drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / crypto / padlock-sha.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/padlock.h>
17 #include <crypto/sha.h>
18 #include <linux/err.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/scatterlist.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/i387.h>
27
28 struct padlock_sha_desc {
29 struct shash_desc fallback;
30 };
31
32 struct padlock_sha_ctx {
33 struct crypto_shash *fallback;
34 };
35
36 static int padlock_sha_init(struct shash_desc *desc)
37 {
38 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
39 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
40
41 dctx->fallback.tfm = ctx->fallback;
42 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
43 return crypto_shash_init(&dctx->fallback);
44 }
45
46 static int padlock_sha_update(struct shash_desc *desc,
47 const u8 *data, unsigned int length)
48 {
49 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
50
51 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
52 return crypto_shash_update(&dctx->fallback, data, length);
53 }
54
55 static int padlock_sha_export(struct shash_desc *desc, void *out)
56 {
57 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
58
59 return crypto_shash_export(&dctx->fallback, out);
60 }
61
62 static int padlock_sha_import(struct shash_desc *desc, const void *in)
63 {
64 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
65 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
66
67 dctx->fallback.tfm = ctx->fallback;
68 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
69 return crypto_shash_import(&dctx->fallback, in);
70 }
71
72 static inline void padlock_output_block(uint32_t *src,
73 uint32_t *dst, size_t count)
74 {
75 while (count--)
76 *dst++ = swab32(*src++);
77 }
78
79 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
80 unsigned int count, u8 *out)
81 {
82 /* We can't store directly to *out as it may be unaligned. */
83 /* BTW Don't reduce the buffer size below 128 Bytes!
84 * PadLock microcode needs it that big. */
85 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
86 ((aligned(STACK_ALIGN)));
87 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
88 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
89 struct sha1_state state;
90 unsigned int space;
91 unsigned int leftover;
92 int ts_state;
93 int err;
94
95 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
96 err = crypto_shash_export(&dctx->fallback, &state);
97 if (err)
98 goto out;
99
100 if (state.count + count > ULONG_MAX)
101 return crypto_shash_finup(&dctx->fallback, in, count, out);
102
103 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
104 space = SHA1_BLOCK_SIZE - leftover;
105 if (space) {
106 if (count > space) {
107 err = crypto_shash_update(&dctx->fallback, in, space) ?:
108 crypto_shash_export(&dctx->fallback, &state);
109 if (err)
110 goto out;
111 count -= space;
112 in += space;
113 } else {
114 memcpy(state.buffer + leftover, in, count);
115 in = state.buffer;
116 count += leftover;
117 state.count &= ~(SHA1_BLOCK_SIZE - 1);
118 }
119 }
120
121 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
122
123 /* prevent taking the spurious DNA fault with padlock. */
124 ts_state = irq_ts_save();
125 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
126 : \
127 : "c"((unsigned long)state.count + count), \
128 "a"((unsigned long)state.count), \
129 "S"(in), "D"(result));
130 irq_ts_restore(ts_state);
131
132 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
133
134 out:
135 return err;
136 }
137
138 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
139 {
140 u8 buf[4];
141
142 return padlock_sha1_finup(desc, buf, 0, out);
143 }
144
145 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
146 unsigned int count, u8 *out)
147 {
148 /* We can't store directly to *out as it may be unaligned. */
149 /* BTW Don't reduce the buffer size below 128 Bytes!
