ARM: 7452/1: delay: allow timer-based delay implementation to be selected
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / clocksource / sh_cmt.c
1 /*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36
37 struct sh_cmt_priv {
38 void __iomem *mapbase;
39 struct clk *clk;
40 unsigned long width; /* 16 or 32 bit version of hardware block */
41 unsigned long overflow_bit;
42 unsigned long clear_bits;
43 struct irqaction irqaction;
44 struct platform_device *pdev;
45
46 unsigned long flags;
47 unsigned long match_value;
48 unsigned long next_match_value;
49 unsigned long max_match_value;
50 unsigned long rate;
51 spinlock_t lock;
52 struct clock_event_device ced;
53 struct clocksource cs;
54 unsigned long total_cycles;
55 };
56
57 static DEFINE_SPINLOCK(sh_cmt_lock);
58
59 #define CMSTR -1 /* shared register */
60 #define CMCSR 0 /* channel register */
61 #define CMCNT 1 /* channel register */
62 #define CMCOR 2 /* channel register */
63
64 static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr)
65 {
66 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
67 void __iomem *base = p->mapbase;
68 unsigned long offs;
69
70 if (reg_nr == CMSTR) {
71 offs = 0;
72 base -= cfg->channel_offset;
73 } else
74 offs = reg_nr;
75
76 if (p->width == 16)
77 offs <<= 1;
78 else {
79 offs <<= 2;
80 if ((reg_nr == CMCNT) || (reg_nr == CMCOR))
81 return ioread32(base + offs);
82 }
83
84 return ioread16(base + offs);
85 }
86
87 static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr,
88 unsigned long value)
89 {
90 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
91 void __iomem *base = p->mapbase;
92 unsigned long offs;
93
94 if (reg_nr == CMSTR) {
95 offs = 0;
96 base -= cfg->channel_offset;
97 } else
98 offs = reg_nr;
99
100 if (p->width == 16)
101 offs <<= 1;
102 else {
103 offs <<= 2;
104 if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) {
105 iowrite32(value, base + offs);
106 return;
107 }
108 }
109
110 iowrite16(value, base + offs);
111 }
112
113 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
114 int *has_wrapped)
115 {
116 unsigned long v1, v2, v3;
117 int o1, o2;
118
119 o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
120
121 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
122 do {
123 o2 = o1;
124 v1 = sh_cmt_read(p, CMCNT);
125 v2 = sh_cmt_read(p, CMCNT);
126 v3 = sh_cmt_read(p, CMCNT);
127 o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit;
128 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
129 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
130
131 *has_wrapped = o1;
132 return v2;
133 }
134
135
136 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
137 {
138 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
139 unsigned long flags, value;
140
141 /* start stop register shared by multiple timer channels */
142 spin_lock_irqsave(&sh_cmt_lock, flags);
143 value = sh_cmt_read(p, CMSTR);
144
145 if (start)
146 value |= 1 << cfg->timer_bit;
147 else
148 value &= ~(1 << cfg->timer_bit);
149
150 sh_cmt_write(p, CMSTR, value);
151 spin_unlock_irqrestore(&sh_cmt_lock, flags);
152 }
153
154 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
155 {
156 int k, ret;
157
158 /* enable clock */
159 ret = clk_enable(p->clk);
160 if (ret) {
161 dev_err(&p->pdev->dev, "cannot enable clock\n");
162 goto err0;
163 }
164
165 /* make sure channel is disabled */
166 sh_cmt_start_stop_ch(p, 0);
167
168 /* configure channel, periodic mode and maximum timeout */
169 if (p->width == 16) {
170 *rate = clk_get_rate(p->clk) / 512;
171 sh_cmt_write(p, CMCSR, 0x43);
172 } else {
173 *rate = clk_get_rate(p->clk) / 8;
174 sh_cmt_write(p, CMCSR, 0x01a4);
175 }
176
177 sh_cmt_write(p, CMCOR, 0xffffffff);
178 sh_cmt_write(p, CMCNT, 0);
179
180 /*
181 * According to the sh73a0 user's manual, as CMCNT can be operated
182 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
183 * modifying CMCNT register; two RCLK cycles are necessary before
184 * this register is either read or any modification of the value
185 * it holds is reflected in the LSI's actual operation.
