Merge tag 'pci-v3.10-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance.
523 * We own *ceph_opts.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
542 goto out_mutex;
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545 ret = ceph_open_session(rbdc->client);
546 if (ret < 0)
547 goto out_err;
548
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
552
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
555
556 return rbdc;
557
558 out_err:
559 ceph_destroy_client(rbdc->client);
560 out_mutex:
561 mutex_unlock(&ctl_mutex);
562 kfree(rbdc);
563 out_opt:
564 if (ceph_opts)
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
567
568 return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 kref_get(&rbdc->kref);
574
575 return rbdc;
576 }
577
578 /*
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
581 */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 struct rbd_client *client_node;
585 bool found = false;
586
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 return NULL;
589
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
594
595 found = true;
596 break;
597 }
598 }
599 spin_unlock(&rbd_client_list_lock);
600
601 return found ? client_node : NULL;
602 }
603
604 /*
605 * mount options
606 */
607 enum {
608 Opt_last_int,
609 /* int args above */
610 Opt_last_string,
611 /* string args above */
612 Opt_read_only,
613 Opt_read_write,
614 /* Boolean args above */
615 Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619 /* int args above */
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
626 {-1, NULL}
627 };
628
629 struct rbd_options {
630 bool read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
640
641 token = match_token(c, rbd_opts_tokens, argstr);
642 if (token < 0)
643 return -EINVAL;
644
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
647 if (ret < 0) {
648 pr_err("bad mount option arg (not int) "
649 "at '%s'\n", c);
650 return ret;
651 }
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
655 argstr[0].from);
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
658 } else {
659 dout("got token %d\n", token);
660 }
661
662 switch (token) {
663 case Opt_read_only:
664 rbd_opts->read_only = true;
665 break;
666 case Opt_read_write:
667 rbd_opts->read_only = false;
668 break;
669 default:
670 rbd_assert(false);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it.
679 */
680 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
681 {
682 struct rbd_client *rbdc;
683
684 rbdc = rbd_client_find(ceph_opts);
685 if (rbdc) /* using an existing client */
686 ceph_destroy_options(ceph_opts);
687 else
688 rbdc = rbd_client_create(ceph_opts);
689
690 return rbdc;
691 }
692
693 /*
694 * Destroy ceph client
695 *
696 * Caller must hold rbd_client_list_lock.
697 */
698 static void rbd_client_release(struct kref *kref)
699 {
700 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
701
702 dout("%s: rbdc %p\n", __func__, rbdc);
703 spin_lock(&rbd_client_list_lock);
704 list_del(&rbdc->node);
705 spin_unlock(&rbd_client_list_lock);
706
707 ceph_destroy_client(rbdc->client);
708 kfree(rbdc);
709 }
710
711 /*
712 * Drop reference to ceph client node. If it's not referenced anymore, release
713 * it.
714 */
715 static void rbd_put_client(struct rbd_client *rbdc)
716 {
717 if (rbdc)
718 kref_put(&rbdc->kref, rbd_client_release);
719 }
720
721 static bool rbd_image_format_valid(u32 image_format)
722 {
723 return image_format == 1 || image_format == 2;
724 }
725
726 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
727 {
728 size_t size;
729 u32 snap_count;
730
731 /* The header has to start with the magic rbd header text */
732 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
733 return false;
734
735 /* The bio layer requires at least sector-sized I/O */
736
737 if (ondisk->options.order < SECTOR_SHIFT)
738 return false;
739
740 /* If we use u64 in a few spots we may be able to loosen this */
741
742 if (ondisk->options.order > 8 * sizeof (int) - 1)
743 return false;
744
745 /*
746 * The size of a snapshot header has to fit in a size_t, and
747 * that limits the number of snapshots.
748 */
749 snap_count = le32_to_cpu(ondisk->snap_count);
750 size = SIZE_MAX - sizeof (struct ceph_snap_context);
751 if (snap_count > size / sizeof (__le64))
752 return false;
753
754 /*
755 * Not only that, but the size of the entire the snapshot
756 * header must also be representable in a size_t.
757 */
758 size -= snap_count * sizeof (__le64);
759 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
760 return false;
761
762 return true;
763 }
764
765 /*
766 * Fill an rbd image header with information from the given format 1
767 * on-disk header.
768 */
769 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
770 struct rbd_image_header_ondisk *ondisk)
771 {
772 struct rbd_image_header *header = &rbd_dev->header;
773 bool first_time = header->object_prefix == NULL;
774 struct ceph_snap_context *snapc;
775 char *object_prefix = NULL;
776 char *snap_names = NULL;
777 u64 *snap_sizes = NULL;
778 u32 snap_count;
779 size_t size;
780 int ret = -ENOMEM;
781 u32 i;
782
783 /* Allocate this now to avoid having to handle failure below */
784
785 if (first_time) {
786 size_t len;
787
788 len = strnlen(ondisk->object_prefix,
789 sizeof (ondisk->object_prefix));
790 object_prefix = kmalloc(len + 1, GFP_KERNEL);
791 if (!object_prefix)
792 return -ENOMEM;
793 memcpy(object_prefix, ondisk->object_prefix, len);
794 object_prefix[len] = '\0';
795 }
796
797 /* Allocate the snapshot context and fill it in */
798
799 snap_count = le32_to_cpu(ondisk->snap_count);
800 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
801 if (!snapc)
802 goto out_err;
803 snapc->seq = le64_to_cpu(ondisk->snap_seq);
804 if (snap_count) {
805 struct rbd_image_snap_ondisk *snaps;
806 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
807
808 /* We'll keep a copy of the snapshot names... */
809
810 if (snap_names_len > (u64)SIZE_MAX)
811 goto out_2big;
812 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
813 if (!snap_names)
814 goto out_err;
815
816 /* ...as well as the array of their sizes. */
817
818 size = snap_count * sizeof (*header->snap_sizes);
819 snap_sizes = kmalloc(size, GFP_KERNEL);
820 if (!snap_sizes)
821 goto out_err;
822
823 /*
824 * Copy the names, and fill in each snapshot's id
825 * and size.
826 *
827 * Note that rbd_dev_v1_header_info() guarantees the
828 * ondisk buffer we're working with has
829 * snap_names_len bytes beyond the end of the
830 * snapshot id array, this memcpy() is safe.
831 */
832 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
833 snaps = ondisk->snaps;
834 for (i = 0; i < snap_count; i++) {
835 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
836 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
837 }
838 }
839
840 /* We won't fail any more, fill in the header */
841
842 down_write(&rbd_dev->header_rwsem);
843 if (first_time) {
844 header->object_prefix = object_prefix;
845 header->obj_order = ondisk->options.order;
846 header->crypt_type = ondisk->options.crypt_type;
847 header->comp_type = ondisk->options.comp_type;
848 /* The rest aren't used for format 1 images */
849 header->stripe_unit = 0;
850 header->stripe_count = 0;
851 header->features = 0;
852 } else {
853 ceph_put_snap_context(header->snapc);
854 kfree(header->snap_names);
855 kfree(header->snap_sizes);
856 }
857
858 /* The remaining fields always get updated (when we refresh) */
859
860 header->image_size = le64_to_cpu(ondisk->image_size);
861 header->snapc = snapc;
862 header->snap_names = snap_names;
863 header->snap_sizes = snap_sizes;
864
865 /* Make sure mapping size is consistent with header info */
866
867 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
868 if (rbd_dev->mapping.size != header->image_size)
869 rbd_dev->mapping.size = header->image_size;
870
871 up_write(&rbd_dev->header_rwsem);
872
873 return 0;
874 out_2big:
875 ret = -EIO;
876 out_err:
877 kfree(snap_sizes);
878 kfree(snap_names);
879 ceph_put_snap_context(snapc);
880 kfree(object_prefix);
881
882 return ret;
883 }
884
885 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
886 {
887 const char *snap_name;
888
889 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
890
891 /* Skip over names until we find the one we are looking for */
892
893 snap_name = rbd_dev->header.snap_names;
894 while (which--)
895 snap_name += strlen(snap_name) + 1;
896
897 return kstrdup(snap_name, GFP_KERNEL);
898 }
899
900 /*
901 * Snapshot id comparison function for use with qsort()/bsearch().
902 * Note that result is for snapshots in *descending* order.
903 */
904 static int snapid_compare_reverse(const void *s1, const void *s2)
905 {
906 u64 snap_id1 = *(u64 *)s1;
907 u64 snap_id2 = *(u64 *)s2;
908
909 if (snap_id1 < snap_id2)
910 return 1;
911 return snap_id1 == snap_id2 ? 0 : -1;
912 }
913
914 /*
915 * Search a snapshot context to see if the given snapshot id is
916 * present.
917 *
918 * Returns the position of the snapshot id in the array if it's found,
919 * or BAD_SNAP_INDEX otherwise.
920 *
921 * Note: The snapshot array is in kept sorted (by the osd) in
922 * reverse order, highest snapshot id first.
923 */
924 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
925 {
926 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
927 u64 *found;
928
929 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
930 sizeof (snap_id), snapid_compare_reverse);
931
932 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
933 }
934
935 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
936 u64 snap_id)
937 {
938 u32 which;
939
940 which = rbd_dev_snap_index(rbd_dev, snap_id);
941 if (which == BAD_SNAP_INDEX)
942 return NULL;
943
944 return _rbd_dev_v1_snap_name(rbd_dev, which);
945 }
946
947 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
948 {
949 if (snap_id == CEPH_NOSNAP)
950 return RBD_SNAP_HEAD_NAME;
951
952 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
953 if (rbd_dev->image_format == 1)
954 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
955
956 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
957 }
958
959 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
960 u64 *snap_size)
961 {
962 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
963 if (snap_id == CEPH_NOSNAP) {
964 *snap_size = rbd_dev->header.image_size;
965 } else if (rbd_dev->image_format == 1) {
966 u32 which;
967
968 which = rbd_dev_snap_index(rbd_dev, snap_id);
969 if (which == BAD_SNAP_INDEX)
970 return -ENOENT;
971
972 *snap_size = rbd_dev->header.snap_sizes[which];
973 } else {
974 u64 size = 0;
975 int ret;
976
977 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
978 if (ret)
979 return ret;
980
981 *snap_size = size;
982 }
983 return 0;
984 }
985
986 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
987 u64 *snap_features)
988 {
989 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
990 if (snap_id == CEPH_NOSNAP) {
991 *snap_features = rbd_dev->header.features;
992 } else if (rbd_dev->image_format == 1) {
993 *snap_features = 0; /* No features for format 1 */
994 } else {
995 u64 features = 0;
996 int ret;
997
998 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
999 if (ret)
1000 return ret;
1001
1002 *snap_features = features;
1003 }
1004 return 0;
1005 }
1006
1007 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1008 {
1009 u64 snap_id = rbd_dev->spec->snap_id;
1010 u64 size = 0;
1011 u64 features = 0;
1012 int ret;
1013
1014 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1015 if (ret)
1016 return ret;
1017 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1018 if (ret)
1019 return ret;
1020
1021 rbd_dev->mapping.size = size;
1022 rbd_dev->mapping.features = features;
1023
1024 return 0;
1025 }
1026
1027 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1028 {
1029 rbd_dev->mapping.size = 0;
1030 rbd_dev->mapping.features = 0;
1031 }
1032
1033 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1034 {
1035 char *name;
1036 u64 segment;
1037 int ret;
1038
1039 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1040 if (!name)
1041 return NULL;
1042 segment = offset >> rbd_dev->header.obj_order;
1043 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1044 rbd_dev->header.object_prefix, segment);
1045 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1046 pr_err("error formatting segment name for #%llu (%d)\n",
1047 segment, ret);
1048 kfree(name);
1049 name = NULL;
1050 }
1051
1052 return name;
1053 }
1054
1055 static void rbd_segment_name_free(const char *name)
1056 {
1057 /* The explicit cast here is needed to drop the const qualifier */
1058
1059 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1060 }
1061
1062 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1063 {
1064 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1065
1066 return offset & (segment_size - 1);
1067 }
1068
1069 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1070 u64 offset, u64 length)
1071 {
1072 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1073
1074 offset &= segment_size - 1;
1075
1076 rbd_assert(length <= U64_MAX - offset);
1077 if (offset + length > segment_size)
1078 length = segment_size - offset;
1079
1080 return length;
1081 }
1082
1083 /*
1084 * returns the size of an object in the image
1085 */
1086 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1087 {
1088 return 1 << header->obj_order;
1089 }
1090
1091 /*
1092 * bio helpers
1093 */
1094
1095 static void bio_chain_put(struct bio *chain)
1096 {
1097 struct bio *tmp;
1098
1099 while (chain) {
1100 tmp = chain;
1101 chain = chain->bi_next;
1102 bio_put(tmp);
1103 }
1104 }
1105
1106 /*
1107 * zeros a bio chain, starting at specific offset
1108 */
1109 static void zero_bio_chain(struct bio *chain, int start_ofs)
1110 {
1111 struct bio_vec *bv;
1112 unsigned long flags;
1113 void *buf;
1114 int i;
1115 int pos = 0;
1116
1117 while (chain) {
1118 bio_for_each_segment(bv, chain, i) {
1119 if (pos + bv->bv_len > start_ofs) {
1120 int remainder = max(start_ofs - pos, 0);
1121 buf = bvec_kmap_irq(bv, &flags);
1122 memset(buf + remainder, 0,
1123 bv->bv_len - remainder);
1124 bvec_kunmap_irq(buf, &flags);
1125 }
1126 pos += bv->bv_len;
1127 }
1128
1129 chain = chain->bi_next;
1130 }
1131 }
1132
1133 /*
1134 * similar to zero_bio_chain(), zeros data defined by a page array,
1135 * starting at the given byte offset from the start of the array and
1136 * continuing up to the given end offset. The pages array is
1137 * assumed to be big enough to hold all bytes up to the end.
1138 */
1139 static void zero_pages(struct page **pages, u64 offset, u64 end)
1140 {
1141 struct page **page = &pages[offset >> PAGE_SHIFT];
1142
1143 rbd_assert(end > offset);
1144 rbd_assert(end - offset <= (u64)SIZE_MAX);
1145 while (offset < end) {
1146 size_t page_offset;
1147 size_t length;
1148 unsigned long flags;
1149 void *kaddr;
1150
1151 page_offset = (size_t)(offset & ~PAGE_MASK);
1152 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1153 local_irq_save(flags);
1154 kaddr = kmap_atomic(*page);
1155 memset(kaddr + page_offset, 0, length);
1156 kunmap_atomic(kaddr);
1157 local_irq_restore(flags);
1158
1159 offset += length;
1160 page++;
1161 }
1162 }
1163
1164 /*
1165 * Clone a portion of a bio, starting at the given byte offset
1166 * and continuing for the number of bytes indicated.
1167 */
1168 static struct bio *bio_clone_range(struct bio *bio_src,
1169 unsigned int offset,
1170 unsigned int len,
1171 gfp_t gfpmask)
1172 {
1173 struct bio_vec *bv;
1174 unsigned int resid;
1175 unsigned short idx;
1176 unsigned int voff;
1177 unsigned short end_idx;
1178 unsigned short vcnt;
1179 struct bio *bio;
1180
1181 /* Handle the easy case for the caller */
1182
1183 if (!offset && len == bio_src->bi_size)
1184 return bio_clone(bio_src, gfpmask);
1185
1186 if (WARN_ON_ONCE(!len))
1187 return NULL;
1188 if (WARN_ON_ONCE(len > bio_src->bi_size))
1189 return NULL;
1190 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1191 return NULL;
1192
1193 /* Find first affected segment... */
1194
1195 resid = offset;
1196 bio_for_each_segment(bv, bio_src, idx) {
1197 if (resid < bv->bv_len)
1198 break;
1199 resid -= bv->bv_len;
1200 }
1201 voff = resid;
1202
1203 /* ...and the last affected segment */
1204
1205 resid += len;
1206 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1207 if (resid <= bv->bv_len)
1208 break;
1209 resid -= bv->bv_len;
1210 }
1211 vcnt = end_idx - idx + 1;
1212
1213 /* Build the clone */
1214
1215 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1216 if (!bio)
1217 return NULL; /* ENOMEM */
1218
1219 bio->bi_bdev = bio_src->bi_bdev;
1220 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1221 bio->bi_rw = bio_src->bi_rw;
1222 bio->bi_flags |= 1 << BIO_CLONED;
1223
1224 /*
1225 * Copy over our part of the bio_vec, then update the first
1226 * and last (or only) entries.
1227 */
1228 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1229 vcnt * sizeof (struct bio_vec));
1230 bio->bi_io_vec[0].bv_offset += voff;
1231 if (vcnt > 1) {
1232 bio->bi_io_vec[0].bv_len -= voff;
1233 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1234 } else {
1235 bio->bi_io_vec[0].bv_len = len;
1236 }
1237
1238 bio->bi_vcnt = vcnt;
1239 bio->bi_size = len;
1240 bio->bi_idx = 0;
1241
1242 return bio;
1243 }
1244
1245 /*
1246 * Clone a portion of a bio chain, starting at the given byte offset
1247 * into the first bio in the source chain and continuing for the
1248 * number of bytes indicated. The result is another bio chain of
1249 * exactly the given length, or a null pointer on error.
