rbd: send snapshot context with writes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static int rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513
514 return 0;
515 }
516
517 static const struct block_device_operations rbd_bd_ops = {
518 .owner = THIS_MODULE,
519 .open = rbd_open,
520 .release = rbd_release,
521 };
522
523 /*
524 * Initialize an rbd client instance. Success or not, this function
525 * consumes ceph_opts.
526 */
527 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
528 {
529 struct rbd_client *rbdc;
530 int ret = -ENOMEM;
531
532 dout("%s:\n", __func__);
533 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
534 if (!rbdc)
535 goto out_opt;
536
537 kref_init(&rbdc->kref);
538 INIT_LIST_HEAD(&rbdc->node);
539
540 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
541
542 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
543 if (IS_ERR(rbdc->client))
544 goto out_mutex;
545 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
546
547 ret = ceph_open_session(rbdc->client);
548 if (ret < 0)
549 goto out_err;
550
551 spin_lock(&rbd_client_list_lock);
552 list_add_tail(&rbdc->node, &rbd_client_list);
553 spin_unlock(&rbd_client_list_lock);
554
555 mutex_unlock(&ctl_mutex);
556 dout("%s: rbdc %p\n", __func__, rbdc);
557
558 return rbdc;
559
560 out_err:
561 ceph_destroy_client(rbdc->client);
562 out_mutex:
563 mutex_unlock(&ctl_mutex);
564 kfree(rbdc);
565 out_opt:
566 if (ceph_opts)
567 ceph_destroy_options(ceph_opts);
568 dout("%s: error %d\n", __func__, ret);
569
570 return ERR_PTR(ret);
571 }
572
573 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
574 {
575 kref_get(&rbdc->kref);
576
577 return rbdc;
578 }
579
580 /*
581 * Find a ceph client with specific addr and configuration. If
582 * found, bump its reference count.
583 */
584 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
585 {
586 struct rbd_client *client_node;
587 bool found = false;
588
589 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
590 return NULL;
591
592 spin_lock(&rbd_client_list_lock);
593 list_for_each_entry(client_node, &rbd_client_list, node) {
594 if (!ceph_compare_options(ceph_opts, client_node->client)) {
595 __rbd_get_client(client_node);
596
597 found = true;
598 break;
599 }
600 }
601 spin_unlock(&rbd_client_list_lock);
602
603 return found ? client_node : NULL;
604 }
605
606 /*
607 * mount options
608 */
609 enum {
610 Opt_last_int,
611 /* int args above */
612 Opt_last_string,
613 /* string args above */
614 Opt_read_only,
615 Opt_read_write,
616 /* Boolean args above */
617 Opt_last_bool,
618 };
619
620 static match_table_t rbd_opts_tokens = {
621 /* int args above */
622 /* string args above */
623 {Opt_read_only, "read_only"},
624 {Opt_read_only, "ro"}, /* Alternate spelling */
625 {Opt_read_write, "read_write"},
626 {Opt_read_write, "rw"}, /* Alternate spelling */
627 /* Boolean args above */
628 {-1, NULL}
629 };
630
631 struct rbd_options {
632 bool read_only;
633 };
634
635 #define RBD_READ_ONLY_DEFAULT false
636
637 static int parse_rbd_opts_token(char *c, void *private)
638 {
639 struct rbd_options *rbd_opts = private;
640 substring_t argstr[MAX_OPT_ARGS];
641 int token, intval, ret;
642
643 token = match_token(c, rbd_opts_tokens, argstr);
644 if (token < 0)
645 return -EINVAL;
646
647 if (token < Opt_last_int) {
648 ret = match_int(&argstr[0], &intval);
649 if (ret < 0) {
650 pr_err("bad mount option arg (not int) "
651 "at '%s'\n", c);
652 return ret;
653 }
654 dout("got int token %d val %d\n", token, intval);
655 } else if (token > Opt_last_int && token < Opt_last_string) {
656 dout("got string token %d val %s\n", token,
657 argstr[0].from);
658 } else if (token > Opt_last_string && token < Opt_last_bool) {
659 dout("got Boolean token %d\n", token);
660 } else {
661 dout("got token %d\n", token);
662 }
663
664 switch (token) {
665 case Opt_read_only:
666 rbd_opts->read_only = true;
667 break;
668 case Opt_read_write:
669 rbd_opts->read_only = false;
670 break;
671 default:
672 rbd_assert(false);
673 break;
674 }
675 return 0;
676 }
677
678 /*
679 * Get a ceph client with specific addr and configuration, if one does
680 * not exist create it. Either way, ceph_opts is consumed by this
681 * function.
682 */
683 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
684 {
685 struct rbd_client *rbdc;
686
687 rbdc = rbd_client_find(ceph_opts);
688 if (rbdc) /* using an existing client */
689 ceph_destroy_options(ceph_opts);
690 else
691 rbdc = rbd_client_create(ceph_opts);
692
693 return rbdc;
694 }
695
696 /*
697 * Destroy ceph client
698 *
699 * Caller must hold rbd_client_list_lock.
700 */
701 static void rbd_client_release(struct kref *kref)
702 {
703 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
704
705 dout("%s: rbdc %p\n", __func__, rbdc);
706 spin_lock(&rbd_client_list_lock);
707 list_del(&rbdc->node);
708 spin_unlock(&rbd_client_list_lock);
709
710 ceph_destroy_client(rbdc->client);
711 kfree(rbdc);
712 }
713
714 /*
715 * Drop reference to ceph client node. If it's not referenced anymore, release
716 * it.
717 */
718 static void rbd_put_client(struct rbd_client *rbdc)
719 {
720 if (rbdc)
721 kref_put(&rbdc->kref, rbd_client_release);
722 }
723
724 static bool rbd_image_format_valid(u32 image_format)
725 {
726 return image_format == 1 || image_format == 2;
727 }
728
729 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
730 {
731 size_t size;
732 u32 snap_count;
733
734 /* The header has to start with the magic rbd header text */
735 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
736 return false;
737
738 /* The bio layer requires at least sector-sized I/O */
739
740 if (ondisk->options.order < SECTOR_SHIFT)
741 return false;
742
743 /* If we use u64 in a few spots we may be able to loosen this */
744
745 if (ondisk->options.order > 8 * sizeof (int) - 1)
746 return false;
747
748 /*
749 * The size of a snapshot header has to fit in a size_t, and
750 * that limits the number of snapshots.
751 */
752 snap_count = le32_to_cpu(ondisk->snap_count);
753 size = SIZE_MAX - sizeof (struct ceph_snap_context);
754 if (snap_count > size / sizeof (__le64))
755 return false;
756
757 /*
758 * Not only that, but the size of the entire the snapshot
759 * header must also be representable in a size_t.
760 */
761 size -= snap_count * sizeof (__le64);
762 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
763 return false;
764
765 return true;
766 }
767
768 /*
769 * Fill an rbd image header with information from the given format 1
770 * on-disk header.
771 */
772 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
773 struct rbd_image_header_ondisk *ondisk)
774 {
775 struct rbd_image_header *header = &rbd_dev->header;
776 bool first_time = header->object_prefix == NULL;
777 struct ceph_snap_context *snapc;
778 char *object_prefix = NULL;
779 char *snap_names = NULL;
780 u64 *snap_sizes = NULL;
781 u32 snap_count;
782 size_t size;
783 int ret = -ENOMEM;
784 u32 i;
785
786 /* Allocate this now to avoid having to handle failure below */
787
788 if (first_time) {
789 size_t len;
790
791 len = strnlen(ondisk->object_prefix,
792 sizeof (ondisk->object_prefix));
793 object_prefix = kmalloc(len + 1, GFP_KERNEL);
794 if (!object_prefix)
795 return -ENOMEM;
796 memcpy(object_prefix, ondisk->object_prefix, len);
797 object_prefix[len] = '\0';
798 }
799
800 /* Allocate the snapshot context and fill it in */
801
802 snap_count = le32_to_cpu(ondisk->snap_count);
803 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
804 if (!snapc)
805 goto out_err;
806 snapc->seq = le64_to_cpu(ondisk->snap_seq);
807 if (snap_count) {
808 struct rbd_image_snap_ondisk *snaps;
809 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
810
811 /* We'll keep a copy of the snapshot names... */
812
813 if (snap_names_len > (u64)SIZE_MAX)
814 goto out_2big;
815 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
816 if (!snap_names)
817 goto out_err;
818
819 /* ...as well as the array of their sizes. */
820
821 size = snap_count * sizeof (*header->snap_sizes);
822 snap_sizes = kmalloc(size, GFP_KERNEL);
823 if (!snap_sizes)
824 goto out_err;
825
826 /*
827 * Copy the names, and fill in each snapshot's id
828 * and size.
829 *
830 * Note that rbd_dev_v1_header_info() guarantees the
831 * ondisk buffer we're working with has
832 * snap_names_len bytes beyond the end of the
833 * snapshot id array, this memcpy() is safe.
834 */
835 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
836 snaps = ondisk->snaps;
837 for (i = 0; i < snap_count; i++) {
838 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
839 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
840 }
841 }
842
843 /* We won't fail any more, fill in the header */
844
845 down_write(&rbd_dev->header_rwsem);
846 if (first_time) {
847 header->object_prefix = object_prefix;
848 header->obj_order = ondisk->options.order;
849 header->crypt_type = ondisk->options.crypt_type;
850 header->comp_type = ondisk->options.comp_type;
851 /* The rest aren't used for format 1 images */
852 header->stripe_unit = 0;
853 header->stripe_count = 0;
854 header->features = 0;
855 } else {
856 ceph_put_snap_context(header->snapc);
857 kfree(header->snap_names);
858 kfree(header->snap_sizes);
859 }
860
861 /* The remaining fields always get updated (when we refresh) */
862
863 header->image_size = le64_to_cpu(ondisk->image_size);
864 header->snapc = snapc;
865 header->snap_names = snap_names;
866 header->snap_sizes = snap_sizes;
867
868 /* Make sure mapping size is consistent with header info */
869
870 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
871 if (rbd_dev->mapping.size != header->image_size)
872 rbd_dev->mapping.size = header->image_size;
873
874 up_write(&rbd_dev->header_rwsem);
875
876 return 0;
877 out_2big:
878 ret = -EIO;
879 out_err:
880 kfree(snap_sizes);
881 kfree(snap_names);
882 ceph_put_snap_context(snapc);
883 kfree(object_prefix);
884
885 return ret;
886 }
887
888 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
889 {
890 const char *snap_name;
891
892 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
893
894 /* Skip over names until we find the one we are looking for */
895
896 snap_name = rbd_dev->header.snap_names;
897 while (which--)
898 snap_name += strlen(snap_name) + 1;
899
900 return kstrdup(snap_name, GFP_KERNEL);
901 }
902
903 /*
904 * Snapshot id comparison function for use with qsort()/bsearch().
905 * Note that result is for snapshots in *descending* order.
906 */
907 static int snapid_compare_reverse(const void *s1, const void *s2)
908 {
909 u64 snap_id1 = *(u64 *)s1;
910 u64 snap_id2 = *(u64 *)s2;
911
912 if (snap_id1 < snap_id2)
913 return 1;
914 return snap_id1 == snap_id2 ? 0 : -1;
915 }
916
917 /*
918 * Search a snapshot context to see if the given snapshot id is
919 * present.
920 *
921 * Returns the position of the snapshot id in the array if it's found,
922 * or BAD_SNAP_INDEX otherwise.
923 *
924 * Note: The snapshot array is in kept sorted (by the osd) in
925 * reverse order, highest snapshot id first.
926 */
927 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
928 {
929 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
930 u64 *found;
931
932 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
933 sizeof (snap_id), snapid_compare_reverse);
934
935 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
936 }
937
938 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
939 u64 snap_id)
940 {
941 u32 which;
942
943 which = rbd_dev_snap_index(rbd_dev, snap_id);
944 if (which == BAD_SNAP_INDEX)
945 return NULL;
946
947 return _rbd_dev_v1_snap_name(rbd_dev, which);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952 if (snap_id == CEPH_NOSNAP)
953 return RBD_SNAP_HEAD_NAME;
954
955 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956 if (rbd_dev->image_format == 1)
957 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963 u64 *snap_size)
964 {
965 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966 if (snap_id == CEPH_NOSNAP) {
967 *snap_size = rbd_dev->header.image_size;
968 } else if (rbd_dev->image_format == 1) {
969 u32 which;
970
971 which = rbd_dev_snap_index(rbd_dev, snap_id);
972 if (which == BAD_SNAP_INDEX)
973 return -ENOENT;
974
975 *snap_size = rbd_dev->header.snap_sizes[which];
976 } else {
977 u64 size = 0;
978 int ret;
979
980 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981 if (ret)
982 return ret;
983
984 *snap_size = size;
985 }
986 return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990 u64 *snap_features)
991 {
992 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993 if (snap_id == CEPH_NOSNAP) {
994 *snap_features = rbd_dev->header.features;
995 } else if (rbd_dev->image_format == 1) {
996 *snap_features = 0; /* No features for format 1 */
997 } else {
998 u64 features = 0;
999 int ret;
1000
1001 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002 if (ret)
1003 return ret;
1004
1005 *snap_features = features;
1006 }
1007 return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012 u64 snap_id = rbd_dev->spec->snap_id;
1013 u64 size = 0;
1014 u64 features = 0;
1015 int ret;
1016
1017 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018 if (ret)
1019 return ret;
1020 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021 if (ret)
1022 return ret;
1023
1024 rbd_dev->mapping.size = size;
1025 rbd_dev->mapping.features = features;
1026
1027 return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032 rbd_dev->mapping.size = 0;
1033 rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038 char *name;
1039 u64 segment;
1040 int ret;
1041 char *name_format;
1042
1043 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044 if (!name)
1045 return NULL;
1046 segment = offset >> rbd_dev->header.obj_order;
1047 name_format = "%s.%012llx";
1048 if (rbd_dev->image_format == 2)
1049 name_format = "%s.%016llx";
1050 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051 rbd_dev->header.object_prefix, segment);
1052 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053 pr_err("error formatting segment name for #%llu (%d)\n",
1054 segment, ret);
1055 kfree(name);
1056 name = NULL;
1057 }
1058
1059 return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064 /* The explicit cast here is needed to drop the const qualifier */
1065
1066 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073 return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077 u64 offset, u64 length)
1078 {
1079 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081 offset &= segment_size - 1;
1082
1083 rbd_assert(length <= U64_MAX - offset);
1084 if (offset + length > segment_size)
1085 length = segment_size - offset;
1086
1087 return length;
1088 }
1089
1090 /*
1091 * returns the size of an object in the image
1092 */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095 return 1 << header->obj_order;
1096 }
1097
1098 /*
1099 * bio helpers
1100 */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104 struct bio *tmp;
1105
1106 while (chain) {
1107 tmp = chain;
1108 chain = chain->bi_next;
1109 bio_put(tmp);
1110 }
1111 }
1112
1113 /*
1114 * zeros a bio chain, starting at specific offset
1115 */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118 struct bio_vec *bv;
1119 unsigned long flags;
1120 void *buf;
1121 int i;
1122 int pos = 0;
1123
1124 while (chain) {
1125 bio_for_each_segment(bv, chain, i) {
1126 if (pos + bv->bv_len > start_ofs) {
1127 int remainder = max(start_ofs - pos, 0);
1128 buf = bvec_kmap_irq(bv, &flags);
1129 memset(buf + remainder, 0,
1130 bv->bv_len - remainder);
1131 bvec_kunmap_irq(buf, &flags);
1132 }
1133 pos += bv->bv_len;
1134 }
1135
1136 chain = chain->bi_next;
1137 }
1138 }
1139
1140 /*
1141 * similar to zero_bio_chain(), zeros data defined by a page array,
1142 * starting at the given byte offset from the start of the array and
1143 * continuing up to the given end offset. The pages array is
1144 * assumed to be big enough to hold all bytes up to the end.
1145 */
1146 static void zero_pages(struct page **pages, u64 offset, u64 end)
1147 {
1148 struct page **page = &pages[offset >> PAGE_SHIFT];
1149
1150 rbd_assert(end > offset);
1151 rbd_assert(end - offset <= (u64)SIZE_MAX);
1152 while (offset < end) {
1153 size_t page_offset;
1154 size_t length;
1155 unsigned long flags;
1156 void *kaddr;
1157
1158 page_offset = (size_t)(offset & ~PAGE_MASK);
1159 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1160 local_irq_save(flags);
1161 kaddr = kmap_atomic(*page);
1162 memset(kaddr + page_offset, 0, length);
1163 kunmap_atomic(kaddr);
1164 local_irq_restore(flags);
1165
1166 offset += length;
1167 page++;
1168 }
1169 }
1170
1171 /*
1172 * Clone a portion of a bio, starting at the given byte offset
1173 * and continuing for the number of bytes indicated.
