Merge tag 'v3.10.86' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
542 goto out_mutex;
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545 ret = ceph_open_session(rbdc->client);
546 if (ret < 0)
547 goto out_err;
548
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
552
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
555
556 return rbdc;
557
558 out_err:
559 ceph_destroy_client(rbdc->client);
560 out_mutex:
561 mutex_unlock(&ctl_mutex);
562 kfree(rbdc);
563 out_opt:
564 if (ceph_opts)
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
567
568 return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 kref_get(&rbdc->kref);
574
575 return rbdc;
576 }
577
578 /*
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
581 */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 struct rbd_client *client_node;
585 bool found = false;
586
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 return NULL;
589
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
594
595 found = true;
596 break;
597 }
598 }
599 spin_unlock(&rbd_client_list_lock);
600
601 return found ? client_node : NULL;
602 }
603
604 /*
605 * mount options
606 */
607 enum {
608 Opt_last_int,
609 /* int args above */
610 Opt_last_string,
611 /* string args above */
612 Opt_read_only,
613 Opt_read_write,
614 /* Boolean args above */
615 Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619 /* int args above */
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
626 {-1, NULL}
627 };
628
629 struct rbd_options {
630 bool read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
640
641 token = match_token(c, rbd_opts_tokens, argstr);
642 if (token < 0)
643 return -EINVAL;
644
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
647 if (ret < 0) {
648 pr_err("bad mount option arg (not int) "
649 "at '%s'\n", c);
650 return ret;
651 }
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
655 argstr[0].from);
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
658 } else {
659 dout("got token %d\n", token);
660 }
661
662 switch (token) {
663 case Opt_read_only:
664 rbd_opts->read_only = true;
665 break;
666 case Opt_read_write:
667 rbd_opts->read_only = false;
668 break;
669 default:
670 rbd_assert(false);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it. Either way, ceph_opts is consumed by this
679 * function.
680 */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683 struct rbd_client *rbdc;
684
685 rbdc = rbd_client_find(ceph_opts);
686 if (rbdc) /* using an existing client */
687 ceph_destroy_options(ceph_opts);
688 else
689 rbdc = rbd_client_create(ceph_opts);
690
691 return rbdc;
692 }
693
694 /*
695 * Destroy ceph client
696 *
697 * Caller must hold rbd_client_list_lock.
698 */
699 static void rbd_client_release(struct kref *kref)
700 {
701 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703 dout("%s: rbdc %p\n", __func__, rbdc);
704 spin_lock(&rbd_client_list_lock);
705 list_del(&rbdc->node);
706 spin_unlock(&rbd_client_list_lock);
707
708 ceph_destroy_client(rbdc->client);
709 kfree(rbdc);
710 }
711
712 /*
713 * Drop reference to ceph client node. If it's not referenced anymore, release
714 * it.
715 */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718 if (rbdc)
719 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724 return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729 size_t size;
730 u32 snap_count;
731
732 /* The header has to start with the magic rbd header text */
733 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734 return false;
735
736 /* The bio layer requires at least sector-sized I/O */
737
738 if (ondisk->options.order < SECTOR_SHIFT)
739 return false;
740
741 /* If we use u64 in a few spots we may be able to loosen this */
742
743 if (ondisk->options.order > 8 * sizeof (int) - 1)
744 return false;
745
746 /*
747 * The size of a snapshot header has to fit in a size_t, and
748 * that limits the number of snapshots.
749 */
750 snap_count = le32_to_cpu(ondisk->snap_count);
751 size = SIZE_MAX - sizeof (struct ceph_snap_context);
752 if (snap_count > size / sizeof (__le64))
753 return false;
754
755 /*
756 * Not only that, but the size of the entire the snapshot
757 * header must also be representable in a size_t.
758 */
759 size -= snap_count * sizeof (__le64);
760 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761 return false;
762
763 return true;
764 }
765
766 /*
767 * Fill an rbd image header with information from the given format 1
768 * on-disk header.
