Merge tag 'v3.10.87' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003-2012 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Maintainer:
8 * Andreas Herrmann <herrmann.der.user@googlemail.com>
9 *
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@ucw.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 *
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
20 *
21 * Processor information obtained from Chapter 9 (Power and Thermal
22 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 * Power Management" in BKDGs for newer AMD CPU families.
25 *
26 * Tables for specific CPUs can be inferred from AMD's processor
27 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40
41 #include <asm/msr.h>
42 #include <asm/cpu_device_id.h>
43
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
47
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51
52 /* serialize freq changes */
53 static DEFINE_MUTEX(fidvid_mutex);
54
55 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
56
57 static struct cpufreq_driver cpufreq_amd64_driver;
58
59 #ifndef CONFIG_SMP
60 static inline const struct cpumask *cpu_core_mask(int cpu)
61 {
62 return cpumask_of(0);
63 }
64 #endif
65
66 /* Return a frequency in MHz, given an input fid */
67 static u32 find_freq_from_fid(u32 fid)
68 {
69 return 800 + (fid * 100);
70 }
71
72 /* Return a frequency in KHz, given an input fid */
73 static u32 find_khz_freq_from_fid(u32 fid)
74 {
75 return 1000 * find_freq_from_fid(fid);
76 }
77
78 /* Return the vco fid for an input fid
79 *
80 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
81 * only from corresponding high fids. This returns "high" fid corresponding to
82 * "low" one.
83 */
84 static u32 convert_fid_to_vco_fid(u32 fid)
85 {
86 if (fid < HI_FID_TABLE_BOTTOM)
87 return 8 + (2 * fid);
88 else
89 return fid;
90 }
91
92 /*
93 * Return 1 if the pending bit is set. Unless we just instructed the processor
94 * to transition to a new state, seeing this bit set is really bad news.
95 */
96 static int pending_bit_stuck(void)
97 {
98 u32 lo, hi;
99
100 rdmsr(MSR_FIDVID_STATUS, lo, hi);
101 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
102 }
103
104 /*
105 * Update the global current fid / vid values from the status msr.
106 * Returns 1 on error.
107 */
108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
109 {
110 u32 lo, hi;
111 u32 i = 0;
112
113 do {
114 if (i++ > 10000) {
115 pr_debug("detected change pending stuck\n");
116 return 1;
117 }
118 rdmsr(MSR_FIDVID_STATUS, lo, hi);
119 } while (lo & MSR_S_LO_CHANGE_PENDING);
120
121 data->currvid = hi & MSR_S_HI_CURRENT_VID;
122 data->currfid = lo & MSR_S_LO_CURRENT_FID;
123
124 return 0;
125 }
126
127 /* the isochronous relief time */
128 static void count_off_irt(struct powernow_k8_data *data)
129 {
130 udelay((1 << data->irt) * 10);
131 return;
132 }
133
134 /* the voltage stabilization time */
135 static void count_off_vst(struct powernow_k8_data *data)
136 {
137 udelay(data->vstable * VST_UNITS_20US);
138 return;
139 }
140
141 /* need to init the control msr to a safe value (for each cpu) */
142 static void fidvid_msr_init(void)
143 {
144 u32 lo, hi;
145 u8 fid, vid;
146
147 rdmsr(MSR_FIDVID_STATUS, lo, hi);
148 vid = hi & MSR_S_HI_CURRENT_VID;
149 fid = lo & MSR_S_LO_CURRENT_FID;
150 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
151 hi = MSR_C_HI_STP_GNT_BENIGN;
152 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
153 wrmsr(MSR_FIDVID_CTL, lo, hi);
154 }
155
156 /* write the new fid value along with the other control fields to the msr */
157 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
158 {
159 u32 lo;
160 u32 savevid = data->currvid;
161 u32 i = 0;
162
163 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
164 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
165 return 1;
166 }
167
168 lo = fid;
169 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
170 lo |= MSR_C_LO_INIT_FID_VID;
171
172 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
173 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
174
175 do {
176 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
177 if (i++ > 100) {
178 printk(KERN_ERR PFX
179 "Hardware error - pending bit very stuck - "
180 "no further pstate changes possible\n");
181 return 1;
182 }
183 } while (query_current_values_with_pending_wait(data));
184
185 count_off_irt(data);
186
