Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119 * Indexes into stats[] in smi_info below.
120 */
121 enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
142
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
158 /* Number of asynchronous messages received. */
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164 };
165
166 struct smi_info {
167 int intf_num;
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
191
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
213 unsigned char msg_flags;
214
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
217
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
222 atomic_t req_events;
223
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
229 int run_to_completion;
230
231 /* The I/O port of an SI interface. */
232 int port;
233
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
250 /* Used to gracefully stop the timer without race conditions. */
251 atomic_t stop_operation;
252
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
259 int interrupt_disabled;
260
261 /* From the get device id response... */
262 struct ipmi_device_id device_id;
263
264 /* Driver model stuff. */
265 struct device *dev;
266 struct platform_device *pdev;
267
268 /*
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
271 */
272 int dev_registered;
273
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr;
276
277 /* Counters and things for the proc filesystem. */
278 atomic_t stats[SI_NUM_STATS];
279
280 struct task_struct *thread;
281
282 struct list_head link;
283 union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 struct ipmi_smi_msg *msg)
320 {
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327 struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 cCode = IPMI_ERR_UNSPECIFIED;
331 /* else use it as is */
332
333 /* Make it a response */
334 msg->rsp[0] = msg->data[0] | 4;
335 msg->rsp[1] = msg->data[1];
336 msg->rsp[2] = cCode;
337 msg->rsp_size = 3;
338
339 smi_info->curr_msg = NULL;
340 deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345 int rv;
346 struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348 struct timeval t;
349 #endif
350
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 entry = smi_info->hp_xmit_msgs.next;
354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
355 entry = smi_info->xmit_msgs.next;
356 }
357
358 if (!entry) {
359 smi_info->curr_msg = NULL;
360 rv = SI_SM_IDLE;
361 } else {
362 int err;
363
364 list_del(entry);
365 smi_info->curr_msg = list_entry(entry,
366 struct ipmi_smi_msg,
367 link);
368 #ifdef DEBUG_TIMING
369 do_gettimeofday(&t);
370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
373 0, smi_info);
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
376 goto out;
377 }
378 err = smi_info->handlers->start_transaction(
379 smi_info->si_sm,
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
382 if (err)
383 return_hosed_msg(smi_info, err);
384
385 rv = SI_SM_CALL_WITHOUT_DELAY;
386 }
387 out:
388 return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393 unsigned char msg[2];
394
395 /*
396 * If we are enabling interrupts, we have to tell the
397 * BMC to use them.
398 */
399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408 unsigned char msg[2];
409
410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419 unsigned char msg[3];
420
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 msg[2] = WDT_PRE_TIMEOUT_INT;
425
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
435 */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 start_disable_irq(smi_info);
440 smi_info->interrupt_disabled = 1;
441 if (!atomic_read(&smi_info->stop_operation))
442 mod_timer(&smi_info->si_timer,
443 jiffies + SI_TIMEOUT_JIFFIES);
444 }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 start_enable_irq(smi_info);
451 smi_info->interrupt_disabled = 0;
452 }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457 retry:
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = ipmi_alloc_smi_msg();
468 if (!smi_info->curr_msg) {
469 disable_si_irq(smi_info);
470 smi_info->si_state = SI_NORMAL;
471 return;
472 }
473 enable_si_irq(smi_info);
474
475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 smi_info->curr_msg->data_size = 2;
478
479 smi_info->handlers->start_transaction(
480 smi_info->si_sm,
481 smi_info->curr_msg->data,
482 smi_info->curr_msg->data_size);
483 smi_info->si_state = SI_GETTING_MESSAGES;
484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 /* Events available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
487 if (!smi_info->curr_msg) {
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
490 return;
491 }
492 enable_si_irq(smi_info);
493
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 smi_info->curr_msg->data_size = 2;
497
498 smi_info->handlers->start_transaction(
499 smi_info->si_sm,
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_EVENTS;
503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 smi_info->oem_data_avail_handler) {
505 if (smi_info->oem_data_avail_handler(smi_info))
506 goto retry;
507 } else
508 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513 struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515 struct timeval t;
516
517 do_gettimeofday(&t);
518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520 switch (smi_info->si_state) {
521 case SI_NORMAL:
522 if (!smi_info->curr_msg)
523 break;
524
525 smi_info->curr_msg->rsp_size
526 = smi_info->handlers->get_result(
527 smi_info->si_sm,
528 smi_info->curr_msg->rsp,
529 IPMI_MAX_MSG_LENGTH);
530
531 /*
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
535 */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 deliver_recv_msg(smi_info, msg);
539 break;
540
541 case SI_GETTING_FLAGS:
542 {
543 unsigned char msg[4];
544 unsigned int len;
545
546 /* We got the flags from the SMI, now handle them. */
547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 if (msg[2] != 0) {
549 /* Error fetching flags, just give up for now. */
550 smi_info->si_state = SI_NORMAL;
551 } else if (len < 4) {
552 /*
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
555 */
556 smi_info->si_state = SI_NORMAL;
557 } else {
558 smi_info->msg_flags = msg[3];
559 handle_flags(smi_info);
560 }
561 break;
562 }
563
564 case SI_CLEARING_FLAGS:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 {
567 unsigned char msg[3];
568
569 /* We cleared the flags. */
570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 if (msg[2] != 0) {
572 /* Error clearing flags */
573 dev_warn(smi_info->dev,
574 "Error clearing flags: %2.2x\n", msg[2]);
575 }
576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 start_enable_irq(smi_info);
578 else
579 smi_info->si_state = SI_NORMAL;
580 break;
581 }
582
583 case SI_GETTING_EVENTS:
584 {
585 smi_info->curr_msg->rsp_size
586 = smi_info->handlers->get_result(
587 smi_info->si_sm,
588 smi_info->curr_msg->rsp,
589 IPMI_MAX_MSG_LENGTH);
590
591 /*
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
595 */
596 msg = smi_info->curr_msg;
597 smi_info->curr_msg = NULL;
598 if (msg->rsp[2] != 0) {
599 /* Error getting event, probably done. */
600 msg->done(msg);
601
602 /* Take off the event flag. */
603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 handle_flags(smi_info);
605 } else {
606 smi_inc_stat(smi_info, events);
607
608 /*
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
612 * state.
613 */
614 handle_flags(smi_info);
615
616 deliver_recv_msg(smi_info, msg);
617 }
618 break;
619 }
620
621 case SI_GETTING_MESSAGES:
622 {
623 smi_info->curr_msg->rsp_size
624 = smi_info->handlers->get_result(
625 smi_info->si_sm,
626 smi_info->curr_msg->rsp,
627 IPMI_MAX_MSG_LENGTH);
628
629 /*
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
633 */
634 msg = smi_info->curr_msg;
635 smi_info->curr_msg = NULL;
636 if (msg->rsp[2] != 0) {
637 /* Error getting event, probably done. */
638 msg->done(msg);
639
640 /* Take off the msg flag. */
641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 handle_flags(smi_info);
643 } else {
644 smi_inc_stat(smi_info, incoming_messages);
645
646 /*
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
650 * state.
651 */
652 handle_flags(smi_info);
653
654 deliver_recv_msg(smi_info, msg);
655 }
656 break;
657 }
658
659 case SI_ENABLE_INTERRUPTS1:
660 {
661 unsigned char msg[4];
662
663 /* We got the flags from the SMI, now handle them. */
664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 if (msg[2] != 0) {
666 dev_warn(smi_info->dev,
667 "Couldn't get irq info: %x.\n", msg[2]);
668 dev_warn(smi_info->dev,
669 "Maybe ok, but ipmi might run very slowly.\n");
670 smi_info->si_state = SI_NORMAL;
671 } else {
672 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
673 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
674 msg[2] = (msg[3] |
675 IPMI_BMC_RCV_MSG_INTR |
676 IPMI_BMC_EVT_MSG_INTR);
677 smi_info->handlers->start_transaction(
678 smi_info->si_sm, msg, 3);
679 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
680 }
681 break;
682 }
683
684 case SI_ENABLE_INTERRUPTS2:
685 {
686 unsigned char msg[4];
687
688 /* We got the flags from the SMI, now handle them. */
689 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
690 if (msg[2] != 0) {
691 dev_warn(smi_info->dev,
692 "Couldn't set irq info: %x.\n", msg[2]);
693 dev_warn(smi_info->dev,
694 "Maybe ok, but ipmi might run very slowly.\n");
695 } else
696 smi_info->interrupt_disabled = 0;
697 smi_info->si_state = SI_NORMAL;
698 break;
699 }
700
701 case SI_DISABLE_INTERRUPTS1:
702 {
703 unsigned char msg[4];
704
705 /* We got the flags from the SMI, now handle them. */
706 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707 if (msg[2] != 0) {
708 dev_warn(smi_info->dev, "Could not disable interrupts"
709 ", failed get.\n");
710 smi_info->si_state = SI_NORMAL;
711 } else {
712 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
713 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
714 msg[2] = (msg[3] &
715 ~(IPMI_BMC_RCV_MSG_INTR |
716 IPMI_BMC_EVT_MSG_INTR));
717 smi_info->handlers->start_transaction(
718 smi_info->si_sm, msg, 3);
719 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
720 }
721 break;
722 }
723
724 case SI_DISABLE_INTERRUPTS2:
725 {
726 unsigned char msg[4];
727
728 /* We got the flags from the SMI, now handle them. */
729 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
730 if (msg[2] != 0) {
731 dev_warn(smi_info->dev, "Could not disable interrupts"
732 ", failed set.\n");
733 }
734 smi_info->si_state = SI_NORMAL;
735 break;
736 }
737 }
738 }
739
740 /*
741 * Called on timeouts and events. Timeouts should pass the elapsed
742 * time, interrupts should pass in zero. Must be called with
743 * si_lock held and interrupts disabled.
744 */
745 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
746 int time)
747 {
748 enum si_sm_result si_sm_result;
749
750 restart:
751 /*
752 * There used to be a loop here that waited a little while
753 * (around 25us) before giving up. That turned out to be
754 * pointless, the minimum delays I was seeing were in the 300us
755 * range, which is far too long to wait in an interrupt. So
756 * we just run until the state machine tells us something
757 * happened or it needs a delay.
758 */
759 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
760 time = 0;
761 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
763
764 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
765 smi_inc_stat(smi_info, complete_transactions);
766
767 handle_transaction_done(smi_info);
768 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769 } else if (si_sm_result == SI_SM_HOSED) {
770 smi_inc_stat(smi_info, hosed_count);
771
772 /*
773 * Do the before return_hosed_msg, because that
774 * releases the lock.
775 */
776 smi_info->si_state = SI_NORMAL;
777 if (smi_info->curr_msg != NULL) {
778 /*
779 * If we were handling a user message, format
780 * a response to send to the upper layer to
781 * tell it about the error.
782 */
783 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
784 }
785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786 }
787
788 /*
789 * We prefer handling attn over new messages. But don't do
790 * this if there is not yet an upper layer to handle anything.
791 */
792 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
793 unsigned char msg[2];
794
795 smi_inc_stat(smi_info, attentions);
796
797 /*
798 * Got a attn, send down a get message flags to see
799 * what's causing it. It would be better to handle
800 * this in the upper layer, but due to the way
801 * interrupts work with the SMI, that's not really
802 * possible.
803 */
804 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
805 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
806
807 smi_info->handlers->start_transaction(
808 smi_info->si_sm, msg, 2);
809 smi_info->si_state = SI_GETTING_FLAGS;
810 goto restart;
811 }
812
813 /* If we are currently idle, try to start the next message. */
814 if (si_sm_result == SI_SM_IDLE) {
815 smi_inc_stat(smi_info, idles);
816
817 si_sm_result = start_next_msg(smi_info);
818 if (si_sm_result != SI_SM_IDLE)
819 goto restart;
820 }
821
822 if ((si_sm_result == SI_SM_IDLE)
823 && (atomic_read(&smi_info->req_events))) {
824 /*
825 * We are idle and the upper layer requested that I fetch
826 * events, so do so.