769 */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771 struct rbd_image_header_ondisk *ondisk)
772 {
773 struct rbd_image_header *header = &rbd_dev->header;
774 bool first_time = header->object_prefix == NULL;
775 struct ceph_snap_context *snapc;
776 char *object_prefix = NULL;
777 char *snap_names = NULL;
778 u64 *snap_sizes = NULL;
779 u32 snap_count;
780 size_t size;
781 int ret = -ENOMEM;
782 u32 i;
783
784 /* Allocate this now to avoid having to handle failure below */
785
786 if (first_time) {
787 size_t len;
788
789 len = strnlen(ondisk->object_prefix,
790 sizeof (ondisk->object_prefix));
791 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792 if (!object_prefix)
793 return -ENOMEM;
794 memcpy(object_prefix, ondisk->object_prefix, len);
795 object_prefix[len] = '\0';
796 }
797
798 /* Allocate the snapshot context and fill it in */
799
800 snap_count = le32_to_cpu(ondisk->snap_count);
801 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802 if (!snapc)
803 goto out_err;
804 snapc->seq = le64_to_cpu(ondisk->snap_seq);
805 if (snap_count) {
806 struct rbd_image_snap_ondisk *snaps;
807 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809 /* We'll keep a copy of the snapshot names... */
810
811 if (snap_names_len > (u64)SIZE_MAX)
812 goto out_2big;
813 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814 if (!snap_names)
815 goto out_err;
816
817 /* ...as well as the array of their sizes. */
818
819 size = snap_count * sizeof (*header->snap_sizes);
820 snap_sizes = kmalloc(size, GFP_KERNEL);
821 if (!snap_sizes)
822 goto out_err;
823
824 /*
825 * Copy the names, and fill in each snapshot's id
826 * and size.
827 *
828 * Note that rbd_dev_v1_header_info() guarantees the
829 * ondisk buffer we're working with has
830 * snap_names_len bytes beyond the end of the
831 * snapshot id array, this memcpy() is safe.
832 */
833 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834 snaps = ondisk->snaps;
835 for (i = 0; i < snap_count; i++) {
836 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838 }
839 }
840
841 /* We won't fail any more, fill in the header */
842
843 down_write(&rbd_dev->header_rwsem);
844 if (first_time) {
845 header->object_prefix = object_prefix;
846 header->obj_order = ondisk->options.order;
847 header->crypt_type = ondisk->options.crypt_type;
848 header->comp_type = ondisk->options.comp_type;
849 /* The rest aren't used for format 1 images */
850 header->stripe_unit = 0;
851 header->stripe_count = 0;
852 header->features = 0;
853 } else {
854 ceph_put_snap_context(header->snapc);
855 kfree(header->snap_names);
856 kfree(header->snap_sizes);
857 }
858
859 /* The remaining fields always get updated (when we refresh) */
860
861 header->image_size = le64_to_cpu(ondisk->image_size);
862 header->snapc = snapc;
863 header->snap_names = snap_names;
864 header->snap_sizes = snap_sizes;
865
866 /* Make sure mapping size is consistent with header info */
867
868 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869 if (rbd_dev->mapping.size != header->image_size)
870 rbd_dev->mapping.size = header->image_size;
871
872 up_write(&rbd_dev->header_rwsem);
873
874 return 0;
875 out_2big:
876 ret = -EIO;
877 out_err:
878 kfree(snap_sizes);
879 kfree(snap_names);
880 ceph_put_snap_context(snapc);
881 kfree(object_prefix);
882
883 return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888 const char *snap_name;
889
890 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892 /* Skip over names until we find the one we are looking for */
893
894 snap_name = rbd_dev->header.snap_names;
895 while (which--)
896 snap_name += strlen(snap_name) + 1;
897
898 return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902 * Snapshot id comparison function for use with qsort()/bsearch().
903 * Note that result is for snapshots in *descending* order.