1174 */
1175 static struct bio *bio_clone_range(struct bio *bio_src,
1176 unsigned int offset,
1177 unsigned int len,
1178 gfp_t gfpmask)
1179 {
1180 struct bio_vec *bv;
1181 unsigned int resid;
1182 unsigned short idx;
1183 unsigned int voff;
1184 unsigned short end_idx;
1185 unsigned short vcnt;
1186 struct bio *bio;
1187
1188 /* Handle the easy case for the caller */
1189
1190 if (!offset && len == bio_src->bi_size)
1191 return bio_clone(bio_src, gfpmask);
1192
1193 if (WARN_ON_ONCE(!len))
1194 return NULL;
1195 if (WARN_ON_ONCE(len > bio_src->bi_size))
1196 return NULL;
1197 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1198 return NULL;
1199
1200 /* Find first affected segment... */
1201
1202 resid = offset;
1203 __bio_for_each_segment(bv, bio_src, idx, 0) {
1204 if (resid < bv->bv_len)
1205 break;
1206 resid -= bv->bv_len;
1207 }
1208 voff = resid;
1209
1210 /* ...and the last affected segment */
1211
1212 resid += len;
1213 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1214 if (resid <= bv->bv_len)
1215 break;
1216 resid -= bv->bv_len;
1217 }
1218 vcnt = end_idx - idx + 1;
1219
1220 /* Build the clone */
1221
1222 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1223 if (!bio)
1224 return NULL; /* ENOMEM */
1225
1226 bio->bi_bdev = bio_src->bi_bdev;
1227 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1228 bio->bi_rw = bio_src->bi_rw;
1229 bio->bi_flags |= 1 << BIO_CLONED;
1230
1231 /*
1232 * Copy over our part of the bio_vec, then update the first
1233 * and last (or only) entries.
1234 */
1235 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1236 vcnt * sizeof (struct bio_vec));
1237 bio->bi_io_vec[0].bv_offset += voff;
1238 if (vcnt > 1) {
1239 bio->bi_io_vec[0].bv_len -= voff;
1240 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1241 } else {
1242 bio->bi_io_vec[0].bv_len = len;
1243 }
1244
1245 bio->bi_vcnt = vcnt;
1246 bio->bi_size = len;
1247 bio->bi_idx = 0;
1248
1249 return bio;
1250 }
1251
1252 /*
1253 * Clone a portion of a bio chain, starting at the given byte offset
1254 * into the first bio in the source chain and continuing for the
1255 * number of bytes indicated. The result is another bio chain of
1256 * exactly the given length, or a null pointer on error.
1257 *
1258 * The bio_src and offset parameters are both in-out. On entry they
1259 * refer to the first source bio and the offset into that bio where
1260 * the start of data to be cloned is located.
1261 *
1262 * On return, bio_src is updated to refer to the bio in the source
1263 * chain that contains first un-cloned byte, and *offset will
1264 * contain the offset of that byte within that bio.
1265 */
1266 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1267 unsigned int *offset,
1268 unsigned int len,
1269 gfp_t gfpmask)
1270 {
1271 struct bio *bi = *bio_src;
1272 unsigned int off = *offset;
1273 struct bio *chain = NULL;
1274 struct bio **end;
1275
1276 /* Build up a chain of clone bios up to the limit */
1277
1278 if (!bi || off >= bi->bi_size || !len)
1279 return NULL; /* Nothing to clone */
1280
1281 end = &chain;
1282 while (len) {
1283 unsigned int bi_size;
1284 struct bio *bio;
1285
1286 if (!bi) {
1287 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1288 goto out_err; /* EINVAL; ran out of bio's */
1289 }
1290 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1291 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1292 if (!bio)
1293 goto out_err; /* ENOMEM */
1294
1295 *end = bio;
1296 end = &bio->bi_next;
1297
1298 off += bi_size;
1299 if (off == bi->bi_size) {
1300 bi = bi->bi_next;
1301 off = 0;
1302 }
1303 len -= bi_size;
1304 }
1305 *bio_src = bi;
1306 *offset = off;
1307
1308 return chain;
1309 out_err:
1310 bio_chain_put(chain);
1311
1312 return NULL;
1313 }
1314
1315 /*
1316 * The default/initial value for all object request flags is 0. For
1317 * each flag, once its value is set to 1 it is never reset to 0
1318 * again.
1319 */
1320 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1321 {
1322 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1323 struct rbd_device *rbd_dev;
1324
1325 rbd_dev = obj_request->img_request->rbd_dev;
1326 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1327 obj_request);
1328 }
1329 }
1330
1331 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1332 {
1333 smp_mb();
1334 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1335 }
1336
1337 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1338 {
1339 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1340 struct rbd_device *rbd_dev = NULL;
1341
1342 if (obj_request_img_data_test(obj_request))
1343 rbd_dev = obj_request->img_request->rbd_dev;
1344 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1345 obj_request);
1346 }
1347 }
1348
1349 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1350 {
1351 smp_mb();
1352 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1353 }
1354
1355 /*
1356 * This sets the KNOWN flag after (possibly) setting the EXISTS
1357 * flag. The latter is set based on the "exists" value provided.
1358 *
1359 * Note that for our purposes once an object exists it never goes
1360 * away again. It's possible that the response from two existence
1361 * checks are separated by the creation of the target object, and
1362 * the first ("doesn't exist") response arrives *after* the second
1363 * ("does exist"). In that case we ignore the second one.
1364 */
1365 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1366 bool exists)
1367 {
1368 if (exists)
1369 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1370 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1371 smp_mb();
1372 }
1373
1374 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1375 {
1376 smp_mb();
1377 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1378 }
1379
1380 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1381 {
1382 smp_mb();
1383 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1384 }
1385
1386 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1387 {
1388 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1389 atomic_read(&obj_request->kref.refcount));
1390 kref_get(&obj_request->kref);
1391 }
1392
1393 static void rbd_obj_request_destroy(struct kref *kref);
1394 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1395 {
1396 rbd_assert(obj_request != NULL);
1397 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1398 atomic_read(&obj_request->kref.refcount));
1399 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1400 }
1401
1402 static bool img_request_child_test(struct rbd_img_request *img_request);
1403 static void rbd_parent_request_destroy(struct kref *kref);
1404 static void rbd_img_request_destroy(struct kref *kref);
1405 static void rbd_img_request_put(struct rbd_img_request *img_request)
1406 {
1407 rbd_assert(img_request != NULL);
1408 dout("%s: img %p (was %d)\n", __func__, img_request,
1409 atomic_read(&img_request->kref.refcount));
1410 if (img_request_child_test(img_request))
1411 kref_put(&img_request->kref, rbd_parent_request_destroy);
1412 else
1413 kref_put(&img_request->kref, rbd_img_request_destroy);
1414 }
1415
1416 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1417 struct rbd_obj_request *obj_request)
1418 {
1419 rbd_assert(obj_request->img_request == NULL);
1420
1421 /* Image request now owns object's original reference */
1422 obj_request->img_request = img_request;
1423 obj_request->which = img_request->obj_request_count;
1424 rbd_assert(!obj_request_img_data_test(obj_request));
1425 obj_request_img_data_set(obj_request);
1426 rbd_assert(obj_request->which != BAD_WHICH);
1427 img_request->obj_request_count++;
1428 list_add_tail(&obj_request->links, &img_request->obj_requests);
1429 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1430 obj_request->which);
1431 }
1432
1433 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1434 struct rbd_obj_request *obj_request)
1435 {
1436 rbd_assert(obj_request->which != BAD_WHICH);
1437
1438 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1439 obj_request->which);
1440 list_del(&obj_request->links);
1441 rbd_assert(img_request->obj_request_count > 0);
1442 img_request->obj_request_count--;
1443 rbd_assert(obj_request->which == img_request->obj_request_count);
1444 obj_request->which = BAD_WHICH;
1445 rbd_assert(obj_request_img_data_test(obj_request));
1446 rbd_assert(obj_request->img_request == img_request);
1447 obj_request->img_request = NULL;
1448 obj_request->callback = NULL;
1449 rbd_obj_request_put(obj_request);
1450 }
1451
1452 static bool obj_request_type_valid(enum obj_request_type type)
1453 {
1454 switch (type) {
1455 case OBJ_REQUEST_NODATA:
1456 case OBJ_REQUEST_BIO:
1457 case OBJ_REQUEST_PAGES:
1458 return true;
1459 default:
1460 return false;
1461 }
1462 }
1463
1464 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1465 struct rbd_obj_request *obj_request)
1466 {
1467 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1468
1469 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1470 }
1471
1472 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1473 {
1474
1475 dout("%s: img %p\n", __func__, img_request);
1476
1477 /*
1478 * If no error occurred, compute the aggregate transfer
1479 * count for the image request. We could instead use
1480 * atomic64_cmpxchg() to update it as each object request
1481 * completes; not clear which way is better off hand.
1482 */
1483 if (!img_request->result) {
1484 struct rbd_obj_request *obj_request;
1485 u64 xferred = 0;
1486
1487 for_each_obj_request(img_request, obj_request)
1488 xferred += obj_request->xferred;
1489 img_request->xferred = xferred;
1490 }
1491
1492 if (img_request->callback)
1493 img_request->callback(img_request);
1494 else
1495 rbd_img_request_put(img_request);
1496 }
1497
1498 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1499
1500 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1501 {
1502 dout("%s: obj %p\n", __func__, obj_request);
1503
1504 return wait_for_completion_interruptible(&obj_request->completion);
1505 }
1506
1507 /*
1508 * The default/initial value for all image request flags is 0. Each
1509 * is conditionally set to 1 at image request initialization time
1510 * and currently never change thereafter.
1511 */
1512 static void img_request_write_set(struct rbd_img_request *img_request)
1513 {
1514 set_bit(IMG_REQ_WRITE, &img_request->flags);
1515 smp_mb();
1516 }
1517
1518 static bool img_request_write_test(struct rbd_img_request *img_request)
1519 {
1520 smp_mb();
1521 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1522 }
1523
1524 static void img_request_child_set(struct rbd_img_request *img_request)
1525 {
1526 set_bit(IMG_REQ_CHILD, &img_request->flags);
1527 smp_mb();
1528 }
1529
1530 static void img_request_child_clear(struct rbd_img_request *img_request)
1531 {
1532 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1533 smp_mb();
1534 }
1535
1536 static bool img_request_child_test(struct rbd_img_request *img_request)
1537 {
1538 smp_mb();
1539 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1540 }
1541
1542 static void img_request_layered_set(struct rbd_img_request *img_request)
1543 {
1544 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1545 smp_mb();
1546 }
1547
1548 static void img_request_layered_clear(struct rbd_img_request *img_request)
1549 {
1550 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1551 smp_mb();
1552 }
1553
1554 static bool img_request_layered_test(struct rbd_img_request *img_request)
1555 {
1556 smp_mb();
1557 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1558 }
1559
1560 static void
1561 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1562 {
1563 u64 xferred = obj_request->xferred;
1564 u64 length = obj_request->length;
1565
1566 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1567 obj_request, obj_request->img_request, obj_request->result,
1568 xferred, length);
1569 /*
1570 * ENOENT means a hole in the image. We zero-fill the
1571 * entire length of the request. A short read also implies
1572 * zero-fill to the end of the request. Either way we
1573 * update the xferred count to indicate the whole request
1574 * was satisfied.
1575 */
1576 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1577 if (obj_request->result == -ENOENT) {
1578 if (obj_request->type == OBJ_REQUEST_BIO)
1579 zero_bio_chain(obj_request->bio_list, 0);
1580 else
1581 zero_pages(obj_request->pages, 0, length);
1582 obj_request->result = 0;
1583 obj_request->xferred = length;
1584 } else if (xferred < length && !obj_request->result) {
1585 if (obj_request->type == OBJ_REQUEST_BIO)
1586 zero_bio_chain(obj_request->bio_list, xferred);
1587 else
1588 zero_pages(obj_request->pages, xferred, length);
1589 obj_request->xferred = length;
1590 }
1591 obj_request_done_set(obj_request);
1592 }
1593
1594 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1595 {
1596 dout("%s: obj %p cb %p\n", __func__, obj_request,
1597 obj_request->callback);
1598 if (obj_request->callback)
1599 obj_request->callback(obj_request);
1600 else
1601 complete_all(&obj_request->completion);
1602 }
1603
1604 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1605 {
1606 dout("%s: obj %p\n", __func__, obj_request);
1607 obj_request_done_set(obj_request);
1608 }
1609
1610 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1611 {
1612 struct rbd_img_request *img_request = NULL;
1613 struct rbd_device *rbd_dev = NULL;
1614 bool layered = false;
1615
1616 if (obj_request_img_data_test(obj_request)) {
1617 img_request = obj_request->img_request;
1618 layered = img_request && img_request_layered_test(img_request);
1619 rbd_dev = img_request->rbd_dev;
1620 }
1621
1622 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1623 obj_request, img_request, obj_request->result,
1624 obj_request->xferred, obj_request->length);
1625 if (layered && obj_request->result == -ENOENT &&
1626 obj_request->img_offset < rbd_dev->parent_overlap)
1627 rbd_img_parent_read(obj_request);
1628 else if (img_request)
1629 rbd_img_obj_request_read_callback(obj_request);
1630 else
1631 obj_request_done_set(obj_request);
1632 }
1633
1634 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1635 {
1636 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1637 obj_request->result, obj_request->length);
1638 /*
1639 * There is no such thing as a successful short write. Set
1640 * it to our originally-requested length.
1641 */
1642 obj_request->xferred = obj_request->length;
1643 obj_request_done_set(obj_request);
1644 }
1645
1646 /*
1647 * For a simple stat call there's nothing to do. We'll do more if
1648 * this is part of a write sequence for a layered image.
1649 */
1650 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1651 {
1652 dout("%s: obj %p\n", __func__, obj_request);
1653 obj_request_done_set(obj_request);
1654 }
1655
1656 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1657 struct ceph_msg *msg)
1658 {
1659 struct rbd_obj_request *obj_request = osd_req->r_priv;
1660 u16 opcode;
1661
1662 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1663 rbd_assert(osd_req == obj_request->osd_req);
1664 if (obj_request_img_data_test(obj_request)) {
1665 rbd_assert(obj_request->img_request);
1666 rbd_assert(obj_request->which != BAD_WHICH);
1667 } else {
1668 rbd_assert(obj_request->which == BAD_WHICH);
1669 }
1670
1671 if (osd_req->r_result < 0)
1672 obj_request->result = osd_req->r_result;
1673
1674 BUG_ON(osd_req->r_num_ops > 2);
1675
1676 /*
1677 * We support a 64-bit length, but ultimately it has to be
1678 * passed to blk_end_request(), which takes an unsigned int.
1679 */
1680 obj_request->xferred = osd_req->r_reply_op_len[0];
1681 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1682 opcode = osd_req->r_ops[0].op;
1683 switch (opcode) {
1684 case CEPH_OSD_OP_READ:
1685 rbd_osd_read_callback(obj_request);
1686 break;
1687 case CEPH_OSD_OP_WRITE:
1688 rbd_osd_write_callback(obj_request);
1689 break;
1690 case CEPH_OSD_OP_STAT:
1691 rbd_osd_stat_callback(obj_request);
1692 break;
1693 case CEPH_OSD_OP_CALL:
1694 case CEPH_OSD_OP_NOTIFY_ACK:
1695 case CEPH_OSD_OP_WATCH:
1696 rbd_osd_trivial_callback(obj_request);
1697 break;
1698 default:
1699 rbd_warn(NULL, "%s: unsupported op %hu\n",
1700 obj_request->object_name, (unsigned short) opcode);
1701 break;
1702 }
1703
1704 if (obj_request_done_test(obj_request))
1705 rbd_obj_request_complete(obj_request);
1706 }
1707
1708 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1709 {
1710 struct rbd_img_request *img_request = obj_request->img_request;
1711 struct ceph_osd_request *osd_req = obj_request->osd_req;
1712 u64 snap_id;
1713
1714 rbd_assert(osd_req != NULL);
1715
1716 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1717 ceph_osdc_build_request(osd_req, obj_request->offset,
1718 NULL, snap_id, NULL);
1719 }
1720
1721 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1722 {
1723 struct rbd_img_request *img_request = obj_request->img_request;
1724 struct ceph_osd_request *osd_req = obj_request->osd_req;
1725 struct ceph_snap_context *snapc;
1726 struct timespec mtime = CURRENT_TIME;
1727
1728 rbd_assert(osd_req != NULL);
1729
1730 snapc = img_request ? img_request->snapc : NULL;
1731 ceph_osdc_build_request(osd_req, obj_request->offset,
1732 snapc, CEPH_NOSNAP, &mtime);
1733 }
1734
1735 static struct ceph_osd_request *rbd_osd_req_create(
1736 struct rbd_device *rbd_dev,
1737 bool write_request,
1738 struct rbd_obj_request *obj_request)
1739 {
1740 struct ceph_snap_context *snapc = NULL;
1741 struct ceph_osd_client *osdc;
1742 struct ceph_osd_request *osd_req;
1743
1744 if (obj_request_img_data_test(obj_request)) {
1745 struct rbd_img_request *img_request = obj_request->img_request;
1746
1747 rbd_assert(write_request ==
1748 img_request_write_test(img_request));
1749 if (write_request)
1750 snapc = img_request->snapc;
1751 }
1752
1753 /* Allocate and initialize the request, for the single op */
1754
1755 osdc = &rbd_dev->rbd_client->client->osdc;
1756 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1757 if (!osd_req)
1758 return NULL; /* ENOMEM */
1759
1760 if (write_request)
1761 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1762 else
1763 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1764
1765 osd_req->r_callback = rbd_osd_req_callback;
1766 osd_req->r_priv = obj_request;
1767
1768 osd_req->r_oid_len = strlen(obj_request->object_name);
1769 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1770 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1771
1772 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1773
1774 return osd_req;
1775 }
1776
1777 /*
1778 * Create a copyup osd request based on the information in the
1779 * object request supplied. A copyup request has two osd ops,
1780 * a copyup method call, and a "normal" write request.