1250 *
1251 * The bio_src and offset parameters are both in-out. On entry they
1252 * refer to the first source bio and the offset into that bio where
1253 * the start of data to be cloned is located.
1254 *
1255 * On return, bio_src is updated to refer to the bio in the source
1256 * chain that contains first un-cloned byte, and *offset will
1257 * contain the offset of that byte within that bio.
1258 */
1259 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1260 unsigned int *offset,
1261 unsigned int len,
1262 gfp_t gfpmask)
1263 {
1264 struct bio *bi = *bio_src;
1265 unsigned int off = *offset;
1266 struct bio *chain = NULL;
1267 struct bio **end;
1268
1269 /* Build up a chain of clone bios up to the limit */
1270
1271 if (!bi || off >= bi->bi_size || !len)
1272 return NULL; /* Nothing to clone */
1273
1274 end = &chain;
1275 while (len) {
1276 unsigned int bi_size;
1277 struct bio *bio;
1278
1279 if (!bi) {
1280 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1281 goto out_err; /* EINVAL; ran out of bio's */
1282 }
1283 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1284 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1285 if (!bio)
1286 goto out_err; /* ENOMEM */
1287
1288 *end = bio;
1289 end = &bio->bi_next;
1290
1291 off += bi_size;
1292 if (off == bi->bi_size) {
1293 bi = bi->bi_next;
1294 off = 0;
1295 }
1296 len -= bi_size;
1297 }
1298 *bio_src = bi;
1299 *offset = off;
1300
1301 return chain;
1302 out_err:
1303 bio_chain_put(chain);
1304
1305 return NULL;
1306 }
1307
1308 /*
1309 * The default/initial value for all object request flags is 0. For
1310 * each flag, once its value is set to 1 it is never reset to 0
1311 * again.
1312 */
1313 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1314 {
1315 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1316 struct rbd_device *rbd_dev;
1317
1318 rbd_dev = obj_request->img_request->rbd_dev;
1319 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1320 obj_request);
1321 }
1322 }
1323
1324 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1325 {
1326 smp_mb();
1327 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1328 }
1329
1330 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1331 {
1332 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1333 struct rbd_device *rbd_dev = NULL;
1334
1335 if (obj_request_img_data_test(obj_request))
1336 rbd_dev = obj_request->img_request->rbd_dev;
1337 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1338 obj_request);
1339 }
1340 }
1341
1342 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1343 {
1344 smp_mb();
1345 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1346 }
1347
1348 /*
1349 * This sets the KNOWN flag after (possibly) setting the EXISTS
1350 * flag. The latter is set based on the "exists" value provided.
1351 *
1352 * Note that for our purposes once an object exists it never goes
1353 * away again. It's possible that the response from two existence
1354 * checks are separated by the creation of the target object, and
1355 * the first ("doesn't exist") response arrives *after* the second
1356 * ("does exist"). In that case we ignore the second one.
1357 */
1358 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1359 bool exists)
1360 {
1361 if (exists)
1362 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1363 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1364 smp_mb();
1365 }
1366
1367 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1368 {
1369 smp_mb();
1370 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1371 }
1372
1373 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1374 {
1375 smp_mb();
1376 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1377 }
1378
1379 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1380 {
1381 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1382 atomic_read(&obj_request->kref.refcount));
1383 kref_get(&obj_request->kref);
1384 }
1385
1386 static void rbd_obj_request_destroy(struct kref *kref);
1387 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1388 {
1389 rbd_assert(obj_request != NULL);
1390 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391 atomic_read(&obj_request->kref.refcount));
1392 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1393 }
1394
1395 static bool img_request_child_test(struct rbd_img_request *img_request);
1396 static void rbd_parent_request_destroy(struct kref *kref);
1397 static void rbd_img_request_destroy(struct kref *kref);
1398 static void rbd_img_request_put(struct rbd_img_request *img_request)
1399 {
1400 rbd_assert(img_request != NULL);
1401 dout("%s: img %p (was %d)\n", __func__, img_request,
1402 atomic_read(&img_request->kref.refcount));
1403 if (img_request_child_test(img_request))
1404 kref_put(&img_request->kref, rbd_parent_request_destroy);
1405 else
1406 kref_put(&img_request->kref, rbd_img_request_destroy);
1407 }
1408
1409 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1410 struct rbd_obj_request *obj_request)
1411 {
1412 rbd_assert(obj_request->img_request == NULL);
1413
1414 /* Image request now owns object's original reference */
1415 obj_request->img_request = img_request;
1416 obj_request->which = img_request->obj_request_count;
1417 rbd_assert(!obj_request_img_data_test(obj_request));
1418 obj_request_img_data_set(obj_request);
1419 rbd_assert(obj_request->which != BAD_WHICH);
1420 img_request->obj_request_count++;
1421 list_add_tail(&obj_request->links, &img_request->obj_requests);
1422 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1423 obj_request->which);
1424 }
1425
1426 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1427 struct rbd_obj_request *obj_request)
1428 {
1429 rbd_assert(obj_request->which != BAD_WHICH);
1430
1431 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1432 obj_request->which);
1433 list_del(&obj_request->links);
1434 rbd_assert(img_request->obj_request_count > 0);
1435 img_request->obj_request_count--;
1436 rbd_assert(obj_request->which == img_request->obj_request_count);
1437 obj_request->which = BAD_WHICH;
1438 rbd_assert(obj_request_img_data_test(obj_request));
1439 rbd_assert(obj_request->img_request == img_request);
1440 obj_request->img_request = NULL;
1441 obj_request->callback = NULL;
1442 rbd_obj_request_put(obj_request);
1443 }
1444
1445 static bool obj_request_type_valid(enum obj_request_type type)
1446 {
1447 switch (type) {
1448 case OBJ_REQUEST_NODATA:
1449 case OBJ_REQUEST_BIO:
1450 case OBJ_REQUEST_PAGES:
1451 return true;
1452 default:
1453 return false;
1454 }
1455 }
1456
1457 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1458 struct rbd_obj_request *obj_request)
1459 {
1460 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1461
1462 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1463 }
1464
1465 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1466 {
1467
1468 dout("%s: img %p\n", __func__, img_request);
1469
1470 /*
1471 * If no error occurred, compute the aggregate transfer
1472 * count for the image request. We could instead use
1473 * atomic64_cmpxchg() to update it as each object request
1474 * completes; not clear which way is better off hand.
1475 */
1476 if (!img_request->result) {
1477 struct rbd_obj_request *obj_request;
1478 u64 xferred = 0;
1479
1480 for_each_obj_request(img_request, obj_request)
1481 xferred += obj_request->xferred;
1482 img_request->xferred = xferred;
1483 }
1484
1485 if (img_request->callback)
1486 img_request->callback(img_request);
1487 else
1488 rbd_img_request_put(img_request);
1489 }
1490
1491 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1492
1493 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1494 {
1495 dout("%s: obj %p\n", __func__, obj_request);
1496
1497 return wait_for_completion_interruptible(&obj_request->completion);
1498 }
1499
1500 /*
1501 * The default/initial value for all image request flags is 0. Each
1502 * is conditionally set to 1 at image request initialization time
1503 * and currently never change thereafter.
1504 */
1505 static void img_request_write_set(struct rbd_img_request *img_request)
1506 {
1507 set_bit(IMG_REQ_WRITE, &img_request->flags);
1508 smp_mb();
1509 }
1510
1511 static bool img_request_write_test(struct rbd_img_request *img_request)
1512 {
1513 smp_mb();
1514 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1515 }
1516
1517 static void img_request_child_set(struct rbd_img_request *img_request)
1518 {
1519 set_bit(IMG_REQ_CHILD, &img_request->flags);
1520 smp_mb();
1521 }
1522
1523 static void img_request_child_clear(struct rbd_img_request *img_request)
1524 {
1525 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1526 smp_mb();
1527 }
1528
1529 static bool img_request_child_test(struct rbd_img_request *img_request)
1530 {
1531 smp_mb();
1532 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1533 }
1534
1535 static void img_request_layered_set(struct rbd_img_request *img_request)
1536 {
1537 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1538 smp_mb();
1539 }
1540
1541 static void img_request_layered_clear(struct rbd_img_request *img_request)
1542 {
1543 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1544 smp_mb();
1545 }
1546
1547 static bool img_request_layered_test(struct rbd_img_request *img_request)
1548 {
1549 smp_mb();
1550 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1551 }
1552
1553 static void
1554 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1555 {
1556 u64 xferred = obj_request->xferred;
1557 u64 length = obj_request->length;
1558
1559 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1560 obj_request, obj_request->img_request, obj_request->result,
1561 xferred, length);
1562 /*
1563 * ENOENT means a hole in the image. We zero-fill the
1564 * entire length of the request. A short read also implies
1565 * zero-fill to the end of the request. Either way we
1566 * update the xferred count to indicate the whole request
1567 * was satisfied.
1568 */
1569 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1570 if (obj_request->result == -ENOENT) {
1571 if (obj_request->type == OBJ_REQUEST_BIO)
1572 zero_bio_chain(obj_request->bio_list, 0);
1573 else
1574 zero_pages(obj_request->pages, 0, length);
1575 obj_request->result = 0;
1576 obj_request->xferred = length;
1577 } else if (xferred < length && !obj_request->result) {
1578 if (obj_request->type == OBJ_REQUEST_BIO)
1579 zero_bio_chain(obj_request->bio_list, xferred);
1580 else
1581 zero_pages(obj_request->pages, xferred, length);
1582 obj_request->xferred = length;
1583 }
1584 obj_request_done_set(obj_request);
1585 }
1586
1587 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1588 {
1589 dout("%s: obj %p cb %p\n", __func__, obj_request,
1590 obj_request->callback);
1591 if (obj_request->callback)
1592 obj_request->callback(obj_request);
1593 else
1594 complete_all(&obj_request->completion);
1595 }
1596
1597 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1598 {
1599 dout("%s: obj %p\n", __func__, obj_request);
1600 obj_request_done_set(obj_request);
1601 }
1602
1603 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1604 {
1605 struct rbd_img_request *img_request = NULL;
1606 struct rbd_device *rbd_dev = NULL;
1607 bool layered = false;
1608
1609 if (obj_request_img_data_test(obj_request)) {
1610 img_request = obj_request->img_request;
1611 layered = img_request && img_request_layered_test(img_request);
1612 rbd_dev = img_request->rbd_dev;
1613 }
1614
1615 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1616 obj_request, img_request, obj_request->result,
1617 obj_request->xferred, obj_request->length);
1618 if (layered && obj_request->result == -ENOENT &&
1619 obj_request->img_offset < rbd_dev->parent_overlap)
1620 rbd_img_parent_read(obj_request);
1621 else if (img_request)
1622 rbd_img_obj_request_read_callback(obj_request);
1623 else
1624 obj_request_done_set(obj_request);
1625 }
1626
1627 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1628 {
1629 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1630 obj_request->result, obj_request->length);
1631 /*
1632 * There is no such thing as a successful short write. Set
1633 * it to our originally-requested length.
1634 */
1635 obj_request->xferred = obj_request->length;
1636 obj_request_done_set(obj_request);
1637 }
1638
1639 /*
1640 * For a simple stat call there's nothing to do. We'll do more if
1641 * this is part of a write sequence for a layered image.
1642 */
1643 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1644 {
1645 dout("%s: obj %p\n", __func__, obj_request);
1646 obj_request_done_set(obj_request);
1647 }
1648
1649 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1650 struct ceph_msg *msg)
1651 {
1652 struct rbd_obj_request *obj_request = osd_req->r_priv;
1653 u16 opcode;
1654
1655 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1656 rbd_assert(osd_req == obj_request->osd_req);
1657 if (obj_request_img_data_test(obj_request)) {
1658 rbd_assert(obj_request->img_request);
1659 rbd_assert(obj_request->which != BAD_WHICH);
1660 } else {
1661 rbd_assert(obj_request->which == BAD_WHICH);
1662 }
1663
1664 if (osd_req->r_result < 0)
1665 obj_request->result = osd_req->r_result;
1666
1667 BUG_ON(osd_req->r_num_ops > 2);
1668
1669 /*
1670 * We support a 64-bit length, but ultimately it has to be
1671 * passed to blk_end_request(), which takes an unsigned int.
1672 */
1673 obj_request->xferred = osd_req->r_reply_op_len[0];
1674 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1675 opcode = osd_req->r_ops[0].op;
1676 switch (opcode) {
1677 case CEPH_OSD_OP_READ:
1678 rbd_osd_read_callback(obj_request);
1679 break;
1680 case CEPH_OSD_OP_WRITE:
1681 rbd_osd_write_callback(obj_request);
1682 break;
1683 case CEPH_OSD_OP_STAT:
1684 rbd_osd_stat_callback(obj_request);
1685 break;
1686 case CEPH_OSD_OP_CALL:
1687 case CEPH_OSD_OP_NOTIFY_ACK:
1688 case CEPH_OSD_OP_WATCH:
1689 rbd_osd_trivial_callback(obj_request);
1690 break;
1691 default:
1692 rbd_warn(NULL, "%s: unsupported op %hu\n",
1693 obj_request->object_name, (unsigned short) opcode);
1694 break;
1695 }
1696
1697 if (obj_request_done_test(obj_request))
1698 rbd_obj_request_complete(obj_request);
1699 }
1700
1701 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1702 {
1703 struct rbd_img_request *img_request = obj_request->img_request;
1704 struct ceph_osd_request *osd_req = obj_request->osd_req;
1705 u64 snap_id;
1706
1707 rbd_assert(osd_req != NULL);
1708
1709 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1710 ceph_osdc_build_request(osd_req, obj_request->offset,
1711 NULL, snap_id, NULL);
1712 }
1713
1714 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1715 {
1716 struct rbd_img_request *img_request = obj_request->img_request;
1717 struct ceph_osd_request *osd_req = obj_request->osd_req;
1718 struct ceph_snap_context *snapc;
1719 struct timespec mtime = CURRENT_TIME;
1720
1721 rbd_assert(osd_req != NULL);
1722
1723 snapc = img_request ? img_request->snapc : NULL;
1724 ceph_osdc_build_request(osd_req, obj_request->offset,
1725 snapc, CEPH_NOSNAP, &mtime);
1726 }
1727
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729 struct rbd_device *rbd_dev,
1730 bool write_request,
1731 struct rbd_obj_request *obj_request)
1732 {
1733 struct ceph_snap_context *snapc = NULL;
1734 struct ceph_osd_client *osdc;
1735 struct ceph_osd_request *osd_req;
1736
1737 if (obj_request_img_data_test(obj_request)) {
1738 struct rbd_img_request *img_request = obj_request->img_request;
1739
1740 rbd_assert(write_request ==
1741 img_request_write_test(img_request));
1742 if (write_request)
1743 snapc = img_request->snapc;
1744 }
1745
1746 /* Allocate and initialize the request, for the single op */
1747
1748 osdc = &rbd_dev->rbd_client->client->osdc;
1749 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1750 if (!osd_req)
1751 return NULL; /* ENOMEM */
1752
1753 if (write_request)
1754 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1755 else
1756 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1757
1758 osd_req->r_callback = rbd_osd_req_callback;
1759 osd_req->r_priv = obj_request;
1760
1761 osd_req->r_oid_len = strlen(obj_request->object_name);
1762 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1763 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1764
1765 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1766
1767 return osd_req;
1768 }
1769
1770 /*
1771 * Create a copyup osd request based on the information in the
1772 * object request supplied. A copyup request has two osd ops,
1773 * a copyup method call, and a "normal" write request.