904 */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907 u64 snap_id1 = *(u64 *)s1;
908 u64 snap_id2 = *(u64 *)s2;
909
910 if (snap_id1 < snap_id2)
911 return 1;
912 return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916 * Search a snapshot context to see if the given snapshot id is
917 * present.
918 *
919 * Returns the position of the snapshot id in the array if it's found,
920 * or BAD_SNAP_INDEX otherwise.
921 *
922 * Note: The snapshot array is in kept sorted (by the osd) in
923 * reverse order, highest snapshot id first.
924 */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928 u64 *found;
929
930 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931 sizeof (snap_id), snapid_compare_reverse);
932
933 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937 u64 snap_id)
938 {
939 u32 which;
940 const char *snap_name;
941
942 which = rbd_dev_snap_index(rbd_dev, snap_id);
943 if (which == BAD_SNAP_INDEX)
944 return ERR_PTR(-ENOENT);
945
946 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952 if (snap_id == CEPH_NOSNAP)
953 return RBD_SNAP_HEAD_NAME;
954
955 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956 if (rbd_dev->image_format == 1)
957 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963 u64 *snap_size)
964 {
965 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966 if (snap_id == CEPH_NOSNAP) {
967 *snap_size = rbd_dev->header.image_size;
968 } else if (rbd_dev->image_format == 1) {
969 u32 which;
970
971 which = rbd_dev_snap_index(rbd_dev, snap_id);
972 if (which == BAD_SNAP_INDEX)
973 return -ENOENT;
974
975 *snap_size = rbd_dev->header.snap_sizes[which];
976 } else {
977 u64 size = 0;
978 int ret;
979
980 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981 if (ret)
982 return ret;
983
984 *snap_size = size;
985 }
986 return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990 u64 *snap_features)
991 {
992 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993 if (snap_id == CEPH_NOSNAP) {
994 *snap_features = rbd_dev->header.features;
995 } else if (rbd_dev->image_format == 1) {
996 *snap_features = 0; /* No features for format 1 */
997 } else {
998 u64 features = 0;
999 int ret;
1000
1001 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002 if (ret)
1003 return ret;
1004
1005 *snap_features = features;
1006 }
1007 return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012 u64 snap_id = rbd_dev->spec->snap_id;
1013 u64 size = 0;
1014 u64 features = 0;
1015 int ret;
1016
1017 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018 if (ret)
1019 return ret;
1020 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021 if (ret)
1022 return ret;
1023
1024 rbd_dev->mapping.size = size;
1025 rbd_dev->mapping.features = features;
1026
1027 return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032 rbd_dev->mapping.size = 0;
1033 rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038 char *name;
1039 u64 segment;
1040 int ret;
1041 char *name_format;
1042
1043 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044 if (!name)
1045 return NULL;
1046 segment = offset >> rbd_dev->header.obj_order;
1047 name_format = "%s.%012llx";
1048 if (rbd_dev->image_format == 2)
1049 name_format = "%s.%016llx";
1050 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051 rbd_dev->header.object_prefix, segment);
1052 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053 pr_err("error formatting segment name for #%llu (%d)\n",
1054 segment, ret);
1055 kfree(name);
1056 name = NULL;
1057 }
1058
1059 return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064 /* The explicit cast here is needed to drop the const qualifier */
1065
1066 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073 return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077 u64 offset, u64 length)
1078 {
1079 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081 offset &= segment_size - 1;
1082
1083 rbd_assert(length <= U64_MAX - offset);
1084 if (offset + length > segment_size)
1085 length = segment_size - offset;
1086
1087 return length;
1088 }
1089
1090 /*
1091 * returns the size of an object in the image
1092 */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095 return 1 << header->obj_order;
1096 }
1097
1098 /*
1099 * bio helpers
1100 */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104 struct bio *tmp;
1105
1106 while (chain) {
1107 tmp = chain;
1108 chain = chain->bi_next;
1109 bio_put(tmp);
1110 }
1111 }
1112
1113 /*
1114 * zeros a bio chain, starting at specific offset
1115 */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118 struct bio_vec *bv;
1119 unsigned long flags;
1120 void *buf;
1121 int i;
1122 int pos = 0;
1123
1124 while (chain) {
1125 bio_for_each_segment(bv, chain, i) {
1126 if (pos + bv->bv_len > start_ofs) {
1127 int remainder = max(start_ofs - pos, 0);
1128 buf = bvec_kmap_irq(bv, &flags);
1129 memset(buf + remainder, 0,
1130 bv->bv_len - remainder);
1131 flush_dcache_page(bv->bv_page);
1132 bvec_kunmap_irq(buf, &flags);
1133 }
1134 pos += bv->bv_len;
1135 }
1136
1137 chain = chain->bi_next;
1138 }
1139 }
1140
1141 /*
1142 * similar to zero_bio_chain(), zeros data defined by a page array,
1143 * starting at the given byte offset from the start of the array and
1144 * continuing up to the given end offset. The pages array is
1145 * assumed to be big enough to hold all bytes up to the end.