187 if (savevid != data->currvid) {
188 printk(KERN_ERR PFX
189 "vid change on fid trans, old 0x%x, new 0x%x\n",
190 savevid, data->currvid);
191 return 1;
192 }
193
194 if (fid != data->currfid) {
195 printk(KERN_ERR PFX
196 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
197 data->currfid);
198 return 1;
199 }
200
201 return 0;
202 }
203
204 /* Write a new vid to the hardware */
205 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
206 {
207 u32 lo;
208 u32 savefid = data->currfid;
209 int i = 0;
210
211 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
212 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
213 return 1;
214 }
215
216 lo = data->currfid;
217 lo |= (vid << MSR_C_LO_VID_SHIFT);
218 lo |= MSR_C_LO_INIT_FID_VID;
219
220 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
221 vid, lo, STOP_GRANT_5NS);
222
223 do {
224 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
225 if (i++ > 100) {
226 printk(KERN_ERR PFX "internal error - pending bit "
227 "very stuck - no further pstate "
228 "changes possible\n");
229 return 1;
230 }
231 } while (query_current_values_with_pending_wait(data));
232
233 if (savefid != data->currfid) {
234 printk(KERN_ERR PFX "fid changed on vid trans, old "
235 "0x%x new 0x%x\n",
236 savefid, data->currfid);
237 return 1;
238 }
239
240 if (vid != data->currvid) {
241 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
242 "curr 0x%x\n",
243 vid, data->currvid);
244 return 1;
245 }
246
247 return 0;
248 }
249
250 /*
251 * Reduce the vid by the max of step or reqvid.
252 * Decreasing vid codes represent increasing voltages:
253 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
254 */
255 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
256 u32 reqvid, u32 step)
257 {
258 if ((data->currvid - reqvid) > step)
259 reqvid = data->currvid - step;
260
261 if (write_new_vid(data, reqvid))
262 return 1;
263
264 count_off_vst(data);
265
266 return 0;
267 }
268
269 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
270 static int transition_fid_vid(struct powernow_k8_data *data,
271 u32 reqfid, u32 reqvid)
272 {
273 if (core_voltage_pre_transition(data, reqvid, reqfid))
274 return 1;
275
276 if (core_frequency_transition(data, reqfid))
277 return 1;
278
279 if (core_voltage_post_transition(data, reqvid))
280 return 1;
281
282 if (query_current_values_with_pending_wait(data))
283 return 1;
284
285 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
286 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
287 "curr 0x%x 0x%x\n",
288 smp_processor_id(),
289 reqfid, reqvid, data->currfid, data->currvid);
290 return 1;
291 }
292
293 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
294 smp_processor_id(), data->currfid, data->currvid);
295
296 return 0;
297 }
298
299 /* Phase 1 - core voltage transition ... setup voltage */
300 static int core_voltage_pre_transition(struct powernow_k8_data *data,
301 u32 reqvid, u32 reqfid)
302 {
303 u32 rvosteps = data->rvo;
304 u32 savefid = data->currfid;
305 u32 maxvid, lo, rvomult = 1;
306
307 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
308 "reqvid 0x%x, rvo 0x%x\n",
309 smp_processor_id(),
310 data->currfid, data->currvid, reqvid, data->rvo);
311
312 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
313 rvomult = 2;
314 rvosteps *= rvomult;
315 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
316 maxvid = 0x1f & (maxvid >> 16);
317 pr_debug("ph1 maxvid=0x%x\n", maxvid);
318 if (reqvid < maxvid) /* lower numbers are higher voltages */
319 reqvid = maxvid;
320
321 while (data->currvid > reqvid) {
322 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
323 data->currvid, reqvid);
324 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
325 return 1;
326 }
327
328 while ((rvosteps > 0) &&
329 ((rvomult * data->rvo + data->currvid) > reqvid)) {
330 if (data->currvid == maxvid) {
331 rvosteps = 0;
332 } else {
333 pr_debug("ph1: changing vid for rvo, req 0x%x\n",
334 data->currvid - 1);
335 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
336 return 1;
337 rvosteps--;
338 }
339 }
340
341 if (query_current_values_with_pending_wait(data))
342 return 1;
343
344 if (savefid != data->currfid) {
345 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
346 data->currfid);
347 return 1;
348 }
349
350 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
351 data->currfid, data->currvid);
352
