Merge tag 'v3.10.86' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
85
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119 * Indexes into stats[] in smi_info below.
120 */
121 enum si_stat_indexes {
122 /*
123 * Number of times the driver requested a timer while an operation
124 * was in progress.
125 */
126 SI_STAT_short_timeouts = 0,
127
128 /*
129 * Number of times the driver requested a timer while nothing was in
130 * progress.
131 */
132 SI_STAT_long_timeouts,
133
134 /* Number of times the interface was idle while being polled. */
135 SI_STAT_idles,
136
137 /* Number of interrupts the driver handled. */
138 SI_STAT_interrupts,
139
140 /* Number of time the driver got an ATTN from the hardware. */
141 SI_STAT_attentions,
142
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
145
146 /* Number of times the hardware didn't follow the state machine. */
147 SI_STAT_hosed_count,
148
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
151
152 /* Number of IPMI events received from the hardware. */
153 SI_STAT_events,
154
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
157
158 /* Number of asynchronous messages received. */
159 SI_STAT_incoming_messages,
160
161
162 /* This *must* remain last, add new values above this. */
163 SI_NUM_STATS
164 };
165
166 struct smi_info {
167 int intf_num;
168 ipmi_smi_t intf;
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
172 spinlock_t si_lock;
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
177
178 /*
179 * Used to handle the various types of I/O that can occur with
180 * IPMI
181 */
182 struct si_sm_io io;
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
191
192 /*
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
196 */
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199 /*
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
202 * from the flags.
203 */
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
211 OEM1_DATA_AVAIL | \
212 OEM2_DATA_AVAIL)
213 unsigned char msg_flags;
214
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
217
218 /*
219 * If set to true, this will request events the next time the
220 * state machine is idle.
221 */
222 atomic_t req_events;
223
224 /*
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
227 * out.
228 */
229 int run_to_completion;
230
231 /* The I/O port of an SI interface. */
232 int port;
233
234 /*
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
238 */
239 unsigned int spacing;
240
241 /* zero if no irq; */
242 int irq;
243
244 /* The timer for this si. */
245 struct timer_list si_timer;
246
247 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248 bool timer_running;
249
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies;
252
253 /* Used to gracefully stop the timer without race conditions. */
254 atomic_t stop_operation;
255
256 /*
257 * The driver will disable interrupts when it gets into a
258 * situation where it cannot handle messages due to lack of
259 * memory. Once that situation clears up, it will re-enable
260 * interrupts.
261 */
262 int interrupt_disabled;
263
264 /* From the get device id response... */
265 struct ipmi_device_id device_id;
266
267 /* Driver model stuff. */
268 struct device *dev;
269 struct platform_device *pdev;
270
271 /*
272 * True if we allocated the device, false if it came from
273 * someplace else (like PCI).
274 */
275 int dev_registered;
276
277 /* Slave address, could be reported from DMI. */
278 unsigned char slave_addr;
279
280 /* Counters and things for the proc filesystem. */
281 atomic_t stats[SI_NUM_STATS];
282
283 struct task_struct *thread;
284
285 struct list_head link;
286 union ipmi_smi_info_union addr_info;
287 };
288
289 #define smi_inc_stat(smi, stat) \
290 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
291 #define smi_get_stat(smi, stat) \
292 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
293
294 #define SI_MAX_PARMS 4
295
296 static int force_kipmid[SI_MAX_PARMS];
297 static int num_force_kipmid;
298 #ifdef CONFIG_PCI
299 static int pci_registered;
300 #endif
301 #ifdef CONFIG_ACPI
302 static int pnp_registered;
303 #endif
304
305 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
306 static int num_max_busy_us;
307
308 static int unload_when_empty = 1;
309
310 static int add_smi(struct smi_info *smi);
311 static int try_smi_init(struct smi_info *smi);
312 static void cleanup_one_si(struct smi_info *to_clean);
313 static void cleanup_ipmi_si(void);
314
315 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
316 static int register_xaction_notifier(struct notifier_block *nb)
317 {
318 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
319 }
320
321 static void deliver_recv_msg(struct smi_info *smi_info,
322 struct ipmi_smi_msg *msg)
323 {
324 /* Deliver the message to the upper layer. */
325 ipmi_smi_msg_received(smi_info->intf, msg);
326 }
327
328 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
329 {
330 struct ipmi_smi_msg *msg = smi_info->curr_msg;
331
332 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
333 cCode = IPMI_ERR_UNSPECIFIED;
334 /* else use it as is */
335
336 /* Make it a response */
337 msg->rsp[0] = msg->data[0] | 4;
338 msg->rsp[1] = msg->data[1];
339 msg->rsp[2] = cCode;
340 msg->rsp_size = 3;
341
342 smi_info->curr_msg = NULL;
343 deliver_recv_msg(smi_info, msg);
344 }
345
346 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
347 {
348 int rv;
349 struct list_head *entry = NULL;
350 #ifdef DEBUG_TIMING
351 struct timeval t;
352 #endif
353
354 /* Pick the high priority queue first. */
355 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
356 entry = smi_info->hp_xmit_msgs.next;
357 } else if (!list_empty(&(smi_info->xmit_msgs))) {
358 entry = smi_info->xmit_msgs.next;
359 }
360
361 if (!entry) {
362 smi_info->curr_msg = NULL;
363 rv = SI_SM_IDLE;
364 } else {
365 int err;
366
367 list_del(entry);
368 smi_info->curr_msg = list_entry(entry,
369 struct ipmi_smi_msg,
370 link);
371 #ifdef DEBUG_TIMING
372 do_gettimeofday(&t);
373 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
374 #endif
375 err = atomic_notifier_call_chain(&xaction_notifier_list,
376 0, smi_info);
377 if (err & NOTIFY_STOP_MASK) {
378 rv = SI_SM_CALL_WITHOUT_DELAY;
379 goto out;
380 }
381 err = smi_info->handlers->start_transaction(
382 smi_info->si_sm,
383 smi_info->curr_msg->data,
384 smi_info->curr_msg->data_size);
385 if (err)
386 return_hosed_msg(smi_info, err);
387
388 rv = SI_SM_CALL_WITHOUT_DELAY;
389 }
390 out:
391 return rv;
392 }
393
394 static void start_enable_irq(struct smi_info *smi_info)
395 {
396 unsigned char msg[2];
397
398 /*
399 * If we are enabling interrupts, we have to tell the
400 * BMC to use them.
401 */
402 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
404
405 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
406 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
407 }
408
409 static void start_disable_irq(struct smi_info *smi_info)
410 {
411 unsigned char msg[2];
412
413 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
415
416 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
417 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
418 }
419
420 static void start_clear_flags(struct smi_info *smi_info)
421 {
422 unsigned char msg[3];
423
424 /* Make sure the watchdog pre-timeout flag is not set at startup. */
425 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
427 msg[2] = WDT_PRE_TIMEOUT_INT;
428
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
430 smi_info->si_state = SI_CLEARING_FLAGS;
431 }
432
433 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
434 {
435 smi_info->last_timeout_jiffies = jiffies;
436 mod_timer(&smi_info->si_timer, new_val);
437 smi_info->timer_running = true;
438 }
439
440 /*
441 * When we have a situtaion where we run out of memory and cannot
442 * allocate messages, we just leave them in the BMC and run the system
443 * polled until we can allocate some memory. Once we have some
444 * memory, we will re-enable the interrupt.
445 */
446 static inline void disable_si_irq(struct smi_info *smi_info)
447 {
448 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
449 start_disable_irq(smi_info);
450 smi_info->interrupt_disabled = 1;
451 if (!atomic_read(&smi_info->stop_operation))
452 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
453 }
454 }
455
456 static inline void enable_si_irq(struct smi_info *smi_info)
457 {
458 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
459 start_enable_irq(smi_info);
460 smi_info->interrupt_disabled = 0;
461 }
462 }
463
464 static void handle_flags(struct smi_info *smi_info)
465 {
466 retry:
467 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
468 /* Watchdog pre-timeout */
469 smi_inc_stat(smi_info, watchdog_pretimeouts);
470
471 start_clear_flags(smi_info);
472 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
473 ipmi_smi_watchdog_pretimeout(smi_info->intf);
474 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
475 /* Messages available. */
476 smi_info->curr_msg = ipmi_alloc_smi_msg();
477 if (!smi_info->curr_msg) {
478 disable_si_irq(smi_info);
479 smi_info->si_state = SI_NORMAL;
480 return;
481 }
482 enable_si_irq(smi_info);
483
484 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
485 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
486 smi_info->curr_msg->data_size = 2;
487
488 smi_info->handlers->start_transaction(
489 smi_info->si_sm,
490 smi_info->curr_msg->data,
491 smi_info->curr_msg->data_size);
492 smi_info->si_state = SI_GETTING_MESSAGES;
493 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
494 /* Events available. */
495 smi_info->curr_msg = ipmi_alloc_smi_msg();
496 if (!smi_info->curr_msg) {
497 disable_si_irq(smi_info);
498 smi_info->si_state = SI_NORMAL;
499 return;
500 }
501 enable_si_irq(smi_info);
502
503 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
504 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
505 smi_info->curr_msg->data_size = 2;
506
507 smi_info->handlers->start_transaction(
508 smi_info->si_sm,
509 smi_info->curr_msg->data,
510 smi_info->curr_msg->data_size);
511 smi_info->si_state = SI_GETTING_EVENTS;
512 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
513 smi_info->oem_data_avail_handler) {
514 if (smi_info->oem_data_avail_handler(smi_info))
515 goto retry;
516 } else
517 smi_info->si_state = SI_NORMAL;
518 }
519
520 static void handle_transaction_done(struct smi_info *smi_info)
521 {
522 struct ipmi_smi_msg *msg;
523 #ifdef DEBUG_TIMING
524 struct timeval t;
525
526 do_gettimeofday(&t);
527 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
528 #endif
529 switch (smi_info->si_state) {
530 case SI_NORMAL:
531 if (!smi_info->curr_msg)
532 break;
533
534 smi_info->curr_msg->rsp_size
535 = smi_info->handlers->get_result(
536 smi_info->si_sm,
537 smi_info->curr_msg->rsp,
538 IPMI_MAX_MSG_LENGTH);
539
540 /*
541 * Do this here becase deliver_recv_msg() releases the
542 * lock, and a new message can be put in during the
543 * time the lock is released.
544 */
545 msg = smi_info->curr_msg;
546 smi_info->curr_msg = NULL;
547 deliver_recv_msg(smi_info, msg);
548 break;
549
550 case SI_GETTING_FLAGS:
551 {
552 unsigned char msg[4];
553 unsigned int len;
554
555 /* We got the flags from the SMI, now handle them. */
556 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
557 if (msg[2] != 0) {
558 /* Error fetching flags, just give up for now. */
559 smi_info->si_state = SI_NORMAL;
560 } else if (len < 4) {
561 /*
562 * Hmm, no flags. That's technically illegal, but
563 * don't use uninitialized data.
564 */
565 smi_info->si_state = SI_NORMAL;
566 } else {
567 smi_info->msg_flags = msg[3];
568 handle_flags(smi_info);
569 }
570 break;
571 }
572
573 case SI_CLEARING_FLAGS:
574 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
575 {
576 unsigned char msg[3];
577
578 /* We cleared the flags. */
579 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
580 if (msg[2] != 0) {
581 /* Error clearing flags */
582 dev_warn(smi_info->dev,
583 "Error clearing flags: %2.2x\n", msg[2]);
584 }
585 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
586 start_enable_irq(smi_info);
587 else
588 smi_info->si_state = SI_NORMAL;
589 break;
590 }
591
592 case SI_GETTING_EVENTS:
593 {
594 smi_info->curr_msg->rsp_size
595 = smi_info->handlers->get_result(
596 smi_info->si_sm,
597 smi_info->curr_msg->rsp,
598 IPMI_MAX_MSG_LENGTH);
599
600 /*
601 * Do this here becase deliver_recv_msg() releases the
602 * lock, and a new message can be put in during the
603 * time the lock is released.
604 */
605 msg = smi_info->curr_msg;
606 smi_info->curr_msg = NULL;
607 if (msg->rsp[2] != 0) {
608 /* Error getting event, probably done. */
609 msg->done(msg);
610
611 /* Take off the event flag. */
612 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
613 handle_flags(smi_info);
614 } else {
615 smi_inc_stat(smi_info, events);
616
617 /*
618 * Do this before we deliver the message
619 * because delivering the message releases the
620 * lock and something else can mess with the
621 * state.
