Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
542 goto out_mutex;
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545 ret = ceph_open_session(rbdc->client);
546 if (ret < 0)
547 goto out_err;
548
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
552
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
555
556 return rbdc;
557
558 out_err:
559 ceph_destroy_client(rbdc->client);
560 out_mutex:
561 mutex_unlock(&ctl_mutex);
562 kfree(rbdc);
563 out_opt:
564 if (ceph_opts)
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
567
568 return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 kref_get(&rbdc->kref);
574
575 return rbdc;
576 }
577
578 /*
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
581 */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 struct rbd_client *client_node;
585 bool found = false;
586
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 return NULL;
589
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
594
595 found = true;
596 break;
597 }
598 }
599 spin_unlock(&rbd_client_list_lock);
600
601 return found ? client_node : NULL;
602 }
603
604 /*
605 * mount options
606 */
607 enum {
608 Opt_last_int,
609 /* int args above */
610 Opt_last_string,
611 /* string args above */
612 Opt_read_only,
613 Opt_read_write,
614 /* Boolean args above */
615 Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619 /* int args above */
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
626 {-1, NULL}
627 };
628
629 struct rbd_options {
630 bool read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
640
641 token = match_token(c, rbd_opts_tokens, argstr);
642 if (token < 0)
643 return -EINVAL;
644
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
647 if (ret < 0) {
648 pr_err("bad mount option arg (not int) "
649 "at '%s'\n", c);
650 return ret;
651 }
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
655 argstr[0].from);
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
658 } else {
659 dout("got token %d\n", token);
660 }
661
662 switch (token) {
663 case Opt_read_only:
664 rbd_opts->read_only = true;
665 break;
666 case Opt_read_write:
667 rbd_opts->read_only = false;
668 break;
669 default:
670 rbd_assert(false);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it. Either way, ceph_opts is consumed by this
679 * function.
680 */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683 struct rbd_client *rbdc;
684
685 rbdc = rbd_client_find(ceph_opts);
686 if (rbdc) /* using an existing client */
687 ceph_destroy_options(ceph_opts);
688 else
689 rbdc = rbd_client_create(ceph_opts);
690
691 return rbdc;
692 }
693
694 /*
695 * Destroy ceph client
696 *
697 * Caller must hold rbd_client_list_lock.
698 */
699 static void rbd_client_release(struct kref *kref)
700 {
701 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703 dout("%s: rbdc %p\n", __func__, rbdc);
704 spin_lock(&rbd_client_list_lock);
705 list_del(&rbdc->node);
706 spin_unlock(&rbd_client_list_lock);
707
708 ceph_destroy_client(rbdc->client);
709 kfree(rbdc);
710 }
711
712 /*
713 * Drop reference to ceph client node. If it's not referenced anymore, release
714 * it.
715 */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718 if (rbdc)
719 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724 return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729 size_t size;
730 u32 snap_count;
731
732 /* The header has to start with the magic rbd header text */
733 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734 return false;
735
736 /* The bio layer requires at least sector-sized I/O */
737
738 if (ondisk->options.order < SECTOR_SHIFT)
739 return false;
740
741 /* If we use u64 in a few spots we may be able to loosen this */
742
743 if (ondisk->options.order > 8 * sizeof (int) - 1)
744 return false;
745
746 /*
747 * The size of a snapshot header has to fit in a size_t, and
748 * that limits the number of snapshots.
749 */
750 snap_count = le32_to_cpu(ondisk->snap_count);
751 size = SIZE_MAX - sizeof (struct ceph_snap_context);
752 if (snap_count > size / sizeof (__le64))
753 return false;
754
755 /*
756 * Not only that, but the size of the entire the snapshot
757 * header must also be representable in a size_t.
758 */
759 size -= snap_count * sizeof (__le64);
760 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761 return false;
762
763 return true;
764 }
765
766 /*
767 * Fill an rbd image header with information from the given format 1
768 * on-disk header.
769 */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771 struct rbd_image_header_ondisk *ondisk)
772 {
773 struct rbd_image_header *header = &rbd_dev->header;
774 bool first_time = header->object_prefix == NULL;
775 struct ceph_snap_context *snapc;
776 char *object_prefix = NULL;
777 char *snap_names = NULL;
778 u64 *snap_sizes = NULL;
779 u32 snap_count;
780 size_t size;
781 int ret = -ENOMEM;
782 u32 i;
783
784 /* Allocate this now to avoid having to handle failure below */
785
786 if (first_time) {
787 size_t len;
788
789 len = strnlen(ondisk->object_prefix,
790 sizeof (ondisk->object_prefix));
791 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792 if (!object_prefix)
793 return -ENOMEM;
794 memcpy(object_prefix, ondisk->object_prefix, len);
795 object_prefix[len] = '\0';
796 }
797
798 /* Allocate the snapshot context and fill it in */
799
800 snap_count = le32_to_cpu(ondisk->snap_count);
801 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802 if (!snapc)
803 goto out_err;
804 snapc->seq = le64_to_cpu(ondisk->snap_seq);
805 if (snap_count) {
806 struct rbd_image_snap_ondisk *snaps;
807 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809 /* We'll keep a copy of the snapshot names... */
810
811 if (snap_names_len > (u64)SIZE_MAX)
812 goto out_2big;
813 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814 if (!snap_names)
815 goto out_err;
816
817 /* ...as well as the array of their sizes. */
818
819 size = snap_count * sizeof (*header->snap_sizes);
820 snap_sizes = kmalloc(size, GFP_KERNEL);
821 if (!snap_sizes)
822 goto out_err;
823
824 /*
825 * Copy the names, and fill in each snapshot's id
826 * and size.
827 *
828 * Note that rbd_dev_v1_header_info() guarantees the
829 * ondisk buffer we're working with has
830 * snap_names_len bytes beyond the end of the
831 * snapshot id array, this memcpy() is safe.
832 */
833 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834 snaps = ondisk->snaps;
835 for (i = 0; i < snap_count; i++) {
836 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838 }
839 }
840
841 /* We won't fail any more, fill in the header */
842
843 down_write(&rbd_dev->header_rwsem);
844 if (first_time) {
845 header->object_prefix = object_prefix;
846 header->obj_order = ondisk->options.order;
847 header->crypt_type = ondisk->options.crypt_type;
848 header->comp_type = ondisk->options.comp_type;
849 /* The rest aren't used for format 1 images */
850 header->stripe_unit = 0;
851 header->stripe_count = 0;
852 header->features = 0;
853 } else {
854 ceph_put_snap_context(header->snapc);
855 kfree(header->snap_names);
856 kfree(header->snap_sizes);
857 }
858
859 /* The remaining fields always get updated (when we refresh) */
860
861 header->image_size = le64_to_cpu(ondisk->image_size);
862 header->snapc = snapc;
863 header->snap_names = snap_names;
864 header->snap_sizes = snap_sizes;
865
866 /* Make sure mapping size is consistent with header info */
867
868 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869 if (rbd_dev->mapping.size != header->image_size)
870 rbd_dev->mapping.size = header->image_size;
871
872 up_write(&rbd_dev->header_rwsem);
873
874 return 0;
875 out_2big:
876 ret = -EIO;
877 out_err:
878 kfree(snap_sizes);
879 kfree(snap_names);
880 ceph_put_snap_context(snapc);
881 kfree(object_prefix);
882
883 return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888 const char *snap_name;
889
890 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892 /* Skip over names until we find the one we are looking for */
893
894 snap_name = rbd_dev->header.snap_names;
895 while (which--)
896 snap_name += strlen(snap_name) + 1;
897
898 return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902 * Snapshot id comparison function for use with qsort()/bsearch().
903 * Note that result is for snapshots in *descending* order.
904 */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907 u64 snap_id1 = *(u64 *)s1;
908 u64 snap_id2 = *(u64 *)s2;
909
910 if (snap_id1 < snap_id2)
911 return 1;
912 return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916 * Search a snapshot context to see if the given snapshot id is
917 * present.
918 *
919 * Returns the position of the snapshot id in the array if it's found,
920 * or BAD_SNAP_INDEX otherwise.
921 *
922 * Note: The snapshot array is in kept sorted (by the osd) in
923 * reverse order, highest snapshot id first.
924 */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928 u64 *found;
929
930 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931 sizeof (snap_id), snapid_compare_reverse);
932
933 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937 u64 snap_id)
938 {
939 u32 which;
940
941 which = rbd_dev_snap_index(rbd_dev, snap_id);
942 if (which == BAD_SNAP_INDEX)
943 return NULL;
944
945 return _rbd_dev_v1_snap_name(rbd_dev, which);
946 }
947
948 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
949 {
950 if (snap_id == CEPH_NOSNAP)
951 return RBD_SNAP_HEAD_NAME;
952
953 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954 if (rbd_dev->image_format == 1)
955 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
956
957 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
958 }
959
960 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
961 u64 *snap_size)
962 {
963 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
964 if (snap_id == CEPH_NOSNAP) {
965 *snap_size = rbd_dev->header.image_size;
966 } else if (rbd_dev->image_format == 1) {
967 u32 which;
968
969 which = rbd_dev_snap_index(rbd_dev, snap_id);
970 if (which == BAD_SNAP_INDEX)
971 return -ENOENT;
972
973 *snap_size = rbd_dev->header.snap_sizes[which];
974 } else {
975 u64 size = 0;
976 int ret;
977
978 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
979 if (ret)
980 return ret;
981
982 *snap_size = size;
983 }
984 return 0;
985 }
986
987 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
988 u64 *snap_features)
989 {
990 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
991 if (snap_id == CEPH_NOSNAP) {
992 *snap_features = rbd_dev->header.features;
993 } else if (rbd_dev->image_format == 1) {
994 *snap_features = 0; /* No features for format 1 */
995 } else {
996 u64 features = 0;
997 int ret;
998
999 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1000 if (ret)
1001 return ret;
1002
1003 *snap_features = features;
1004 }
1005 return 0;
1006 }
1007
1008 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1009 {
1010 u64 snap_id = rbd_dev->spec->snap_id;
1011 u64 size = 0;
1012 u64 features = 0;
1013 int ret;
1014
1015 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1016 if (ret)
1017 return ret;
1018 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1019 if (ret)
1020 return ret;
1021
1022 rbd_dev->mapping.size = size;
1023 rbd_dev->mapping.features = features;
1024
1025 return 0;
1026 }
1027
1028 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1029 {
1030 rbd_dev->mapping.size = 0;
1031 rbd_dev->mapping.features = 0;
1032 }
1033
1034 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1035 {
1036 char *name;
1037 u64 segment;
1038 int ret;
1039
1040 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1041 if (!name)
1042 return NULL;
1043 segment = offset >> rbd_dev->header.obj_order;
1044 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1045 rbd_dev->header.object_prefix, segment);
1046 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047 pr_err("error formatting segment name for #%llu (%d)\n",
1048 segment, ret);
1049 kfree(name);
1050 name = NULL;
1051 }
1052
1053 return name;
1054 }
1055
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058 /* The explicit cast here is needed to drop the const qualifier */
1059
1060 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066
1067 return offset & (segment_size - 1);
1068 }
1069
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071 u64 offset, u64 length)
1072 {
1073 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074
1075 offset &= segment_size - 1;
1076
1077 rbd_assert(length <= U64_MAX - offset);
1078 if (offset + length > segment_size)
1079 length = segment_size - offset;
1080
1081 return length;
1082 }
1083
1084 /*
1085 * returns the size of an object in the image
1086 */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089 return 1 << header->obj_order;
1090 }
1091
1092 /*
1093 * bio helpers
1094 */
1095
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098 struct bio *tmp;
1099
1100 while (chain) {
1101 tmp = chain;
1102 chain = chain->bi_next;
1103 bio_put(tmp);
1104 }
1105 }
1106
1107 /*
1108 * zeros a bio chain, starting at specific offset
1109 */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112 struct bio_vec *bv;
1113 unsigned long flags;
1114 void *buf;
1115 int i;
1116 int pos = 0;
1117
1118 while (chain) {
1119 bio_for_each_segment(bv, chain, i) {
1120 if (pos + bv->bv_len > start_ofs) {
1121 int remainder = max(start_ofs - pos, 0);
1122 buf = bvec_kmap_irq(bv, &flags);
1123 memset(buf + remainder, 0,
1124 bv->bv_len - remainder);
1125 bvec_kunmap_irq(buf, &flags);
1126 }
1127 pos += bv->bv_len;
1128 }
1129
1130 chain = chain->bi_next;
1131 }
1132 }
1133
1134 /*
1135 * similar to zero_bio_chain(), zeros data defined by a page array,
1136 * starting at the given byte offset from the start of the array and
1137 * continuing up to the given end offset. The pages array is
1138 * assumed to be big enough to hold all bytes up to the end.
1139 */
1140 static void zero_pages(struct page **pages, u64 offset, u64 end)
1141 {
1142 struct page **page = &pages[offset >> PAGE_SHIFT];
1143
1144 rbd_assert(end > offset);
1145 rbd_assert(end - offset <= (u64)SIZE_MAX);
1146 while (offset < end) {
1147 size_t page_offset;
1148 size_t length;
1149 unsigned long flags;
1150 void *kaddr;
1151
1152 page_offset = (size_t)(offset & ~PAGE_MASK);
1153 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1154 local_irq_save(flags);
1155 kaddr = kmap_atomic(*page);
1156 memset(kaddr + page_offset, 0, length);
1157 kunmap_atomic(kaddr);
1158 local_irq_restore(flags);
1159
1160 offset += length;
1161 page++;
1162 }
1163 }
1164
1165 /*
1166 * Clone a portion of a bio, starting at the given byte offset
1167 * and continuing for the number of bytes indicated.
1168 */
1169 static struct bio *bio_clone_range(struct bio *bio_src,
1170 unsigned int offset,
1171 unsigned int len,
1172 gfp_t gfpmask)
1173 {
1174 struct bio_vec *bv;
1175 unsigned int resid;
1176 unsigned short idx;
1177 unsigned int voff;
1178 unsigned short end_idx;
1179 unsigned short vcnt;
1180 struct bio *bio;
1181
1182 /* Handle the easy case for the caller */
1183
1184 if (!offset && len == bio_src->bi_size)
1185 return bio_clone(bio_src, gfpmask);
1186
1187 if (WARN_ON_ONCE(!len))
1188 return NULL;
1189 if (WARN_ON_ONCE(len > bio_src->bi_size))
1190 return NULL;
1191 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1192 return NULL;
1193
1194 /* Find first affected segment... */
1195
1196 resid = offset;
1197 bio_for_each_segment(bv, bio_src, idx) {
1198 if (resid < bv->bv_len)
1199 break;
1200 resid -= bv->bv_len;
1201 }
1202 voff = resid;
1203
1204 /* ...and the last affected segment */
1205
1206 resid += len;
1207 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1208 if (resid <= bv->bv_len)
1209 break;
1210 resid -= bv->bv_len;
1211 }
1212 vcnt = end_idx - idx + 1;
1213
1214 /* Build the clone */
1215
1216 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1217 if (!bio)
1218 return NULL; /* ENOMEM */
1219
1220 bio->bi_bdev = bio_src->bi_bdev;
1221 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1222 bio->bi_rw = bio_src->bi_rw;
1223 bio->bi_flags |= 1 << BIO_CLONED;
1224
1225 /*
1226 * Copy over our part of the bio_vec, then update the first
1227 * and last (or only) entries.
1228 */
1229 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1230 vcnt * sizeof (struct bio_vec));
1231 bio->bi_io_vec[0].bv_offset += voff;
1232 if (vcnt > 1) {
1233 bio->bi_io_vec[0].bv_len -= voff;
1234 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1235 } else {
1236 bio->bi_io_vec[0].bv_len = len;
1237 }
1238
1239 bio->bi_vcnt = vcnt;
1240 bio->bi_size = len;
1241 bio->bi_idx = 0;
1242
1243 return bio;
1244 }
1245
1246 /*
1247 * Clone a portion of a bio chain, starting at the given byte offset
1248 * into the first bio in the source chain and continuing for the
1249 * number of bytes indicated. The result is another bio chain of
1250 * exactly the given length, or a null pointer on error.
1251 *
1252 * The bio_src and offset parameters are both in-out. On entry they
1253 * refer to the first source bio and the offset into that bio where
1254 * the start of data to be cloned is located.
1255 *
1256 * On return, bio_src is updated to refer to the bio in the source
1257 * chain that contains first un-cloned byte, and *offset will
1258 * contain the offset of that byte within that bio.
