Merge tag 'v3.10.91' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/clocksource.h>
26
27 #include <asm/localtimer.h>
28 #include <asm/mach/time.h>
29
30 #define EXYNOS4_MCTREG(x) (x)
31 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
32 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
33 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
34 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
35 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
36 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
37 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
38 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
39 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
40 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
41 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
42 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
43 #define EXYNOS4_MCT_L_MASK (0xffffff00)
44
45 #define MCT_L_TCNTB_OFFSET (0x00)
46 #define MCT_L_ICNTB_OFFSET (0x08)
47 #define MCT_L_TCON_OFFSET (0x20)
48 #define MCT_L_INT_CSTAT_OFFSET (0x30)
49 #define MCT_L_INT_ENB_OFFSET (0x34)
50 #define MCT_L_WSTAT_OFFSET (0x40)
51 #define MCT_G_TCON_START (1 << 8)
52 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
53 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
54 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
55 #define MCT_L_TCON_INT_START (1 << 1)
56 #define MCT_L_TCON_TIMER_START (1 << 0)
57
58 #define TICK_BASE_CNT 1
59
60 enum {
61 MCT_INT_SPI,
62 MCT_INT_PPI
63 };
64
65 enum {
66 MCT_G0_IRQ,
67 MCT_G1_IRQ,
68 MCT_G2_IRQ,
69 MCT_G3_IRQ,
70 MCT_L0_IRQ,
71 MCT_L1_IRQ,
72 MCT_L2_IRQ,
73 MCT_L3_IRQ,
74 MCT_NR_IRQS,
75 };
76
77 static void __iomem *reg_base;
78 static unsigned long clk_rate;
79 static unsigned int mct_int_type;
80 static int mct_irqs[MCT_NR_IRQS];
81
82 struct mct_clock_event_device {
83 struct clock_event_device *evt;
84 unsigned long base;
85 char name[10];
86 };
87
88 static void exynos4_mct_write(unsigned int value, unsigned long offset)
89 {
90 unsigned long stat_addr;
91 u32 mask;
92 u32 i;
93
94 __raw_writel(value, reg_base + offset);
95
96 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
97 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
98 switch (offset & ~EXYNOS4_MCT_L_MASK) {
99 case MCT_L_TCON_OFFSET:
100 mask = 1 << 3; /* L_TCON write status */
101 break;
102 case MCT_L_ICNTB_OFFSET:
103 mask = 1 << 1; /* L_ICNTB write status */
104 break;
105 case MCT_L_TCNTB_OFFSET:
106 mask = 1 << 0; /* L_TCNTB write status */
107 break;
108 default:
109 return;
110 }
111 } else {
112 switch (offset) {
113 case EXYNOS4_MCT_G_TCON:
114 stat_addr = EXYNOS4_MCT_G_WSTAT;
115 mask = 1 << 16; /* G_TCON write status */
116 break;
117 case EXYNOS4_MCT_G_COMP0_L:
118 stat_addr = EXYNOS4_MCT_G_WSTAT;
119 mask = 1 << 0; /* G_COMP0_L write status */
120 break;
121 case EXYNOS4_MCT_G_COMP0_U:
122 stat_addr = EXYNOS4_MCT_G_WSTAT;
123 mask = 1 << 1; /* G_COMP0_U write status */
124 break;
125 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
126 stat_addr = EXYNOS4_MCT_G_WSTAT;
127 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
128 break;
129 case EXYNOS4_MCT_G_CNT_L:
130 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
131 mask = 1 << 0; /* G_CNT_L write status */
132 break;
133 case EXYNOS4_MCT_G_CNT_U:
134 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135 mask = 1 << 1; /* G_CNT_U write status */
136 break;
137 default:
138 return;
139 }
140 }
141
142 /* Wait maximum 1 ms until written values are applied */
143 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
144 if (__raw_readl(reg_base + stat_addr) & mask) {
145 __raw_writel(mask, reg_base + stat_addr);
146 return;
147 }
148
149 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
150 }
151
152 /* Clocksource handling */
153 static void exynos4_mct_frc_start(u32 hi, u32 lo)
154 {
155 u32 reg;
156
157 exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
158 exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
159
160 reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
161 reg |= MCT_G_TCON_START;
162 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 static cycle_t exynos4_frc_read(struct clocksource *cs)
166 {
167 unsigned int lo, hi;
168 u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
169
170 do {
171 hi = hi2;
172 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
173 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
174 } while (hi != hi2);
175
176 return ((cycle_t)hi << 32) | lo;
177 }
178
179 static void exynos4_frc_resume(struct clocksource *cs)
180 {
181 exynos4_mct_frc_start(0, 0);
182 }
183
184 struct clocksource mct_frc = {
185 .name = "mct-frc",
186 .rating = 400,
187 .read = exynos4_frc_read,
188 .mask = CLOCKSOURCE_MASK(64),
189 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
190 .resume = exynos4_frc_resume,
191 };
192
193 static void __init exynos4_clocksource_init(void)
194 {
195 exynos4_mct_frc_start(0, 0);
196
197 if (clocksource_register_hz(&mct_frc, clk_rate))