622 */
623 handle_flags(smi_info);
624
625 deliver_recv_msg(smi_info, msg);
626 }
627 break;
628 }
629
630 case SI_GETTING_MESSAGES:
631 {
632 smi_info->curr_msg->rsp_size
633 = smi_info->handlers->get_result(
634 smi_info->si_sm,
635 smi_info->curr_msg->rsp,
636 IPMI_MAX_MSG_LENGTH);
637
638 /*
639 * Do this here becase deliver_recv_msg() releases the
640 * lock, and a new message can be put in during the
641 * time the lock is released.
642 */
643 msg = smi_info->curr_msg;
644 smi_info->curr_msg = NULL;
645 if (msg->rsp[2] != 0) {
646 /* Error getting event, probably done. */
647 msg->done(msg);
648
649 /* Take off the msg flag. */
650 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
651 handle_flags(smi_info);
652 } else {
653 smi_inc_stat(smi_info, incoming_messages);
654
655 /*
656 * Do this before we deliver the message
657 * because delivering the message releases the
658 * lock and something else can mess with the
659 * state.
660 */
661 handle_flags(smi_info);
662
663 deliver_recv_msg(smi_info, msg);
664 }
665 break;
666 }
667
668 case SI_ENABLE_INTERRUPTS1:
669 {
670 unsigned char msg[4];
671
672 /* We got the flags from the SMI, now handle them. */
673 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
674 if (msg[2] != 0) {
675 dev_warn(smi_info->dev,
676 "Couldn't get irq info: %x.\n", msg[2]);
677 dev_warn(smi_info->dev,
678 "Maybe ok, but ipmi might run very slowly.\n");
679 smi_info->si_state = SI_NORMAL;
680 } else {
681 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
682 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
683 msg[2] = (msg[3] |
684 IPMI_BMC_RCV_MSG_INTR |
685 IPMI_BMC_EVT_MSG_INTR);
686 smi_info->handlers->start_transaction(
687 smi_info->si_sm, msg, 3);
688 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
689 }
690 break;
691 }
692
693 case SI_ENABLE_INTERRUPTS2:
694 {
695 unsigned char msg[4];
696
697 /* We got the flags from the SMI, now handle them. */
698 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
699 if (msg[2] != 0) {
700 dev_warn(smi_info->dev,
701 "Couldn't set irq info: %x.\n", msg[2]);
702 dev_warn(smi_info->dev,
703 "Maybe ok, but ipmi might run very slowly.\n");
704 } else
705 smi_info->interrupt_disabled = 0;
706 smi_info->si_state = SI_NORMAL;
707 break;
708 }
709
710 case SI_DISABLE_INTERRUPTS1:
711 {
712 unsigned char msg[4];
713
714 /* We got the flags from the SMI, now handle them. */
715 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
716 if (msg[2] != 0) {
717 dev_warn(smi_info->dev, "Could not disable interrupts"
718 ", failed get.\n");
719 smi_info->si_state = SI_NORMAL;
720 } else {
721 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
722 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
723 msg[2] = (msg[3] &
724 ~(IPMI_BMC_RCV_MSG_INTR |
725 IPMI_BMC_EVT_MSG_INTR));
726 smi_info->handlers->start_transaction(
727 smi_info->si_sm, msg, 3);
728 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
729 }
730 break;
731 }
732
733 case SI_DISABLE_INTERRUPTS2:
734 {
735 unsigned char msg[4];
736
737 /* We got the flags from the SMI, now handle them. */
738 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
739 if (msg[2] != 0) {
740 dev_warn(smi_info->dev, "Could not disable interrupts"
741 ", failed set.\n");
742 }
743 smi_info->si_state = SI_NORMAL;
744 break;
745 }
746 }
747 }
748
749 /*
750 * Called on timeouts and events. Timeouts should pass the elapsed
751 * time, interrupts should pass in zero. Must be called with
752 * si_lock held and interrupts disabled.
753 */
754 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
755 int time)
756 {
757 enum si_sm_result si_sm_result;
758
759 restart:
760 /*
761 * There used to be a loop here that waited a little while
762 * (around 25us) before giving up. That turned out to be
763 * pointless, the minimum delays I was seeing were in the 300us
764 * range, which is far too long to wait in an interrupt. So
765 * we just run until the state machine tells us something
766 * happened or it needs a delay.
767 */
768 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
769 time = 0;
770 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
771 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772
773 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
774 smi_inc_stat(smi_info, complete_transactions);
775
776 handle_transaction_done(smi_info);
777 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
778 } else if (si_sm_result == SI_SM_HOSED) {
779 smi_inc_stat(smi_info, hosed_count);
780
781 /*
782 * Do the before return_hosed_msg, because that
783 * releases the lock.
784 */
785 smi_info->si_state = SI_NORMAL;
786 if (smi_info->curr_msg != NULL) {
787 /*
788 * If we were handling a user message, format
789 * a response to send to the upper layer to
790 * tell it about the error.
791 */
792 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
793 }
794 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
795 }
796
797 /*
798 * We prefer handling attn over new messages. But don't do
799 * this if there is not yet an upper layer to handle anything.
800 */
801 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
802 unsigned char msg[2];
803
804 smi_inc_stat(smi_info, attentions);
805
806 /*
807 * Got a attn, send down a get message flags to see
808 * what's causing it. It would be better to handle
809 * this in the upper layer, but due to the way
810 * interrupts work with the SMI, that's not really
811 * possible.
812 */
813 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
814 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
815
816 smi_info->handlers->start_transaction(
817 smi_info->si_sm, msg, 2);
818 smi_info->si_state = SI_GETTING_FLAGS;
819 goto restart;
820 }
821
822 /* If we are currently idle, try to start the next message. */
823 if (si_sm_result == SI_SM_IDLE) {
824 smi_inc_stat(smi_info, idles);
825
826 si_sm_result = start_next_msg(smi_info);
827 if (si_sm_result != SI_SM_IDLE)
828 goto restart;
829 }
830
831 if ((si_sm_result == SI_SM_IDLE)
832 && (atomic_read(&smi_info->req_events))) {
833 /*
834 * We are idle and the upper layer requested that I fetch
835 * events, so do so.
836 */
837 atomic_set(&smi_info->req_events, 0);
838
839 smi_info->curr_msg = ipmi_alloc_smi_msg();
840 if (!smi_info->curr_msg)
841 goto out;
842
843 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
844 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
845 smi_info->curr_msg->data_size = 2;
846
847 smi_info->handlers->start_transaction(
848 smi_info->si_sm,
849 smi_info->curr_msg->data,
850 smi_info->curr_msg->data_size);
851 smi_info->si_state = SI_GETTING_EVENTS;
852 goto restart;
853 }
854 out:
855 return si_sm_result;
856 }
857
858 static void sender(void *send_info,
859 struct ipmi_smi_msg *msg,
860 int priority)
861 {
862 struct smi_info *smi_info = send_info;
863 enum si_sm_result result;
864 unsigned long flags;
865 #ifdef DEBUG_TIMING
866 struct timeval t;
867 #endif
868
869 if (atomic_read(&smi_info->stop_operation)) {
870 msg->rsp[0] = msg->data[0] | 4;
871 msg->rsp[1] = msg->data[1];
872 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
873 msg->rsp_size = 3;
874 deliver_recv_msg(smi_info, msg);
875 return;
876 }
877
878 #ifdef DEBUG_TIMING
879 do_gettimeofday(&t);
880 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
881 #endif
882
883 if (smi_info->run_to_completion) {
884 /*
885 * If we are running to completion, then throw it in
886 * the list and run transactions until everything is
887 * clear. Priority doesn't matter here.
888 */
889
890 /*
891 * Run to completion means we are single-threaded, no
892 * need for locks.
893 */
894 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
895
896 result = smi_event_handler(smi_info, 0);
897 while (result != SI_SM_IDLE) {
898 udelay(SI_SHORT_TIMEOUT_USEC);
899 result = smi_event_handler(smi_info,
900 SI_SHORT_TIMEOUT_USEC);
901 }
902 return;
903 }
904
905 spin_lock_irqsave(&smi_info->si_lock, flags);
906 if (priority > 0)
907 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
908 else
909 list_add_tail(&msg->link, &smi_info->xmit_msgs);
910
911 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
912 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
913
914 if (smi_info->thread)
915 wake_up_process(smi_info->thread);
916
917 start_next_msg(smi_info);
918 smi_event_handler(smi_info, 0);
919 }
920 spin_unlock_irqrestore(&smi_info->si_lock, flags);
921 }
922
923 static void set_run_to_completion(void *send_info, int i_run_to_completion)
924 {
925 struct smi_info *smi_info = send_info;
926 enum si_sm_result result;
927
928 smi_info->run_to_completion = i_run_to_completion;
929 if (i_run_to_completion) {
930 result = smi_event_handler(smi_info, 0);
931 while (result != SI_SM_IDLE) {
932 udelay(SI_SHORT_TIMEOUT_USEC);
933 result = smi_event_handler(smi_info,
934 SI_SHORT_TIMEOUT_USEC);
935 }
936 }
937 }
938
939 /*
940 * Use -1 in the nsec value of the busy waiting timespec to tell that
941 * we are spinning in kipmid looking for something and not delaying
942 * between checks
943 */
944 static inline void ipmi_si_set_not_busy(struct timespec *ts)
945 {
946 ts->tv_nsec = -1;
947 }
948 static inline int ipmi_si_is_busy(struct timespec *ts)
949 {
950 return ts->tv_nsec != -1;
951 }
952
953 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
954 const struct smi_info *smi_info,
955 struct timespec *busy_until)
956 {
957 unsigned int max_busy_us = 0;
958
959 if (smi_info->intf_num < num_max_busy_us)
960 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
961 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
962 ipmi_si_set_not_busy(busy_until);
963 else if (!ipmi_si_is_busy(busy_until)) {
964 getnstimeofday(busy_until);
965 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
966 } else {
967 struct timespec now;
968 getnstimeofday(&now);
969 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
970 ipmi_si_set_not_busy(busy_until);
971 return 0;
972 }
973 }
974 return 1;
975 }
976
977
978 /*
979 * A busy-waiting loop for speeding up IPMI operation.
980 *
981 * Lousy hardware makes this hard. This is only enabled for systems
982 * that are not BT and do not have interrupts. It starts spinning
983 * when an operation is complete or until max_busy tells it to stop
984 * (if that is enabled). See the paragraph on kimid_max_busy_us in
985 * Documentation/IPMI.txt for details.
986 */
987 static int ipmi_thread(void *data)
988 {
989 struct smi_info *smi_info = data;
990 unsigned long flags;
991 enum si_sm_result smi_result;
992 struct timespec busy_until;
993
994 ipmi_si_set_not_busy(&busy_until);
995 set_user_nice(current, 19);
996 while (!kthread_should_stop()) {
997 int busy_wait;
998
999 spin_lock_irqsave(&(smi_info->si_lock), flags);
1000 smi_result = smi_event_handler(smi_info, 0);
1001
1002 /*
1003 * If the driver is doing something, there is a possible
1004 * race with the timer. If the timer handler see idle,
1005 * and the thread here sees something else, the timer
1006 * handler won't restart the timer even though it is
1007 * required. So start it here if necessary.
1008 */
1009 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1010 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1011
1012 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1013 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1014 &busy_until);
1015 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1016 ; /* do nothing */
1017 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1018 schedule();
1019 else if (smi_result == SI_SM_IDLE)
1020 schedule_timeout_interruptible(100);
1021 else
1022 schedule_timeout_interruptible(1);
1023 }
1024 return 0;
1025 }
1026
1027
1028 static void poll(void *send_info)
1029 {
1030 struct smi_info *smi_info = send_info;
1031 unsigned long flags = 0;
1032 int run_to_completion = smi_info->run_to_completion;
1033
1034 /*
1035 * Make sure there is some delay in the poll loop so we can
1036 * drive time forward and timeout things.
1037 */
1038 udelay(10);
1039 if (!run_to_completion)
1040 spin_lock_irqsave(&smi_info->si_lock, flags);
1041 smi_event_handler(smi_info, 10);
1042 if (!run_to_completion)
1043 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1044 }
1045
1046 static void request_events(void *send_info)
1047 {
1048 struct smi_info *smi_info = send_info;
1049
1050 if (atomic_read(&smi_info->stop_operation) ||
1051 !smi_info->has_event_buffer)
1052 return;
1053
1054 atomic_set(&smi_info->req_events, 1);
1055 }
1056
1057 static int initialized;
1058
1059 static void smi_timeout(unsigned long data)
1060 {
1061 struct smi_info *smi_info = (struct smi_info *) data;
1062 enum si_sm_result smi_result;
1063 unsigned long flags;
1064 unsigned long jiffies_now;
1065 long time_diff;
1066 long timeout;
1067 #ifdef DEBUG_TIMING
1068 struct timeval t;
1069 #endif
1070
1071 spin_lock_irqsave(&(smi_info->si_lock), flags);
1072 #ifdef DEBUG_TIMING
1073 do_gettimeofday(&t);
1074 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1075 #endif
1076 jiffies_now = jiffies;
1077 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1078 * SI_USEC_PER_JIFFY);
1079 smi_result = smi_event_handler(smi_info, time_diff);
1080
1081 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1082 /* Running with interrupts, only do long timeouts. */
1083 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1084 smi_inc_stat(smi_info, long_timeouts);
1085 goto do_mod_timer;
1086 }
1087
1088 /*
1089 * If the state machine asks for a short delay, then shorten
1090 * the timer timeout.