1781 */
1782 static struct ceph_osd_request *
1783 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1784 {
1785 struct rbd_img_request *img_request;
1786 struct ceph_snap_context *snapc;
1787 struct rbd_device *rbd_dev;
1788 struct ceph_osd_client *osdc;
1789 struct ceph_osd_request *osd_req;
1790
1791 rbd_assert(obj_request_img_data_test(obj_request));
1792 img_request = obj_request->img_request;
1793 rbd_assert(img_request);
1794 rbd_assert(img_request_write_test(img_request));
1795
1796 /* Allocate and initialize the request, for the two ops */
1797
1798 snapc = img_request->snapc;
1799 rbd_dev = img_request->rbd_dev;
1800 osdc = &rbd_dev->rbd_client->client->osdc;
1801 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1802 if (!osd_req)
1803 return NULL; /* ENOMEM */
1804
1805 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1806 osd_req->r_callback = rbd_osd_req_callback;
1807 osd_req->r_priv = obj_request;
1808
1809 osd_req->r_oid_len = strlen(obj_request->object_name);
1810 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1811 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1812
1813 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1814
1815 return osd_req;
1816 }
1817
1818
1819 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1820 {
1821 ceph_osdc_put_request(osd_req);
1822 }
1823
1824 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1825
1826 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1827 u64 offset, u64 length,
1828 enum obj_request_type type)
1829 {
1830 struct rbd_obj_request *obj_request;
1831 size_t size;
1832 char *name;
1833
1834 rbd_assert(obj_request_type_valid(type));
1835
1836 size = strlen(object_name) + 1;
1837 name = kmalloc(size, GFP_KERNEL);
1838 if (!name)
1839 return NULL;
1840
1841 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1842 if (!obj_request) {
1843 kfree(name);
1844 return NULL;
1845 }
1846
1847 obj_request->object_name = memcpy(name, object_name, size);
1848 obj_request->offset = offset;
1849 obj_request->length = length;
1850 obj_request->flags = 0;
1851 obj_request->which = BAD_WHICH;
1852 obj_request->type = type;
1853 INIT_LIST_HEAD(&obj_request->links);
1854 init_completion(&obj_request->completion);
1855 kref_init(&obj_request->kref);
1856
1857 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1858 offset, length, (int)type, obj_request);
1859
1860 return obj_request;
1861 }
1862
1863 static void rbd_obj_request_destroy(struct kref *kref)
1864 {
1865 struct rbd_obj_request *obj_request;
1866
1867 obj_request = container_of(kref, struct rbd_obj_request, kref);
1868
1869 dout("%s: obj %p\n", __func__, obj_request);
1870
1871 rbd_assert(obj_request->img_request == NULL);
1872 rbd_assert(obj_request->which == BAD_WHICH);
1873
1874 if (obj_request->osd_req)
1875 rbd_osd_req_destroy(obj_request->osd_req);
1876
1877 rbd_assert(obj_request_type_valid(obj_request->type));
1878 switch (obj_request->type) {
1879 case OBJ_REQUEST_NODATA:
1880 break; /* Nothing to do */
1881 case OBJ_REQUEST_BIO:
1882 if (obj_request->bio_list)
1883 bio_chain_put(obj_request->bio_list);
1884 break;
1885 case OBJ_REQUEST_PAGES:
1886 if (obj_request->pages)
1887 ceph_release_page_vector(obj_request->pages,
1888 obj_request->page_count);
1889 break;
1890 }
1891
1892 kfree(obj_request->object_name);
1893 obj_request->object_name = NULL;
1894 kmem_cache_free(rbd_obj_request_cache, obj_request);
1895 }
1896
1897 /* It's OK to call this for a device with no parent */
1898
1899 static void rbd_spec_put(struct rbd_spec *spec);
1900 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1901 {
1902 rbd_dev_remove_parent(rbd_dev);
1903 rbd_spec_put(rbd_dev->parent_spec);
1904 rbd_dev->parent_spec = NULL;
1905 rbd_dev->parent_overlap = 0;
1906 }
1907
1908 /*
1909 * Parent image reference counting is used to determine when an
1910 * image's parent fields can be safely torn down--after there are no
1911 * more in-flight requests to the parent image. When the last
1912 * reference is dropped, cleaning them up is safe.
1913 */
1914 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1915 {
1916 int counter;
1917
1918 if (!rbd_dev->parent_spec)
1919 return;
1920
1921 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1922 if (counter > 0)
1923 return;
1924
1925 /* Last reference; clean up parent data structures */
1926
1927 if (!counter)
1928 rbd_dev_unparent(rbd_dev);
1929 else
1930 rbd_warn(rbd_dev, "parent reference underflow\n");
1931 }
1932
1933 /*
1934 * If an image has a non-zero parent overlap, get a reference to its
1935 * parent.
1936 *
1937 * We must get the reference before checking for the overlap to
1938 * coordinate properly with zeroing the parent overlap in
1939 * rbd_dev_v2_parent_info() when an image gets flattened. We
1940 * drop it again if there is no overlap.
1941 *
1942 * Returns true if the rbd device has a parent with a non-zero
1943 * overlap and a reference for it was successfully taken, or
1944 * false otherwise.
1945 */
1946 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1947 {
1948 int counter;
1949
1950 if (!rbd_dev->parent_spec)
1951 return false;
1952
1953 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1954 if (counter > 0 && rbd_dev->parent_overlap)
1955 return true;
1956
1957 /* Image was flattened, but parent is not yet torn down */
1958
1959 if (counter < 0)
1960 rbd_warn(rbd_dev, "parent reference overflow\n");
1961
1962 return false;
1963 }
1964
1965 /*
1966 * Caller is responsible for filling in the list of object requests
1967 * that comprises the image request, and the Linux request pointer
1968 * (if there is one).
1969 */
1970 static struct rbd_img_request *rbd_img_request_create(
1971 struct rbd_device *rbd_dev,
1972 u64 offset, u64 length,
1973 bool write_request)
1974 {
1975 struct rbd_img_request *img_request;
1976
1977 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1978 if (!img_request)
1979 return NULL;
1980
1981 if (write_request) {
1982 down_read(&rbd_dev->header_rwsem);
1983 ceph_get_snap_context(rbd_dev->header.snapc);
1984 up_read(&rbd_dev->header_rwsem);
1985 }
1986
1987 img_request->rq = NULL;
1988 img_request->rbd_dev = rbd_dev;
1989 img_request->offset = offset;
1990 img_request->length = length;
1991 img_request->flags = 0;
1992 if (write_request) {
1993 img_request_write_set(img_request);
1994 img_request->snapc = rbd_dev->header.snapc;
1995 } else {
1996 img_request->snap_id = rbd_dev->spec->snap_id;
1997 }
1998 if (rbd_dev_parent_get(rbd_dev))
1999 img_request_layered_set(img_request);
2000 spin_lock_init(&img_request->completion_lock);
2001 img_request->next_completion = 0;
2002 img_request->callback = NULL;
2003 img_request->result = 0;
2004 img_request->obj_request_count = 0;
2005 INIT_LIST_HEAD(&img_request->obj_requests);
2006 kref_init(&img_request->kref);
2007
2008 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2009 write_request ? "write" : "read", offset, length,
2010 img_request);
2011
2012 return img_request;
2013 }
2014
2015 static void rbd_img_request_destroy(struct kref *kref)
2016 {
2017 struct rbd_img_request *img_request;
2018 struct rbd_obj_request *obj_request;
2019 struct rbd_obj_request *next_obj_request;
2020
2021 img_request = container_of(kref, struct rbd_img_request, kref);
2022
2023 dout("%s: img %p\n", __func__, img_request);
2024
2025 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2026 rbd_img_obj_request_del(img_request, obj_request);
2027 rbd_assert(img_request->obj_request_count == 0);
2028
2029 if (img_request_layered_test(img_request)) {
2030 img_request_layered_clear(img_request);
2031 rbd_dev_parent_put(img_request->rbd_dev);
2032 }
2033
2034 if (img_request_write_test(img_request))
2035 ceph_put_snap_context(img_request->snapc);
2036
2037 kmem_cache_free(rbd_img_request_cache, img_request);
2038 }
2039
2040 static struct rbd_img_request *rbd_parent_request_create(
2041 struct rbd_obj_request *obj_request,
2042 u64 img_offset, u64 length)
2043 {
2044 struct rbd_img_request *parent_request;
2045 struct rbd_device *rbd_dev;
2046
2047 rbd_assert(obj_request->img_request);
2048 rbd_dev = obj_request->img_request->rbd_dev;
2049
2050 parent_request = rbd_img_request_create(rbd_dev->parent,
2051 img_offset, length, false);
2052 if (!parent_request)
2053 return NULL;
2054
2055 img_request_child_set(parent_request);
2056 rbd_obj_request_get(obj_request);
2057 parent_request->obj_request = obj_request;
2058
2059 return parent_request;
2060 }
2061
2062 static void rbd_parent_request_destroy(struct kref *kref)
2063 {
2064 struct rbd_img_request *parent_request;
2065 struct rbd_obj_request *orig_request;
2066
2067 parent_request = container_of(kref, struct rbd_img_request, kref);
2068 orig_request = parent_request->obj_request;
2069
2070 parent_request->obj_request = NULL;
2071 rbd_obj_request_put(orig_request);
2072 img_request_child_clear(parent_request);
2073
2074 rbd_img_request_destroy(kref);
2075 }
2076
2077 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2078 {
2079 struct rbd_img_request *img_request;
2080 unsigned int xferred;
2081 int result;
2082 bool more;
2083
2084 rbd_assert(obj_request_img_data_test(obj_request));
2085 img_request = obj_request->img_request;
2086
2087 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2088 xferred = (unsigned int)obj_request->xferred;
2089 result = obj_request->result;
2090 if (result) {
2091 struct rbd_device *rbd_dev = img_request->rbd_dev;
2092
2093 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2094 img_request_write_test(img_request) ? "write" : "read",
2095 obj_request->length, obj_request->img_offset,
2096 obj_request->offset);
2097 rbd_warn(rbd_dev, " result %d xferred %x\n",
2098 result, xferred);
2099 if (!img_request->result)
2100 img_request->result = result;
2101 }
2102
2103 /* Image object requests don't own their page array */
2104
2105 if (obj_request->type == OBJ_REQUEST_PAGES) {
2106 obj_request->pages = NULL;
2107 obj_request->page_count = 0;
2108 }
2109
2110 if (img_request_child_test(img_request)) {
2111 rbd_assert(img_request->obj_request != NULL);
2112 more = obj_request->which < img_request->obj_request_count - 1;
2113 } else {
2114 rbd_assert(img_request->rq != NULL);
2115 more = blk_end_request(img_request->rq, result, xferred);
2116 }
2117
2118 return more;
2119 }
2120
2121 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2122 {
2123 struct rbd_img_request *img_request;
2124 u32 which = obj_request->which;
2125 bool more = true;
2126
2127 rbd_assert(obj_request_img_data_test(obj_request));
2128 img_request = obj_request->img_request;
2129
2130 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2131 rbd_assert(img_request != NULL);
2132 rbd_assert(img_request->obj_request_count > 0);
2133 rbd_assert(which != BAD_WHICH);
2134 rbd_assert(which < img_request->obj_request_count);
2135 rbd_assert(which >= img_request->next_completion);
2136
2137 spin_lock_irq(&img_request->completion_lock);
2138 if (which != img_request->next_completion)
2139 goto out;
2140
2141 for_each_obj_request_from(img_request, obj_request) {
2142 rbd_assert(more);
2143 rbd_assert(which < img_request->obj_request_count);
2144
2145 if (!obj_request_done_test(obj_request))
2146 break;
2147 more = rbd_img_obj_end_request(obj_request);
2148 which++;
2149 }
2150
2151 rbd_assert(more ^ (which == img_request->obj_request_count));
2152 img_request->next_completion = which;
2153 out:
2154 spin_unlock_irq(&img_request->completion_lock);
2155
2156 if (!more)
2157 rbd_img_request_complete(img_request);
2158 }
2159
2160 /*
2161 * Split up an image request into one or more object requests, each
2162 * to a different object. The "type" parameter indicates whether
2163 * "data_desc" is the pointer to the head of a list of bio
2164 * structures, or the base of a page array. In either case this
2165 * function assumes data_desc describes memory sufficient to hold
2166 * all data described by the image request.
2167 */
2168 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2169 enum obj_request_type type,
2170 void *data_desc)
2171 {
2172 struct rbd_device *rbd_dev = img_request->rbd_dev;
2173 struct rbd_obj_request *obj_request = NULL;
2174 struct rbd_obj_request *next_obj_request;
2175 bool write_request = img_request_write_test(img_request);
2176 struct bio *bio_list;
2177 unsigned int bio_offset = 0;
2178 struct page **pages;
2179 u64 img_offset;
2180 u64 resid;
2181 u16 opcode;
2182
2183 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2184 (int)type, data_desc);
2185
2186 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2187 img_offset = img_request->offset;
2188 resid = img_request->length;
2189 rbd_assert(resid > 0);
2190
2191 if (type == OBJ_REQUEST_BIO) {
2192 bio_list = data_desc;
2193 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2194 } else {
2195 rbd_assert(type == OBJ_REQUEST_PAGES);
2196 pages = data_desc;
2197 }
2198
2199 while (resid) {
2200 struct ceph_osd_request *osd_req;
2201 const char *object_name;
2202 u64 offset;
2203 u64 length;
2204
2205 object_name = rbd_segment_name(rbd_dev, img_offset);
2206 if (!object_name)
2207 goto out_unwind;
2208 offset = rbd_segment_offset(rbd_dev, img_offset);
2209 length = rbd_segment_length(rbd_dev, img_offset, resid);
2210 obj_request = rbd_obj_request_create(object_name,
2211 offset, length, type);
2212 /* object request has its own copy of the object name */
2213 rbd_segment_name_free(object_name);
2214 if (!obj_request)
2215 goto out_unwind;
2216
2217 if (type == OBJ_REQUEST_BIO) {
2218 unsigned int clone_size;
2219
2220 rbd_assert(length <= (u64)UINT_MAX);
2221 clone_size = (unsigned int)length;
2222 obj_request->bio_list =
2223 bio_chain_clone_range(&bio_list,
2224 &bio_offset,
2225 clone_size,
2226 GFP_ATOMIC);
2227 if (!obj_request->bio_list)
2228 goto out_partial;
2229 } else {
2230 unsigned int page_count;
2231
2232 obj_request->pages = pages;
2233 page_count = (u32)calc_pages_for(offset, length);
2234 obj_request->page_count = page_count;
2235 if ((offset + length) & ~PAGE_MASK)
2236 page_count--; /* more on last page */
2237 pages += page_count;
2238 }
2239
2240 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2241 obj_request);
2242 if (!osd_req)
2243 goto out_partial;
2244 obj_request->osd_req = osd_req;
2245 obj_request->callback = rbd_img_obj_callback;
2246
2247 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2248 0, 0);
2249 if (type == OBJ_REQUEST_BIO)
2250 osd_req_op_extent_osd_data_bio(osd_req, 0,
2251 obj_request->bio_list, length);
2252 else
2253 osd_req_op_extent_osd_data_pages(osd_req, 0,
2254 obj_request->pages, length,
2255 offset & ~PAGE_MASK, false, false);
2256
2257 /*
2258 * set obj_request->img_request before formatting
2259 * the osd_request so that it gets the right snapc
2260 */
2261 rbd_img_obj_request_add(img_request, obj_request);
2262 if (write_request)
2263 rbd_osd_req_format_write(obj_request);
2264 else
2265 rbd_osd_req_format_read(obj_request);
2266
2267 obj_request->img_offset = img_offset;
2268
2269 img_offset += length;
2270 resid -= length;
2271 }
2272
2273 return 0;
2274
2275 out_partial:
2276 rbd_obj_request_put(obj_request);
2277 out_unwind:
2278 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2279 rbd_obj_request_put(obj_request);
2280
2281 return -ENOMEM;
2282 }
2283
2284 static void
2285 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2286 {
2287 struct rbd_img_request *img_request;
2288 struct rbd_device *rbd_dev;
2289 struct page **pages;
2290 u32 page_count;
2291
2292 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2293 rbd_assert(obj_request_img_data_test(obj_request));
2294 img_request = obj_request->img_request;
2295 rbd_assert(img_request);
2296
2297 rbd_dev = img_request->rbd_dev;
2298 rbd_assert(rbd_dev);
2299
2300 pages = obj_request->copyup_pages;
2301 rbd_assert(pages != NULL);
2302 obj_request->copyup_pages = NULL;
2303 page_count = obj_request->copyup_page_count;
2304 rbd_assert(page_count);
2305 obj_request->copyup_page_count = 0;
2306 ceph_release_page_vector(pages, page_count);
2307
2308 /*
2309 * We want the transfer count to reflect the size of the
2310 * original write request. There is no such thing as a
2311 * successful short write, so if the request was successful
2312 * we can just set it to the originally-requested length.