353 return 0;
354 }
355
356 /* Phase 2 - core frequency transition */
357 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
358 {
359 u32 vcoreqfid, vcocurrfid, vcofiddiff;
360 u32 fid_interval, savevid = data->currvid;
361
362 if (data->currfid == reqfid) {
363 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
364 data->currfid);
365 return 0;
366 }
367
368 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
369 "reqfid 0x%x\n",
370 smp_processor_id(),
371 data->currfid, data->currvid, reqfid);
372
373 vcoreqfid = convert_fid_to_vco_fid(reqfid);
374 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
375 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
376 : vcoreqfid - vcocurrfid;
377
378 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
379 vcofiddiff = 0;
380
381 while (vcofiddiff > 2) {
382 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
383
384 if (reqfid > data->currfid) {
385 if (data->currfid > LO_FID_TABLE_TOP) {
386 if (write_new_fid(data,
387 data->currfid + fid_interval))
388 return 1;
389 } else {
390 if (write_new_fid
391 (data,
392 2 + convert_fid_to_vco_fid(data->currfid)))
393 return 1;
394 }
395 } else {
396 if (write_new_fid(data, data->currfid - fid_interval))
397 return 1;
398 }
399
400 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
401 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
402 : vcoreqfid - vcocurrfid;
403 }
404
405 if (write_new_fid(data, reqfid))
406 return 1;
407
408 if (query_current_values_with_pending_wait(data))
409 return 1;
410
411 if (data->currfid != reqfid) {
412 printk(KERN_ERR PFX
413 "ph2: mismatch, failed fid transition, "
414 "curr 0x%x, req 0x%x\n",
415 data->currfid, reqfid);
416 return 1;
417 }
418
419 if (savevid != data->currvid) {
420 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
421 savevid, data->currvid);
422 return 1;
423 }
424
425 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
426 data->currfid, data->currvid);
427
428 return 0;
429 }
430
431 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
432 static int core_voltage_post_transition(struct powernow_k8_data *data,
433 u32 reqvid)
434 {
435 u32 savefid = data->currfid;
436 u32 savereqvid = reqvid;
437
438 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
439 smp_processor_id(),
440 data->currfid, data->currvid);
441
442 if (reqvid != data->currvid) {
443 if (write_new_vid(data, reqvid))
444 return 1;
445
446 if (savefid != data->currfid) {
447 printk(KERN_ERR PFX
448 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
449 savefid, data->currfid);
450 return 1;
451 }
452
453 if (data->currvid != reqvid) {
454 printk(KERN_ERR PFX
455 "ph3: failed vid transition\n, "
456 "req 0x%x, curr 0x%x",
457 reqvid, data->currvid);
458 return 1;
459 }
460 }
461
462 if (query_current_values_with_pending_wait(data))
463 return 1;
464
465 if (savereqvid != data->currvid) {
466 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
467 return 1;
468 }
469
470 if (savefid != data->currfid) {
471 pr_debug("ph3 failed, currfid changed 0x%x\n",
472 data->currfid);
473 return 1;
474 }
475
476 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
477 data->currfid, data->currvid);
478
479 return 0;
480 }
481
482 static const struct x86_cpu_id powernow_k8_ids[] = {
483 /* IO based frequency switching */
484 { X86_VENDOR_AMD, 0xf },
485 {}
486 };
487 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
488
489 static void check_supported_cpu(void *_rc)
490 {
491 u32 eax, ebx, ecx, edx;
492 int *rc = _rc;
493
494 *rc = -ENODEV;
495
496 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
497
498 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
499 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
500 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
501 printk(KERN_INFO PFX
502 "Processor cpuid %x not supported\n", eax);
503 return;
504 }
505
506 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
507 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
508 printk(KERN_INFO PFX
509 "No frequency change capabilities detected\n");
510 return;
511 }
512
513 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
514 if ((edx & P_STATE_TRANSITION_CAPABLE)
515 != P_STATE_TRANSITION_CAPABLE) {
516 printk(KERN_INFO PFX
517 "Power state transitions not supported\n");
518 return;
519 }
520 *rc = 0;
521 }
522 }
523
524 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