186 *
187 * While at it, we're supposed to clear out the CMCNT as of this
188 * moment, so make sure it's processed properly here. This will
189 * take RCLKx2 at maximum.
190 */
191 for (k = 0; k < 100; k++) {
192 if (!sh_cmt_read(p, CMCNT))
193 break;
194 udelay(1);
195 }
196
197 if (sh_cmt_read(p, CMCNT)) {
198 dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
199 ret = -ETIMEDOUT;
200 goto err1;
201 }
202
203 /* enable channel */
204 sh_cmt_start_stop_ch(p, 1);
205 return 0;
206 err1:
207 /* stop clock */
208 clk_disable(p->clk);
209
210 err0:
211 return ret;
212 }
213
214 static void sh_cmt_disable(struct sh_cmt_priv *p)
215 {
216 /* disable channel */
217 sh_cmt_start_stop_ch(p, 0);
218
219 /* disable interrupts in CMT block */
220 sh_cmt_write(p, CMCSR, 0);
221
222 /* stop clock */
223 clk_disable(p->clk);
224 }
225
226 /* private flags */
227 #define FLAG_CLOCKEVENT (1 << 0)
228 #define FLAG_CLOCKSOURCE (1 << 1)
229 #define FLAG_REPROGRAM (1 << 2)
230 #define FLAG_SKIPEVENT (1 << 3)
231 #define FLAG_IRQCONTEXT (1 << 4)
232
233 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
234 int absolute)
235 {
236 unsigned long new_match;
237 unsigned long value = p->next_match_value;
238 unsigned long delay = 0;
239 unsigned long now = 0;
240 int has_wrapped;
241
242 now = sh_cmt_get_counter(p, &has_wrapped);
243 p->flags |= FLAG_REPROGRAM; /* force reprogram */
244
245 if (has_wrapped) {
246 /* we're competing with the interrupt handler.
247 * -> let the interrupt handler reprogram the timer.
248 * -> interrupt number two handles the event.
249 */
250 p->flags |= FLAG_SKIPEVENT;
251 return;
252 }
253
254 if (absolute)
255 now = 0;
256
257 do {
258 /* reprogram the timer hardware,
259 * but don't save the new match value yet.
260 */
261 new_match = now + value + delay;
262 if (new_match > p->max_match_value)
263 new_match = p->max_match_value;
264
265 sh_cmt_write(p, CMCOR, new_match);
266
267 now = sh_cmt_get_counter(p, &has_wrapped);
268 if (has_wrapped && (new_match > p->match_value)) {
269 /* we are changing to a greater match value,
270 * so this wrap must be caused by the counter
271 * matching the old value.
272 * -> first interrupt reprograms the timer.
273 * -> interrupt number two handles the event.
274 */
275 p->flags |= FLAG_SKIPEVENT;
276 break;
277 }
278
279 if (has_wrapped) {
280 /* we are changing to a smaller match value,
281 * so the wrap must be caused by the counter
282 * matching the new value.
283 * -> save programmed match value.
284 * -> let isr handle the event.
285 */
286 p->match_value = new_match;
287 break;
288 }
289
290 /* be safe: verify hardware settings */
291 if (now < new_match) {
292 /* timer value is below match value, all good.
293 * this makes sure we won't miss any match events.
294 * -> save programmed match value.
295 * -> let isr handle the event.
296 */
297 p->match_value = new_match;
298 break;
299 }
300
301 /* the counter has reached a value greater
302 * than our new match value. and since the
303 * has_wrapped flag isn't set we must have
304 * programmed a too close event.
305 * -> increase delay and retry.