827 */
828 atomic_set(&smi_info->req_events, 0);
829
830 smi_info->curr_msg = ipmi_alloc_smi_msg();
831 if (!smi_info->curr_msg)
832 goto out;
833
834 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
835 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
836 smi_info->curr_msg->data_size = 2;
837
838 smi_info->handlers->start_transaction(
839 smi_info->si_sm,
840 smi_info->curr_msg->data,
841 smi_info->curr_msg->data_size);
842 smi_info->si_state = SI_GETTING_EVENTS;
843 goto restart;
844 }
845 out:
846 return si_sm_result;
847 }
848
849 static void sender(void *send_info,
850 struct ipmi_smi_msg *msg,
851 int priority)
852 {
853 struct smi_info *smi_info = send_info;
854 enum si_sm_result result;
855 unsigned long flags;
856 #ifdef DEBUG_TIMING
857 struct timeval t;
858 #endif
859
860 if (atomic_read(&smi_info->stop_operation)) {
861 msg->rsp[0] = msg->data[0] | 4;
862 msg->rsp[1] = msg->data[1];
863 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
864 msg->rsp_size = 3;
865 deliver_recv_msg(smi_info, msg);
866 return;
867 }
868
869 #ifdef DEBUG_TIMING
870 do_gettimeofday(&t);
871 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
872 #endif
873
874 if (smi_info->run_to_completion) {
875 /*
876 * If we are running to completion, then throw it in
877 * the list and run transactions until everything is
878 * clear. Priority doesn't matter here.
879 */
880
881 /*
882 * Run to completion means we are single-threaded, no
883 * need for locks.
884 */
885 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
886
887 result = smi_event_handler(smi_info, 0);
888 while (result != SI_SM_IDLE) {
889 udelay(SI_SHORT_TIMEOUT_USEC);
890 result = smi_event_handler(smi_info,
891 SI_SHORT_TIMEOUT_USEC);
892 }
893 return;
894 }
895
896 spin_lock_irqsave(&smi_info->si_lock, flags);
897 if (priority > 0)
898 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
899 else
900 list_add_tail(&msg->link, &smi_info->xmit_msgs);
901
902 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
903 /*
904 * last_timeout_jiffies is updated here to avoid
905 * smi_timeout() handler passing very large time_diff
906 * value to smi_event_handler() that causes
907 * the send command to abort.
908 */
909 smi_info->last_timeout_jiffies = jiffies;
910
911 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
912
913 if (smi_info->thread)
914 wake_up_process(smi_info->thread);
915
916 start_next_msg(smi_info);
917 smi_event_handler(smi_info, 0);
918 }
919 spin_unlock_irqrestore(&smi_info->si_lock, flags);
920 }
921
922 static void set_run_to_completion(void *send_info, int i_run_to_completion)
923 {
924 struct smi_info *smi_info = send_info;
925 enum si_sm_result result;
926
927 smi_info->run_to_completion = i_run_to_completion;
928 if (i_run_to_completion) {
929 result = smi_event_handler(smi_info, 0);
930 while (result != SI_SM_IDLE) {
931 udelay(SI_SHORT_TIMEOUT_USEC);
932 result = smi_event_handler(smi_info,
933 SI_SHORT_TIMEOUT_USEC);
934 }
935 }
936 }
937
938 /*
939 * Use -1 in the nsec value of the busy waiting timespec to tell that
940 * we are spinning in kipmid looking for something and not delaying
941 * between checks
942 */
943 static inline void ipmi_si_set_not_busy(struct timespec *ts)
944 {
945 ts->tv_nsec = -1;
946 }
947 static inline int ipmi_si_is_busy(struct timespec *ts)
948 {
949 return ts->tv_nsec != -1;
950 }
951
952 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
953 const struct smi_info *smi_info,
954 struct timespec *busy_until)
955 {
956 unsigned int max_busy_us = 0;
957
958 if (smi_info->intf_num < num_max_busy_us)
959 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
960 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
961 ipmi_si_set_not_busy(busy_until);
962 else if (!ipmi_si_is_busy(busy_until)) {
963 getnstimeofday(busy_until);
964 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
965 } else {
966 struct timespec now;
967 getnstimeofday(&now);
968 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
969 ipmi_si_set_not_busy(busy_until);
970 return 0;
971 }
972 }
973 return 1;
974 }
975
976
977 /*
978 * A busy-waiting loop for speeding up IPMI operation.
979 *
980 * Lousy hardware makes this hard. This is only enabled for systems
981 * that are not BT and do not have interrupts. It starts spinning
982 * when an operation is complete or until max_busy tells it to stop
983 * (if that is enabled). See the paragraph on kimid_max_busy_us in
984 * Documentation/IPMI.txt for details.
985 */
986 static int ipmi_thread(void *data)
987 {
988 struct smi_info *smi_info = data;
989 unsigned long flags;
990 enum si_sm_result smi_result;
991 struct timespec busy_until;
992
993 ipmi_si_set_not_busy(&busy_until);
994 set_user_nice(current, 19);
995 while (!kthread_should_stop()) {
996 int busy_wait;
997
998 spin_lock_irqsave(&(smi_info->si_lock), flags);
999 smi_result = smi_event_handler(smi_info, 0);
1000 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1002 &busy_until);
1003 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1004 ; /* do nothing */
1005 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1006 schedule();
1007 else if (smi_result == SI_SM_IDLE)
1008 schedule_timeout_interruptible(100);
1009 else
1010 schedule_timeout_interruptible(1);
1011 }
1012 return 0;
1013 }
1014
1015
1016 static void poll(void *send_info)
1017 {
1018 struct smi_info *smi_info = send_info;
1019 unsigned long flags = 0;
1020 int run_to_completion = smi_info->run_to_completion;
1021
1022 /*
1023 * Make sure there is some delay in the poll loop so we can
1024 * drive time forward and timeout things.
1025 */
1026 udelay(10);
1027 if (!run_to_completion)
1028 spin_lock_irqsave(&smi_info->si_lock, flags);
1029 smi_event_handler(smi_info, 10);
1030 if (!run_to_completion)
1031 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1032 }
1033
1034 static void request_events(void *send_info)
1035 {
1036 struct smi_info *smi_info = send_info;
1037
1038 if (atomic_read(&smi_info->stop_operation) ||
1039 !smi_info->has_event_buffer)
1040 return;
1041
1042 atomic_set(&smi_info->req_events, 1);
1043 }
1044
1045 static int initialized;
1046
1047 static void smi_timeout(unsigned long data)
1048 {
1049 struct smi_info *smi_info = (struct smi_info *) data;
1050 enum si_sm_result smi_result;
1051 unsigned long flags;
1052 unsigned long jiffies_now;
1053 long time_diff;
1054 long timeout;
1055 #ifdef DEBUG_TIMING
1056 struct timeval t;
1057 #endif
1058
1059 spin_lock_irqsave(&(smi_info->si_lock), flags);
1060 #ifdef DEBUG_TIMING
1061 do_gettimeofday(&t);
1062 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1063 #endif
1064 jiffies_now = jiffies;
1065 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1066 * SI_USEC_PER_JIFFY);
1067 smi_result = smi_event_handler(smi_info, time_diff);
1068
1069 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1070
1071 smi_info->last_timeout_jiffies = jiffies_now;
1072
1073 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1074 /* Running with interrupts, only do long timeouts. */
1075 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1076 smi_inc_stat(smi_info, long_timeouts);
1077 goto do_mod_timer;
1078 }
1079
1080 /*
1081 * If the state machine asks for a short delay, then shorten
1082 * the timer timeout.
1083 */
1084 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1085 smi_inc_stat(smi_info, short_timeouts);
1086 timeout = jiffies + 1;
1087 } else {
1088 smi_inc_stat(smi_info, long_timeouts);
1089 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090 }
1091
1092 do_mod_timer:
1093 if (smi_result != SI_SM_IDLE)
1094 mod_timer(&(smi_info->si_timer), timeout);
1095 }
1096
1097 static irqreturn_t si_irq_handler(int irq, void *data)
1098 {
1099 struct smi_info *smi_info = data;
1100 unsigned long flags;
1101 #ifdef DEBUG_TIMING
1102 struct timeval t;
1103 #endif
1104
1105 spin_lock_irqsave(&(smi_info->si_lock), flags);
1106
1107 smi_inc_stat(smi_info, interrupts);
1108
1109 #ifdef DEBUG_TIMING
1110 do_gettimeofday(&t);
1111 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1112 #endif
1113 smi_event_handler(smi_info, 0);
1114 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115 return IRQ_HANDLED;
1116 }
1117
1118 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1119 {
1120 struct smi_info *smi_info = data;
1121 /* We need to clear the IRQ flag for the BT interface. */
1122 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1125 return si_irq_handler(irq, data);
1126 }
1127
1128 static int smi_start_processing(void *send_info,
1129 ipmi_smi_t intf)
1130 {
1131 struct smi_info *new_smi = send_info;
1132 int enable = 0;
1133
1134 new_smi->intf = intf;
1135
1136 /* Try to claim any interrupts. */
1137 if (new_smi->irq_setup)
1138 new_smi->irq_setup(new_smi);
1139
1140 /* Set up the timer that drives the interface. */
1141 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1142 new_smi->last_timeout_jiffies = jiffies;
1143 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1144
1145 /*
1146 * Check if the user forcefully enabled the daemon.
1147 */
1148 if (new_smi->intf_num < num_force_kipmid)
1149 enable = force_kipmid[new_smi->intf_num];
1150 /*
1151 * The BT interface is efficient enough to not need a thread,
1152 * and there is no need for a thread if we have interrupts.