1774 */
1775 static struct ceph_osd_request *
1776 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1777 {
1778 struct rbd_img_request *img_request;
1779 struct ceph_snap_context *snapc;
1780 struct rbd_device *rbd_dev;
1781 struct ceph_osd_client *osdc;
1782 struct ceph_osd_request *osd_req;
1783
1784 rbd_assert(obj_request_img_data_test(obj_request));
1785 img_request = obj_request->img_request;
1786 rbd_assert(img_request);
1787 rbd_assert(img_request_write_test(img_request));
1788
1789 /* Allocate and initialize the request, for the two ops */
1790
1791 snapc = img_request->snapc;
1792 rbd_dev = img_request->rbd_dev;
1793 osdc = &rbd_dev->rbd_client->client->osdc;
1794 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1795 if (!osd_req)
1796 return NULL; /* ENOMEM */
1797
1798 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1799 osd_req->r_callback = rbd_osd_req_callback;
1800 osd_req->r_priv = obj_request;
1801
1802 osd_req->r_oid_len = strlen(obj_request->object_name);
1803 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1804 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1805
1806 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1807
1808 return osd_req;
1809 }
1810
1811
1812 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1813 {
1814 ceph_osdc_put_request(osd_req);
1815 }
1816
1817 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1818
1819 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1820 u64 offset, u64 length,
1821 enum obj_request_type type)
1822 {
1823 struct rbd_obj_request *obj_request;
1824 size_t size;
1825 char *name;
1826
1827 rbd_assert(obj_request_type_valid(type));
1828
1829 size = strlen(object_name) + 1;
1830 name = kmalloc(size, GFP_KERNEL);
1831 if (!name)
1832 return NULL;
1833
1834 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1835 if (!obj_request) {
1836 kfree(name);
1837 return NULL;
1838 }
1839
1840 obj_request->object_name = memcpy(name, object_name, size);
1841 obj_request->offset = offset;
1842 obj_request->length = length;
1843 obj_request->flags = 0;
1844 obj_request->which = BAD_WHICH;
1845 obj_request->type = type;
1846 INIT_LIST_HEAD(&obj_request->links);
1847 init_completion(&obj_request->completion);
1848 kref_init(&obj_request->kref);
1849
1850 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1851 offset, length, (int)type, obj_request);
1852
1853 return obj_request;
1854 }
1855
1856 static void rbd_obj_request_destroy(struct kref *kref)
1857 {
1858 struct rbd_obj_request *obj_request;
1859
1860 obj_request = container_of(kref, struct rbd_obj_request, kref);
1861
1862 dout("%s: obj %p\n", __func__, obj_request);
1863
1864 rbd_assert(obj_request->img_request == NULL);
1865 rbd_assert(obj_request->which == BAD_WHICH);
1866
1867 if (obj_request->osd_req)
1868 rbd_osd_req_destroy(obj_request->osd_req);
1869
1870 rbd_assert(obj_request_type_valid(obj_request->type));
1871 switch (obj_request->type) {
1872 case OBJ_REQUEST_NODATA:
1873 break; /* Nothing to do */
1874 case OBJ_REQUEST_BIO:
1875 if (obj_request->bio_list)
1876 bio_chain_put(obj_request->bio_list);
1877 break;
1878 case OBJ_REQUEST_PAGES:
1879 if (obj_request->pages)
1880 ceph_release_page_vector(obj_request->pages,
1881 obj_request->page_count);
1882 break;
1883 }
1884
1885 kfree(obj_request->object_name);
1886 obj_request->object_name = NULL;
1887 kmem_cache_free(rbd_obj_request_cache, obj_request);
1888 }
1889
1890 /* It's OK to call this for a device with no parent */
1891
1892 static void rbd_spec_put(struct rbd_spec *spec);
1893 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1894 {
1895 rbd_dev_remove_parent(rbd_dev);
1896 rbd_spec_put(rbd_dev->parent_spec);
1897 rbd_dev->parent_spec = NULL;
1898 rbd_dev->parent_overlap = 0;
1899 }
1900
1901 /*
1902 * Parent image reference counting is used to determine when an
1903 * image's parent fields can be safely torn down--after there are no
1904 * more in-flight requests to the parent image. When the last
1905 * reference is dropped, cleaning them up is safe.
1906 */
1907 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1908 {
1909 int counter;
1910
1911 if (!rbd_dev->parent_spec)
1912 return;
1913
1914 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1915 if (counter > 0)
1916 return;
1917
1918 /* Last reference; clean up parent data structures */
1919
1920 if (!counter)
1921 rbd_dev_unparent(rbd_dev);
1922 else
1923 rbd_warn(rbd_dev, "parent reference underflow\n");
1924 }
1925
1926 /*
1927 * If an image has a non-zero parent overlap, get a reference to its
1928 * parent.
1929 *
1930 * We must get the reference before checking for the overlap to
1931 * coordinate properly with zeroing the parent overlap in
1932 * rbd_dev_v2_parent_info() when an image gets flattened. We
1933 * drop it again if there is no overlap.
1934 *
1935 * Returns true if the rbd device has a parent with a non-zero
1936 * overlap and a reference for it was successfully taken, or
1937 * false otherwise.
1938 */
1939 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1940 {
1941 int counter;
1942
1943 if (!rbd_dev->parent_spec)
1944 return false;
1945
1946 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1947 if (counter > 0 && rbd_dev->parent_overlap)
1948 return true;
1949
1950 /* Image was flattened, but parent is not yet torn down */
1951
1952 if (counter < 0)
1953 rbd_warn(rbd_dev, "parent reference overflow\n");
1954
1955 return false;
1956 }
1957
1958 /*
1959 * Caller is responsible for filling in the list of object requests
1960 * that comprises the image request, and the Linux request pointer
1961 * (if there is one).
1962 */
1963 static struct rbd_img_request *rbd_img_request_create(
1964 struct rbd_device *rbd_dev,
1965 u64 offset, u64 length,
1966 bool write_request)
1967 {
1968 struct rbd_img_request *img_request;
1969
1970 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1971 if (!img_request)
1972 return NULL;
1973
1974 if (write_request) {
1975 down_read(&rbd_dev->header_rwsem);
1976 ceph_get_snap_context(rbd_dev->header.snapc);
1977 up_read(&rbd_dev->header_rwsem);
1978 }
1979
1980 img_request->rq = NULL;
1981 img_request->rbd_dev = rbd_dev;
1982 img_request->offset = offset;
1983 img_request->length = length;
1984 img_request->flags = 0;
1985 if (write_request) {
1986 img_request_write_set(img_request);
1987 img_request->snapc = rbd_dev->header.snapc;
1988 } else {
1989 img_request->snap_id = rbd_dev->spec->snap_id;
1990 }
1991 if (rbd_dev_parent_get(rbd_dev))
1992 img_request_layered_set(img_request);
1993 spin_lock_init(&img_request->completion_lock);
1994 img_request->next_completion = 0;
1995 img_request->callback = NULL;
1996 img_request->result = 0;
1997 img_request->obj_request_count = 0;
1998 INIT_LIST_HEAD(&img_request->obj_requests);
1999 kref_init(&img_request->kref);
2000
2001 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2002 write_request ? "write" : "read", offset, length,
2003 img_request);
2004
2005 return img_request;
2006 }
2007
2008 static void rbd_img_request_destroy(struct kref *kref)
2009 {
2010 struct rbd_img_request *img_request;
2011 struct rbd_obj_request *obj_request;
2012 struct rbd_obj_request *next_obj_request;
2013
2014 img_request = container_of(kref, struct rbd_img_request, kref);
2015
2016 dout("%s: img %p\n", __func__, img_request);
2017
2018 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2019 rbd_img_obj_request_del(img_request, obj_request);
2020 rbd_assert(img_request->obj_request_count == 0);
2021
2022 if (img_request_layered_test(img_request)) {
2023 img_request_layered_clear(img_request);
2024 rbd_dev_parent_put(img_request->rbd_dev);
2025 }
2026
2027 if (img_request_write_test(img_request))
2028 ceph_put_snap_context(img_request->snapc);
2029
2030 kmem_cache_free(rbd_img_request_cache, img_request);
2031 }
2032
2033 static struct rbd_img_request *rbd_parent_request_create(
2034 struct rbd_obj_request *obj_request,
2035 u64 img_offset, u64 length)
2036 {
2037 struct rbd_img_request *parent_request;
2038 struct rbd_device *rbd_dev;
2039
2040 rbd_assert(obj_request->img_request);
2041 rbd_dev = obj_request->img_request->rbd_dev;
2042
2043 parent_request = rbd_img_request_create(rbd_dev->parent,
2044 img_offset, length, false);
2045 if (!parent_request)
2046 return NULL;
2047
2048 img_request_child_set(parent_request);
2049 rbd_obj_request_get(obj_request);
2050 parent_request->obj_request = obj_request;
2051
2052 return parent_request;
2053 }
2054
2055 static void rbd_parent_request_destroy(struct kref *kref)
2056 {
2057 struct rbd_img_request *parent_request;
2058 struct rbd_obj_request *orig_request;
2059
2060 parent_request = container_of(kref, struct rbd_img_request, kref);
2061 orig_request = parent_request->obj_request;
2062
2063 parent_request->obj_request = NULL;
2064 rbd_obj_request_put(orig_request);
2065 img_request_child_clear(parent_request);
2066
2067 rbd_img_request_destroy(kref);
2068 }
2069
2070 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2071 {
2072 struct rbd_img_request *img_request;
2073 unsigned int xferred;
2074 int result;
2075 bool more;
2076
2077 rbd_assert(obj_request_img_data_test(obj_request));
2078 img_request = obj_request->img_request;
2079
2080 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2081 xferred = (unsigned int)obj_request->xferred;
2082 result = obj_request->result;
2083 if (result) {
2084 struct rbd_device *rbd_dev = img_request->rbd_dev;
2085
2086 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2087 img_request_write_test(img_request) ? "write" : "read",
2088 obj_request->length, obj_request->img_offset,
2089 obj_request->offset);
2090 rbd_warn(rbd_dev, " result %d xferred %x\n",
2091 result, xferred);
2092 if (!img_request->result)
2093 img_request->result = result;
2094 }
2095
2096 /* Image object requests don't own their page array */
2097
2098 if (obj_request->type == OBJ_REQUEST_PAGES) {
2099 obj_request->pages = NULL;
2100 obj_request->page_count = 0;
2101 }
2102
2103 if (img_request_child_test(img_request)) {
2104 rbd_assert(img_request->obj_request != NULL);
2105 more = obj_request->which < img_request->obj_request_count - 1;
2106 } else {
2107 rbd_assert(img_request->rq != NULL);
2108 more = blk_end_request(img_request->rq, result, xferred);
2109 }
2110
2111 return more;
2112 }
2113
2114 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2115 {
2116 struct rbd_img_request *img_request;
2117 u32 which = obj_request->which;
2118 bool more = true;
2119
2120 rbd_assert(obj_request_img_data_test(obj_request));
2121 img_request = obj_request->img_request;
2122
2123 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2124 rbd_assert(img_request != NULL);
2125 rbd_assert(img_request->obj_request_count > 0);
2126 rbd_assert(which != BAD_WHICH);
2127 rbd_assert(which < img_request->obj_request_count);
2128 rbd_assert(which >= img_request->next_completion);
2129
2130 spin_lock_irq(&img_request->completion_lock);
2131 if (which != img_request->next_completion)
2132 goto out;
2133
2134 for_each_obj_request_from(img_request, obj_request) {
2135 rbd_assert(more);
2136 rbd_assert(which < img_request->obj_request_count);
2137
2138 if (!obj_request_done_test(obj_request))
2139 break;
2140 more = rbd_img_obj_end_request(obj_request);
2141 which++;
2142 }
2143
2144 rbd_assert(more ^ (which == img_request->obj_request_count));
2145 img_request->next_completion = which;
2146 out:
2147 spin_unlock_irq(&img_request->completion_lock);
2148
2149 if (!more)
2150 rbd_img_request_complete(img_request);
2151 }
2152
2153 /*
2154 * Split up an image request into one or more object requests, each
2155 * to a different object. The "type" parameter indicates whether
2156 * "data_desc" is the pointer to the head of a list of bio
2157 * structures, or the base of a page array. In either case this
2158 * function assumes data_desc describes memory sufficient to hold
2159 * all data described by the image request.
2160 */
2161 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2162 enum obj_request_type type,
2163 void *data_desc)
2164 {
2165 struct rbd_device *rbd_dev = img_request->rbd_dev;
2166 struct rbd_obj_request *obj_request = NULL;
2167 struct rbd_obj_request *next_obj_request;
2168 bool write_request = img_request_write_test(img_request);
2169 struct bio *bio_list;
2170 unsigned int bio_offset = 0;
2171 struct page **pages;
2172 u64 img_offset;
2173 u64 resid;
2174 u16 opcode;
2175
2176 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2177 (int)type, data_desc);
2178
2179 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2180 img_offset = img_request->offset;
2181 resid = img_request->length;
2182 rbd_assert(resid > 0);
2183
2184 if (type == OBJ_REQUEST_BIO) {
2185 bio_list = data_desc;
2186 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2187 } else {
2188 rbd_assert(type == OBJ_REQUEST_PAGES);
2189 pages = data_desc;
2190 }
2191
2192 while (resid) {
2193 struct ceph_osd_request *osd_req;
2194 const char *object_name;
2195 u64 offset;
2196 u64 length;
2197
2198 object_name = rbd_segment_name(rbd_dev, img_offset);
2199 if (!object_name)
2200 goto out_unwind;
2201 offset = rbd_segment_offset(rbd_dev, img_offset);
2202 length = rbd_segment_length(rbd_dev, img_offset, resid);
2203 obj_request = rbd_obj_request_create(object_name,
2204 offset, length, type);
2205 /* object request has its own copy of the object name */
2206 rbd_segment_name_free(object_name);
2207 if (!obj_request)
2208 goto out_unwind;
2209
2210 if (type == OBJ_REQUEST_BIO) {
2211 unsigned int clone_size;
2212
2213 rbd_assert(length <= (u64)UINT_MAX);
2214 clone_size = (unsigned int)length;
2215 obj_request->bio_list =
2216 bio_chain_clone_range(&bio_list,
2217 &bio_offset,
2218 clone_size,
2219 GFP_ATOMIC);
2220 if (!obj_request->bio_list)
2221 goto out_partial;
2222 } else {
2223 unsigned int page_count;
2224
2225 obj_request->pages = pages;
2226 page_count = (u32)calc_pages_for(offset, length);
2227 obj_request->page_count = page_count;
2228 if ((offset + length) & ~PAGE_MASK)
2229 page_count--; /* more on last page */
2230 pages += page_count;
2231 }
2232
2233 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2234 obj_request);
2235 if (!osd_req)
2236 goto out_partial;
2237 obj_request->osd_req = osd_req;
2238 obj_request->callback = rbd_img_obj_callback;
2239
2240 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2241 0, 0);
2242 if (type == OBJ_REQUEST_BIO)
2243 osd_req_op_extent_osd_data_bio(osd_req, 0,
2244 obj_request->bio_list, length);
2245 else
2246 osd_req_op_extent_osd_data_pages(osd_req, 0,
2247 obj_request->pages, length,
2248 offset & ~PAGE_MASK, false, false);
2249
2250 if (write_request)
2251 rbd_osd_req_format_write(obj_request);
2252 else
2253 rbd_osd_req_format_read(obj_request);
2254
2255 obj_request->img_offset = img_offset;
2256 rbd_img_obj_request_add(img_request, obj_request);
2257
2258 img_offset += length;
2259 resid -= length;
2260 }
2261
2262 return 0;
2263
2264 out_partial:
2265 rbd_obj_request_put(obj_request);
2266 out_unwind:
2267 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2268 rbd_obj_request_put(obj_request);
2269
2270 return -ENOMEM;
2271 }
2272
2273 static void
2274 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2275 {
2276 struct rbd_img_request *img_request;
2277 struct rbd_device *rbd_dev;
2278 struct page **pages;
2279 u32 page_count;
2280
2281 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2282 rbd_assert(obj_request_img_data_test(obj_request));
2283 img_request = obj_request->img_request;
2284 rbd_assert(img_request);
2285
2286 rbd_dev = img_request->rbd_dev;
2287 rbd_assert(rbd_dev);
2288
2289 pages = obj_request->copyup_pages;
2290 rbd_assert(pages != NULL);
2291 obj_request->copyup_pages = NULL;
2292 page_count = obj_request->copyup_page_count;
2293 rbd_assert(page_count);
2294 obj_request->copyup_page_count = 0;
2295 ceph_release_page_vector(pages, page_count);
2296
2297 /*
2298 * We want the transfer count to reflect the size of the
2299 * original write request. There is no such thing as a
2300 * successful short write, so if the request was successful
2301 * we can just set it to the originally-requested length.
2302 */
2303 if (!obj_request->result)
2304 obj_request->xferred = obj_request->length;
2305
2306 /* Finish up with the normal image object callback */
2307
2308 rbd_img_obj_callback(obj_request);
2309 }
2310
2311 static void
2312 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2313 {
2314 struct rbd_obj_request *orig_request;
2315 struct ceph_osd_request *osd_req;
2316 struct ceph_osd_client *osdc;
2317 struct rbd_device *rbd_dev;
2318 struct page **pages;
2319 u32 page_count;
2320 int img_result;
2321 u64 parent_length;
2322 u64 offset;
2323 u64 length;
2324
2325 rbd_assert(img_request_child_test(img_request));
2326
2327 /* First get what we need from the image request */
2328
2329 pages = img_request->copyup_pages;
2330 rbd_assert(pages != NULL);
2331 img_request->copyup_pages = NULL;
2332 page_count = img_request->copyup_page_count;
2333 rbd_assert(page_count);
2334 img_request->copyup_page_count = 0;
2335
2336 orig_request = img_request->obj_request;
2337 rbd_assert(orig_request != NULL);
2338 rbd_assert(obj_request_type_valid(orig_request->type));
2339 img_result = img_request->result;
2340 parent_length = img_request->length;
2341 rbd_assert(parent_length == img_request->xferred);
2342 rbd_img_request_put(img_request);
2343
2344 rbd_assert(orig_request->img_request);
2345 rbd_dev = orig_request->img_request->rbd_dev;
2346 rbd_assert(rbd_dev);
2347
2348 /*
2349 * If the overlap has become 0 (most likely because the
2350 * image has been flattened) we need to free the pages
2351 * and re-submit the original write request.