1259 */
1260 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1261 unsigned int *offset,
1262 unsigned int len,
1263 gfp_t gfpmask)
1264 {
1265 struct bio *bi = *bio_src;
1266 unsigned int off = *offset;
1267 struct bio *chain = NULL;
1268 struct bio **end;
1269
1270 /* Build up a chain of clone bios up to the limit */
1271
1272 if (!bi || off >= bi->bi_size || !len)
1273 return NULL; /* Nothing to clone */
1274
1275 end = &chain;
1276 while (len) {
1277 unsigned int bi_size;
1278 struct bio *bio;
1279
1280 if (!bi) {
1281 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1282 goto out_err; /* EINVAL; ran out of bio's */
1283 }
1284 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1285 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1286 if (!bio)
1287 goto out_err; /* ENOMEM */
1288
1289 *end = bio;
1290 end = &bio->bi_next;
1291
1292 off += bi_size;
1293 if (off == bi->bi_size) {
1294 bi = bi->bi_next;
1295 off = 0;
1296 }
1297 len -= bi_size;
1298 }
1299 *bio_src = bi;
1300 *offset = off;
1301
1302 return chain;
1303 out_err:
1304 bio_chain_put(chain);
1305
1306 return NULL;
1307 }
1308
1309 /*
1310 * The default/initial value for all object request flags is 0. For
1311 * each flag, once its value is set to 1 it is never reset to 0
1312 * again.
1313 */
1314 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1315 {
1316 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1317 struct rbd_device *rbd_dev;
1318
1319 rbd_dev = obj_request->img_request->rbd_dev;
1320 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1321 obj_request);
1322 }
1323 }
1324
1325 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1326 {
1327 smp_mb();
1328 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1329 }
1330
1331 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1332 {
1333 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1334 struct rbd_device *rbd_dev = NULL;
1335
1336 if (obj_request_img_data_test(obj_request))
1337 rbd_dev = obj_request->img_request->rbd_dev;
1338 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1339 obj_request);
1340 }
1341 }
1342
1343 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1344 {
1345 smp_mb();
1346 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1347 }
1348
1349 /*
1350 * This sets the KNOWN flag after (possibly) setting the EXISTS
1351 * flag. The latter is set based on the "exists" value provided.
1352 *
1353 * Note that for our purposes once an object exists it never goes
1354 * away again. It's possible that the response from two existence
1355 * checks are separated by the creation of the target object, and
1356 * the first ("doesn't exist") response arrives *after* the second
1357 * ("does exist"). In that case we ignore the second one.
1358 */
1359 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1360 bool exists)
1361 {
1362 if (exists)
1363 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1364 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1365 smp_mb();
1366 }
1367
1368 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1369 {
1370 smp_mb();
1371 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1372 }
1373
1374 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1375 {
1376 smp_mb();
1377 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1378 }
1379
1380 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1381 {
1382 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1383 atomic_read(&obj_request->kref.refcount));
1384 kref_get(&obj_request->kref);
1385 }
1386
1387 static void rbd_obj_request_destroy(struct kref *kref);
1388 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1389 {
1390 rbd_assert(obj_request != NULL);
1391 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1392 atomic_read(&obj_request->kref.refcount));
1393 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1394 }
1395
1396 static bool img_request_child_test(struct rbd_img_request *img_request);
1397 static void rbd_parent_request_destroy(struct kref *kref);
1398 static void rbd_img_request_destroy(struct kref *kref);
1399 static void rbd_img_request_put(struct rbd_img_request *img_request)
1400 {
1401 rbd_assert(img_request != NULL);
1402 dout("%s: img %p (was %d)\n", __func__, img_request,
1403 atomic_read(&img_request->kref.refcount));
1404 if (img_request_child_test(img_request))
1405 kref_put(&img_request->kref, rbd_parent_request_destroy);
1406 else
1407 kref_put(&img_request->kref, rbd_img_request_destroy);
1408 }
1409
1410 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1411 struct rbd_obj_request *obj_request)
1412 {
1413 rbd_assert(obj_request->img_request == NULL);
1414
1415 /* Image request now owns object's original reference */
1416 obj_request->img_request = img_request;
1417 obj_request->which = img_request->obj_request_count;
1418 rbd_assert(!obj_request_img_data_test(obj_request));
1419 obj_request_img_data_set(obj_request);
1420 rbd_assert(obj_request->which != BAD_WHICH);
1421 img_request->obj_request_count++;
1422 list_add_tail(&obj_request->links, &img_request->obj_requests);
1423 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1424 obj_request->which);
1425 }
1426
1427 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1428 struct rbd_obj_request *obj_request)
1429 {
1430 rbd_assert(obj_request->which != BAD_WHICH);
1431
1432 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1433 obj_request->which);
1434 list_del(&obj_request->links);
1435 rbd_assert(img_request->obj_request_count > 0);
1436 img_request->obj_request_count--;
1437 rbd_assert(obj_request->which == img_request->obj_request_count);
1438 obj_request->which = BAD_WHICH;
1439 rbd_assert(obj_request_img_data_test(obj_request));
1440 rbd_assert(obj_request->img_request == img_request);
1441 obj_request->img_request = NULL;
1442 obj_request->callback = NULL;
1443 rbd_obj_request_put(obj_request);
1444 }
1445
1446 static bool obj_request_type_valid(enum obj_request_type type)
1447 {
1448 switch (type) {
1449 case OBJ_REQUEST_NODATA:
1450 case OBJ_REQUEST_BIO:
1451 case OBJ_REQUEST_PAGES:
1452 return true;
1453 default:
1454 return false;
1455 }
1456 }
1457
1458 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1459 struct rbd_obj_request *obj_request)
1460 {
1461 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1462
1463 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1464 }
1465
1466 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1467 {
1468
1469 dout("%s: img %p\n", __func__, img_request);
1470
1471 /*
1472 * If no error occurred, compute the aggregate transfer
1473 * count for the image request. We could instead use
1474 * atomic64_cmpxchg() to update it as each object request
1475 * completes; not clear which way is better off hand.
1476 */
1477 if (!img_request->result) {
1478 struct rbd_obj_request *obj_request;
1479 u64 xferred = 0;
1480
1481 for_each_obj_request(img_request, obj_request)
1482 xferred += obj_request->xferred;
1483 img_request->xferred = xferred;
1484 }
1485
1486 if (img_request->callback)
1487 img_request->callback(img_request);
1488 else
1489 rbd_img_request_put(img_request);
1490 }
1491
1492 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1493
1494 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1495 {
1496 dout("%s: obj %p\n", __func__, obj_request);
1497
1498 return wait_for_completion_interruptible(&obj_request->completion);
1499 }
1500
1501 /*
1502 * The default/initial value for all image request flags is 0. Each
1503 * is conditionally set to 1 at image request initialization time
1504 * and currently never change thereafter.
1505 */
1506 static void img_request_write_set(struct rbd_img_request *img_request)
1507 {
1508 set_bit(IMG_REQ_WRITE, &img_request->flags);
1509 smp_mb();
1510 }
1511
1512 static bool img_request_write_test(struct rbd_img_request *img_request)
1513 {
1514 smp_mb();
1515 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1516 }
1517
1518 static void img_request_child_set(struct rbd_img_request *img_request)
1519 {
1520 set_bit(IMG_REQ_CHILD, &img_request->flags);
1521 smp_mb();
1522 }
1523
1524 static void img_request_child_clear(struct rbd_img_request *img_request)
1525 {
1526 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1527 smp_mb();
1528 }
1529
1530 static bool img_request_child_test(struct rbd_img_request *img_request)
1531 {
1532 smp_mb();
1533 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1534 }
1535
1536 static void img_request_layered_set(struct rbd_img_request *img_request)
1537 {
1538 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1539 smp_mb();
1540 }
1541
1542 static void img_request_layered_clear(struct rbd_img_request *img_request)
1543 {
1544 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1545 smp_mb();
1546 }
1547
1548 static bool img_request_layered_test(struct rbd_img_request *img_request)
1549 {
1550 smp_mb();
1551 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1552 }
1553
1554 static void
1555 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1556 {
1557 u64 xferred = obj_request->xferred;
1558 u64 length = obj_request->length;
1559
1560 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1561 obj_request, obj_request->img_request, obj_request->result,
1562 xferred, length);
1563 /*
1564 * ENOENT means a hole in the image. We zero-fill the
1565 * entire length of the request. A short read also implies
1566 * zero-fill to the end of the request. Either way we
1567 * update the xferred count to indicate the whole request
1568 * was satisfied.
1569 */
1570 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1571 if (obj_request->result == -ENOENT) {
1572 if (obj_request->type == OBJ_REQUEST_BIO)
1573 zero_bio_chain(obj_request->bio_list, 0);
1574 else
1575 zero_pages(obj_request->pages, 0, length);
1576 obj_request->result = 0;
1577 obj_request->xferred = length;
1578 } else if (xferred < length && !obj_request->result) {
1579 if (obj_request->type == OBJ_REQUEST_BIO)
1580 zero_bio_chain(obj_request->bio_list, xferred);
1581 else
1582 zero_pages(obj_request->pages, xferred, length);
1583 obj_request->xferred = length;
1584 }
1585 obj_request_done_set(obj_request);
1586 }
1587
1588 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1589 {
1590 dout("%s: obj %p cb %p\n", __func__, obj_request,
1591 obj_request->callback);
1592 if (obj_request->callback)
1593 obj_request->callback(obj_request);
1594 else
1595 complete_all(&obj_request->completion);
1596 }
1597
1598 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1599 {
1600 dout("%s: obj %p\n", __func__, obj_request);
1601 obj_request_done_set(obj_request);
1602 }
1603
1604 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1605 {
1606 struct rbd_img_request *img_request = NULL;
1607 struct rbd_device *rbd_dev = NULL;
1608 bool layered = false;
1609
1610 if (obj_request_img_data_test(obj_request)) {
1611 img_request = obj_request->img_request;
1612 layered = img_request && img_request_layered_test(img_request);
1613 rbd_dev = img_request->rbd_dev;
1614 }
1615
1616 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1617 obj_request, img_request, obj_request->result,
1618 obj_request->xferred, obj_request->length);
1619 if (layered && obj_request->result == -ENOENT &&
1620 obj_request->img_offset < rbd_dev->parent_overlap)
1621 rbd_img_parent_read(obj_request);
1622 else if (img_request)
1623 rbd_img_obj_request_read_callback(obj_request);
1624 else
1625 obj_request_done_set(obj_request);
1626 }
1627
1628 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1629 {
1630 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1631 obj_request->result, obj_request->length);
1632 /*
1633 * There is no such thing as a successful short write. Set
1634 * it to our originally-requested length.
1635 */
1636 obj_request->xferred = obj_request->length;
1637 obj_request_done_set(obj_request);
1638 }
1639
1640 /*
1641 * For a simple stat call there's nothing to do. We'll do more if
1642 * this is part of a write sequence for a layered image.
1643 */
1644 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1645 {
1646 dout("%s: obj %p\n", __func__, obj_request);
1647 obj_request_done_set(obj_request);
1648 }
1649
1650 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1651 struct ceph_msg *msg)
1652 {
1653 struct rbd_obj_request *obj_request = osd_req->r_priv;
1654 u16 opcode;
1655
1656 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1657 rbd_assert(osd_req == obj_request->osd_req);
1658 if (obj_request_img_data_test(obj_request)) {
1659 rbd_assert(obj_request->img_request);
1660 rbd_assert(obj_request->which != BAD_WHICH);
1661 } else {
1662 rbd_assert(obj_request->which == BAD_WHICH);
1663 }
1664
1665 if (osd_req->r_result < 0)
1666 obj_request->result = osd_req->r_result;
1667
1668 BUG_ON(osd_req->r_num_ops > 2);
1669
1670 /*
1671 * We support a 64-bit length, but ultimately it has to be
1672 * passed to blk_end_request(), which takes an unsigned int.
1673 */
1674 obj_request->xferred = osd_req->r_reply_op_len[0];
1675 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1676 opcode = osd_req->r_ops[0].op;
1677 switch (opcode) {
1678 case CEPH_OSD_OP_READ:
1679 rbd_osd_read_callback(obj_request);
1680 break;
1681 case CEPH_OSD_OP_WRITE:
1682 rbd_osd_write_callback(obj_request);
1683 break;
1684 case CEPH_OSD_OP_STAT:
1685 rbd_osd_stat_callback(obj_request);
1686 break;
1687 case CEPH_OSD_OP_CALL:
1688 case CEPH_OSD_OP_NOTIFY_ACK:
1689 case CEPH_OSD_OP_WATCH:
1690 rbd_osd_trivial_callback(obj_request);
1691 break;
1692 default:
1693 rbd_warn(NULL, "%s: unsupported op %hu\n",
1694 obj_request->object_name, (unsigned short) opcode);
1695 break;
1696 }
1697
1698 if (obj_request_done_test(obj_request))
1699 rbd_obj_request_complete(obj_request);
1700 }
1701
1702 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1703 {
1704 struct rbd_img_request *img_request = obj_request->img_request;
1705 struct ceph_osd_request *osd_req = obj_request->osd_req;
1706 u64 snap_id;
1707
1708 rbd_assert(osd_req != NULL);
1709
1710 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1711 ceph_osdc_build_request(osd_req, obj_request->offset,
1712 NULL, snap_id, NULL);
1713 }
1714
1715 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1716 {
1717 struct rbd_img_request *img_request = obj_request->img_request;
1718 struct ceph_osd_request *osd_req = obj_request->osd_req;
1719 struct ceph_snap_context *snapc;
1720 struct timespec mtime = CURRENT_TIME;
1721
1722 rbd_assert(osd_req != NULL);
1723
1724 snapc = img_request ? img_request->snapc : NULL;
1725 ceph_osdc_build_request(osd_req, obj_request->offset,
1726 snapc, CEPH_NOSNAP, &mtime);
1727 }
1728
1729 static struct ceph_osd_request *rbd_osd_req_create(
1730 struct rbd_device *rbd_dev,
1731 bool write_request,
1732 struct rbd_obj_request *obj_request)
1733 {
1734 struct ceph_snap_context *snapc = NULL;
1735 struct ceph_osd_client *osdc;
1736 struct ceph_osd_request *osd_req;
1737
1738 if (obj_request_img_data_test(obj_request)) {
1739 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741 rbd_assert(write_request ==
1742 img_request_write_test(img_request));
1743 if (write_request)
1744 snapc = img_request->snapc;
1745 }
1746
1747 /* Allocate and initialize the request, for the single op */
1748
1749 osdc = &rbd_dev->rbd_client->client->osdc;
1750 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1751 if (!osd_req)
1752 return NULL; /* ENOMEM */
1753
1754 if (write_request)
1755 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1756 else
1757 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1758
1759 osd_req->r_callback = rbd_osd_req_callback;
1760 osd_req->r_priv = obj_request;
1761
1762 osd_req->r_oid_len = strlen(obj_request->object_name);
1763 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1764 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1765
1766 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1767
1768 return osd_req;
1769 }
1770
1771 /*
1772 * Create a copyup osd request based on the information in the
1773 * object request supplied. A copyup request has two osd ops,
1774 * a copyup method call, and a "normal" write request.
1775 */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779 struct rbd_img_request *img_request;
1780 struct ceph_snap_context *snapc;
1781 struct rbd_device *rbd_dev;
1782 struct ceph_osd_client *osdc;
1783 struct ceph_osd_request *osd_req;
1784
1785 rbd_assert(obj_request_img_data_test(obj_request));
1786 img_request = obj_request->img_request;
1787 rbd_assert(img_request);
1788 rbd_assert(img_request_write_test(img_request));
1789
1790 /* Allocate and initialize the request, for the two ops */
1791
1792 snapc = img_request->snapc;
1793 rbd_dev = img_request->rbd_dev;
1794 osdc = &rbd_dev->rbd_client->client->osdc;
1795 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1796 if (!osd_req)
1797 return NULL; /* ENOMEM */
1798
1799 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800 osd_req->r_callback = rbd_osd_req_callback;
1801 osd_req->r_priv = obj_request;
1802
1803 osd_req->r_oid_len = strlen(obj_request->object_name);
1804 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1805 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1806
1807 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1808
1809 return osd_req;
1810 }
1811
1812
1813 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1814 {
1815 ceph_osdc_put_request(osd_req);
1816 }
1817
1818 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1819
1820 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1821 u64 offset, u64 length,
1822 enum obj_request_type type)
1823 {
1824 struct rbd_obj_request *obj_request;
1825 size_t size;
1826 char *name;
1827
1828 rbd_assert(obj_request_type_valid(type));
1829
1830 size = strlen(object_name) + 1;
1831 name = kmalloc(size, GFP_KERNEL);
1832 if (!name)
1833 return NULL;
1834
1835 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1836 if (!obj_request) {
1837 kfree(name);
1838 return NULL;
1839 }
1840
1841 obj_request->object_name = memcpy(name, object_name, size);
1842 obj_request->offset = offset;
1843 obj_request->length = length;
1844 obj_request->flags = 0;
1845 obj_request->which = BAD_WHICH;
1846 obj_request->type = type;
1847 INIT_LIST_HEAD(&obj_request->links);
1848 init_completion(&obj_request->completion);
1849 kref_init(&obj_request->kref);
1850
1851 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1852 offset, length, (int)type, obj_request);
1853
1854 return obj_request;
1855 }
1856
1857 static void rbd_obj_request_destroy(struct kref *kref)
1858 {
1859 struct rbd_obj_request *obj_request;
1860
1861 obj_request = container_of(kref, struct rbd_obj_request, kref);
1862
1863 dout("%s: obj %p\n", __func__, obj_request);
1864
1865 rbd_assert(obj_request->img_request == NULL);
1866 rbd_assert(obj_request->which == BAD_WHICH);
1867
1868 if (obj_request->osd_req)
1869 rbd_osd_req_destroy(obj_request->osd_req);
1870
1871 rbd_assert(obj_request_type_valid(obj_request->type));
1872 switch (obj_request->type) {
1873 case OBJ_REQUEST_NODATA:
1874 break; /* Nothing to do */
1875 case OBJ_REQUEST_BIO:
1876 if (obj_request->bio_list)
1877 bio_chain_put(obj_request->bio_list);
1878 break;
1879 case OBJ_REQUEST_PAGES:
1880 if (obj_request->pages)
1881 ceph_release_page_vector(obj_request->pages,
1882 obj_request->page_count);
1883 break;
1884 }
1885
1886 kfree(obj_request->object_name);
1887 obj_request->object_name = NULL;
1888 kmem_cache_free(rbd_obj_request_cache, obj_request);
1889 }
1890
1891 /* It's OK to call this for a device with no parent */
1892
1893 static void rbd_spec_put(struct rbd_spec *spec);
1894 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1895 {
1896 rbd_dev_remove_parent(rbd_dev);
1897 rbd_spec_put(rbd_dev->parent_spec);
1898 rbd_dev->parent_spec = NULL;
1899 rbd_dev->parent_overlap = 0;
1900 }
1901
1902 /*
1903 * Parent image reference counting is used to determine when an
1904 * image's parent fields can be safely torn down--after there are no
1905 * more in-flight requests to the parent image. When the last
1906 * reference is dropped, cleaning them up is safe.