2313 */
2314 if (!obj_request->result)
2315 obj_request->xferred = obj_request->length;
2316
2317 /* Finish up with the normal image object callback */
2318
2319 rbd_img_obj_callback(obj_request);
2320 }
2321
2322 static void
2323 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2324 {
2325 struct rbd_obj_request *orig_request;
2326 struct ceph_osd_request *osd_req;
2327 struct ceph_osd_client *osdc;
2328 struct rbd_device *rbd_dev;
2329 struct page **pages;
2330 u32 page_count;
2331 int img_result;
2332 u64 parent_length;
2333 u64 offset;
2334 u64 length;
2335
2336 rbd_assert(img_request_child_test(img_request));
2337
2338 /* First get what we need from the image request */
2339
2340 pages = img_request->copyup_pages;
2341 rbd_assert(pages != NULL);
2342 img_request->copyup_pages = NULL;
2343 page_count = img_request->copyup_page_count;
2344 rbd_assert(page_count);
2345 img_request->copyup_page_count = 0;
2346
2347 orig_request = img_request->obj_request;
2348 rbd_assert(orig_request != NULL);
2349 rbd_assert(obj_request_type_valid(orig_request->type));
2350 img_result = img_request->result;
2351 parent_length = img_request->length;
2352 rbd_assert(parent_length == img_request->xferred);
2353 rbd_img_request_put(img_request);
2354
2355 rbd_assert(orig_request->img_request);
2356 rbd_dev = orig_request->img_request->rbd_dev;
2357 rbd_assert(rbd_dev);
2358
2359 /*
2360 * If the overlap has become 0 (most likely because the
2361 * image has been flattened) we need to free the pages
2362 * and re-submit the original write request.
2363 */
2364 if (!rbd_dev->parent_overlap) {
2365 struct ceph_osd_client *osdc;
2366
2367 ceph_release_page_vector(pages, page_count);
2368 osdc = &rbd_dev->rbd_client->client->osdc;
2369 img_result = rbd_obj_request_submit(osdc, orig_request);
2370 if (!img_result)
2371 return;
2372 }
2373
2374 if (img_result)
2375 goto out_err;
2376
2377 /*
2378 * The original osd request is of no use to use any more.
2379 * We need a new one that can hold the two ops in a copyup
2380 * request. Allocate the new copyup osd request for the
2381 * original request, and release the old one.
2382 */
2383 img_result = -ENOMEM;
2384 osd_req = rbd_osd_req_create_copyup(orig_request);
2385 if (!osd_req)
2386 goto out_err;
2387 rbd_osd_req_destroy(orig_request->osd_req);
2388 orig_request->osd_req = osd_req;
2389 orig_request->copyup_pages = pages;
2390 orig_request->copyup_page_count = page_count;
2391
2392 /* Initialize the copyup op */
2393
2394 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2395 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2396 false, false);
2397
2398 /* Then the original write request op */
2399
2400 offset = orig_request->offset;
2401 length = orig_request->length;
2402 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2403 offset, length, 0, 0);
2404 if (orig_request->type == OBJ_REQUEST_BIO)
2405 osd_req_op_extent_osd_data_bio(osd_req, 1,
2406 orig_request->bio_list, length);
2407 else
2408 osd_req_op_extent_osd_data_pages(osd_req, 1,
2409 orig_request->pages, length,
2410 offset & ~PAGE_MASK, false, false);
2411
2412 rbd_osd_req_format_write(orig_request);
2413
2414 /* All set, send it off. */
2415
2416 orig_request->callback = rbd_img_obj_copyup_callback;
2417 osdc = &rbd_dev->rbd_client->client->osdc;
2418 img_result = rbd_obj_request_submit(osdc, orig_request);
2419 if (!img_result)
2420 return;
2421 out_err:
2422 /* Record the error code and complete the request */
2423
2424 orig_request->result = img_result;
2425 orig_request->xferred = 0;
2426 obj_request_done_set(orig_request);
2427 rbd_obj_request_complete(orig_request);
2428 }
2429
2430 /*
2431 * Read from the parent image the range of data that covers the
2432 * entire target of the given object request. This is used for
2433 * satisfying a layered image write request when the target of an
2434 * object request from the image request does not exist.
2435 *
2436 * A page array big enough to hold the returned data is allocated
2437 * and supplied to rbd_img_request_fill() as the "data descriptor."
2438 * When the read completes, this page array will be transferred to
2439 * the original object request for the copyup operation.
2440 *
2441 * If an error occurs, record it as the result of the original
2442 * object request and mark it done so it gets completed.
2443 */
2444 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2445 {
2446 struct rbd_img_request *img_request = NULL;
2447 struct rbd_img_request *parent_request = NULL;
2448 struct rbd_device *rbd_dev;
2449 u64 img_offset;
2450 u64 length;
2451 struct page **pages = NULL;
2452 u32 page_count;
2453 int result;
2454
2455 rbd_assert(obj_request_img_data_test(obj_request));
2456 rbd_assert(obj_request_type_valid(obj_request->type));
2457
2458 img_request = obj_request->img_request;
2459 rbd_assert(img_request != NULL);
2460 rbd_dev = img_request->rbd_dev;
2461 rbd_assert(rbd_dev->parent != NULL);
2462
2463 /*
2464 * Determine the byte range covered by the object in the
2465 * child image to which the original request was to be sent.
2466 */
2467 img_offset = obj_request->img_offset - obj_request->offset;
2468 length = (u64)1 << rbd_dev->header.obj_order;
2469
2470 /*
2471 * There is no defined parent data beyond the parent
2472 * overlap, so limit what we read at that boundary if
2473 * necessary.
2474 */
2475 if (img_offset + length > rbd_dev->parent_overlap) {
2476 rbd_assert(img_offset < rbd_dev->parent_overlap);
2477 length = rbd_dev->parent_overlap - img_offset;
2478 }
2479
2480 /*
2481 * Allocate a page array big enough to receive the data read
2482 * from the parent.
2483 */
2484 page_count = (u32)calc_pages_for(0, length);
2485 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2486 if (IS_ERR(pages)) {
2487 result = PTR_ERR(pages);
2488 pages = NULL;
2489 goto out_err;
2490 }
2491
2492 result = -ENOMEM;
2493 parent_request = rbd_parent_request_create(obj_request,
2494 img_offset, length);
2495 if (!parent_request)
2496 goto out_err;
2497
2498 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2499 if (result)
2500 goto out_err;
2501 parent_request->copyup_pages = pages;
2502 parent_request->copyup_page_count = page_count;
2503
2504 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2505 result = rbd_img_request_submit(parent_request);
2506 if (!result)
2507 return 0;
2508
2509 parent_request->copyup_pages = NULL;
2510 parent_request->copyup_page_count = 0;
2511 parent_request->obj_request = NULL;
2512 rbd_obj_request_put(obj_request);
2513 out_err:
2514 if (pages)
2515 ceph_release_page_vector(pages, page_count);
2516 if (parent_request)
2517 rbd_img_request_put(parent_request);
2518 obj_request->result = result;
2519 obj_request->xferred = 0;
2520 obj_request_done_set(obj_request);
2521
2522 return result;
2523 }
2524
2525 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2526 {
2527 struct rbd_obj_request *orig_request;
2528 struct rbd_device *rbd_dev;
2529 int result;
2530
2531 rbd_assert(!obj_request_img_data_test(obj_request));
2532
2533 /*
2534 * All we need from the object request is the original
2535 * request and the result of the STAT op. Grab those, then
2536 * we're done with the request.
2537 */
2538 orig_request = obj_request->obj_request;
2539 obj_request->obj_request = NULL;
2540 rbd_assert(orig_request);
2541 rbd_assert(orig_request->img_request);
2542
2543 result = obj_request->result;
2544 obj_request->result = 0;
2545
2546 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2547 obj_request, orig_request, result,
2548 obj_request->xferred, obj_request->length);
2549 rbd_obj_request_put(obj_request);
2550
2551 /*
2552 * If the overlap has become 0 (most likely because the
2553 * image has been flattened) we need to free the pages
2554 * and re-submit the original write request.
2555 */
2556 rbd_dev = orig_request->img_request->rbd_dev;
2557 if (!rbd_dev->parent_overlap) {
2558 struct ceph_osd_client *osdc;
2559
2560 rbd_obj_request_put(orig_request);
2561 osdc = &rbd_dev->rbd_client->client->osdc;
2562 result = rbd_obj_request_submit(osdc, orig_request);
2563 if (!result)
2564 return;
2565 }
2566
2567 /*
2568 * Our only purpose here is to determine whether the object
2569 * exists, and we don't want to treat the non-existence as
2570 * an error. If something else comes back, transfer the
2571 * error to the original request and complete it now.
2572 */
2573 if (!result) {
2574 obj_request_existence_set(orig_request, true);
2575 } else if (result == -ENOENT) {
2576 obj_request_existence_set(orig_request, false);
2577 } else if (result) {
2578 orig_request->result = result;
2579 goto out;
2580 }
2581
2582 /*
2583 * Resubmit the original request now that we have recorded
2584 * whether the target object exists.
2585 */
2586 orig_request->result = rbd_img_obj_request_submit(orig_request);
2587 out:
2588 if (orig_request->result)
2589 rbd_obj_request_complete(orig_request);
2590 rbd_obj_request_put(orig_request);
2591 }
2592
2593 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2594 {
2595 struct rbd_obj_request *stat_request;
2596 struct rbd_device *rbd_dev;
2597 struct ceph_osd_client *osdc;
2598 struct page **pages = NULL;
2599 u32 page_count;
2600 size_t size;
2601 int ret;
2602
2603 /*
2604 * The response data for a STAT call consists of:
2605 * le64 length;
2606 * struct {
2607 * le32 tv_sec;
2608 * le32 tv_nsec;
2609 * } mtime;
2610 */
2611 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2612 page_count = (u32)calc_pages_for(0, size);
2613 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2614 if (IS_ERR(pages))
2615 return PTR_ERR(pages);
2616
2617 ret = -ENOMEM;
2618 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2619 OBJ_REQUEST_PAGES);
2620 if (!stat_request)
2621 goto out;
2622
2623 rbd_obj_request_get(obj_request);
2624 stat_request->obj_request = obj_request;
2625 stat_request->pages = pages;
2626 stat_request->page_count = page_count;
2627
2628 rbd_assert(obj_request->img_request);
2629 rbd_dev = obj_request->img_request->rbd_dev;
2630 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2631 stat_request);
2632 if (!stat_request->osd_req)
2633 goto out;
2634 stat_request->callback = rbd_img_obj_exists_callback;
2635
2636 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2637 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2638 false, false);
2639 rbd_osd_req_format_read(stat_request);
2640
2641 osdc = &rbd_dev->rbd_client->client->osdc;
2642 ret = rbd_obj_request_submit(osdc, stat_request);
2643 out:
2644 if (ret)
2645 rbd_obj_request_put(obj_request);
2646
2647 return ret;
2648 }
2649
2650 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2651 {
2652 struct rbd_img_request *img_request;
2653 struct rbd_device *rbd_dev;
2654 bool known;
2655
2656 rbd_assert(obj_request_img_data_test(obj_request));
2657
2658 img_request = obj_request->img_request;
2659 rbd_assert(img_request);
2660 rbd_dev = img_request->rbd_dev;
2661
2662 /*
2663 * Only writes to layered images need special handling.
2664 * Reads and non-layered writes are simple object requests.
2665 * Layered writes that start beyond the end of the overlap
2666 * with the parent have no parent data, so they too are
2667 * simple object requests. Finally, if the target object is
2668 * known to already exist, its parent data has already been
2669 * copied, so a write to the object can also be handled as a
2670 * simple object request.
2671 */
2672 if (!img_request_write_test(img_request) ||
2673 !img_request_layered_test(img_request) ||
2674 rbd_dev->parent_overlap <= obj_request->img_offset ||
2675 ((known = obj_request_known_test(obj_request)) &&
2676 obj_request_exists_test(obj_request))) {
2677
2678 struct rbd_device *rbd_dev;
2679 struct ceph_osd_client *osdc;
2680
2681 rbd_dev = obj_request->img_request->rbd_dev;
2682 osdc = &rbd_dev->rbd_client->client->osdc;
2683
2684 return rbd_obj_request_submit(osdc, obj_request);
2685 }
2686
2687 /*
2688 * It's a layered write. The target object might exist but
2689 * we may not know that yet. If we know it doesn't exist,
2690 * start by reading the data for the full target object from
2691 * the parent so we can use it for a copyup to the target.
2692 */
2693 if (known)
2694 return rbd_img_obj_parent_read_full(obj_request);
2695
2696 /* We don't know whether the target exists. Go find out. */
2697
2698 return rbd_img_obj_exists_submit(obj_request);
2699 }
2700
2701 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2702 {
2703 struct rbd_obj_request *obj_request;
2704 struct rbd_obj_request *next_obj_request;
2705
2706 dout("%s: img %p\n", __func__, img_request);
2707 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2708 int ret;
2709
2710 ret = rbd_img_obj_request_submit(obj_request);
2711 if (ret)
2712 return ret;
2713 }
2714
2715 return 0;
2716 }
2717
2718 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2719 {
2720 struct rbd_obj_request *obj_request;
2721 struct rbd_device *rbd_dev;
2722 u64 obj_end;
2723 u64 img_xferred;
2724 int img_result;
2725
2726 rbd_assert(img_request_child_test(img_request));
2727
2728 /* First get what we need from the image request and release it */
2729
2730 obj_request = img_request->obj_request;
2731 img_xferred = img_request->xferred;
2732 img_result = img_request->result;
2733 rbd_img_request_put(img_request);
2734
2735 /*
2736 * If the overlap has become 0 (most likely because the
2737 * image has been flattened) we need to re-submit the
2738 * original request.
2739 */
2740 rbd_assert(obj_request);
2741 rbd_assert(obj_request->img_request);
2742 rbd_dev = obj_request->img_request->rbd_dev;
2743 if (!rbd_dev->parent_overlap) {
2744 struct ceph_osd_client *osdc;
2745
2746 osdc = &rbd_dev->rbd_client->client->osdc;
2747 img_result = rbd_obj_request_submit(osdc, obj_request);
2748 if (!img_result)
2749 return;
2750 }
2751
2752 obj_request->result = img_result;
2753 if (obj_request->result)
2754 goto out;
2755
2756 /*
2757 * We need to zero anything beyond the parent overlap
2758 * boundary. Since rbd_img_obj_request_read_callback()
2759 * will zero anything beyond the end of a short read, an
2760 * easy way to do this is to pretend the data from the
2761 * parent came up short--ending at the overlap boundary.
2762 */
2763 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2764 obj_end = obj_request->img_offset + obj_request->length;
2765 if (obj_end > rbd_dev->parent_overlap) {
2766 u64 xferred = 0;
2767
2768 if (obj_request->img_offset < rbd_dev->parent_overlap)
2769 xferred = rbd_dev->parent_overlap -
2770 obj_request->img_offset;
2771
2772 obj_request->xferred = min(img_xferred, xferred);
2773 } else {
2774 obj_request->xferred = img_xferred;
2775 }
2776 out:
2777 rbd_img_obj_request_read_callback(obj_request);
2778 rbd_obj_request_complete(obj_request);
2779 }
2780
2781 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2782 {
2783 struct rbd_img_request *img_request;
2784 int result;
2785
2786 rbd_assert(obj_request_img_data_test(obj_request));
2787 rbd_assert(obj_request->img_request != NULL);
2788 rbd_assert(obj_request->result == (s32) -ENOENT);
2789 rbd_assert(obj_request_type_valid(obj_request->type));
2790
2791 /* rbd_read_finish(obj_request, obj_request->length); */
2792 img_request = rbd_parent_request_create(obj_request,
2793 obj_request->img_offset,
2794 obj_request->length);
2795 result = -ENOMEM;
2796 if (!img_request)
2797 goto out_err;
2798
2799 if (obj_request->type == OBJ_REQUEST_BIO)
2800 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2801 obj_request->bio_list);
2802 else
2803 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2804 obj_request->pages);
2805 if (result)
2806 goto out_err;
2807
2808 img_request->callback = rbd_img_parent_read_callback;
2809 result = rbd_img_request_submit(img_request);
2810 if (result)
2811 goto out_err;
2812
2813 return;
2814 out_err:
2815 if (img_request)
2816 rbd_img_request_put(img_request);
2817 obj_request->result = result;
2818 obj_request->xferred = 0;
2819 obj_request_done_set(obj_request);
2820 }
2821
2822 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2823 {
2824 struct rbd_obj_request *obj_request;
2825 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2826 int ret;
2827
2828 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2829 OBJ_REQUEST_NODATA);
2830 if (!obj_request)
2831 return -ENOMEM;
2832
2833 ret = -ENOMEM;
2834 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2835 if (!obj_request->osd_req)
2836 goto out;
2837 obj_request->callback = rbd_obj_request_put;
2838
2839 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2840 notify_id, 0, 0);
2841 rbd_osd_req_format_read(obj_request);
2842
2843 ret = rbd_obj_request_submit(osdc, obj_request);
2844 out:
2845 if (ret)
2846 rbd_obj_request_put(obj_request);
2847
2848 return ret;
2849 }
2850
2851 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2852 {
2853 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2854 int ret;
2855
2856 if (!rbd_dev)
2857 return;
2858
2859 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2860 rbd_dev->header_name, (unsigned long long)notify_id,
2861 (unsigned int)opcode);
2862 ret = rbd_dev_refresh(rbd_dev);
2863 if (ret)
2864 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2865
2866 rbd_obj_notify_ack(rbd_dev, notify_id);
2867 }
2868
2869 /*
2870 * Request sync osd watch/unwatch. The value of "start" determines
2871 * whether a watch request is being initiated or torn down.