1091 */
1092 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1093 smi_inc_stat(smi_info, short_timeouts);
1094 timeout = jiffies + 1;
1095 } else {
1096 smi_inc_stat(smi_info, long_timeouts);
1097 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1098 }
1099
1100 do_mod_timer:
1101 if (smi_result != SI_SM_IDLE)
1102 smi_mod_timer(smi_info, timeout);
1103 else
1104 smi_info->timer_running = false;
1105 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1106 }
1107
1108 static irqreturn_t si_irq_handler(int irq, void *data)
1109 {
1110 struct smi_info *smi_info = data;
1111 unsigned long flags;
1112 #ifdef DEBUG_TIMING
1113 struct timeval t;
1114 #endif
1115
1116 spin_lock_irqsave(&(smi_info->si_lock), flags);
1117
1118 smi_inc_stat(smi_info, interrupts);
1119
1120 #ifdef DEBUG_TIMING
1121 do_gettimeofday(&t);
1122 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1123 #endif
1124 smi_event_handler(smi_info, 0);
1125 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1126 return IRQ_HANDLED;
1127 }
1128
1129 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1130 {
1131 struct smi_info *smi_info = data;
1132 /* We need to clear the IRQ flag for the BT interface. */
1133 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1134 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1135 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1136 return si_irq_handler(irq, data);
1137 }
1138
1139 static int smi_start_processing(void *send_info,
1140 ipmi_smi_t intf)
1141 {
1142 struct smi_info *new_smi = send_info;
1143 int enable = 0;
1144
1145 new_smi->intf = intf;
1146
1147 /* Try to claim any interrupts. */
1148 if (new_smi->irq_setup)
1149 new_smi->irq_setup(new_smi);
1150
1151 /* Set up the timer that drives the interface. */
1152 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1153 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1154
1155 /*
1156 * Check if the user forcefully enabled the daemon.
1157 */
1158 if (new_smi->intf_num < num_force_kipmid)
1159 enable = force_kipmid[new_smi->intf_num];
1160 /*
1161 * The BT interface is efficient enough to not need a thread,
1162 * and there is no need for a thread if we have interrupts.
1163 */
1164 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1165 enable = 1;
1166
1167 if (enable) {
1168 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1169 "kipmi%d", new_smi->intf_num);
1170 if (IS_ERR(new_smi->thread)) {
1171 dev_notice(new_smi->dev, "Could not start"
1172 " kernel thread due to error %ld, only using"
1173 " timers to drive the interface\n",
1174 PTR_ERR(new_smi->thread));
1175 new_smi->thread = NULL;
1176 }
1177 }
1178
1179 return 0;
1180 }
1181
1182 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1183 {
1184 struct smi_info *smi = send_info;
1185
1186 data->addr_src = smi->addr_source;
1187 data->dev = smi->dev;
1188 data->addr_info = smi->addr_info;
1189 get_device(smi->dev);
1190
1191 return 0;
1192 }
1193
1194 static void set_maintenance_mode(void *send_info, int enable)
1195 {
1196 struct smi_info *smi_info = send_info;
1197
1198 if (!enable)
1199 atomic_set(&smi_info->req_events, 0);
1200 }
1201
1202 static struct ipmi_smi_handlers handlers = {
1203 .owner = THIS_MODULE,
1204 .start_processing = smi_start_processing,
1205 .get_smi_info = get_smi_info,
1206 .sender = sender,
1207 .request_events = request_events,
1208 .set_maintenance_mode = set_maintenance_mode,
1209 .set_run_to_completion = set_run_to_completion,
1210 .poll = poll,
1211 };
1212
1213 /*
1214 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1215 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1216 */
1217
1218 static LIST_HEAD(smi_infos);
1219 static DEFINE_MUTEX(smi_infos_lock);
1220 static int smi_num; /* Used to sequence the SMIs */
1221
1222 #define DEFAULT_REGSPACING 1
1223 #define DEFAULT_REGSIZE 1
1224
1225 #ifdef CONFIG_ACPI
1226 static bool si_tryacpi = 1;
1227 #endif
1228 #ifdef CONFIG_DMI
1229 static bool si_trydmi = 1;
1230 #endif
1231 static bool si_tryplatform = 1;
1232 #ifdef CONFIG_PCI
1233 static bool si_trypci = 1;
1234 #endif
1235 static bool si_trydefaults = 1;
1236 static char *si_type[SI_MAX_PARMS];
1237 #define MAX_SI_TYPE_STR 30
1238 static char si_type_str[MAX_SI_TYPE_STR];
1239 static unsigned long addrs[SI_MAX_PARMS];
1240 static unsigned int num_addrs;
1241 static unsigned int ports[SI_MAX_PARMS];
1242 static unsigned int num_ports;
1243 static int irqs[SI_MAX_PARMS];
1244 static unsigned int num_irqs;
1245 static int regspacings[SI_MAX_PARMS];
1246 static unsigned int num_regspacings;
1247 static int regsizes[SI_MAX_PARMS];
1248 static unsigned int num_regsizes;
1249 static int regshifts[SI_MAX_PARMS];
1250 static unsigned int num_regshifts;
1251 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1252 static unsigned int num_slave_addrs;
1253
1254 #define IPMI_IO_ADDR_SPACE 0
1255 #define IPMI_MEM_ADDR_SPACE 1
1256 static char *addr_space_to_str[] = { "i/o", "mem" };
1257
1258 static int hotmod_handler(const char *val, struct kernel_param *kp);
1259
1260 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1261 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1262 " Documentation/IPMI.txt in the kernel sources for the"
1263 " gory details.");
1264
1265 #ifdef CONFIG_ACPI
1266 module_param_named(tryacpi, si_tryacpi, bool, 0);
1267 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1268 " default scan of the interfaces identified via ACPI");
1269 #endif
1270 #ifdef CONFIG_DMI
1271 module_param_named(trydmi, si_trydmi, bool, 0);
1272 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1273 " default scan of the interfaces identified via DMI");
1274 #endif
1275 module_param_named(tryplatform, si_tryplatform, bool, 0);
1276 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1277 " default scan of the interfaces identified via platform"
1278 " interfaces like openfirmware");
1279 #ifdef CONFIG_PCI
1280 module_param_named(trypci, si_trypci, bool, 0);
1281 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1282 " default scan of the interfaces identified via pci");
1283 #endif
1284 module_param_named(trydefaults, si_trydefaults, bool, 0);
1285 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1286 " default scan of the KCS and SMIC interface at the standard"
1287 " address");
1288 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1289 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1290 " interface separated by commas. The types are 'kcs',"
1291 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1292 " the first interface to kcs and the second to bt");
1293 module_param_array(addrs, ulong, &num_addrs, 0);
1294 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1295 " addresses separated by commas. Only use if an interface"
1296 " is in memory. Otherwise, set it to zero or leave"
1297 " it blank.");
1298 module_param_array(ports, uint, &num_ports, 0);
1299 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1300 " addresses separated by commas. Only use if an interface"
1301 " is a port. Otherwise, set it to zero or leave"
1302 " it blank.");
1303 module_param_array(irqs, int, &num_irqs, 0);
1304 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1305 " addresses separated by commas. Only use if an interface"
1306 " has an interrupt. Otherwise, set it to zero or leave"
1307 " it blank.");
1308 module_param_array(regspacings, int, &num_regspacings, 0);
1309 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1310 " and each successive register used by the interface. For"
1311 " instance, if the start address is 0xca2 and the spacing"
1312 " is 2, then the second address is at 0xca4. Defaults"
1313 " to 1.");
1314 module_param_array(regsizes, int, &num_regsizes, 0);
1315 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1316 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1317 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1318 " the 8-bit IPMI register has to be read from a larger"
1319 " register.");
1320 module_param_array(regshifts, int, &num_regshifts, 0);
1321 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1322 " IPMI register, in bits. For instance, if the data"
1323 " is read from a 32-bit word and the IPMI data is in"
1324 " bit 8-15, then the shift would be 8");
1325 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1326 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1327 " the controller. Normally this is 0x20, but can be"
1328 " overridden by this parm. This is an array indexed"
1329 " by interface number.");
1330 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1331 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1332 " disabled(0). Normally the IPMI driver auto-detects"
1333 " this, but the value may be overridden by this parm.");
1334 module_param(unload_when_empty, int, 0);
1335 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1336 " specified or found, default is 1. Setting to 0"
1337 " is useful for hot add of devices using hotmod.");
1338 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1339 MODULE_PARM_DESC(kipmid_max_busy_us,
1340 "Max time (in microseconds) to busy-wait for IPMI data before"
1341 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1342 " if kipmid is using up a lot of CPU time.");
1343
1344
1345 static void std_irq_cleanup(struct smi_info *info)
1346 {
1347 if (info->si_type == SI_BT)
1348 /* Disable the interrupt in the BT interface. */
1349 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1350 free_irq(info->irq, info);
1351 }
1352
1353 static int std_irq_setup(struct smi_info *info)
1354 {
1355 int rv;
1356
1357 if (!info->irq)
1358 return 0;
1359
1360 if (info->si_type == SI_BT) {
1361 rv = request_irq(info->irq,
1362 si_bt_irq_handler,
1363 IRQF_SHARED | IRQF_DISABLED,
1364 DEVICE_NAME,
1365 info);
1366 if (!rv)
1367 /* Enable the interrupt in the BT interface. */
1368 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1369 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1370 } else
1371 rv = request_irq(info->irq,
1372 si_irq_handler,
1373 IRQF_SHARED | IRQF_DISABLED,
1374 DEVICE_NAME,
1375 info);
1376 if (rv) {
1377 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1378 " running polled\n",
1379 DEVICE_NAME, info->irq);
1380 info->irq = 0;
1381 } else {
1382 info->irq_cleanup = std_irq_cleanup;
1383 dev_info(info->dev, "Using irq %d\n", info->irq);
1384 }
1385
1386 return rv;
1387 }
1388
1389 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1390 {
1391 unsigned int addr = io->addr_data;
1392
1393 return inb(addr + (offset * io->regspacing));
1394 }
1395
1396 static void port_outb(struct si_sm_io *io, unsigned int offset,
1397 unsigned char b)
1398 {
1399 unsigned int addr = io->addr_data;
1400
1401 outb(b, addr + (offset * io->regspacing));
1402 }
1403
1404 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1405 {
1406 unsigned int addr = io->addr_data;
1407
1408 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1409 }
1410
1411 static void port_outw(struct si_sm_io *io, unsigned int offset,
1412 unsigned char b)
1413 {
1414 unsigned int addr = io->addr_data;
1415
1416 outw(b << io->regshift, addr + (offset * io->regspacing));
1417 }
1418
1419 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1420 {
1421 unsigned int addr = io->addr_data;
1422
1423 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1424 }
1425
1426 static void port_outl(struct si_sm_io *io, unsigned int offset,
1427 unsigned char b)
1428 {
1429 unsigned int addr = io->addr_data;
1430
1431 outl(b << io->regshift, addr+(offset * io->regspacing));
1432 }
1433
1434 static void port_cleanup(struct smi_info *info)
1435 {
1436 unsigned int addr = info->io.addr_data;
1437 int idx;
1438
1439 if (addr) {
1440 for (idx = 0; idx < info->io_size; idx++)
1441 release_region(addr + idx * info->io.regspacing,
1442 info->io.regsize);
1443 }
1444 }
1445
1446 static int port_setup(struct smi_info *info)
1447 {
1448 unsigned int addr = info->io.addr_data;
1449 int idx;
1450
1451 if (!addr)
1452 return -ENODEV;
1453
1454 info->io_cleanup = port_cleanup;
1455
1456 /*
1457 * Figure out the actual inb/inw/inl/etc routine to use based
1458 * upon the register size.