525 u8 maxvid)
526 {
527 unsigned int j;
528 u8 lastfid = 0xff;
529
530 for (j = 0; j < data->numps; j++) {
531 if (pst[j].vid > LEAST_VID) {
532 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
533 j, pst[j].vid);
534 return -EINVAL;
535 }
536 if (pst[j].vid < data->rvo) {
537 /* vid + rvo >= 0 */
538 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
539 " %d\n", j);
540 return -ENODEV;
541 }
542 if (pst[j].vid < maxvid + data->rvo) {
543 /* vid + rvo >= maxvid */
544 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
545 " %d\n", j);
546 return -ENODEV;
547 }
548 if (pst[j].fid > MAX_FID) {
549 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
550 " %d\n", j);
551 return -ENODEV;
552 }
553 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
554 /* Only first fid is allowed to be in "low" range */
555 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
556 "0x%x\n", j, pst[j].fid);
557 return -EINVAL;
558 }
559 if (pst[j].fid < lastfid)
560 lastfid = pst[j].fid;
561 }
562 if (lastfid & 1) {
563 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
564 return -EINVAL;
565 }
566 if (lastfid > LO_FID_TABLE_TOP)
567 printk(KERN_INFO FW_BUG PFX
568 "first fid not from lo freq table\n");
569
570 return 0;
571 }
572
573 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
574 unsigned int entry)
575 {
576 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
577 }
578
579 static void print_basics(struct powernow_k8_data *data)
580 {
581 int j;
582 for (j = 0; j < data->numps; j++) {
583 if (data->powernow_table[j].frequency !=
584 CPUFREQ_ENTRY_INVALID) {
585 printk(KERN_INFO PFX
586 "fid 0x%x (%d MHz), vid 0x%x\n",
587 data->powernow_table[j].index & 0xff,
588 data->powernow_table[j].frequency/1000,
589 data->powernow_table[j].index >> 8);
590 }
591 }
592 if (data->batps)
593 printk(KERN_INFO PFX "Only %d pstates on battery\n",
594 data->batps);
595 }
596
597 static int fill_powernow_table(struct powernow_k8_data *data,
598 struct pst_s *pst, u8 maxvid)
599 {
600 struct cpufreq_frequency_table *powernow_table;
601 unsigned int j;
602
603 if (data->batps) {
604 /* use ACPI support to get full speed on mains power */
605 printk(KERN_WARNING PFX
606 "Only %d pstates usable (use ACPI driver for full "
607 "range\n", data->batps);
608 data->numps = data->batps;
609 }
610
611 for (j = 1; j < data->numps; j++) {
612 if (pst[j-1].fid >= pst[j].fid) {
613 printk(KERN_ERR PFX "PST out of sequence\n");
614 return -EINVAL;
615 }
616 }
617
618 if (data->numps < 2) {
619 printk(KERN_ERR PFX "no p states to transition\n");
620 return -ENODEV;
621 }
622
623 if (check_pst_table(data, pst, maxvid))
624 return -EINVAL;
625
626 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
627 * (data->numps + 1)), GFP_KERNEL);
628 if (!powernow_table) {
629 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
630 return -ENOMEM;
631 }
632
633 for (j = 0; j < data->numps; j++) {
634 int freq;
635 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
636 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
637 freq = find_khz_freq_from_fid(pst[j].fid);
638 powernow_table[j].frequency = freq;
639 }
640 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
641 powernow_table[data->numps].index = 0;
642
643 if (query_current_values_with_pending_wait(data)) {
644 kfree(powernow_table);
645 return -EIO;
646 }
647
648 pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
649 data->powernow_table = powernow_table;
650 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
651 print_basics(data);
652
653 for (j = 0; j < data->numps; j++)
654 if ((pst[j].fid == data->currfid) &&
655 (pst[j].vid == data->currvid))
656 return 0;
657
658 pr_debug("currfid/vid do not match PST, ignoring\n");
659 return 0;
660 }
661
662 /* Find and validate the PSB/PST table in BIOS. */
663 static int find_psb_table(struct powernow_k8_data *data)
664 {
665 struct psb_s *psb;
666 unsigned int i;
667 u32 mvs;
668 u8 maxvid;
669 u32 cpst = 0;
670 u32 thiscpuid;
671
672 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
673 /* Scan BIOS looking for the signature. */
674 /* It can not be at ffff0 - it is too big. */
675
676 psb = phys_to_virt(i);
677 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
678 continue;
679
680 pr_debug("found PSB header at 0x%p\n", psb);
681
682 pr_debug("table vers: 0x%x\n", psb->tableversion);