150 * PadLock microcode needs it that big. */
151 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
152 ((aligned(STACK_ALIGN)));
153 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
154 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
155 struct sha256_state state;
156 unsigned int space;
157 unsigned int leftover;
158 int ts_state;
159 int err;
160
161 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
162 err = crypto_shash_export(&dctx->fallback, &state);
163 if (err)
164 goto out;
165
166 if (state.count + count > ULONG_MAX)
167 return crypto_shash_finup(&dctx->fallback, in, count, out);
168
169 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
170 space = SHA256_BLOCK_SIZE - leftover;
171 if (space) {
172 if (count > space) {
173 err = crypto_shash_update(&dctx->fallback, in, space) ?:
174 crypto_shash_export(&dctx->fallback, &state);
175 if (err)
176 goto out;
177 count -= space;
178 in += space;
179 } else {
180 memcpy(state.buf + leftover, in, count);
181 in = state.buf;
182 count += leftover;
183 state.count &= ~(SHA1_BLOCK_SIZE - 1);
184 }
185 }
186
187 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
188
189 /* prevent taking the spurious DNA fault with padlock. */
190 ts_state = irq_ts_save();
191 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
192 : \
193 : "c"((unsigned long)state.count + count), \
194 "a"((unsigned long)state.count), \
195 "S"(in), "D"(result));
196 irq_ts_restore(ts_state);
197
198 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
199
200 out:
201 return err;
202 }
203
204 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
205 {
206 u8 buf[4];
207
208 return padlock_sha256_finup(desc, buf, 0, out);
209 }
210
211 static int padlock_cra_init(struct crypto_tfm *tfm)
212 {
213 struct crypto_shash *hash = __crypto_shash_cast(tfm);
214 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
215 struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
216 struct crypto_shash *fallback_tfm;
217 int err = -ENOMEM;
218
219 /* Allocate a fallback and abort if it failed. */
220 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
221 CRYPTO_ALG_NEED_FALLBACK);
222 if (IS_ERR(fallback_tfm)) {
223 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
224 fallback_driver_name);
225 err = PTR_ERR(fallback_tfm);
226 goto out;
227 }
228
229 ctx->fallback = fallback_tfm;
230 hash->descsize += crypto_shash_descsize(fallback_tfm);
231 return 0;
232
233 out:
234 return err;
235 }
236
237 static void padlock_cra_exit(struct crypto_tfm *tfm)
238 {
239 struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
240
241 crypto_free_shash(ctx->fallback);
242 }
243
244 static struct shash_alg sha1_alg = {
245 .digestsize = SHA1_DIGEST_SIZE,
246 .init = padlock_sha_init,
247 .update = padlock_sha_update,
248 .finup = padlock_sha1_finup,
249 .final = padlock_sha1_final,
250 .export = padlock_sha_export,
251 .import = padlock_sha_import,
252 .descsize = sizeof(struct padlock_sha_desc),
253 .statesize = sizeof(struct sha1_state),
254 .base = {
255 .cra_name = "sha1",
256 .cra_driver_name = "sha1-padlock",
257 .cra_priority = PADLOCK_CRA_PRIORITY,
258 .cra_flags = CRYPTO_ALG_TYPE_SHASH |
259 CRYPTO_ALG_NEED_FALLBACK,
260 .cra_blocksize = SHA1_BLOCK_SIZE,
261 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
262 .cra_module = THIS_MODULE,
263 .cra_init = padlock_cra_init,
264 .cra_exit = padlock_cra_exit,
265 }
266 };
267
268 static struct shash_alg sha256_alg = {
269 .digestsize = SHA256_DIGEST_SIZE,
270 .init = padlock_sha_init,
271 .update = padlock_sha_update,
272 .finup = padlock_sha256_finup,
273 .final = padlock_sha256_final,
274 .export = padlock_sha_export,
275 .import = padlock_sha_import,
276 .descsize = sizeof(struct padlock_sha_desc),
277 .statesize = sizeof(struct sha256_state),
278 .base = {
279 .cra_name = "sha256",
280 .cra_driver_name = "sha256-padlock",
281 .cra_priority = PADLOCK_CRA_PRIORITY,
282 .cra_flags = CRYPTO_ALG_TYPE_SHASH |
283 CRYPTO_ALG_NEED_FALLBACK,
284 .cra_blocksize = SHA256_BLOCK_SIZE,
285 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
286 .cra_module = THIS_MODULE,
287 .cra_init = padlock_cra_init,
288 .cra_exit = padlock_cra_exit,
289 }
290 };
291
292 /* Add two shash_alg instance for hardware-implemented *
293 * multiple-parts hash supported by VIA Nano Processor.*/