2352 */
2353 if (!rbd_dev->parent_overlap) {
2354 struct ceph_osd_client *osdc;
2355
2356 ceph_release_page_vector(pages, page_count);
2357 osdc = &rbd_dev->rbd_client->client->osdc;
2358 img_result = rbd_obj_request_submit(osdc, orig_request);
2359 if (!img_result)
2360 return;
2361 }
2362
2363 if (img_result)
2364 goto out_err;
2365
2366 /*
2367 * The original osd request is of no use to use any more.
2368 * We need a new one that can hold the two ops in a copyup
2369 * request. Allocate the new copyup osd request for the
2370 * original request, and release the old one.
2371 */
2372 img_result = -ENOMEM;
2373 osd_req = rbd_osd_req_create_copyup(orig_request);
2374 if (!osd_req)
2375 goto out_err;
2376 rbd_osd_req_destroy(orig_request->osd_req);
2377 orig_request->osd_req = osd_req;
2378 orig_request->copyup_pages = pages;
2379 orig_request->copyup_page_count = page_count;
2380
2381 /* Initialize the copyup op */
2382
2383 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2384 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2385 false, false);
2386
2387 /* Then the original write request op */
2388
2389 offset = orig_request->offset;
2390 length = orig_request->length;
2391 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2392 offset, length, 0, 0);
2393 if (orig_request->type == OBJ_REQUEST_BIO)
2394 osd_req_op_extent_osd_data_bio(osd_req, 1,
2395 orig_request->bio_list, length);
2396 else
2397 osd_req_op_extent_osd_data_pages(osd_req, 1,
2398 orig_request->pages, length,
2399 offset & ~PAGE_MASK, false, false);
2400
2401 rbd_osd_req_format_write(orig_request);
2402
2403 /* All set, send it off. */
2404
2405 orig_request->callback = rbd_img_obj_copyup_callback;
2406 osdc = &rbd_dev->rbd_client->client->osdc;
2407 img_result = rbd_obj_request_submit(osdc, orig_request);
2408 if (!img_result)
2409 return;
2410 out_err:
2411 /* Record the error code and complete the request */
2412
2413 orig_request->result = img_result;
2414 orig_request->xferred = 0;
2415 obj_request_done_set(orig_request);
2416 rbd_obj_request_complete(orig_request);
2417 }
2418
2419 /*
2420 * Read from the parent image the range of data that covers the
2421 * entire target of the given object request. This is used for
2422 * satisfying a layered image write request when the target of an
2423 * object request from the image request does not exist.
2424 *
2425 * A page array big enough to hold the returned data is allocated
2426 * and supplied to rbd_img_request_fill() as the "data descriptor."
2427 * When the read completes, this page array will be transferred to
2428 * the original object request for the copyup operation.
2429 *
2430 * If an error occurs, record it as the result of the original
2431 * object request and mark it done so it gets completed.
2432 */
2433 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2434 {
2435 struct rbd_img_request *img_request = NULL;
2436 struct rbd_img_request *parent_request = NULL;
2437 struct rbd_device *rbd_dev;
2438 u64 img_offset;
2439 u64 length;
2440 struct page **pages = NULL;
2441 u32 page_count;
2442 int result;
2443
2444 rbd_assert(obj_request_img_data_test(obj_request));
2445 rbd_assert(obj_request_type_valid(obj_request->type));
2446
2447 img_request = obj_request->img_request;
2448 rbd_assert(img_request != NULL);
2449 rbd_dev = img_request->rbd_dev;
2450 rbd_assert(rbd_dev->parent != NULL);
2451
2452 /*
2453 * Determine the byte range covered by the object in the
2454 * child image to which the original request was to be sent.
2455 */
2456 img_offset = obj_request->img_offset - obj_request->offset;
2457 length = (u64)1 << rbd_dev->header.obj_order;
2458
2459 /*
2460 * There is no defined parent data beyond the parent
2461 * overlap, so limit what we read at that boundary if
2462 * necessary.
2463 */
2464 if (img_offset + length > rbd_dev->parent_overlap) {
2465 rbd_assert(img_offset < rbd_dev->parent_overlap);
2466 length = rbd_dev->parent_overlap - img_offset;
2467 }
2468
2469 /*
2470 * Allocate a page array big enough to receive the data read
2471 * from the parent.
2472 */
2473 page_count = (u32)calc_pages_for(0, length);
2474 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2475 if (IS_ERR(pages)) {
2476 result = PTR_ERR(pages);
2477 pages = NULL;
2478 goto out_err;
2479 }
2480
2481 result = -ENOMEM;
2482 parent_request = rbd_parent_request_create(obj_request,
2483 img_offset, length);
2484 if (!parent_request)
2485 goto out_err;
2486
2487 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2488 if (result)
2489 goto out_err;
2490 parent_request->copyup_pages = pages;
2491 parent_request->copyup_page_count = page_count;
2492
2493 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2494 result = rbd_img_request_submit(parent_request);
2495 if (!result)
2496 return 0;
2497
2498 parent_request->copyup_pages = NULL;
2499 parent_request->copyup_page_count = 0;
2500 parent_request->obj_request = NULL;
2501 rbd_obj_request_put(obj_request);
2502 out_err:
2503 if (pages)
2504 ceph_release_page_vector(pages, page_count);
2505 if (parent_request)
2506 rbd_img_request_put(parent_request);
2507 obj_request->result = result;
2508 obj_request->xferred = 0;
2509 obj_request_done_set(obj_request);
2510
2511 return result;
2512 }
2513
2514 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2515 {
2516 struct rbd_obj_request *orig_request;
2517 struct rbd_device *rbd_dev;
2518 int result;
2519
2520 rbd_assert(!obj_request_img_data_test(obj_request));
2521
2522 /*
2523 * All we need from the object request is the original
2524 * request and the result of the STAT op. Grab those, then
2525 * we're done with the request.
2526 */
2527 orig_request = obj_request->obj_request;
2528 obj_request->obj_request = NULL;
2529 rbd_assert(orig_request);
2530 rbd_assert(orig_request->img_request);
2531
2532 result = obj_request->result;
2533 obj_request->result = 0;
2534
2535 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2536 obj_request, orig_request, result,
2537 obj_request->xferred, obj_request->length);
2538 rbd_obj_request_put(obj_request);
2539
2540 /*
2541 * If the overlap has become 0 (most likely because the
2542 * image has been flattened) we need to free the pages
2543 * and re-submit the original write request.
2544 */
2545 rbd_dev = orig_request->img_request->rbd_dev;
2546 if (!rbd_dev->parent_overlap) {
2547 struct ceph_osd_client *osdc;
2548
2549 rbd_obj_request_put(orig_request);
2550 osdc = &rbd_dev->rbd_client->client->osdc;
2551 result = rbd_obj_request_submit(osdc, orig_request);
2552 if (!result)
2553 return;
2554 }
2555
2556 /*
2557 * Our only purpose here is to determine whether the object
2558 * exists, and we don't want to treat the non-existence as
2559 * an error. If something else comes back, transfer the
2560 * error to the original request and complete it now.
2561 */
2562 if (!result) {
2563 obj_request_existence_set(orig_request, true);
2564 } else if (result == -ENOENT) {
2565 obj_request_existence_set(orig_request, false);
2566 } else if (result) {
2567 orig_request->result = result;
2568 goto out;
2569 }
2570
2571 /*
2572 * Resubmit the original request now that we have recorded
2573 * whether the target object exists.
2574 */
2575 orig_request->result = rbd_img_obj_request_submit(orig_request);
2576 out:
2577 if (orig_request->result)
2578 rbd_obj_request_complete(orig_request);
2579 rbd_obj_request_put(orig_request);
2580 }
2581
2582 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2583 {
2584 struct rbd_obj_request *stat_request;
2585 struct rbd_device *rbd_dev;
2586 struct ceph_osd_client *osdc;
2587 struct page **pages = NULL;
2588 u32 page_count;
2589 size_t size;
2590 int ret;
2591
2592 /*
2593 * The response data for a STAT call consists of:
2594 * le64 length;
2595 * struct {
2596 * le32 tv_sec;
2597 * le32 tv_nsec;
2598 * } mtime;
2599 */
2600 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2601 page_count = (u32)calc_pages_for(0, size);
2602 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2603 if (IS_ERR(pages))
2604 return PTR_ERR(pages);
2605
2606 ret = -ENOMEM;
2607 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2608 OBJ_REQUEST_PAGES);
2609 if (!stat_request)
2610 goto out;
2611
2612 rbd_obj_request_get(obj_request);
2613 stat_request->obj_request = obj_request;
2614 stat_request->pages = pages;
2615 stat_request->page_count = page_count;
2616
2617 rbd_assert(obj_request->img_request);
2618 rbd_dev = obj_request->img_request->rbd_dev;
2619 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2620 stat_request);
2621 if (!stat_request->osd_req)
2622 goto out;
2623 stat_request->callback = rbd_img_obj_exists_callback;
2624
2625 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2626 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2627 false, false);
2628 rbd_osd_req_format_read(stat_request);
2629
2630 osdc = &rbd_dev->rbd_client->client->osdc;
2631 ret = rbd_obj_request_submit(osdc, stat_request);
2632 out:
2633 if (ret)
2634 rbd_obj_request_put(obj_request);
2635
2636 return ret;
2637 }
2638
2639 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2640 {
2641 struct rbd_img_request *img_request;
2642 struct rbd_device *rbd_dev;
2643 bool known;
2644
2645 rbd_assert(obj_request_img_data_test(obj_request));
2646
2647 img_request = obj_request->img_request;
2648 rbd_assert(img_request);
2649 rbd_dev = img_request->rbd_dev;
2650
2651 /*
2652 * Only writes to layered images need special handling.
2653 * Reads and non-layered writes are simple object requests.
2654 * Layered writes that start beyond the end of the overlap
2655 * with the parent have no parent data, so they too are
2656 * simple object requests. Finally, if the target object is
2657 * known to already exist, its parent data has already been
2658 * copied, so a write to the object can also be handled as a
2659 * simple object request.
2660 */
2661 if (!img_request_write_test(img_request) ||
2662 !img_request_layered_test(img_request) ||
2663 rbd_dev->parent_overlap <= obj_request->img_offset ||
2664 ((known = obj_request_known_test(obj_request)) &&
2665 obj_request_exists_test(obj_request))) {
2666
2667 struct rbd_device *rbd_dev;
2668 struct ceph_osd_client *osdc;
2669
2670 rbd_dev = obj_request->img_request->rbd_dev;
2671 osdc = &rbd_dev->rbd_client->client->osdc;
2672
2673 return rbd_obj_request_submit(osdc, obj_request);
2674 }
2675
2676 /*
2677 * It's a layered write. The target object might exist but
2678 * we may not know that yet. If we know it doesn't exist,
2679 * start by reading the data for the full target object from
2680 * the parent so we can use it for a copyup to the target.
2681 */
2682 if (known)
2683 return rbd_img_obj_parent_read_full(obj_request);
2684
2685 /* We don't know whether the target exists. Go find out. */
2686
2687 return rbd_img_obj_exists_submit(obj_request);
2688 }
2689
2690 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2691 {
2692 struct rbd_obj_request *obj_request;
2693 struct rbd_obj_request *next_obj_request;
2694
2695 dout("%s: img %p\n", __func__, img_request);
2696 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2697 int ret;
2698
2699 ret = rbd_img_obj_request_submit(obj_request);
2700 if (ret)
2701 return ret;
2702 }
2703
2704 return 0;
2705 }
2706
2707 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2708 {
2709 struct rbd_obj_request *obj_request;
2710 struct rbd_device *rbd_dev;
2711 u64 obj_end;
2712 u64 img_xferred;
2713 int img_result;
2714
2715 rbd_assert(img_request_child_test(img_request));
2716
2717 /* First get what we need from the image request and release it */
2718
2719 obj_request = img_request->obj_request;
2720 img_xferred = img_request->xferred;
2721 img_result = img_request->result;
2722 rbd_img_request_put(img_request);
2723
2724 /*
2725 * If the overlap has become 0 (most likely because the
2726 * image has been flattened) we need to re-submit the
2727 * original request.
2728 */
2729 rbd_assert(obj_request);
2730 rbd_assert(obj_request->img_request);
2731 rbd_dev = obj_request->img_request->rbd_dev;
2732 if (!rbd_dev->parent_overlap) {
2733 struct ceph_osd_client *osdc;
2734
2735 osdc = &rbd_dev->rbd_client->client->osdc;
2736 img_result = rbd_obj_request_submit(osdc, obj_request);
2737 if (!img_result)
2738 return;
2739 }
2740
2741 obj_request->result = img_result;
2742 if (obj_request->result)
2743 goto out;
2744
2745 /*
2746 * We need to zero anything beyond the parent overlap
2747 * boundary. Since rbd_img_obj_request_read_callback()
2748 * will zero anything beyond the end of a short read, an
2749 * easy way to do this is to pretend the data from the
2750 * parent came up short--ending at the overlap boundary.
2751 */
2752 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2753 obj_end = obj_request->img_offset + obj_request->length;
2754 if (obj_end > rbd_dev->parent_overlap) {
2755 u64 xferred = 0;
2756
2757 if (obj_request->img_offset < rbd_dev->parent_overlap)
2758 xferred = rbd_dev->parent_overlap -
2759 obj_request->img_offset;
2760
2761 obj_request->xferred = min(img_xferred, xferred);
2762 } else {
2763 obj_request->xferred = img_xferred;
2764 }
2765 out:
2766 rbd_img_obj_request_read_callback(obj_request);
2767 rbd_obj_request_complete(obj_request);
2768 }
2769
2770 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2771 {
2772 struct rbd_img_request *img_request;
2773 int result;
2774
2775 rbd_assert(obj_request_img_data_test(obj_request));
2776 rbd_assert(obj_request->img_request != NULL);
2777 rbd_assert(obj_request->result == (s32) -ENOENT);
2778 rbd_assert(obj_request_type_valid(obj_request->type));
2779
2780 /* rbd_read_finish(obj_request, obj_request->length); */
2781 img_request = rbd_parent_request_create(obj_request,
2782 obj_request->img_offset,
2783 obj_request->length);
2784 result = -ENOMEM;
2785 if (!img_request)
2786 goto out_err;
2787
2788 if (obj_request->type == OBJ_REQUEST_BIO)
2789 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2790 obj_request->bio_list);
2791 else
2792 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2793 obj_request->pages);
2794 if (result)
2795 goto out_err;
2796
2797 img_request->callback = rbd_img_parent_read_callback;
2798 result = rbd_img_request_submit(img_request);
2799 if (result)
2800 goto out_err;
2801
2802 return;
2803 out_err:
2804 if (img_request)
2805 rbd_img_request_put(img_request);
2806 obj_request->result = result;
2807 obj_request->xferred = 0;
2808 obj_request_done_set(obj_request);
2809 }
2810
2811 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2812 {
2813 struct rbd_obj_request *obj_request;
2814 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2815 int ret;
2816
2817 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2818 OBJ_REQUEST_NODATA);
2819 if (!obj_request)
2820 return -ENOMEM;
2821
2822 ret = -ENOMEM;
2823 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2824 if (!obj_request->osd_req)
2825 goto out;
2826 obj_request->callback = rbd_obj_request_put;
2827
2828 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2829 notify_id, 0, 0);
2830 rbd_osd_req_format_read(obj_request);
2831
2832 ret = rbd_obj_request_submit(osdc, obj_request);
2833 out:
2834 if (ret)
2835 rbd_obj_request_put(obj_request);
2836
2837 return ret;
2838 }
2839
2840 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2841 {
2842 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2843 int ret;
2844
2845 if (!rbd_dev)
2846 return;
2847
2848 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2849 rbd_dev->header_name, (unsigned long long)notify_id,
2850 (unsigned int)opcode);
2851 ret = rbd_dev_refresh(rbd_dev);
2852 if (ret)
2853 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2854
2855 rbd_obj_notify_ack(rbd_dev, notify_id);
2856 }
2857
2858 /*
2859 * Request sync osd watch/unwatch. The value of "start" determines
2860 * whether a watch request is being initiated or torn down.
2861 */
2862 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2863 {
2864 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2865 struct rbd_obj_request *obj_request;
2866 int ret;
2867
2868 rbd_assert(start ^ !!rbd_dev->watch_event);
2869 rbd_assert(start ^ !!rbd_dev->watch_request);
2870
2871 if (start) {
2872 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2873 &rbd_dev->watch_event);
2874 if (ret < 0)
2875 return ret;
2876 rbd_assert(rbd_dev->watch_event != NULL);
2877 }
2878
2879 ret = -ENOMEM;
2880 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2881 OBJ_REQUEST_NODATA);
2882 if (!obj_request)
2883 goto out_cancel;
2884
2885 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2886 if (!obj_request->osd_req)
2887 goto out_cancel;
2888
2889 if (start)
2890 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2891 else
2892 ceph_osdc_unregister_linger_request(osdc,
2893 rbd_dev->watch_request->osd_req);
2894
2895 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2896 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2897 rbd_osd_req_format_write(obj_request);
2898
2899 ret = rbd_obj_request_submit(osdc, obj_request);
2900 if (ret)
2901 goto out_cancel;
2902 ret = rbd_obj_request_wait(obj_request);
2903 if (ret)
2904 goto out_cancel;
2905 ret = obj_request->result;
2906 if (ret)
2907 goto out_cancel;
2908
2909 /*
2910 * A watch request is set to linger, so the underlying osd
2911 * request won't go away until we unregister it. We retain
2912 * a pointer to the object request during that time (in
2913 * rbd_dev->watch_request), so we'll keep a reference to
2914 * it. We'll drop that reference (below) after we've
2915 * unregistered it.