683 if (psb->tableversion != PSB_VERSION_1_4) {
684 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
685 return -ENODEV;
686 }
687
688 pr_debug("flags: 0x%x\n", psb->flags1);
689 if (psb->flags1) {
690 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
691 return -ENODEV;
692 }
693
694 data->vstable = psb->vstable;
695 pr_debug("voltage stabilization time: %d(*20us)\n",
696 data->vstable);
697
698 pr_debug("flags2: 0x%x\n", psb->flags2);
699 data->rvo = psb->flags2 & 3;
700 data->irt = ((psb->flags2) >> 2) & 3;
701 mvs = ((psb->flags2) >> 4) & 3;
702 data->vidmvs = 1 << mvs;
703 data->batps = ((psb->flags2) >> 6) & 3;
704
705 pr_debug("ramp voltage offset: %d\n", data->rvo);
706 pr_debug("isochronous relief time: %d\n", data->irt);
707 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
708
709 pr_debug("numpst: 0x%x\n", psb->num_tables);
710 cpst = psb->num_tables;
711 if ((psb->cpuid == 0x00000fc0) ||
712 (psb->cpuid == 0x00000fe0)) {
713 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
714 if ((thiscpuid == 0x00000fc0) ||
715 (thiscpuid == 0x00000fe0))
716 cpst = 1;
717 }
718 if (cpst != 1) {
719 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
720 return -ENODEV;
721 }
722
723 data->plllock = psb->plllocktime;
724 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
725 pr_debug("maxfid: 0x%x\n", psb->maxfid);
726 pr_debug("maxvid: 0x%x\n", psb->maxvid);
727 maxvid = psb->maxvid;
728
729 data->numps = psb->numps;
730 pr_debug("numpstates: 0x%x\n", data->numps);
731 return fill_powernow_table(data,
732 (struct pst_s *)(psb+1), maxvid);
733 }
734 /*
735 * If you see this message, complain to BIOS manufacturer. If
736 * he tells you "we do not support Linux" or some similar
737 * nonsense, remember that Windows 2000 uses the same legacy
738 * mechanism that the old Linux PSB driver uses. Tell them it
739 * is broken with Windows 2000.
740 *
741 * The reference to the AMD documentation is chapter 9 in the
742 * BIOS and Kernel Developer's Guide, which is available on
743 * www.amd.com
744 */
745 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
746 printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
747 " and Cool'N'Quiet support is enabled in BIOS setup\n");
748 return -ENODEV;
749 }
750
751 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
752 unsigned int index)
753 {
754 u64 control;
755
756 if (!data->acpi_data.state_count)
757 return;
758
759 control = data->acpi_data.states[index].control;
760 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
761 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
762 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
763 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
764 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
765 data->vstable = (control >> VST_SHIFT) & VST_MASK;
766 }
767
768 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
769 {
770 struct cpufreq_frequency_table *powernow_table;
771 int ret_val = -ENODEV;
772 u64 control, status;
773
774 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
775 pr_debug("register performance failed: bad ACPI data\n");
776 return -EIO;
777 }
778
779 /* verify the data contained in the ACPI structures */
780 if (data->acpi_data.state_count <= 1) {
781 pr_debug("No ACPI P-States\n");
782 goto err_out;
783 }
784
785 control = data->acpi_data.control_register.space_id;
786 status = data->acpi_data.status_register.space_id;
787
788 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
789 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
790 pr_debug("Invalid control/status registers (%llx - %llx)\n",
791 control, status);
792 goto err_out;
793 }
794
795 /* fill in data->powernow_table */
796 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
797 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
798 if (!powernow_table) {
799 pr_debug("powernow_table memory alloc failure\n");
800 goto err_out;
801 }
802
803 /* fill in data */
804 data->numps = data->acpi_data.state_count;
805 powernow_k8_acpi_pst_values(data, 0);
806
807 ret_val = fill_powernow_table_fidvid(data, powernow_table);
808 if (ret_val)
809 goto err_out_mem;
810
811 powernow_table[data->acpi_data.state_count].frequency =
812 CPUFREQ_TABLE_END;
813 powernow_table[data->acpi_data.state_count].index = 0;
814 data->powernow_table = powernow_table;
815
816 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