2872 */
2873 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2874 {
2875 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2876 struct rbd_obj_request *obj_request;
2877 int ret;
2878
2879 rbd_assert(start ^ !!rbd_dev->watch_event);
2880 rbd_assert(start ^ !!rbd_dev->watch_request);
2881
2882 if (start) {
2883 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2884 &rbd_dev->watch_event);
2885 if (ret < 0)
2886 return ret;
2887 rbd_assert(rbd_dev->watch_event != NULL);
2888 }
2889
2890 ret = -ENOMEM;
2891 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2892 OBJ_REQUEST_NODATA);
2893 if (!obj_request)
2894 goto out_cancel;
2895
2896 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2897 if (!obj_request->osd_req)
2898 goto out_cancel;
2899
2900 if (start)
2901 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2902 else
2903 ceph_osdc_unregister_linger_request(osdc,
2904 rbd_dev->watch_request->osd_req);
2905
2906 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2907 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2908 rbd_osd_req_format_write(obj_request);
2909
2910 ret = rbd_obj_request_submit(osdc, obj_request);
2911 if (ret)
2912 goto out_cancel;
2913 ret = rbd_obj_request_wait(obj_request);
2914 if (ret)
2915 goto out_cancel;
2916 ret = obj_request->result;
2917 if (ret)
2918 goto out_cancel;
2919
2920 /*
2921 * A watch request is set to linger, so the underlying osd
2922 * request won't go away until we unregister it. We retain
2923 * a pointer to the object request during that time (in
2924 * rbd_dev->watch_request), so we'll keep a reference to
2925 * it. We'll drop that reference (below) after we've
2926 * unregistered it.
2927 */
2928 if (start) {
2929 rbd_dev->watch_request = obj_request;
2930
2931 return 0;
2932 }
2933
2934 /* We have successfully torn down the watch request */
2935
2936 rbd_obj_request_put(rbd_dev->watch_request);
2937 rbd_dev->watch_request = NULL;
2938 out_cancel:
2939 /* Cancel the event if we're tearing down, or on error */
2940 ceph_osdc_cancel_event(rbd_dev->watch_event);
2941 rbd_dev->watch_event = NULL;
2942 if (obj_request)
2943 rbd_obj_request_put(obj_request);
2944
2945 return ret;
2946 }
2947
2948 /*
2949 * Synchronous osd object method call. Returns the number of bytes
2950 * returned in the outbound buffer, or a negative error code.
2951 */
2952 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2953 const char *object_name,
2954 const char *class_name,
2955 const char *method_name,
2956 const void *outbound,
2957 size_t outbound_size,
2958 void *inbound,
2959 size_t inbound_size)
2960 {
2961 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2962 struct rbd_obj_request *obj_request;
2963 struct page **pages;
2964 u32 page_count;
2965 int ret;
2966
2967 /*
2968 * Method calls are ultimately read operations. The result
2969 * should placed into the inbound buffer provided. They
2970 * also supply outbound data--parameters for the object
2971 * method. Currently if this is present it will be a
2972 * snapshot id.
2973 */
2974 page_count = (u32)calc_pages_for(0, inbound_size);
2975 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2976 if (IS_ERR(pages))
2977 return PTR_ERR(pages);
2978
2979 ret = -ENOMEM;
2980 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2981 OBJ_REQUEST_PAGES);
2982 if (!obj_request)
2983 goto out;
2984
2985 obj_request->pages = pages;
2986 obj_request->page_count = page_count;
2987
2988 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2989 if (!obj_request->osd_req)
2990 goto out;
2991
2992 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2993 class_name, method_name);
2994 if (outbound_size) {
2995 struct ceph_pagelist *pagelist;
2996
2997 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2998 if (!pagelist)
2999 goto out;
3000
3001 ceph_pagelist_init(pagelist);
3002 ceph_pagelist_append(pagelist, outbound, outbound_size);
3003 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3004 pagelist);
3005 }
3006 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3007 obj_request->pages, inbound_size,
3008 0, false, false);
3009 rbd_osd_req_format_read(obj_request);
3010
3011 ret = rbd_obj_request_submit(osdc, obj_request);
3012 if (ret)
3013 goto out;
3014 ret = rbd_obj_request_wait(obj_request);
3015 if (ret)
3016 goto out;
3017
3018 ret = obj_request->result;
3019 if (ret < 0)
3020 goto out;
3021
3022 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3023 ret = (int)obj_request->xferred;
3024 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3025 out:
3026 if (obj_request)
3027 rbd_obj_request_put(obj_request);
3028 else
3029 ceph_release_page_vector(pages, page_count);
3030
3031 return ret;
3032 }
3033
3034 static void rbd_request_fn(struct request_queue *q)
3035 __releases(q->queue_lock) __acquires(q->queue_lock)
3036 {
3037 struct rbd_device *rbd_dev = q->queuedata;
3038 bool read_only = rbd_dev->mapping.read_only;
3039 struct request *rq;
3040 int result;
3041
3042 while ((rq = blk_fetch_request(q))) {
3043 bool write_request = rq_data_dir(rq) == WRITE;
3044 struct rbd_img_request *img_request;
3045 u64 offset;
3046 u64 length;
3047
3048 /* Ignore any non-FS requests that filter through. */
3049
3050 if (rq->cmd_type != REQ_TYPE_FS) {
3051 dout("%s: non-fs request type %d\n", __func__,
3052 (int) rq->cmd_type);
3053 __blk_end_request_all(rq, 0);
3054 continue;
3055 }
3056
3057 /* Ignore/skip any zero-length requests */
3058
3059 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3060 length = (u64) blk_rq_bytes(rq);
3061
3062 if (!length) {
3063 dout("%s: zero-length request\n", __func__);
3064 __blk_end_request_all(rq, 0);
3065 continue;
3066 }
3067
3068 spin_unlock_irq(q->queue_lock);
3069
3070 /* Disallow writes to a read-only device */
3071
3072 if (write_request) {
3073 result = -EROFS;
3074 if (read_only)
3075 goto end_request;
3076 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3077 }
3078
3079 /*
3080 * Quit early if the mapped snapshot no longer
3081 * exists. It's still possible the snapshot will
3082 * have disappeared by the time our request arrives
3083 * at the osd, but there's no sense in sending it if
3084 * we already know.
3085 */
3086 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3087 dout("request for non-existent snapshot");
3088 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3089 result = -ENXIO;
3090 goto end_request;
3091 }
3092
3093 result = -EINVAL;
3094 if (offset && length > U64_MAX - offset + 1) {
3095 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3096 offset, length);
3097 goto end_request; /* Shouldn't happen */
3098 }
3099
3100 result = -EIO;
3101 if (offset + length > rbd_dev->mapping.size) {
3102 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3103 offset, length, rbd_dev->mapping.size);
3104 goto end_request;
3105 }
3106
3107 result = -ENOMEM;
3108 img_request = rbd_img_request_create(rbd_dev, offset, length,
3109 write_request);
3110 if (!img_request)
3111 goto end_request;
3112
3113 img_request->rq = rq;
3114
3115 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3116 rq->bio);
3117 if (!result)
3118 result = rbd_img_request_submit(img_request);
3119 if (result)
3120 rbd_img_request_put(img_request);
3121 end_request:
3122 spin_lock_irq(q->queue_lock);
3123 if (result < 0) {
3124 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3125 write_request ? "write" : "read",
3126 length, offset, result);
3127
3128 __blk_end_request_all(rq, result);
3129 }
3130 }
3131 }
3132
3133 /*
3134 * a queue callback. Makes sure that we don't create a bio that spans across
3135 * multiple osd objects. One exception would be with a single page bios,
3136 * which we handle later at bio_chain_clone_range()
3137 */
3138 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3139 struct bio_vec *bvec)
3140 {
3141 struct rbd_device *rbd_dev = q->queuedata;
3142 sector_t sector_offset;
3143 sector_t sectors_per_obj;
3144 sector_t obj_sector_offset;
3145 int ret;
3146
3147 /*
3148 * Find how far into its rbd object the partition-relative
3149 * bio start sector is to offset relative to the enclosing
3150 * device.
3151 */
3152 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3153 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3154 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3155
3156 /*
3157 * Compute the number of bytes from that offset to the end
3158 * of the object. Account for what's already used by the bio.
3159 */
3160 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3161 if (ret > bmd->bi_size)
3162 ret -= bmd->bi_size;
3163 else
3164 ret = 0;
3165
3166 /*
3167 * Don't send back more than was asked for. And if the bio
3168 * was empty, let the whole thing through because: "Note
3169 * that a block device *must* allow a single page to be
3170 * added to an empty bio."
3171 */
3172 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3173 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3174 ret = (int) bvec->bv_len;
3175
3176 return ret;
3177 }
3178
3179 static void rbd_free_disk(struct rbd_device *rbd_dev)
3180 {
3181 struct gendisk *disk = rbd_dev->disk;
3182
3183 if (!disk)
3184 return;
3185
3186 rbd_dev->disk = NULL;
3187 if (disk->flags & GENHD_FL_UP) {
3188 del_gendisk(disk);
3189 if (disk->queue)
3190 blk_cleanup_queue(disk->queue);
3191 }
3192 put_disk(disk);
3193 }
3194
3195 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3196 const char *object_name,
3197 u64 offset, u64 length, void *buf)
3198
3199 {
3200 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3201 struct rbd_obj_request *obj_request;
3202 struct page **pages = NULL;
3203 u32 page_count;
3204 size_t size;
3205 int ret;
3206
3207 page_count = (u32) calc_pages_for(offset, length);
3208 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3209 if (IS_ERR(pages))
3210 ret = PTR_ERR(pages);
3211
3212 ret = -ENOMEM;
3213 obj_request = rbd_obj_request_create(object_name, offset, length,
3214 OBJ_REQUEST_PAGES);
3215 if (!obj_request)
3216 goto out;
3217
3218 obj_request->pages = pages;
3219 obj_request->page_count = page_count;
3220
3221 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3222 if (!obj_request->osd_req)
3223 goto out;
3224
3225 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3226 offset, length, 0, 0);
3227 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3228 obj_request->pages,
3229 obj_request->length,
3230 obj_request->offset & ~PAGE_MASK,
3231 false, false);
3232 rbd_osd_req_format_read(obj_request);
3233
3234 ret = rbd_obj_request_submit(osdc, obj_request);
3235 if (ret)
3236 goto out;
3237 ret = rbd_obj_request_wait(obj_request);
3238 if (ret)
3239 goto out;
3240
3241 ret = obj_request->result;
3242 if (ret < 0)
3243 goto out;
3244
3245 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3246 size = (size_t) obj_request->xferred;
3247 ceph_copy_from_page_vector(pages, buf, 0, size);
3248 rbd_assert(size <= (size_t)INT_MAX);
3249 ret = (int)size;
3250 out:
3251 if (obj_request)
3252 rbd_obj_request_put(obj_request);
3253 else
3254 ceph_release_page_vector(pages, page_count);
3255
3256 return ret;
3257 }
3258
3259 /*
3260 * Read the complete header for the given rbd device. On successful
3261 * return, the rbd_dev->header field will contain up-to-date
3262 * information about the image.
3263 */
3264 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3265 {
3266 struct rbd_image_header_ondisk *ondisk = NULL;
3267 u32 snap_count = 0;
3268 u64 names_size = 0;
3269 u32 want_count;
3270 int ret;
3271
3272 /*
3273 * The complete header will include an array of its 64-bit
3274 * snapshot ids, followed by the names of those snapshots as
3275 * a contiguous block of NUL-terminated strings. Note that
3276 * the number of snapshots could change by the time we read
3277 * it in, in which case we re-read it.
3278 */
3279 do {
3280 size_t size;
3281
3282 kfree(ondisk);
3283
3284 size = sizeof (*ondisk);
3285 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3286 size += names_size;
3287 ondisk = kmalloc(size, GFP_KERNEL);
3288 if (!ondisk)
3289 return -ENOMEM;
3290
3291 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3292 0, size, ondisk);
3293 if (ret < 0)
3294 goto out;
3295 if ((size_t)ret < size) {
3296 ret = -ENXIO;
3297 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3298 size, ret);
3299 goto out;
3300 }
3301 if (!rbd_dev_ondisk_valid(ondisk)) {
3302 ret = -ENXIO;
3303 rbd_warn(rbd_dev, "invalid header");
3304 goto out;
3305 }
3306
3307 names_size = le64_to_cpu(ondisk->snap_names_len);
3308 want_count = snap_count;
3309 snap_count = le32_to_cpu(ondisk->snap_count);
3310 } while (snap_count != want_count);
3311
3312 ret = rbd_header_from_disk(rbd_dev, ondisk);
3313 out:
3314 kfree(ondisk);
3315
3316 return ret;
3317 }
3318
3319 /*
3320 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3321 * has disappeared from the (just updated) snapshot context.
3322 */
3323 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3324 {
3325 u64 snap_id;
3326
3327 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3328 return;
3329
3330 snap_id = rbd_dev->spec->snap_id;
3331 if (snap_id == CEPH_NOSNAP)
3332 return;
3333
3334 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3335 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3336 }
3337
3338 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3339 {
3340 u64 mapping_size;
3341 int ret;
3342
3343 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3344 mapping_size = rbd_dev->mapping.size;
3345 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3346 if (rbd_dev->image_format == 1)
3347 ret = rbd_dev_v1_header_info(rbd_dev);
3348 else
3349 ret = rbd_dev_v2_header_info(rbd_dev);
3350
3351 /* If it's a mapped snapshot, validate its EXISTS flag */
3352
3353 rbd_exists_validate(rbd_dev);
3354 mutex_unlock(&ctl_mutex);
3355 if (mapping_size != rbd_dev->mapping.size) {
3356 sector_t size;
3357
3358 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3359 dout("setting size to %llu sectors", (unsigned long long)size);
3360 set_capacity(rbd_dev->disk, size);
3361 revalidate_disk(rbd_dev->disk);
3362 }
3363
3364 return ret;
3365 }
3366
3367 static int rbd_init_disk(struct rbd_device *rbd_dev)
3368 {
3369 struct gendisk *disk;
3370 struct request_queue *q;
3371 u64 segment_size;
3372
3373 /* create gendisk info */
3374 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3375 if (!disk)
3376 return -ENOMEM;
3377
3378 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3379 rbd_dev->dev_id);
3380 disk->major = rbd_dev->major;
3381 disk->first_minor = 0;
3382 disk->fops = &rbd_bd_ops;
3383 disk->private_data = rbd_dev;
3384
3385 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3386 if (!q)
3387 goto out_disk;
3388
3389 /* We use the default size, but let's be explicit about it. */
3390 blk_queue_physical_block_size(q, SECTOR_SIZE);
3391
3392 /* set io sizes to object size */
3393 segment_size = rbd_obj_bytes(&rbd_dev->header);
3394 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3395 blk_queue_max_segment_size(q, segment_size);
3396 blk_queue_io_min(q, segment_size);
3397 blk_queue_io_opt(q, segment_size);
3398
3399 blk_queue_merge_bvec(q, rbd_merge_bvec);
3400 disk->queue = q;
3401
3402 q->queuedata = rbd_dev;
3403
3404 rbd_dev->disk = disk;
3405
3406 return 0;
3407 out_disk:
3408 put_disk(disk);
3409
3410 return -ENOMEM;
3411 }
3412
3413 /*
3414 sysfs
3415 */
3416
3417 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3418 {
3419 return container_of(dev, struct rbd_device, dev);
3420 }
3421
3422 static ssize_t rbd_size_show(struct device *dev,
3423 struct device_attribute *attr, char *buf)
3424 {
3425 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3426
3427 return sprintf(buf, "%llu\n",
3428 (unsigned long long)rbd_dev->mapping.size);
3429 }
3430
3431 /*
3432 * Note this shows the features for whatever's mapped, which is not
3433 * necessarily the base image.
3434 */
3435 static ssize_t rbd_features_show(struct device *dev,
3436 struct device_attribute *attr, char *buf)
3437 {
3438 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3439
3440 return sprintf(buf, "0x%016llx\n",
3441 (unsigned long long)rbd_dev->mapping.features);
3442 }
3443
3444 static ssize_t rbd_major_show(struct device *dev,
3445 struct device_attribute *attr, char *buf)
3446 {
3447 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3448
3449 if (rbd_dev->major)
3450 return sprintf(buf, "%d\n", rbd_dev->major);
3451
3452 return sprintf(buf, "(none)\n");
3453
3454 }
3455
3456 static ssize_t rbd_client_id_show(struct device *dev,
3457 struct device_attribute *attr, char *buf)
3458 {
3459 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3460
3461 return sprintf(buf, "client%lld\n",
3462 ceph_client_id(rbd_dev->rbd_client->client));
3463 }
3464
3465 static ssize_t rbd_pool_show(struct device *dev,
3466 struct device_attribute *attr, char *buf)
3467 {
3468 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3469
3470 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3471 }
3472
3473 static ssize_t rbd_pool_id_show(struct device *dev,
3474 struct device_attribute *attr, char *buf)
3475 {
3476 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3477
3478 return sprintf(buf, "%llu\n",
3479 (unsigned long long) rbd_dev->spec->pool_id);
3480 }
3481
3482 static ssize_t rbd_name_show(struct device *dev,
3483 struct device_attribute *attr, char *buf)
3484 {
3485 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486
3487 if (rbd_dev->spec->image_name)
3488 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3489
3490 return sprintf(buf, "(unknown)\n");
3491 }
3492
3493 static ssize_t rbd_image_id_show(struct device *dev,
3494 struct device_attribute *attr, char *buf)
3495 {
3496 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3497
3498 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3499 }
3500
3501 /*
3502 * Shows the name of the currently-mapped snapshot (or
3503 * RBD_SNAP_HEAD_NAME for the base image).