1153 */
1154 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1155 enable = 1;
1156
1157 if (enable) {
1158 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1159 "kipmi%d", new_smi->intf_num);
1160 if (IS_ERR(new_smi->thread)) {
1161 dev_notice(new_smi->dev, "Could not start"
1162 " kernel thread due to error %ld, only using"
1163 " timers to drive the interface\n",
1164 PTR_ERR(new_smi->thread));
1165 new_smi->thread = NULL;
1166 }
1167 }
1168
1169 return 0;
1170 }
1171
1172 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1173 {
1174 struct smi_info *smi = send_info;
1175
1176 data->addr_src = smi->addr_source;
1177 data->dev = smi->dev;
1178 data->addr_info = smi->addr_info;
1179 get_device(smi->dev);
1180
1181 return 0;
1182 }
1183
1184 static void set_maintenance_mode(void *send_info, int enable)
1185 {
1186 struct smi_info *smi_info = send_info;
1187
1188 if (!enable)
1189 atomic_set(&smi_info->req_events, 0);
1190 }
1191
1192 static struct ipmi_smi_handlers handlers = {
1193 .owner = THIS_MODULE,
1194 .start_processing = smi_start_processing,
1195 .get_smi_info = get_smi_info,
1196 .sender = sender,
1197 .request_events = request_events,
1198 .set_maintenance_mode = set_maintenance_mode,
1199 .set_run_to_completion = set_run_to_completion,
1200 .poll = poll,
1201 };
1202
1203 /*
1204 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1205 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1206 */
1207
1208 static LIST_HEAD(smi_infos);
1209 static DEFINE_MUTEX(smi_infos_lock);
1210 static int smi_num; /* Used to sequence the SMIs */
1211
1212 #define DEFAULT_REGSPACING 1
1213 #define DEFAULT_REGSIZE 1
1214
1215 #ifdef CONFIG_ACPI
1216 static bool si_tryacpi = 1;
1217 #endif
1218 #ifdef CONFIG_DMI
1219 static bool si_trydmi = 1;
1220 #endif
1221 static bool si_tryplatform = 1;
1222 #ifdef CONFIG_PCI
1223 static bool si_trypci = 1;
1224 #endif
1225 static bool si_trydefaults = 1;
1226 static char *si_type[SI_MAX_PARMS];
1227 #define MAX_SI_TYPE_STR 30
1228 static char si_type_str[MAX_SI_TYPE_STR];
1229 static unsigned long addrs[SI_MAX_PARMS];
1230 static unsigned int num_addrs;
1231 static unsigned int ports[SI_MAX_PARMS];
1232 static unsigned int num_ports;
1233 static int irqs[SI_MAX_PARMS];
1234 static unsigned int num_irqs;
1235 static int regspacings[SI_MAX_PARMS];
1236 static unsigned int num_regspacings;
1237 static int regsizes[SI_MAX_PARMS];
1238 static unsigned int num_regsizes;
1239 static int regshifts[SI_MAX_PARMS];
1240 static unsigned int num_regshifts;
1241 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1242 static unsigned int num_slave_addrs;
1243
1244 #define IPMI_IO_ADDR_SPACE 0
1245 #define IPMI_MEM_ADDR_SPACE 1
1246 static char *addr_space_to_str[] = { "i/o", "mem" };
1247
1248 static int hotmod_handler(const char *val, struct kernel_param *kp);
1249
1250 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1251 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1252 " Documentation/IPMI.txt in the kernel sources for the"
1253 " gory details.");
1254
1255 #ifdef CONFIG_ACPI
1256 module_param_named(tryacpi, si_tryacpi, bool, 0);
1257 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1258 " default scan of the interfaces identified via ACPI");
1259 #endif
1260 #ifdef CONFIG_DMI
1261 module_param_named(trydmi, si_trydmi, bool, 0);
1262 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1263 " default scan of the interfaces identified via DMI");
1264 #endif
1265 module_param_named(tryplatform, si_tryplatform, bool, 0);
1266 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1267 " default scan of the interfaces identified via platform"
1268 " interfaces like openfirmware");
1269 #ifdef CONFIG_PCI
1270 module_param_named(trypci, si_trypci, bool, 0);
1271 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1272 " default scan of the interfaces identified via pci");
1273 #endif
1274 module_param_named(trydefaults, si_trydefaults, bool, 0);
1275 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1276 " default scan of the KCS and SMIC interface at the standard"
1277 " address");
1278 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1279 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1280 " interface separated by commas. The types are 'kcs',"
1281 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1282 " the first interface to kcs and the second to bt");
1283 module_param_array(addrs, ulong, &num_addrs, 0);
1284 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1285 " addresses separated by commas. Only use if an interface"
1286 " is in memory. Otherwise, set it to zero or leave"
1287 " it blank.");
1288 module_param_array(ports, uint, &num_ports, 0);
1289 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1290 " addresses separated by commas. Only use if an interface"
1291 " is a port. Otherwise, set it to zero or leave"
1292 " it blank.");
1293 module_param_array(irqs, int, &num_irqs, 0);
1294 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1295 " addresses separated by commas. Only use if an interface"
1296 " has an interrupt. Otherwise, set it to zero or leave"
1297 " it blank.");
1298 module_param_array(regspacings, int, &num_regspacings, 0);
1299 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1300 " and each successive register used by the interface. For"
1301 " instance, if the start address is 0xca2 and the spacing"
1302 " is 2, then the second address is at 0xca4. Defaults"
1303 " to 1.");
1304 module_param_array(regsizes, int, &num_regsizes, 0);
1305 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1306 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1307 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1308 " the 8-bit IPMI register has to be read from a larger"
1309 " register.");
1310 module_param_array(regshifts, int, &num_regshifts, 0);
1311 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1312 " IPMI register, in bits. For instance, if the data"
1313 " is read from a 32-bit word and the IPMI data is in"
1314 " bit 8-15, then the shift would be 8");
1315 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1316 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1317 " the controller. Normally this is 0x20, but can be"
1318 " overridden by this parm. This is an array indexed"
1319 " by interface number.");
1320 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1321 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1322 " disabled(0). Normally the IPMI driver auto-detects"
1323 " this, but the value may be overridden by this parm.");
1324 module_param(unload_when_empty, int, 0);
1325 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1326 " specified or found, default is 1. Setting to 0"
1327 " is useful for hot add of devices using hotmod.");
1328 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1329 MODULE_PARM_DESC(kipmid_max_busy_us,
1330 "Max time (in microseconds) to busy-wait for IPMI data before"
1331 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1332 " if kipmid is using up a lot of CPU time.");
1333
1334
1335 static void std_irq_cleanup(struct smi_info *info)
1336 {
1337 if (info->si_type == SI_BT)
1338 /* Disable the interrupt in the BT interface. */
1339 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1340 free_irq(info->irq, info);
1341 }
1342
1343 static int std_irq_setup(struct smi_info *info)
1344 {
1345 int rv;
1346
1347 if (!info->irq)
1348 return 0;
1349
1350 if (info->si_type == SI_BT) {
1351 rv = request_irq(info->irq,
1352 si_bt_irq_handler,
1353 IRQF_SHARED | IRQF_DISABLED,
1354 DEVICE_NAME,
1355 info);
1356 if (!rv)
1357 /* Enable the interrupt in the BT interface. */
1358 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1359 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1360 } else
1361 rv = request_irq(info->irq,
1362 si_irq_handler,
1363 IRQF_SHARED | IRQF_DISABLED,
1364 DEVICE_NAME,
1365 info);
1366 if (rv) {
1367 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1368 " running polled\n",
1369 DEVICE_NAME, info->irq);
1370 info->irq = 0;
1371 } else {
1372 info->irq_cleanup = std_irq_cleanup;
1373 dev_info(info->dev, "Using irq %d\n", info->irq);
1374 }
1375
1376 return rv;
1377 }
1378
1379 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1380 {
1381 unsigned int addr = io->addr_data;
1382
1383 return inb(addr + (offset * io->regspacing));
1384 }
1385
1386 static void port_outb(struct si_sm_io *io, unsigned int offset,
1387 unsigned char b)
1388 {
1389 unsigned int addr = io->addr_data;
1390
1391 outb(b, addr + (offset * io->regspacing));
1392 }
1393
1394 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1395 {
1396 unsigned int addr = io->addr_data;
1397
1398 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1399 }
1400
1401 static void port_outw(struct si_sm_io *io, unsigned int offset,
1402 unsigned char b)
1403 {
1404 unsigned int addr = io->addr_data;
1405
1406 outw(b << io->regshift, addr + (offset * io->regspacing));
1407 }
1408
1409 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1410 {
1411 unsigned int addr = io->addr_data;
1412
1413 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1414 }
1415
1416 static void port_outl(struct si_sm_io *io, unsigned int offset,
1417 unsigned char b)
1418 {
1419 unsigned int addr = io->addr_data;
1420
1421 outl(b << io->regshift, addr+(offset * io->regspacing));
1422 }
1423
1424 static void port_cleanup(struct smi_info *info)
1425 {
1426 unsigned int addr = info->io.addr_data;
1427 int idx;
1428
1429 if (addr) {
1430 for (idx = 0; idx < info->io_size; idx++)
1431 release_region(addr + idx * info->io.regspacing,
1432 info->io.regsize);
1433 }
1434 }
1435
1436 static int port_setup(struct smi_info *info)
1437 {
1438 unsigned int addr = info->io.addr_data;
1439 int idx;
1440
1441 if (!addr)
1442 return -ENODEV;
1443
1444 info->io_cleanup = port_cleanup;
1445
1446 /*
1447 * Figure out the actual inb/inw/inl/etc routine to use based
1448 * upon the register size.
1449 */
1450 switch (info->io.regsize) {
1451 case 1:
1452 info->io.inputb = port_inb;
1453 info->io.outputb = port_outb;
1454 break;
1455 case 2:
1456 info->io.inputb = port_inw;
1457 info->io.outputb = port_outw;
1458 break;
1459 case 4:
1460 info->io.inputb = port_inl;
1461 info->io.outputb = port_outl;
1462 break;
1463 default:
1464 dev_warn(info->dev, "Invalid register size: %d\n",
1465 info->io.regsize);
1466 return -EINVAL;
1467 }
1468
1469 /*
1470 * Some BIOSes reserve disjoint I/O regions in their ACPI
1471 * tables. This causes problems when trying to register the
1472 * entire I/O region. Therefore we must register each I/O
1473 * port separately.
1474 */
1475 for (idx = 0; idx < info->io_size; idx++) {
1476 if (request_region(addr + idx * info->io.regspacing,
1477 info->io.regsize, DEVICE_NAME) == NULL) {
1478 /* Undo allocations */
1479 while (idx--) {
1480 release_region(addr + idx * info->io.regspacing,
1481 info->io.regsize);
1482 }
1483 return -EIO;
1484 }
1485 }
1486 return 0;
1487 }
1488
1489 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1490 {
1491 return readb((io->addr)+(offset * io->regspacing));
1492 }
1493
1494 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1495 unsigned char b)
1496 {
1497 writeb(b, (io->addr)+(offset * io->regspacing));
1498 }
1499
1500 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1501 {
1502 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503 & 0xff;
1504 }
1505
1506 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1507 unsigned char b)
1508 {
1509 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511
1512 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1513 {
1514 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1515 & 0xff;
1516 }
1517
1518 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1519 unsigned char b)
1520 {
1521 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1522 }
1523
1524 #ifdef readq
1525 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1526 {
1527 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1528 & 0xff;
1529 }
1530
1531 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1532 unsigned char b)
1533 {
1534 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1535 }
1536 #endif
1537
1538 static void mem_cleanup(struct smi_info *info)
1539 {
1540 unsigned long addr = info->io.addr_data;
1541 int mapsize;
1542
1543 if (info->io.addr) {
1544 iounmap(info->io.addr);
1545
1546 mapsize = ((info->io_size * info->io.regspacing)
1547 - (info->io.regspacing - info->io.regsize));
1548
1549 release_mem_region(addr, mapsize);
1550 }
1551 }
1552
1553 static int mem_setup(struct smi_info *info)
1554 {
1555 unsigned long addr = info->io.addr_data;
1556 int mapsize;
1557
1558 if (!addr)
1559 return -ENODEV;
1560
1561 info->io_cleanup = mem_cleanup;
1562
1563 /*
1564 * Figure out the actual readb/readw/readl/etc routine to use based
1565 * upon the register size.
1566 */
1567 switch (info->io.regsize) {
1568 case 1:
1569 info->io.inputb = intf_mem_inb;
1570 info->io.outputb = intf_mem_outb;
1571 break;
1572 case 2:
1573 info->io.inputb = intf_mem_inw;
1574 info->io.outputb = intf_mem_outw;
1575 break;
1576 case 4:
1577 info->io.inputb = intf_mem_inl;
1578 info->io.outputb = intf_mem_outl;
1579 break;
1580 #ifdef readq
1581 case 8:
1582 info->io.inputb = mem_inq;
1583 info->io.outputb = mem_outq;
1584 break;
1585 #endif
1586 default:
1587 dev_warn(info->dev, "Invalid register size: %d\n",
1588 info->io.regsize);
1589 return -EINVAL;
1590 }
1591
1592 /*
1593 * Calculate the total amount of memory to claim. This is an
1594 * unusual looking calculation, but it avoids claiming any
1595 * more memory than it has to. It will claim everything
1596 * between the first address to the end of the last full
1597 * register.