817 print_basics(data);
818
819 /* notify BIOS that we exist */
820 acpi_processor_notify_smm(THIS_MODULE);
821
822 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
823 printk(KERN_ERR PFX
824 "unable to alloc powernow_k8_data cpumask\n");
825 ret_val = -ENOMEM;
826 goto err_out_mem;
827 }
828
829 return 0;
830
831 err_out_mem:
832 kfree(powernow_table);
833
834 err_out:
835 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
836
837 /* data->acpi_data.state_count informs us at ->exit()
838 * whether ACPI was used */
839 data->acpi_data.state_count = 0;
840
841 return ret_val;
842 }
843
844 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
845 struct cpufreq_frequency_table *powernow_table)
846 {
847 int i;
848
849 for (i = 0; i < data->acpi_data.state_count; i++) {
850 u32 fid;
851 u32 vid;
852 u32 freq, index;
853 u64 status, control;
854
855 if (data->exttype) {
856 status = data->acpi_data.states[i].status;
857 fid = status & EXT_FID_MASK;
858 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
859 } else {
860 control = data->acpi_data.states[i].control;
861 fid = control & FID_MASK;
862 vid = (control >> VID_SHIFT) & VID_MASK;
863 }
864
865 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
866
867 index = fid | (vid<<8);
868 powernow_table[i].index = index;
869
870 freq = find_khz_freq_from_fid(fid);
871 powernow_table[i].frequency = freq;
872
873 /* verify frequency is OK */
874 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
875 pr_debug("invalid freq %u kHz, ignoring\n", freq);
876 invalidate_entry(powernow_table, i);
877 continue;
878 }
879
880 /* verify voltage is OK -
881 * BIOSs are using "off" to indicate invalid */
882 if (vid == VID_OFF) {
883 pr_debug("invalid vid %u, ignoring\n", vid);
884 invalidate_entry(powernow_table, i);
885 continue;
886 }
887
888 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
889 printk(KERN_INFO PFX "invalid freq entries "
890 "%u kHz vs. %u kHz\n", freq,
891 (unsigned int)
892 (data->acpi_data.states[i].core_frequency
893 * 1000));
894 invalidate_entry(powernow_table, i);
895 continue;
896 }
897 }
898 return 0;
899 }
900
901 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
902 {
903 if (data->acpi_data.state_count)
904 acpi_processor_unregister_performance(&data->acpi_data,
905 data->cpu);
906 free_cpumask_var(data->acpi_data.shared_cpu_map);
907 }
908
909 static int get_transition_latency(struct powernow_k8_data *data)
910 {
911 int max_latency = 0;
912 int i;
913 for (i = 0; i < data->acpi_data.state_count; i++) {
914 int cur_latency = data->acpi_data.states[i].transition_latency
915 + data->acpi_data.states[i].bus_master_latency;
916 if (cur_latency > max_latency)
917 max_latency = cur_latency;
918 }
919 if (max_latency == 0) {
920 pr_err(FW_WARN PFX "Invalid zero transition latency\n");
921 max_latency = 1;
922 }
923 /* value in usecs, needs to be in nanoseconds */
924 return 1000 * max_latency;
925 }
926
927 /* Take a frequency, and issue the fid/vid transition command */
928 static int transition_frequency_fidvid(struct powernow_k8_data *data,
929 unsigned int index)
930 {
931 struct cpufreq_policy *policy;
932 u32 fid = 0;
933 u32 vid = 0;
934 int res;
935 struct cpufreq_freqs freqs;
936
937 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
938
939 /* fid/vid correctness check for k8 */
940 /* fid are the lower 8 bits of the index we stored into
941 * the cpufreq frequency table in find_psb_table, vid
942 * are the upper 8 bits.
943 */
944 fid = data->powernow_table[index].index & 0xFF;
945 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
946
947 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
948
949 if (query_current_values_with_pending_wait(data))
950 return 1;
951
952 if ((data->currvid == vid) && (data->currfid == fid)) {
953 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
954 fid, vid);
955 return 0;
956 }
957
958 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
959 smp_processor_id(), fid, vid);
960 freqs.old = find_khz_freq_from_fid(data->currfid);
961 freqs.new = find_khz_freq_from_fid(fid);
962
963 policy = cpufreq_cpu_get(smp_processor_id());
964 cpufreq_cpu_put(policy);
965
966 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
967
968 res = transition_fid_vid(data, fid, vid);
969 if (res)
970 return res;
971
972 freqs.new = find_khz_freq_from_fid(data->currfid);