3504 */
3505 static ssize_t rbd_snap_show(struct device *dev,
3506 struct device_attribute *attr,
3507 char *buf)
3508 {
3509 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3510
3511 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3512 }
3513
3514 /*
3515 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3516 * for the parent image. If there is no parent, simply shows
3517 * "(no parent image)".
3518 */
3519 static ssize_t rbd_parent_show(struct device *dev,
3520 struct device_attribute *attr,
3521 char *buf)
3522 {
3523 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3524 struct rbd_spec *spec = rbd_dev->parent_spec;
3525 int count;
3526 char *bufp = buf;
3527
3528 if (!spec)
3529 return sprintf(buf, "(no parent image)\n");
3530
3531 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3532 (unsigned long long) spec->pool_id, spec->pool_name);
3533 if (count < 0)
3534 return count;
3535 bufp += count;
3536
3537 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3538 spec->image_name ? spec->image_name : "(unknown)");
3539 if (count < 0)
3540 return count;
3541 bufp += count;
3542
3543 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3544 (unsigned long long) spec->snap_id, spec->snap_name);
3545 if (count < 0)
3546 return count;
3547 bufp += count;
3548
3549 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3550 if (count < 0)
3551 return count;
3552 bufp += count;
3553
3554 return (ssize_t) (bufp - buf);
3555 }
3556
3557 static ssize_t rbd_image_refresh(struct device *dev,
3558 struct device_attribute *attr,
3559 const char *buf,
3560 size_t size)
3561 {
3562 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3563 int ret;
3564
3565 ret = rbd_dev_refresh(rbd_dev);
3566 if (ret)
3567 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3568
3569 return ret < 0 ? ret : size;
3570 }
3571
3572 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3573 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3574 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3575 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3576 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3577 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3578 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3579 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3580 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3581 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3582 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3583
3584 static struct attribute *rbd_attrs[] = {
3585 &dev_attr_size.attr,
3586 &dev_attr_features.attr,
3587 &dev_attr_major.attr,
3588 &dev_attr_client_id.attr,
3589 &dev_attr_pool.attr,
3590 &dev_attr_pool_id.attr,
3591 &dev_attr_name.attr,
3592 &dev_attr_image_id.attr,
3593 &dev_attr_current_snap.attr,
3594 &dev_attr_parent.attr,
3595 &dev_attr_refresh.attr,
3596 NULL
3597 };
3598
3599 static struct attribute_group rbd_attr_group = {
3600 .attrs = rbd_attrs,
3601 };
3602
3603 static const struct attribute_group *rbd_attr_groups[] = {
3604 &rbd_attr_group,
3605 NULL
3606 };
3607
3608 static void rbd_sysfs_dev_release(struct device *dev)
3609 {
3610 }
3611
3612 static struct device_type rbd_device_type = {
3613 .name = "rbd",
3614 .groups = rbd_attr_groups,
3615 .release = rbd_sysfs_dev_release,
3616 };
3617
3618 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3619 {
3620 kref_get(&spec->kref);
3621
3622 return spec;
3623 }
3624
3625 static void rbd_spec_free(struct kref *kref);
3626 static void rbd_spec_put(struct rbd_spec *spec)
3627 {
3628 if (spec)
3629 kref_put(&spec->kref, rbd_spec_free);
3630 }
3631
3632 static struct rbd_spec *rbd_spec_alloc(void)
3633 {
3634 struct rbd_spec *spec;
3635
3636 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3637 if (!spec)
3638 return NULL;
3639 kref_init(&spec->kref);
3640
3641 return spec;
3642 }
3643
3644 static void rbd_spec_free(struct kref *kref)
3645 {
3646 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3647
3648 kfree(spec->pool_name);
3649 kfree(spec->image_id);
3650 kfree(spec->image_name);
3651 kfree(spec->snap_name);
3652 kfree(spec);
3653 }
3654
3655 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3656 struct rbd_spec *spec)
3657 {
3658 struct rbd_device *rbd_dev;
3659
3660 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3661 if (!rbd_dev)
3662 return NULL;
3663
3664 spin_lock_init(&rbd_dev->lock);
3665 rbd_dev->flags = 0;
3666 atomic_set(&rbd_dev->parent_ref, 0);
3667 INIT_LIST_HEAD(&rbd_dev->node);
3668 init_rwsem(&rbd_dev->header_rwsem);
3669
3670 rbd_dev->spec = spec;
3671 rbd_dev->rbd_client = rbdc;
3672
3673 /* Initialize the layout used for all rbd requests */
3674
3675 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3676 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3677 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3678 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3679
3680 return rbd_dev;
3681 }
3682
3683 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3684 {
3685 rbd_put_client(rbd_dev->rbd_client);
3686 rbd_spec_put(rbd_dev->spec);
3687 kfree(rbd_dev);
3688 }
3689
3690 /*
3691 * Get the size and object order for an image snapshot, or if
3692 * snap_id is CEPH_NOSNAP, gets this information for the base
3693 * image.
3694 */
3695 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3696 u8 *order, u64 *snap_size)
3697 {
3698 __le64 snapid = cpu_to_le64(snap_id);
3699 int ret;
3700 struct {
3701 u8 order;
3702 __le64 size;
3703 } __attribute__ ((packed)) size_buf = { 0 };
3704
3705 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3706 "rbd", "get_size",
3707 &snapid, sizeof (snapid),
3708 &size_buf, sizeof (size_buf));
3709 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3710 if (ret < 0)
3711 return ret;
3712 if (ret < sizeof (size_buf))
3713 return -ERANGE;
3714
3715 if (order)
3716 *order = size_buf.order;
3717 *snap_size = le64_to_cpu(size_buf.size);
3718
3719 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3720 (unsigned long long)snap_id, (unsigned int)*order,
3721 (unsigned long long)*snap_size);
3722
3723 return 0;
3724 }
3725
3726 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3727 {
3728 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3729 &rbd_dev->header.obj_order,
3730 &rbd_dev->header.image_size);
3731 }
3732
3733 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3734 {
3735 void *reply_buf;
3736 int ret;
3737 void *p;
3738
3739 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3740 if (!reply_buf)
3741 return -ENOMEM;
3742
3743 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3744 "rbd", "get_object_prefix", NULL, 0,
3745 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3746 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3747 if (ret < 0)
3748 goto out;
3749
3750 p = reply_buf;
3751 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3752 p + ret, NULL, GFP_NOIO);
3753 ret = 0;
3754
3755 if (IS_ERR(rbd_dev->header.object_prefix)) {
3756 ret = PTR_ERR(rbd_dev->header.object_prefix);
3757 rbd_dev->header.object_prefix = NULL;
3758 } else {
3759 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3760 }
3761 out:
3762 kfree(reply_buf);
3763
3764 return ret;
3765 }
3766
3767 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3768 u64 *snap_features)
3769 {
3770 __le64 snapid = cpu_to_le64(snap_id);
3771 struct {
3772 __le64 features;
3773 __le64 incompat;
3774 } __attribute__ ((packed)) features_buf = { 0 };
3775 u64 incompat;
3776 int ret;
3777
3778 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3779 "rbd", "get_features",
3780 &snapid, sizeof (snapid),
3781 &features_buf, sizeof (features_buf));
3782 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3783 if (ret < 0)
3784 return ret;
3785 if (ret < sizeof (features_buf))
3786 return -ERANGE;
3787
3788 incompat = le64_to_cpu(features_buf.incompat);
3789 if (incompat & ~RBD_FEATURES_SUPPORTED)
3790 return -ENXIO;
3791
3792 *snap_features = le64_to_cpu(features_buf.features);
3793
3794 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3795 (unsigned long long)snap_id,
3796 (unsigned long long)*snap_features,
3797 (unsigned long long)le64_to_cpu(features_buf.incompat));
3798
3799 return 0;
3800 }
3801
3802 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3803 {
3804 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3805 &rbd_dev->header.features);
3806 }
3807
3808 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3809 {
3810 struct rbd_spec *parent_spec;
3811 size_t size;
3812 void *reply_buf = NULL;
3813 __le64 snapid;
3814 void *p;
3815 void *end;
3816 u64 pool_id;
3817 char *image_id;
3818 u64 overlap;
3819 int ret;
3820
3821 parent_spec = rbd_spec_alloc();
3822 if (!parent_spec)
3823 return -ENOMEM;
3824
3825 size = sizeof (__le64) + /* pool_id */
3826 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3827 sizeof (__le64) + /* snap_id */
3828 sizeof (__le64); /* overlap */
3829 reply_buf = kmalloc(size, GFP_KERNEL);
3830 if (!reply_buf) {
3831 ret = -ENOMEM;
3832 goto out_err;
3833 }
3834
3835 snapid = cpu_to_le64(CEPH_NOSNAP);
3836 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3837 "rbd", "get_parent",
3838 &snapid, sizeof (snapid),
3839 reply_buf, size);
3840 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3841 if (ret < 0)
3842 goto out_err;
3843
3844 p = reply_buf;
3845 end = reply_buf + ret;
3846 ret = -ERANGE;
3847 ceph_decode_64_safe(&p, end, pool_id, out_err);
3848 if (pool_id == CEPH_NOPOOL) {
3849 /*
3850 * Either the parent never existed, or we have
3851 * record of it but the image got flattened so it no
3852 * longer has a parent. When the parent of a
3853 * layered image disappears we immediately set the
3854 * overlap to 0. The effect of this is that all new
3855 * requests will be treated as if the image had no
3856 * parent.
3857 */
3858 if (rbd_dev->parent_overlap) {
3859 rbd_dev->parent_overlap = 0;
3860 smp_mb();
3861 rbd_dev_parent_put(rbd_dev);
3862 pr_info("%s: clone image has been flattened\n",
3863 rbd_dev->disk->disk_name);
3864 }
3865
3866 goto out; /* No parent? No problem. */
3867 }
3868
3869 /* The ceph file layout needs to fit pool id in 32 bits */
3870
3871 ret = -EIO;
3872 if (pool_id > (u64)U32_MAX) {
3873 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3874 (unsigned long long)pool_id, U32_MAX);
3875 goto out_err;
3876 }
3877 parent_spec->pool_id = pool_id;
3878
3879 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3880 if (IS_ERR(image_id)) {
3881 ret = PTR_ERR(image_id);
3882 goto out_err;
3883 }
3884 parent_spec->image_id = image_id;
3885 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3886 ceph_decode_64_safe(&p, end, overlap, out_err);
3887
3888 if (overlap) {
3889 rbd_spec_put(rbd_dev->parent_spec);
3890 rbd_dev->parent_spec = parent_spec;
3891 parent_spec = NULL; /* rbd_dev now owns this */
3892 rbd_dev->parent_overlap = overlap;
3893 } else {
3894 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3895 }
3896 out:
3897 ret = 0;
3898 out_err:
3899 kfree(reply_buf);
3900 rbd_spec_put(parent_spec);
3901
3902 return ret;
3903 }
3904
3905 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3906 {
3907 struct {
3908 __le64 stripe_unit;
3909 __le64 stripe_count;
3910 } __attribute__ ((packed)) striping_info_buf = { 0 };
3911 size_t size = sizeof (striping_info_buf);
3912 void *p;
3913 u64 obj_size;
3914 u64 stripe_unit;
3915 u64 stripe_count;
3916 int ret;
3917
3918 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3919 "rbd", "get_stripe_unit_count", NULL, 0,
3920 (char *)&striping_info_buf, size);
3921 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3922 if (ret < 0)
3923 return ret;
3924 if (ret < size)
3925 return -ERANGE;
3926
3927 /*
3928 * We don't actually support the "fancy striping" feature
3929 * (STRIPINGV2) yet, but if the striping sizes are the
3930 * defaults the behavior is the same as before. So find
3931 * out, and only fail if the image has non-default values.
3932 */
3933 ret = -EINVAL;
3934 obj_size = (u64)1 << rbd_dev->header.obj_order;
3935 p = &striping_info_buf;
3936 stripe_unit = ceph_decode_64(&p);
3937 if (stripe_unit != obj_size) {
3938 rbd_warn(rbd_dev, "unsupported stripe unit "
3939 "(got %llu want %llu)",
3940 stripe_unit, obj_size);
3941 return -EINVAL;
3942 }
3943 stripe_count = ceph_decode_64(&p);
3944 if (stripe_count != 1) {
3945 rbd_warn(rbd_dev, "unsupported stripe count "
3946 "(got %llu want 1)", stripe_count);
3947 return -EINVAL;
3948 }
3949 rbd_dev->header.stripe_unit = stripe_unit;
3950 rbd_dev->header.stripe_count = stripe_count;
3951
3952 return 0;
3953 }
3954
3955 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3956 {
3957 size_t image_id_size;
3958 char *image_id;
3959 void *p;
3960 void *end;
3961 size_t size;
3962 void *reply_buf = NULL;
3963 size_t len = 0;
3964 char *image_name = NULL;
3965 int ret;
3966
3967 rbd_assert(!rbd_dev->spec->image_name);
3968
3969 len = strlen(rbd_dev->spec->image_id);
3970 image_id_size = sizeof (__le32) + len;
3971 image_id = kmalloc(image_id_size, GFP_KERNEL);
3972 if (!image_id)
3973 return NULL;
3974
3975 p = image_id;
3976 end = image_id + image_id_size;
3977 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3978
3979 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3980 reply_buf = kmalloc(size, GFP_KERNEL);
3981 if (!reply_buf)
3982 goto out;
3983
3984 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3985 "rbd", "dir_get_name",
3986 image_id, image_id_size,
3987 reply_buf, size);
3988 if (ret < 0)
3989 goto out;
3990 p = reply_buf;
3991 end = reply_buf + ret;
3992
3993 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3994 if (IS_ERR(image_name))
3995 image_name = NULL;
3996 else
3997 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3998 out:
3999 kfree(reply_buf);
4000 kfree(image_id);
4001
4002 return image_name;
4003 }
4004
4005 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4006 {
4007 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4008 const char *snap_name;
4009 u32 which = 0;
4010
4011 /* Skip over names until we find the one we are looking for */
4012
4013 snap_name = rbd_dev->header.snap_names;
4014 while (which < snapc->num_snaps) {
4015 if (!strcmp(name, snap_name))
4016 return snapc->snaps[which];
4017 snap_name += strlen(snap_name) + 1;
4018 which++;
4019 }
4020 return CEPH_NOSNAP;
4021 }
4022
4023 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4024 {
4025 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4026 u32 which;
4027 bool found = false;
4028 u64 snap_id;
4029
4030 for (which = 0; !found && which < snapc->num_snaps; which++) {
4031 const char *snap_name;
4032
4033 snap_id = snapc->snaps[which];
4034 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4035 if (IS_ERR(snap_name))
4036 break;
4037 found = !strcmp(name, snap_name);
4038 kfree(snap_name);
4039 }
4040 return found ? snap_id : CEPH_NOSNAP;
4041 }
4042
4043 /*
4044 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4045 * no snapshot by that name is found, or if an error occurs.
4046 */
4047 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4048 {
4049 if (rbd_dev->image_format == 1)
4050 return rbd_v1_snap_id_by_name(rbd_dev, name);
4051
4052 return rbd_v2_snap_id_by_name(rbd_dev, name);
4053 }
4054
4055 /*
4056 * When an rbd image has a parent image, it is identified by the
4057 * pool, image, and snapshot ids (not names). This function fills
4058 * in the names for those ids. (It's OK if we can't figure out the
4059 * name for an image id, but the pool and snapshot ids should always
4060 * exist and have names.) All names in an rbd spec are dynamically
4061 * allocated.
4062 *
4063 * When an image being mapped (not a parent) is probed, we have the
4064 * pool name and pool id, image name and image id, and the snapshot
4065 * name. The only thing we're missing is the snapshot id.
4066 */
4067 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4068 {
4069 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4070 struct rbd_spec *spec = rbd_dev->spec;
4071 const char *pool_name;
4072 const char *image_name;
4073 const char *snap_name;
4074 int ret;
4075
4076 /*
4077 * An image being mapped will have the pool name (etc.), but
4078 * we need to look up the snapshot id.
4079 */
4080 if (spec->pool_name) {
4081 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4082 u64 snap_id;
4083
4084 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4085 if (snap_id == CEPH_NOSNAP)
4086 return -ENOENT;
4087 spec->snap_id = snap_id;
4088 } else {
4089 spec->snap_id = CEPH_NOSNAP;
4090 }
4091
4092 return 0;
4093 }
4094
4095 /* Get the pool name; we have to make our own copy of this */
4096
4097 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4098 if (!pool_name) {
4099 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4100 return -EIO;
4101 }
4102 pool_name = kstrdup(pool_name, GFP_KERNEL);
4103 if (!pool_name)
4104 return -ENOMEM;
4105
4106 /* Fetch the image name; tolerate failure here */
4107
4108 image_name = rbd_dev_image_name(rbd_dev);
4109 if (!image_name)
4110 rbd_warn(rbd_dev, "unable to get image name");
4111
4112 /* Look up the snapshot name, and make a copy */
4113
4114 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4115 if (!snap_name) {
4116 ret = -ENOMEM;
4117 goto out_err;
4118 }
4119
4120 spec->pool_name = pool_name;
4121 spec->image_name = image_name;
4122 spec->snap_name = snap_name;
4123
4124 return 0;
4125 out_err:
4126 kfree(image_name);
4127 kfree(pool_name);
4128
4129 return ret;
4130 }
4131
4132 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4133 {
4134 size_t size;
4135 int ret;
4136 void *reply_buf;
4137 void *p;
4138 void *end;
4139 u64 seq;
4140 u32 snap_count;
4141 struct ceph_snap_context *snapc;
4142 u32 i;
4143
4144 /*
4145 * We'll need room for the seq value (maximum snapshot id),
4146 * snapshot count, and array of that many snapshot ids.