1598 */
1599 mapsize = ((info->io_size * info->io.regspacing)
1600 - (info->io.regspacing - info->io.regsize));
1601
1602 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1603 return -EIO;
1604
1605 info->io.addr = ioremap(addr, mapsize);
1606 if (info->io.addr == NULL) {
1607 release_mem_region(addr, mapsize);
1608 return -EIO;
1609 }
1610 return 0;
1611 }
1612
1613 /*
1614 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1615 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1616 * Options are:
1617 * rsp=<regspacing>
1618 * rsi=<regsize>
1619 * rsh=<regshift>
1620 * irq=<irq>
1621 * ipmb=<ipmb addr>
1622 */
1623 enum hotmod_op { HM_ADD, HM_REMOVE };
1624 struct hotmod_vals {
1625 char *name;
1626 int val;
1627 };
1628 static struct hotmod_vals hotmod_ops[] = {
1629 { "add", HM_ADD },
1630 { "remove", HM_REMOVE },
1631 { NULL }
1632 };
1633 static struct hotmod_vals hotmod_si[] = {
1634 { "kcs", SI_KCS },
1635 { "smic", SI_SMIC },
1636 { "bt", SI_BT },
1637 { NULL }
1638 };
1639 static struct hotmod_vals hotmod_as[] = {
1640 { "mem", IPMI_MEM_ADDR_SPACE },
1641 { "i/o", IPMI_IO_ADDR_SPACE },
1642 { NULL }
1643 };
1644
1645 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1646 {
1647 char *s;
1648 int i;
1649
1650 s = strchr(*curr, ',');
1651 if (!s) {
1652 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1653 return -EINVAL;
1654 }
1655 *s = '\0';
1656 s++;
1657 for (i = 0; hotmod_ops[i].name; i++) {
1658 if (strcmp(*curr, v[i].name) == 0) {
1659 *val = v[i].val;
1660 *curr = s;
1661 return 0;
1662 }
1663 }
1664
1665 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1666 return -EINVAL;
1667 }
1668
1669 static int check_hotmod_int_op(const char *curr, const char *option,
1670 const char *name, int *val)
1671 {
1672 char *n;
1673
1674 if (strcmp(curr, name) == 0) {
1675 if (!option) {
1676 printk(KERN_WARNING PFX
1677 "No option given for '%s'\n",
1678 curr);
1679 return -EINVAL;
1680 }
1681 *val = simple_strtoul(option, &n, 0);
1682 if ((*n != '\0') || (*option == '\0')) {
1683 printk(KERN_WARNING PFX
1684 "Bad option given for '%s'\n",
1685 curr);
1686 return -EINVAL;
1687 }
1688 return 1;
1689 }
1690 return 0;
1691 }
1692
1693 static struct smi_info *smi_info_alloc(void)
1694 {
1695 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1696
1697 if (info)
1698 spin_lock_init(&info->si_lock);
1699 return info;
1700 }
1701
1702 static int hotmod_handler(const char *val, struct kernel_param *kp)
1703 {
1704 char *str = kstrdup(val, GFP_KERNEL);
1705 int rv;
1706 char *next, *curr, *s, *n, *o;
1707 enum hotmod_op op;
1708 enum si_type si_type;
1709 int addr_space;
1710 unsigned long addr;
1711 int regspacing;
1712 int regsize;
1713 int regshift;
1714 int irq;
1715 int ipmb;
1716 int ival;
1717 int len;
1718 struct smi_info *info;
1719
1720 if (!str)
1721 return -ENOMEM;
1722
1723 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1724 len = strlen(str);
1725 ival = len - 1;
1726 while ((ival >= 0) && isspace(str[ival])) {
1727 str[ival] = '\0';
1728 ival--;
1729 }
1730
1731 for (curr = str; curr; curr = next) {
1732 regspacing = 1;
1733 regsize = 1;
1734 regshift = 0;
1735 irq = 0;
1736 ipmb = 0; /* Choose the default if not specified */
1737
1738 next = strchr(curr, ':');
1739 if (next) {
1740 *next = '\0';
1741 next++;
1742 }
1743
1744 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1745 if (rv)
1746 break;
1747 op = ival;
1748
1749 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1750 if (rv)
1751 break;
1752 si_type = ival;
1753
1754 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1755 if (rv)
1756 break;
1757
1758 s = strchr(curr, ',');
1759 if (s) {
1760 *s = '\0';
1761 s++;
1762 }
1763 addr = simple_strtoul(curr, &n, 0);
1764 if ((*n != '\0') || (*curr == '\0')) {
1765 printk(KERN_WARNING PFX "Invalid hotmod address"
1766 " '%s'\n", curr);
1767 break;
1768 }
1769
1770 while (s) {
1771 curr = s;
1772 s = strchr(curr, ',');
1773 if (s) {
1774 *s = '\0';
1775 s++;
1776 }
1777 o = strchr(curr, '=');
1778 if (o) {
1779 *o = '\0';
1780 o++;
1781 }
1782 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1783 if (rv < 0)
1784 goto out;
1785 else if (rv)
1786 continue;
1787 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1788 if (rv < 0)
1789 goto out;
1790 else if (rv)
1791 continue;
1792 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1793 if (rv < 0)
1794 goto out;
1795 else if (rv)
1796 continue;
1797 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1798 if (rv < 0)
1799 goto out;
1800 else if (rv)
1801 continue;
1802 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1803 if (rv < 0)
1804 goto out;
1805 else if (rv)
1806 continue;
1807
1808 rv = -EINVAL;
1809 printk(KERN_WARNING PFX
1810 "Invalid hotmod option '%s'\n",
1811 curr);
1812 goto out;
1813 }
1814
1815 if (op == HM_ADD) {
1816 info = smi_info_alloc();
1817 if (!info) {
1818 rv = -ENOMEM;
1819 goto out;
1820 }
1821
1822 info->addr_source = SI_HOTMOD;
1823 info->si_type = si_type;
1824 info->io.addr_data = addr;
1825 info->io.addr_type = addr_space;
1826 if (addr_space == IPMI_MEM_ADDR_SPACE)
1827 info->io_setup = mem_setup;
1828 else
1829 info->io_setup = port_setup;
1830
1831 info->io.addr = NULL;
1832 info->io.regspacing = regspacing;
1833 if (!info->io.regspacing)
1834 info->io.regspacing = DEFAULT_REGSPACING;
1835 info->io.regsize = regsize;
1836 if (!info->io.regsize)
1837 info->io.regsize = DEFAULT_REGSPACING;
1838 info->io.regshift = regshift;
1839 info->irq = irq;
1840 if (info->irq)
1841 info->irq_setup = std_irq_setup;
1842 info->slave_addr = ipmb;
1843
1844 if (!add_smi(info)) {
1845 if (try_smi_init(info))
1846 cleanup_one_si(info);
1847 } else {
1848 kfree(info);
1849 }
1850 } else {
1851 /* remove */
1852 struct smi_info *e, *tmp_e;
1853
1854 mutex_lock(&smi_infos_lock);
1855 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1856 if (e->io.addr_type != addr_space)
1857 continue;
1858 if (e->si_type != si_type)
1859 continue;
1860 if (e->io.addr_data == addr)
1861 cleanup_one_si(e);
1862 }
1863 mutex_unlock(&smi_infos_lock);
1864 }
1865 }
1866 rv = len;
1867 out:
1868 kfree(str);
1869 return rv;
1870 }
1871
1872 static int hardcode_find_bmc(void)
1873 {
1874 int ret = -ENODEV;
1875 int i;
1876 struct smi_info *info;
1877
1878 for (i = 0; i < SI_MAX_PARMS; i++) {
1879 if (!ports[i] && !addrs[i])
1880 continue;
1881
1882 info = smi_info_alloc();
1883 if (!info)
1884 return -ENOMEM;
1885
1886 info->addr_source = SI_HARDCODED;
1887 printk(KERN_INFO PFX "probing via hardcoded address\n");
1888
1889 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1890 info->si_type = SI_KCS;
1891 } else if (strcmp(si_type[i], "smic") == 0) {
1892 info->si_type = SI_SMIC;
1893 } else if (strcmp(si_type[i], "bt") == 0) {
1894 info->si_type = SI_BT;
1895 } else {
1896 printk(KERN_WARNING PFX "Interface type specified "
1897 "for interface %d, was invalid: %s\n",
1898 i, si_type[i]);
1899 kfree(info);
1900 continue;
1901 }
1902
1903 if (ports[i]) {
1904 /* An I/O port */
1905 info->io_setup = port_setup;
1906 info->io.addr_data = ports[i];
1907 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1908 } else if (addrs[i]) {
1909 /* A memory port */
1910 info->io_setup = mem_setup;
1911 info->io.addr_data = addrs[i];
1912 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1913 } else {
1914 printk(KERN_WARNING PFX "Interface type specified "
1915 "for interface %d, but port and address were "
1916 "not set or set to zero.\n", i);
1917 kfree(info);
1918 continue;
1919 }
1920
1921 info->io.addr = NULL;
1922 info->io.regspacing = regspacings[i];
1923 if (!info->io.regspacing)
1924 info->io.regspacing = DEFAULT_REGSPACING;
1925 info->io.regsize = regsizes[i];
1926 if (!info->io.regsize)
1927 info->io.regsize = DEFAULT_REGSPACING;
1928 info->io.regshift = regshifts[i];
1929 info->irq = irqs[i];
1930 if (info->irq)
1931 info->irq_setup = std_irq_setup;
1932 info->slave_addr = slave_addrs[i];
1933
1934 if (!add_smi(info)) {
1935 if (try_smi_init(info))
1936 cleanup_one_si(info);
1937 ret = 0;
1938 } else {
1939 kfree(info);
1940 }
1941 }
1942 return ret;
1943 }
1944
1945 #ifdef CONFIG_ACPI
1946
1947 #include <linux/acpi.h>
1948
1949 /*
1950 * Once we get an ACPI failure, we don't try any more, because we go
1951 * through the tables sequentially. Once we don't find a table, there
1952 * are no more.
1953 */
1954 static int acpi_failure;
1955
1956 /* For GPE-type interrupts. */
1957 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1958 u32 gpe_number, void *context)
1959 {
1960 struct smi_info *smi_info = context;
1961 unsigned long flags;
1962 #ifdef DEBUG_TIMING
1963 struct timeval t;
1964 #endif
1965
1966 spin_lock_irqsave(&(smi_info->si_lock), flags);
1967
1968 smi_inc_stat(smi_info, interrupts);
1969
1970 #ifdef DEBUG_TIMING
1971 do_gettimeofday(&t);
1972 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1973 #endif
1974 smi_event_handler(smi_info, 0);
1975 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1976
1977 return ACPI_INTERRUPT_HANDLED;
1978 }
1979
1980 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1981 {
1982 if (!info->irq)
1983 return;
1984
1985 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1986 }
1987
1988 static int acpi_gpe_irq_setup(struct smi_info *info)
1989 {
1990 acpi_status status;
1991
1992 if (!info->irq)
1993 return 0;
1994
1995 /* FIXME - is level triggered right? */
1996 status = acpi_install_gpe_handler(NULL,
1997 info->irq,
1998 ACPI_GPE_LEVEL_TRIGGERED,
1999 &ipmi_acpi_gpe,
2000 info);
2001 if (status != AE_OK) {
2002 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2003 " running polled\n", DEVICE_NAME, info->irq);
2004 info->irq = 0;
2005 return -EINVAL;
2006 } else {
2007 info->irq_cleanup = acpi_gpe_irq_cleanup;
2008 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2009 return 0;
2010 }
2011 }
2012
2013 /*
2014 * Defined at
2015 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2016 */
2017 struct SPMITable {
2018 s8 Signature[4];
2019 u32 Length;
2020 u8 Revision;
2021 u8 Checksum;
2022 s8 OEMID[6];
2023 s8 OEMTableID[8];
2024 s8 OEMRevision[4];
2025 s8 CreatorID[4];
2026 s8 CreatorRevision[4];
2027 u8 InterfaceType;
2028 u8 IPMIlegacy;
2029 s16 SpecificationRevision;
2030
2031 /*
2032 * Bit 0 - SCI interrupt supported
2033 * Bit 1 - I/O APIC/SAPIC
2034 */
2035 u8 InterruptType;
2036
2037 /*
2038 * If bit 0 of InterruptType is set, then this is the SCI
2039 * interrupt in the GPEx_STS register.