1459 */
1460 switch (info->io.regsize) {
1461 case 1:
1462 info->io.inputb = port_inb;
1463 info->io.outputb = port_outb;
1464 break;
1465 case 2:
1466 info->io.inputb = port_inw;
1467 info->io.outputb = port_outw;
1468 break;
1469 case 4:
1470 info->io.inputb = port_inl;
1471 info->io.outputb = port_outl;
1472 break;
1473 default:
1474 dev_warn(info->dev, "Invalid register size: %d\n",
1475 info->io.regsize);
1476 return -EINVAL;
1477 }
1478
1479 /*
1480 * Some BIOSes reserve disjoint I/O regions in their ACPI
1481 * tables. This causes problems when trying to register the
1482 * entire I/O region. Therefore we must register each I/O
1483 * port separately.
1484 */
1485 for (idx = 0; idx < info->io_size; idx++) {
1486 if (request_region(addr + idx * info->io.regspacing,
1487 info->io.regsize, DEVICE_NAME) == NULL) {
1488 /* Undo allocations */
1489 while (idx--) {
1490 release_region(addr + idx * info->io.regspacing,
1491 info->io.regsize);
1492 }
1493 return -EIO;
1494 }
1495 }
1496 return 0;
1497 }
1498
1499 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1500 {
1501 return readb((io->addr)+(offset * io->regspacing));
1502 }
1503
1504 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1505 unsigned char b)
1506 {
1507 writeb(b, (io->addr)+(offset * io->regspacing));
1508 }
1509
1510 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1511 {
1512 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1513 & 0xff;
1514 }
1515
1516 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1517 unsigned char b)
1518 {
1519 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1520 }
1521
1522 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1523 {
1524 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1525 & 0xff;
1526 }
1527
1528 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1529 unsigned char b)
1530 {
1531 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1532 }
1533
1534 #ifdef readq
1535 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1536 {
1537 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1538 & 0xff;
1539 }
1540
1541 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1542 unsigned char b)
1543 {
1544 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1545 }
1546 #endif
1547
1548 static void mem_cleanup(struct smi_info *info)
1549 {
1550 unsigned long addr = info->io.addr_data;
1551 int mapsize;
1552
1553 if (info->io.addr) {
1554 iounmap(info->io.addr);
1555
1556 mapsize = ((info->io_size * info->io.regspacing)
1557 - (info->io.regspacing - info->io.regsize));
1558
1559 release_mem_region(addr, mapsize);
1560 }
1561 }
1562
1563 static int mem_setup(struct smi_info *info)
1564 {
1565 unsigned long addr = info->io.addr_data;
1566 int mapsize;
1567
1568 if (!addr)
1569 return -ENODEV;
1570
1571 info->io_cleanup = mem_cleanup;
1572
1573 /*
1574 * Figure out the actual readb/readw/readl/etc routine to use based
1575 * upon the register size.
1576 */
1577 switch (info->io.regsize) {
1578 case 1:
1579 info->io.inputb = intf_mem_inb;
1580 info->io.outputb = intf_mem_outb;
1581 break;
1582 case 2:
1583 info->io.inputb = intf_mem_inw;
1584 info->io.outputb = intf_mem_outw;
1585 break;
1586 case 4:
1587 info->io.inputb = intf_mem_inl;
1588 info->io.outputb = intf_mem_outl;
1589 break;
1590 #ifdef readq
1591 case 8:
1592 info->io.inputb = mem_inq;
1593 info->io.outputb = mem_outq;
1594 break;
1595 #endif
1596 default:
1597 dev_warn(info->dev, "Invalid register size: %d\n",
1598 info->io.regsize);
1599 return -EINVAL;
1600 }
1601
1602 /*
1603 * Calculate the total amount of memory to claim. This is an
1604 * unusual looking calculation, but it avoids claiming any
1605 * more memory than it has to. It will claim everything
1606 * between the first address to the end of the last full
1607 * register.
1608 */
1609 mapsize = ((info->io_size * info->io.regspacing)
1610 - (info->io.regspacing - info->io.regsize));
1611
1612 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1613 return -EIO;
1614
1615 info->io.addr = ioremap(addr, mapsize);
1616 if (info->io.addr == NULL) {
1617 release_mem_region(addr, mapsize);
1618 return -EIO;
1619 }
1620 return 0;
1621 }
1622
1623 /*
1624 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1625 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1626 * Options are:
1627 * rsp=<regspacing>
1628 * rsi=<regsize>
1629 * rsh=<regshift>
1630 * irq=<irq>
1631 * ipmb=<ipmb addr>
1632 */
1633 enum hotmod_op { HM_ADD, HM_REMOVE };
1634 struct hotmod_vals {
1635 char *name;
1636 int val;
1637 };
1638 static struct hotmod_vals hotmod_ops[] = {
1639 { "add", HM_ADD },
1640 { "remove", HM_REMOVE },
1641 { NULL }
1642 };
1643 static struct hotmod_vals hotmod_si[] = {
1644 { "kcs", SI_KCS },
1645 { "smic", SI_SMIC },
1646 { "bt", SI_BT },
1647 { NULL }
1648 };
1649 static struct hotmod_vals hotmod_as[] = {
1650 { "mem", IPMI_MEM_ADDR_SPACE },
1651 { "i/o", IPMI_IO_ADDR_SPACE },
1652 { NULL }
1653 };
1654
1655 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1656 {
1657 char *s;
1658 int i;
1659
1660 s = strchr(*curr, ',');
1661 if (!s) {
1662 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1663 return -EINVAL;
1664 }
1665 *s = '\0';
1666 s++;
1667 for (i = 0; hotmod_ops[i].name; i++) {
1668 if (strcmp(*curr, v[i].name) == 0) {
1669 *val = v[i].val;
1670 *curr = s;
1671 return 0;
1672 }
1673 }
1674
1675 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1676 return -EINVAL;
1677 }
1678
1679 static int check_hotmod_int_op(const char *curr, const char *option,
1680 const char *name, int *val)
1681 {
1682 char *n;
1683
1684 if (strcmp(curr, name) == 0) {
1685 if (!option) {
1686 printk(KERN_WARNING PFX
1687 "No option given for '%s'\n",
1688 curr);
1689 return -EINVAL;
1690 }
1691 *val = simple_strtoul(option, &n, 0);
1692 if ((*n != '\0') || (*option == '\0')) {
1693 printk(KERN_WARNING PFX
1694 "Bad option given for '%s'\n",
1695 curr);
1696 return -EINVAL;
1697 }
1698 return 1;
1699 }
1700 return 0;
1701 }
1702
1703 static struct smi_info *smi_info_alloc(void)
1704 {
1705 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1706
1707 if (info)
1708 spin_lock_init(&info->si_lock);
1709 return info;
1710 }
1711
1712 static int hotmod_handler(const char *val, struct kernel_param *kp)
1713 {
1714 char *str = kstrdup(val, GFP_KERNEL);
1715 int rv;
1716 char *next, *curr, *s, *n, *o;
1717 enum hotmod_op op;
1718 enum si_type si_type;
1719 int addr_space;
1720 unsigned long addr;
1721 int regspacing;
1722 int regsize;
1723 int regshift;
1724 int irq;
1725 int ipmb;
1726 int ival;
1727 int len;
1728 struct smi_info *info;
1729
1730 if (!str)
1731 return -ENOMEM;
1732
1733 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1734 len = strlen(str);
1735 ival = len - 1;
1736 while ((ival >= 0) && isspace(str[ival])) {
1737 str[ival] = '\0';
1738 ival--;
1739 }
1740
1741 for (curr = str; curr; curr = next) {
1742 regspacing = 1;
1743 regsize = 1;
1744 regshift = 0;
1745 irq = 0;
1746 ipmb = 0; /* Choose the default if not specified */
1747
1748 next = strchr(curr, ':');
1749 if (next) {
1750 *next = '\0';
1751 next++;
1752 }
1753
1754 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1755 if (rv)
1756 break;
1757 op = ival;
1758
1759 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1760 if (rv)
1761 break;
1762 si_type = ival;
1763
1764 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1765 if (rv)
1766 break;
1767
1768 s = strchr(curr, ',');
1769 if (s) {
1770 *s = '\0';
1771 s++;
1772 }
1773 addr = simple_strtoul(curr, &n, 0);
1774 if ((*n != '\0') || (*curr == '\0')) {
1775 printk(KERN_WARNING PFX "Invalid hotmod address"
1776 " '%s'\n", curr);
1777 break;
1778 }
1779
1780 while (s) {
1781 curr = s;
1782 s = strchr(curr, ',');
1783 if (s) {
1784 *s = '\0';
1785 s++;
1786 }
1787 o = strchr(curr, '=');
1788 if (o) {
1789 *o = '\0';
1790 o++;
1791 }
1792 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1793 if (rv < 0)
1794 goto out;
1795 else if (rv)
1796 continue;
1797 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1798 if (rv < 0)
1799 goto out;
1800 else if (rv)
1801 continue;
1802 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1803 if (rv < 0)
1804 goto out;
1805 else if (rv)
1806 continue;
1807 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1808 if (rv < 0)
1809 goto out;
1810 else if (rv)
1811 continue;
1812 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1813 if (rv < 0)
1814 goto out;
1815 else if (rv)
1816 continue;
1817
1818 rv = -EINVAL;
1819 printk(KERN_WARNING PFX
1820 "Invalid hotmod option '%s'\n",
1821 curr);
1822 goto out;
1823 }
1824
1825 if (op == HM_ADD) {
1826 info = smi_info_alloc();
1827 if (!info) {
1828 rv = -ENOMEM;
1829 goto out;
1830 }
1831
1832 info->addr_source = SI_HOTMOD;
1833 info->si_type = si_type;
1834 info->io.addr_data = addr;
1835 info->io.addr_type = addr_space;
1836 if (addr_space == IPMI_MEM_ADDR_SPACE)
1837 info->io_setup = mem_setup;
1838 else
1839 info->io_setup = port_setup;
1840
1841 info->io.addr = NULL;
1842 info->io.regspacing = regspacing;
1843 if (!info->io.regspacing)
1844 info->io.regspacing = DEFAULT_REGSPACING;
1845 info->io.regsize = regsize;
1846 if (!info->io.regsize)
1847 info->io.regsize = DEFAULT_REGSPACING;
1848 info->io.regshift = regshift;
1849 info->irq = irq;
1850 if (info->irq)
1851 info->irq_setup = std_irq_setup;
1852 info->slave_addr = ipmb;
1853
1854 if (!add_smi(info)) {
1855 if (try_smi_init(info))
1856 cleanup_one_si(info);
1857 } else {
1858 kfree(info);
1859 }
1860 } else {
1861 /* remove */
1862 struct smi_info *e, *tmp_e;
1863
1864 mutex_lock(&smi_infos_lock);
1865 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1866 if (e->io.addr_type != addr_space)
1867 continue;
1868 if (e->si_type != si_type)
1869 continue;
1870 if (e->io.addr_data == addr)
1871 cleanup_one_si(e);
1872 }
1873 mutex_unlock(&smi_infos_lock);
1874 }
1875 }
1876 rv = len;
1877 out:
1878 kfree(str);
1879 return rv;
1880 }
1881
1882 static int hardcode_find_bmc(void)
1883 {
1884 int ret = -ENODEV;
1885 int i;
1886 struct smi_info *info;
1887
1888 for (i = 0; i < SI_MAX_PARMS; i++) {
1889 if (!ports[i] && !addrs[i])
1890 continue;
1891
1892 info = smi_info_alloc();
1893 if (!info)
1894 return -ENOMEM;
1895
1896 info->addr_source = SI_HARDCODED;
1897 printk(KERN_INFO PFX "probing via hardcoded address\n");
1898
1899 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1900 info->si_type = SI_KCS;
1901 } else if (strcmp(si_type[i], "smic") == 0) {
1902 info->si_type = SI_SMIC;
1903 } else if (strcmp(si_type[i], "bt") == 0) {
1904 info->si_type = SI_BT;
1905 } else {
1906 printk(KERN_WARNING PFX "Interface type specified "
1907 "for interface %d, was invalid: %s\n",
1908 i, si_type[i]);
1909 kfree(info);
1910 continue;
1911 }
1912
1913 if (ports[i]) {
1914 /* An I/O port */
1915 info->io_setup = port_setup;
1916 info->io.addr_data = ports[i];
1917 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1918 } else if (addrs[i]) {
1919 /* A memory port */
1920 info->io_setup = mem_setup;
1921 info->io.addr_data = addrs[i];
1922 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1923 } else {
1924 printk(KERN_WARNING PFX "Interface type specified "
1925 "for interface %d, but port and address were "
1926 "not set or set to zero.\n", i);
1927 kfree(info);
1928 continue;
1929 }
1930
1931 info->io.addr = NULL;
1932 info->io.regspacing = regspacings[i];
1933 if (!info->io.regspacing)
1934 info->io.regspacing = DEFAULT_REGSPACING;
1935 info->io.regsize = regsizes[i];
1936 if (!info->io.regsize)
1937 info->io.regsize = DEFAULT_REGSPACING;
1938 info->io.regshift = regshifts[i];
1939 info->irq = irqs[i];
1940 if (info->irq)
1941 info->irq_setup = std_irq_setup;
1942 info->slave_addr = slave_addrs[i];
1943
1944 if (!add_smi(info)) {
1945 if (try_smi_init(info))
1946 cleanup_one_si(info);
1947 ret = 0;
1948 } else {
1949 kfree(info);
1950 }
1951 }
1952 return ret;
1953 }
1954
1955 #ifdef CONFIG_ACPI
1956
1957 #include <linux/acpi.h>
1958
1959 /*
1960 * Once we get an ACPI failure, we don't try any more, because we go
1961 * through the tables sequentially. Once we don't find a table, there
1962 * are no more.