4147 * For now we have a fixed upper limit on the number we're
4148 * prepared to receive.
4149 */
4150 size = sizeof (__le64) + sizeof (__le32) +
4151 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4152 reply_buf = kzalloc(size, GFP_KERNEL);
4153 if (!reply_buf)
4154 return -ENOMEM;
4155
4156 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4157 "rbd", "get_snapcontext", NULL, 0,
4158 reply_buf, size);
4159 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4160 if (ret < 0)
4161 goto out;
4162
4163 p = reply_buf;
4164 end = reply_buf + ret;
4165 ret = -ERANGE;
4166 ceph_decode_64_safe(&p, end, seq, out);
4167 ceph_decode_32_safe(&p, end, snap_count, out);
4168
4169 /*
4170 * Make sure the reported number of snapshot ids wouldn't go
4171 * beyond the end of our buffer. But before checking that,
4172 * make sure the computed size of the snapshot context we
4173 * allocate is representable in a size_t.
4174 */
4175 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4176 / sizeof (u64)) {
4177 ret = -EINVAL;
4178 goto out;
4179 }
4180 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4181 goto out;
4182 ret = 0;
4183
4184 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4185 if (!snapc) {
4186 ret = -ENOMEM;
4187 goto out;
4188 }
4189 snapc->seq = seq;
4190 for (i = 0; i < snap_count; i++)
4191 snapc->snaps[i] = ceph_decode_64(&p);
4192
4193 ceph_put_snap_context(rbd_dev->header.snapc);
4194 rbd_dev->header.snapc = snapc;
4195
4196 dout(" snap context seq = %llu, snap_count = %u\n",
4197 (unsigned long long)seq, (unsigned int)snap_count);
4198 out:
4199 kfree(reply_buf);
4200
4201 return ret;
4202 }
4203
4204 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4205 u64 snap_id)
4206 {
4207 size_t size;
4208 void *reply_buf;
4209 __le64 snapid;
4210 int ret;
4211 void *p;
4212 void *end;
4213 char *snap_name;
4214
4215 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4216 reply_buf = kmalloc(size, GFP_KERNEL);
4217 if (!reply_buf)
4218 return ERR_PTR(-ENOMEM);
4219
4220 snapid = cpu_to_le64(snap_id);
4221 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4222 "rbd", "get_snapshot_name",
4223 &snapid, sizeof (snapid),
4224 reply_buf, size);
4225 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4226 if (ret < 0) {
4227 snap_name = ERR_PTR(ret);
4228 goto out;
4229 }
4230
4231 p = reply_buf;
4232 end = reply_buf + ret;
4233 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4234 if (IS_ERR(snap_name))
4235 goto out;
4236
4237 dout(" snap_id 0x%016llx snap_name = %s\n",
4238 (unsigned long long)snap_id, snap_name);
4239 out:
4240 kfree(reply_buf);
4241
4242 return snap_name;
4243 }
4244
4245 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4246 {
4247 bool first_time = rbd_dev->header.object_prefix == NULL;
4248 int ret;
4249
4250 down_write(&rbd_dev->header_rwsem);
4251
4252 ret = rbd_dev_v2_image_size(rbd_dev);
4253 if (ret)
4254 goto out;
4255
4256 if (first_time) {
4257 ret = rbd_dev_v2_header_onetime(rbd_dev);
4258 if (ret)
4259 goto out;
4260 }
4261
4262 /*
4263 * If the image supports layering, get the parent info. We
4264 * need to probe the first time regardless. Thereafter we
4265 * only need to if there's a parent, to see if it has
4266 * disappeared due to the mapped image getting flattened.
4267 */
4268 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4269 (first_time || rbd_dev->parent_spec)) {
4270 bool warn;
4271
4272 ret = rbd_dev_v2_parent_info(rbd_dev);
4273 if (ret)
4274 goto out;
4275
4276 /*
4277 * Print a warning if this is the initial probe and
4278 * the image has a parent. Don't print it if the
4279 * image now being probed is itself a parent. We
4280 * can tell at this point because we won't know its
4281 * pool name yet (just its pool id).
4282 */
4283 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4284 if (first_time && warn)
4285 rbd_warn(rbd_dev, "WARNING: kernel layering "
4286 "is EXPERIMENTAL!");
4287 }
4288
4289 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4290 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4291 rbd_dev->mapping.size = rbd_dev->header.image_size;
4292
4293 ret = rbd_dev_v2_snap_context(rbd_dev);
4294 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4295 out:
4296 up_write(&rbd_dev->header_rwsem);
4297
4298 return ret;
4299 }
4300
4301 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4302 {
4303 struct device *dev;
4304 int ret;
4305
4306 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4307
4308 dev = &rbd_dev->dev;
4309 dev->bus = &rbd_bus_type;
4310 dev->type = &rbd_device_type;
4311 dev->parent = &rbd_root_dev;
4312 dev->release = rbd_dev_device_release;
4313 dev_set_name(dev, "%d", rbd_dev->dev_id);
4314 ret = device_register(dev);
4315
4316 mutex_unlock(&ctl_mutex);
4317
4318 return ret;
4319 }
4320
4321 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4322 {
4323 device_unregister(&rbd_dev->dev);
4324 }
4325
4326 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4327
4328 /*
4329 * Get a unique rbd identifier for the given new rbd_dev, and add
4330 * the rbd_dev to the global list. The minimum rbd id is 1.
4331 */
4332 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4333 {
4334 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4335
4336 spin_lock(&rbd_dev_list_lock);
4337 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4338 spin_unlock(&rbd_dev_list_lock);
4339 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4340 (unsigned long long) rbd_dev->dev_id);
4341 }
4342
4343 /*
4344 * Remove an rbd_dev from the global list, and record that its
4345 * identifier is no longer in use.
4346 */
4347 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4348 {
4349 struct list_head *tmp;
4350 int rbd_id = rbd_dev->dev_id;
4351 int max_id;
4352
4353 rbd_assert(rbd_id > 0);
4354
4355 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4356 (unsigned long long) rbd_dev->dev_id);
4357 spin_lock(&rbd_dev_list_lock);
4358 list_del_init(&rbd_dev->node);
4359
4360 /*
4361 * If the id being "put" is not the current maximum, there
4362 * is nothing special we need to do.
4363 */
4364 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4365 spin_unlock(&rbd_dev_list_lock);
4366 return;
4367 }
4368
4369 /*
4370 * We need to update the current maximum id. Search the
4371 * list to find out what it is. We're more likely to find
4372 * the maximum at the end, so search the list backward.
4373 */
4374 max_id = 0;
4375 list_for_each_prev(tmp, &rbd_dev_list) {
4376 struct rbd_device *rbd_dev;
4377
4378 rbd_dev = list_entry(tmp, struct rbd_device, node);
4379 if (rbd_dev->dev_id > max_id)
4380 max_id = rbd_dev->dev_id;
4381 }
4382 spin_unlock(&rbd_dev_list_lock);
4383
4384 /*
4385 * The max id could have been updated by rbd_dev_id_get(), in
4386 * which case it now accurately reflects the new maximum.
4387 * Be careful not to overwrite the maximum value in that
4388 * case.
4389 */
4390 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4391 dout(" max dev id has been reset\n");
4392 }
4393
4394 /*
4395 * Skips over white space at *buf, and updates *buf to point to the
4396 * first found non-space character (if any). Returns the length of
4397 * the token (string of non-white space characters) found. Note
4398 * that *buf must be terminated with '\0'.
4399 */
4400 static inline size_t next_token(const char **buf)
4401 {
4402 /*
4403 * These are the characters that produce nonzero for
4404 * isspace() in the "C" and "POSIX" locales.
4405 */
4406 const char *spaces = " \f\n\r\t\v";
4407
4408 *buf += strspn(*buf, spaces); /* Find start of token */
4409
4410 return strcspn(*buf, spaces); /* Return token length */
4411 }
4412
4413 /*
4414 * Finds the next token in *buf, and if the provided token buffer is
4415 * big enough, copies the found token into it. The result, if
4416 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4417 * must be terminated with '\0' on entry.
4418 *
4419 * Returns the length of the token found (not including the '\0').
4420 * Return value will be 0 if no token is found, and it will be >=
4421 * token_size if the token would not fit.
4422 *
4423 * The *buf pointer will be updated to point beyond the end of the
4424 * found token. Note that this occurs even if the token buffer is
4425 * too small to hold it.
4426 */
4427 static inline size_t copy_token(const char **buf,
4428 char *token,
4429 size_t token_size)
4430 {
4431 size_t len;
4432
4433 len = next_token(buf);
4434 if (len < token_size) {
4435 memcpy(token, *buf, len);
4436 *(token + len) = '\0';
4437 }
4438 *buf += len;
4439
4440 return len;
4441 }
4442
4443 /*
4444 * Finds the next token in *buf, dynamically allocates a buffer big
4445 * enough to hold a copy of it, and copies the token into the new
4446 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4447 * that a duplicate buffer is created even for a zero-length token.
4448 *
4449 * Returns a pointer to the newly-allocated duplicate, or a null
4450 * pointer if memory for the duplicate was not available. If
4451 * the lenp argument is a non-null pointer, the length of the token
4452 * (not including the '\0') is returned in *lenp.
4453 *
4454 * If successful, the *buf pointer will be updated to point beyond
4455 * the end of the found token.
4456 *
4457 * Note: uses GFP_KERNEL for allocation.
4458 */
4459 static inline char *dup_token(const char **buf, size_t *lenp)
4460 {
4461 char *dup;
4462 size_t len;
4463
4464 len = next_token(buf);
4465 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4466 if (!dup)
4467 return NULL;
4468 *(dup + len) = '\0';
4469 *buf += len;
4470
4471 if (lenp)
4472 *lenp = len;
4473
4474 return dup;
4475 }
4476
4477 /*
4478 * Parse the options provided for an "rbd add" (i.e., rbd image
4479 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4480 * and the data written is passed here via a NUL-terminated buffer.
4481 * Returns 0 if successful or an error code otherwise.
4482 *
4483 * The information extracted from these options is recorded in
4484 * the other parameters which return dynamically-allocated
4485 * structures:
4486 * ceph_opts
4487 * The address of a pointer that will refer to a ceph options
4488 * structure. Caller must release the returned pointer using
4489 * ceph_destroy_options() when it is no longer needed.
4490 * rbd_opts
4491 * Address of an rbd options pointer. Fully initialized by
4492 * this function; caller must release with kfree().
4493 * spec
4494 * Address of an rbd image specification pointer. Fully
4495 * initialized by this function based on parsed options.
4496 * Caller must release with rbd_spec_put().
4497 *
4498 * The options passed take this form:
4499 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4500 * where:
4501 * <mon_addrs>
4502 * A comma-separated list of one or more monitor addresses.
4503 * A monitor address is an ip address, optionally followed
4504 * by a port number (separated by a colon).
4505 * I.e.: ip1[:port1][,ip2[:port2]...]
4506 * <options>
4507 * A comma-separated list of ceph and/or rbd options.
4508 * <pool_name>
4509 * The name of the rados pool containing the rbd image.
4510 * <image_name>
4511 * The name of the image in that pool to map.
4512 * <snap_id>
4513 * An optional snapshot id. If provided, the mapping will
4514 * present data from the image at the time that snapshot was
4515 * created. The image head is used if no snapshot id is
4516 * provided. Snapshot mappings are always read-only.
4517 */
4518 static int rbd_add_parse_args(const char *buf,
4519 struct ceph_options **ceph_opts,
4520 struct rbd_options **opts,
4521 struct rbd_spec **rbd_spec)
4522 {
4523 size_t len;
4524 char *options;
4525 const char *mon_addrs;
4526 char *snap_name;
4527 size_t mon_addrs_size;
4528 struct rbd_spec *spec = NULL;
4529 struct rbd_options *rbd_opts = NULL;
4530 struct ceph_options *copts;
4531 int ret;
4532
4533 /* The first four tokens are required */
4534
4535 len = next_token(&buf);
4536 if (!len) {
4537 rbd_warn(NULL, "no monitor address(es) provided");
4538 return -EINVAL;
4539 }
4540 mon_addrs = buf;
4541 mon_addrs_size = len + 1;
4542 buf += len;
4543
4544 ret = -EINVAL;
4545 options = dup_token(&buf, NULL);
4546 if (!options)
4547 return -ENOMEM;
4548 if (!*options) {
4549 rbd_warn(NULL, "no options provided");
4550 goto out_err;
4551 }
4552
4553 spec = rbd_spec_alloc();
4554 if (!spec)
4555 goto out_mem;
4556
4557 spec->pool_name = dup_token(&buf, NULL);
4558 if (!spec->pool_name)
4559 goto out_mem;
4560 if (!*spec->pool_name) {
4561 rbd_warn(NULL, "no pool name provided");
4562 goto out_err;
4563 }
4564
4565 spec->image_name = dup_token(&buf, NULL);
4566 if (!spec->image_name)
4567 goto out_mem;
4568 if (!*spec->image_name) {
4569 rbd_warn(NULL, "no image name provided");
4570 goto out_err;
4571 }
4572
4573 /*
4574 * Snapshot name is optional; default is to use "-"
4575 * (indicating the head/no snapshot).
4576 */
4577 len = next_token(&buf);
4578 if (!len) {
4579 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4580 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4581 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4582 ret = -ENAMETOOLONG;
4583 goto out_err;
4584 }
4585 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4586 if (!snap_name)
4587 goto out_mem;
4588 *(snap_name + len) = '\0';
4589 spec->snap_name = snap_name;
4590
4591 /* Initialize all rbd options to the defaults */
4592
4593 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4594 if (!rbd_opts)
4595 goto out_mem;
4596
4597 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4598
4599 copts = ceph_parse_options(options, mon_addrs,
4600 mon_addrs + mon_addrs_size - 1,
4601 parse_rbd_opts_token, rbd_opts);
4602 if (IS_ERR(copts)) {
4603 ret = PTR_ERR(copts);
4604 goto out_err;
4605 }
4606 kfree(options);
4607
4608 *ceph_opts = copts;
4609 *opts = rbd_opts;
4610 *rbd_spec = spec;
4611
4612 return 0;
4613 out_mem:
4614 ret = -ENOMEM;
4615 out_err:
4616 kfree(rbd_opts);
4617 rbd_spec_put(spec);
4618 kfree(options);
4619
4620 return ret;
4621 }
4622
4623 /*
4624 * An rbd format 2 image has a unique identifier, distinct from the
4625 * name given to it by the user. Internally, that identifier is
4626 * what's used to specify the names of objects related to the image.
4627 *
4628 * A special "rbd id" object is used to map an rbd image name to its
4629 * id. If that object doesn't exist, then there is no v2 rbd image
4630 * with the supplied name.
4631 *
4632 * This function will record the given rbd_dev's image_id field if
4633 * it can be determined, and in that case will return 0. If any
4634 * errors occur a negative errno will be returned and the rbd_dev's
4635 * image_id field will be unchanged (and should be NULL).
4636 */
4637 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4638 {
4639 int ret;
4640 size_t size;
4641 char *object_name;
4642 void *response;
4643 char *image_id;
4644
4645 /*
4646 * When probing a parent image, the image id is already
4647 * known (and the image name likely is not). There's no
4648 * need to fetch the image id again in this case. We
4649 * do still need to set the image format though.
4650 */
4651 if (rbd_dev->spec->image_id) {
4652 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4653
4654 return 0;
4655 }
4656
4657 /*
4658 * First, see if the format 2 image id file exists, and if
4659 * so, get the image's persistent id from it.
4660 */
4661 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4662 object_name = kmalloc(size, GFP_NOIO);
4663 if (!object_name)
4664 return -ENOMEM;
4665 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4666 dout("rbd id object name is %s\n", object_name);
4667
4668 /* Response will be an encoded string, which includes a length */
4669
4670 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4671 response = kzalloc(size, GFP_NOIO);
4672 if (!response) {
4673 ret = -ENOMEM;
4674 goto out;
4675 }
4676
4677 /* If it doesn't exist we'll assume it's a format 1 image */
4678
4679 ret = rbd_obj_method_sync(rbd_dev, object_name,
4680 "rbd", "get_id", NULL, 0,
4681 response, RBD_IMAGE_ID_LEN_MAX);
4682 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4683 if (ret == -ENOENT) {
4684 image_id = kstrdup("", GFP_KERNEL);
4685 ret = image_id ? 0 : -ENOMEM;
4686 if (!ret)
4687 rbd_dev->image_format = 1;
4688 } else if (ret > sizeof (__le32)) {
4689 void *p = response;
4690
4691 image_id = ceph_extract_encoded_string(&p, p + ret,
4692 NULL, GFP_NOIO);
4693 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4694 if (!ret)
4695 rbd_dev->image_format = 2;
4696 } else {
4697 ret = -EINVAL;
4698 }
4699
4700 if (!ret) {
4701 rbd_dev->spec->image_id = image_id;
4702 dout("image_id is %s\n", image_id);
4703 }
4704 out:
4705 kfree(response);
4706 kfree(object_name);
4707
4708 return ret;
4709 }
4710
4711 /*
4712 * Undo whatever state changes are made by v1 or v2 header info
4713 * call.