1907 */
1908 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1909 {
1910 int counter;
1911
1912 if (!rbd_dev->parent_spec)
1913 return;
1914
1915 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1916 if (counter > 0)
1917 return;
1918
1919 /* Last reference; clean up parent data structures */
1920
1921 if (!counter)
1922 rbd_dev_unparent(rbd_dev);
1923 else
1924 rbd_warn(rbd_dev, "parent reference underflow\n");
1925 }
1926
1927 /*
1928 * If an image has a non-zero parent overlap, get a reference to its
1929 * parent.
1930 *
1931 * We must get the reference before checking for the overlap to
1932 * coordinate properly with zeroing the parent overlap in
1933 * rbd_dev_v2_parent_info() when an image gets flattened. We
1934 * drop it again if there is no overlap.
1935 *
1936 * Returns true if the rbd device has a parent with a non-zero
1937 * overlap and a reference for it was successfully taken, or
1938 * false otherwise.
1939 */
1940 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1941 {
1942 int counter;
1943
1944 if (!rbd_dev->parent_spec)
1945 return false;
1946
1947 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1948 if (counter > 0 && rbd_dev->parent_overlap)
1949 return true;
1950
1951 /* Image was flattened, but parent is not yet torn down */
1952
1953 if (counter < 0)
1954 rbd_warn(rbd_dev, "parent reference overflow\n");
1955
1956 return false;
1957 }
1958
1959 /*
1960 * Caller is responsible for filling in the list of object requests
1961 * that comprises the image request, and the Linux request pointer
1962 * (if there is one).
1963 */
1964 static struct rbd_img_request *rbd_img_request_create(
1965 struct rbd_device *rbd_dev,
1966 u64 offset, u64 length,
1967 bool write_request)
1968 {
1969 struct rbd_img_request *img_request;
1970
1971 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1972 if (!img_request)
1973 return NULL;
1974
1975 if (write_request) {
1976 down_read(&rbd_dev->header_rwsem);
1977 ceph_get_snap_context(rbd_dev->header.snapc);
1978 up_read(&rbd_dev->header_rwsem);
1979 }
1980
1981 img_request->rq = NULL;
1982 img_request->rbd_dev = rbd_dev;
1983 img_request->offset = offset;
1984 img_request->length = length;
1985 img_request->flags = 0;
1986 if (write_request) {
1987 img_request_write_set(img_request);
1988 img_request->snapc = rbd_dev->header.snapc;
1989 } else {
1990 img_request->snap_id = rbd_dev->spec->snap_id;
1991 }
1992 if (rbd_dev_parent_get(rbd_dev))
1993 img_request_layered_set(img_request);
1994 spin_lock_init(&img_request->completion_lock);
1995 img_request->next_completion = 0;
1996 img_request->callback = NULL;
1997 img_request->result = 0;
1998 img_request->obj_request_count = 0;
1999 INIT_LIST_HEAD(&img_request->obj_requests);
2000 kref_init(&img_request->kref);
2001
2002 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2003 write_request ? "write" : "read", offset, length,
2004 img_request);
2005
2006 return img_request;
2007 }
2008
2009 static void rbd_img_request_destroy(struct kref *kref)
2010 {
2011 struct rbd_img_request *img_request;
2012 struct rbd_obj_request *obj_request;
2013 struct rbd_obj_request *next_obj_request;
2014
2015 img_request = container_of(kref, struct rbd_img_request, kref);
2016
2017 dout("%s: img %p\n", __func__, img_request);
2018
2019 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2020 rbd_img_obj_request_del(img_request, obj_request);
2021 rbd_assert(img_request->obj_request_count == 0);
2022
2023 if (img_request_layered_test(img_request)) {
2024 img_request_layered_clear(img_request);
2025 rbd_dev_parent_put(img_request->rbd_dev);
2026 }
2027
2028 if (img_request_write_test(img_request))
2029 ceph_put_snap_context(img_request->snapc);
2030
2031 kmem_cache_free(rbd_img_request_cache, img_request);
2032 }
2033
2034 static struct rbd_img_request *rbd_parent_request_create(
2035 struct rbd_obj_request *obj_request,
2036 u64 img_offset, u64 length)
2037 {
2038 struct rbd_img_request *parent_request;
2039 struct rbd_device *rbd_dev;
2040
2041 rbd_assert(obj_request->img_request);
2042 rbd_dev = obj_request->img_request->rbd_dev;
2043
2044 parent_request = rbd_img_request_create(rbd_dev->parent,
2045 img_offset, length, false);
2046 if (!parent_request)
2047 return NULL;
2048
2049 img_request_child_set(parent_request);
2050 rbd_obj_request_get(obj_request);
2051 parent_request->obj_request = obj_request;
2052
2053 return parent_request;
2054 }
2055
2056 static void rbd_parent_request_destroy(struct kref *kref)
2057 {
2058 struct rbd_img_request *parent_request;
2059 struct rbd_obj_request *orig_request;
2060
2061 parent_request = container_of(kref, struct rbd_img_request, kref);
2062 orig_request = parent_request->obj_request;
2063
2064 parent_request->obj_request = NULL;
2065 rbd_obj_request_put(orig_request);
2066 img_request_child_clear(parent_request);
2067
2068 rbd_img_request_destroy(kref);
2069 }
2070
2071 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2072 {
2073 struct rbd_img_request *img_request;
2074 unsigned int xferred;
2075 int result;
2076 bool more;
2077
2078 rbd_assert(obj_request_img_data_test(obj_request));
2079 img_request = obj_request->img_request;
2080
2081 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2082 xferred = (unsigned int)obj_request->xferred;
2083 result = obj_request->result;
2084 if (result) {
2085 struct rbd_device *rbd_dev = img_request->rbd_dev;
2086
2087 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2088 img_request_write_test(img_request) ? "write" : "read",
2089 obj_request->length, obj_request->img_offset,
2090 obj_request->offset);
2091 rbd_warn(rbd_dev, " result %d xferred %x\n",
2092 result, xferred);
2093 if (!img_request->result)
2094 img_request->result = result;
2095 }
2096
2097 /* Image object requests don't own their page array */
2098
2099 if (obj_request->type == OBJ_REQUEST_PAGES) {
2100 obj_request->pages = NULL;
2101 obj_request->page_count = 0;
2102 }
2103
2104 if (img_request_child_test(img_request)) {
2105 rbd_assert(img_request->obj_request != NULL);
2106 more = obj_request->which < img_request->obj_request_count - 1;
2107 } else {
2108 rbd_assert(img_request->rq != NULL);
2109 more = blk_end_request(img_request->rq, result, xferred);
2110 }
2111
2112 return more;
2113 }
2114
2115 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2116 {
2117 struct rbd_img_request *img_request;
2118 u32 which = obj_request->which;
2119 bool more = true;
2120
2121 rbd_assert(obj_request_img_data_test(obj_request));
2122 img_request = obj_request->img_request;
2123
2124 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2125 rbd_assert(img_request != NULL);
2126 rbd_assert(img_request->obj_request_count > 0);
2127 rbd_assert(which != BAD_WHICH);
2128 rbd_assert(which < img_request->obj_request_count);
2129 rbd_assert(which >= img_request->next_completion);
2130
2131 spin_lock_irq(&img_request->completion_lock);
2132 if (which != img_request->next_completion)
2133 goto out;
2134
2135 for_each_obj_request_from(img_request, obj_request) {
2136 rbd_assert(more);
2137 rbd_assert(which < img_request->obj_request_count);
2138
2139 if (!obj_request_done_test(obj_request))
2140 break;
2141 more = rbd_img_obj_end_request(obj_request);
2142 which++;
2143 }
2144
2145 rbd_assert(more ^ (which == img_request->obj_request_count));
2146 img_request->next_completion = which;
2147 out:
2148 spin_unlock_irq(&img_request->completion_lock);
2149
2150 if (!more)
2151 rbd_img_request_complete(img_request);
2152 }
2153
2154 /*
2155 * Split up an image request into one or more object requests, each
2156 * to a different object. The "type" parameter indicates whether
2157 * "data_desc" is the pointer to the head of a list of bio
2158 * structures, or the base of a page array. In either case this
2159 * function assumes data_desc describes memory sufficient to hold
2160 * all data described by the image request.
2161 */
2162 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2163 enum obj_request_type type,
2164 void *data_desc)
2165 {
2166 struct rbd_device *rbd_dev = img_request->rbd_dev;
2167 struct rbd_obj_request *obj_request = NULL;
2168 struct rbd_obj_request *next_obj_request;
2169 bool write_request = img_request_write_test(img_request);
2170 struct bio *bio_list;
2171 unsigned int bio_offset = 0;
2172 struct page **pages;
2173 u64 img_offset;
2174 u64 resid;
2175 u16 opcode;
2176
2177 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2178 (int)type, data_desc);
2179
2180 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2181 img_offset = img_request->offset;
2182 resid = img_request->length;
2183 rbd_assert(resid > 0);
2184
2185 if (type == OBJ_REQUEST_BIO) {
2186 bio_list = data_desc;
2187 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2188 } else {
2189 rbd_assert(type == OBJ_REQUEST_PAGES);
2190 pages = data_desc;
2191 }
2192
2193 while (resid) {
2194 struct ceph_osd_request *osd_req;
2195 const char *object_name;
2196 u64 offset;
2197 u64 length;
2198
2199 object_name = rbd_segment_name(rbd_dev, img_offset);
2200 if (!object_name)
2201 goto out_unwind;
2202 offset = rbd_segment_offset(rbd_dev, img_offset);
2203 length = rbd_segment_length(rbd_dev, img_offset, resid);
2204 obj_request = rbd_obj_request_create(object_name,
2205 offset, length, type);
2206 /* object request has its own copy of the object name */
2207 rbd_segment_name_free(object_name);
2208 if (!obj_request)
2209 goto out_unwind;
2210
2211 if (type == OBJ_REQUEST_BIO) {
2212 unsigned int clone_size;
2213
2214 rbd_assert(length <= (u64)UINT_MAX);
2215 clone_size = (unsigned int)length;
2216 obj_request->bio_list =
2217 bio_chain_clone_range(&bio_list,
2218 &bio_offset,
2219 clone_size,
2220 GFP_ATOMIC);
2221 if (!obj_request->bio_list)
2222 goto out_partial;
2223 } else {
2224 unsigned int page_count;
2225
2226 obj_request->pages = pages;
2227 page_count = (u32)calc_pages_for(offset, length);
2228 obj_request->page_count = page_count;
2229 if ((offset + length) & ~PAGE_MASK)
2230 page_count--; /* more on last page */
2231 pages += page_count;
2232 }
2233
2234 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2235 obj_request);
2236 if (!osd_req)
2237 goto out_partial;
2238 obj_request->osd_req = osd_req;
2239 obj_request->callback = rbd_img_obj_callback;
2240
2241 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2242 0, 0);
2243 if (type == OBJ_REQUEST_BIO)
2244 osd_req_op_extent_osd_data_bio(osd_req, 0,
2245 obj_request->bio_list, length);
2246 else
2247 osd_req_op_extent_osd_data_pages(osd_req, 0,
2248 obj_request->pages, length,
2249 offset & ~PAGE_MASK, false, false);
2250
2251 if (write_request)
2252 rbd_osd_req_format_write(obj_request);
2253 else
2254 rbd_osd_req_format_read(obj_request);
2255
2256 obj_request->img_offset = img_offset;
2257 rbd_img_obj_request_add(img_request, obj_request);
2258
2259 img_offset += length;
2260 resid -= length;
2261 }
2262
2263 return 0;
2264
2265 out_partial:
2266 rbd_obj_request_put(obj_request);
2267 out_unwind:
2268 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2269 rbd_obj_request_put(obj_request);
2270
2271 return -ENOMEM;
2272 }
2273
2274 static void
2275 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2276 {
2277 struct rbd_img_request *img_request;
2278 struct rbd_device *rbd_dev;
2279 struct page **pages;
2280 u32 page_count;
2281
2282 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2283 rbd_assert(obj_request_img_data_test(obj_request));
2284 img_request = obj_request->img_request;
2285 rbd_assert(img_request);
2286
2287 rbd_dev = img_request->rbd_dev;
2288 rbd_assert(rbd_dev);
2289
2290 pages = obj_request->copyup_pages;
2291 rbd_assert(pages != NULL);
2292 obj_request->copyup_pages = NULL;
2293 page_count = obj_request->copyup_page_count;
2294 rbd_assert(page_count);
2295 obj_request->copyup_page_count = 0;
2296 ceph_release_page_vector(pages, page_count);
2297
2298 /*
2299 * We want the transfer count to reflect the size of the
2300 * original write request. There is no such thing as a
2301 * successful short write, so if the request was successful
2302 * we can just set it to the originally-requested length.
2303 */
2304 if (!obj_request->result)
2305 obj_request->xferred = obj_request->length;
2306
2307 /* Finish up with the normal image object callback */
2308
2309 rbd_img_obj_callback(obj_request);
2310 }
2311
2312 static void
2313 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2314 {
2315 struct rbd_obj_request *orig_request;
2316 struct ceph_osd_request *osd_req;
2317 struct ceph_osd_client *osdc;
2318 struct rbd_device *rbd_dev;
2319 struct page **pages;
2320 u32 page_count;
2321 int img_result;
2322 u64 parent_length;
2323 u64 offset;
2324 u64 length;
2325
2326 rbd_assert(img_request_child_test(img_request));
2327
2328 /* First get what we need from the image request */
2329
2330 pages = img_request->copyup_pages;
2331 rbd_assert(pages != NULL);
2332 img_request->copyup_pages = NULL;
2333 page_count = img_request->copyup_page_count;
2334 rbd_assert(page_count);
2335 img_request->copyup_page_count = 0;
2336
2337 orig_request = img_request->obj_request;
2338 rbd_assert(orig_request != NULL);
2339 rbd_assert(obj_request_type_valid(orig_request->type));
2340 img_result = img_request->result;
2341 parent_length = img_request->length;
2342 rbd_assert(parent_length == img_request->xferred);
2343 rbd_img_request_put(img_request);
2344
2345 rbd_assert(orig_request->img_request);
2346 rbd_dev = orig_request->img_request->rbd_dev;
2347 rbd_assert(rbd_dev);
2348
2349 /*
2350 * If the overlap has become 0 (most likely because the
2351 * image has been flattened) we need to free the pages
2352 * and re-submit the original write request.
2353 */
2354 if (!rbd_dev->parent_overlap) {
2355 struct ceph_osd_client *osdc;
2356
2357 ceph_release_page_vector(pages, page_count);
2358 osdc = &rbd_dev->rbd_client->client->osdc;
2359 img_result = rbd_obj_request_submit(osdc, orig_request);
2360 if (!img_result)
2361 return;
2362 }
2363
2364 if (img_result)
2365 goto out_err;
2366
2367 /*
2368 * The original osd request is of no use to use any more.
2369 * We need a new one that can hold the two ops in a copyup
2370 * request. Allocate the new copyup osd request for the
2371 * original request, and release the old one.