2040 */
2041 u8 GPE;
2042
2043 s16 Reserved;
2044
2045 /*
2046 * If bit 1 of InterruptType is set, then this is the I/O
2047 * APIC/SAPIC interrupt.
2048 */
2049 u32 GlobalSystemInterrupt;
2050
2051 /* The actual register address. */
2052 struct acpi_generic_address addr;
2053
2054 u8 UID[4];
2055
2056 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2057 };
2058
2059 static int try_init_spmi(struct SPMITable *spmi)
2060 {
2061 struct smi_info *info;
2062
2063 if (spmi->IPMIlegacy != 1) {
2064 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2065 return -ENODEV;
2066 }
2067
2068 info = smi_info_alloc();
2069 if (!info) {
2070 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2071 return -ENOMEM;
2072 }
2073
2074 info->addr_source = SI_SPMI;
2075 printk(KERN_INFO PFX "probing via SPMI\n");
2076
2077 /* Figure out the interface type. */
2078 switch (spmi->InterfaceType) {
2079 case 1: /* KCS */
2080 info->si_type = SI_KCS;
2081 break;
2082 case 2: /* SMIC */
2083 info->si_type = SI_SMIC;
2084 break;
2085 case 3: /* BT */
2086 info->si_type = SI_BT;
2087 break;
2088 default:
2089 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2090 spmi->InterfaceType);
2091 kfree(info);
2092 return -EIO;
2093 }
2094
2095 if (spmi->InterruptType & 1) {
2096 /* We've got a GPE interrupt. */
2097 info->irq = spmi->GPE;
2098 info->irq_setup = acpi_gpe_irq_setup;
2099 } else if (spmi->InterruptType & 2) {
2100 /* We've got an APIC/SAPIC interrupt. */
2101 info->irq = spmi->GlobalSystemInterrupt;
2102 info->irq_setup = std_irq_setup;
2103 } else {
2104 /* Use the default interrupt setting. */
2105 info->irq = 0;
2106 info->irq_setup = NULL;
2107 }
2108
2109 if (spmi->addr.bit_width) {
2110 /* A (hopefully) properly formed register bit width. */
2111 info->io.regspacing = spmi->addr.bit_width / 8;
2112 } else {
2113 info->io.regspacing = DEFAULT_REGSPACING;
2114 }
2115 info->io.regsize = info->io.regspacing;
2116 info->io.regshift = spmi->addr.bit_offset;
2117
2118 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2119 info->io_setup = mem_setup;
2120 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2121 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2122 info->io_setup = port_setup;
2123 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2124 } else {
2125 kfree(info);
2126 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2127 return -EIO;
2128 }
2129 info->io.addr_data = spmi->addr.address;
2130
2131 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2132 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2133 info->io.addr_data, info->io.regsize, info->io.regspacing,
2134 info->irq);
2135
2136 if (add_smi(info))
2137 kfree(info);
2138
2139 return 0;
2140 }
2141
2142 static void spmi_find_bmc(void)
2143 {
2144 acpi_status status;
2145 struct SPMITable *spmi;
2146 int i;
2147
2148 if (acpi_disabled)
2149 return;
2150
2151 if (acpi_failure)
2152 return;
2153
2154 for (i = 0; ; i++) {
2155 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2156 (struct acpi_table_header **)&spmi);
2157 if (status != AE_OK)
2158 return;
2159
2160 try_init_spmi(spmi);
2161 }
2162 }
2163
2164 static int ipmi_pnp_probe(struct pnp_dev *dev,
2165 const struct pnp_device_id *dev_id)
2166 {
2167 struct acpi_device *acpi_dev;
2168 struct smi_info *info;
2169 struct resource *res, *res_second;
2170 acpi_handle handle;
2171 acpi_status status;
2172 unsigned long long tmp;
2173
2174 acpi_dev = pnp_acpi_device(dev);
2175 if (!acpi_dev)
2176 return -ENODEV;
2177
2178 info = smi_info_alloc();
2179 if (!info)
2180 return -ENOMEM;
2181
2182 info->addr_source = SI_ACPI;
2183 printk(KERN_INFO PFX "probing via ACPI\n");
2184
2185 handle = acpi_dev->handle;
2186 info->addr_info.acpi_info.acpi_handle = handle;
2187
2188 /* _IFT tells us the interface type: KCS, BT, etc */
2189 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2190 if (ACPI_FAILURE(status))
2191 goto err_free;
2192
2193 switch (tmp) {
2194 case 1:
2195 info->si_type = SI_KCS;
2196 break;
2197 case 2:
2198 info->si_type = SI_SMIC;
2199 break;
2200 case 3:
2201 info->si_type = SI_BT;
2202 break;
2203 default:
2204 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2205 goto err_free;
2206 }
2207
2208 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2209 if (res) {
2210 info->io_setup = port_setup;
2211 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2212 } else {
2213 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2214 if (res) {
2215 info->io_setup = mem_setup;
2216 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2217 }
2218 }
2219 if (!res) {
2220 dev_err(&dev->dev, "no I/O or memory address\n");
2221 goto err_free;
2222 }
2223 info->io.addr_data = res->start;
2224
2225 info->io.regspacing = DEFAULT_REGSPACING;
2226 res_second = pnp_get_resource(dev,
2227 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2228 IORESOURCE_IO : IORESOURCE_MEM,
2229 1);
2230 if (res_second) {
2231 if (res_second->start > info->io.addr_data)
2232 info->io.regspacing = res_second->start - info->io.addr_data;
2233 }
2234 info->io.regsize = DEFAULT_REGSPACING;
2235 info->io.regshift = 0;
2236
2237 /* If _GPE exists, use it; otherwise use standard interrupts */
2238 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2239 if (ACPI_SUCCESS(status)) {
2240 info->irq = tmp;
2241 info->irq_setup = acpi_gpe_irq_setup;
2242 } else if (pnp_irq_valid(dev, 0)) {
2243 info->irq = pnp_irq(dev, 0);
2244 info->irq_setup = std_irq_setup;
2245 }
2246
2247 info->dev = &dev->dev;
2248 pnp_set_drvdata(dev, info);
2249
2250 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2251 res, info->io.regsize, info->io.regspacing,
2252 info->irq);
2253
2254 if (add_smi(info))
2255 goto err_free;
2256
2257 return 0;
2258
2259 err_free:
2260 kfree(info);
2261 return -EINVAL;
2262 }
2263
2264 static void ipmi_pnp_remove(struct pnp_dev *dev)
2265 {
2266 struct smi_info *info = pnp_get_drvdata(dev);
2267
2268 cleanup_one_si(info);
2269 }
2270
2271 static const struct pnp_device_id pnp_dev_table[] = {
2272 {"IPI0001", 0},
2273 {"", 0},
2274 };
2275
2276 static struct pnp_driver ipmi_pnp_driver = {
2277 .name = DEVICE_NAME,
2278 .probe = ipmi_pnp_probe,
2279 .remove = ipmi_pnp_remove,
2280 .id_table = pnp_dev_table,
2281 };
2282 #endif
2283
2284 #ifdef CONFIG_DMI
2285 struct dmi_ipmi_data {
2286 u8 type;
2287 u8 addr_space;
2288 unsigned long base_addr;
2289 u8 irq;
2290 u8 offset;
2291 u8 slave_addr;
2292 };
2293
2294 static int decode_dmi(const struct dmi_header *dm,
2295 struct dmi_ipmi_data *dmi)
2296 {
2297 const u8 *data = (const u8 *)dm;
2298 unsigned long base_addr;
2299 u8 reg_spacing;
2300 u8 len = dm->length;
2301
2302 dmi->type = data[4];
2303
2304 memcpy(&base_addr, data+8, sizeof(unsigned long));
2305 if (len >= 0x11) {
2306 if (base_addr & 1) {
2307 /* I/O */
2308 base_addr &= 0xFFFE;
2309 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2310 } else
2311 /* Memory */
2312 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2313
2314 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2315 is odd. */
2316 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2317
2318 dmi->irq = data[0x11];
2319
2320 /* The top two bits of byte 0x10 hold the register spacing. */
2321 reg_spacing = (data[0x10] & 0xC0) >> 6;
2322 switch (reg_spacing) {
2323 case 0x00: /* Byte boundaries */
2324 dmi->offset = 1;
2325 break;
2326 case 0x01: /* 32-bit boundaries */
2327 dmi->offset = 4;
2328 break;
2329 case 0x02: /* 16-byte boundaries */
2330 dmi->offset = 16;
2331 break;
2332 default:
2333 /* Some other interface, just ignore it. */
2334 return -EIO;
2335 }
2336 } else {
2337 /* Old DMI spec. */
2338 /*
2339 * Note that technically, the lower bit of the base
2340 * address should be 1 if the address is I/O and 0 if
2341 * the address is in memory. So many systems get that
2342 * wrong (and all that I have seen are I/O) so we just
2343 * ignore that bit and assume I/O. Systems that use
2344 * memory should use the newer spec, anyway.