294 static int padlock_sha1_init_nano(struct shash_desc *desc)
295 {
296 struct sha1_state *sctx = shash_desc_ctx(desc);
297
298 *sctx = (struct sha1_state){
299 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
300 };
301
302 return 0;
303 }
304
305 static int padlock_sha1_update_nano(struct shash_desc *desc,
306 const u8 *data, unsigned int len)
307 {
308 struct sha1_state *sctx = shash_desc_ctx(desc);
309 unsigned int partial, done;
310 const u8 *src;
311 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
312 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
313 ((aligned(STACK_ALIGN)));
314 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
315 int ts_state;
316
317 partial = sctx->count & 0x3f;
318 sctx->count += len;
319 done = 0;
320 src = data;
321 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
322
323 if ((partial + len) >= SHA1_BLOCK_SIZE) {
324
325 /* Append the bytes in state's buffer to a block to handle */
326 if (partial) {
327 done = -partial;
328 memcpy(sctx->buffer + partial, data,
329 done + SHA1_BLOCK_SIZE);
330 src = sctx->buffer;
331 ts_state = irq_ts_save();
332 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
333 : "+S"(src), "+D"(dst) \
334 : "a"((long)-1), "c"((unsigned long)1));
335 irq_ts_restore(ts_state);
336 done += SHA1_BLOCK_SIZE;
337 src = data + done;
338 }
339
340 /* Process the left bytes from the input data */
341 if (len - done >= SHA1_BLOCK_SIZE) {
342 ts_state = irq_ts_save();
343 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
344 : "+S"(src), "+D"(dst)
345 : "a"((long)-1),
346 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
347 irq_ts_restore(ts_state);
348 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
349 src = data + done;
350 }
351 partial = 0;
352 }
353 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
354 memcpy(sctx->buffer + partial, src, len - done);
355
356 return 0;
357 }
358
359 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
360 {
361 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
362 unsigned int partial, padlen;
363 __be64 bits;
364 static const u8 padding[64] = { 0x80, };
365
366 bits = cpu_to_be64(state->count << 3);
367
368 /* Pad out to 56 mod 64 */
369 partial = state->count & 0x3f;
370 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
371 padlock_sha1_update_nano(desc, padding, padlen);
372
373 /* Append length field bytes */
374 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
375
376 /* Swap to output */
377 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
378
379 return 0;
380 }
381
382 static int padlock_sha256_init_nano(struct shash_desc *desc)
383 {
384 struct sha256_state *sctx = shash_desc_ctx(desc);
385
386 *sctx = (struct sha256_state){
387 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
388 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
389 };
390
391 return 0;
392 }
393
394 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
395 unsigned int len)
396 {
397 struct sha256_state *sctx = shash_desc_ctx(desc);
398 unsigned int partial, done;
399 const u8 *src;
400 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
401 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
402 ((aligned(STACK_ALIGN)));
403 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
404 int ts_state;
405
406 partial = sctx->count & 0x3f;
407 sctx->count += len;
408 done = 0;
409 src = data;
410 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
411
412 if ((partial + len) >= SHA256_BLOCK_SIZE) {
413
414 /* Append the bytes in state's buffer to a block to handle */
415 if (partial) {
416 done = -partial;
417 memcpy(sctx->buf + partial, data,
418 done + SHA256_BLOCK_SIZE);
419 src = sctx->buf;
420 ts_state = irq_ts_save();
421 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
422 : "+S"(src), "+D"(dst)
423 : "a"((long)-1), "c"((unsigned long)1));
424 irq_ts_restore(ts_state);
425 done += SHA256_BLOCK_SIZE;
426 src = data + done;
427 }
428
429 /* Process the left bytes from input data*/
430 if (len - done >= SHA256_BLOCK_SIZE) {
431 ts_state = irq_ts_save();
432 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
433 : "+S"(src), "+D"(dst)
434 : "a"((long)-1),
435 "c"((unsigned long)((len - done) / 64)));
436 irq_ts_restore(ts_state);
437 done += ((len - done) - (len - done) % 64);
438 src = data + done;
439 }
440 partial = 0;