973
974 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
975 return res;
976 }
977
978 struct powernowk8_target_arg {
979 struct cpufreq_policy *pol;
980 unsigned targfreq;
981 unsigned relation;
982 };
983
984 static long powernowk8_target_fn(void *arg)
985 {
986 struct powernowk8_target_arg *pta = arg;
987 struct cpufreq_policy *pol = pta->pol;
988 unsigned targfreq = pta->targfreq;
989 unsigned relation = pta->relation;
990 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
991 u32 checkfid;
992 u32 checkvid;
993 unsigned int newstate;
994 int ret;
995
996 if (!data)
997 return -EINVAL;
998
999 checkfid = data->currfid;
1000 checkvid = data->currvid;
1001
1002 if (pending_bit_stuck()) {
1003 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1004 return -EIO;
1005 }
1006
1007 pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1008 pol->cpu, targfreq, pol->min, pol->max, relation);
1009
1010 if (query_current_values_with_pending_wait(data))
1011 return -EIO;
1012
1013 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1014 data->currfid, data->currvid);
1015
1016 if ((checkvid != data->currvid) ||
1017 (checkfid != data->currfid)) {
1018 pr_info(PFX
1019 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1020 checkfid, data->currfid,
1021 checkvid, data->currvid);
1022 }
1023
1024 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1025 targfreq, relation, &newstate))
1026 return -EIO;
1027
1028 mutex_lock(&fidvid_mutex);
1029
1030 powernow_k8_acpi_pst_values(data, newstate);
1031
1032 ret = transition_frequency_fidvid(data, newstate);
1033
1034 if (ret) {
1035 printk(KERN_ERR PFX "transition frequency failed\n");
1036 mutex_unlock(&fidvid_mutex);
1037 return 1;
1038 }
1039 mutex_unlock(&fidvid_mutex);
1040
1041 pol->cur = find_khz_freq_from_fid(data->currfid);
1042
1043 return 0;
1044 }
1045
1046 /* Driver entry point to switch to the target frequency */
1047 static int powernowk8_target(struct cpufreq_policy *pol,
1048 unsigned targfreq, unsigned relation)
1049 {
1050 struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1051 .relation = relation };
1052
1053 return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1054 }
1055
1056 /* Driver entry point to verify the policy and range of frequencies */
1057 static int powernowk8_verify(struct cpufreq_policy *pol)
1058 {
1059 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1060
1061 if (!data)
1062 return -EINVAL;
1063
1064 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1065 }
1066
1067 struct init_on_cpu {
1068 struct powernow_k8_data *data;
1069 int rc;
1070 };
1071
1072 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1073 {
1074 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1075
1076 if (pending_bit_stuck()) {
1077 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1078 init_on_cpu->rc = -ENODEV;
1079 return;
1080 }
1081
1082 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1083 init_on_cpu->rc = -ENODEV;
1084 return;
1085 }
1086
1087 fidvid_msr_init();
1088
1089 init_on_cpu->rc = 0;
1090 }
1091
1092 static const char missing_pss_msg[] =
1093 KERN_ERR
1094 FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1095 FW_BUG PFX "First, make sure Cool'N'Quiet is enabled in the BIOS.\n"
1096 FW_BUG PFX "If that doesn't help, try upgrading your BIOS.\n";
1097
1098 /* per CPU init entry point to the driver */
1099 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1100 {
1101 struct powernow_k8_data *data;
1102 struct init_on_cpu init_on_cpu;
1103 int rc, cpu;
1104
1105 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1106 if (rc)
1107 return -ENODEV;
1108
1109 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1110 if (!data) {
1111 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1112 return -ENOMEM;
1113 }
1114
1115 data->cpu = pol->cpu;
1116
1117 if (powernow_k8_cpu_init_acpi(data)) {
1118 /*
1119 * Use the PSB BIOS structure. This is only available on
1120 * an UP version, and is deprecated by AMD.
1121 */
1122 if (num_online_cpus() != 1) {
1123 printk_once(missing_pss_msg);
1124 goto err_out;
1125 }
1126 if (pol->cpu != 0) {
1127 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1128 "CPU other than CPU0. Complain to your BIOS "
1129 "vendor.\n");
1130 goto err_out;
1131 }
1132 rc = find_psb_table(data);
1133 if (rc)
1134 goto err_out;
1135
1136 /* Take a crude guess here.