2345 */
2346 dmi->base_addr = base_addr & 0xfffe;
2347 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2348 dmi->offset = 1;
2349 }
2350
2351 dmi->slave_addr = data[6];
2352
2353 return 0;
2354 }
2355
2356 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2357 {
2358 struct smi_info *info;
2359
2360 info = smi_info_alloc();
2361 if (!info) {
2362 printk(KERN_ERR PFX "Could not allocate SI data\n");
2363 return;
2364 }
2365
2366 info->addr_source = SI_SMBIOS;
2367 printk(KERN_INFO PFX "probing via SMBIOS\n");
2368
2369 switch (ipmi_data->type) {
2370 case 0x01: /* KCS */
2371 info->si_type = SI_KCS;
2372 break;
2373 case 0x02: /* SMIC */
2374 info->si_type = SI_SMIC;
2375 break;
2376 case 0x03: /* BT */
2377 info->si_type = SI_BT;
2378 break;
2379 default:
2380 kfree(info);
2381 return;
2382 }
2383
2384 switch (ipmi_data->addr_space) {
2385 case IPMI_MEM_ADDR_SPACE:
2386 info->io_setup = mem_setup;
2387 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2388 break;
2389
2390 case IPMI_IO_ADDR_SPACE:
2391 info->io_setup = port_setup;
2392 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2393 break;
2394
2395 default:
2396 kfree(info);
2397 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2398 ipmi_data->addr_space);
2399 return;
2400 }
2401 info->io.addr_data = ipmi_data->base_addr;
2402
2403 info->io.regspacing = ipmi_data->offset;
2404 if (!info->io.regspacing)
2405 info->io.regspacing = DEFAULT_REGSPACING;
2406 info->io.regsize = DEFAULT_REGSPACING;
2407 info->io.regshift = 0;
2408
2409 info->slave_addr = ipmi_data->slave_addr;
2410
2411 info->irq = ipmi_data->irq;
2412 if (info->irq)
2413 info->irq_setup = std_irq_setup;
2414
2415 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2416 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2417 info->io.addr_data, info->io.regsize, info->io.regspacing,
2418 info->irq);
2419
2420 if (add_smi(info))
2421 kfree(info);
2422 }
2423
2424 static void dmi_find_bmc(void)
2425 {
2426 const struct dmi_device *dev = NULL;
2427 struct dmi_ipmi_data data;
2428 int rv;
2429
2430 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2431 memset(&data, 0, sizeof(data));
2432 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2433 &data);
2434 if (!rv)
2435 try_init_dmi(&data);
2436 }
2437 }
2438 #endif /* CONFIG_DMI */
2439
2440 #ifdef CONFIG_PCI
2441
2442 #define PCI_ERMC_CLASSCODE 0x0C0700
2443 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2444 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2445 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2446 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2447 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2448
2449 #define PCI_HP_VENDOR_ID 0x103C
2450 #define PCI_MMC_DEVICE_ID 0x121A
2451 #define PCI_MMC_ADDR_CW 0x10
2452
2453 static void ipmi_pci_cleanup(struct smi_info *info)
2454 {
2455 struct pci_dev *pdev = info->addr_source_data;
2456
2457 pci_disable_device(pdev);
2458 }
2459
2460 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2461 {
2462 if (info->si_type == SI_KCS) {
2463 unsigned char status;
2464 int regspacing;
2465
2466 info->io.regsize = DEFAULT_REGSIZE;
2467 info->io.regshift = 0;
2468 info->io_size = 2;
2469 info->handlers = &kcs_smi_handlers;
2470
2471 /* detect 1, 4, 16byte spacing */
2472 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2473 info->io.regspacing = regspacing;
2474 if (info->io_setup(info)) {
2475 dev_err(info->dev,
2476 "Could not setup I/O space\n");
2477 return DEFAULT_REGSPACING;
2478 }
2479 /* write invalid cmd */
2480 info->io.outputb(&info->io, 1, 0x10);
2481 /* read status back */
2482 status = info->io.inputb(&info->io, 1);
2483 info->io_cleanup(info);
2484 if (status)
2485 return regspacing;
2486 regspacing *= 4;
2487 }
2488 }
2489 return DEFAULT_REGSPACING;
2490 }
2491
2492 static int ipmi_pci_probe(struct pci_dev *pdev,
2493 const struct pci_device_id *ent)
2494 {
2495 int rv;
2496 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2497 struct smi_info *info;
2498
2499 info = smi_info_alloc();
2500 if (!info)
2501 return -ENOMEM;
2502
2503 info->addr_source = SI_PCI;
2504 dev_info(&pdev->dev, "probing via PCI");
2505
2506 switch (class_type) {
2507 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2508 info->si_type = SI_SMIC;
2509 break;
2510
2511 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2512 info->si_type = SI_KCS;
2513 break;
2514
2515 case PCI_ERMC_CLASSCODE_TYPE_BT:
2516 info->si_type = SI_BT;
2517 break;
2518
2519 default:
2520 kfree(info);
2521 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2522 return -ENOMEM;
2523 }
2524
2525 rv = pci_enable_device(pdev);
2526 if (rv) {
2527 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2528 kfree(info);
2529 return rv;
2530 }
2531
2532 info->addr_source_cleanup = ipmi_pci_cleanup;
2533 info->addr_source_data = pdev;
2534
2535 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2536 info->io_setup = port_setup;
2537 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2538 } else {
2539 info->io_setup = mem_setup;
2540 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2541 }
2542 info->io.addr_data = pci_resource_start(pdev, 0);
2543
2544 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2545 info->io.regsize = DEFAULT_REGSIZE;
2546 info->io.regshift = 0;
2547
2548 info->irq = pdev->irq;
2549 if (info->irq)
2550 info->irq_setup = std_irq_setup;
2551
2552 info->dev = &pdev->dev;
2553 pci_set_drvdata(pdev, info);
2554
2555 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2556 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2557 info->irq);
2558
2559 if (add_smi(info))
2560 kfree(info);
2561
2562 return 0;
2563 }
2564
2565 static void ipmi_pci_remove(struct pci_dev *pdev)
2566 {
2567 struct smi_info *info = pci_get_drvdata(pdev);
2568 cleanup_one_si(info);
2569 }
2570
2571 static struct pci_device_id ipmi_pci_devices[] = {
2572 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2574 { 0, }
2575 };
2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2577
2578 static struct pci_driver ipmi_pci_driver = {
2579 .name = DEVICE_NAME,
2580 .id_table = ipmi_pci_devices,
2581 .probe = ipmi_pci_probe,
2582 .remove = ipmi_pci_remove,
2583 };
2584 #endif /* CONFIG_PCI */
2585
2586 static struct of_device_id ipmi_match[];
2587 static int ipmi_probe(struct platform_device *dev)
2588 {
2589 #ifdef CONFIG_OF
2590 const struct of_device_id *match;
2591 struct smi_info *info;
2592 struct resource resource;
2593 const __be32 *regsize, *regspacing, *regshift;
2594 struct device_node *np = dev->dev.of_node;
2595 int ret;
2596 int proplen;
2597
2598 dev_info(&dev->dev, "probing via device tree\n");
2599
2600 match = of_match_device(ipmi_match, &dev->dev);
2601 if (!match)
2602 return -EINVAL;
2603
2604 ret = of_address_to_resource(np, 0, &resource);
2605 if (ret) {
2606 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2607 return ret;
2608 }
2609
2610 regsize = of_get_property(np, "reg-size", &proplen);
2611 if (regsize && proplen != 4) {
2612 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2613 return -EINVAL;
2614 }
2615
2616 regspacing = of_get_property(np, "reg-spacing", &proplen);
2617 if (regspacing && proplen != 4) {
2618 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2619 return -EINVAL;
2620 }
2621
2622 regshift = of_get_property(np, "reg-shift", &proplen);
2623 if (regshift && proplen != 4) {
2624 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2625 return -EINVAL;
2626 }
2627
2628 info = smi_info_alloc();
2629
2630 if (!info) {
2631 dev_err(&dev->dev,
2632 "could not allocate memory for OF probe\n");
2633 return -ENOMEM;
2634 }
2635
2636 info->si_type = (enum si_type) match->data;
2637 info->addr_source = SI_DEVICETREE;
2638 info->irq_setup = std_irq_setup;
2639
2640 if (resource.flags & IORESOURCE_IO) {
2641 info->io_setup = port_setup;
2642 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2643 } else {
2644 info->io_setup = mem_setup;
2645 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2646 }
2647
2648 info->io.addr_data = resource.start;
2649
2650 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2651 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2652 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2653
2654 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2655 info->dev = &dev->dev;
2656
2657 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2658 info->io.addr_data, info->io.regsize, info->io.regspacing,
2659 info->irq);
2660
2661 dev_set_drvdata(&dev->dev, info);
2662
2663 if (add_smi(info)) {
2664 kfree(info);
2665 return -EBUSY;
2666 }
2667 #endif
2668 return 0;
2669 }
2670
2671 static int ipmi_remove(struct platform_device *dev)
2672 {
2673 #ifdef CONFIG_OF
2674 cleanup_one_si(dev_get_drvdata(&dev->dev));
2675 #endif
2676 return 0;
2677 }
2678
2679 static struct of_device_id ipmi_match[] =
2680 {
2681 { .type = "ipmi", .compatible = "ipmi-kcs",
2682 .data = (void *)(unsigned long) SI_KCS },
2683 { .type = "ipmi", .compatible = "ipmi-smic",
2684 .data = (void *)(unsigned long) SI_SMIC },
2685 { .type = "ipmi", .compatible = "ipmi-bt",
2686 .data = (void *)(unsigned long) SI_BT },
2687 {},
2688 };
2689
2690 static struct platform_driver ipmi_driver = {
2691 .driver = {
2692 .name = DEVICE_NAME,
2693 .owner = THIS_MODULE,
2694 .of_match_table = ipmi_match,
2695 },
2696 .probe = ipmi_probe,
2697 .remove = ipmi_remove,
2698 };
2699
2700 static int wait_for_msg_done(struct smi_info *smi_info)
2701 {
2702 enum si_sm_result smi_result;
2703
2704 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2705 for (;;) {
2706 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2707 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2708 schedule_timeout_uninterruptible(1);
2709 smi_result = smi_info->handlers->event(
2710 smi_info->si_sm, 100);
2711 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2712 smi_result = smi_info->handlers->event(
2713 smi_info->si_sm, 0);
2714 } else
2715 break;
2716 }
2717 if (smi_result == SI_SM_HOSED)
2718 /*
2719 * We couldn't get the state machine to run, so whatever's at
2720 * the port is probably not an IPMI SMI interface.
2721 */
2722 return -ENODEV;
2723
2724 return 0;
2725 }
2726
2727 static int try_get_dev_id(struct smi_info *smi_info)
2728 {
2729 unsigned char msg[2];
2730 unsigned char *resp;
2731 unsigned long resp_len;
2732 int rv = 0;
2733
2734 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2735 if (!resp)
2736 return -ENOMEM;
2737
2738 /*
2739 * Do a Get Device ID command, since it comes back with some
2740 * useful info.
2741 */
2742 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2743 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2744 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2745
2746 rv = wait_for_msg_done(smi_info);
2747 if (rv)
2748 goto out;
2749
2750 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2751 resp, IPMI_MAX_MSG_LENGTH);
2752
2753 /* Check and record info from the get device id, in case we need it. */
2754 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2755
2756 out:
2757 kfree(resp);
2758 return rv;
2759 }
2760
2761 static int try_enable_event_buffer(struct smi_info *smi_info)
2762 {
2763 unsigned char msg[3];
2764 unsigned char *resp;
2765 unsigned long resp_len;
2766 int rv = 0;
2767
2768 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2769 if (!resp)
2770 return -ENOMEM;
2771
2772 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2773 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2774 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2775
2776 rv = wait_for_msg_done(smi_info);
2777 if (rv) {
2778 printk(KERN_WARNING PFX "Error getting response from get"
2779 " global enables command, the event buffer is not"
2780 " enabled.\n");
2781 goto out;
2782 }
2783
2784 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2785 resp, IPMI_MAX_MSG_LENGTH);
2786
2787 if (resp_len < 4 ||
2788 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2789 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2790 resp[2] != 0) {
2791 printk(KERN_WARNING PFX "Invalid return from get global"
2792 " enables command, cannot enable the event buffer.\n");
2793 rv = -EINVAL;
2794 goto out;
2795 }
2796
2797 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2798 /* buffer is already enabled, nothing to do. */
2799 goto out;
2800
2801 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2802 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2803 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2804 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2805
2806 rv = wait_for_msg_done(smi_info);
2807 if (rv) {
2808 printk(KERN_WARNING PFX "Error getting response from set"
2809 " global, enables command, the event buffer is not"
2810 " enabled.\n");
2811 goto out;
2812 }
2813
2814 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2815 resp, IPMI_MAX_MSG_LENGTH);
2816
2817 if (resp_len < 3 ||
2818 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2819 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2820 printk(KERN_WARNING PFX "Invalid return from get global,"
2821 "enables command, not enable the event buffer.\n");
2822 rv = -EINVAL;
2823 goto out;
2824 }
2825
2826 if (resp[2] != 0)
2827 /*
2828 * An error when setting the event buffer bit means
2829 * that the event buffer is not supported.
