
747 BUG_ON(!device->device_tx_status);
748 BUG_ON(!device->device_issue_pending);
749 BUG_ON(!device->dev);
750
751 /* note: this only matters in the
752 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
753 */
754 if (device_has_all_tx_types(device))
755 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
756
757 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
758 if (!idr_ref)
759 return -ENOMEM;
760 rc = get_dma_id(device);
761 if (rc != 0) {
762 kfree(idr_ref);
763 return rc;
764 }
765
766 atomic_set(idr_ref, 0);
767
768 /* represent channels in sysfs. Probably want devs too */
769 list_for_each_entry(chan, &device->channels, device_node) {
770 rc = -ENOMEM;
771 chan->local = alloc_percpu(typeof(*chan->local));
772 if (chan->local == NULL)
773 goto err_out;
774 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
775 if (chan->dev == NULL) {
776 free_percpu(chan->local);
777 chan->local = NULL;
778 goto err_out;
779 }
780
781 chan->chan_id = chancnt++;
782 chan->dev->device.class = &dma_devclass;
783 chan->dev->device.parent = device->dev;
784 chan->dev->chan = chan;
785 chan->dev->idr_ref = idr_ref;
786 chan->dev->dev_id = device->dev_id;
787 atomic_inc(idr_ref);
788 dev_set_name(&chan->dev->device, "dma%dchan%d",
789 device->dev_id, chan->chan_id);
790
791 rc = device_register(&chan->dev->device);
792 if (rc) {
793 free_percpu(chan->local);
794 chan->local = NULL;
795 kfree(chan->dev);
796 atomic_dec(idr_ref);
797 goto err_out;
798 }
799 chan->client_count = 0;
800 }
801 device->chancnt = chancnt;
802
803 mutex_lock(&dma_list_mutex);
804 /* take references on public channels */
805 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
806 list_for_each_entry(chan, &device->channels, device_node) {
807 /* if clients are already waiting for channels we need
808 * to take references on their behalf
809 */
810 if (dma_chan_get(chan) == -ENODEV) {
811 /* note we can only get here for the first
812 * channel as the remaining channels are
813 * guaranteed to get a reference
814 */
815 rc = -ENODEV;
816 mutex_unlock(&dma_list_mutex);
817 goto err_out;
818 }
819 }
820 list_add_tail_rcu(&device->global_node, &dma_device_list);
821 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
822 device->privatecnt++; /* Always private */
823 dma_channel_rebalance();
824 mutex_unlock(&dma_list_mutex);
825
826 return 0;
827
828 err_out:
829 /* if we never registered a channel just release the idr */
830 if (atomic_read(idr_ref) == 0) {
831 mutex_lock(&dma_list_mutex);
832 idr_remove(&dma_idr, device->dev_id);
833 mutex_unlock(&dma_list_mutex);
834 kfree(idr_ref);
835 return rc;
836 }
837
838 list_for_each_entry(chan, &device->channels, device_node) {
839 if (chan->local == NULL)
840 continue;
841 mutex_lock(&dma_list_mutex);
842 chan->dev->chan = NULL;
843 mutex_unlock(&dma_list_mutex);
844 device_unregister(&chan->dev->device);
845 free_percpu(chan->local);
846 }
847 return rc;
848 }
849 EXPORT_SYMBOL(dma_async_device_register);
850
851 /**
852 * dma_async_device_unregister - unregister a DMA device
853 * @device: &dma_device
854 *
855 * This routine is called by dma driver exit routines, dmaengine holds module
856 * references to prevent it being called while channels are in use.
857 */
858 void dma_async_device_unregister(struct dma_device *device)
859 {
860 struct dma_chan *chan;
861
862 mutex_lock(&dma_list_mutex);
863 list_del_rcu(&device->global_node);
864 dma_channel_rebalance();
865 mutex_unlock(&dma_list_mutex);
866
867 list_for_each_entry(chan, &device->channels, device_node) {
868 WARN_ONCE(chan->client_count,
869 "%s called while %d clients hold a reference\n",
870 __func__, chan->client_count);
871 mutex_lock(&dma_list_mutex);
872 chan->dev->chan = NULL;
873 mutex_unlock(&dma_list_mutex);
874 device_unregister(&chan->dev->device);
875 free_percpu(chan->local);
876 }
877 }
878 EXPORT_SYMBOL(dma_async_device_unregister);
879
880 /**
881 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
882 * @chan: DMA channel to offload copy to
883 * @dest: destination address (virtual)
884 * @src: source address (virtual)
885 * @len: length
886 *
887 * Both @dest and @src must be mappable to a bus address according to the
888 * DMA mapping API rules for streaming mappings.
889 * Both @dest and @src must stay memory resident (kernel memory or locked
890 * user space pages).