441 }
442 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
443 memcpy(sctx->buf + partial, src, len - done);
444
445 return 0;
446 }
447
448 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
449 {
450 struct sha256_state *state =
451 (struct sha256_state *)shash_desc_ctx(desc);
452 unsigned int partial, padlen;
453 __be64 bits;
454 static const u8 padding[64] = { 0x80, };
455
456 bits = cpu_to_be64(state->count << 3);
457
458 /* Pad out to 56 mod 64 */
459 partial = state->count & 0x3f;
460 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
461 padlock_sha256_update_nano(desc, padding, padlen);
462
463 /* Append length field bytes */
464 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
465
466 /* Swap to output */
467 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
468
469 return 0;
470 }
471
472 static int padlock_sha_export_nano(struct shash_desc *desc,
473 void *out)
474 {
475 int statesize = crypto_shash_statesize(desc->tfm);
476 void *sctx = shash_desc_ctx(desc);
477
478 memcpy(out, sctx, statesize);
479 return 0;
480 }
481
482 static int padlock_sha_import_nano(struct shash_desc *desc,
483 const void *in)
484 {
485 int statesize = crypto_shash_statesize(desc->tfm);
486 void *sctx = shash_desc_ctx(desc);
487
488 memcpy(sctx, in, statesize);
489 return 0;
490 }
491
492 static struct shash_alg sha1_alg_nano = {
493 .digestsize = SHA1_DIGEST_SIZE,
494 .init = padlock_sha1_init_nano,
495 .update = padlock_sha1_update_nano,
496 .final = padlock_sha1_final_nano,
497 .export = padlock_sha_export_nano,
498 .import = padlock_sha_import_nano,
499 .descsize = sizeof(struct sha1_state),
500 .statesize = sizeof(struct sha1_state),
501 .base = {
502 .cra_name = "sha1",
503 .cra_driver_name = "sha1-padlock-nano",
504 .cra_priority = PADLOCK_CRA_PRIORITY,
505 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
506 .cra_blocksize = SHA1_BLOCK_SIZE,
507 .cra_module = THIS_MODULE,
508 }
509 };
510
511 static struct shash_alg sha256_alg_nano = {
512 .digestsize = SHA256_DIGEST_SIZE,
513 .init = padlock_sha256_init_nano,
514 .update = padlock_sha256_update_nano,
515 .final = padlock_sha256_final_nano,
516 .export = padlock_sha_export_nano,
517 .import = padlock_sha_import_nano,
518 .descsize = sizeof(struct sha256_state),
519 .statesize = sizeof(struct sha256_state),
520 .base = {
521 .cra_name = "sha256",
522 .cra_driver_name = "sha256-padlock-nano",
523 .cra_priority = PADLOCK_CRA_PRIORITY,
524 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
525 .cra_blocksize = SHA256_BLOCK_SIZE,
526 .cra_module = THIS_MODULE,
527 }
528 };
529
530 static struct x86_cpu_id padlock_sha_ids[] = {
531 X86_FEATURE_MATCH(X86_FEATURE_PHE),
532 {}
533 };
534 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
535
536 static int __init padlock_init(void)
537 {
538 int rc = -ENODEV;
539 struct cpuinfo_x86 *c = &cpu_data(0);
540 struct shash_alg *sha1;
541 struct shash_alg *sha256;
542
543 if (!x86_match_cpu(padlock_sha_ids) || !cpu_has_phe_enabled)
544 return -ENODEV;
545
546 /* Register the newly added algorithm module if on *
547 * VIA Nano processor, or else just do as before */
548 if (c->x86_model < 0x0f) {
549 sha1 = &sha1_alg;
550 sha256 = &sha256_alg;
551 } else {
552 sha1 = &sha1_alg_nano;
553 sha256 = &sha256_alg_nano;
554 }
555
556 rc = crypto_register_shash(sha1);
557 if (rc)
558 goto out;
559
560 rc = crypto_register_shash(sha256);
561 if (rc)
562 goto out_unreg1;
563
564 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
565
566 return 0;
567
568 out_unreg1:
569 crypto_unregister_shash(sha1);
570
571 out:
572 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
573 return rc;
574 }
575
576 static void __exit padlock_fini(void)
577 {
578 struct cpuinfo_x86 *c = &cpu_data(0);
579
580 if (c->x86_model >= 0x0f) {
581 crypto_unregister_shash(&sha1_alg_nano);
582 crypto_unregister_shash(&sha256_alg_nano);
583 } else {
584 crypto_unregister_shash(&sha1_alg);
585 crypto_unregister_shash(&sha256_alg);
586 }
587 }
588
589 module_init(padlock_init);
590 module_exit(padlock_fini);
591
592 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
593 MODULE_LICENSE("GPL");
594 MODULE_AUTHOR("Michal Ludvig");
595
596 MODULE_ALIAS_CRYPTO("sha1-all");
597 MODULE_ALIAS_CRYPTO("sha256-all");
598 MODULE_ALIAS_CRYPTO("sha1-padlock");
599 MODULE_ALIAS_CRYPTO("sha256-padlock");