2830 */
2831 rv = -ENOENT;
2832 out:
2833 kfree(resp);
2834 return rv;
2835 }
2836
2837 static int smi_type_proc_show(struct seq_file *m, void *v)
2838 {
2839 struct smi_info *smi = m->private;
2840
2841 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2842 }
2843
2844 static int smi_type_proc_open(struct inode *inode, struct file *file)
2845 {
2846 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2847 }
2848
2849 static const struct file_operations smi_type_proc_ops = {
2850 .open = smi_type_proc_open,
2851 .read = seq_read,
2852 .llseek = seq_lseek,
2853 .release = single_release,
2854 };
2855
2856 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2857 {
2858 struct smi_info *smi = m->private;
2859
2860 seq_printf(m, "interrupts_enabled: %d\n",
2861 smi->irq && !smi->interrupt_disabled);
2862 seq_printf(m, "short_timeouts: %u\n",
2863 smi_get_stat(smi, short_timeouts));
2864 seq_printf(m, "long_timeouts: %u\n",
2865 smi_get_stat(smi, long_timeouts));
2866 seq_printf(m, "idles: %u\n",
2867 smi_get_stat(smi, idles));
2868 seq_printf(m, "interrupts: %u\n",
2869 smi_get_stat(smi, interrupts));
2870 seq_printf(m, "attentions: %u\n",
2871 smi_get_stat(smi, attentions));
2872 seq_printf(m, "flag_fetches: %u\n",
2873 smi_get_stat(smi, flag_fetches));
2874 seq_printf(m, "hosed_count: %u\n",
2875 smi_get_stat(smi, hosed_count));
2876 seq_printf(m, "complete_transactions: %u\n",
2877 smi_get_stat(smi, complete_transactions));
2878 seq_printf(m, "events: %u\n",
2879 smi_get_stat(smi, events));
2880 seq_printf(m, "watchdog_pretimeouts: %u\n",
2881 smi_get_stat(smi, watchdog_pretimeouts));
2882 seq_printf(m, "incoming_messages: %u\n",
2883 smi_get_stat(smi, incoming_messages));
2884 return 0;
2885 }
2886
2887 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2888 {
2889 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2890 }
2891
2892 static const struct file_operations smi_si_stats_proc_ops = {
2893 .open = smi_si_stats_proc_open,
2894 .read = seq_read,
2895 .llseek = seq_lseek,
2896 .release = single_release,
2897 };
2898
2899 static int smi_params_proc_show(struct seq_file *m, void *v)
2900 {
2901 struct smi_info *smi = m->private;
2902
2903 return seq_printf(m,
2904 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2905 si_to_str[smi->si_type],
2906 addr_space_to_str[smi->io.addr_type],
2907 smi->io.addr_data,
2908 smi->io.regspacing,
2909 smi->io.regsize,
2910 smi->io.regshift,
2911 smi->irq,
2912 smi->slave_addr);
2913 }
2914
2915 static int smi_params_proc_open(struct inode *inode, struct file *file)
2916 {
2917 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2918 }
2919
2920 static const struct file_operations smi_params_proc_ops = {
2921 .open = smi_params_proc_open,
2922 .read = seq_read,
2923 .llseek = seq_lseek,
2924 .release = single_release,
2925 };
2926
2927 /*
2928 * oem_data_avail_to_receive_msg_avail
2929 * @info - smi_info structure with msg_flags set
2930 *
2931 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2932 * Returns 1 indicating need to re-run handle_flags().
2933 */
2934 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2935 {
2936 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2937 RECEIVE_MSG_AVAIL);
2938 return 1;
2939 }
2940
2941 /*
2942 * setup_dell_poweredge_oem_data_handler
2943 * @info - smi_info.device_id must be populated
2944 *
2945 * Systems that match, but have firmware version < 1.40 may assert
2946 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2947 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2948 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2949 * as RECEIVE_MSG_AVAIL instead.
2950 *
2951 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2952 * assert the OEM[012] bits, and if it did, the driver would have to
2953 * change to handle that properly, we don't actually check for the
2954 * firmware version.
2955 * Device ID = 0x20 BMC on PowerEdge 8G servers
2956 * Device Revision = 0x80
2957 * Firmware Revision1 = 0x01 BMC version 1.40
2958 * Firmware Revision2 = 0x40 BCD encoded
2959 * IPMI Version = 0x51 IPMI 1.5
2960 * Manufacturer ID = A2 02 00 Dell IANA
2961 *
2962 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2963 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2964 *
2965 */
2966 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2967 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2968 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2969 #define DELL_IANA_MFR_ID 0x0002a2
2970 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2971 {
2972 struct ipmi_device_id *id = &smi_info->device_id;
2973 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2974 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2975 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2976 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2977 smi_info->oem_data_avail_handler =
2978 oem_data_avail_to_receive_msg_avail;
2979 } else if (ipmi_version_major(id) < 1 ||
2980 (ipmi_version_major(id) == 1 &&
2981 ipmi_version_minor(id) < 5)) {
2982 smi_info->oem_data_avail_handler =
2983 oem_data_avail_to_receive_msg_avail;
2984 }
2985 }
2986 }
2987
2988 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2989 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2990 {
2991 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2992
2993 /* Make it a response */
2994 msg->rsp[0] = msg->data[0] | 4;
2995 msg->rsp[1] = msg->data[1];
2996 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2997 msg->rsp_size = 3;
2998 smi_info->curr_msg = NULL;
2999 deliver_recv_msg(smi_info, msg);
3000 }
3001
3002 /*
3003 * dell_poweredge_bt_xaction_handler
3004 * @info - smi_info.device_id must be populated
3005 *
3006 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3007 * not respond to a Get SDR command if the length of the data
3008 * requested is exactly 0x3A, which leads to command timeouts and no
3009 * data returned. This intercepts such commands, and causes userspace
3010 * callers to try again with a different-sized buffer, which succeeds.
3011 */
3012
3013 #define STORAGE_NETFN 0x0A
3014 #define STORAGE_CMD_GET_SDR 0x23
3015 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3016 unsigned long unused,
3017 void *in)
3018 {
3019 struct smi_info *smi_info = in;
3020 unsigned char *data = smi_info->curr_msg->data;
3021 unsigned int size = smi_info->curr_msg->data_size;
3022 if (size >= 8 &&
3023 (data[0]>>2) == STORAGE_NETFN &&
3024 data[1] == STORAGE_CMD_GET_SDR &&
3025 data[7] == 0x3A) {
3026 return_hosed_msg_badsize(smi_info);
3027 return NOTIFY_STOP;
3028 }
3029 return NOTIFY_DONE;
3030 }
3031
3032 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3033 .notifier_call = dell_poweredge_bt_xaction_handler,
3034 };
3035
3036 /*
3037 * setup_dell_poweredge_bt_xaction_handler
3038 * @info - smi_info.device_id must be filled in already
3039 *
3040 * Fills in smi_info.device_id.start_transaction_pre_hook
3041 * when we know what function to use there.
3042 */
3043 static void
3044 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3045 {
3046 struct ipmi_device_id *id = &smi_info->device_id;
3047 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3048 smi_info->si_type == SI_BT)
3049 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3050 }
3051
3052 /*
3053 * setup_oem_data_handler
3054 * @info - smi_info.device_id must be filled in already
3055 *
3056 * Fills in smi_info.device_id.oem_data_available_handler
3057 * when we know what function to use there.
3058 */
3059
3060 static void setup_oem_data_handler(struct smi_info *smi_info)
3061 {
3062 setup_dell_poweredge_oem_data_handler(smi_info);
3063 }
3064
3065 static void setup_xaction_handlers(struct smi_info *smi_info)
3066 {
3067 setup_dell_poweredge_bt_xaction_handler(smi_info);
3068 }
3069
3070 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3071 {
3072 if (smi_info->intf) {
3073 /*
3074 * The timer and thread are only running if the
3075 * interface has been started up and registered.
3076 */
3077 if (smi_info->thread != NULL)
3078 kthread_stop(smi_info->thread);
3079 del_timer_sync(&smi_info->si_timer);
3080 }
3081 }
3082
3083 static struct ipmi_default_vals
3084 {
3085 int type;
3086 int port;
3087 } ipmi_defaults[] =
3088 {
3089 { .type = SI_KCS, .port = 0xca2 },
3090 { .type = SI_SMIC, .port = 0xca9 },
3091 { .type = SI_BT, .port = 0xe4 },
3092 { .port = 0 }
3093 };
3094
3095 static void default_find_bmc(void)
3096 {
3097 struct smi_info *info;
3098 int i;
3099
3100 for (i = 0; ; i++) {
3101 if (!ipmi_defaults[i].port)
3102 break;
3103 #ifdef CONFIG_PPC
3104 if (check_legacy_ioport(ipmi_defaults[i].port))
3105 continue;
3106 #endif
3107 info = smi_info_alloc();
3108 if (!info)
3109 return;
3110
3111 info->addr_source = SI_DEFAULT;
3112
3113 info->si_type = ipmi_defaults[i].type;
3114 info->io_setup = port_setup;
3115 info->io.addr_data = ipmi_defaults[i].port;
3116 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3117
3118 info->io.addr = NULL;
3119 info->io.regspacing = DEFAULT_REGSPACING;
3120 info->io.regsize = DEFAULT_REGSPACING;
3121 info->io.regshift = 0;
3122
3123 if (add_smi(info) == 0) {
3124 if ((try_smi_init(info)) == 0) {
3125 /* Found one... */
3126 printk(KERN_INFO PFX "Found default %s"
3127 " state machine at %s address 0x%lx\n",
3128 si_to_str[info->si_type],
3129 addr_space_to_str[info->io.addr_type],
3130 info->io.addr_data);
3131 } else
3132 cleanup_one_si(info);
3133 } else {
3134 kfree(info);
3135 }
3136 }
3137 }
3138
3139 static int is_new_interface(struct smi_info *info)
3140 {
3141 struct smi_info *e;
3142
3143 list_for_each_entry(e, &smi_infos, link) {
3144 if (e->io.addr_type != info->io.addr_type)
3145 continue;
3146 if (e->io.addr_data == info->io.addr_data)
3147 return 0;
3148 }
3149
3150 return 1;
3151 }
3152
3153 static int add_smi(struct smi_info *new_smi)
3154 {
3155 int rv = 0;
3156
3157 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3158 ipmi_addr_src_to_str[new_smi->addr_source],
3159 si_to_str[new_smi->si_type]);
3160 mutex_lock(&smi_infos_lock);
3161 if (!is_new_interface(new_smi)) {
3162 printk(KERN_CONT " duplicate interface\n");
3163 rv = -EBUSY;
3164 goto out_err;
3165 }
3166
3167 printk(KERN_CONT "\n");
3168
3169 /* So we know not to free it unless we have allocated one. */
3170 new_smi->intf = NULL;
3171 new_smi->si_sm = NULL;
3172 new_smi->handlers = NULL;
3173
3174 list_add_tail(&new_smi->link, &smi_infos);
3175
3176 out_err:
3177 mutex_unlock(&smi_infos_lock);
3178 return rv;
3179 }
3180
3181 static int try_smi_init(struct smi_info *new_smi)
3182 {
3183 int rv = 0;
3184 int i;
3185
3186 printk(KERN_INFO PFX "Trying %s-specified %s state"
3187 " machine at %s address 0x%lx, slave address 0x%x,"
3188 " irq %d\n",
3189 ipmi_addr_src_to_str[new_smi->addr_source],
3190 si_to_str[new_smi->si_type],
3191 addr_space_to_str[new_smi->io.addr_type],
3192 new_smi->io.addr_data,
3193 new_smi->slave_addr, new_smi->irq);
3194
3195 switch (new_smi->si_type) {
3196 case SI_KCS:
3197 new_smi->handlers = &kcs_smi_handlers;
3198 break;
3199
3200 case SI_SMIC:
3201 new_smi->handlers = &smic_smi_handlers;
3202 break;
3203
3204 case SI_BT:
3205 new_smi->handlers = &bt_smi_handlers;
3206 break;
3207
3208 default:
3209 /* No support for anything else yet. */
3210 rv = -EIO;
3211 goto out_err;
3212 }
3213
3214 /* Allocate the state machine's data and initialize it. */
3215 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3216 if (!new_smi->si_sm) {
3217 printk(KERN_ERR PFX
3218 "Could not allocate state machine memory\n");
3219 rv = -ENOMEM;
3220 goto out_err;
3221 }
3222 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3223 &new_smi->io);
3224
3225 /* Now that we know the I/O size, we can set up the I/O. */
3226 rv = new_smi->io_setup(new_smi);
3227 if (rv) {
3228 printk(KERN_ERR PFX "Could not set up I/O space\n");
3229 goto out_err;
3230 }
3231
3232 /* Do low-level detection first. */
3233 if (new_smi->handlers->detect(new_smi->si_sm)) {
3234 if (new_smi->addr_source)
3235 printk(KERN_INFO PFX "Interface detection failed\n");
3236 rv = -ENODEV;
3237 goto out_err;
3238 }
3239
3240 /*
3241 * Attempt a get device id command. If it fails, we probably
3242 * don't have a BMC here.