306 */
307 if (delay)
308 delay <<= 1;
309 else
310 delay = 1;
311
312 if (!delay)
313 dev_warn(&p->pdev->dev, "too long delay\n");
314
315 } while (delay);
316 }
317
318 static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
319 {
320 if (delta > p->max_match_value)
321 dev_warn(&p->pdev->dev, "delta out of range\n");
322
323 p->next_match_value = delta;
324 sh_cmt_clock_event_program_verify(p, 0);
325 }
326
327 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
328 {
329 unsigned long flags;
330
331 spin_lock_irqsave(&p->lock, flags);
332 __sh_cmt_set_next(p, delta);
333 spin_unlock_irqrestore(&p->lock, flags);
334 }
335
336 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
337 {
338 struct sh_cmt_priv *p = dev_id;
339
340 /* clear flags */
341 sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits);
342
343 /* update clock source counter to begin with if enabled
344 * the wrap flag should be cleared by the timer specific
345 * isr before we end up here.
346 */
347 if (p->flags & FLAG_CLOCKSOURCE)
348 p->total_cycles += p->match_value + 1;
349
350 if (!(p->flags & FLAG_REPROGRAM))
351 p->next_match_value = p->max_match_value;
352
353 p->flags |= FLAG_IRQCONTEXT;
354
355 if (p->flags & FLAG_CLOCKEVENT) {
356 if (!(p->flags & FLAG_SKIPEVENT)) {
357 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
358 p->next_match_value = p->max_match_value;
359 p->flags |= FLAG_REPROGRAM;
360 }
361
362 p->ced.event_handler(&p->ced);
363 }
364 }
365
366 p->flags &= ~FLAG_SKIPEVENT;
367
368 if (p->flags & FLAG_REPROGRAM) {
369 p->flags &= ~FLAG_REPROGRAM;
370 sh_cmt_clock_event_program_verify(p, 1);
371
372 if (p->flags & FLAG_CLOCKEVENT)
373 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
374 || (p->match_value == p->next_match_value))
375 p->flags &= ~FLAG_REPROGRAM;
376 }
377
378 p->flags &= ~FLAG_IRQCONTEXT;
379
380 return IRQ_HANDLED;
381 }
382
383 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
384 {
385 int ret = 0;
386 unsigned long flags;
387
388 spin_lock_irqsave(&p->lock, flags);
389
390 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
391 ret = sh_cmt_enable(p, &p->rate);
392
393 if (ret)
394 goto out;
395 p->flags |= flag;
396
397 /* setup timeout if no clockevent */
398 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
399 __sh_cmt_set_next(p, p->max_match_value);
400 out:
401 spin_unlock_irqrestore(&p->lock, flags);
402
403 return ret;
404 }
405
406 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
407 {
408 unsigned long flags;
409 unsigned long f;
410
411 spin_lock_irqsave(&p->lock, flags);
412
413 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
414 p->flags &= ~flag;
415
416 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
417 sh_cmt_disable(p);
418
419 /* adjust the timeout to maximum if only clocksource left */
420 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
421 __sh_cmt_set_next(p, p->max_match_value);
422
423 spin_unlock_irqrestore(&p->lock, flags);
424 }
425
426 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
427 {
428 return container_of(cs, struct sh_cmt_priv, cs);
429 }
430
431 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
432 {
433 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
434 unsigned long flags, raw;
435 unsigned long value;
436 int has_wrapped;
437
438 spin_lock_irqsave(&p->lock, flags);
439 value = p->total_cycles;
440 raw = sh_cmt_get_counter(p, &has_wrapped);
441
442 if (unlikely(has_wrapped))
443 raw += p->match_value + 1;
444 spin_unlock_irqrestore(&p->lock, flags);
445
446 return value + raw;
447 }
448
449 static int sh_cmt_clocksource_enable(struct clocksource *cs)
450 {
451 int ret;
452 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
453
454 p->total_cycles = 0;
455
456 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