198 panic("%s: can't register clocksource\n", mct_frc.name);
199 }
200
201 static void exynos4_mct_comp0_stop(void)
202 {
203 unsigned int tcon;
204
205 tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
206 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
207
208 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
209 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
210 }
211
212 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
213 unsigned long cycles)
214 {
215 unsigned int tcon;
216 cycle_t comp_cycle;
217
218 tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
219
220 if (mode == CLOCK_EVT_MODE_PERIODIC) {
221 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
222 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
223 }
224
225 comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
226 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
227 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
228
229 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
230
231 tcon |= MCT_G_TCON_COMP0_ENABLE;
232 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
233 }
234
235 static int exynos4_comp_set_next_event(unsigned long cycles,
236 struct clock_event_device *evt)
237 {
238 exynos4_mct_comp0_start(evt->mode, cycles);
239
240 return 0;
241 }
242
243 static void exynos4_comp_set_mode(enum clock_event_mode mode,
244 struct clock_event_device *evt)
245 {
246 unsigned long cycles_per_jiffy;
247 exynos4_mct_comp0_stop();
248
249 switch (mode) {
250 case CLOCK_EVT_MODE_PERIODIC:
251 cycles_per_jiffy =
252 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
253 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
254 break;
255
256 case CLOCK_EVT_MODE_ONESHOT:
257 case CLOCK_EVT_MODE_UNUSED:
258 case CLOCK_EVT_MODE_SHUTDOWN:
259 case CLOCK_EVT_MODE_RESUME:
260 break;
261 }
262 }
263
264 static struct clock_event_device mct_comp_device = {
265 .name = "mct-comp",
266 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
267 .rating = 250,
268 .set_next_event = exynos4_comp_set_next_event,
269 .set_mode = exynos4_comp_set_mode,
270 };
271
272 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
273 {
274 struct clock_event_device *evt = dev_id;
275
276 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
277
278 evt->event_handler(evt);
279
280 return IRQ_HANDLED;
281 }
282
283 static struct irqaction mct_comp_event_irq = {
284 .name = "mct_comp_irq",
285 .flags = IRQF_TIMER | IRQF_IRQPOLL,
286 .handler = exynos4_mct_comp_isr,
287 .dev_id = &mct_comp_device,
288 };
289
290 static void exynos4_clockevent_init(void)
291 {
292 mct_comp_device.cpumask = cpumask_of(0);
293 clockevents_config_and_register(&mct_comp_device, clk_rate,
294 0xf, 0xffffffff);
295 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
296 }
297
298 #ifdef CONFIG_LOCAL_TIMERS
299
300 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
301
302 /* Clock event handling */
303 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
304 {
305 unsigned long tmp;
306 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
307 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
308
309 tmp = __raw_readl(reg_base + offset);
310 if (tmp & mask) {
311 tmp &= ~mask;
312 exynos4_mct_write(tmp, offset);
313 }
314 }
315
316 static void exynos4_mct_tick_start(unsigned long cycles,
317 struct mct_clock_event_device *mevt)
318 {
319 unsigned long tmp;
320
321 exynos4_mct_tick_stop(mevt);
322
323 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
324
325 /* update interrupt count buffer */
326 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
327
328 /* enable MCT tick interrupt */
329 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
330
331 tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
332 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
333 MCT_L_TCON_INTERVAL_MODE;
334 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
335 }
336
337 static int exynos4_tick_set_next_event(unsigned long cycles,
338 struct clock_event_device *evt)
339 {
340 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
341
342 exynos4_mct_tick_start(cycles, mevt);
343
344 return 0;
345 }
346
347 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
348 struct clock_event_device *evt)
349 {
350 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
351 unsigned long cycles_per_jiffy;
352
353 exynos4_mct_tick_stop(mevt);
354
355 switch (mode) {
356 case CLOCK_EVT_MODE_PERIODIC:
357 cycles_per_jiffy =
358 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
359 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
360 break;
361
362 case CLOCK_EVT_MODE_ONESHOT:
363 case CLOCK_EVT_MODE_UNUSED:
364 case CLOCK_EVT_MODE_SHUTDOWN:
365 case CLOCK_EVT_MODE_RESUME:
366 break;
367 }
368 }
369
370 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
371 {
372 struct clock_event_device *evt = mevt->evt;
373
374 /*
375 * This is for supporting oneshot mode.
376 * Mct would generate interrupt periodically
377 * without explicit stopping.