1146 */
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1148 {
1149 struct page **page = &pages[offset >> PAGE_SHIFT];
1150
1151 rbd_assert(end > offset);
1152 rbd_assert(end - offset <= (u64)SIZE_MAX);
1153 while (offset < end) {
1154 size_t page_offset;
1155 size_t length;
1156 unsigned long flags;
1157 void *kaddr;
1158
1159 page_offset = (size_t)(offset & ~PAGE_MASK);
1160 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161 local_irq_save(flags);
1162 kaddr = kmap_atomic(*page);
1163 memset(kaddr + page_offset, 0, length);
1164 flush_dcache_page(*page);
1165 kunmap_atomic(kaddr);
1166 local_irq_restore(flags);
1167
1168 offset += length;
1169 page++;
1170 }
1171 }
1172
1173 /*
1174 * Clone a portion of a bio, starting at the given byte offset
1175 * and continuing for the number of bytes indicated.
1176 */
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178 unsigned int offset,
1179 unsigned int len,
1180 gfp_t gfpmask)
1181 {
1182 struct bio_vec *bv;
1183 unsigned int resid;
1184 unsigned short idx;
1185 unsigned int voff;
1186 unsigned short end_idx;
1187 unsigned short vcnt;
1188 struct bio *bio;
1189
1190 /* Handle the easy case for the caller */
1191
1192 if (!offset && len == bio_src->bi_size)
1193 return bio_clone(bio_src, gfpmask);
1194
1195 if (WARN_ON_ONCE(!len))
1196 return NULL;
1197 if (WARN_ON_ONCE(len > bio_src->bi_size))
1198 return NULL;
1199 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1200 return NULL;
1201
1202 /* Find first affected segment... */
1203
1204 resid = offset;
1205 bio_for_each_segment(bv, bio_src, idx) {
1206 if (resid < bv->bv_len)
1207 break;
1208 resid -= bv->bv_len;
1209 }
1210 voff = resid;
1211
1212 /* ...and the last affected segment */
1213
1214 resid += len;
1215 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216 if (resid <= bv->bv_len)
1217 break;
1218 resid -= bv->bv_len;
1219 }
1220 vcnt = end_idx - idx + 1;
1221
1222 /* Build the clone */
1223
1224 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1225 if (!bio)
1226 return NULL; /* ENOMEM */
1227
1228 bio->bi_bdev = bio_src->bi_bdev;
1229 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230 bio->bi_rw = bio_src->bi_rw;
1231 bio->bi_flags |= 1 << BIO_CLONED;
1232
1233 /*
1234 * Copy over our part of the bio_vec, then update the first
1235 * and last (or only) entries.