1963 */
1964 static int acpi_failure;
1965
1966 /* For GPE-type interrupts. */
1967 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1968 u32 gpe_number, void *context)
1969 {
1970 struct smi_info *smi_info = context;
1971 unsigned long flags;
1972 #ifdef DEBUG_TIMING
1973 struct timeval t;
1974 #endif
1975
1976 spin_lock_irqsave(&(smi_info->si_lock), flags);
1977
1978 smi_inc_stat(smi_info, interrupts);
1979
1980 #ifdef DEBUG_TIMING
1981 do_gettimeofday(&t);
1982 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1983 #endif
1984 smi_event_handler(smi_info, 0);
1985 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1986
1987 return ACPI_INTERRUPT_HANDLED;
1988 }
1989
1990 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1991 {
1992 if (!info->irq)
1993 return;
1994
1995 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1996 }
1997
1998 static int acpi_gpe_irq_setup(struct smi_info *info)
1999 {
2000 acpi_status status;
2001
2002 if (!info->irq)
2003 return 0;
2004
2005 /* FIXME - is level triggered right? */
2006 status = acpi_install_gpe_handler(NULL,
2007 info->irq,
2008 ACPI_GPE_LEVEL_TRIGGERED,
2009 &ipmi_acpi_gpe,
2010 info);
2011 if (status != AE_OK) {
2012 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2013 " running polled\n", DEVICE_NAME, info->irq);
2014 info->irq = 0;
2015 return -EINVAL;
2016 } else {
2017 info->irq_cleanup = acpi_gpe_irq_cleanup;
2018 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2019 return 0;
2020 }
2021 }
2022
2023 /*
2024 * Defined at
2025 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2026 */
2027 struct SPMITable {
2028 s8 Signature[4];
2029 u32 Length;
2030 u8 Revision;
2031 u8 Checksum;
2032 s8 OEMID[6];
2033 s8 OEMTableID[8];
2034 s8 OEMRevision[4];
2035 s8 CreatorID[4];
2036 s8 CreatorRevision[4];
2037 u8 InterfaceType;
2038 u8 IPMIlegacy;
2039 s16 SpecificationRevision;
2040
2041 /*
2042 * Bit 0 - SCI interrupt supported
2043 * Bit 1 - I/O APIC/SAPIC
2044 */
2045 u8 InterruptType;
2046
2047 /*
2048 * If bit 0 of InterruptType is set, then this is the SCI
2049 * interrupt in the GPEx_STS register.
2050 */
2051 u8 GPE;
2052
2053 s16 Reserved;
2054
2055 /*
2056 * If bit 1 of InterruptType is set, then this is the I/O
2057 * APIC/SAPIC interrupt.
2058 */
2059 u32 GlobalSystemInterrupt;
2060
2061 /* The actual register address. */
2062 struct acpi_generic_address addr;
2063
2064 u8 UID[4];
2065
2066 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2067 };
2068
2069 static int try_init_spmi(struct SPMITable *spmi)
2070 {
2071 struct smi_info *info;
2072
2073 if (spmi->IPMIlegacy != 1) {
2074 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2075 return -ENODEV;
2076 }
2077
2078 info = smi_info_alloc();
2079 if (!info) {
2080 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2081 return -ENOMEM;
2082 }
2083
2084 info->addr_source = SI_SPMI;
2085 printk(KERN_INFO PFX "probing via SPMI\n");
2086
2087 /* Figure out the interface type. */
2088 switch (spmi->InterfaceType) {
2089 case 1: /* KCS */
2090 info->si_type = SI_KCS;
2091 break;
2092 case 2: /* SMIC */
2093 info->si_type = SI_SMIC;
2094 break;
2095 case 3: /* BT */
2096 info->si_type = SI_BT;
2097 break;
2098 default:
2099 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2100 spmi->InterfaceType);
2101 kfree(info);
2102 return -EIO;
2103 }
2104
2105 if (spmi->InterruptType & 1) {
2106 /* We've got a GPE interrupt. */
2107 info->irq = spmi->GPE;
2108 info->irq_setup = acpi_gpe_irq_setup;
2109 } else if (spmi->InterruptType & 2) {
2110 /* We've got an APIC/SAPIC interrupt. */
2111 info->irq = spmi->GlobalSystemInterrupt;
2112 info->irq_setup = std_irq_setup;
2113 } else {
2114 /* Use the default interrupt setting. */
2115 info->irq = 0;
2116 info->irq_setup = NULL;
2117 }
2118
2119 if (spmi->addr.bit_width) {
2120 /* A (hopefully) properly formed register bit width. */
2121 info->io.regspacing = spmi->addr.bit_width / 8;
2122 } else {
2123 info->io.regspacing = DEFAULT_REGSPACING;
2124 }
2125 info->io.regsize = info->io.regspacing;
2126 info->io.regshift = spmi->addr.bit_offset;
2127
2128 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2129 info->io_setup = mem_setup;
2130 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2131 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2132 info->io_setup = port_setup;
2133 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2134 } else {
2135 kfree(info);
2136 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2137 return -EIO;
2138 }
2139 info->io.addr_data = spmi->addr.address;
2140
2141 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2142 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2143 info->io.addr_data, info->io.regsize, info->io.regspacing,
2144 info->irq);
2145
2146 if (add_smi(info))
2147 kfree(info);
2148
2149 return 0;
2150 }
2151
2152 static void spmi_find_bmc(void)
2153 {
2154 acpi_status status;
2155 struct SPMITable *spmi;
2156 int i;
2157
2158 if (acpi_disabled)
2159 return;
2160
2161 if (acpi_failure)
2162 return;
2163
2164 for (i = 0; ; i++) {
2165 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2166 (struct acpi_table_header **)&spmi);
2167 if (status != AE_OK)
2168 return;
2169
2170 try_init_spmi(spmi);
2171 }
2172 }
2173
2174 static int ipmi_pnp_probe(struct pnp_dev *dev,
2175 const struct pnp_device_id *dev_id)
2176 {
2177 struct acpi_device *acpi_dev;
2178 struct smi_info *info;
2179 struct resource *res, *res_second;
2180 acpi_handle handle;
2181 acpi_status status;
2182 unsigned long long tmp;
2183
2184 acpi_dev = pnp_acpi_device(dev);
2185 if (!acpi_dev)
2186 return -ENODEV;
2187
2188 info = smi_info_alloc();
2189 if (!info)
2190 return -ENOMEM;
2191
2192 info->addr_source = SI_ACPI;
2193 printk(KERN_INFO PFX "probing via ACPI\n");
2194
2195 handle = acpi_dev->handle;
2196 info->addr_info.acpi_info.acpi_handle = handle;
2197
2198 /* _IFT tells us the interface type: KCS, BT, etc */
2199 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2200 if (ACPI_FAILURE(status))
2201 goto err_free;
2202
2203 switch (tmp) {
2204 case 1:
2205 info->si_type = SI_KCS;
2206 break;
2207 case 2:
2208 info->si_type = SI_SMIC;
2209 break;
2210 case 3:
2211 info->si_type = SI_BT;
2212 break;
2213 default:
2214 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2215 goto err_free;
2216 }
2217
2218 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2219 if (res) {
2220 info->io_setup = port_setup;
2221 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2222 } else {
2223 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2224 if (res) {
2225 info->io_setup = mem_setup;
2226 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2227 }
2228 }
2229 if (!res) {
2230 dev_err(&dev->dev, "no I/O or memory address\n");
2231 goto err_free;
2232 }
2233 info->io.addr_data = res->start;
2234
2235 info->io.regspacing = DEFAULT_REGSPACING;
2236 res_second = pnp_get_resource(dev,
2237 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2238 IORESOURCE_IO : IORESOURCE_MEM,
2239 1);
2240 if (res_second) {
2241 if (res_second->start > info->io.addr_data)
2242 info->io.regspacing = res_second->start - info->io.addr_data;
2243 }
2244 info->io.regsize = DEFAULT_REGSPACING;
2245 info->io.regshift = 0;
2246
2247 /* If _GPE exists, use it; otherwise use standard interrupts */
2248 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2249 if (ACPI_SUCCESS(status)) {
2250 info->irq = tmp;
2251 info->irq_setup = acpi_gpe_irq_setup;
2252 } else if (pnp_irq_valid(dev, 0)) {
2253 info->irq = pnp_irq(dev, 0);
2254 info->irq_setup = std_irq_setup;
2255 }
2256
2257 info->dev = &dev->dev;
2258 pnp_set_drvdata(dev, info);
2259
2260 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2261 res, info->io.regsize, info->io.regspacing,
2262 info->irq);
2263
2264 if (add_smi(info))
2265 goto err_free;
2266
2267 return 0;
2268
2269 err_free:
2270 kfree(info);
2271 return -EINVAL;
2272 }
2273
2274 static void ipmi_pnp_remove(struct pnp_dev *dev)
2275 {
2276 struct smi_info *info = pnp_get_drvdata(dev);
2277
2278 cleanup_one_si(info);
2279 }
2280
2281 static const struct pnp_device_id pnp_dev_table[] = {
2282 {"IPI0001", 0},
2283 {"", 0},
2284 };
2285
2286 static struct pnp_driver ipmi_pnp_driver = {
2287 .name = DEVICE_NAME,
2288 .probe = ipmi_pnp_probe,
2289 .remove = ipmi_pnp_remove,
2290 .id_table = pnp_dev_table,
2291 };
2292 #endif
2293
2294 #ifdef CONFIG_DMI
2295 struct dmi_ipmi_data {
2296 u8 type;
2297 u8 addr_space;
2298 unsigned long base_addr;
2299 u8 irq;
2300 u8 offset;
2301 u8 slave_addr;
2302 };
2303
2304 static int decode_dmi(const struct dmi_header *dm,
2305 struct dmi_ipmi_data *dmi)
2306 {
2307 const u8 *data = (const u8 *)dm;
2308 unsigned long base_addr;
2309 u8 reg_spacing;
2310 u8 len = dm->length;
2311
2312 dmi->type = data[4];
2313
2314 memcpy(&base_addr, data+8, sizeof(unsigned long));
2315 if (len >= 0x11) {
2316 if (base_addr & 1) {
2317 /* I/O */
2318 base_addr &= 0xFFFE;
2319 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2320 } else
2321 /* Memory */
2322 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2323
2324 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2325 is odd. */
2326 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2327
2328 dmi->irq = data[0x11];
2329
2330 /* The top two bits of byte 0x10 hold the register spacing. */
2331 reg_spacing = (data[0x10] & 0xC0) >> 6;
2332 switch (reg_spacing) {
2333 case 0x00: /* Byte boundaries */
2334 dmi->offset = 1;
2335 break;
2336 case 0x01: /* 32-bit boundaries */
2337 dmi->offset = 4;
2338 break;
2339 case 0x02: /* 16-byte boundaries */
2340 dmi->offset = 16;
2341 break;
2342 default:
2343 /* Some other interface, just ignore it. */
2344 return -EIO;
2345 }
2346 } else {
2347 /* Old DMI spec. */
2348 /*
2349 * Note that technically, the lower bit of the base
2350 * address should be 1 if the address is I/O and 0 if
2351 * the address is in memory. So many systems get that
2352 * wrong (and all that I have seen are I/O) so we just
2353 * ignore that bit and assume I/O. Systems that use
2354 * memory should use the newer spec, anyway.