2916 */
2917 if (start) {
2918 rbd_dev->watch_request = obj_request;
2919
2920 return 0;
2921 }
2922
2923 /* We have successfully torn down the watch request */
2924
2925 rbd_obj_request_put(rbd_dev->watch_request);
2926 rbd_dev->watch_request = NULL;
2927 out_cancel:
2928 /* Cancel the event if we're tearing down, or on error */
2929 ceph_osdc_cancel_event(rbd_dev->watch_event);
2930 rbd_dev->watch_event = NULL;
2931 if (obj_request)
2932 rbd_obj_request_put(obj_request);
2933
2934 return ret;
2935 }
2936
2937 /*
2938 * Synchronous osd object method call. Returns the number of bytes
2939 * returned in the outbound buffer, or a negative error code.
2940 */
2941 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2942 const char *object_name,
2943 const char *class_name,
2944 const char *method_name,
2945 const void *outbound,
2946 size_t outbound_size,
2947 void *inbound,
2948 size_t inbound_size)
2949 {
2950 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2951 struct rbd_obj_request *obj_request;
2952 struct page **pages;
2953 u32 page_count;
2954 int ret;
2955
2956 /*
2957 * Method calls are ultimately read operations. The result
2958 * should placed into the inbound buffer provided. They
2959 * also supply outbound data--parameters for the object
2960 * method. Currently if this is present it will be a
2961 * snapshot id.
2962 */
2963 page_count = (u32)calc_pages_for(0, inbound_size);
2964 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2965 if (IS_ERR(pages))
2966 return PTR_ERR(pages);
2967
2968 ret = -ENOMEM;
2969 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2970 OBJ_REQUEST_PAGES);
2971 if (!obj_request)
2972 goto out;
2973
2974 obj_request->pages = pages;
2975 obj_request->page_count = page_count;
2976
2977 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2978 if (!obj_request->osd_req)
2979 goto out;
2980
2981 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2982 class_name, method_name);
2983 if (outbound_size) {
2984 struct ceph_pagelist *pagelist;
2985
2986 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2987 if (!pagelist)
2988 goto out;
2989
2990 ceph_pagelist_init(pagelist);
2991 ceph_pagelist_append(pagelist, outbound, outbound_size);
2992 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2993 pagelist);
2994 }
2995 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2996 obj_request->pages, inbound_size,
2997 0, false, false);
2998 rbd_osd_req_format_read(obj_request);
2999
3000 ret = rbd_obj_request_submit(osdc, obj_request);
3001 if (ret)
3002 goto out;
3003 ret = rbd_obj_request_wait(obj_request);
3004 if (ret)
3005 goto out;
3006
3007 ret = obj_request->result;
3008 if (ret < 0)
3009 goto out;
3010
3011 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3012 ret = (int)obj_request->xferred;
3013 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3014 out:
3015 if (obj_request)
3016 rbd_obj_request_put(obj_request);
3017 else
3018 ceph_release_page_vector(pages, page_count);
3019
3020 return ret;
3021 }
3022
3023 static void rbd_request_fn(struct request_queue *q)
3024 __releases(q->queue_lock) __acquires(q->queue_lock)
3025 {
3026 struct rbd_device *rbd_dev = q->queuedata;
3027 bool read_only = rbd_dev->mapping.read_only;
3028 struct request *rq;
3029 int result;
3030
3031 while ((rq = blk_fetch_request(q))) {
3032 bool write_request = rq_data_dir(rq) == WRITE;
3033 struct rbd_img_request *img_request;
3034 u64 offset;
3035 u64 length;
3036
3037 /* Ignore any non-FS requests that filter through. */
3038
3039 if (rq->cmd_type != REQ_TYPE_FS) {
3040 dout("%s: non-fs request type %d\n", __func__,
3041 (int) rq->cmd_type);
3042 __blk_end_request_all(rq, 0);
3043 continue;
3044 }
3045
3046 /* Ignore/skip any zero-length requests */
3047
3048 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3049 length = (u64) blk_rq_bytes(rq);
3050
3051 if (!length) {
3052 dout("%s: zero-length request\n", __func__);
3053 __blk_end_request_all(rq, 0);
3054 continue;
3055 }
3056
3057 spin_unlock_irq(q->queue_lock);
3058
3059 /* Disallow writes to a read-only device */
3060
3061 if (write_request) {
3062 result = -EROFS;
3063 if (read_only)
3064 goto end_request;
3065 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3066 }
3067
3068 /*
3069 * Quit early if the mapped snapshot no longer
3070 * exists. It's still possible the snapshot will
3071 * have disappeared by the time our request arrives
3072 * at the osd, but there's no sense in sending it if
3073 * we already know.
3074 */
3075 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3076 dout("request for non-existent snapshot");
3077 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3078 result = -ENXIO;
3079 goto end_request;
3080 }
3081
3082 result = -EINVAL;
3083 if (offset && length > U64_MAX - offset + 1) {
3084 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3085 offset, length);
3086 goto end_request; /* Shouldn't happen */
3087 }
3088
3089 result = -EIO;
3090 if (offset + length > rbd_dev->mapping.size) {
3091 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3092 offset, length, rbd_dev->mapping.size);
3093 goto end_request;
3094 }
3095
3096 result = -ENOMEM;
3097 img_request = rbd_img_request_create(rbd_dev, offset, length,
3098 write_request);
3099 if (!img_request)
3100 goto end_request;
3101
3102 img_request->rq = rq;
3103
3104 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3105 rq->bio);
3106 if (!result)
3107 result = rbd_img_request_submit(img_request);
3108 if (result)
3109 rbd_img_request_put(img_request);
3110 end_request:
3111 spin_lock_irq(q->queue_lock);
3112 if (result < 0) {
3113 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3114 write_request ? "write" : "read",
3115 length, offset, result);
3116
3117 __blk_end_request_all(rq, result);
3118 }
3119 }
3120 }
3121
3122 /*
3123 * a queue callback. Makes sure that we don't create a bio that spans across
3124 * multiple osd objects. One exception would be with a single page bios,
3125 * which we handle later at bio_chain_clone_range()
3126 */
3127 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3128 struct bio_vec *bvec)
3129 {
3130 struct rbd_device *rbd_dev = q->queuedata;
3131 sector_t sector_offset;
3132 sector_t sectors_per_obj;
3133 sector_t obj_sector_offset;
3134 int ret;
3135
3136 /*
3137 * Find how far into its rbd object the partition-relative
3138 * bio start sector is to offset relative to the enclosing
3139 * device.
3140 */
3141 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3142 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3143 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3144
3145 /*
3146 * Compute the number of bytes from that offset to the end
3147 * of the object. Account for what's already used by the bio.
3148 */
3149 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3150 if (ret > bmd->bi_size)
3151 ret -= bmd->bi_size;
3152 else
3153 ret = 0;
3154
3155 /*
3156 * Don't send back more than was asked for. And if the bio
3157 * was empty, let the whole thing through because: "Note
3158 * that a block device *must* allow a single page to be
3159 * added to an empty bio."
3160 */
3161 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3162 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3163 ret = (int) bvec->bv_len;
3164
3165 return ret;
3166 }
3167
3168 static void rbd_free_disk(struct rbd_device *rbd_dev)
3169 {
3170 struct gendisk *disk = rbd_dev->disk;
3171
3172 if (!disk)
3173 return;
3174
3175 rbd_dev->disk = NULL;
3176 if (disk->flags & GENHD_FL_UP) {
3177 del_gendisk(disk);
3178 if (disk->queue)
3179 blk_cleanup_queue(disk->queue);
3180 }
3181 put_disk(disk);
3182 }
3183
3184 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3185 const char *object_name,
3186 u64 offset, u64 length, void *buf)
3187
3188 {
3189 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3190 struct rbd_obj_request *obj_request;
3191 struct page **pages = NULL;
3192 u32 page_count;
3193 size_t size;
3194 int ret;
3195
3196 page_count = (u32) calc_pages_for(offset, length);
3197 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3198 if (IS_ERR(pages))
3199 ret = PTR_ERR(pages);
3200
3201 ret = -ENOMEM;
3202 obj_request = rbd_obj_request_create(object_name, offset, length,
3203 OBJ_REQUEST_PAGES);
3204 if (!obj_request)
3205 goto out;
3206
3207 obj_request->pages = pages;
3208 obj_request->page_count = page_count;
3209
3210 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3211 if (!obj_request->osd_req)
3212 goto out;
3213
3214 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3215 offset, length, 0, 0);
3216 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3217 obj_request->pages,
3218 obj_request->length,
3219 obj_request->offset & ~PAGE_MASK,
3220 false, false);
3221 rbd_osd_req_format_read(obj_request);
3222
3223 ret = rbd_obj_request_submit(osdc, obj_request);
3224 if (ret)
3225 goto out;
3226 ret = rbd_obj_request_wait(obj_request);
3227 if (ret)
3228 goto out;
3229
3230 ret = obj_request->result;
3231 if (ret < 0)
3232 goto out;
3233
3234 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3235 size = (size_t) obj_request->xferred;
3236 ceph_copy_from_page_vector(pages, buf, 0, size);
3237 rbd_assert(size <= (size_t)INT_MAX);
3238 ret = (int)size;
3239 out:
3240 if (obj_request)
3241 rbd_obj_request_put(obj_request);
3242 else
3243 ceph_release_page_vector(pages, page_count);
3244
3245 return ret;
3246 }
3247
3248 /*
3249 * Read the complete header for the given rbd device. On successful
3250 * return, the rbd_dev->header field will contain up-to-date
3251 * information about the image.
3252 */
3253 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3254 {
3255 struct rbd_image_header_ondisk *ondisk = NULL;
3256 u32 snap_count = 0;
3257 u64 names_size = 0;
3258 u32 want_count;
3259 int ret;
3260
3261 /*
3262 * The complete header will include an array of its 64-bit
3263 * snapshot ids, followed by the names of those snapshots as
3264 * a contiguous block of NUL-terminated strings. Note that
3265 * the number of snapshots could change by the time we read
3266 * it in, in which case we re-read it.
3267 */
3268 do {
3269 size_t size;
3270
3271 kfree(ondisk);
3272
3273 size = sizeof (*ondisk);
3274 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3275 size += names_size;
3276 ondisk = kmalloc(size, GFP_KERNEL);
3277 if (!ondisk)
3278 return -ENOMEM;
3279
3280 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3281 0, size, ondisk);
3282 if (ret < 0)
3283 goto out;
3284 if ((size_t)ret < size) {
3285 ret = -ENXIO;
3286 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3287 size, ret);
3288 goto out;
3289 }
3290 if (!rbd_dev_ondisk_valid(ondisk)) {
3291 ret = -ENXIO;
3292 rbd_warn(rbd_dev, "invalid header");
3293 goto out;
3294 }
3295
3296 names_size = le64_to_cpu(ondisk->snap_names_len);
3297 want_count = snap_count;
3298 snap_count = le32_to_cpu(ondisk->snap_count);
3299 } while (snap_count != want_count);
3300
3301 ret = rbd_header_from_disk(rbd_dev, ondisk);
3302 out:
3303 kfree(ondisk);
3304
3305 return ret;
3306 }
3307
3308 /*
3309 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3310 * has disappeared from the (just updated) snapshot context.
3311 */
3312 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3313 {
3314 u64 snap_id;
3315
3316 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3317 return;
3318
3319 snap_id = rbd_dev->spec->snap_id;
3320 if (snap_id == CEPH_NOSNAP)
3321 return;
3322
3323 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3324 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3325 }
3326
3327 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3328 {
3329 u64 mapping_size;
3330 int ret;
3331
3332 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3333 mapping_size = rbd_dev->mapping.size;
3334 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3335 if (rbd_dev->image_format == 1)
3336 ret = rbd_dev_v1_header_info(rbd_dev);
3337 else
3338 ret = rbd_dev_v2_header_info(rbd_dev);
3339
3340 /* If it's a mapped snapshot, validate its EXISTS flag */
3341
3342 rbd_exists_validate(rbd_dev);
3343 mutex_unlock(&ctl_mutex);
3344 if (mapping_size != rbd_dev->mapping.size) {
3345 sector_t size;
3346
3347 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3348 dout("setting size to %llu sectors", (unsigned long long)size);
3349 set_capacity(rbd_dev->disk, size);
3350 revalidate_disk(rbd_dev->disk);
3351 }
3352
3353 return ret;
3354 }
3355
3356 static int rbd_init_disk(struct rbd_device *rbd_dev)
3357 {
3358 struct gendisk *disk;
3359 struct request_queue *q;
3360 u64 segment_size;
3361
3362 /* create gendisk info */
3363 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3364 if (!disk)
3365 return -ENOMEM;
3366
3367 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3368 rbd_dev->dev_id);
3369 disk->major = rbd_dev->major;
3370 disk->first_minor = 0;
3371 disk->fops = &rbd_bd_ops;
3372 disk->private_data = rbd_dev;
3373
3374 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3375 if (!q)
3376 goto out_disk;
3377
3378 /* We use the default size, but let's be explicit about it. */
3379 blk_queue_physical_block_size(q, SECTOR_SIZE);
3380
3381 /* set io sizes to object size */
3382 segment_size = rbd_obj_bytes(&rbd_dev->header);
3383 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3384 blk_queue_max_segment_size(q, segment_size);
3385 blk_queue_io_min(q, segment_size);
3386 blk_queue_io_opt(q, segment_size);
3387
3388 blk_queue_merge_bvec(q, rbd_merge_bvec);
3389 disk->queue = q;
3390
3391 q->queuedata = rbd_dev;
3392
3393 rbd_dev->disk = disk;
3394
3395 return 0;
3396 out_disk:
3397 put_disk(disk);
3398
3399 return -ENOMEM;
3400 }
3401
3402 /*
3403 sysfs
3404 */
3405
3406 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3407 {
3408 return container_of(dev, struct rbd_device, dev);
3409 }
3410
3411 static ssize_t rbd_size_show(struct device *dev,
3412 struct device_attribute *attr, char *buf)
3413 {
3414 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3415
3416 return sprintf(buf, "%llu\n",
3417 (unsigned long long)rbd_dev->mapping.size);
3418 }
3419
3420 /*
3421 * Note this shows the features for whatever's mapped, which is not
3422 * necessarily the base image.
3423 */
3424 static ssize_t rbd_features_show(struct device *dev,
3425 struct device_attribute *attr, char *buf)
3426 {
3427 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3428
3429 return sprintf(buf, "0x%016llx\n",
3430 (unsigned long long)rbd_dev->mapping.features);
3431 }
3432
3433 static ssize_t rbd_major_show(struct device *dev,
3434 struct device_attribute *attr, char *buf)
3435 {
3436 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3437
3438 if (rbd_dev->major)
3439 return sprintf(buf, "%d\n", rbd_dev->major);
3440
3441 return sprintf(buf, "(none)\n");
3442
3443 }
3444
3445 static ssize_t rbd_client_id_show(struct device *dev,
3446 struct device_attribute *attr, char *buf)
3447 {
3448 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3449
3450 return sprintf(buf, "client%lld\n",
3451 ceph_client_id(rbd_dev->rbd_client->client));
3452 }
3453
3454 static ssize_t rbd_pool_show(struct device *dev,
3455 struct device_attribute *attr, char *buf)
3456 {
3457 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3460 }
3461
3462 static ssize_t rbd_pool_id_show(struct device *dev,
3463 struct device_attribute *attr, char *buf)
3464 {
3465 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466
3467 return sprintf(buf, "%llu\n",
3468 (unsigned long long) rbd_dev->spec->pool_id);
3469 }
3470
3471 static ssize_t rbd_name_show(struct device *dev,
3472 struct device_attribute *attr, char *buf)
3473 {
3474 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476 if (rbd_dev->spec->image_name)
3477 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3478
3479 return sprintf(buf, "(unknown)\n");
3480 }
3481
3482 static ssize_t rbd_image_id_show(struct device *dev,
3483 struct device_attribute *attr, char *buf)
3484 {
3485 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486
3487 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3488 }
3489
3490 /*
3491 * Shows the name of the currently-mapped snapshot (or
3492 * RBD_SNAP_HEAD_NAME for the base image).
3493 */
3494 static ssize_t rbd_snap_show(struct device *dev,
3495 struct device_attribute *attr,
3496 char *buf)
3497 {
3498 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3499
3500 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3501 }
3502
3503 /*
3504 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3505 * for the parent image. If there is no parent, simply shows
3506 * "(no parent image)".