1236 */
1237 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238 vcnt * sizeof (struct bio_vec));
1239 bio->bi_io_vec[0].bv_offset += voff;
1240 if (vcnt > 1) {
1241 bio->bi_io_vec[0].bv_len -= voff;
1242 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1243 } else {
1244 bio->bi_io_vec[0].bv_len = len;
1245 }
1246
1247 bio->bi_vcnt = vcnt;
1248 bio->bi_size = len;
1249 bio->bi_idx = 0;
1250
1251 return bio;
1252 }
1253
1254 /*
1255 * Clone a portion of a bio chain, starting at the given byte offset
1256 * into the first bio in the source chain and continuing for the
1257 * number of bytes indicated. The result is another bio chain of
1258 * exactly the given length, or a null pointer on error.
1259 *
1260 * The bio_src and offset parameters are both in-out. On entry they
1261 * refer to the first source bio and the offset into that bio where
1262 * the start of data to be cloned is located.
1263 *
1264 * On return, bio_src is updated to refer to the bio in the source
1265 * chain that contains first un-cloned byte, and *offset will
1266 * contain the offset of that byte within that bio.
1267 */
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269 unsigned int *offset,
1270 unsigned int len,
1271 gfp_t gfpmask)
1272 {
1273 struct bio *bi = *bio_src;
1274 unsigned int off = *offset;
1275 struct bio *chain = NULL;
1276 struct bio **end;
1277
1278 /* Build up a chain of clone bios up to the limit */
1279
1280 if (!bi || off >= bi->bi_size || !len)
1281 return NULL; /* Nothing to clone */
1282
1283 end = &chain;
1284 while (len) {
1285 unsigned int bi_size;
1286 struct bio *bio;
1287
1288 if (!bi) {
1289 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290 goto out_err; /* EINVAL; ran out of bio's */
1291 }
1292 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1294 if (!bio)
1295 goto out_err; /* ENOMEM */
1296
1297 *end = bio;
1298 end = &bio->bi_next;
1299
1300 off += bi_size;
1301 if (off == bi->bi_size) {
1302 bi = bi->bi_next;
1303 off = 0;
1304 }
1305 len -= bi_size;
1306 }
1307 *bio_src = bi;
1308 *offset = off;
1309
1310 return chain;
1311 out_err:
1312 bio_chain_put(chain);
1313
1314 return NULL;
1315 }
1316
1317 /*
1318 * The default/initial value for all object request flags is 0. For
1319 * each flag, once its value is set to 1 it is never reset to 0
1320 * again.
1321 */
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1323 {
1324 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325 struct rbd_device *rbd_dev;
1326
1327 rbd_dev = obj_request->img_request->rbd_dev;
1328 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1329 obj_request);
1330 }
1331 }
1332
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1334 {
1335 smp_mb();
1336 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1337 }
1338
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1340 {
1341 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342 struct rbd_device *rbd_dev = NULL;
1343
1344 if (obj_request_img_data_test(obj_request))
1345 rbd_dev = obj_request->img_request->rbd_dev;
1346 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1347 obj_request);
1348 }
1349 }
1350
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1352 {
1353 smp_mb();
1354 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1355 }
1356
1357 /*
1358 * This sets the KNOWN flag after (possibly) setting the EXISTS
1359 * flag. The latter is set based on the "exists" value provided.
1360 *
1361 * Note that for our purposes once an object exists it never goes
1362 * away again. It's possible that the response from two existence
1363 * checks are separated by the creation of the target object, and
1364 * the first ("doesn't exist") response arrives *after* the second
1365 * ("does exist"). In that case we ignore the second one.