3243 */
3244 rv = try_get_dev_id(new_smi);
3245 if (rv) {
3246 if (new_smi->addr_source)
3247 printk(KERN_INFO PFX "There appears to be no BMC"
3248 " at this location\n");
3249 goto out_err;
3250 }
3251
3252 setup_oem_data_handler(new_smi);
3253 setup_xaction_handlers(new_smi);
3254
3255 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3256 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3257 new_smi->curr_msg = NULL;
3258 atomic_set(&new_smi->req_events, 0);
3259 new_smi->run_to_completion = 0;
3260 for (i = 0; i < SI_NUM_STATS; i++)
3261 atomic_set(&new_smi->stats[i], 0);
3262
3263 new_smi->interrupt_disabled = 1;
3264 atomic_set(&new_smi->stop_operation, 0);
3265 new_smi->intf_num = smi_num;
3266 smi_num++;
3267
3268 rv = try_enable_event_buffer(new_smi);
3269 if (rv == 0)
3270 new_smi->has_event_buffer = 1;
3271
3272 /*
3273 * Start clearing the flags before we enable interrupts or the
3274 * timer to avoid racing with the timer.
3275 */
3276 start_clear_flags(new_smi);
3277 /* IRQ is defined to be set when non-zero. */
3278 if (new_smi->irq)
3279 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3280
3281 if (!new_smi->dev) {
3282 /*
3283 * If we don't already have a device from something
3284 * else (like PCI), then register a new one.
3285 */
3286 new_smi->pdev = platform_device_alloc("ipmi_si",
3287 new_smi->intf_num);
3288 if (!new_smi->pdev) {
3289 printk(KERN_ERR PFX
3290 "Unable to allocate platform device\n");
3291 goto out_err;
3292 }
3293 new_smi->dev = &new_smi->pdev->dev;
3294 new_smi->dev->driver = &ipmi_driver.driver;
3295
3296 rv = platform_device_add(new_smi->pdev);
3297 if (rv) {
3298 printk(KERN_ERR PFX
3299 "Unable to register system interface device:"
3300 " %d\n",
3301 rv);
3302 goto out_err;
3303 }
3304 new_smi->dev_registered = 1;
3305 }
3306
3307 rv = ipmi_register_smi(&handlers,
3308 new_smi,
3309 &new_smi->device_id,
3310 new_smi->dev,
3311 "bmc",
3312 new_smi->slave_addr);
3313 if (rv) {
3314 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3315 rv);
3316 goto out_err_stop_timer;
3317 }
3318
3319 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3320 &smi_type_proc_ops,
3321 new_smi);
3322 if (rv) {
3323 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3324 goto out_err_stop_timer;
3325 }
3326
3327 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3328 &smi_si_stats_proc_ops,
3329 new_smi);
3330 if (rv) {
3331 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3332 goto out_err_stop_timer;
3333 }
3334
3335 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3336 &smi_params_proc_ops,
3337 new_smi);
3338 if (rv) {
3339 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3340 goto out_err_stop_timer;
3341 }
3342
3343 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3344 si_to_str[new_smi->si_type]);
3345
3346 return 0;
3347
3348 out_err_stop_timer:
3349 atomic_inc(&new_smi->stop_operation);
3350 wait_for_timer_and_thread(new_smi);
3351
3352 out_err:
3353 new_smi->interrupt_disabled = 1;
3354
3355 if (new_smi->intf) {
3356 ipmi_unregister_smi(new_smi->intf);
3357 new_smi->intf = NULL;
3358 }
3359
3360 if (new_smi->irq_cleanup) {
3361 new_smi->irq_cleanup(new_smi);
3362 new_smi->irq_cleanup = NULL;
3363 }
3364
3365 /*
3366 * Wait until we know that we are out of any interrupt
3367 * handlers might have been running before we freed the
3368 * interrupt.
3369 */
3370 synchronize_sched();
3371
3372 if (new_smi->si_sm) {
3373 if (new_smi->handlers)
3374 new_smi->handlers->cleanup(new_smi->si_sm);
3375 kfree(new_smi->si_sm);
3376 new_smi->si_sm = NULL;
3377 }
3378 if (new_smi->addr_source_cleanup) {
3379 new_smi->addr_source_cleanup(new_smi);
3380 new_smi->addr_source_cleanup = NULL;
3381 }
3382 if (new_smi->io_cleanup) {
3383 new_smi->io_cleanup(new_smi);
3384 new_smi->io_cleanup = NULL;
3385 }
3386
3387 if (new_smi->dev_registered) {
3388 platform_device_unregister(new_smi->pdev);
3389 new_smi->dev_registered = 0;
3390 }
3391
3392 return rv;
3393 }
3394
3395 static int init_ipmi_si(void)
3396 {
3397 int i;
3398 char *str;
3399 int rv;
3400 struct smi_info *e;
3401 enum ipmi_addr_src type = SI_INVALID;
3402
3403 if (initialized)
3404 return 0;
3405 initialized = 1;
3406
3407 if (si_tryplatform) {
3408 rv = platform_driver_register(&ipmi_driver);
3409 if (rv) {
3410 printk(KERN_ERR PFX "Unable to register "
3411 "driver: %d\n", rv);
3412 return rv;
3413 }
3414 }
3415
3416 /* Parse out the si_type string into its components. */
3417 str = si_type_str;
3418 if (*str != '\0') {
3419 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3420 si_type[i] = str;
3421 str = strchr(str, ',');
3422 if (str) {
3423 *str = '\0';
3424 str++;
3425 } else {
3426 break;
3427 }
3428 }
3429 }
3430
3431 printk(KERN_INFO "IPMI System Interface driver.\n");
3432
3433 /* If the user gave us a device, they presumably want us to use it */
3434 if (!hardcode_find_bmc())
3435 return 0;
3436
3437 #ifdef CONFIG_PCI
3438 if (si_trypci) {
3439 rv = pci_register_driver(&ipmi_pci_driver);
3440 if (rv)
3441 printk(KERN_ERR PFX "Unable to register "
3442 "PCI driver: %d\n", rv);
3443 else
3444 pci_registered = 1;
3445 }
3446 #endif
3447
3448 #ifdef CONFIG_ACPI
3449 if (si_tryacpi) {
3450 pnp_register_driver(&ipmi_pnp_driver);
3451 pnp_registered = 1;
3452 }
3453 #endif
3454
3455 #ifdef CONFIG_DMI
3456 if (si_trydmi)
3457 dmi_find_bmc();
3458 #endif
3459
3460 #ifdef CONFIG_ACPI
3461 if (si_tryacpi)
3462 spmi_find_bmc();
3463 #endif
3464
3465 /* We prefer devices with interrupts, but in the case of a machine
3466 with multiple BMCs we assume that there will be several instances
3467 of a given type so if we succeed in registering a type then also
3468 try to register everything else of the same type */
3469
3470 mutex_lock(&smi_infos_lock);
3471 list_for_each_entry(e, &smi_infos, link) {
3472 /* Try to register a device if it has an IRQ and we either
3473 haven't successfully registered a device yet or this
3474 device has the same type as one we successfully registered */
3475 if (e->irq && (!type || e->addr_source == type)) {
3476 if (!try_smi_init(e)) {
3477 type = e->addr_source;
3478 }
3479 }
3480 }
3481
3482 /* type will only have been set if we successfully registered an si */
3483 if (type) {
3484 mutex_unlock(&smi_infos_lock);
3485 return 0;
3486 }
3487
3488 /* Fall back to the preferred device */
3489
3490 list_for_each_entry(e, &smi_infos, link) {
3491 if (!e->irq && (!type || e->addr_source == type)) {
3492 if (!try_smi_init(e)) {
3493 type = e->addr_source;
3494 }
3495 }
3496 }
3497 mutex_unlock(&smi_infos_lock);
3498
3499 if (type)
3500 return 0;
3501
3502 if (si_trydefaults) {
3503 mutex_lock(&smi_infos_lock);
3504 if (list_empty(&smi_infos)) {
3505 /* No BMC was found, try defaults. */
3506 mutex_unlock(&smi_infos_lock);
3507 default_find_bmc();
3508 } else
3509 mutex_unlock(&smi_infos_lock);
3510 }
3511
3512 mutex_lock(&smi_infos_lock);
3513 if (unload_when_empty && list_empty(&smi_infos)) {
3514 mutex_unlock(&smi_infos_lock);
3515 cleanup_ipmi_si();
3516 printk(KERN_WARNING PFX
3517 "Unable to find any System Interface(s)\n");
3518 return -ENODEV;
3519 } else {
3520 mutex_unlock(&smi_infos_lock);
3521 return 0;
3522 }
3523 }
3524 module_init(init_ipmi_si);
3525
3526 static void cleanup_one_si(struct smi_info *to_clean)
3527 {
3528 int rv = 0;
3529 unsigned long flags;
3530
3531 if (!to_clean)
3532 return;
3533
3534 list_del(&to_clean->link);
3535
3536 /* Tell the driver that we are shutting down. */
3537 atomic_inc(&to_clean->stop_operation);
3538
3539 /*
3540 * Make sure the timer and thread are stopped and will not run
3541 * again.
3542 */
3543 wait_for_timer_and_thread(to_clean);
3544
3545 /*
3546 * Timeouts are stopped, now make sure the interrupts are off
3547 * for the device. A little tricky with locks to make sure
3548 * there are no races.
3549 */
3550 spin_lock_irqsave(&to_clean->si_lock, flags);
3551 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3552 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3553 poll(to_clean);
3554 schedule_timeout_uninterruptible(1);
3555 spin_lock_irqsave(&to_clean->si_lock, flags);
3556 }
3557 disable_si_irq(to_clean);
3558 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3559 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3560 poll(to_clean);
3561 schedule_timeout_uninterruptible(1);
3562 }
3563
3564 /* Clean up interrupts and make sure that everything is done. */
3565 if (to_clean->irq_cleanup)
3566 to_clean->irq_cleanup(to_clean);
3567 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3568 poll(to_clean);
3569 schedule_timeout_uninterruptible(1);
3570 }
3571
3572 if (to_clean->intf)
3573 rv = ipmi_unregister_smi(to_clean->intf);
3574
3575 if (rv) {
3576 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3577 rv);
3578 }
3579
3580 if (to_clean->handlers)
3581 to_clean->handlers->cleanup(to_clean->si_sm);
3582
3583 kfree(to_clean->si_sm);
3584
3585 if (to_clean->addr_source_cleanup)
3586 to_clean->addr_source_cleanup(to_clean);
3587 if (to_clean->io_cleanup)
3588 to_clean->io_cleanup(to_clean);
3589
3590 if (to_clean->dev_registered)
3591 platform_device_unregister(to_clean->pdev);
3592
3593 kfree(to_clean);
3594 }
3595
3596 static void cleanup_ipmi_si(void)
3597 {
3598 struct smi_info *e, *tmp_e;
3599
3600 if (!initialized)
3601 return;
3602
3603 #ifdef CONFIG_PCI
3604 if (pci_registered)
3605 pci_unregister_driver(&ipmi_pci_driver);
3606 #endif
3607 #ifdef CONFIG_ACPI
3608 if (pnp_registered)
3609 pnp_unregister_driver(&ipmi_pnp_driver);
3610 #endif
3611
3612 platform_driver_unregister(&ipmi_driver);
3613
3614 mutex_lock(&smi_infos_lock);
3615 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3616 cleanup_one_si(e);
3617 mutex_unlock(&smi_infos_lock);
3618 }
3619 module_exit(cleanup_ipmi_si);
3620
3621 MODULE_LICENSE("GPL");
3622 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3623 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3624 " system interfaces.");