457 if (!ret)
458 __clocksource_updatefreq_hz(cs, p->rate);
459 return ret;
460 }
461
462 static void sh_cmt_clocksource_disable(struct clocksource *cs)
463 {
464 sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
465 }
466
467 static void sh_cmt_clocksource_resume(struct clocksource *cs)
468 {
469 sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE);
470 }
471
472 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
473 char *name, unsigned long rating)
474 {
475 struct clocksource *cs = &p->cs;
476
477 cs->name = name;
478 cs->rating = rating;
479 cs->read = sh_cmt_clocksource_read;
480 cs->enable = sh_cmt_clocksource_enable;
481 cs->disable = sh_cmt_clocksource_disable;
482 cs->suspend = sh_cmt_clocksource_disable;
483 cs->resume = sh_cmt_clocksource_resume;
484 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
485 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
486
487 dev_info(&p->pdev->dev, "used as clock source\n");
488
489 /* Register with dummy 1 Hz value, gets updated in ->enable() */
490 clocksource_register_hz(cs, 1);
491 return 0;
492 }
493
494 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
495 {
496 return container_of(ced, struct sh_cmt_priv, ced);
497 }
498
499 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
500 {
501 struct clock_event_device *ced = &p->ced;
502
503 sh_cmt_start(p, FLAG_CLOCKEVENT);
504
505 /* TODO: calculate good shift from rate and counter bit width */
506
507 ced->shift = 32;
508 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
509 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
510 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
511
512 if (periodic)
513 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
514 else
515 sh_cmt_set_next(p, p->max_match_value);
516 }
517
518 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
519 struct clock_event_device *ced)
520 {
521 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
522
523 /* deal with old setting first */
524 switch (ced->mode) {
525 case CLOCK_EVT_MODE_PERIODIC:
526 case CLOCK_EVT_MODE_ONESHOT:
527 sh_cmt_stop(p, FLAG_CLOCKEVENT);
528 break;
529 default:
530 break;
531 }
532
533 switch (mode) {
534 case CLOCK_EVT_MODE_PERIODIC:
535 dev_info(&p->pdev->dev, "used for periodic clock events\n");
536 sh_cmt_clock_event_start(p, 1);
537 break;
538 case CLOCK_EVT_MODE_ONESHOT:
539 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
540 sh_cmt_clock_event_start(p, 0);
541 break;
542 case CLOCK_EVT_MODE_SHUTDOWN:
543 case CLOCK_EVT_MODE_UNUSED:
544 sh_cmt_stop(p, FLAG_CLOCKEVENT);
545 break;
546 default:
547 break;
548 }
549 }
550
551 static int sh_cmt_clock_event_next(unsigned long delta,
552 struct clock_event_device *ced)
553 {
554 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
555
556 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
557 if (likely(p->flags & FLAG_IRQCONTEXT))
558 p->next_match_value = delta - 1;
559 else
560 sh_cmt_set_next(p, delta - 1);
561
562 return 0;
563 }
564
565 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
566 char *name, unsigned long rating)
567 {
568 struct clock_event_device *ced = &p->ced;
569
570 memset(ced, 0, sizeof(*ced));
571
572 ced->name = name;
573 ced->features = CLOCK_EVT_FEAT_PERIODIC;
574 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
575 ced->rating = rating;
576 ced->cpumask = cpumask_of(0);
577 ced->set_next_event = sh_cmt_clock_event_next;
578 ced->set_mode = sh_cmt_clock_event_mode;
579
580 dev_info(&p->pdev->dev, "used for clock events\n");
581 clockevents_register_device(ced);
582 }
583
584 static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
585 unsigned long clockevent_rating,
586 unsigned long clocksource_rating)
587 {
588 if (p->width == (sizeof(p->max_match_value) * 8))
589 p->max_match_value = ~0;
590 else