1366 */
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1368 bool exists)
1369 {
1370 if (exists)
1371 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1373 smp_mb();
1374 }
1375
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1377 {
1378 smp_mb();
1379 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1380 }
1381
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1383 {
1384 smp_mb();
1385 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1386 }
1387
1388 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1389 {
1390 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1391
1392 return obj_request->img_offset <
1393 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1394 }
1395
1396 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1397 {
1398 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1399 atomic_read(&obj_request->kref.refcount));
1400 kref_get(&obj_request->kref);
1401 }
1402
1403 static void rbd_obj_request_destroy(struct kref *kref);
1404 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1405 {
1406 rbd_assert(obj_request != NULL);
1407 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1408 atomic_read(&obj_request->kref.refcount));
1409 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1410 }
1411
1412 static void rbd_img_request_get(struct rbd_img_request *img_request)
1413 {
1414 dout("%s: img %p (was %d)\n", __func__, img_request,
1415 atomic_read(&img_request->kref.refcount));
1416 kref_get(&img_request->kref);
1417 }
1418
1419 static bool img_request_child_test(struct rbd_img_request *img_request);
1420 static void rbd_parent_request_destroy(struct kref *kref);
1421 static void rbd_img_request_destroy(struct kref *kref);
1422 static void rbd_img_request_put(struct rbd_img_request *img_request)
1423 {
1424 rbd_assert(img_request != NULL);
1425 dout("%s: img %p (was %d)\n", __func__, img_request,
1426 atomic_read(&img_request->kref.refcount));
1427 if (img_request_child_test(img_request))
1428 kref_put(&img_request->kref, rbd_parent_request_destroy);
1429 else
1430 kref_put(&img_request->kref, rbd_img_request_destroy);
1431 }
1432
1433 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1434 struct rbd_obj_request *obj_request)
1435 {
1436 rbd_assert(obj_request->img_request == NULL);
1437
1438 /* Image request now owns object's original reference */
1439 obj_request->img_request = img_request;
1440 obj_request->which = img_request->obj_request_count;
1441 rbd_assert(!obj_request_img_data_test(obj_request));
1442 obj_request_img_data_set(obj_request);
1443 rbd_assert(obj_request->which != BAD_WHICH);
1444 img_request->obj_request_count++;
1445 list_add_tail(&obj_request->links, &img_request->obj_requests);
1446 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1447 obj_request->which);
1448 }
1449
1450 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1451 struct rbd_obj_request *obj_request)
1452 {
1453 rbd_assert(obj_request->which != BAD_WHICH);
1454
1455 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1456 obj_request->which);
1457 list_del(&obj_request->links);
1458 rbd_assert(img_request->obj_request_count > 0);
1459 img_request->obj_request_count--;
1460 rbd_assert(obj_request->which == img_request->obj_request_count);
1461 obj_request->which = BAD_WHICH;
1462 rbd_assert(obj_request_img_data_test(obj_request));
1463 rbd_assert(obj_request->img_request == img_request);
1464 obj_request->img_request = NULL;
1465 obj_request->callback = NULL;
1466 rbd_obj_request_put(obj_request);
1467 }
1468
1469 static bool obj_request_type_valid(enum obj_request_type type)
1470 {
1471 switch (type) {
1472 case OBJ_REQUEST_NODATA:
1473 case OBJ_REQUEST_BIO:
1474 case OBJ_REQUEST_PAGES:
1475 return true;
1476 default:
1477 return false;
1478 }
1479 }
1480
1481 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1482 struct rbd_obj_request *obj_request)
1483 {
1484 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1485
1486 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1487 }
1488
1489 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1490 {
1491
1492 dout("%s: img %p\n", __func__, img_request);
1493
1494 /*
1495 * If no error occurred, compute the aggregate transfer
1496 * count for the image request. We could instead use
1497 * atomic64_cmpxchg() to update it as each object request
1498 * completes; not clear which way is better off hand.
1499 */
1500 if (!img_request->result) {
1501 struct rbd_obj_request *obj_request;
1502 u64 xferred = 0;
1503
1504 for_each_obj_request(img_request, obj_request)
1505 xferred += obj_request->xferred;
1506 img_request->xferred = xferred;
1507 }
1508
1509 if (img_request->callback)
1510 img_request->callback(img_request);
1511 else
1512 rbd_img_request_put(img_request);
1513 }
1514
1515 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1516
1517 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1518 {
1519 dout("%s: obj %p\n", __func__, obj_request);
1520
1521 return wait_for_completion_interruptible(&obj_request->completion);
1522 }
1523
1524 /*
1525 * The default/initial value for all image request flags is 0. Each
1526 * is conditionally set to 1 at image request initialization time
1527 * and currently never change thereafter.