3507 */
3508 static ssize_t rbd_parent_show(struct device *dev,
3509 struct device_attribute *attr,
3510 char *buf)
3511 {
3512 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3513 struct rbd_spec *spec = rbd_dev->parent_spec;
3514 int count;
3515 char *bufp = buf;
3516
3517 if (!spec)
3518 return sprintf(buf, "(no parent image)\n");
3519
3520 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3521 (unsigned long long) spec->pool_id, spec->pool_name);
3522 if (count < 0)
3523 return count;
3524 bufp += count;
3525
3526 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3527 spec->image_name ? spec->image_name : "(unknown)");
3528 if (count < 0)
3529 return count;
3530 bufp += count;
3531
3532 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3533 (unsigned long long) spec->snap_id, spec->snap_name);
3534 if (count < 0)
3535 return count;
3536 bufp += count;
3537
3538 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3539 if (count < 0)
3540 return count;
3541 bufp += count;
3542
3543 return (ssize_t) (bufp - buf);
3544 }
3545
3546 static ssize_t rbd_image_refresh(struct device *dev,
3547 struct device_attribute *attr,
3548 const char *buf,
3549 size_t size)
3550 {
3551 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3552 int ret;
3553
3554 ret = rbd_dev_refresh(rbd_dev);
3555 if (ret)
3556 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3557
3558 return ret < 0 ? ret : size;
3559 }
3560
3561 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3562 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3563 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3564 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3565 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3566 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3567 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3568 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3569 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3570 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3571 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3572
3573 static struct attribute *rbd_attrs[] = {
3574 &dev_attr_size.attr,
3575 &dev_attr_features.attr,
3576 &dev_attr_major.attr,
3577 &dev_attr_client_id.attr,
3578 &dev_attr_pool.attr,
3579 &dev_attr_pool_id.attr,
3580 &dev_attr_name.attr,
3581 &dev_attr_image_id.attr,
3582 &dev_attr_current_snap.attr,
3583 &dev_attr_parent.attr,
3584 &dev_attr_refresh.attr,
3585 NULL
3586 };
3587
3588 static struct attribute_group rbd_attr_group = {
3589 .attrs = rbd_attrs,
3590 };
3591
3592 static const struct attribute_group *rbd_attr_groups[] = {
3593 &rbd_attr_group,
3594 NULL
3595 };
3596
3597 static void rbd_sysfs_dev_release(struct device *dev)
3598 {
3599 }
3600
3601 static struct device_type rbd_device_type = {
3602 .name = "rbd",
3603 .groups = rbd_attr_groups,
3604 .release = rbd_sysfs_dev_release,
3605 };
3606
3607 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3608 {
3609 kref_get(&spec->kref);
3610
3611 return spec;
3612 }
3613
3614 static void rbd_spec_free(struct kref *kref);
3615 static void rbd_spec_put(struct rbd_spec *spec)
3616 {
3617 if (spec)
3618 kref_put(&spec->kref, rbd_spec_free);
3619 }
3620
3621 static struct rbd_spec *rbd_spec_alloc(void)
3622 {
3623 struct rbd_spec *spec;
3624
3625 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3626 if (!spec)
3627 return NULL;
3628 kref_init(&spec->kref);
3629
3630 return spec;
3631 }
3632
3633 static void rbd_spec_free(struct kref *kref)
3634 {
3635 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3636
3637 kfree(spec->pool_name);
3638 kfree(spec->image_id);
3639 kfree(spec->image_name);
3640 kfree(spec->snap_name);
3641 kfree(spec);
3642 }
3643
3644 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3645 struct rbd_spec *spec)
3646 {
3647 struct rbd_device *rbd_dev;
3648
3649 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3650 if (!rbd_dev)
3651 return NULL;
3652
3653 spin_lock_init(&rbd_dev->lock);
3654 rbd_dev->flags = 0;
3655 atomic_set(&rbd_dev->parent_ref, 0);
3656 INIT_LIST_HEAD(&rbd_dev->node);
3657 init_rwsem(&rbd_dev->header_rwsem);
3658
3659 rbd_dev->spec = spec;
3660 rbd_dev->rbd_client = rbdc;
3661
3662 /* Initialize the layout used for all rbd requests */
3663
3664 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3665 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3666 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3667 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3668
3669 return rbd_dev;
3670 }
3671
3672 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3673 {
3674 rbd_put_client(rbd_dev->rbd_client);
3675 rbd_spec_put(rbd_dev->spec);
3676 kfree(rbd_dev);
3677 }
3678
3679 /*
3680 * Get the size and object order for an image snapshot, or if
3681 * snap_id is CEPH_NOSNAP, gets this information for the base
3682 * image.
3683 */
3684 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3685 u8 *order, u64 *snap_size)
3686 {
3687 __le64 snapid = cpu_to_le64(snap_id);
3688 int ret;
3689 struct {
3690 u8 order;
3691 __le64 size;
3692 } __attribute__ ((packed)) size_buf = { 0 };
3693
3694 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3695 "rbd", "get_size",
3696 &snapid, sizeof (snapid),
3697 &size_buf, sizeof (size_buf));
3698 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3699 if (ret < 0)
3700 return ret;
3701 if (ret < sizeof (size_buf))
3702 return -ERANGE;
3703
3704 if (order)
3705 *order = size_buf.order;
3706 *snap_size = le64_to_cpu(size_buf.size);
3707
3708 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3709 (unsigned long long)snap_id, (unsigned int)*order,
3710 (unsigned long long)*snap_size);
3711
3712 return 0;
3713 }
3714
3715 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3716 {
3717 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3718 &rbd_dev->header.obj_order,
3719 &rbd_dev->header.image_size);
3720 }
3721
3722 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3723 {
3724 void *reply_buf;
3725 int ret;
3726 void *p;
3727
3728 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3729 if (!reply_buf)
3730 return -ENOMEM;
3731
3732 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3733 "rbd", "get_object_prefix", NULL, 0,
3734 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3735 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3736 if (ret < 0)
3737 goto out;
3738
3739 p = reply_buf;
3740 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3741 p + ret, NULL, GFP_NOIO);
3742 ret = 0;
3743
3744 if (IS_ERR(rbd_dev->header.object_prefix)) {
3745 ret = PTR_ERR(rbd_dev->header.object_prefix);
3746 rbd_dev->header.object_prefix = NULL;
3747 } else {
3748 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3749 }
3750 out:
3751 kfree(reply_buf);
3752
3753 return ret;
3754 }
3755
3756 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3757 u64 *snap_features)
3758 {
3759 __le64 snapid = cpu_to_le64(snap_id);
3760 struct {
3761 __le64 features;
3762 __le64 incompat;
3763 } __attribute__ ((packed)) features_buf = { 0 };
3764 u64 incompat;
3765 int ret;
3766
3767 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3768 "rbd", "get_features",
3769 &snapid, sizeof (snapid),
3770 &features_buf, sizeof (features_buf));
3771 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3772 if (ret < 0)
3773 return ret;
3774 if (ret < sizeof (features_buf))
3775 return -ERANGE;
3776
3777 incompat = le64_to_cpu(features_buf.incompat);
3778 if (incompat & ~RBD_FEATURES_SUPPORTED)
3779 return -ENXIO;
3780
3781 *snap_features = le64_to_cpu(features_buf.features);
3782
3783 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3784 (unsigned long long)snap_id,
3785 (unsigned long long)*snap_features,
3786 (unsigned long long)le64_to_cpu(features_buf.incompat));
3787
3788 return 0;
3789 }
3790
3791 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3792 {
3793 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3794 &rbd_dev->header.features);
3795 }
3796
3797 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3798 {
3799 struct rbd_spec *parent_spec;
3800 size_t size;
3801 void *reply_buf = NULL;
3802 __le64 snapid;
3803 void *p;
3804 void *end;
3805 u64 pool_id;
3806 char *image_id;
3807 u64 overlap;
3808 int ret;
3809
3810 parent_spec = rbd_spec_alloc();
3811 if (!parent_spec)
3812 return -ENOMEM;
3813
3814 size = sizeof (__le64) + /* pool_id */
3815 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3816 sizeof (__le64) + /* snap_id */
3817 sizeof (__le64); /* overlap */
3818 reply_buf = kmalloc(size, GFP_KERNEL);
3819 if (!reply_buf) {
3820 ret = -ENOMEM;
3821 goto out_err;
3822 }
3823
3824 snapid = cpu_to_le64(CEPH_NOSNAP);
3825 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3826 "rbd", "get_parent",
3827 &snapid, sizeof (snapid),
3828 reply_buf, size);
3829 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3830 if (ret < 0)
3831 goto out_err;
3832
3833 p = reply_buf;
3834 end = reply_buf + ret;
3835 ret = -ERANGE;
3836 ceph_decode_64_safe(&p, end, pool_id, out_err);
3837 if (pool_id == CEPH_NOPOOL) {
3838 /*
3839 * Either the parent never existed, or we have
3840 * record of it but the image got flattened so it no
3841 * longer has a parent. When the parent of a
3842 * layered image disappears we immediately set the
3843 * overlap to 0. The effect of this is that all new
3844 * requests will be treated as if the image had no
3845 * parent.
3846 */
3847 if (rbd_dev->parent_overlap) {
3848 rbd_dev->parent_overlap = 0;
3849 smp_mb();
3850 rbd_dev_parent_put(rbd_dev);
3851 pr_info("%s: clone image has been flattened\n",
3852 rbd_dev->disk->disk_name);
3853 }
3854
3855 goto out; /* No parent? No problem. */
3856 }
3857
3858 /* The ceph file layout needs to fit pool id in 32 bits */
3859
3860 ret = -EIO;
3861 if (pool_id > (u64)U32_MAX) {
3862 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3863 (unsigned long long)pool_id, U32_MAX);
3864 goto out_err;
3865 }
3866 parent_spec->pool_id = pool_id;
3867
3868 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3869 if (IS_ERR(image_id)) {
3870 ret = PTR_ERR(image_id);
3871 goto out_err;
3872 }
3873 parent_spec->image_id = image_id;
3874 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3875 ceph_decode_64_safe(&p, end, overlap, out_err);
3876
3877 if (overlap) {
3878 rbd_spec_put(rbd_dev->parent_spec);
3879 rbd_dev->parent_spec = parent_spec;
3880 parent_spec = NULL; /* rbd_dev now owns this */
3881 rbd_dev->parent_overlap = overlap;
3882 } else {
3883 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3884 }
3885 out:
3886 ret = 0;
3887 out_err:
3888 kfree(reply_buf);
3889 rbd_spec_put(parent_spec);
3890
3891 return ret;
3892 }
3893
3894 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3895 {
3896 struct {
3897 __le64 stripe_unit;
3898 __le64 stripe_count;
3899 } __attribute__ ((packed)) striping_info_buf = { 0 };
3900 size_t size = sizeof (striping_info_buf);
3901 void *p;
3902 u64 obj_size;
3903 u64 stripe_unit;
3904 u64 stripe_count;
3905 int ret;
3906
3907 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3908 "rbd", "get_stripe_unit_count", NULL, 0,
3909 (char *)&striping_info_buf, size);
3910 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3911 if (ret < 0)
3912 return ret;
3913 if (ret < size)
3914 return -ERANGE;
3915
3916 /*
3917 * We don't actually support the "fancy striping" feature
3918 * (STRIPINGV2) yet, but if the striping sizes are the
3919 * defaults the behavior is the same as before. So find
3920 * out, and only fail if the image has non-default values.
3921 */
3922 ret = -EINVAL;
3923 obj_size = (u64)1 << rbd_dev->header.obj_order;
3924 p = &striping_info_buf;
3925 stripe_unit = ceph_decode_64(&p);
3926 if (stripe_unit != obj_size) {
3927 rbd_warn(rbd_dev, "unsupported stripe unit "
3928 "(got %llu want %llu)",
3929 stripe_unit, obj_size);
3930 return -EINVAL;
3931 }
3932 stripe_count = ceph_decode_64(&p);
3933 if (stripe_count != 1) {
3934 rbd_warn(rbd_dev, "unsupported stripe count "
3935 "(got %llu want 1)", stripe_count);
3936 return -EINVAL;
3937 }
3938 rbd_dev->header.stripe_unit = stripe_unit;
3939 rbd_dev->header.stripe_count = stripe_count;
3940
3941 return 0;
3942 }
3943
3944 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3945 {
3946 size_t image_id_size;
3947 char *image_id;
3948 void *p;
3949 void *end;
3950 size_t size;
3951 void *reply_buf = NULL;
3952 size_t len = 0;
3953 char *image_name = NULL;
3954 int ret;
3955
3956 rbd_assert(!rbd_dev->spec->image_name);
3957
3958 len = strlen(rbd_dev->spec->image_id);
3959 image_id_size = sizeof (__le32) + len;
3960 image_id = kmalloc(image_id_size, GFP_KERNEL);
3961 if (!image_id)
3962 return NULL;
3963
3964 p = image_id;
3965 end = image_id + image_id_size;
3966 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3967
3968 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3969 reply_buf = kmalloc(size, GFP_KERNEL);
3970 if (!reply_buf)
3971 goto out;
3972
3973 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3974 "rbd", "dir_get_name",
3975 image_id, image_id_size,
3976 reply_buf, size);
3977 if (ret < 0)
3978 goto out;
3979 p = reply_buf;
3980 end = reply_buf + ret;
3981
3982 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3983 if (IS_ERR(image_name))
3984 image_name = NULL;
3985 else
3986 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3987 out:
3988 kfree(reply_buf);
3989 kfree(image_id);
3990
3991 return image_name;
3992 }
3993
3994 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3995 {
3996 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3997 const char *snap_name;
3998 u32 which = 0;
3999
4000 /* Skip over names until we find the one we are looking for */
4001
4002 snap_name = rbd_dev->header.snap_names;
4003 while (which < snapc->num_snaps) {
4004 if (!strcmp(name, snap_name))
4005 return snapc->snaps[which];
4006 snap_name += strlen(snap_name) + 1;
4007 which++;
4008 }
4009 return CEPH_NOSNAP;
4010 }
4011
4012 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4013 {
4014 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4015 u32 which;
4016 bool found = false;
4017 u64 snap_id;
4018
4019 for (which = 0; !found && which < snapc->num_snaps; which++) {
4020 const char *snap_name;
4021
4022 snap_id = snapc->snaps[which];
4023 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4024 if (IS_ERR(snap_name))
4025 break;
4026 found = !strcmp(name, snap_name);
4027 kfree(snap_name);
4028 }
4029 return found ? snap_id : CEPH_NOSNAP;
4030 }
4031
4032 /*
4033 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4034 * no snapshot by that name is found, or if an error occurs.
4035 */
4036 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4037 {
4038 if (rbd_dev->image_format == 1)
4039 return rbd_v1_snap_id_by_name(rbd_dev, name);
4040
4041 return rbd_v2_snap_id_by_name(rbd_dev, name);
4042 }
4043
4044 /*
4045 * When an rbd image has a parent image, it is identified by the
4046 * pool, image, and snapshot ids (not names). This function fills
4047 * in the names for those ids. (It's OK if we can't figure out the
4048 * name for an image id, but the pool and snapshot ids should always
4049 * exist and have names.) All names in an rbd spec are dynamically
4050 * allocated.
4051 *
4052 * When an image being mapped (not a parent) is probed, we have the
4053 * pool name and pool id, image name and image id, and the snapshot
4054 * name. The only thing we're missing is the snapshot id.
4055 */
4056 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4057 {
4058 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4059 struct rbd_spec *spec = rbd_dev->spec;
4060 const char *pool_name;
4061 const char *image_name;
4062 const char *snap_name;
4063 int ret;
4064
4065 /*
4066 * An image being mapped will have the pool name (etc.), but
4067 * we need to look up the snapshot id.
4068 */
4069 if (spec->pool_name) {
4070 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4071 u64 snap_id;
4072
4073 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4074 if (snap_id == CEPH_NOSNAP)
4075 return -ENOENT;
4076 spec->snap_id = snap_id;
4077 } else {
4078 spec->snap_id = CEPH_NOSNAP;
4079 }
4080
4081 return 0;
4082 }
4083
4084 /* Get the pool name; we have to make our own copy of this */
4085
4086 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4087 if (!pool_name) {
4088 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4089 return -EIO;
4090 }
4091 pool_name = kstrdup(pool_name, GFP_KERNEL);
4092 if (!pool_name)
4093 return -ENOMEM;
4094
4095 /* Fetch the image name; tolerate failure here */
4096
4097 image_name = rbd_dev_image_name(rbd_dev);
4098 if (!image_name)
4099 rbd_warn(rbd_dev, "unable to get image name");
4100
4101 /* Look up the snapshot name, and make a copy */
4102
4103 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4104 if (!snap_name) {
4105 ret = -ENOMEM;
4106 goto out_err;
4107 }
4108
4109 spec->pool_name = pool_name;
4110 spec->image_name = image_name;
4111 spec->snap_name = snap_name;
4112
4113 return 0;
4114 out_err:
4115 kfree(image_name);
4116 kfree(pool_name);
4117
4118 return ret;
4119 }
4120
4121 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4122 {
4123 size_t size;
4124 int ret;
4125 void *reply_buf;
4126 void *p;
4127 void *end;
4128 u64 seq;
4129 u32 snap_count;
4130 struct ceph_snap_context *snapc;
4131 u32 i;
4132
4133 /*
4134 * We'll need room for the seq value (maximum snapshot id),
4135 * snapshot count, and array of that many snapshot ids.