4714 */
4715 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4716 {
4717 struct rbd_image_header *header;
4718
4719 /* Drop parent reference unless it's already been done (or none) */
4720
4721 if (rbd_dev->parent_overlap)
4722 rbd_dev_parent_put(rbd_dev);
4723
4724 /* Free dynamic fields from the header, then zero it out */
4725
4726 header = &rbd_dev->header;
4727 ceph_put_snap_context(header->snapc);
4728 kfree(header->snap_sizes);
4729 kfree(header->snap_names);
4730 kfree(header->object_prefix);
4731 memset(header, 0, sizeof (*header));
4732 }
4733
4734 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4735 {
4736 int ret;
4737
4738 ret = rbd_dev_v2_object_prefix(rbd_dev);
4739 if (ret)
4740 goto out_err;
4741
4742 /*
4743 * Get the and check features for the image. Currently the
4744 * features are assumed to never change.
4745 */
4746 ret = rbd_dev_v2_features(rbd_dev);
4747 if (ret)
4748 goto out_err;
4749
4750 /* If the image supports fancy striping, get its parameters */
4751
4752 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4753 ret = rbd_dev_v2_striping_info(rbd_dev);
4754 if (ret < 0)
4755 goto out_err;
4756 }
4757 /* No support for crypto and compression type format 2 images */
4758
4759 return 0;
4760 out_err:
4761 rbd_dev->header.features = 0;
4762 kfree(rbd_dev->header.object_prefix);
4763 rbd_dev->header.object_prefix = NULL;
4764
4765 return ret;
4766 }
4767
4768 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4769 {
4770 struct rbd_device *parent = NULL;
4771 struct rbd_spec *parent_spec;
4772 struct rbd_client *rbdc;
4773 int ret;
4774
4775 if (!rbd_dev->parent_spec)
4776 return 0;
4777 /*
4778 * We need to pass a reference to the client and the parent
4779 * spec when creating the parent rbd_dev. Images related by
4780 * parent/child relationships always share both.
4781 */
4782 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4783 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4784
4785 ret = -ENOMEM;
4786 parent = rbd_dev_create(rbdc, parent_spec);
4787 if (!parent)
4788 goto out_err;
4789
4790 ret = rbd_dev_image_probe(parent, false);
4791 if (ret < 0)
4792 goto out_err;
4793 rbd_dev->parent = parent;
4794 atomic_set(&rbd_dev->parent_ref, 1);
4795
4796 return 0;
4797 out_err:
4798 if (parent) {
4799 rbd_dev_unparent(rbd_dev);
4800 kfree(rbd_dev->header_name);
4801 rbd_dev_destroy(parent);
4802 } else {
4803 rbd_put_client(rbdc);
4804 rbd_spec_put(parent_spec);
4805 }
4806
4807 return ret;
4808 }
4809
4810 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4811 {
4812 int ret;
4813
4814 /* generate unique id: find highest unique id, add one */
4815 rbd_dev_id_get(rbd_dev);
4816
4817 /* Fill in the device name, now that we have its id. */
4818 BUILD_BUG_ON(DEV_NAME_LEN
4819 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4820 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4821
4822 /* Get our block major device number. */
4823
4824 ret = register_blkdev(0, rbd_dev->name);
4825 if (ret < 0)
4826 goto err_out_id;
4827 rbd_dev->major = ret;
4828
4829 /* Set up the blkdev mapping. */
4830
4831 ret = rbd_init_disk(rbd_dev);
4832 if (ret)
4833 goto err_out_blkdev;
4834
4835 ret = rbd_dev_mapping_set(rbd_dev);
4836 if (ret)
4837 goto err_out_disk;
4838 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4839
4840 ret = rbd_bus_add_dev(rbd_dev);
4841 if (ret)
4842 goto err_out_mapping;
4843
4844 /* Everything's ready. Announce the disk to the world. */
4845
4846 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4847 add_disk(rbd_dev->disk);
4848
4849 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4850 (unsigned long long) rbd_dev->mapping.size);
4851
4852 return ret;
4853
4854 err_out_mapping:
4855 rbd_dev_mapping_clear(rbd_dev);
4856 err_out_disk:
4857 rbd_free_disk(rbd_dev);
4858 err_out_blkdev:
4859 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4860 err_out_id:
4861 rbd_dev_id_put(rbd_dev);
4862 rbd_dev_mapping_clear(rbd_dev);
4863
4864 return ret;
4865 }
4866
4867 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4868 {
4869 struct rbd_spec *spec = rbd_dev->spec;
4870 size_t size;
4871
4872 /* Record the header object name for this rbd image. */
4873
4874 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4875
4876 if (rbd_dev->image_format == 1)
4877 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4878 else
4879 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4880
4881 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4882 if (!rbd_dev->header_name)
4883 return -ENOMEM;
4884
4885 if (rbd_dev->image_format == 1)
4886 sprintf(rbd_dev->header_name, "%s%s",
4887 spec->image_name, RBD_SUFFIX);
4888 else
4889 sprintf(rbd_dev->header_name, "%s%s",
4890 RBD_HEADER_PREFIX, spec->image_id);
4891 return 0;
4892 }
4893
4894 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4895 {
4896 rbd_dev_unprobe(rbd_dev);
4897 kfree(rbd_dev->header_name);
4898 rbd_dev->header_name = NULL;
4899 rbd_dev->image_format = 0;
4900 kfree(rbd_dev->spec->image_id);
4901 rbd_dev->spec->image_id = NULL;
4902
4903 rbd_dev_destroy(rbd_dev);
4904 }
4905
4906 /*
4907 * Probe for the existence of the header object for the given rbd
4908 * device. If this image is the one being mapped (i.e., not a
4909 * parent), initiate a watch on its header object before using that
4910 * object to get detailed information about the rbd image.
4911 */
4912 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4913 {
4914 int ret;
4915 int tmp;
4916
4917 /*
4918 * Get the id from the image id object. Unless there's an
4919 * error, rbd_dev->spec->image_id will be filled in with
4920 * a dynamically-allocated string, and rbd_dev->image_format
4921 * will be set to either 1 or 2.
4922 */
4923 ret = rbd_dev_image_id(rbd_dev);
4924 if (ret)
4925 return ret;
4926 rbd_assert(rbd_dev->spec->image_id);
4927 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4928
4929 ret = rbd_dev_header_name(rbd_dev);
4930 if (ret)
4931 goto err_out_format;
4932
4933 if (mapping) {
4934 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4935 if (ret)
4936 goto out_header_name;
4937 }
4938
4939 if (rbd_dev->image_format == 1)
4940 ret = rbd_dev_v1_header_info(rbd_dev);
4941 else
4942 ret = rbd_dev_v2_header_info(rbd_dev);
4943 if (ret)
4944 goto err_out_watch;
4945
4946 ret = rbd_dev_spec_update(rbd_dev);
4947 if (ret)
4948 goto err_out_probe;
4949
4950 ret = rbd_dev_probe_parent(rbd_dev);
4951 if (ret)
4952 goto err_out_probe;
4953
4954 dout("discovered format %u image, header name is %s\n",
4955 rbd_dev->image_format, rbd_dev->header_name);
4956
4957 return 0;
4958 err_out_probe:
4959 rbd_dev_unprobe(rbd_dev);
4960 err_out_watch:
4961 if (mapping) {
4962 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4963 if (tmp)
4964 rbd_warn(rbd_dev, "unable to tear down "
4965 "watch request (%d)\n", tmp);
4966 }
4967 out_header_name:
4968 kfree(rbd_dev->header_name);
4969 rbd_dev->header_name = NULL;
4970 err_out_format:
4971 rbd_dev->image_format = 0;
4972 kfree(rbd_dev->spec->image_id);
4973 rbd_dev->spec->image_id = NULL;
4974
4975 dout("probe failed, returning %d\n", ret);
4976
4977 return ret;
4978 }
4979
4980 static ssize_t rbd_add(struct bus_type *bus,
4981 const char *buf,
4982 size_t count)
4983 {
4984 struct rbd_device *rbd_dev = NULL;
4985 struct ceph_options *ceph_opts = NULL;
4986 struct rbd_options *rbd_opts = NULL;
4987 struct rbd_spec *spec = NULL;
4988 struct rbd_client *rbdc;
4989 struct ceph_osd_client *osdc;
4990 bool read_only;
4991 int rc = -ENOMEM;
4992
4993 if (!try_module_get(THIS_MODULE))
4994 return -ENODEV;
4995
4996 /* parse add command */
4997 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4998 if (rc < 0)
4999 goto err_out_module;
5000 read_only = rbd_opts->read_only;
5001 kfree(rbd_opts);
5002 rbd_opts = NULL; /* done with this */
5003
5004 rbdc = rbd_get_client(ceph_opts);
5005 if (IS_ERR(rbdc)) {
5006 rc = PTR_ERR(rbdc);
5007 goto err_out_args;
5008 }
5009
5010 /* pick the pool */
5011 osdc = &rbdc->client->osdc;
5012 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5013 if (rc < 0)
5014 goto err_out_client;
5015 spec->pool_id = (u64)rc;
5016
5017 /* The ceph file layout needs to fit pool id in 32 bits */
5018
5019 if (spec->pool_id > (u64)U32_MAX) {
5020 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5021 (unsigned long long)spec->pool_id, U32_MAX);
5022 rc = -EIO;
5023 goto err_out_client;
5024 }
5025
5026 rbd_dev = rbd_dev_create(rbdc, spec);
5027 if (!rbd_dev)
5028 goto err_out_client;
5029 rbdc = NULL; /* rbd_dev now owns this */
5030 spec = NULL; /* rbd_dev now owns this */
5031
5032 rc = rbd_dev_image_probe(rbd_dev, true);
5033 if (rc < 0)
5034 goto err_out_rbd_dev;
5035
5036 /* If we are mapping a snapshot it must be marked read-only */
5037
5038 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5039 read_only = true;
5040 rbd_dev->mapping.read_only = read_only;
5041
5042 rc = rbd_dev_device_setup(rbd_dev);
5043 if (rc) {
5044 rbd_dev_image_release(rbd_dev);
5045 goto err_out_module;
5046 }
5047
5048 return count;
5049
5050 err_out_rbd_dev:
5051 rbd_dev_destroy(rbd_dev);
5052 err_out_client:
5053 rbd_put_client(rbdc);
5054 err_out_args:
5055 rbd_spec_put(spec);
5056 err_out_module:
5057 module_put(THIS_MODULE);
5058
5059 dout("Error adding device %s\n", buf);
5060
5061 return (ssize_t)rc;
5062 }
5063
5064 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5065 {
5066 struct list_head *tmp;
5067 struct rbd_device *rbd_dev;
5068
5069 spin_lock(&rbd_dev_list_lock);
5070 list_for_each(tmp, &rbd_dev_list) {
5071 rbd_dev = list_entry(tmp, struct rbd_device, node);
5072 if (rbd_dev->dev_id == dev_id) {
5073 spin_unlock(&rbd_dev_list_lock);
5074 return rbd_dev;
5075 }
5076 }
5077 spin_unlock(&rbd_dev_list_lock);
5078 return NULL;
5079 }
5080
5081 static void rbd_dev_device_release(struct device *dev)
5082 {
5083 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084
5085 rbd_free_disk(rbd_dev);
5086 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5087 rbd_dev_mapping_clear(rbd_dev);
5088 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5089 rbd_dev->major = 0;
5090 rbd_dev_id_put(rbd_dev);
5091 rbd_dev_mapping_clear(rbd_dev);
5092 }
5093
5094 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5095 {
5096 while (rbd_dev->parent) {
5097 struct rbd_device *first = rbd_dev;
5098 struct rbd_device *second = first->parent;
5099 struct rbd_device *third;
5100
5101 /*
5102 * Follow to the parent with no grandparent and
5103 * remove it.
5104 */
5105 while (second && (third = second->parent)) {
5106 first = second;
5107 second = third;
5108 }
5109 rbd_assert(second);
5110 rbd_dev_image_release(second);
5111 first->parent = NULL;
5112 first->parent_overlap = 0;
5113
5114 rbd_assert(first->parent_spec);
5115 rbd_spec_put(first->parent_spec);
5116 first->parent_spec = NULL;
5117 }
5118 }
5119
5120 static ssize_t rbd_remove(struct bus_type *bus,
5121 const char *buf,
5122 size_t count)
5123 {
5124 struct rbd_device *rbd_dev = NULL;
5125 int target_id;
5126 unsigned long ul;
5127 int ret;
5128
5129 ret = strict_strtoul(buf, 10, &ul);
5130 if (ret)
5131 return ret;
5132
5133 /* convert to int; abort if we lost anything in the conversion */
5134 target_id = (int) ul;
5135 if (target_id != ul)
5136 return -EINVAL;
5137
5138 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5139
5140 rbd_dev = __rbd_get_dev(target_id);
5141 if (!rbd_dev) {
5142 ret = -ENOENT;
5143 goto done;
5144 }
5145
5146 spin_lock_irq(&rbd_dev->lock);
5147 if (rbd_dev->open_count)
5148 ret = -EBUSY;
5149 else
5150 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5151 spin_unlock_irq(&rbd_dev->lock);
5152 if (ret < 0)
5153 goto done;
5154 rbd_bus_del_dev(rbd_dev);
5155 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5156 if (ret)
5157 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5158 rbd_dev_image_release(rbd_dev);
5159 module_put(THIS_MODULE);
5160 ret = count;
5161 done:
5162 mutex_unlock(&ctl_mutex);
5163
5164 return ret;
5165 }
5166
5167 /*
5168 * create control files in sysfs
5169 * /sys/bus/rbd/...
5170 */
5171 static int rbd_sysfs_init(void)
5172 {
5173 int ret;
5174
5175 ret = device_register(&rbd_root_dev);
5176 if (ret < 0)
5177 return ret;
5178
5179 ret = bus_register(&rbd_bus_type);
5180 if (ret < 0)
5181 device_unregister(&rbd_root_dev);
5182
5183 return ret;
5184 }
5185
5186 static void rbd_sysfs_cleanup(void)
5187 {
5188 bus_unregister(&rbd_bus_type);
5189 device_unregister(&rbd_root_dev);
5190 }
5191
5192 static int rbd_slab_init(void)
5193 {
5194 rbd_assert(!rbd_img_request_cache);
5195 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5196 sizeof (struct rbd_img_request),
5197 __alignof__(struct rbd_img_request),
5198 0, NULL);
5199 if (!rbd_img_request_cache)
5200 return -ENOMEM;
5201
5202 rbd_assert(!rbd_obj_request_cache);
5203 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5204 sizeof (struct rbd_obj_request),
5205 __alignof__(struct rbd_obj_request),
5206 0, NULL);
5207 if (!rbd_obj_request_cache)
5208 goto out_err;
5209
5210 rbd_assert(!rbd_segment_name_cache);
5211 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5212 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5213 if (rbd_segment_name_cache)
5214 return 0;
5215 out_err:
5216 if (rbd_obj_request_cache) {
5217 kmem_cache_destroy(rbd_obj_request_cache);
5218 rbd_obj_request_cache = NULL;
5219 }
5220
5221 kmem_cache_destroy(rbd_img_request_cache);
5222 rbd_img_request_cache = NULL;
5223
5224 return -ENOMEM;
5225 }
5226
5227 static void rbd_slab_exit(void)
5228 {
5229 rbd_assert(rbd_segment_name_cache);
5230 kmem_cache_destroy(rbd_segment_name_cache);
5231 rbd_segment_name_cache = NULL;
5232
5233 rbd_assert(rbd_obj_request_cache);
5234 kmem_cache_destroy(rbd_obj_request_cache);
5235 rbd_obj_request_cache = NULL;
5236
5237 rbd_assert(rbd_img_request_cache);
5238 kmem_cache_destroy(rbd_img_request_cache);
5239 rbd_img_request_cache = NULL;
5240 }
5241
5242 static int __init rbd_init(void)
5243 {
5244 int rc;
5245
5246 if (!libceph_compatible(NULL)) {
5247 rbd_warn(NULL, "libceph incompatibility (quitting)");
5248
5249 return -EINVAL;
5250 }
5251 rc = rbd_slab_init();
5252 if (rc)
5253 return rc;
5254 rc = rbd_sysfs_init();
5255 if (rc)
5256 rbd_slab_exit();
5257 else
5258 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5259
5260 return rc;
5261 }
5262
5263 static void __exit rbd_exit(void)
5264 {
5265 rbd_sysfs_cleanup();
5266 rbd_slab_exit();
5267 }
5268
5269 module_init(rbd_init);
5270 module_exit(rbd_exit);
5271
5272 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5273 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5274 MODULE_DESCRIPTION("rados block device");
5275
5276 /* following authorship retained from original osdblk.c */
5277 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5278
5279 MODULE_LICENSE("GPL");