2372 */
2373 img_result = -ENOMEM;
2374 osd_req = rbd_osd_req_create_copyup(orig_request);
2375 if (!osd_req)
2376 goto out_err;
2377 rbd_osd_req_destroy(orig_request->osd_req);
2378 orig_request->osd_req = osd_req;
2379 orig_request->copyup_pages = pages;
2380 orig_request->copyup_page_count = page_count;
2381
2382 /* Initialize the copyup op */
2383
2384 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2385 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2386 false, false);
2387
2388 /* Then the original write request op */
2389
2390 offset = orig_request->offset;
2391 length = orig_request->length;
2392 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2393 offset, length, 0, 0);
2394 if (orig_request->type == OBJ_REQUEST_BIO)
2395 osd_req_op_extent_osd_data_bio(osd_req, 1,
2396 orig_request->bio_list, length);
2397 else
2398 osd_req_op_extent_osd_data_pages(osd_req, 1,
2399 orig_request->pages, length,
2400 offset & ~PAGE_MASK, false, false);
2401
2402 rbd_osd_req_format_write(orig_request);
2403
2404 /* All set, send it off. */
2405
2406 orig_request->callback = rbd_img_obj_copyup_callback;
2407 osdc = &rbd_dev->rbd_client->client->osdc;
2408 img_result = rbd_obj_request_submit(osdc, orig_request);
2409 if (!img_result)
2410 return;
2411 out_err:
2412 /* Record the error code and complete the request */
2413
2414 orig_request->result = img_result;
2415 orig_request->xferred = 0;
2416 obj_request_done_set(orig_request);
2417 rbd_obj_request_complete(orig_request);
2418 }
2419
2420 /*
2421 * Read from the parent image the range of data that covers the
2422 * entire target of the given object request. This is used for
2423 * satisfying a layered image write request when the target of an
2424 * object request from the image request does not exist.
2425 *
2426 * A page array big enough to hold the returned data is allocated
2427 * and supplied to rbd_img_request_fill() as the "data descriptor."
2428 * When the read completes, this page array will be transferred to
2429 * the original object request for the copyup operation.
2430 *
2431 * If an error occurs, record it as the result of the original
2432 * object request and mark it done so it gets completed.
2433 */
2434 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2435 {
2436 struct rbd_img_request *img_request = NULL;
2437 struct rbd_img_request *parent_request = NULL;
2438 struct rbd_device *rbd_dev;
2439 u64 img_offset;
2440 u64 length;
2441 struct page **pages = NULL;
2442 u32 page_count;
2443 int result;
2444
2445 rbd_assert(obj_request_img_data_test(obj_request));
2446 rbd_assert(obj_request_type_valid(obj_request->type));
2447
2448 img_request = obj_request->img_request;
2449 rbd_assert(img_request != NULL);
2450 rbd_dev = img_request->rbd_dev;
2451 rbd_assert(rbd_dev->parent != NULL);
2452
2453 /*
2454 * Determine the byte range covered by the object in the
2455 * child image to which the original request was to be sent.
2456 */
2457 img_offset = obj_request->img_offset - obj_request->offset;
2458 length = (u64)1 << rbd_dev->header.obj_order;
2459
2460 /*
2461 * There is no defined parent data beyond the parent
2462 * overlap, so limit what we read at that boundary if
2463 * necessary.
2464 */
2465 if (img_offset + length > rbd_dev->parent_overlap) {
2466 rbd_assert(img_offset < rbd_dev->parent_overlap);
2467 length = rbd_dev->parent_overlap - img_offset;
2468 }
2469
2470 /*
2471 * Allocate a page array big enough to receive the data read
2472 * from the parent.
2473 */
2474 page_count = (u32)calc_pages_for(0, length);
2475 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2476 if (IS_ERR(pages)) {
2477 result = PTR_ERR(pages);
2478 pages = NULL;
2479 goto out_err;
2480 }
2481
2482 result = -ENOMEM;
2483 parent_request = rbd_parent_request_create(obj_request,
2484 img_offset, length);
2485 if (!parent_request)
2486 goto out_err;
2487
2488 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2489 if (result)
2490 goto out_err;
2491 parent_request->copyup_pages = pages;
2492 parent_request->copyup_page_count = page_count;
2493
2494 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2495 result = rbd_img_request_submit(parent_request);
2496 if (!result)
2497 return 0;
2498
2499 parent_request->copyup_pages = NULL;
2500 parent_request->copyup_page_count = 0;
2501 parent_request->obj_request = NULL;
2502 rbd_obj_request_put(obj_request);
2503 out_err:
2504 if (pages)
2505 ceph_release_page_vector(pages, page_count);
2506 if (parent_request)
2507 rbd_img_request_put(parent_request);
2508 obj_request->result = result;
2509 obj_request->xferred = 0;
2510 obj_request_done_set(obj_request);
2511
2512 return result;
2513 }
2514
2515 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2516 {
2517 struct rbd_obj_request *orig_request;
2518 struct rbd_device *rbd_dev;
2519 int result;
2520
2521 rbd_assert(!obj_request_img_data_test(obj_request));
2522
2523 /*
2524 * All we need from the object request is the original
2525 * request and the result of the STAT op. Grab those, then
2526 * we're done with the request.
2527 */
2528 orig_request = obj_request->obj_request;
2529 obj_request->obj_request = NULL;
2530 rbd_assert(orig_request);
2531 rbd_assert(orig_request->img_request);
2532
2533 result = obj_request->result;
2534 obj_request->result = 0;
2535
2536 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2537 obj_request, orig_request, result,
2538 obj_request->xferred, obj_request->length);
2539 rbd_obj_request_put(obj_request);
2540
2541 /*
2542 * If the overlap has become 0 (most likely because the
2543 * image has been flattened) we need to free the pages
2544 * and re-submit the original write request.
2545 */
2546 rbd_dev = orig_request->img_request->rbd_dev;
2547 if (!rbd_dev->parent_overlap) {
2548 struct ceph_osd_client *osdc;
2549
2550 rbd_obj_request_put(orig_request);
2551 osdc = &rbd_dev->rbd_client->client->osdc;
2552 result = rbd_obj_request_submit(osdc, orig_request);
2553 if (!result)
2554 return;
2555 }
2556
2557 /*
2558 * Our only purpose here is to determine whether the object
2559 * exists, and we don't want to treat the non-existence as
2560 * an error. If something else comes back, transfer the
2561 * error to the original request and complete it now.
2562 */
2563 if (!result) {
2564 obj_request_existence_set(orig_request, true);
2565 } else if (result == -ENOENT) {
2566 obj_request_existence_set(orig_request, false);
2567 } else if (result) {
2568 orig_request->result = result;
2569 goto out;
2570 }
2571
2572 /*
2573 * Resubmit the original request now that we have recorded
2574 * whether the target object exists.
2575 */
2576 orig_request->result = rbd_img_obj_request_submit(orig_request);
2577 out:
2578 if (orig_request->result)
2579 rbd_obj_request_complete(orig_request);
2580 rbd_obj_request_put(orig_request);
2581 }
2582
2583 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2584 {
2585 struct rbd_obj_request *stat_request;
2586 struct rbd_device *rbd_dev;
2587 struct ceph_osd_client *osdc;
2588 struct page **pages = NULL;
2589 u32 page_count;
2590 size_t size;
2591 int ret;
2592
2593 /*
2594 * The response data for a STAT call consists of:
2595 * le64 length;
2596 * struct {
2597 * le32 tv_sec;
2598 * le32 tv_nsec;
2599 * } mtime;
2600 */
2601 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2602 page_count = (u32)calc_pages_for(0, size);
2603 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2604 if (IS_ERR(pages))
2605 return PTR_ERR(pages);
2606
2607 ret = -ENOMEM;
2608 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2609 OBJ_REQUEST_PAGES);
2610 if (!stat_request)
2611 goto out;
2612
2613 rbd_obj_request_get(obj_request);
2614 stat_request->obj_request = obj_request;
2615 stat_request->pages = pages;
2616 stat_request->page_count = page_count;
2617
2618 rbd_assert(obj_request->img_request);
2619 rbd_dev = obj_request->img_request->rbd_dev;
2620 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2621 stat_request);
2622 if (!stat_request->osd_req)
2623 goto out;
2624 stat_request->callback = rbd_img_obj_exists_callback;
2625
2626 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2627 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2628 false, false);
2629 rbd_osd_req_format_read(stat_request);
2630
2631 osdc = &rbd_dev->rbd_client->client->osdc;
2632 ret = rbd_obj_request_submit(osdc, stat_request);
2633 out:
2634 if (ret)
2635 rbd_obj_request_put(obj_request);
2636
2637 return ret;
2638 }
2639
2640 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2641 {
2642 struct rbd_img_request *img_request;
2643 struct rbd_device *rbd_dev;
2644 bool known;
2645
2646 rbd_assert(obj_request_img_data_test(obj_request));
2647
2648 img_request = obj_request->img_request;
2649 rbd_assert(img_request);
2650 rbd_dev = img_request->rbd_dev;
2651
2652 /*
2653 * Only writes to layered images need special handling.
2654 * Reads and non-layered writes are simple object requests.
2655 * Layered writes that start beyond the end of the overlap
2656 * with the parent have no parent data, so they too are
2657 * simple object requests. Finally, if the target object is
2658 * known to already exist, its parent data has already been
2659 * copied, so a write to the object can also be handled as a
2660 * simple object request.
2661 */
2662 if (!img_request_write_test(img_request) ||
2663 !img_request_layered_test(img_request) ||
2664 rbd_dev->parent_overlap <= obj_request->img_offset ||
2665 ((known = obj_request_known_test(obj_request)) &&
2666 obj_request_exists_test(obj_request))) {
2667
2668 struct rbd_device *rbd_dev;
2669 struct ceph_osd_client *osdc;
2670
2671 rbd_dev = obj_request->img_request->rbd_dev;
2672 osdc = &rbd_dev->rbd_client->client->osdc;
2673
2674 return rbd_obj_request_submit(osdc, obj_request);
2675 }
2676
2677 /*
2678 * It's a layered write. The target object might exist but
2679 * we may not know that yet. If we know it doesn't exist,
2680 * start by reading the data for the full target object from
2681 * the parent so we can use it for a copyup to the target.
2682 */
2683 if (known)
2684 return rbd_img_obj_parent_read_full(obj_request);
2685
2686 /* We don't know whether the target exists. Go find out. */
2687
2688 return rbd_img_obj_exists_submit(obj_request);
2689 }
2690
2691 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2692 {
2693 struct rbd_obj_request *obj_request;
2694 struct rbd_obj_request *next_obj_request;
2695
2696 dout("%s: img %p\n", __func__, img_request);
2697 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2698 int ret;
2699
2700 ret = rbd_img_obj_request_submit(obj_request);
2701 if (ret)
2702 return ret;
2703 }
2704
2705 return 0;
2706 }
2707
2708 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2709 {
2710 struct rbd_obj_request *obj_request;
2711 struct rbd_device *rbd_dev;
2712 u64 obj_end;
2713 u64 img_xferred;
2714 int img_result;
2715
2716 rbd_assert(img_request_child_test(img_request));
2717
2718 /* First get what we need from the image request and release it */
2719
2720 obj_request = img_request->obj_request;
2721 img_xferred = img_request->xferred;
2722 img_result = img_request->result;
2723 rbd_img_request_put(img_request);
2724
2725 /*
2726 * If the overlap has become 0 (most likely because the
2727 * image has been flattened) we need to re-submit the
2728 * original request.
2729 */
2730 rbd_assert(obj_request);
2731 rbd_assert(obj_request->img_request);
2732 rbd_dev = obj_request->img_request->rbd_dev;
2733 if (!rbd_dev->parent_overlap) {
2734 struct ceph_osd_client *osdc;
2735
2736 osdc = &rbd_dev->rbd_client->client->osdc;
2737 img_result = rbd_obj_request_submit(osdc, obj_request);
2738 if (!img_result)
2739 return;
2740 }
2741
2742 obj_request->result = img_result;
2743 if (obj_request->result)
2744 goto out;
2745
2746 /*
2747 * We need to zero anything beyond the parent overlap
2748 * boundary. Since rbd_img_obj_request_read_callback()
2749 * will zero anything beyond the end of a short read, an
2750 * easy way to do this is to pretend the data from the
2751 * parent came up short--ending at the overlap boundary.
2752 */
2753 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2754 obj_end = obj_request->img_offset + obj_request->length;
2755 if (obj_end > rbd_dev->parent_overlap) {
2756 u64 xferred = 0;
2757
2758 if (obj_request->img_offset < rbd_dev->parent_overlap)
2759 xferred = rbd_dev->parent_overlap -
2760 obj_request->img_offset;
2761
2762 obj_request->xferred = min(img_xferred, xferred);
2763 } else {
2764 obj_request->xferred = img_xferred;
2765 }
2766 out:
2767 rbd_img_obj_request_read_callback(obj_request);
2768 rbd_obj_request_complete(obj_request);
2769 }
2770
2771 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2772 {
2773 struct rbd_img_request *img_request;
2774 int result;
2775
2776 rbd_assert(obj_request_img_data_test(obj_request));
2777 rbd_assert(obj_request->img_request != NULL);
2778 rbd_assert(obj_request->result == (s32) -ENOENT);
2779 rbd_assert(obj_request_type_valid(obj_request->type));
2780
2781 /* rbd_read_finish(obj_request, obj_request->length); */
2782 img_request = rbd_parent_request_create(obj_request,
2783 obj_request->img_offset,
2784 obj_request->length);
2785 result = -ENOMEM;
2786 if (!img_request)
2787 goto out_err;
2788
2789 if (obj_request->type == OBJ_REQUEST_BIO)
2790 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2791 obj_request->bio_list);
2792 else
2793 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2794 obj_request->pages);
2795 if (result)
2796 goto out_err;
2797
2798 img_request->callback = rbd_img_parent_read_callback;
2799 result = rbd_img_request_submit(img_request);
2800 if (result)
2801 goto out_err;
2802
2803 return;
2804 out_err:
2805 if (img_request)
2806 rbd_img_request_put(img_request);
2807 obj_request->result = result;
2808 obj_request->xferred = 0;
2809 obj_request_done_set(obj_request);
2810 }
2811
2812 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2813 {
2814 struct rbd_obj_request *obj_request;
2815 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2816 int ret;
2817
2818 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2819 OBJ_REQUEST_NODATA);
2820 if (!obj_request)
2821 return -ENOMEM;
2822
2823 ret = -ENOMEM;
2824 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2825 if (!obj_request->osd_req)
2826 goto out;
2827 obj_request->callback = rbd_obj_request_put;
2828
2829 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2830 notify_id, 0, 0);
2831 rbd_osd_req_format_read(obj_request);
2832
2833 ret = rbd_obj_request_submit(osdc, obj_request);
2834 out:
2835 if (ret)
2836 rbd_obj_request_put(obj_request);
2837
2838 return ret;
2839 }
2840
2841 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2842 {
2843 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2844 int ret;
2845
2846 if (!rbd_dev)
2847 return;
2848
2849 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2850 rbd_dev->header_name, (unsigned long long)notify_id,
2851 (unsigned int)opcode);
2852 ret = rbd_dev_refresh(rbd_dev);
2853 if (ret)
2854 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2855
2856 rbd_obj_notify_ack(rbd_dev, notify_id);
2857 }
2858
2859 /*
2860 * Request sync osd watch/unwatch. The value of "start" determines
2861 * whether a watch request is being initiated or torn down.
2862 */
2863 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2864 {
2865 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2866 struct rbd_obj_request *obj_request;
2867 int ret;
2868
2869 rbd_assert(start ^ !!rbd_dev->watch_event);
2870 rbd_assert(start ^ !!rbd_dev->watch_request);
2871
2872 if (start) {
2873 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2874 &rbd_dev->watch_event);
2875 if (ret < 0)
2876 return ret;
2877 rbd_assert(rbd_dev->watch_event != NULL);
2878 }
2879
2880 ret = -ENOMEM;
2881 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2882 OBJ_REQUEST_NODATA);
2883 if (!obj_request)
2884 goto out_cancel;
2885
2886 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2887 if (!obj_request->osd_req)
2888 goto out_cancel;
2889
2890 if (start)
2891 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2892 else
2893 ceph_osdc_unregister_linger_request(osdc,
2894 rbd_dev->watch_request->osd_req);
2895
2896 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2897 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2898 rbd_osd_req_format_write(obj_request);
2899
2900 ret = rbd_obj_request_submit(osdc, obj_request);
2901 if (ret)
2902 goto out_cancel;
2903 ret = rbd_obj_request_wait(obj_request);
2904 if (ret)
2905 goto out_cancel;
2906 ret = obj_request->result;
2907 if (ret)
2908 goto out_cancel;
2909
2910 /*
2911 * A watch request is set to linger, so the underlying osd
2912 * request won't go away until we unregister it. We retain
2913 * a pointer to the object request during that time (in
2914 * rbd_dev->watch_request), so we'll keep a reference to
2915 * it. We'll drop that reference (below) after we've
2916 * unregistered it.