4136 * For now we have a fixed upper limit on the number we're
4137 * prepared to receive.
4138 */
4139 size = sizeof (__le64) + sizeof (__le32) +
4140 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4141 reply_buf = kzalloc(size, GFP_KERNEL);
4142 if (!reply_buf)
4143 return -ENOMEM;
4144
4145 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4146 "rbd", "get_snapcontext", NULL, 0,
4147 reply_buf, size);
4148 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4149 if (ret < 0)
4150 goto out;
4151
4152 p = reply_buf;
4153 end = reply_buf + ret;
4154 ret = -ERANGE;
4155 ceph_decode_64_safe(&p, end, seq, out);
4156 ceph_decode_32_safe(&p, end, snap_count, out);
4157
4158 /*
4159 * Make sure the reported number of snapshot ids wouldn't go
4160 * beyond the end of our buffer. But before checking that,
4161 * make sure the computed size of the snapshot context we
4162 * allocate is representable in a size_t.
4163 */
4164 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4165 / sizeof (u64)) {
4166 ret = -EINVAL;
4167 goto out;
4168 }
4169 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4170 goto out;
4171 ret = 0;
4172
4173 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4174 if (!snapc) {
4175 ret = -ENOMEM;
4176 goto out;
4177 }
4178 snapc->seq = seq;
4179 for (i = 0; i < snap_count; i++)
4180 snapc->snaps[i] = ceph_decode_64(&p);
4181
4182 ceph_put_snap_context(rbd_dev->header.snapc);
4183 rbd_dev->header.snapc = snapc;
4184
4185 dout(" snap context seq = %llu, snap_count = %u\n",
4186 (unsigned long long)seq, (unsigned int)snap_count);
4187 out:
4188 kfree(reply_buf);
4189
4190 return ret;
4191 }
4192
4193 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4194 u64 snap_id)
4195 {
4196 size_t size;
4197 void *reply_buf;
4198 __le64 snapid;
4199 int ret;
4200 void *p;
4201 void *end;
4202 char *snap_name;
4203
4204 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4205 reply_buf = kmalloc(size, GFP_KERNEL);
4206 if (!reply_buf)
4207 return ERR_PTR(-ENOMEM);
4208
4209 snapid = cpu_to_le64(snap_id);
4210 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4211 "rbd", "get_snapshot_name",
4212 &snapid, sizeof (snapid),
4213 reply_buf, size);
4214 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4215 if (ret < 0) {
4216 snap_name = ERR_PTR(ret);
4217 goto out;
4218 }
4219
4220 p = reply_buf;
4221 end = reply_buf + ret;
4222 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4223 if (IS_ERR(snap_name))
4224 goto out;
4225
4226 dout(" snap_id 0x%016llx snap_name = %s\n",
4227 (unsigned long long)snap_id, snap_name);
4228 out:
4229 kfree(reply_buf);
4230
4231 return snap_name;
4232 }
4233
4234 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4235 {
4236 bool first_time = rbd_dev->header.object_prefix == NULL;
4237 int ret;
4238
4239 down_write(&rbd_dev->header_rwsem);
4240
4241 if (first_time) {
4242 ret = rbd_dev_v2_header_onetime(rbd_dev);
4243 if (ret)
4244 goto out;
4245 }
4246
4247 /*
4248 * If the image supports layering, get the parent info. We
4249 * need to probe the first time regardless. Thereafter we
4250 * only need to if there's a parent, to see if it has
4251 * disappeared due to the mapped image getting flattened.
4252 */
4253 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4254 (first_time || rbd_dev->parent_spec)) {
4255 bool warn;
4256
4257 ret = rbd_dev_v2_parent_info(rbd_dev);
4258 if (ret)
4259 goto out;
4260
4261 /*
4262 * Print a warning if this is the initial probe and
4263 * the image has a parent. Don't print it if the
4264 * image now being probed is itself a parent. We
4265 * can tell at this point because we won't know its
4266 * pool name yet (just its pool id).
4267 */
4268 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4269 if (first_time && warn)
4270 rbd_warn(rbd_dev, "WARNING: kernel layering "
4271 "is EXPERIMENTAL!");
4272 }
4273
4274 ret = rbd_dev_v2_image_size(rbd_dev);
4275 if (ret)
4276 goto out;
4277
4278 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4279 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4280 rbd_dev->mapping.size = rbd_dev->header.image_size;
4281
4282 ret = rbd_dev_v2_snap_context(rbd_dev);
4283 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4284 out:
4285 up_write(&rbd_dev->header_rwsem);
4286
4287 return ret;
4288 }
4289
4290 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4291 {
4292 struct device *dev;
4293 int ret;
4294
4295 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4296
4297 dev = &rbd_dev->dev;
4298 dev->bus = &rbd_bus_type;
4299 dev->type = &rbd_device_type;
4300 dev->parent = &rbd_root_dev;
4301 dev->release = rbd_dev_device_release;
4302 dev_set_name(dev, "%d", rbd_dev->dev_id);
4303 ret = device_register(dev);
4304
4305 mutex_unlock(&ctl_mutex);
4306
4307 return ret;
4308 }
4309
4310 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4311 {
4312 device_unregister(&rbd_dev->dev);
4313 }
4314
4315 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4316
4317 /*
4318 * Get a unique rbd identifier for the given new rbd_dev, and add
4319 * the rbd_dev to the global list. The minimum rbd id is 1.
4320 */
4321 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4322 {
4323 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4324
4325 spin_lock(&rbd_dev_list_lock);
4326 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4327 spin_unlock(&rbd_dev_list_lock);
4328 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4329 (unsigned long long) rbd_dev->dev_id);
4330 }
4331
4332 /*
4333 * Remove an rbd_dev from the global list, and record that its
4334 * identifier is no longer in use.
4335 */
4336 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4337 {
4338 struct list_head *tmp;
4339 int rbd_id = rbd_dev->dev_id;
4340 int max_id;
4341
4342 rbd_assert(rbd_id > 0);
4343
4344 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4345 (unsigned long long) rbd_dev->dev_id);
4346 spin_lock(&rbd_dev_list_lock);
4347 list_del_init(&rbd_dev->node);
4348
4349 /*
4350 * If the id being "put" is not the current maximum, there
4351 * is nothing special we need to do.
4352 */
4353 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4354 spin_unlock(&rbd_dev_list_lock);
4355 return;
4356 }
4357
4358 /*
4359 * We need to update the current maximum id. Search the
4360 * list to find out what it is. We're more likely to find
4361 * the maximum at the end, so search the list backward.
4362 */
4363 max_id = 0;
4364 list_for_each_prev(tmp, &rbd_dev_list) {
4365 struct rbd_device *rbd_dev;
4366
4367 rbd_dev = list_entry(tmp, struct rbd_device, node);
4368 if (rbd_dev->dev_id > max_id)
4369 max_id = rbd_dev->dev_id;
4370 }
4371 spin_unlock(&rbd_dev_list_lock);
4372
4373 /*
4374 * The max id could have been updated by rbd_dev_id_get(), in
4375 * which case it now accurately reflects the new maximum.
4376 * Be careful not to overwrite the maximum value in that
4377 * case.
4378 */
4379 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4380 dout(" max dev id has been reset\n");
4381 }
4382
4383 /*
4384 * Skips over white space at *buf, and updates *buf to point to the
4385 * first found non-space character (if any). Returns the length of
4386 * the token (string of non-white space characters) found. Note
4387 * that *buf must be terminated with '\0'.
4388 */
4389 static inline size_t next_token(const char **buf)
4390 {
4391 /*
4392 * These are the characters that produce nonzero for
4393 * isspace() in the "C" and "POSIX" locales.
4394 */
4395 const char *spaces = " \f\n\r\t\v";
4396
4397 *buf += strspn(*buf, spaces); /* Find start of token */
4398
4399 return strcspn(*buf, spaces); /* Return token length */
4400 }
4401
4402 /*
4403 * Finds the next token in *buf, and if the provided token buffer is
4404 * big enough, copies the found token into it. The result, if
4405 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4406 * must be terminated with '\0' on entry.
4407 *
4408 * Returns the length of the token found (not including the '\0').
4409 * Return value will be 0 if no token is found, and it will be >=
4410 * token_size if the token would not fit.
4411 *
4412 * The *buf pointer will be updated to point beyond the end of the
4413 * found token. Note that this occurs even if the token buffer is
4414 * too small to hold it.
4415 */
4416 static inline size_t copy_token(const char **buf,
4417 char *token,
4418 size_t token_size)
4419 {
4420 size_t len;
4421
4422 len = next_token(buf);
4423 if (len < token_size) {
4424 memcpy(token, *buf, len);
4425 *(token + len) = '\0';
4426 }
4427 *buf += len;
4428
4429 return len;
4430 }
4431
4432 /*
4433 * Finds the next token in *buf, dynamically allocates a buffer big
4434 * enough to hold a copy of it, and copies the token into the new
4435 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4436 * that a duplicate buffer is created even for a zero-length token.
4437 *
4438 * Returns a pointer to the newly-allocated duplicate, or a null
4439 * pointer if memory for the duplicate was not available. If
4440 * the lenp argument is a non-null pointer, the length of the token
4441 * (not including the '\0') is returned in *lenp.
4442 *
4443 * If successful, the *buf pointer will be updated to point beyond
4444 * the end of the found token.
4445 *
4446 * Note: uses GFP_KERNEL for allocation.
4447 */
4448 static inline char *dup_token(const char **buf, size_t *lenp)
4449 {
4450 char *dup;
4451 size_t len;
4452
4453 len = next_token(buf);
4454 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4455 if (!dup)
4456 return NULL;
4457 *(dup + len) = '\0';
4458 *buf += len;
4459
4460 if (lenp)
4461 *lenp = len;
4462
4463 return dup;
4464 }
4465
4466 /*
4467 * Parse the options provided for an "rbd add" (i.e., rbd image
4468 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4469 * and the data written is passed here via a NUL-terminated buffer.
4470 * Returns 0 if successful or an error code otherwise.
4471 *
4472 * The information extracted from these options is recorded in
4473 * the other parameters which return dynamically-allocated
4474 * structures:
4475 * ceph_opts
4476 * The address of a pointer that will refer to a ceph options
4477 * structure. Caller must release the returned pointer using
4478 * ceph_destroy_options() when it is no longer needed.
4479 * rbd_opts
4480 * Address of an rbd options pointer. Fully initialized by
4481 * this function; caller must release with kfree().
4482 * spec
4483 * Address of an rbd image specification pointer. Fully
4484 * initialized by this function based on parsed options.
4485 * Caller must release with rbd_spec_put().
4486 *
4487 * The options passed take this form:
4488 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4489 * where:
4490 * <mon_addrs>
4491 * A comma-separated list of one or more monitor addresses.
4492 * A monitor address is an ip address, optionally followed
4493 * by a port number (separated by a colon).
4494 * I.e.: ip1[:port1][,ip2[:port2]...]
4495 * <options>
4496 * A comma-separated list of ceph and/or rbd options.
4497 * <pool_name>
4498 * The name of the rados pool containing the rbd image.
4499 * <image_name>
4500 * The name of the image in that pool to map.
4501 * <snap_id>
4502 * An optional snapshot id. If provided, the mapping will
4503 * present data from the image at the time that snapshot was
4504 * created. The image head is used if no snapshot id is
4505 * provided. Snapshot mappings are always read-only.
4506 */
4507 static int rbd_add_parse_args(const char *buf,
4508 struct ceph_options **ceph_opts,
4509 struct rbd_options **opts,
4510 struct rbd_spec **rbd_spec)
4511 {
4512 size_t len;
4513 char *options;
4514 const char *mon_addrs;
4515 char *snap_name;
4516 size_t mon_addrs_size;
4517 struct rbd_spec *spec = NULL;
4518 struct rbd_options *rbd_opts = NULL;
4519 struct ceph_options *copts;
4520 int ret;
4521
4522 /* The first four tokens are required */
4523
4524 len = next_token(&buf);
4525 if (!len) {
4526 rbd_warn(NULL, "no monitor address(es) provided");
4527 return -EINVAL;
4528 }
4529 mon_addrs = buf;
4530 mon_addrs_size = len + 1;
4531 buf += len;
4532
4533 ret = -EINVAL;
4534 options = dup_token(&buf, NULL);
4535 if (!options)
4536 return -ENOMEM;
4537 if (!*options) {
4538 rbd_warn(NULL, "no options provided");
4539 goto out_err;
4540 }
4541
4542 spec = rbd_spec_alloc();
4543 if (!spec)
4544 goto out_mem;
4545
4546 spec->pool_name = dup_token(&buf, NULL);
4547 if (!spec->pool_name)
4548 goto out_mem;
4549 if (!*spec->pool_name) {
4550 rbd_warn(NULL, "no pool name provided");
4551 goto out_err;
4552 }
4553
4554 spec->image_name = dup_token(&buf, NULL);
4555 if (!spec->image_name)
4556 goto out_mem;
4557 if (!*spec->image_name) {
4558 rbd_warn(NULL, "no image name provided");
4559 goto out_err;
4560 }
4561
4562 /*
4563 * Snapshot name is optional; default is to use "-"
4564 * (indicating the head/no snapshot).
4565 */
4566 len = next_token(&buf);
4567 if (!len) {
4568 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4569 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4570 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4571 ret = -ENAMETOOLONG;
4572 goto out_err;
4573 }
4574 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4575 if (!snap_name)
4576 goto out_mem;
4577 *(snap_name + len) = '\0';
4578 spec->snap_name = snap_name;
4579
4580 /* Initialize all rbd options to the defaults */
4581
4582 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4583 if (!rbd_opts)
4584 goto out_mem;
4585
4586 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4587
4588 copts = ceph_parse_options(options, mon_addrs,
4589 mon_addrs + mon_addrs_size - 1,
4590 parse_rbd_opts_token, rbd_opts);
4591 if (IS_ERR(copts)) {
4592 ret = PTR_ERR(copts);
4593 goto out_err;
4594 }
4595 kfree(options);
4596
4597 *ceph_opts = copts;
4598 *opts = rbd_opts;
4599 *rbd_spec = spec;
4600
4601 return 0;
4602 out_mem:
4603 ret = -ENOMEM;
4604 out_err:
4605 kfree(rbd_opts);
4606 rbd_spec_put(spec);
4607 kfree(options);
4608
4609 return ret;
4610 }
4611
4612 /*
4613 * An rbd format 2 image has a unique identifier, distinct from the
4614 * name given to it by the user. Internally, that identifier is
4615 * what's used to specify the names of objects related to the image.
4616 *
4617 * A special "rbd id" object is used to map an rbd image name to its
4618 * id. If that object doesn't exist, then there is no v2 rbd image
4619 * with the supplied name.
4620 *
4621 * This function will record the given rbd_dev's image_id field if
4622 * it can be determined, and in that case will return 0. If any
4623 * errors occur a negative errno will be returned and the rbd_dev's
4624 * image_id field will be unchanged (and should be NULL).
4625 */
4626 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4627 {
4628 int ret;
4629 size_t size;
4630 char *object_name;
4631 void *response;
4632 char *image_id;
4633
4634 /*
4635 * When probing a parent image, the image id is already
4636 * known (and the image name likely is not). There's no
4637 * need to fetch the image id again in this case. We
4638 * do still need to set the image format though.
4639 */
4640 if (rbd_dev->spec->image_id) {
4641 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4642
4643 return 0;
4644 }
4645
4646 /*
4647 * First, see if the format 2 image id file exists, and if
4648 * so, get the image's persistent id from it.
4649 */
4650 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4651 object_name = kmalloc(size, GFP_NOIO);
4652 if (!object_name)
4653 return -ENOMEM;
4654 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4655 dout("rbd id object name is %s\n", object_name);
4656
4657 /* Response will be an encoded string, which includes a length */
4658
4659 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4660 response = kzalloc(size, GFP_NOIO);
4661 if (!response) {
4662 ret = -ENOMEM;
4663 goto out;
4664 }
4665
4666 /* If it doesn't exist we'll assume it's a format 1 image */
4667
4668 ret = rbd_obj_method_sync(rbd_dev, object_name,
4669 "rbd", "get_id", NULL, 0,
4670 response, RBD_IMAGE_ID_LEN_MAX);
4671 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4672 if (ret == -ENOENT) {
4673 image_id = kstrdup("", GFP_KERNEL);
4674 ret = image_id ? 0 : -ENOMEM;
4675 if (!ret)
4676 rbd_dev->image_format = 1;
4677 } else if (ret > sizeof (__le32)) {
4678 void *p = response;
4679
4680 image_id = ceph_extract_encoded_string(&p, p + ret,
4681 NULL, GFP_NOIO);
4682 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4683 if (!ret)
4684 rbd_dev->image_format = 2;
4685 } else {
4686 ret = -EINVAL;
4687 }
4688
4689 if (!ret) {
4690 rbd_dev->spec->image_id = image_id;
4691 dout("image_id is %s\n", image_id);
4692 }
4693 out:
4694 kfree(response);
4695 kfree(object_name);
4696
4697 return ret;
4698 }
4699
4700 /* Undo whatever state changes are made by v1 or v2 image probe */
4701
4702 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4703 {
4704 struct rbd_image_header *header;
4705
4706 /* Drop parent reference unless it's already been done (or none) */
4707
4708 if (rbd_dev->parent_overlap)
4709 rbd_dev_parent_put(rbd_dev);
4710
4711 /* Free dynamic fields from the header, then zero it out */
4712
4713 header = &rbd_dev->header;
4714 ceph_put_snap_context(header->snapc);
4715 kfree(header->snap_sizes);
4716 kfree(header->snap_names);
4717 kfree(header->object_prefix);
4718 memset(header, 0, sizeof (*header));
4719 }
4720
4721 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4722 {
4723 int ret;
4724
4725 ret = rbd_dev_v2_object_prefix(rbd_dev);
4726 if (ret)
4727 goto out_err;
4728
4729 /*
4730 * Get the and check features for the image. Currently the
4731 * features are assumed to never change.