2355 */
2356 dmi->base_addr = base_addr & 0xfffe;
2357 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2358 dmi->offset = 1;
2359 }
2360
2361 dmi->slave_addr = data[6];
2362
2363 return 0;
2364 }
2365
2366 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2367 {
2368 struct smi_info *info;
2369
2370 info = smi_info_alloc();
2371 if (!info) {
2372 printk(KERN_ERR PFX "Could not allocate SI data\n");
2373 return;
2374 }
2375
2376 info->addr_source = SI_SMBIOS;
2377 printk(KERN_INFO PFX "probing via SMBIOS\n");
2378
2379 switch (ipmi_data->type) {
2380 case 0x01: /* KCS */
2381 info->si_type = SI_KCS;
2382 break;
2383 case 0x02: /* SMIC */
2384 info->si_type = SI_SMIC;
2385 break;
2386 case 0x03: /* BT */
2387 info->si_type = SI_BT;
2388 break;
2389 default:
2390 kfree(info);
2391 return;
2392 }
2393
2394 switch (ipmi_data->addr_space) {
2395 case IPMI_MEM_ADDR_SPACE:
2396 info->io_setup = mem_setup;
2397 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2398 break;
2399
2400 case IPMI_IO_ADDR_SPACE:
2401 info->io_setup = port_setup;
2402 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2403 break;
2404
2405 default:
2406 kfree(info);
2407 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2408 ipmi_data->addr_space);
2409 return;
2410 }
2411 info->io.addr_data = ipmi_data->base_addr;
2412
2413 info->io.regspacing = ipmi_data->offset;
2414 if (!info->io.regspacing)
2415 info->io.regspacing = DEFAULT_REGSPACING;
2416 info->io.regsize = DEFAULT_REGSPACING;
2417 info->io.regshift = 0;
2418
2419 info->slave_addr = ipmi_data->slave_addr;
2420
2421 info->irq = ipmi_data->irq;
2422 if (info->irq)
2423 info->irq_setup = std_irq_setup;
2424
2425 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2426 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2427 info->io.addr_data, info->io.regsize, info->io.regspacing,
2428 info->irq);
2429
2430 if (add_smi(info))
2431 kfree(info);
2432 }
2433
2434 static void dmi_find_bmc(void)
2435 {
2436 const struct dmi_device *dev = NULL;
2437 struct dmi_ipmi_data data;
2438 int rv;
2439
2440 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2441 memset(&data, 0, sizeof(data));
2442 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2443 &data);
2444 if (!rv)
2445 try_init_dmi(&data);
2446 }
2447 }
2448 #endif /* CONFIG_DMI */
2449
2450 #ifdef CONFIG_PCI
2451
2452 #define PCI_ERMC_CLASSCODE 0x0C0700
2453 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2454 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2455 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2456 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2457 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2458
2459 #define PCI_HP_VENDOR_ID 0x103C
2460 #define PCI_MMC_DEVICE_ID 0x121A
2461 #define PCI_MMC_ADDR_CW 0x10
2462
2463 static void ipmi_pci_cleanup(struct smi_info *info)
2464 {
2465 struct pci_dev *pdev = info->addr_source_data;
2466
2467 pci_disable_device(pdev);
2468 }
2469
2470 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2471 {
2472 if (info->si_type == SI_KCS) {
2473 unsigned char status;
2474 int regspacing;
2475
2476 info->io.regsize = DEFAULT_REGSIZE;
2477 info->io.regshift = 0;
2478 info->io_size = 2;
2479 info->handlers = &kcs_smi_handlers;
2480
2481 /* detect 1, 4, 16byte spacing */
2482 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2483 info->io.regspacing = regspacing;
2484 if (info->io_setup(info)) {
2485 dev_err(info->dev,
2486 "Could not setup I/O space\n");
2487 return DEFAULT_REGSPACING;
2488 }
2489 /* write invalid cmd */
2490 info->io.outputb(&info->io, 1, 0x10);
2491 /* read status back */
2492 status = info->io.inputb(&info->io, 1);
2493 info->io_cleanup(info);
2494 if (status)
2495 return regspacing;
2496 regspacing *= 4;
2497 }
2498 }
2499 return DEFAULT_REGSPACING;
2500 }
2501
2502 static int ipmi_pci_probe(struct pci_dev *pdev,
2503 const struct pci_device_id *ent)
2504 {
2505 int rv;
2506 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2507 struct smi_info *info;
2508
2509 info = smi_info_alloc();
2510 if (!info)
2511 return -ENOMEM;
2512
2513 info->addr_source = SI_PCI;
2514 dev_info(&pdev->dev, "probing via PCI");
2515
2516 switch (class_type) {
2517 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2518 info->si_type = SI_SMIC;
2519 break;
2520
2521 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2522 info->si_type = SI_KCS;
2523 break;
2524
2525 case PCI_ERMC_CLASSCODE_TYPE_BT:
2526 info->si_type = SI_BT;
2527 break;
2528
2529 default:
2530 kfree(info);
2531 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2532 return -ENOMEM;
2533 }
2534
2535 rv = pci_enable_device(pdev);
2536 if (rv) {
2537 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2538 kfree(info);
2539 return rv;
2540 }
2541
2542 info->addr_source_cleanup = ipmi_pci_cleanup;
2543 info->addr_source_data = pdev;
2544
2545 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2546 info->io_setup = port_setup;
2547 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2548 } else {
2549 info->io_setup = mem_setup;
2550 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2551 }
2552 info->io.addr_data = pci_resource_start(pdev, 0);
2553
2554 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2555 info->io.regsize = DEFAULT_REGSIZE;
2556 info->io.regshift = 0;
2557
2558 info->irq = pdev->irq;
2559 if (info->irq)
2560 info->irq_setup = std_irq_setup;
2561
2562 info->dev = &pdev->dev;
2563 pci_set_drvdata(pdev, info);
2564
2565 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2566 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2567 info->irq);
2568
2569 if (add_smi(info))
2570 kfree(info);
2571
2572 return 0;
2573 }
2574
2575 static void ipmi_pci_remove(struct pci_dev *pdev)
2576 {
2577 struct smi_info *info = pci_get_drvdata(pdev);
2578 cleanup_one_si(info);
2579 }
2580
2581 static struct pci_device_id ipmi_pci_devices[] = {
2582 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2583 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2584 { 0, }
2585 };
2586 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2587
2588 static struct pci_driver ipmi_pci_driver = {
2589 .name = DEVICE_NAME,
2590 .id_table = ipmi_pci_devices,
2591 .probe = ipmi_pci_probe,
2592 .remove = ipmi_pci_remove,
2593 };
2594 #endif /* CONFIG_PCI */
2595
2596 static struct of_device_id ipmi_match[];
2597 static int ipmi_probe(struct platform_device *dev)
2598 {
2599 #ifdef CONFIG_OF
2600 const struct of_device_id *match;
2601 struct smi_info *info;
2602 struct resource resource;
2603 const __be32 *regsize, *regspacing, *regshift;
2604 struct device_node *np = dev->dev.of_node;
2605 int ret;
2606 int proplen;
2607
2608 dev_info(&dev->dev, "probing via device tree\n");
2609
2610 match = of_match_device(ipmi_match, &dev->dev);
2611 if (!match)
2612 return -EINVAL;
2613
2614 ret = of_address_to_resource(np, 0, &resource);
2615 if (ret) {
2616 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2617 return ret;
2618 }
2619
2620 regsize = of_get_property(np, "reg-size", &proplen);
2621 if (regsize && proplen != 4) {
2622 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2623 return -EINVAL;
2624 }
2625
2626 regspacing = of_get_property(np, "reg-spacing", &proplen);
2627 if (regspacing && proplen != 4) {
2628 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2629 return -EINVAL;
2630 }
2631
2632 regshift = of_get_property(np, "reg-shift", &proplen);
2633 if (regshift && proplen != 4) {
2634 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2635 return -EINVAL;
2636 }
2637
2638 info = smi_info_alloc();
2639
2640 if (!info) {
2641 dev_err(&dev->dev,
2642 "could not allocate memory for OF probe\n");
2643 return -ENOMEM;
2644 }
2645
2646 info->si_type = (enum si_type) match->data;
2647 info->addr_source = SI_DEVICETREE;
2648 info->irq_setup = std_irq_setup;
2649
2650 if (resource.flags & IORESOURCE_IO) {
2651 info->io_setup = port_setup;
2652 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2653 } else {
2654 info->io_setup = mem_setup;
2655 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2656 }
2657
2658 info->io.addr_data = resource.start;
2659
2660 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2661 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2662 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2663
2664 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2665 info->dev = &dev->dev;
2666
2667 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2668 info->io.addr_data, info->io.regsize, info->io.regspacing,
2669 info->irq);
2670
2671 dev_set_drvdata(&dev->dev, info);
2672
2673 if (add_smi(info)) {
2674 kfree(info);
2675 return -EBUSY;
2676 }
2677 #endif
2678 return 0;
2679 }
2680
2681 static int ipmi_remove(struct platform_device *dev)
2682 {
2683 #ifdef CONFIG_OF
2684 cleanup_one_si(dev_get_drvdata(&dev->dev));
2685 #endif
2686 return 0;
2687 }
2688
2689 static struct of_device_id ipmi_match[] =
2690 {
2691 { .type = "ipmi", .compatible = "ipmi-kcs",
2692 .data = (void *)(unsigned long) SI_KCS },
2693 { .type = "ipmi", .compatible = "ipmi-smic",
2694 .data = (void *)(unsigned long) SI_SMIC },
2695 { .type = "ipmi", .compatible = "ipmi-bt",
2696 .data = (void *)(unsigned long) SI_BT },
2697 {},
2698 };
2699
2700 static struct platform_driver ipmi_driver = {
2701 .driver = {
2702 .name = DEVICE_NAME,
2703 .owner = THIS_MODULE,
2704 .of_match_table = ipmi_match,
2705 },
2706 .probe = ipmi_probe,
2707 .remove = ipmi_remove,
2708 };
2709
2710 static int wait_for_msg_done(struct smi_info *smi_info)
2711 {
2712 enum si_sm_result smi_result;
2713
2714 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2715 for (;;) {
2716 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2717 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2718 schedule_timeout_uninterruptible(1);
2719 smi_result = smi_info->handlers->event(
2720 smi_info->si_sm, 100);
2721 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2722 smi_result = smi_info->handlers->event(
2723 smi_info->si_sm, 0);
2724 } else
2725 break;
2726 }
2727 if (smi_result == SI_SM_HOSED)
2728 /*
2729 * We couldn't get the state machine to run, so whatever's at
2730 * the port is probably not an IPMI SMI interface.
2731 */
2732 return -ENODEV;
2733
2734 return 0;
2735 }
2736
2737 static int try_get_dev_id(struct smi_info *smi_info)
2738 {
2739 unsigned char msg[2];
2740 unsigned char *resp;
2741 unsigned long resp_len;
2742 int rv = 0;
2743
2744 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2745 if (!resp)
2746 return -ENOMEM;
2747
2748 /*
2749 * Do a Get Device ID command, since it comes back with some
2750 * useful info.
2751 */
2752 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2753 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2754 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2755
2756 rv = wait_for_msg_done(smi_info);
2757 if (rv)
2758 goto out;
2759
2760 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2761 resp, IPMI_MAX_MSG_LENGTH);
2762
2763 /* Check and record info from the get device id, in case we need it. */
2764 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2765
2766 out:
2767 kfree(resp);
2768 return rv;
2769 }
2770
2771 static int try_enable_event_buffer(struct smi_info *smi_info)
2772 {
2773 unsigned char msg[3];
2774 unsigned char *resp;
2775 unsigned long resp_len;
2776 int rv = 0;
2777
2778 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2779 if (!resp)
2780 return -ENOMEM;
2781
2782 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2783 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2784 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2785
2786 rv = wait_for_msg_done(smi_info);
2787 if (rv) {
2788 printk(KERN_WARNING PFX "Error getting response from get"
2789 " global enables command, the event buffer is not"
2790 " enabled.\n");
2791 goto out;
2792 }
2793
2794 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2795 resp, IPMI_MAX_MSG_LENGTH);
2796
2797 if (resp_len < 4 ||
2798 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2799 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2800 resp[2] != 0) {
2801 printk(KERN_WARNING PFX "Invalid return from get global"
2802 " enables command, cannot enable the event buffer.\n");
2803 rv = -EINVAL;
2804 goto out;
2805 }
2806
2807 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2808 /* buffer is already enabled, nothing to do. */
2809 goto out;
2810
2811 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2812 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2813 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2814 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2815
2816 rv = wait_for_msg_done(smi_info);
2817 if (rv) {
2818 printk(KERN_WARNING PFX "Error getting response from set"
2819 " global, enables command, the event buffer is not"
2820 " enabled.\n");
2821 goto out;
2822 }
2823
2824 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2825 resp, IPMI_MAX_MSG_LENGTH);
2826
2827 if (resp_len < 3 ||
2828 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2829 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2830 printk(KERN_WARNING PFX "Invalid return from get global,"
2831 "enables command, not enable the event buffer.\n");
2832 rv = -EINVAL;
2833 goto out;
2834 }
2835
2836 if (resp[2] != 0)
2837 /*
2838 * An error when setting the event buffer bit means
2839 * that the event buffer is not supported.