891 */
892 dma_cookie_t
893 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
894 void *src, size_t len)
895 {
896 struct dma_device *dev = chan->device;
897 struct dma_async_tx_descriptor *tx;
898 dma_addr_t dma_dest, dma_src;
899 dma_cookie_t cookie;
900 unsigned long flags;
901
902 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
903 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
904 flags = DMA_CTRL_ACK |
905 DMA_COMPL_SRC_UNMAP_SINGLE |
906 DMA_COMPL_DEST_UNMAP_SINGLE;
907 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
908
909 if (!tx) {
910 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
911 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
912 return -ENOMEM;
913 }
914
915 tx->callback = NULL;
916 cookie = tx->tx_submit(tx);
917
918 preempt_disable();
919 __this_cpu_add(chan->local->bytes_transferred, len);
920 __this_cpu_inc(chan->local->memcpy_count);
921 preempt_enable();
922
923 return cookie;
924 }
925 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
926
927 /**
928 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
929 * @chan: DMA channel to offload copy to
930 * @page: destination page
931 * @offset: offset in page to copy to
932 * @kdata: source address (virtual)
933 * @len: length
934 *
935 * Both @page/@offset and @kdata must be mappable to a bus address according
936 * to the DMA mapping API rules for streaming mappings.
937 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
938 * locked user space pages)
939 */
940 dma_cookie_t
941 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
942 unsigned int offset, void *kdata, size_t len)
943 {
944 struct dma_device *dev = chan->device;
945 struct dma_async_tx_descriptor *tx;
946 dma_addr_t dma_dest, dma_src;
947 dma_cookie_t cookie;
948 unsigned long flags;
949
950 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
951 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
952 flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
953 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
954
955 if (!tx) {
956 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
957 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
958 return -ENOMEM;
959 }
960
961 tx->callback = NULL;
962 cookie = tx->tx_submit(tx);
963
964 preempt_disable();
965 __this_cpu_add(chan->local->bytes_transferred, len);
966 __this_cpu_inc(chan->local->memcpy_count);
967 preempt_enable();
968
969 return cookie;
970 }
971 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
972
973 /**
974 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
975 * @chan: DMA channel to offload copy to
976 * @dest_pg: destination page
977 * @dest_off: offset in page to copy to
978 * @src_pg: source page
979 * @src_off: offset in page to copy from
980 * @len: length
981 *
982 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
983 * address according to the DMA mapping API rules for streaming mappings.
984 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
985 * (kernel memory or locked user space pages).
986 */
987 dma_cookie_t
988 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
989 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
990 size_t len)
991 {
992 struct dma_device *dev = chan->device;
993 struct dma_async_tx_descriptor *tx;
994 dma_addr_t dma_dest, dma_src;
995 dma_cookie_t cookie;
996 unsigned long flags;
997
998 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
999 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
1000 DMA_FROM_DEVICE);
1001 flags = DMA_CTRL_ACK;
1002 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
1003
1004 if (!tx) {
1005 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
1006 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
1007 return -ENOMEM;
1008 }
1009
1010 tx->callback = NULL;
1011 cookie = tx->tx_submit(tx);
1012
1013 preempt_disable();
1014 __this_cpu_add(chan->local->bytes_transferred, len);
1015 __this_cpu_inc(chan->local->memcpy_count);
1016 preempt_enable();
1017
1018 return cookie;
1019 }
1020 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
1021
1022 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1023 struct dma_chan *chan)
1024 {
1025 tx->chan = chan;
1026 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1027 spin_lock_init(&tx->lock);
1028 #endif
1029 }
1030 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1031
1032 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1033 * @tx: in-flight transaction to wait on
1034 */
1035 enum dma_status
1036 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1037 {
1038 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1039
1040 if (!tx)
1041 return DMA_SUCCESS;
1042
1043 while (tx->cookie == -EBUSY) {
1044 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1045 pr_err("%s timeout waiting for descriptor submission\n",
1046 __func__);
1047 return DMA_ERROR;
1048 }
1049 cpu_relax();
1050 }
1051 return dma_sync_wait(tx->chan, tx->cookie);
1052 }
1053 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1054
1055 /* dma_run_dependencies - helper routine for dma drivers to process
1056 * (start) dependent operations on their target channel
1057 * @tx: transaction with dependencies
1058 */
1059 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1060 {
1061 struct dma_async_tx_descriptor *dep = txd_next(tx);
1062 struct dma_async_tx_descriptor *dep_next;
1063 struct dma_chan *chan;
1064
1065 if (!dep)
1066 return;
1067
1068 /* we'll submit tx->next now, so clear the link */
1069 txd_clear_next(tx);
1070 chan = dep->chan;
1071
1072 /* keep submitting up until a channel switch is detected
1073 * in that case we will be called again as a result of
1074 * processing the interrupt from async_tx_channel_switch
1075 */
1076 for (; dep; dep = dep_next) {
1077 txd_lock(dep);
1078 txd_clear_parent(dep);
1079 dep_next = txd_next(dep);
1080 if (dep_next && dep_next->chan == chan)
1081 txd_clear_next(dep); /* ->next will be submitted */
1082 else
1083 dep_next = NULL; /* submit current dep and terminate */
1084 txd_unlock(dep);
1085
1086 dep->tx_submit(dep);
1087 }
1088
1089 chan->device->device_issue_pending(chan);
1090 }
1091 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1092
1093 static int __init dma_bus_init(void)
1094 {
1095 return class_register(&dma_devclass);
1096 }
1097 arch_initcall(dma_bus_init);
1098
1099