4732 */
4733 ret = rbd_dev_v2_features(rbd_dev);
4734 if (ret)
4735 goto out_err;
4736
4737 /* If the image supports fancy striping, get its parameters */
4738
4739 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4740 ret = rbd_dev_v2_striping_info(rbd_dev);
4741 if (ret < 0)
4742 goto out_err;
4743 }
4744 /* No support for crypto and compression type format 2 images */
4745
4746 return 0;
4747 out_err:
4748 rbd_dev->header.features = 0;
4749 kfree(rbd_dev->header.object_prefix);
4750 rbd_dev->header.object_prefix = NULL;
4751
4752 return ret;
4753 }
4754
4755 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4756 {
4757 struct rbd_device *parent = NULL;
4758 struct rbd_spec *parent_spec;
4759 struct rbd_client *rbdc;
4760 int ret;
4761
4762 if (!rbd_dev->parent_spec)
4763 return 0;
4764 /*
4765 * We need to pass a reference to the client and the parent
4766 * spec when creating the parent rbd_dev. Images related by
4767 * parent/child relationships always share both.
4768 */
4769 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4770 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4771
4772 ret = -ENOMEM;
4773 parent = rbd_dev_create(rbdc, parent_spec);
4774 if (!parent)
4775 goto out_err;
4776
4777 ret = rbd_dev_image_probe(parent, false);
4778 if (ret < 0)
4779 goto out_err;
4780 rbd_dev->parent = parent;
4781 atomic_set(&rbd_dev->parent_ref, 1);
4782
4783 return 0;
4784 out_err:
4785 if (parent) {
4786 rbd_dev_unparent(rbd_dev);
4787 kfree(rbd_dev->header_name);
4788 rbd_dev_destroy(parent);
4789 } else {
4790 rbd_put_client(rbdc);
4791 rbd_spec_put(parent_spec);
4792 }
4793
4794 return ret;
4795 }
4796
4797 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4798 {
4799 int ret;
4800
4801 /* generate unique id: find highest unique id, add one */
4802 rbd_dev_id_get(rbd_dev);
4803
4804 /* Fill in the device name, now that we have its id. */
4805 BUILD_BUG_ON(DEV_NAME_LEN
4806 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4807 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4808
4809 /* Get our block major device number. */
4810
4811 ret = register_blkdev(0, rbd_dev->name);
4812 if (ret < 0)
4813 goto err_out_id;
4814 rbd_dev->major = ret;
4815
4816 /* Set up the blkdev mapping. */
4817
4818 ret = rbd_init_disk(rbd_dev);
4819 if (ret)
4820 goto err_out_blkdev;
4821
4822 ret = rbd_dev_mapping_set(rbd_dev);
4823 if (ret)
4824 goto err_out_disk;
4825 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4826
4827 ret = rbd_bus_add_dev(rbd_dev);
4828 if (ret)
4829 goto err_out_mapping;
4830
4831 /* Everything's ready. Announce the disk to the world. */
4832
4833 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4834 add_disk(rbd_dev->disk);
4835
4836 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4837 (unsigned long long) rbd_dev->mapping.size);
4838
4839 return ret;
4840
4841 err_out_mapping:
4842 rbd_dev_mapping_clear(rbd_dev);
4843 err_out_disk:
4844 rbd_free_disk(rbd_dev);
4845 err_out_blkdev:
4846 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4847 err_out_id:
4848 rbd_dev_id_put(rbd_dev);
4849 rbd_dev_mapping_clear(rbd_dev);
4850
4851 return ret;
4852 }
4853
4854 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4855 {
4856 struct rbd_spec *spec = rbd_dev->spec;
4857 size_t size;
4858
4859 /* Record the header object name for this rbd image. */
4860
4861 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4862
4863 if (rbd_dev->image_format == 1)
4864 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4865 else
4866 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4867
4868 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4869 if (!rbd_dev->header_name)
4870 return -ENOMEM;
4871
4872 if (rbd_dev->image_format == 1)
4873 sprintf(rbd_dev->header_name, "%s%s",
4874 spec->image_name, RBD_SUFFIX);
4875 else
4876 sprintf(rbd_dev->header_name, "%s%s",
4877 RBD_HEADER_PREFIX, spec->image_id);
4878 return 0;
4879 }
4880
4881 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4882 {
4883 rbd_dev_unprobe(rbd_dev);
4884 kfree(rbd_dev->header_name);
4885 rbd_dev->header_name = NULL;
4886 rbd_dev->image_format = 0;
4887 kfree(rbd_dev->spec->image_id);
4888 rbd_dev->spec->image_id = NULL;
4889
4890 rbd_dev_destroy(rbd_dev);
4891 }
4892
4893 /*
4894 * Probe for the existence of the header object for the given rbd
4895 * device. If this image is the one being mapped (i.e., not a
4896 * parent), initiate a watch on its header object before using that
4897 * object to get detailed information about the rbd image.
4898 */
4899 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4900 {
4901 int ret;
4902 int tmp;
4903
4904 /*
4905 * Get the id from the image id object. If it's not a
4906 * format 2 image, we'll get ENOENT back, and we'll assume
4907 * it's a format 1 image.
4908 */
4909 ret = rbd_dev_image_id(rbd_dev);
4910 if (ret)
4911 return ret;
4912 rbd_assert(rbd_dev->spec->image_id);
4913 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4914
4915 ret = rbd_dev_header_name(rbd_dev);
4916 if (ret)
4917 goto err_out_format;
4918
4919 if (mapping) {
4920 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4921 if (ret)
4922 goto out_header_name;
4923 }
4924
4925 if (rbd_dev->image_format == 1)
4926 ret = rbd_dev_v1_header_info(rbd_dev);
4927 else
4928 ret = rbd_dev_v2_header_info(rbd_dev);
4929 if (ret)
4930 goto err_out_watch;
4931
4932 ret = rbd_dev_spec_update(rbd_dev);
4933 if (ret)
4934 goto err_out_probe;
4935
4936 ret = rbd_dev_probe_parent(rbd_dev);
4937 if (ret)
4938 goto err_out_probe;
4939
4940 dout("discovered format %u image, header name is %s\n",
4941 rbd_dev->image_format, rbd_dev->header_name);
4942
4943 return 0;
4944 err_out_probe:
4945 rbd_dev_unprobe(rbd_dev);
4946 err_out_watch:
4947 if (mapping) {
4948 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4949 if (tmp)
4950 rbd_warn(rbd_dev, "unable to tear down "
4951 "watch request (%d)\n", tmp);
4952 }
4953 out_header_name:
4954 kfree(rbd_dev->header_name);
4955 rbd_dev->header_name = NULL;
4956 err_out_format:
4957 rbd_dev->image_format = 0;
4958 kfree(rbd_dev->spec->image_id);
4959 rbd_dev->spec->image_id = NULL;
4960
4961 dout("probe failed, returning %d\n", ret);
4962
4963 return ret;
4964 }
4965
4966 static ssize_t rbd_add(struct bus_type *bus,
4967 const char *buf,
4968 size_t count)
4969 {
4970 struct rbd_device *rbd_dev = NULL;
4971 struct ceph_options *ceph_opts = NULL;
4972 struct rbd_options *rbd_opts = NULL;
4973 struct rbd_spec *spec = NULL;
4974 struct rbd_client *rbdc;
4975 struct ceph_osd_client *osdc;
4976 bool read_only;
4977 int rc = -ENOMEM;
4978
4979 if (!try_module_get(THIS_MODULE))
4980 return -ENODEV;
4981
4982 /* parse add command */
4983 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4984 if (rc < 0)
4985 goto err_out_module;
4986 read_only = rbd_opts->read_only;
4987 kfree(rbd_opts);
4988 rbd_opts = NULL; /* done with this */
4989
4990 rbdc = rbd_get_client(ceph_opts);
4991 if (IS_ERR(rbdc)) {
4992 rc = PTR_ERR(rbdc);
4993 goto err_out_args;
4994 }
4995 ceph_opts = NULL; /* rbd_dev client now owns this */
4996
4997 /* pick the pool */
4998 osdc = &rbdc->client->osdc;
4999 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5000 if (rc < 0)
5001 goto err_out_client;
5002 spec->pool_id = (u64)rc;
5003
5004 /* The ceph file layout needs to fit pool id in 32 bits */
5005
5006 if (spec->pool_id > (u64)U32_MAX) {
5007 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5008 (unsigned long long)spec->pool_id, U32_MAX);
5009 rc = -EIO;
5010 goto err_out_client;
5011 }
5012
5013 rbd_dev = rbd_dev_create(rbdc, spec);
5014 if (!rbd_dev)
5015 goto err_out_client;
5016 rbdc = NULL; /* rbd_dev now owns this */
5017 spec = NULL; /* rbd_dev now owns this */
5018
5019 rc = rbd_dev_image_probe(rbd_dev, true);
5020 if (rc < 0)
5021 goto err_out_rbd_dev;
5022
5023 /* If we are mapping a snapshot it must be marked read-only */
5024
5025 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5026 read_only = true;
5027 rbd_dev->mapping.read_only = read_only;
5028
5029 rc = rbd_dev_device_setup(rbd_dev);
5030 if (!rc)
5031 return count;
5032
5033 rbd_dev_image_release(rbd_dev);
5034 err_out_rbd_dev:
5035 rbd_dev_destroy(rbd_dev);
5036 err_out_client:
5037 rbd_put_client(rbdc);
5038 err_out_args:
5039 if (ceph_opts)
5040 ceph_destroy_options(ceph_opts);
5041 kfree(rbd_opts);
5042 rbd_spec_put(spec);
5043 err_out_module:
5044 module_put(THIS_MODULE);
5045
5046 dout("Error adding device %s\n", buf);
5047
5048 return (ssize_t)rc;
5049 }
5050
5051 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5052 {
5053 struct list_head *tmp;
5054 struct rbd_device *rbd_dev;
5055
5056 spin_lock(&rbd_dev_list_lock);
5057 list_for_each(tmp, &rbd_dev_list) {
5058 rbd_dev = list_entry(tmp, struct rbd_device, node);
5059 if (rbd_dev->dev_id == dev_id) {
5060 spin_unlock(&rbd_dev_list_lock);
5061 return rbd_dev;
5062 }
5063 }
5064 spin_unlock(&rbd_dev_list_lock);
5065 return NULL;
5066 }
5067
5068 static void rbd_dev_device_release(struct device *dev)
5069 {
5070 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5071
5072 rbd_free_disk(rbd_dev);
5073 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5074 rbd_dev_mapping_clear(rbd_dev);
5075 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5076 rbd_dev->major = 0;
5077 rbd_dev_id_put(rbd_dev);
5078 rbd_dev_mapping_clear(rbd_dev);
5079 }
5080
5081 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5082 {
5083 while (rbd_dev->parent) {
5084 struct rbd_device *first = rbd_dev;
5085 struct rbd_device *second = first->parent;
5086 struct rbd_device *third;
5087
5088 /*
5089 * Follow to the parent with no grandparent and
5090 * remove it.
5091 */
5092 while (second && (third = second->parent)) {
5093 first = second;
5094 second = third;
5095 }
5096 rbd_assert(second);
5097 rbd_dev_image_release(second);
5098 first->parent = NULL;
5099 first->parent_overlap = 0;
5100
5101 rbd_assert(first->parent_spec);
5102 rbd_spec_put(first->parent_spec);
5103 first->parent_spec = NULL;
5104 }
5105 }
5106
5107 static ssize_t rbd_remove(struct bus_type *bus,
5108 const char *buf,
5109 size_t count)
5110 {
5111 struct rbd_device *rbd_dev = NULL;
5112 int target_id;
5113 unsigned long ul;
5114 int ret;
5115
5116 ret = strict_strtoul(buf, 10, &ul);
5117 if (ret)
5118 return ret;
5119
5120 /* convert to int; abort if we lost anything in the conversion */
5121 target_id = (int) ul;
5122 if (target_id != ul)
5123 return -EINVAL;
5124
5125 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5126
5127 rbd_dev = __rbd_get_dev(target_id);
5128 if (!rbd_dev) {
5129 ret = -ENOENT;
5130 goto done;
5131 }
5132
5133 spin_lock_irq(&rbd_dev->lock);
5134 if (rbd_dev->open_count)
5135 ret = -EBUSY;
5136 else
5137 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5138 spin_unlock_irq(&rbd_dev->lock);
5139 if (ret < 0)
5140 goto done;
5141 rbd_bus_del_dev(rbd_dev);
5142 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5143 if (ret)
5144 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5145 rbd_dev_image_release(rbd_dev);
5146 module_put(THIS_MODULE);
5147 ret = count;
5148 done:
5149 mutex_unlock(&ctl_mutex);
5150
5151 return ret;
5152 }
5153
5154 /*
5155 * create control files in sysfs
5156 * /sys/bus/rbd/...
5157 */
5158 static int rbd_sysfs_init(void)
5159 {
5160 int ret;
5161
5162 ret = device_register(&rbd_root_dev);
5163 if (ret < 0)
5164 return ret;
5165
5166 ret = bus_register(&rbd_bus_type);
5167 if (ret < 0)
5168 device_unregister(&rbd_root_dev);
5169
5170 return ret;
5171 }
5172
5173 static void rbd_sysfs_cleanup(void)
5174 {
5175 bus_unregister(&rbd_bus_type);
5176 device_unregister(&rbd_root_dev);
5177 }
5178
5179 static int rbd_slab_init(void)
5180 {
5181 rbd_assert(!rbd_img_request_cache);
5182 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5183 sizeof (struct rbd_img_request),
5184 __alignof__(struct rbd_img_request),
5185 0, NULL);
5186 if (!rbd_img_request_cache)
5187 return -ENOMEM;
5188
5189 rbd_assert(!rbd_obj_request_cache);
5190 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5191 sizeof (struct rbd_obj_request),
5192 __alignof__(struct rbd_obj_request),
5193 0, NULL);
5194 if (!rbd_obj_request_cache)
5195 goto out_err;
5196
5197 rbd_assert(!rbd_segment_name_cache);
5198 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5199 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5200 if (rbd_segment_name_cache)
5201 return 0;
5202 out_err:
5203 if (rbd_obj_request_cache) {
5204 kmem_cache_destroy(rbd_obj_request_cache);
5205 rbd_obj_request_cache = NULL;
5206 }
5207
5208 kmem_cache_destroy(rbd_img_request_cache);
5209 rbd_img_request_cache = NULL;
5210
5211 return -ENOMEM;
5212 }
5213
5214 static void rbd_slab_exit(void)
5215 {
5216 rbd_assert(rbd_segment_name_cache);
5217 kmem_cache_destroy(rbd_segment_name_cache);
5218 rbd_segment_name_cache = NULL;
5219
5220 rbd_assert(rbd_obj_request_cache);
5221 kmem_cache_destroy(rbd_obj_request_cache);
5222 rbd_obj_request_cache = NULL;
5223
5224 rbd_assert(rbd_img_request_cache);
5225 kmem_cache_destroy(rbd_img_request_cache);
5226 rbd_img_request_cache = NULL;
5227 }
5228
5229 static int __init rbd_init(void)
5230 {
5231 int rc;
5232
5233 if (!libceph_compatible(NULL)) {
5234 rbd_warn(NULL, "libceph incompatibility (quitting)");
5235
5236 return -EINVAL;
5237 }
5238 rc = rbd_slab_init();
5239 if (rc)
5240 return rc;
5241 rc = rbd_sysfs_init();
5242 if (rc)
5243 rbd_slab_exit();
5244 else
5245 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5246
5247 return rc;
5248 }
5249
5250 static void __exit rbd_exit(void)
5251 {
5252 rbd_sysfs_cleanup();
5253 rbd_slab_exit();
5254 }
5255
5256 module_init(rbd_init);
5257 module_exit(rbd_exit);
5258
5259 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5260 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5261 MODULE_DESCRIPTION("rados block device");
5262
5263 /* following authorship retained from original osdblk.c */
5264 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5265
5266 MODULE_LICENSE("GPL");