2917 */
2918 if (start) {
2919 rbd_dev->watch_request = obj_request;
2920
2921 return 0;
2922 }
2923
2924 /* We have successfully torn down the watch request */
2925
2926 rbd_obj_request_put(rbd_dev->watch_request);
2927 rbd_dev->watch_request = NULL;
2928 out_cancel:
2929 /* Cancel the event if we're tearing down, or on error */
2930 ceph_osdc_cancel_event(rbd_dev->watch_event);
2931 rbd_dev->watch_event = NULL;
2932 if (obj_request)
2933 rbd_obj_request_put(obj_request);
2934
2935 return ret;
2936 }
2937
2938 /*
2939 * Synchronous osd object method call. Returns the number of bytes
2940 * returned in the outbound buffer, or a negative error code.
2941 */
2942 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2943 const char *object_name,
2944 const char *class_name,
2945 const char *method_name,
2946 const void *outbound,
2947 size_t outbound_size,
2948 void *inbound,
2949 size_t inbound_size)
2950 {
2951 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2952 struct rbd_obj_request *obj_request;
2953 struct page **pages;
2954 u32 page_count;
2955 int ret;
2956
2957 /*
2958 * Method calls are ultimately read operations. The result
2959 * should placed into the inbound buffer provided. They
2960 * also supply outbound data--parameters for the object
2961 * method. Currently if this is present it will be a
2962 * snapshot id.
2963 */
2964 page_count = (u32)calc_pages_for(0, inbound_size);
2965 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2966 if (IS_ERR(pages))
2967 return PTR_ERR(pages);
2968
2969 ret = -ENOMEM;
2970 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2971 OBJ_REQUEST_PAGES);
2972 if (!obj_request)
2973 goto out;
2974
2975 obj_request->pages = pages;
2976 obj_request->page_count = page_count;
2977
2978 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2979 if (!obj_request->osd_req)
2980 goto out;
2981
2982 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2983 class_name, method_name);
2984 if (outbound_size) {
2985 struct ceph_pagelist *pagelist;
2986
2987 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2988 if (!pagelist)
2989 goto out;
2990
2991 ceph_pagelist_init(pagelist);
2992 ceph_pagelist_append(pagelist, outbound, outbound_size);
2993 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2994 pagelist);
2995 }
2996 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2997 obj_request->pages, inbound_size,
2998 0, false, false);
2999 rbd_osd_req_format_read(obj_request);
3000
3001 ret = rbd_obj_request_submit(osdc, obj_request);
3002 if (ret)
3003 goto out;
3004 ret = rbd_obj_request_wait(obj_request);
3005 if (ret)
3006 goto out;
3007
3008 ret = obj_request->result;
3009 if (ret < 0)
3010 goto out;
3011
3012 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3013 ret = (int)obj_request->xferred;
3014 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3015 out:
3016 if (obj_request)
3017 rbd_obj_request_put(obj_request);
3018 else
3019 ceph_release_page_vector(pages, page_count);
3020
3021 return ret;
3022 }
3023
3024 static void rbd_request_fn(struct request_queue *q)
3025 __releases(q->queue_lock) __acquires(q->queue_lock)
3026 {
3027 struct rbd_device *rbd_dev = q->queuedata;
3028 bool read_only = rbd_dev->mapping.read_only;
3029 struct request *rq;
3030 int result;
3031
3032 while ((rq = blk_fetch_request(q))) {
3033 bool write_request = rq_data_dir(rq) == WRITE;
3034 struct rbd_img_request *img_request;
3035 u64 offset;
3036 u64 length;
3037
3038 /* Ignore any non-FS requests that filter through. */
3039
3040 if (rq->cmd_type != REQ_TYPE_FS) {
3041 dout("%s: non-fs request type %d\n", __func__,
3042 (int) rq->cmd_type);
3043 __blk_end_request_all(rq, 0);
3044 continue;
3045 }
3046
3047 /* Ignore/skip any zero-length requests */
3048
3049 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3050 length = (u64) blk_rq_bytes(rq);
3051
3052 if (!length) {
3053 dout("%s: zero-length request\n", __func__);
3054 __blk_end_request_all(rq, 0);
3055 continue;
3056 }
3057
3058 spin_unlock_irq(q->queue_lock);
3059
3060 /* Disallow writes to a read-only device */
3061
3062 if (write_request) {
3063 result = -EROFS;
3064 if (read_only)
3065 goto end_request;
3066 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3067 }
3068
3069 /*
3070 * Quit early if the mapped snapshot no longer
3071 * exists. It's still possible the snapshot will
3072 * have disappeared by the time our request arrives
3073 * at the osd, but there's no sense in sending it if
3074 * we already know.
3075 */
3076 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3077 dout("request for non-existent snapshot");
3078 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3079 result = -ENXIO;
3080 goto end_request;
3081 }
3082
3083 result = -EINVAL;
3084 if (offset && length > U64_MAX - offset + 1) {
3085 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3086 offset, length);
3087 goto end_request; /* Shouldn't happen */
3088 }
3089
3090 result = -EIO;
3091 if (offset + length > rbd_dev->mapping.size) {
3092 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3093 offset, length, rbd_dev->mapping.size);
3094 goto end_request;
3095 }
3096
3097 result = -ENOMEM;
3098 img_request = rbd_img_request_create(rbd_dev, offset, length,
3099 write_request);
3100 if (!img_request)
3101 goto end_request;
3102
3103 img_request->rq = rq;
3104
3105 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3106 rq->bio);
3107 if (!result)
3108 result = rbd_img_request_submit(img_request);
3109 if (result)
3110 rbd_img_request_put(img_request);
3111 end_request:
3112 spin_lock_irq(q->queue_lock);
3113 if (result < 0) {
3114 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3115 write_request ? "write" : "read",
3116 length, offset, result);
3117
3118 __blk_end_request_all(rq, result);
3119 }
3120 }
3121 }
3122
3123 /*
3124 * a queue callback. Makes sure that we don't create a bio that spans across
3125 * multiple osd objects. One exception would be with a single page bios,
3126 * which we handle later at bio_chain_clone_range()
3127 */
3128 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3129 struct bio_vec *bvec)
3130 {
3131 struct rbd_device *rbd_dev = q->queuedata;
3132 sector_t sector_offset;
3133 sector_t sectors_per_obj;
3134 sector_t obj_sector_offset;
3135 int ret;
3136
3137 /*
3138 * Find how far into its rbd object the partition-relative
3139 * bio start sector is to offset relative to the enclosing
3140 * device.
3141 */
3142 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3143 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3144 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3145
3146 /*
3147 * Compute the number of bytes from that offset to the end
3148 * of the object. Account for what's already used by the bio.
3149 */
3150 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3151 if (ret > bmd->bi_size)
3152 ret -= bmd->bi_size;
3153 else
3154 ret = 0;
3155
3156 /*
3157 * Don't send back more than was asked for. And if the bio
3158 * was empty, let the whole thing through because: "Note
3159 * that a block device *must* allow a single page to be
3160 * added to an empty bio."
3161 */
3162 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3163 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3164 ret = (int) bvec->bv_len;
3165
3166 return ret;
3167 }
3168
3169 static void rbd_free_disk(struct rbd_device *rbd_dev)
3170 {
3171 struct gendisk *disk = rbd_dev->disk;
3172
3173 if (!disk)
3174 return;
3175
3176 rbd_dev->disk = NULL;
3177 if (disk->flags & GENHD_FL_UP) {
3178 del_gendisk(disk);
3179 if (disk->queue)
3180 blk_cleanup_queue(disk->queue);
3181 }
3182 put_disk(disk);
3183 }
3184
3185 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3186 const char *object_name,
3187 u64 offset, u64 length, void *buf)
3188
3189 {
3190 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3191 struct rbd_obj_request *obj_request;
3192 struct page **pages = NULL;
3193 u32 page_count;
3194 size_t size;
3195 int ret;
3196
3197 page_count = (u32) calc_pages_for(offset, length);
3198 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3199 if (IS_ERR(pages))
3200 ret = PTR_ERR(pages);
3201
3202 ret = -ENOMEM;
3203 obj_request = rbd_obj_request_create(object_name, offset, length,
3204 OBJ_REQUEST_PAGES);
3205 if (!obj_request)
3206 goto out;
3207
3208 obj_request->pages = pages;
3209 obj_request->page_count = page_count;
3210
3211 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3212 if (!obj_request->osd_req)
3213 goto out;
3214
3215 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3216 offset, length, 0, 0);
3217 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3218 obj_request->pages,
3219 obj_request->length,
3220 obj_request->offset & ~PAGE_MASK,
3221 false, false);
3222 rbd_osd_req_format_read(obj_request);
3223
3224 ret = rbd_obj_request_submit(osdc, obj_request);
3225 if (ret)
3226 goto out;
3227 ret = rbd_obj_request_wait(obj_request);
3228 if (ret)
3229 goto out;
3230
3231 ret = obj_request->result;
3232 if (ret < 0)
3233 goto out;
3234
3235 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3236 size = (size_t) obj_request->xferred;
3237 ceph_copy_from_page_vector(pages, buf, 0, size);
3238 rbd_assert(size <= (size_t)INT_MAX);
3239 ret = (int)size;
3240 out:
3241 if (obj_request)
3242 rbd_obj_request_put(obj_request);
3243 else
3244 ceph_release_page_vector(pages, page_count);
3245
3246 return ret;
3247 }
3248
3249 /*
3250 * Read the complete header for the given rbd device. On successful
3251 * return, the rbd_dev->header field will contain up-to-date
3252 * information about the image.
3253 */
3254 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3255 {
3256 struct rbd_image_header_ondisk *ondisk = NULL;
3257 u32 snap_count = 0;
3258 u64 names_size = 0;
3259 u32 want_count;
3260 int ret;
3261
3262 /*
3263 * The complete header will include an array of its 64-bit
3264 * snapshot ids, followed by the names of those snapshots as
3265 * a contiguous block of NUL-terminated strings. Note that
3266 * the number of snapshots could change by the time we read
3267 * it in, in which case we re-read it.
3268 */
3269 do {
3270 size_t size;
3271
3272 kfree(ondisk);
3273
3274 size = sizeof (*ondisk);
3275 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3276 size += names_size;
3277 ondisk = kmalloc(size, GFP_KERNEL);
3278 if (!ondisk)
3279 return -ENOMEM;
3280
3281 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3282 0, size, ondisk);
3283 if (ret < 0)
3284 goto out;
3285 if ((size_t)ret < size) {
3286 ret = -ENXIO;
3287 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3288 size, ret);
3289 goto out;
3290 }
3291 if (!rbd_dev_ondisk_valid(ondisk)) {
3292 ret = -ENXIO;
3293 rbd_warn(rbd_dev, "invalid header");
3294 goto out;
3295 }
3296
3297 names_size = le64_to_cpu(ondisk->snap_names_len);
3298 want_count = snap_count;
3299 snap_count = le32_to_cpu(ondisk->snap_count);
3300 } while (snap_count != want_count);
3301
3302 ret = rbd_header_from_disk(rbd_dev, ondisk);
3303 out:
3304 kfree(ondisk);
3305
3306 return ret;
3307 }
3308
3309 /*
3310 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3311 * has disappeared from the (just updated) snapshot context.
3312 */
3313 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3314 {
3315 u64 snap_id;
3316
3317 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3318 return;
3319
3320 snap_id = rbd_dev->spec->snap_id;
3321 if (snap_id == CEPH_NOSNAP)
3322 return;
3323
3324 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3325 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3326 }
3327
3328 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3329 {
3330 u64 mapping_size;
3331 int ret;
3332
3333 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3334 mapping_size = rbd_dev->mapping.size;
3335 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3336 if (rbd_dev->image_format == 1)
3337 ret = rbd_dev_v1_header_info(rbd_dev);
3338 else
3339 ret = rbd_dev_v2_header_info(rbd_dev);
3340
3341 /* If it's a mapped snapshot, validate its EXISTS flag */
3342
3343 rbd_exists_validate(rbd_dev);
3344 mutex_unlock(&ctl_mutex);
3345 if (mapping_size != rbd_dev->mapping.size) {
3346 sector_t size;
3347
3348 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3349 dout("setting size to %llu sectors", (unsigned long long)size);
3350 set_capacity(rbd_dev->disk, size);
3351 revalidate_disk(rbd_dev->disk);
3352 }
3353
3354 return ret;
3355 }
3356
3357 static int rbd_init_disk(struct rbd_device *rbd_dev)
3358 {
3359 struct gendisk *disk;
3360 struct request_queue *q;
3361 u64 segment_size;
3362
3363 /* create gendisk info */
3364 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3365 if (!disk)
3366 return -ENOMEM;
3367
3368 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3369 rbd_dev->dev_id);
3370 disk->major = rbd_dev->major;
3371 disk->first_minor = 0;
3372 disk->fops = &rbd_bd_ops;
3373 disk->private_data = rbd_dev;
3374
3375 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3376 if (!q)
3377 goto out_disk;
3378
3379 /* We use the default size, but let's be explicit about it. */
3380 blk_queue_physical_block_size(q, SECTOR_SIZE);
3381
3382 /* set io sizes to object size */
3383 segment_size = rbd_obj_bytes(&rbd_dev->header);
3384 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3385 blk_queue_max_segment_size(q, segment_size);
3386 blk_queue_io_min(q, segment_size);
3387 blk_queue_io_opt(q, segment_size);
3388
3389 blk_queue_merge_bvec(q, rbd_merge_bvec);
3390 disk->queue = q;
3391
3392 q->queuedata = rbd_dev;
3393
3394 rbd_dev->disk = disk;
3395
3396 return 0;
3397 out_disk:
3398 put_disk(disk);
3399
3400 return -ENOMEM;
3401 }
3402
3403 /*
3404 sysfs
3405 */
3406
3407 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3408 {
3409 return container_of(dev, struct rbd_device, dev);
3410 }
3411
3412 static ssize_t rbd_size_show(struct device *dev,
3413 struct device_attribute *attr, char *buf)
3414 {
3415 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3416
3417 return sprintf(buf, "%llu\n",
3418 (unsigned long long)rbd_dev->mapping.size);
3419 }
3420
3421 /*
3422 * Note this shows the features for whatever's mapped, which is not
3423 * necessarily the base image.
3424 */
3425 static ssize_t rbd_features_show(struct device *dev,
3426 struct device_attribute *attr, char *buf)
3427 {
3428 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3429
3430 return sprintf(buf, "0x%016llx\n",
3431 (unsigned long long)rbd_dev->mapping.features);
3432 }
3433
3434 static ssize_t rbd_major_show(struct device *dev,
3435 struct device_attribute *attr, char *buf)
3436 {
3437 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3438
3439 if (rbd_dev->major)
3440 return sprintf(buf, "%d\n", rbd_dev->major);
3441
3442 return sprintf(buf, "(none)\n");
3443
3444 }
3445
3446 static ssize_t rbd_client_id_show(struct device *dev,
3447 struct device_attribute *attr, char *buf)
3448 {
3449 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3450
3451 return sprintf(buf, "client%lld\n",
3452 ceph_client_id(rbd_dev->rbd_client->client));
3453 }
3454
3455 static ssize_t rbd_pool_show(struct device *dev,
3456 struct device_attribute *attr, char *buf)
3457 {
3458 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3459
3460 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3461 }
3462
3463 static ssize_t rbd_pool_id_show(struct device *dev,
3464 struct device_attribute *attr, char *buf)
3465 {
3466 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467
3468 return sprintf(buf, "%llu\n",
3469 (unsigned long long) rbd_dev->spec->pool_id);
3470 }
3471
3472 static ssize_t rbd_name_show(struct device *dev,
3473 struct device_attribute *attr, char *buf)
3474 {
3475 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3476
3477 if (rbd_dev->spec->image_name)
3478 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3479
3480 return sprintf(buf, "(unknown)\n");
3481 }
3482
3483 static ssize_t rbd_image_id_show(struct device *dev,
3484 struct device_attribute *attr, char *buf)
3485 {
3486 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3487
3488 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3489 }
3490
3491 /*
3492 * Shows the name of the currently-mapped snapshot (or
3493 * RBD_SNAP_HEAD_NAME for the base image).
3494 */
3495 static ssize_t rbd_snap_show(struct device *dev,
3496 struct device_attribute *attr,
3497 char *buf)
3498 {
3499 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3500
3501 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3502 }
3503
3504 /*
3505 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3506 * for the parent image. If there is no parent, simply shows
3507 * "(no parent image)".