1137 * That guess was in microseconds, so multiply with 1000 */
1138 pol->cpuinfo.transition_latency = (
1139 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1140 ((1 << data->irt) * 30)) * 1000;
1141 } else /* ACPI _PSS objects available */
1142 pol->cpuinfo.transition_latency = get_transition_latency(data);
1143
1144 /* only run on specific CPU from here on */
1145 init_on_cpu.data = data;
1146 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1147 &init_on_cpu, 1);
1148 rc = init_on_cpu.rc;
1149 if (rc != 0)
1150 goto err_out_exit_acpi;
1151
1152 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1153 data->available_cores = pol->cpus;
1154
1155 pol->cur = find_khz_freq_from_fid(data->currfid);
1156 pr_debug("policy current frequency %d kHz\n", pol->cur);
1157
1158 /* min/max the cpu is capable of */
1159 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1160 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1161 powernow_k8_cpu_exit_acpi(data);
1162 kfree(data->powernow_table);
1163 kfree(data);
1164 return -EINVAL;
1165 }
1166
1167 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1168
1169 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1170 data->currfid, data->currvid);
1171
1172 /* Point all the CPUs in this policy to the same data */
1173 for_each_cpu(cpu, pol->cpus)
1174 per_cpu(powernow_data, cpu) = data;
1175
1176 return 0;
1177
1178 err_out_exit_acpi:
1179 powernow_k8_cpu_exit_acpi(data);
1180
1181 err_out:
1182 kfree(data);
1183 return -ENODEV;
1184 }
1185
1186 static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
1187 {
1188 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1189 int cpu;
1190
1191 if (!data)
1192 return -EINVAL;
1193
1194 powernow_k8_cpu_exit_acpi(data);
1195
1196 cpufreq_frequency_table_put_attr(pol->cpu);
1197
1198 kfree(data->powernow_table);
1199 kfree(data);
1200 for_each_cpu(cpu, pol->cpus)
1201 per_cpu(powernow_data, cpu) = NULL;
1202
1203 return 0;
1204 }
1205
1206 static void query_values_on_cpu(void *_err)
1207 {
1208 int *err = _err;
1209 struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1210
1211 *err = query_current_values_with_pending_wait(data);
1212 }
1213
1214 static unsigned int powernowk8_get(unsigned int cpu)
1215 {
1216 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1217 unsigned int khz = 0;
1218 int err;
1219
1220 if (!data)
1221 return 0;
1222
1223 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1224 if (err)
1225 goto out;
1226
1227 khz = find_khz_freq_from_fid(data->currfid);
1228
1229
1230 out:
1231 return khz;
1232 }
1233
1234 static struct freq_attr *powernow_k8_attr[] = {
1235 &cpufreq_freq_attr_scaling_available_freqs,
1236 NULL,
1237 };
1238
1239 static struct cpufreq_driver cpufreq_amd64_driver = {
1240 .verify = powernowk8_verify,
1241 .target = powernowk8_target,
1242 .bios_limit = acpi_processor_get_bios_limit,
1243 .init = powernowk8_cpu_init,
1244 .exit = powernowk8_cpu_exit,
1245 .get = powernowk8_get,
1246 .name = "powernow-k8",
1247 .owner = THIS_MODULE,
1248 .attr = powernow_k8_attr,
1249 };
1250
1251 static void __request_acpi_cpufreq(void)
1252 {
1253 const char *cur_drv, *drv = "acpi-cpufreq";
1254
1255 cur_drv = cpufreq_get_current_driver();
1256 if (!cur_drv)
1257 goto request;
1258
1259 if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
1260 pr_warn(PFX "WTF driver: %s\n", cur_drv);
1261
1262 return;
1263
1264 request:
1265 pr_warn(PFX "This CPU is not supported anymore, using acpi-cpufreq instead.\n");
1266 request_module(drv);
1267 }
1268
1269 /* driver entry point for init */
1270 static int __cpuinit powernowk8_init(void)
1271 {
1272 unsigned int i, supported_cpus = 0;
1273 int ret;
1274
1275 if (static_cpu_has(X86_FEATURE_HW_PSTATE)) {
1276 __request_acpi_cpufreq();
1277 return -ENODEV;
1278 }
1279
1280 if (!x86_match_cpu(powernow_k8_ids))
1281 return -ENODEV;
1282
1283 get_online_cpus();
1284 for_each_online_cpu(i) {
1285 smp_call_function_single(i, check_supported_cpu, &ret, 1);
1286 if (!ret)
1287 supported_cpus++;
1288 }
1289
1290 if (supported_cpus != num_online_cpus()) {
1291 put_online_cpus();
1292 return -ENODEV;
1293 }
1294 put_online_cpus();
1295
1296 ret = cpufreq_register_driver(&cpufreq_amd64_driver);
1297 if (ret)
1298 return ret;
1299
1300 pr_info(PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1301 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1302
1303 return ret;
1304 }
1305
1306 /* driver entry point for term */
1307 static void __exit powernowk8_exit(void)
1308 {
1309 pr_debug("exit\n");
1310
1311 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1312 }
1313
1314 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1315 "Mark Langsdorf <mark.langsdorf@amd.com>");
1316 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1317 MODULE_LICENSE("GPL");
1318
1319 late_initcall(powernowk8_init);
1320 module_exit(powernowk8_exit);