591 p->max_match_value = (1 << p->width) - 1;
592
593 p->match_value = p->max_match_value;
594 spin_lock_init(&p->lock);
595
596 if (clockevent_rating)
597 sh_cmt_register_clockevent(p, name, clockevent_rating);
598
599 if (clocksource_rating)
600 sh_cmt_register_clocksource(p, name, clocksource_rating);
601
602 return 0;
603 }
604
605 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
606 {
607 struct sh_timer_config *cfg = pdev->dev.platform_data;
608 struct resource *res;
609 int irq, ret;
610 ret = -ENXIO;
611
612 memset(p, 0, sizeof(*p));
613 p->pdev = pdev;
614
615 if (!cfg) {
616 dev_err(&p->pdev->dev, "missing platform data\n");
617 goto err0;
618 }
619
620 platform_set_drvdata(pdev, p);
621
622 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
623 if (!res) {
624 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
625 goto err0;
626 }
627
628 irq = platform_get_irq(p->pdev, 0);
629 if (irq < 0) {
630 dev_err(&p->pdev->dev, "failed to get irq\n");
631 goto err0;
632 }
633
634 /* map memory, let mapbase point to our channel */
635 p->mapbase = ioremap_nocache(res->start, resource_size(res));
636 if (p->mapbase == NULL) {
637 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
638 goto err0;
639 }
640
641 /* request irq using setup_irq() (too early for request_irq()) */
642 p->irqaction.name = dev_name(&p->pdev->dev);
643 p->irqaction.handler = sh_cmt_interrupt;
644 p->irqaction.dev_id = p;
645 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
646 IRQF_IRQPOLL | IRQF_NOBALANCING;
647
648 /* get hold of clock */
649 p->clk = clk_get(&p->pdev->dev, "cmt_fck");
650 if (IS_ERR(p->clk)) {
651 dev_err(&p->pdev->dev, "cannot get clock\n");
652 ret = PTR_ERR(p->clk);
653 goto err1;
654 }
655
656 if (resource_size(res) == 6) {
657 p->width = 16;
658 p->overflow_bit = 0x80;
659 p->clear_bits = ~0x80;
660 } else {
661 p->width = 32;
662 p->overflow_bit = 0x8000;
663 p->clear_bits = ~0xc000;
664 }
665
666 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
667 cfg->clockevent_rating,
668 cfg->clocksource_rating);
669 if (ret) {
670 dev_err(&p->pdev->dev, "registration failed\n");
671 goto err1;
672 }
673
674 ret = setup_irq(irq, &p->irqaction);
675 if (ret) {
676 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
677 goto err1;
678 }
679
680 return 0;
681
682 err1:
683 iounmap(p->mapbase);
684 err0:
685 return ret;
686 }
687
688 static int __devinit sh_cmt_probe(struct platform_device *pdev)
689 {
690 struct sh_cmt_priv *p = platform_get_drvdata(pdev);
691 int ret;
692
693 if (!is_early_platform_device(pdev))
694 pm_genpd_dev_always_on(&pdev->dev, true);
695
696 if (p) {
697 dev_info(&pdev->dev, "kept as earlytimer\n");
698 return 0;
699 }
700
701 p = kmalloc(sizeof(*p), GFP_KERNEL);
702 if (p == NULL) {
703 dev_err(&pdev->dev, "failed to allocate driver data\n");
704 return -ENOMEM;
705 }
706
707 ret = sh_cmt_setup(p, pdev);
708 if (ret) {
709 kfree(p);
710 platform_set_drvdata(pdev, NULL);
711 }
712 return ret;
713 }
714
715 static int __devexit sh_cmt_remove(struct platform_device *pdev)
716 {
717 return -EBUSY; /* cannot unregister clockevent and clocksource */
718 }
719
720 static struct platform_driver sh_cmt_device_driver = {
721 .probe = sh_cmt_probe,
722 .remove = __devexit_p(sh_cmt_remove),
723 .driver = {
724 .name = "sh_cmt",
725 }
726 };
727
728 static int __init sh_cmt_init(void)
729 {
730 return platform_driver_register(&sh_cmt_device_driver);
731 }
732
733 static void __exit sh_cmt_exit(void)
734 {
735 platform_driver_unregister(&sh_cmt_device_driver);
736 }
737
738 early_platform_init("earlytimer", &sh_cmt_device_driver);
739 module_init(sh_cmt_init);
740 module_exit(sh_cmt_exit);
741
742 MODULE_AUTHOR("Magnus Damm");
743 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
744 MODULE_LICENSE("GPL v2");