3508 */
3509 static ssize_t rbd_parent_show(struct device *dev,
3510 struct device_attribute *attr,
3511 char *buf)
3512 {
3513 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3514 struct rbd_spec *spec = rbd_dev->parent_spec;
3515 int count;
3516 char *bufp = buf;
3517
3518 if (!spec)
3519 return sprintf(buf, "(no parent image)\n");
3520
3521 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3522 (unsigned long long) spec->pool_id, spec->pool_name);
3523 if (count < 0)
3524 return count;
3525 bufp += count;
3526
3527 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3528 spec->image_name ? spec->image_name : "(unknown)");
3529 if (count < 0)
3530 return count;
3531 bufp += count;
3532
3533 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3534 (unsigned long long) spec->snap_id, spec->snap_name);
3535 if (count < 0)
3536 return count;
3537 bufp += count;
3538
3539 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3540 if (count < 0)
3541 return count;
3542 bufp += count;
3543
3544 return (ssize_t) (bufp - buf);
3545 }
3546
3547 static ssize_t rbd_image_refresh(struct device *dev,
3548 struct device_attribute *attr,
3549 const char *buf,
3550 size_t size)
3551 {
3552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553 int ret;
3554
3555 ret = rbd_dev_refresh(rbd_dev);
3556 if (ret)
3557 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3558
3559 return ret < 0 ? ret : size;
3560 }
3561
3562 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3563 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3564 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3565 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3566 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3567 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3568 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3569 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3570 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3571 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3572 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3573
3574 static struct attribute *rbd_attrs[] = {
3575 &dev_attr_size.attr,
3576 &dev_attr_features.attr,
3577 &dev_attr_major.attr,
3578 &dev_attr_client_id.attr,
3579 &dev_attr_pool.attr,
3580 &dev_attr_pool_id.attr,
3581 &dev_attr_name.attr,
3582 &dev_attr_image_id.attr,
3583 &dev_attr_current_snap.attr,
3584 &dev_attr_parent.attr,
3585 &dev_attr_refresh.attr,
3586 NULL
3587 };
3588
3589 static struct attribute_group rbd_attr_group = {
3590 .attrs = rbd_attrs,
3591 };
3592
3593 static const struct attribute_group *rbd_attr_groups[] = {
3594 &rbd_attr_group,
3595 NULL
3596 };
3597
3598 static void rbd_sysfs_dev_release(struct device *dev)
3599 {
3600 }
3601
3602 static struct device_type rbd_device_type = {
3603 .name = "rbd",
3604 .groups = rbd_attr_groups,
3605 .release = rbd_sysfs_dev_release,
3606 };
3607
3608 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3609 {
3610 kref_get(&spec->kref);
3611
3612 return spec;
3613 }
3614
3615 static void rbd_spec_free(struct kref *kref);
3616 static void rbd_spec_put(struct rbd_spec *spec)
3617 {
3618 if (spec)
3619 kref_put(&spec->kref, rbd_spec_free);
3620 }
3621
3622 static struct rbd_spec *rbd_spec_alloc(void)
3623 {
3624 struct rbd_spec *spec;
3625
3626 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3627 if (!spec)
3628 return NULL;
3629 kref_init(&spec->kref);
3630
3631 return spec;
3632 }
3633
3634 static void rbd_spec_free(struct kref *kref)
3635 {
3636 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3637
3638 kfree(spec->pool_name);
3639 kfree(spec->image_id);
3640 kfree(spec->image_name);
3641 kfree(spec->snap_name);
3642 kfree(spec);
3643 }
3644
3645 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3646 struct rbd_spec *spec)
3647 {
3648 struct rbd_device *rbd_dev;
3649
3650 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3651 if (!rbd_dev)
3652 return NULL;
3653
3654 spin_lock_init(&rbd_dev->lock);
3655 rbd_dev->flags = 0;
3656 atomic_set(&rbd_dev->parent_ref, 0);
3657 INIT_LIST_HEAD(&rbd_dev->node);
3658 init_rwsem(&rbd_dev->header_rwsem);
3659
3660 rbd_dev->spec = spec;
3661 rbd_dev->rbd_client = rbdc;
3662
3663 /* Initialize the layout used for all rbd requests */
3664
3665 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3666 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3667 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3668 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3669
3670 return rbd_dev;
3671 }
3672
3673 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3674 {
3675 rbd_put_client(rbd_dev->rbd_client);
3676 rbd_spec_put(rbd_dev->spec);
3677 kfree(rbd_dev);
3678 }
3679
3680 /*
3681 * Get the size and object order for an image snapshot, or if
3682 * snap_id is CEPH_NOSNAP, gets this information for the base
3683 * image.
3684 */
3685 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3686 u8 *order, u64 *snap_size)
3687 {
3688 __le64 snapid = cpu_to_le64(snap_id);
3689 int ret;
3690 struct {
3691 u8 order;
3692 __le64 size;
3693 } __attribute__ ((packed)) size_buf = { 0 };
3694
3695 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3696 "rbd", "get_size",
3697 &snapid, sizeof (snapid),
3698 &size_buf, sizeof (size_buf));
3699 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3700 if (ret < 0)
3701 return ret;
3702 if (ret < sizeof (size_buf))
3703 return -ERANGE;
3704
3705 if (order)
3706 *order = size_buf.order;
3707 *snap_size = le64_to_cpu(size_buf.size);
3708
3709 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3710 (unsigned long long)snap_id, (unsigned int)*order,
3711 (unsigned long long)*snap_size);
3712
3713 return 0;
3714 }
3715
3716 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3717 {
3718 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3719 &rbd_dev->header.obj_order,
3720 &rbd_dev->header.image_size);
3721 }
3722
3723 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3724 {
3725 void *reply_buf;
3726 int ret;
3727 void *p;
3728
3729 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3730 if (!reply_buf)
3731 return -ENOMEM;
3732
3733 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3734 "rbd", "get_object_prefix", NULL, 0,
3735 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3736 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3737 if (ret < 0)
3738 goto out;
3739
3740 p = reply_buf;
3741 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3742 p + ret, NULL, GFP_NOIO);
3743 ret = 0;
3744
3745 if (IS_ERR(rbd_dev->header.object_prefix)) {
3746 ret = PTR_ERR(rbd_dev->header.object_prefix);
3747 rbd_dev->header.object_prefix = NULL;
3748 } else {
3749 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3750 }
3751 out:
3752 kfree(reply_buf);
3753
3754 return ret;
3755 }
3756
3757 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3758 u64 *snap_features)
3759 {
3760 __le64 snapid = cpu_to_le64(snap_id);
3761 struct {
3762 __le64 features;
3763 __le64 incompat;
3764 } __attribute__ ((packed)) features_buf = { 0 };
3765 u64 incompat;
3766 int ret;
3767
3768 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3769 "rbd", "get_features",
3770 &snapid, sizeof (snapid),
3771 &features_buf, sizeof (features_buf));
3772 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3773 if (ret < 0)
3774 return ret;
3775 if (ret < sizeof (features_buf))
3776 return -ERANGE;
3777
3778 incompat = le64_to_cpu(features_buf.incompat);
3779 if (incompat & ~RBD_FEATURES_SUPPORTED)
3780 return -ENXIO;
3781
3782 *snap_features = le64_to_cpu(features_buf.features);
3783
3784 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3785 (unsigned long long)snap_id,
3786 (unsigned long long)*snap_features,
3787 (unsigned long long)le64_to_cpu(features_buf.incompat));
3788
3789 return 0;
3790 }
3791
3792 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3793 {
3794 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3795 &rbd_dev->header.features);
3796 }
3797
3798 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3799 {
3800 struct rbd_spec *parent_spec;
3801 size_t size;
3802 void *reply_buf = NULL;
3803 __le64 snapid;
3804 void *p;
3805 void *end;
3806 u64 pool_id;
3807 char *image_id;
3808 u64 overlap;
3809 int ret;
3810
3811 parent_spec = rbd_spec_alloc();
3812 if (!parent_spec)
3813 return -ENOMEM;
3814
3815 size = sizeof (__le64) + /* pool_id */
3816 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3817 sizeof (__le64) + /* snap_id */
3818 sizeof (__le64); /* overlap */
3819 reply_buf = kmalloc(size, GFP_KERNEL);
3820 if (!reply_buf) {
3821 ret = -ENOMEM;
3822 goto out_err;
3823 }
3824
3825 snapid = cpu_to_le64(CEPH_NOSNAP);
3826 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3827 "rbd", "get_parent",
3828 &snapid, sizeof (snapid),
3829 reply_buf, size);
3830 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3831 if (ret < 0)
3832 goto out_err;
3833
3834 p = reply_buf;
3835 end = reply_buf + ret;
3836 ret = -ERANGE;
3837 ceph_decode_64_safe(&p, end, pool_id, out_err);
3838 if (pool_id == CEPH_NOPOOL) {
3839 /*
3840 * Either the parent never existed, or we have
3841 * record of it but the image got flattened so it no
3842 * longer has a parent. When the parent of a
3843 * layered image disappears we immediately set the
3844 * overlap to 0. The effect of this is that all new
3845 * requests will be treated as if the image had no
3846 * parent.
3847 */
3848 if (rbd_dev->parent_overlap) {
3849 rbd_dev->parent_overlap = 0;
3850 smp_mb();
3851 rbd_dev_parent_put(rbd_dev);
3852 pr_info("%s: clone image has been flattened\n",
3853 rbd_dev->disk->disk_name);
3854 }
3855
3856 goto out; /* No parent? No problem. */
3857 }
3858
3859 /* The ceph file layout needs to fit pool id in 32 bits */
3860
3861 ret = -EIO;
3862 if (pool_id > (u64)U32_MAX) {
3863 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3864 (unsigned long long)pool_id, U32_MAX);
3865 goto out_err;
3866 }
3867 parent_spec->pool_id = pool_id;
3868
3869 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3870 if (IS_ERR(image_id)) {
3871 ret = PTR_ERR(image_id);
3872 goto out_err;
3873 }
3874 parent_spec->image_id = image_id;
3875 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3876 ceph_decode_64_safe(&p, end, overlap, out_err);
3877
3878 if (overlap) {
3879 rbd_spec_put(rbd_dev->parent_spec);
3880 rbd_dev->parent_spec = parent_spec;
3881 parent_spec = NULL; /* rbd_dev now owns this */
3882 rbd_dev->parent_overlap = overlap;
3883 } else {
3884 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3885 }
3886 out:
3887 ret = 0;
3888 out_err:
3889 kfree(reply_buf);
3890 rbd_spec_put(parent_spec);
3891
3892 return ret;
3893 }
3894
3895 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3896 {
3897 struct {
3898 __le64 stripe_unit;
3899 __le64 stripe_count;
3900 } __attribute__ ((packed)) striping_info_buf = { 0 };
3901 size_t size = sizeof (striping_info_buf);
3902 void *p;
3903 u64 obj_size;
3904 u64 stripe_unit;
3905 u64 stripe_count;
3906 int ret;
3907
3908 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3909 "rbd", "get_stripe_unit_count", NULL, 0,
3910 (char *)&striping_info_buf, size);
3911 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3912 if (ret < 0)
3913 return ret;
3914 if (ret < size)
3915 return -ERANGE;
3916
3917 /*
3918 * We don't actually support the "fancy striping" feature
3919 * (STRIPINGV2) yet, but if the striping sizes are the
3920 * defaults the behavior is the same as before. So find
3921 * out, and only fail if the image has non-default values.
3922 */
3923 ret = -EINVAL;
3924 obj_size = (u64)1 << rbd_dev->header.obj_order;
3925 p = &striping_info_buf;
3926 stripe_unit = ceph_decode_64(&p);
3927 if (stripe_unit != obj_size) {
3928 rbd_warn(rbd_dev, "unsupported stripe unit "
3929 "(got %llu want %llu)",
3930 stripe_unit, obj_size);
3931 return -EINVAL;
3932 }
3933 stripe_count = ceph_decode_64(&p);
3934 if (stripe_count != 1) {
3935 rbd_warn(rbd_dev, "unsupported stripe count "
3936 "(got %llu want 1)", stripe_count);
3937 return -EINVAL;
3938 }
3939 rbd_dev->header.stripe_unit = stripe_unit;
3940 rbd_dev->header.stripe_count = stripe_count;
3941
3942 return 0;
3943 }
3944
3945 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3946 {
3947 size_t image_id_size;
3948 char *image_id;
3949 void *p;
3950 void *end;
3951 size_t size;
3952 void *reply_buf = NULL;
3953 size_t len = 0;
3954 char *image_name = NULL;
3955 int ret;
3956
3957 rbd_assert(!rbd_dev->spec->image_name);
3958
3959 len = strlen(rbd_dev->spec->image_id);
3960 image_id_size = sizeof (__le32) + len;
3961 image_id = kmalloc(image_id_size, GFP_KERNEL);
3962 if (!image_id)
3963 return NULL;
3964
3965 p = image_id;
3966 end = image_id + image_id_size;
3967 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3968
3969 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3970 reply_buf = kmalloc(size, GFP_KERNEL);
3971 if (!reply_buf)
3972 goto out;
3973
3974 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3975 "rbd", "dir_get_name",
3976 image_id, image_id_size,
3977 reply_buf, size);
3978 if (ret < 0)
3979 goto out;
3980 p = reply_buf;
3981 end = reply_buf + ret;
3982
3983 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3984 if (IS_ERR(image_name))
3985 image_name = NULL;
3986 else
3987 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3988 out:
3989 kfree(reply_buf);
3990 kfree(image_id);
3991
3992 return image_name;
3993 }
3994
3995 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3996 {
3997 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3998 const char *snap_name;
3999 u32 which = 0;
4000
4001 /* Skip over names until we find the one we are looking for */
4002
4003 snap_name = rbd_dev->header.snap_names;
4004 while (which < snapc->num_snaps) {
4005 if (!strcmp(name, snap_name))
4006 return snapc->snaps[which];
4007 snap_name += strlen(snap_name) + 1;
4008 which++;
4009 }
4010 return CEPH_NOSNAP;
4011 }
4012
4013 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4014 {
4015 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4016 u32 which;
4017 bool found = false;
4018 u64 snap_id;
4019
4020 for (which = 0; !found && which < snapc->num_snaps; which++) {
4021 const char *snap_name;
4022
4023 snap_id = snapc->snaps[which];
4024 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4025 if (IS_ERR(snap_name))
4026 break;
4027 found = !strcmp(name, snap_name);
4028 kfree(snap_name);
4029 }
4030 return found ? snap_id : CEPH_NOSNAP;
4031 }
4032
4033 /*
4034 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4035 * no snapshot by that name is found, or if an error occurs.
4036 */
4037 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4038 {
4039 if (rbd_dev->image_format == 1)
4040 return rbd_v1_snap_id_by_name(rbd_dev, name);
4041
4042 return rbd_v2_snap_id_by_name(rbd_dev, name);
4043 }
4044
4045 /*
4046 * When an rbd image has a parent image, it is identified by the
4047 * pool, image, and snapshot ids (not names). This function fills
4048 * in the names for those ids. (It's OK if we can't figure out the
4049 * name for an image id, but the pool and snapshot ids should always
4050 * exist and have names.) All names in an rbd spec are dynamically
4051 * allocated.
4052 *
4053 * When an image being mapped (not a parent) is probed, we have the
4054 * pool name and pool id, image name and image id, and the snapshot
4055 * name. The only thing we're missing is the snapshot id.
4056 */
4057 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4058 {
4059 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4060 struct rbd_spec *spec = rbd_dev->spec;
4061 const char *pool_name;
4062 const char *image_name;
4063 const char *snap_name;
4064 int ret;
4065
4066 /*
4067 * An image being mapped will have the pool name (etc.), but
4068 * we need to look up the snapshot id.
4069 */
4070 if (spec->pool_name) {
4071 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4072 u64 snap_id;
4073
4074 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4075 if (snap_id == CEPH_NOSNAP)
4076 return -ENOENT;
4077 spec->snap_id = snap_id;
4078 } else {
4079 spec->snap_id = CEPH_NOSNAP;
4080 }
4081
4082 return 0;
4083 }
4084
4085 /* Get the pool name; we have to make our own copy of this */
4086
4087 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4088 if (!pool_name) {
4089 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4090 return -EIO;
4091 }
4092 pool_name = kstrdup(pool_name, GFP_KERNEL);
4093 if (!pool_name)
4094 return -ENOMEM;
4095
4096 /* Fetch the image name; tolerate failure here */
4097
4098 image_name = rbd_dev_image_name(rbd_dev);
4099 if (!image_name)
4100 rbd_warn(rbd_dev, "unable to get image name");
4101
4102 /* Look up the snapshot name, and make a copy */
4103
4104 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4105 if (!snap_name) {
4106 ret = -ENOMEM;
4107 goto out_err;
4108 }
4109
4110 spec->pool_name = pool_name;
4111 spec->image_name = image_name;
4112 spec->snap_name = snap_name;
4113
4114 return 0;
4115 out_err:
4116 kfree(image_name);
4117 kfree(pool_name);
4118
4119 return ret;
4120 }
4121
4122 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4123 {
4124 size_t size;
4125 int ret;
4126 void *reply_buf;
4127 void *p;
4128 void *end;
4129 u64 seq;
4130 u32 snap_count;
4131 struct ceph_snap_context *snapc;
4132 u32 i;
4133
4134 /*
4135 * We'll need room for the seq value (maximum snapshot id),
4136 * snapshot count, and array of that many snapshot ids.