2840 */
2841 rv = -ENOENT;
2842 out:
2843 kfree(resp);
2844 return rv;
2845 }
2846
2847 static int smi_type_proc_show(struct seq_file *m, void *v)
2848 {
2849 struct smi_info *smi = m->private;
2850
2851 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2852 }
2853
2854 static int smi_type_proc_open(struct inode *inode, struct file *file)
2855 {
2856 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2857 }
2858
2859 static const struct file_operations smi_type_proc_ops = {
2860 .open = smi_type_proc_open,
2861 .read = seq_read,
2862 .llseek = seq_lseek,
2863 .release = single_release,
2864 };
2865
2866 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2867 {
2868 struct smi_info *smi = m->private;
2869
2870 seq_printf(m, "interrupts_enabled: %d\n",
2871 smi->irq && !smi->interrupt_disabled);
2872 seq_printf(m, "short_timeouts: %u\n",
2873 smi_get_stat(smi, short_timeouts));
2874 seq_printf(m, "long_timeouts: %u\n",
2875 smi_get_stat(smi, long_timeouts));
2876 seq_printf(m, "idles: %u\n",
2877 smi_get_stat(smi, idles));
2878 seq_printf(m, "interrupts: %u\n",
2879 smi_get_stat(smi, interrupts));
2880 seq_printf(m, "attentions: %u\n",
2881 smi_get_stat(smi, attentions));
2882 seq_printf(m, "flag_fetches: %u\n",
2883 smi_get_stat(smi, flag_fetches));
2884 seq_printf(m, "hosed_count: %u\n",
2885 smi_get_stat(smi, hosed_count));
2886 seq_printf(m, "complete_transactions: %u\n",
2887 smi_get_stat(smi, complete_transactions));
2888 seq_printf(m, "events: %u\n",
2889 smi_get_stat(smi, events));
2890 seq_printf(m, "watchdog_pretimeouts: %u\n",
2891 smi_get_stat(smi, watchdog_pretimeouts));
2892 seq_printf(m, "incoming_messages: %u\n",
2893 smi_get_stat(smi, incoming_messages));
2894 return 0;
2895 }
2896
2897 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2898 {
2899 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2900 }
2901
2902 static const struct file_operations smi_si_stats_proc_ops = {
2903 .open = smi_si_stats_proc_open,
2904 .read = seq_read,
2905 .llseek = seq_lseek,
2906 .release = single_release,
2907 };
2908
2909 static int smi_params_proc_show(struct seq_file *m, void *v)
2910 {
2911 struct smi_info *smi = m->private;
2912
2913 return seq_printf(m,
2914 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2915 si_to_str[smi->si_type],
2916 addr_space_to_str[smi->io.addr_type],
2917 smi->io.addr_data,
2918 smi->io.regspacing,
2919 smi->io.regsize,
2920 smi->io.regshift,
2921 smi->irq,
2922 smi->slave_addr);
2923 }
2924
2925 static int smi_params_proc_open(struct inode *inode, struct file *file)
2926 {
2927 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2928 }
2929
2930 static const struct file_operations smi_params_proc_ops = {
2931 .open = smi_params_proc_open,
2932 .read = seq_read,
2933 .llseek = seq_lseek,
2934 .release = single_release,
2935 };
2936
2937 /*
2938 * oem_data_avail_to_receive_msg_avail
2939 * @info - smi_info structure with msg_flags set
2940 *
2941 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2942 * Returns 1 indicating need to re-run handle_flags().
2943 */
2944 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2945 {
2946 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2947 RECEIVE_MSG_AVAIL);
2948 return 1;
2949 }
2950
2951 /*
2952 * setup_dell_poweredge_oem_data_handler
2953 * @info - smi_info.device_id must be populated
2954 *
2955 * Systems that match, but have firmware version < 1.40 may assert
2956 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2957 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2958 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2959 * as RECEIVE_MSG_AVAIL instead.
2960 *
2961 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2962 * assert the OEM[012] bits, and if it did, the driver would have to
2963 * change to handle that properly, we don't actually check for the
2964 * firmware version.
2965 * Device ID = 0x20 BMC on PowerEdge 8G servers
2966 * Device Revision = 0x80
2967 * Firmware Revision1 = 0x01 BMC version 1.40
2968 * Firmware Revision2 = 0x40 BCD encoded
2969 * IPMI Version = 0x51 IPMI 1.5
2970 * Manufacturer ID = A2 02 00 Dell IANA
2971 *
2972 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2973 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2974 *
2975 */
2976 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2977 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2978 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2979 #define DELL_IANA_MFR_ID 0x0002a2
2980 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2981 {
2982 struct ipmi_device_id *id = &smi_info->device_id;
2983 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2984 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2985 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2986 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2987 smi_info->oem_data_avail_handler =
2988 oem_data_avail_to_receive_msg_avail;
2989 } else if (ipmi_version_major(id) < 1 ||
2990 (ipmi_version_major(id) == 1 &&
2991 ipmi_version_minor(id) < 5)) {
2992 smi_info->oem_data_avail_handler =
2993 oem_data_avail_to_receive_msg_avail;
2994 }
2995 }
2996 }
2997
2998 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2999 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3000 {
3001 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3002
3003 /* Make it a response */
3004 msg->rsp[0] = msg->data[0] | 4;
3005 msg->rsp[1] = msg->data[1];
3006 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3007 msg->rsp_size = 3;
3008 smi_info->curr_msg = NULL;
3009 deliver_recv_msg(smi_info, msg);
3010 }
3011
3012 /*
3013 * dell_poweredge_bt_xaction_handler
3014 * @info - smi_info.device_id must be populated
3015 *
3016 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3017 * not respond to a Get SDR command if the length of the data
3018 * requested is exactly 0x3A, which leads to command timeouts and no
3019 * data returned. This intercepts such commands, and causes userspace
3020 * callers to try again with a different-sized buffer, which succeeds.
3021 */
3022
3023 #define STORAGE_NETFN 0x0A
3024 #define STORAGE_CMD_GET_SDR 0x23
3025 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3026 unsigned long unused,
3027 void *in)
3028 {
3029 struct smi_info *smi_info = in;
3030 unsigned char *data = smi_info->curr_msg->data;
3031 unsigned int size = smi_info->curr_msg->data_size;
3032 if (size >= 8 &&
3033 (data[0]>>2) == STORAGE_NETFN &&
3034 data[1] == STORAGE_CMD_GET_SDR &&
3035 data[7] == 0x3A) {
3036 return_hosed_msg_badsize(smi_info);
3037 return NOTIFY_STOP;
3038 }
3039 return NOTIFY_DONE;
3040 }
3041
3042 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3043 .notifier_call = dell_poweredge_bt_xaction_handler,
3044 };
3045
3046 /*
3047 * setup_dell_poweredge_bt_xaction_handler
3048 * @info - smi_info.device_id must be filled in already
3049 *
3050 * Fills in smi_info.device_id.start_transaction_pre_hook
3051 * when we know what function to use there.
3052 */
3053 static void
3054 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3055 {
3056 struct ipmi_device_id *id = &smi_info->device_id;
3057 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3058 smi_info->si_type == SI_BT)
3059 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3060 }
3061
3062 /*
3063 * setup_oem_data_handler
3064 * @info - smi_info.device_id must be filled in already
3065 *
3066 * Fills in smi_info.device_id.oem_data_available_handler
3067 * when we know what function to use there.
3068 */
3069
3070 static void setup_oem_data_handler(struct smi_info *smi_info)
3071 {
3072 setup_dell_poweredge_oem_data_handler(smi_info);
3073 }
3074
3075 static void setup_xaction_handlers(struct smi_info *smi_info)
3076 {
3077 setup_dell_poweredge_bt_xaction_handler(smi_info);
3078 }
3079
3080 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3081 {
3082 if (smi_info->intf) {
3083 /*
3084 * The timer and thread are only running if the
3085 * interface has been started up and registered.
3086 */
3087 if (smi_info->thread != NULL)
3088 kthread_stop(smi_info->thread);
3089 del_timer_sync(&smi_info->si_timer);
3090 }
3091 }
3092
3093 static struct ipmi_default_vals
3094 {
3095 int type;
3096 int port;
3097 } ipmi_defaults[] =
3098 {
3099 { .type = SI_KCS, .port = 0xca2 },
3100 { .type = SI_SMIC, .port = 0xca9 },
3101 { .type = SI_BT, .port = 0xe4 },
3102 { .port = 0 }
3103 };
3104
3105 static void default_find_bmc(void)
3106 {
3107 struct smi_info *info;
3108 int i;
3109
3110 for (i = 0; ; i++) {
3111 if (!ipmi_defaults[i].port)
3112 break;
3113 #ifdef CONFIG_PPC
3114 if (check_legacy_ioport(ipmi_defaults[i].port))
3115 continue;
3116 #endif
3117 info = smi_info_alloc();
3118 if (!info)
3119 return;
3120
3121 info->addr_source = SI_DEFAULT;
3122
3123 info->si_type = ipmi_defaults[i].type;
3124 info->io_setup = port_setup;
3125 info->io.addr_data = ipmi_defaults[i].port;
3126 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3127
3128 info->io.addr = NULL;
3129 info->io.regspacing = DEFAULT_REGSPACING;
3130 info->io.regsize = DEFAULT_REGSPACING;
3131 info->io.regshift = 0;
3132
3133 if (add_smi(info) == 0) {
3134 if ((try_smi_init(info)) == 0) {
3135 /* Found one... */
3136 printk(KERN_INFO PFX "Found default %s"
3137 " state machine at %s address 0x%lx\n",
3138 si_to_str[info->si_type],
3139 addr_space_to_str[info->io.addr_type],
3140 info->io.addr_data);
3141 } else
3142 cleanup_one_si(info);
3143 } else {
3144 kfree(info);
3145 }
3146 }
3147 }
3148
3149 static int is_new_interface(struct smi_info *info)
3150 {
3151 struct smi_info *e;
3152
3153 list_for_each_entry(e, &smi_infos, link) {
3154 if (e->io.addr_type != info->io.addr_type)
3155 continue;
3156 if (e->io.addr_data == info->io.addr_data)
3157 return 0;
3158 }
3159
3160 return 1;
3161 }
3162
3163 static int add_smi(struct smi_info *new_smi)
3164 {
3165 int rv = 0;
3166
3167 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3168 ipmi_addr_src_to_str[new_smi->addr_source],
3169 si_to_str[new_smi->si_type]);
3170 mutex_lock(&smi_infos_lock);
3171 if (!is_new_interface(new_smi)) {
3172 printk(KERN_CONT " duplicate interface\n");
3173 rv = -EBUSY;
3174 goto out_err;
3175 }
3176
3177 printk(KERN_CONT "\n");
3178
3179 /* So we know not to free it unless we have allocated one. */
3180 new_smi->intf = NULL;
3181 new_smi->si_sm = NULL;
3182 new_smi->handlers = NULL;
3183
3184 list_add_tail(&new_smi->link, &smi_infos);
3185
3186 out_err:
3187 mutex_unlock(&smi_infos_lock);
3188 return rv;
3189 }
3190
3191 static int try_smi_init(struct smi_info *new_smi)
3192 {
3193 int rv = 0;
3194 int i;
3195
3196 printk(KERN_INFO PFX "Trying %s-specified %s state"
3197 " machine at %s address 0x%lx, slave address 0x%x,"
3198 " irq %d\n",
3199 ipmi_addr_src_to_str[new_smi->addr_source],
3200 si_to_str[new_smi->si_type],
3201 addr_space_to_str[new_smi->io.addr_type],
3202 new_smi->io.addr_data,
3203 new_smi->slave_addr, new_smi->irq);
3204
3205 switch (new_smi->si_type) {
3206 case SI_KCS:
3207 new_smi->handlers = &kcs_smi_handlers;
3208 break;
3209
3210 case SI_SMIC:
3211 new_smi->handlers = &smic_smi_handlers;
3212 break;
3213
3214 case SI_BT:
3215 new_smi->handlers = &bt_smi_handlers;
3216 break;
3217
3218 default:
3219 /* No support for anything else yet. */
3220 rv = -EIO;
3221 goto out_err;
3222 }
3223
3224 /* Allocate the state machine's data and initialize it. */
3225 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3226 if (!new_smi->si_sm) {
3227 printk(KERN_ERR PFX
3228 "Could not allocate state machine memory\n");
3229 rv = -ENOMEM;
3230 goto out_err;
3231 }
3232 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3233 &new_smi->io);
3234
3235 /* Now that we know the I/O size, we can set up the I/O. */
3236 rv = new_smi->io_setup(new_smi);
3237 if (rv) {
3238 printk(KERN_ERR PFX "Could not set up I/O space\n");
3239 goto out_err;
3240 }
3241
3242 /* Do low-level detection first. */
3243 if (new_smi->handlers->detect(new_smi->si_sm)) {
3244 if (new_smi->addr_source)
3245 printk(KERN_INFO PFX "Interface detection failed\n");
3246 rv = -ENODEV;
3247 goto out_err;
3248 }
3249
3250 /*
3251 * Attempt a get device id command. If it fails, we probably
3252 * don't have a BMC here.