378 */
379 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
380 exynos4_mct_tick_stop(mevt);
381
382 /* Clear the MCT tick interrupt */
383 if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
384 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
385 return 1;
386 } else {
387 return 0;
388 }
389 }
390
391 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
392 {
393 struct mct_clock_event_device *mevt = dev_id;
394 struct clock_event_device *evt = mevt->evt;
395
396 exynos4_mct_tick_clear(mevt);
397
398 evt->event_handler(evt);
399
400 return IRQ_HANDLED;
401 }
402
403 static struct irqaction mct_tick0_event_irq = {
404 .name = "mct_tick0_irq",
405 .flags = IRQF_TIMER | IRQF_NOBALANCING,
406 .handler = exynos4_mct_tick_isr,
407 };
408
409 static struct irqaction mct_tick1_event_irq = {
410 .name = "mct_tick1_irq",
411 .flags = IRQF_TIMER | IRQF_NOBALANCING,
412 .handler = exynos4_mct_tick_isr,
413 };
414
415 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
416 {
417 struct mct_clock_event_device *mevt;
418 unsigned int cpu = smp_processor_id();
419
420 mevt = this_cpu_ptr(&percpu_mct_tick);
421 mevt->evt = evt;
422
423 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
424 sprintf(mevt->name, "mct_tick%d", cpu);
425
426 evt->name = mevt->name;
427 evt->cpumask = cpumask_of(cpu);
428 evt->set_next_event = exynos4_tick_set_next_event;
429 evt->set_mode = exynos4_tick_set_mode;
430 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
431 evt->rating = 450;
432
433 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
434
435 if (mct_int_type == MCT_INT_SPI) {
436 if (cpu == 0) {
437 mct_tick0_event_irq.dev_id = mevt;
438 evt->irq = mct_irqs[MCT_L0_IRQ];
439 setup_irq(evt->irq, &mct_tick0_event_irq);
440 } else {
441 mct_tick1_event_irq.dev_id = mevt;
442 evt->irq = mct_irqs[MCT_L1_IRQ];
443 setup_irq(evt->irq, &mct_tick1_event_irq);
444 irq_set_affinity(evt->irq, cpumask_of(1));
445 }
446 } else {
447 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
448 }
449 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
450 0xf, 0x7fffffff);
451
452 return 0;
453 }
454
455 static void exynos4_local_timer_stop(struct clock_event_device *evt)
456 {
457 unsigned int cpu = smp_processor_id();
458 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
459 if (mct_int_type == MCT_INT_SPI)
460 if (cpu == 0)
461 remove_irq(evt->irq, &mct_tick0_event_irq);
462 else
463 remove_irq(evt->irq, &mct_tick1_event_irq);
464 else
465 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
466 }
467
468 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
469 .setup = exynos4_local_timer_setup,
470 .stop = exynos4_local_timer_stop,
471 };
472 #endif /* CONFIG_LOCAL_TIMERS */
473
474 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
475 {
476 struct clk *mct_clk, *tick_clk;
477
478 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
479 clk_get(NULL, "fin_pll");
480 if (IS_ERR(tick_clk))
481 panic("%s: unable to determine tick clock rate\n", __func__);
482 clk_rate = clk_get_rate(tick_clk);
483
484 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
485 if (IS_ERR(mct_clk))
486 panic("%s: unable to retrieve mct clock instance\n", __func__);
487 clk_prepare_enable(mct_clk);
488
489 reg_base = base;
490 if (!reg_base)
491 panic("%s: unable to ioremap mct address space\n", __func__);
492
493 #ifdef CONFIG_LOCAL_TIMERS
494 if (mct_int_type == MCT_INT_PPI) {
495 int err;
496
497 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
498 exynos4_mct_tick_isr, "MCT",
499 &percpu_mct_tick);
500 WARN(err, "MCT: can't request IRQ %d (%d)\n",
501 mct_irqs[MCT_L0_IRQ], err);
502 }
503
504 local_timer_register(&exynos4_mct_tick_ops);
505 #endif /* CONFIG_LOCAL_TIMERS */
506 }
507
508 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
509 {
510 mct_irqs[MCT_G0_IRQ] = irq_g0;
511 mct_irqs[MCT_L0_IRQ] = irq_l0;
512 mct_irqs[MCT_L1_IRQ] = irq_l1;
513 mct_int_type = MCT_INT_SPI;
514
515 exynos4_timer_resources(NULL, base);
516 exynos4_clocksource_init();
517 exynos4_clockevent_init();
518 }
519
520 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
521 {
522 u32 nr_irqs, i;
523
524 mct_int_type = int_type;
525
526 /* This driver uses only one global timer interrupt */
527 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
528
529 /*
530 * Find out the number of local irqs specified. The local
531 * timer irqs are specified after the four global timer
532 * irqs are specified.
533 */
534 #ifdef CONFIG_OF
535 nr_irqs = of_irq_count(np);
536 #else
537 nr_irqs = 0;
538 #endif
539 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
540 mct_irqs[i] = irq_of_parse_and_map(np, i);
541
542 exynos4_timer_resources(np, of_iomap(np, 0));
543 exynos4_clocksource_init();
544 exynos4_clockevent_init();
545 }
546
547
548 static void __init mct_init_spi(struct device_node *np)
549 {
550 return mct_init_dt(np, MCT_INT_SPI);
551 }
552
553 static void __init mct_init_ppi(struct device_node *np)
554 {
555 return mct_init_dt(np, MCT_INT_PPI);
556 }
557 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
558 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);