4137 * For now we have a fixed upper limit on the number we're
4138 * prepared to receive.
4139 */
4140 size = sizeof (__le64) + sizeof (__le32) +
4141 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4142 reply_buf = kzalloc(size, GFP_KERNEL);
4143 if (!reply_buf)
4144 return -ENOMEM;
4145
4146 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4147 "rbd", "get_snapcontext", NULL, 0,
4148 reply_buf, size);
4149 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4150 if (ret < 0)
4151 goto out;
4152
4153 p = reply_buf;
4154 end = reply_buf + ret;
4155 ret = -ERANGE;
4156 ceph_decode_64_safe(&p, end, seq, out);
4157 ceph_decode_32_safe(&p, end, snap_count, out);
4158
4159 /*
4160 * Make sure the reported number of snapshot ids wouldn't go
4161 * beyond the end of our buffer. But before checking that,
4162 * make sure the computed size of the snapshot context we
4163 * allocate is representable in a size_t.
4164 */
4165 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4166 / sizeof (u64)) {
4167 ret = -EINVAL;
4168 goto out;
4169 }
4170 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4171 goto out;
4172 ret = 0;
4173
4174 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4175 if (!snapc) {
4176 ret = -ENOMEM;
4177 goto out;
4178 }
4179 snapc->seq = seq;
4180 for (i = 0; i < snap_count; i++)
4181 snapc->snaps[i] = ceph_decode_64(&p);
4182
4183 ceph_put_snap_context(rbd_dev->header.snapc);
4184 rbd_dev->header.snapc = snapc;
4185
4186 dout(" snap context seq = %llu, snap_count = %u\n",
4187 (unsigned long long)seq, (unsigned int)snap_count);
4188 out:
4189 kfree(reply_buf);
4190
4191 return ret;
4192 }
4193
4194 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4195 u64 snap_id)
4196 {
4197 size_t size;
4198 void *reply_buf;
4199 __le64 snapid;
4200 int ret;
4201 void *p;
4202 void *end;
4203 char *snap_name;
4204
4205 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4206 reply_buf = kmalloc(size, GFP_KERNEL);
4207 if (!reply_buf)
4208 return ERR_PTR(-ENOMEM);
4209
4210 snapid = cpu_to_le64(snap_id);
4211 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4212 "rbd", "get_snapshot_name",
4213 &snapid, sizeof (snapid),
4214 reply_buf, size);
4215 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4216 if (ret < 0) {
4217 snap_name = ERR_PTR(ret);
4218 goto out;
4219 }
4220
4221 p = reply_buf;
4222 end = reply_buf + ret;
4223 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4224 if (IS_ERR(snap_name))
4225 goto out;
4226
4227 dout(" snap_id 0x%016llx snap_name = %s\n",
4228 (unsigned long long)snap_id, snap_name);
4229 out:
4230 kfree(reply_buf);
4231
4232 return snap_name;
4233 }
4234
4235 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4236 {
4237 bool first_time = rbd_dev->header.object_prefix == NULL;
4238 int ret;
4239
4240 down_write(&rbd_dev->header_rwsem);
4241
4242 if (first_time) {
4243 ret = rbd_dev_v2_header_onetime(rbd_dev);
4244 if (ret)
4245 goto out;
4246 }
4247
4248 /*
4249 * If the image supports layering, get the parent info. We
4250 * need to probe the first time regardless. Thereafter we
4251 * only need to if there's a parent, to see if it has
4252 * disappeared due to the mapped image getting flattened.
4253 */
4254 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4255 (first_time || rbd_dev->parent_spec)) {
4256 bool warn;
4257
4258 ret = rbd_dev_v2_parent_info(rbd_dev);
4259 if (ret)
4260 goto out;
4261
4262 /*
4263 * Print a warning if this is the initial probe and
4264 * the image has a parent. Don't print it if the
4265 * image now being probed is itself a parent. We
4266 * can tell at this point because we won't know its
4267 * pool name yet (just its pool id).
4268 */
4269 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4270 if (first_time && warn)
4271 rbd_warn(rbd_dev, "WARNING: kernel layering "
4272 "is EXPERIMENTAL!");
4273 }
4274
4275 ret = rbd_dev_v2_image_size(rbd_dev);
4276 if (ret)
4277 goto out;
4278
4279 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4280 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4281 rbd_dev->mapping.size = rbd_dev->header.image_size;
4282
4283 ret = rbd_dev_v2_snap_context(rbd_dev);
4284 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4285 out:
4286 up_write(&rbd_dev->header_rwsem);
4287
4288 return ret;
4289 }
4290
4291 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4292 {
4293 struct device *dev;
4294 int ret;
4295
4296 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4297
4298 dev = &rbd_dev->dev;
4299 dev->bus = &rbd_bus_type;
4300 dev->type = &rbd_device_type;
4301 dev->parent = &rbd_root_dev;
4302 dev->release = rbd_dev_device_release;
4303 dev_set_name(dev, "%d", rbd_dev->dev_id);
4304 ret = device_register(dev);
4305
4306 mutex_unlock(&ctl_mutex);
4307
4308 return ret;
4309 }
4310
4311 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4312 {
4313 device_unregister(&rbd_dev->dev);
4314 }
4315
4316 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4317
4318 /*
4319 * Get a unique rbd identifier for the given new rbd_dev, and add
4320 * the rbd_dev to the global list. The minimum rbd id is 1.
4321 */
4322 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4323 {
4324 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4325
4326 spin_lock(&rbd_dev_list_lock);
4327 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4328 spin_unlock(&rbd_dev_list_lock);
4329 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4330 (unsigned long long) rbd_dev->dev_id);
4331 }
4332
4333 /*
4334 * Remove an rbd_dev from the global list, and record that its
4335 * identifier is no longer in use.
4336 */
4337 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4338 {
4339 struct list_head *tmp;
4340 int rbd_id = rbd_dev->dev_id;
4341 int max_id;
4342
4343 rbd_assert(rbd_id > 0);
4344
4345 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4346 (unsigned long long) rbd_dev->dev_id);
4347 spin_lock(&rbd_dev_list_lock);
4348 list_del_init(&rbd_dev->node);
4349
4350 /*
4351 * If the id being "put" is not the current maximum, there
4352 * is nothing special we need to do.
4353 */
4354 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4355 spin_unlock(&rbd_dev_list_lock);
4356 return;
4357 }
4358
4359 /*
4360 * We need to update the current maximum id. Search the
4361 * list to find out what it is. We're more likely to find
4362 * the maximum at the end, so search the list backward.
4363 */
4364 max_id = 0;
4365 list_for_each_prev(tmp, &rbd_dev_list) {
4366 struct rbd_device *rbd_dev;
4367
4368 rbd_dev = list_entry(tmp, struct rbd_device, node);
4369 if (rbd_dev->dev_id > max_id)
4370 max_id = rbd_dev->dev_id;
4371 }
4372 spin_unlock(&rbd_dev_list_lock);
4373
4374 /*
4375 * The max id could have been updated by rbd_dev_id_get(), in
4376 * which case it now accurately reflects the new maximum.
4377 * Be careful not to overwrite the maximum value in that
4378 * case.
4379 */
4380 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4381 dout(" max dev id has been reset\n");
4382 }
4383
4384 /*
4385 * Skips over white space at *buf, and updates *buf to point to the
4386 * first found non-space character (if any). Returns the length of
4387 * the token (string of non-white space characters) found. Note
4388 * that *buf must be terminated with '\0'.
4389 */
4390 static inline size_t next_token(const char **buf)
4391 {
4392 /*
4393 * These are the characters that produce nonzero for
4394 * isspace() in the "C" and "POSIX" locales.
4395 */
4396 const char *spaces = " \f\n\r\t\v";
4397
4398 *buf += strspn(*buf, spaces); /* Find start of token */
4399
4400 return strcspn(*buf, spaces); /* Return token length */
4401 }
4402
4403 /*
4404 * Finds the next token in *buf, and if the provided token buffer is
4405 * big enough, copies the found token into it. The result, if
4406 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4407 * must be terminated with '\0' on entry.
4408 *
4409 * Returns the length of the token found (not including the '\0').
4410 * Return value will be 0 if no token is found, and it will be >=
4411 * token_size if the token would not fit.
4412 *
4413 * The *buf pointer will be updated to point beyond the end of the
4414 * found token. Note that this occurs even if the token buffer is
4415 * too small to hold it.
4416 */
4417 static inline size_t copy_token(const char **buf,
4418 char *token,
4419 size_t token_size)
4420 {
4421 size_t len;
4422
4423 len = next_token(buf);
4424 if (len < token_size) {
4425 memcpy(token, *buf, len);
4426 *(token + len) = '\0';
4427 }
4428 *buf += len;
4429
4430 return len;
4431 }
4432
4433 /*
4434 * Finds the next token in *buf, dynamically allocates a buffer big
4435 * enough to hold a copy of it, and copies the token into the new
4436 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4437 * that a duplicate buffer is created even for a zero-length token.
4438 *
4439 * Returns a pointer to the newly-allocated duplicate, or a null
4440 * pointer if memory for the duplicate was not available. If
4441 * the lenp argument is a non-null pointer, the length of the token
4442 * (not including the '\0') is returned in *lenp.
4443 *
4444 * If successful, the *buf pointer will be updated to point beyond
4445 * the end of the found token.
4446 *
4447 * Note: uses GFP_KERNEL for allocation.
4448 */
4449 static inline char *dup_token(const char **buf, size_t *lenp)
4450 {
4451 char *dup;
4452 size_t len;
4453
4454 len = next_token(buf);
4455 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4456 if (!dup)
4457 return NULL;
4458 *(dup + len) = '\0';
4459 *buf += len;
4460
4461 if (lenp)
4462 *lenp = len;
4463
4464 return dup;
4465 }
4466
4467 /*
4468 * Parse the options provided for an "rbd add" (i.e., rbd image
4469 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4470 * and the data written is passed here via a NUL-terminated buffer.
4471 * Returns 0 if successful or an error code otherwise.
4472 *
4473 * The information extracted from these options is recorded in
4474 * the other parameters which return dynamically-allocated
4475 * structures:
4476 * ceph_opts
4477 * The address of a pointer that will refer to a ceph options
4478 * structure. Caller must release the returned pointer using
4479 * ceph_destroy_options() when it is no longer needed.
4480 * rbd_opts
4481 * Address of an rbd options pointer. Fully initialized by
4482 * this function; caller must release with kfree().
4483 * spec
4484 * Address of an rbd image specification pointer. Fully
4485 * initialized by this function based on parsed options.
4486 * Caller must release with rbd_spec_put().
4487 *
4488 * The options passed take this form:
4489 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4490 * where:
4491 * <mon_addrs>
4492 * A comma-separated list of one or more monitor addresses.
4493 * A monitor address is an ip address, optionally followed
4494 * by a port number (separated by a colon).
4495 * I.e.: ip1[:port1][,ip2[:port2]...]
4496 * <options>
4497 * A comma-separated list of ceph and/or rbd options.
4498 * <pool_name>
4499 * The name of the rados pool containing the rbd image.
4500 * <image_name>
4501 * The name of the image in that pool to map.
4502 * <snap_id>
4503 * An optional snapshot id. If provided, the mapping will
4504 * present data from the image at the time that snapshot was
4505 * created. The image head is used if no snapshot id is
4506 * provided. Snapshot mappings are always read-only.
4507 */
4508 static int rbd_add_parse_args(const char *buf,
4509 struct ceph_options **ceph_opts,
4510 struct rbd_options **opts,
4511 struct rbd_spec **rbd_spec)
4512 {
4513 size_t len;
4514 char *options;
4515 const char *mon_addrs;
4516 char *snap_name;
4517 size_t mon_addrs_size;
4518 struct rbd_spec *spec = NULL;
4519 struct rbd_options *rbd_opts = NULL;
4520 struct ceph_options *copts;
4521 int ret;
4522
4523 /* The first four tokens are required */
4524
4525 len = next_token(&buf);
4526 if (!len) {
4527 rbd_warn(NULL, "no monitor address(es) provided");
4528 return -EINVAL;
4529 }
4530 mon_addrs = buf;
4531 mon_addrs_size = len + 1;
4532 buf += len;
4533
4534 ret = -EINVAL;
4535 options = dup_token(&buf, NULL);
4536 if (!options)
4537 return -ENOMEM;
4538 if (!*options) {
4539 rbd_warn(NULL, "no options provided");
4540 goto out_err;
4541 }
4542
4543 spec = rbd_spec_alloc();
4544 if (!spec)
4545 goto out_mem;
4546
4547 spec->pool_name = dup_token(&buf, NULL);
4548 if (!spec->pool_name)
4549 goto out_mem;
4550 if (!*spec->pool_name) {
4551 rbd_warn(NULL, "no pool name provided");
4552 goto out_err;
4553 }
4554
4555 spec->image_name = dup_token(&buf, NULL);
4556 if (!spec->image_name)
4557 goto out_mem;
4558 if (!*spec->image_name) {
4559 rbd_warn(NULL, "no image name provided");
4560 goto out_err;
4561 }
4562
4563 /*
4564 * Snapshot name is optional; default is to use "-"
4565 * (indicating the head/no snapshot).
4566 */
4567 len = next_token(&buf);
4568 if (!len) {
4569 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4570 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4571 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4572 ret = -ENAMETOOLONG;
4573 goto out_err;
4574 }
4575 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4576 if (!snap_name)
4577 goto out_mem;
4578 *(snap_name + len) = '\0';
4579 spec->snap_name = snap_name;
4580
4581 /* Initialize all rbd options to the defaults */
4582
4583 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4584 if (!rbd_opts)
4585 goto out_mem;
4586
4587 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4588
4589 copts = ceph_parse_options(options, mon_addrs,
4590 mon_addrs + mon_addrs_size - 1,
4591 parse_rbd_opts_token, rbd_opts);
4592 if (IS_ERR(copts)) {
4593 ret = PTR_ERR(copts);
4594 goto out_err;
4595 }
4596 kfree(options);
4597
4598 *ceph_opts = copts;
4599 *opts = rbd_opts;
4600 *rbd_spec = spec;
4601
4602 return 0;
4603 out_mem:
4604 ret = -ENOMEM;
4605 out_err:
4606 kfree(rbd_opts);
4607 rbd_spec_put(spec);
4608 kfree(options);
4609
4610 return ret;
4611 }
4612
4613 /*
4614 * An rbd format 2 image has a unique identifier, distinct from the
4615 * name given to it by the user. Internally, that identifier is
4616 * what's used to specify the names of objects related to the image.
4617 *
4618 * A special "rbd id" object is used to map an rbd image name to its
4619 * id. If that object doesn't exist, then there is no v2 rbd image
4620 * with the supplied name.
4621 *
4622 * This function will record the given rbd_dev's image_id field if
4623 * it can be determined, and in that case will return 0. If any
4624 * errors occur a negative errno will be returned and the rbd_dev's
4625 * image_id field will be unchanged (and should be NULL).
4626 */
4627 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4628 {
4629 int ret;
4630 size_t size;
4631 char *object_name;
4632 void *response;
4633 char *image_id;
4634
4635 /*
4636 * When probing a parent image, the image id is already
4637 * known (and the image name likely is not). There's no
4638 * need to fetch the image id again in this case. We
4639 * do still need to set the image format though.
4640 */
4641 if (rbd_dev->spec->image_id) {
4642 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4643
4644 return 0;
4645 }
4646
4647 /*
4648 * First, see if the format 2 image id file exists, and if
4649 * so, get the image's persistent id from it.
4650 */
4651 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4652 object_name = kmalloc(size, GFP_NOIO);
4653 if (!object_name)
4654 return -ENOMEM;
4655 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4656 dout("rbd id object name is %s\n", object_name);
4657
4658 /* Response will be an encoded string, which includes a length */
4659
4660 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4661 response = kzalloc(size, GFP_NOIO);
4662 if (!response) {
4663 ret = -ENOMEM;
4664 goto out;
4665 }
4666
4667 /* If it doesn't exist we'll assume it's a format 1 image */
4668
4669 ret = rbd_obj_method_sync(rbd_dev, object_name,
4670 "rbd", "get_id", NULL, 0,
4671 response, RBD_IMAGE_ID_LEN_MAX);
4672 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4673 if (ret == -ENOENT) {
4674 image_id = kstrdup("", GFP_KERNEL);
4675 ret = image_id ? 0 : -ENOMEM;
4676 if (!ret)
4677 rbd_dev->image_format = 1;
4678 } else if (ret > sizeof (__le32)) {
4679 void *p = response;
4680
4681 image_id = ceph_extract_encoded_string(&p, p + ret,
4682 NULL, GFP_NOIO);
4683 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4684 if (!ret)
4685 rbd_dev->image_format = 2;
4686 } else {
4687 ret = -EINVAL;
4688 }
4689
4690 if (!ret) {
4691 rbd_dev->spec->image_id = image_id;
4692 dout("image_id is %s\n", image_id);
4693 }
4694 out:
4695 kfree(response);
4696 kfree(object_name);
4697
4698 return ret;
4699 }
4700
4701 /*
4702 * Undo whatever state changes are made by v1 or v2 header info
4703 * call.