3253 */
3254 rv = try_get_dev_id(new_smi);
3255 if (rv) {
3256 if (new_smi->addr_source)
3257 printk(KERN_INFO PFX "There appears to be no BMC"
3258 " at this location\n");
3259 goto out_err;
3260 }
3261
3262 setup_oem_data_handler(new_smi);
3263 setup_xaction_handlers(new_smi);
3264
3265 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3266 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3267 new_smi->curr_msg = NULL;
3268 atomic_set(&new_smi->req_events, 0);
3269 new_smi->run_to_completion = 0;
3270 for (i = 0; i < SI_NUM_STATS; i++)
3271 atomic_set(&new_smi->stats[i], 0);
3272
3273 new_smi->interrupt_disabled = 1;
3274 atomic_set(&new_smi->stop_operation, 0);
3275 new_smi->intf_num = smi_num;
3276 smi_num++;
3277
3278 rv = try_enable_event_buffer(new_smi);
3279 if (rv == 0)
3280 new_smi->has_event_buffer = 1;
3281
3282 /*
3283 * Start clearing the flags before we enable interrupts or the
3284 * timer to avoid racing with the timer.
3285 */
3286 start_clear_flags(new_smi);
3287 /* IRQ is defined to be set when non-zero. */
3288 if (new_smi->irq)
3289 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3290
3291 if (!new_smi->dev) {
3292 /*
3293 * If we don't already have a device from something
3294 * else (like PCI), then register a new one.
3295 */
3296 new_smi->pdev = platform_device_alloc("ipmi_si",
3297 new_smi->intf_num);
3298 if (!new_smi->pdev) {
3299 printk(KERN_ERR PFX
3300 "Unable to allocate platform device\n");
3301 goto out_err;
3302 }
3303 new_smi->dev = &new_smi->pdev->dev;
3304 new_smi->dev->driver = &ipmi_driver.driver;
3305
3306 rv = platform_device_add(new_smi->pdev);
3307 if (rv) {
3308 printk(KERN_ERR PFX
3309 "Unable to register system interface device:"
3310 " %d\n",
3311 rv);
3312 goto out_err;
3313 }
3314 new_smi->dev_registered = 1;
3315 }
3316
3317 rv = ipmi_register_smi(&handlers,
3318 new_smi,
3319 &new_smi->device_id,
3320 new_smi->dev,
3321 "bmc",
3322 new_smi->slave_addr);
3323 if (rv) {
3324 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3325 rv);
3326 goto out_err_stop_timer;
3327 }
3328
3329 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3330 &smi_type_proc_ops,
3331 new_smi);
3332 if (rv) {
3333 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3334 goto out_err_stop_timer;
3335 }
3336
3337 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3338 &smi_si_stats_proc_ops,
3339 new_smi);
3340 if (rv) {
3341 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3342 goto out_err_stop_timer;
3343 }
3344
3345 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3346 &smi_params_proc_ops,
3347 new_smi);
3348 if (rv) {
3349 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3350 goto out_err_stop_timer;
3351 }
3352
3353 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3354 si_to_str[new_smi->si_type]);
3355
3356 return 0;
3357
3358 out_err_stop_timer:
3359 atomic_inc(&new_smi->stop_operation);
3360 wait_for_timer_and_thread(new_smi);
3361
3362 out_err:
3363 new_smi->interrupt_disabled = 1;
3364
3365 if (new_smi->intf) {
3366 ipmi_unregister_smi(new_smi->intf);
3367 new_smi->intf = NULL;
3368 }
3369
3370 if (new_smi->irq_cleanup) {
3371 new_smi->irq_cleanup(new_smi);
3372 new_smi->irq_cleanup = NULL;
3373 }
3374
3375 /*
3376 * Wait until we know that we are out of any interrupt
3377 * handlers might have been running before we freed the
3378 * interrupt.
3379 */
3380 synchronize_sched();
3381
3382 if (new_smi->si_sm) {
3383 if (new_smi->handlers)
3384 new_smi->handlers->cleanup(new_smi->si_sm);
3385 kfree(new_smi->si_sm);
3386 new_smi->si_sm = NULL;
3387 }
3388 if (new_smi->addr_source_cleanup) {
3389 new_smi->addr_source_cleanup(new_smi);
3390 new_smi->addr_source_cleanup = NULL;
3391 }
3392 if (new_smi->io_cleanup) {
3393 new_smi->io_cleanup(new_smi);
3394 new_smi->io_cleanup = NULL;
3395 }
3396
3397 if (new_smi->dev_registered) {
3398 platform_device_unregister(new_smi->pdev);
3399 new_smi->dev_registered = 0;
3400 }
3401
3402 return rv;
3403 }
3404
3405 static int init_ipmi_si(void)
3406 {
3407 int i;
3408 char *str;
3409 int rv;
3410 struct smi_info *e;
3411 enum ipmi_addr_src type = SI_INVALID;
3412
3413 if (initialized)
3414 return 0;
3415 initialized = 1;
3416
3417 if (si_tryplatform) {
3418 rv = platform_driver_register(&ipmi_driver);
3419 if (rv) {
3420 printk(KERN_ERR PFX "Unable to register "
3421 "driver: %d\n", rv);
3422 return rv;
3423 }
3424 }
3425
3426 /* Parse out the si_type string into its components. */
3427 str = si_type_str;
3428 if (*str != '\0') {
3429 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3430 si_type[i] = str;
3431 str = strchr(str, ',');
3432 if (str) {
3433 *str = '\0';
3434 str++;
3435 } else {
3436 break;
3437 }
3438 }
3439 }
3440
3441 printk(KERN_INFO "IPMI System Interface driver.\n");
3442
3443 /* If the user gave us a device, they presumably want us to use it */
3444 if (!hardcode_find_bmc())
3445 return 0;
3446
3447 #ifdef CONFIG_PCI
3448 if (si_trypci) {
3449 rv = pci_register_driver(&ipmi_pci_driver);
3450 if (rv)
3451 printk(KERN_ERR PFX "Unable to register "
3452 "PCI driver: %d\n", rv);
3453 else
3454 pci_registered = 1;
3455 }
3456 #endif
3457
3458 #ifdef CONFIG_ACPI
3459 if (si_tryacpi) {
3460 pnp_register_driver(&ipmi_pnp_driver);
3461 pnp_registered = 1;
3462 }
3463 #endif
3464
3465 #ifdef CONFIG_DMI
3466 if (si_trydmi)
3467 dmi_find_bmc();
3468 #endif
3469
3470 #ifdef CONFIG_ACPI
3471 if (si_tryacpi)
3472 spmi_find_bmc();
3473 #endif
3474
3475 /* We prefer devices with interrupts, but in the case of a machine
3476 with multiple BMCs we assume that there will be several instances
3477 of a given type so if we succeed in registering a type then also
3478 try to register everything else of the same type */
3479
3480 mutex_lock(&smi_infos_lock);
3481 list_for_each_entry(e, &smi_infos, link) {
3482 /* Try to register a device if it has an IRQ and we either
3483 haven't successfully registered a device yet or this
3484 device has the same type as one we successfully registered */
3485 if (e->irq && (!type || e->addr_source == type)) {
3486 if (!try_smi_init(e)) {
3487 type = e->addr_source;
3488 }
3489 }
3490 }
3491
3492 /* type will only have been set if we successfully registered an si */
3493 if (type) {
3494 mutex_unlock(&smi_infos_lock);
3495 return 0;
3496 }
3497
3498 /* Fall back to the preferred device */
3499
3500 list_for_each_entry(e, &smi_infos, link) {
3501 if (!e->irq && (!type || e->addr_source == type)) {
3502 if (!try_smi_init(e)) {
3503 type = e->addr_source;
3504 }
3505 }
3506 }
3507 mutex_unlock(&smi_infos_lock);
3508
3509 if (type)
3510 return 0;
3511
3512 if (si_trydefaults) {
3513 mutex_lock(&smi_infos_lock);
3514 if (list_empty(&smi_infos)) {
3515 /* No BMC was found, try defaults. */
3516 mutex_unlock(&smi_infos_lock);
3517 default_find_bmc();
3518 } else
3519 mutex_unlock(&smi_infos_lock);
3520 }
3521
3522 mutex_lock(&smi_infos_lock);
3523 if (unload_when_empty && list_empty(&smi_infos)) {
3524 mutex_unlock(&smi_infos_lock);
3525 cleanup_ipmi_si();
3526 printk(KERN_WARNING PFX
3527 "Unable to find any System Interface(s)\n");
3528 return -ENODEV;
3529 } else {
3530 mutex_unlock(&smi_infos_lock);
3531 return 0;
3532 }
3533 }
3534 module_init(init_ipmi_si);
3535
3536 static void cleanup_one_si(struct smi_info *to_clean)
3537 {
3538 int rv = 0;
3539 unsigned long flags;
3540
3541 if (!to_clean)
3542 return;
3543
3544 list_del(&to_clean->link);
3545
3546 /* Tell the driver that we are shutting down. */
3547 atomic_inc(&to_clean->stop_operation);
3548
3549 /*
3550 * Make sure the timer and thread are stopped and will not run
3551 * again.
3552 */
3553 wait_for_timer_and_thread(to_clean);
3554
3555 /*
3556 * Timeouts are stopped, now make sure the interrupts are off
3557 * for the device. A little tricky with locks to make sure
3558 * there are no races.
3559 */
3560 spin_lock_irqsave(&to_clean->si_lock, flags);
3561 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3562 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3563 poll(to_clean);
3564 schedule_timeout_uninterruptible(1);
3565 spin_lock_irqsave(&to_clean->si_lock, flags);
3566 }
3567 disable_si_irq(to_clean);
3568 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3569 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3570 poll(to_clean);
3571 schedule_timeout_uninterruptible(1);
3572 }
3573
3574 /* Clean up interrupts and make sure that everything is done. */
3575 if (to_clean->irq_cleanup)
3576 to_clean->irq_cleanup(to_clean);
3577 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3578 poll(to_clean);
3579 schedule_timeout_uninterruptible(1);
3580 }
3581
3582 if (to_clean->intf)
3583 rv = ipmi_unregister_smi(to_clean->intf);
3584
3585 if (rv) {
3586 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3587 rv);
3588 }
3589
3590 if (to_clean->handlers)
3591 to_clean->handlers->cleanup(to_clean->si_sm);
3592
3593 kfree(to_clean->si_sm);
3594
3595 if (to_clean->addr_source_cleanup)
3596 to_clean->addr_source_cleanup(to_clean);
3597 if (to_clean->io_cleanup)
3598 to_clean->io_cleanup(to_clean);
3599
3600 if (to_clean->dev_registered)
3601 platform_device_unregister(to_clean->pdev);
3602
3603 kfree(to_clean);
3604 }
3605
3606 static void cleanup_ipmi_si(void)
3607 {
3608 struct smi_info *e, *tmp_e;
3609
3610 if (!initialized)
3611 return;
3612
3613 #ifdef CONFIG_PCI
3614 if (pci_registered)
3615 pci_unregister_driver(&ipmi_pci_driver);
3616 #endif
3617 #ifdef CONFIG_ACPI
3618 if (pnp_registered)
3619 pnp_unregister_driver(&ipmi_pnp_driver);
3620 #endif
3621
3622 platform_driver_unregister(&ipmi_driver);
3623
3624 mutex_lock(&smi_infos_lock);
3625 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3626 cleanup_one_si(e);
3627 mutex_unlock(&smi_infos_lock);
3628 }
3629 module_exit(cleanup_ipmi_si);
3630
3631 MODULE_LICENSE("GPL");
3632 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3633 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3634 " system interfaces.");