4704 */
4705 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4706 {
4707 struct rbd_image_header *header;
4708
4709 /* Drop parent reference unless it's already been done (or none) */
4710
4711 if (rbd_dev->parent_overlap)
4712 rbd_dev_parent_put(rbd_dev);
4713
4714 /* Free dynamic fields from the header, then zero it out */
4715
4716 header = &rbd_dev->header;
4717 ceph_put_snap_context(header->snapc);
4718 kfree(header->snap_sizes);
4719 kfree(header->snap_names);
4720 kfree(header->object_prefix);
4721 memset(header, 0, sizeof (*header));
4722 }
4723
4724 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4725 {
4726 int ret;
4727
4728 ret = rbd_dev_v2_object_prefix(rbd_dev);
4729 if (ret)
4730 goto out_err;
4731
4732 /*
4733 * Get the and check features for the image. Currently the
4734 * features are assumed to never change.
4735 */
4736 ret = rbd_dev_v2_features(rbd_dev);
4737 if (ret)
4738 goto out_err;
4739
4740 /* If the image supports fancy striping, get its parameters */
4741
4742 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4743 ret = rbd_dev_v2_striping_info(rbd_dev);
4744 if (ret < 0)
4745 goto out_err;
4746 }
4747 /* No support for crypto and compression type format 2 images */
4748
4749 return 0;
4750 out_err:
4751 rbd_dev->header.features = 0;
4752 kfree(rbd_dev->header.object_prefix);
4753 rbd_dev->header.object_prefix = NULL;
4754
4755 return ret;
4756 }
4757
4758 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4759 {
4760 struct rbd_device *parent = NULL;
4761 struct rbd_spec *parent_spec;
4762 struct rbd_client *rbdc;
4763 int ret;
4764
4765 if (!rbd_dev->parent_spec)
4766 return 0;
4767 /*
4768 * We need to pass a reference to the client and the parent
4769 * spec when creating the parent rbd_dev. Images related by
4770 * parent/child relationships always share both.
4771 */
4772 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4773 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4774
4775 ret = -ENOMEM;
4776 parent = rbd_dev_create(rbdc, parent_spec);
4777 if (!parent)
4778 goto out_err;
4779
4780 ret = rbd_dev_image_probe(parent, false);
4781 if (ret < 0)
4782 goto out_err;
4783 rbd_dev->parent = parent;
4784 atomic_set(&rbd_dev->parent_ref, 1);
4785
4786 return 0;
4787 out_err:
4788 if (parent) {
4789 rbd_dev_unparent(rbd_dev);
4790 kfree(rbd_dev->header_name);
4791 rbd_dev_destroy(parent);
4792 } else {
4793 rbd_put_client(rbdc);
4794 rbd_spec_put(parent_spec);
4795 }
4796
4797 return ret;
4798 }
4799
4800 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4801 {
4802 int ret;
4803
4804 /* generate unique id: find highest unique id, add one */
4805 rbd_dev_id_get(rbd_dev);
4806
4807 /* Fill in the device name, now that we have its id. */
4808 BUILD_BUG_ON(DEV_NAME_LEN
4809 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4810 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4811
4812 /* Get our block major device number. */
4813
4814 ret = register_blkdev(0, rbd_dev->name);
4815 if (ret < 0)
4816 goto err_out_id;
4817 rbd_dev->major = ret;
4818
4819 /* Set up the blkdev mapping. */
4820
4821 ret = rbd_init_disk(rbd_dev);
4822 if (ret)
4823 goto err_out_blkdev;
4824
4825 ret = rbd_dev_mapping_set(rbd_dev);
4826 if (ret)
4827 goto err_out_disk;
4828 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4829
4830 ret = rbd_bus_add_dev(rbd_dev);
4831 if (ret)
4832 goto err_out_mapping;
4833
4834 /* Everything's ready. Announce the disk to the world. */
4835
4836 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4837 add_disk(rbd_dev->disk);
4838
4839 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4840 (unsigned long long) rbd_dev->mapping.size);
4841
4842 return ret;
4843
4844 err_out_mapping:
4845 rbd_dev_mapping_clear(rbd_dev);
4846 err_out_disk:
4847 rbd_free_disk(rbd_dev);
4848 err_out_blkdev:
4849 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4850 err_out_id:
4851 rbd_dev_id_put(rbd_dev);
4852 rbd_dev_mapping_clear(rbd_dev);
4853
4854 return ret;
4855 }
4856
4857 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4858 {
4859 struct rbd_spec *spec = rbd_dev->spec;
4860 size_t size;
4861
4862 /* Record the header object name for this rbd image. */
4863
4864 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4865
4866 if (rbd_dev->image_format == 1)
4867 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4868 else
4869 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4870
4871 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4872 if (!rbd_dev->header_name)
4873 return -ENOMEM;
4874
4875 if (rbd_dev->image_format == 1)
4876 sprintf(rbd_dev->header_name, "%s%s",
4877 spec->image_name, RBD_SUFFIX);
4878 else
4879 sprintf(rbd_dev->header_name, "%s%s",
4880 RBD_HEADER_PREFIX, spec->image_id);
4881 return 0;
4882 }
4883
4884 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4885 {
4886 rbd_dev_unprobe(rbd_dev);
4887 kfree(rbd_dev->header_name);
4888 rbd_dev->header_name = NULL;
4889 rbd_dev->image_format = 0;
4890 kfree(rbd_dev->spec->image_id);
4891 rbd_dev->spec->image_id = NULL;
4892
4893 rbd_dev_destroy(rbd_dev);
4894 }
4895
4896 /*
4897 * Probe for the existence of the header object for the given rbd
4898 * device. If this image is the one being mapped (i.e., not a
4899 * parent), initiate a watch on its header object before using that
4900 * object to get detailed information about the rbd image.
4901 */
4902 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4903 {
4904 int ret;
4905 int tmp;
4906
4907 /*
4908 * Get the id from the image id object. Unless there's an
4909 * error, rbd_dev->spec->image_id will be filled in with
4910 * a dynamically-allocated string, and rbd_dev->image_format
4911 * will be set to either 1 or 2.
4912 */
4913 ret = rbd_dev_image_id(rbd_dev);
4914 if (ret)
4915 return ret;
4916 rbd_assert(rbd_dev->spec->image_id);
4917 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4918
4919 ret = rbd_dev_header_name(rbd_dev);
4920 if (ret)
4921 goto err_out_format;
4922
4923 if (mapping) {
4924 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4925 if (ret)
4926 goto out_header_name;
4927 }
4928
4929 if (rbd_dev->image_format == 1)
4930 ret = rbd_dev_v1_header_info(rbd_dev);
4931 else
4932 ret = rbd_dev_v2_header_info(rbd_dev);
4933 if (ret)
4934 goto err_out_watch;
4935
4936 ret = rbd_dev_spec_update(rbd_dev);
4937 if (ret)
4938 goto err_out_probe;
4939
4940 ret = rbd_dev_probe_parent(rbd_dev);
4941 if (ret)
4942 goto err_out_probe;
4943
4944 dout("discovered format %u image, header name is %s\n",
4945 rbd_dev->image_format, rbd_dev->header_name);
4946
4947 return 0;
4948 err_out_probe:
4949 rbd_dev_unprobe(rbd_dev);
4950 err_out_watch:
4951 if (mapping) {
4952 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4953 if (tmp)
4954 rbd_warn(rbd_dev, "unable to tear down "
4955 "watch request (%d)\n", tmp);
4956 }
4957 out_header_name:
4958 kfree(rbd_dev->header_name);
4959 rbd_dev->header_name = NULL;
4960 err_out_format:
4961 rbd_dev->image_format = 0;
4962 kfree(rbd_dev->spec->image_id);
4963 rbd_dev->spec->image_id = NULL;
4964
4965 dout("probe failed, returning %d\n", ret);
4966
4967 return ret;
4968 }
4969
4970 static ssize_t rbd_add(struct bus_type *bus,
4971 const char *buf,
4972 size_t count)
4973 {
4974 struct rbd_device *rbd_dev = NULL;
4975 struct ceph_options *ceph_opts = NULL;
4976 struct rbd_options *rbd_opts = NULL;
4977 struct rbd_spec *spec = NULL;
4978 struct rbd_client *rbdc;
4979 struct ceph_osd_client *osdc;
4980 bool read_only;
4981 int rc = -ENOMEM;
4982
4983 if (!try_module_get(THIS_MODULE))
4984 return -ENODEV;
4985
4986 /* parse add command */
4987 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4988 if (rc < 0)
4989 goto err_out_module;
4990 read_only = rbd_opts->read_only;
4991 kfree(rbd_opts);
4992 rbd_opts = NULL; /* done with this */
4993
4994 rbdc = rbd_get_client(ceph_opts);
4995 if (IS_ERR(rbdc)) {
4996 rc = PTR_ERR(rbdc);
4997 goto err_out_args;
4998 }
4999
5000 /* pick the pool */
5001 osdc = &rbdc->client->osdc;
5002 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5003 if (rc < 0)
5004 goto err_out_client;
5005 spec->pool_id = (u64)rc;
5006
5007 /* The ceph file layout needs to fit pool id in 32 bits */
5008
5009 if (spec->pool_id > (u64)U32_MAX) {
5010 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5011 (unsigned long long)spec->pool_id, U32_MAX);
5012 rc = -EIO;
5013 goto err_out_client;
5014 }
5015
5016 rbd_dev = rbd_dev_create(rbdc, spec);
5017 if (!rbd_dev)
5018 goto err_out_client;
5019 rbdc = NULL; /* rbd_dev now owns this */
5020 spec = NULL; /* rbd_dev now owns this */
5021
5022 rc = rbd_dev_image_probe(rbd_dev, true);
5023 if (rc < 0)
5024 goto err_out_rbd_dev;
5025
5026 /* If we are mapping a snapshot it must be marked read-only */
5027
5028 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5029 read_only = true;
5030 rbd_dev->mapping.read_only = read_only;
5031
5032 rc = rbd_dev_device_setup(rbd_dev);
5033 if (rc) {
5034 rbd_dev_image_release(rbd_dev);
5035 goto err_out_module;
5036 }
5037
5038 return count;
5039
5040 err_out_rbd_dev:
5041 rbd_dev_destroy(rbd_dev);
5042 err_out_client:
5043 rbd_put_client(rbdc);
5044 err_out_args:
5045 rbd_spec_put(spec);
5046 err_out_module:
5047 module_put(THIS_MODULE);
5048
5049 dout("Error adding device %s\n", buf);
5050
5051 return (ssize_t)rc;
5052 }
5053
5054 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5055 {
5056 struct list_head *tmp;
5057 struct rbd_device *rbd_dev;
5058
5059 spin_lock(&rbd_dev_list_lock);
5060 list_for_each(tmp, &rbd_dev_list) {
5061 rbd_dev = list_entry(tmp, struct rbd_device, node);
5062 if (rbd_dev->dev_id == dev_id) {
5063 spin_unlock(&rbd_dev_list_lock);
5064 return rbd_dev;
5065 }
5066 }
5067 spin_unlock(&rbd_dev_list_lock);
5068 return NULL;
5069 }
5070
5071 static void rbd_dev_device_release(struct device *dev)
5072 {
5073 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074
5075 rbd_free_disk(rbd_dev);
5076 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5077 rbd_dev_mapping_clear(rbd_dev);
5078 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5079 rbd_dev->major = 0;
5080 rbd_dev_id_put(rbd_dev);
5081 rbd_dev_mapping_clear(rbd_dev);
5082 }
5083
5084 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5085 {
5086 while (rbd_dev->parent) {
5087 struct rbd_device *first = rbd_dev;
5088 struct rbd_device *second = first->parent;
5089 struct rbd_device *third;
5090
5091 /*
5092 * Follow to the parent with no grandparent and
5093 * remove it.
5094 */
5095 while (second && (third = second->parent)) {
5096 first = second;
5097 second = third;
5098 }
5099 rbd_assert(second);
5100 rbd_dev_image_release(second);
5101 first->parent = NULL;
5102 first->parent_overlap = 0;
5103
5104 rbd_assert(first->parent_spec);
5105 rbd_spec_put(first->parent_spec);
5106 first->parent_spec = NULL;
5107 }
5108 }
5109
5110 static ssize_t rbd_remove(struct bus_type *bus,
5111 const char *buf,
5112 size_t count)
5113 {
5114 struct rbd_device *rbd_dev = NULL;
5115 int target_id;
5116 unsigned long ul;
5117 int ret;
5118
5119 ret = strict_strtoul(buf, 10, &ul);
5120 if (ret)
5121 return ret;
5122
5123 /* convert to int; abort if we lost anything in the conversion */
5124 target_id = (int) ul;
5125 if (target_id != ul)
5126 return -EINVAL;
5127
5128 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5129
5130 rbd_dev = __rbd_get_dev(target_id);
5131 if (!rbd_dev) {
5132 ret = -ENOENT;
5133 goto done;
5134 }
5135
5136 spin_lock_irq(&rbd_dev->lock);
5137 if (rbd_dev->open_count)
5138 ret = -EBUSY;
5139 else
5140 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5141 spin_unlock_irq(&rbd_dev->lock);
5142 if (ret < 0)
5143 goto done;
5144 rbd_bus_del_dev(rbd_dev);
5145 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5146 if (ret)
5147 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5148 rbd_dev_image_release(rbd_dev);
5149 module_put(THIS_MODULE);
5150 ret = count;
5151 done:
5152 mutex_unlock(&ctl_mutex);
5153
5154 return ret;
5155 }
5156
5157 /*
5158 * create control files in sysfs
5159 * /sys/bus/rbd/...
5160 */
5161 static int rbd_sysfs_init(void)
5162 {
5163 int ret;
5164
5165 ret = device_register(&rbd_root_dev);
5166 if (ret < 0)
5167 return ret;
5168
5169 ret = bus_register(&rbd_bus_type);
5170 if (ret < 0)
5171 device_unregister(&rbd_root_dev);
5172
5173 return ret;
5174 }
5175
5176 static void rbd_sysfs_cleanup(void)
5177 {
5178 bus_unregister(&rbd_bus_type);
5179 device_unregister(&rbd_root_dev);
5180 }
5181
5182 static int rbd_slab_init(void)
5183 {
5184 rbd_assert(!rbd_img_request_cache);
5185 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5186 sizeof (struct rbd_img_request),
5187 __alignof__(struct rbd_img_request),
5188 0, NULL);
5189 if (!rbd_img_request_cache)
5190 return -ENOMEM;
5191
5192 rbd_assert(!rbd_obj_request_cache);
5193 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5194 sizeof (struct rbd_obj_request),
5195 __alignof__(struct rbd_obj_request),
5196 0, NULL);
5197 if (!rbd_obj_request_cache)
5198 goto out_err;
5199
5200 rbd_assert(!rbd_segment_name_cache);
5201 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5202 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5203 if (rbd_segment_name_cache)
5204 return 0;
5205 out_err:
5206 if (rbd_obj_request_cache) {
5207 kmem_cache_destroy(rbd_obj_request_cache);
5208 rbd_obj_request_cache = NULL;
5209 }
5210
5211 kmem_cache_destroy(rbd_img_request_cache);
5212 rbd_img_request_cache = NULL;
5213
5214 return -ENOMEM;
5215 }
5216
5217 static void rbd_slab_exit(void)
5218 {
5219 rbd_assert(rbd_segment_name_cache);
5220 kmem_cache_destroy(rbd_segment_name_cache);
5221 rbd_segment_name_cache = NULL;
5222
5223 rbd_assert(rbd_obj_request_cache);
5224 kmem_cache_destroy(rbd_obj_request_cache);
5225 rbd_obj_request_cache = NULL;
5226
5227 rbd_assert(rbd_img_request_cache);
5228 kmem_cache_destroy(rbd_img_request_cache);
5229 rbd_img_request_cache = NULL;
5230 }
5231
5232 static int __init rbd_init(void)
5233 {
5234 int rc;
5235
5236 if (!libceph_compatible(NULL)) {
5237 rbd_warn(NULL, "libceph incompatibility (quitting)");
5238
5239 return -EINVAL;
5240 }
5241 rc = rbd_slab_init();
5242 if (rc)
5243 return rc;
5244 rc = rbd_sysfs_init();
5245 if (rc)
5246 rbd_slab_exit();
5247 else
5248 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5249
5250 return rc;
5251 }
5252
5253 static void __exit rbd_exit(void)
5254 {
5255 rbd_sysfs_cleanup();
5256 rbd_slab_exit();
5257 }
5258
5259 module_init(rbd_init);
5260 module_exit(rbd_exit);
5261
5262 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5263 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5264 MODULE_DESCRIPTION("rados block device");
5265
5266 /* following authorship retained from original osdblk.c */
5267 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5268
5269 MODULE_LICENSE("GPL");