1528 */
1529 static void img_request_write_set(struct rbd_img_request *img_request)
1530 {
1531 set_bit(IMG_REQ_WRITE, &img_request->flags);
1532 smp_mb();
1533 }
1534
1535 static bool img_request_write_test(struct rbd_img_request *img_request)
1536 {
1537 smp_mb();
1538 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1539 }
1540
1541 static void img_request_child_set(struct rbd_img_request *img_request)
1542 {
1543 set_bit(IMG_REQ_CHILD, &img_request->flags);
1544 smp_mb();
1545 }
1546
1547 static void img_request_child_clear(struct rbd_img_request *img_request)
1548 {
1549 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1550 smp_mb();
1551 }
1552
1553 static bool img_request_child_test(struct rbd_img_request *img_request)
1554 {
1555 smp_mb();
1556 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1557 }
1558
1559 static void img_request_layered_set(struct rbd_img_request *img_request)
1560 {
1561 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1562 smp_mb();
1563 }
1564
1565 static void img_request_layered_clear(struct rbd_img_request *img_request)
1566 {
1567 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1568 smp_mb();
1569 }
1570
1571 static bool img_request_layered_test(struct rbd_img_request *img_request)
1572 {
1573 smp_mb();
1574 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1575 }
1576
1577 static void
1578 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1579 {
1580 u64 xferred = obj_request->xferred;
1581 u64 length = obj_request->length;
1582
1583 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1584 obj_request, obj_request->img_request, obj_request->result,
1585 xferred, length);
1586 /*
1587 * ENOENT means a hole in the image. We zero-fill the entire
1588 * length of the request. A short read also implies zero-fill
1589 * to the end of the request. An error requires the whole
1590 * length of the request to be reported finished with an error
1591 * to the block layer. In each case we update the xferred
1592 * count to indicate the whole request was satisfied.
1593 */
1594 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1595 if (obj_request->result == -ENOENT) {
1596 if (obj_request->type == OBJ_REQUEST_BIO)
1597 zero_bio_chain(obj_request->bio_list, 0);
1598 else
1599 zero_pages(obj_request->pages, 0, length);
1600 obj_request->result = 0;
1601 } else if (xferred < length && !obj_request->result) {
1602 if (obj_request->type == OBJ_REQUEST_BIO)
1603 zero_bio_chain(obj_request->bio_list, xferred);
1604 else
1605 zero_pages(obj_request->pages, xferred, length);
1606 }
1607 obj_request->xferred = length;
1608 obj_request_done_set(obj_request);
1609 }
1610
1611 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1612 {
1613 dout("%s: obj %p cb %p\n", __func__, obj_request,
1614 obj_request->callback);
1615 if (obj_request->callback)
1616 obj_request->callback(obj_request);
1617 else
1618 complete_all(&obj_request->completion);
1619 }
1620
1621 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1622 {
1623 dout("%s: obj %p\n", __func__, obj_request);
1624 obj_request_done_set(obj_request);
1625 }
1626
1627 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1628 {
1629 struct rbd_img_request *img_request = NULL;
1630 struct rbd_device *rbd_dev = NULL;
1631 bool layered = false;
1632
1633 if (obj_request_img_data_test(obj_request)) {
1634 img_request = obj_request->img_request;
1635 layered = img_request && img_request_layered_test(img_request);
1636 rbd_dev = img_request->rbd_dev;
1637 }
1638
1639 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1640 obj_request, img_request, obj_request->result,
1641 obj_request->xferred, obj_request->length);
1642 if (layered && obj_request->result == -ENOENT &&
1643 obj_request->img_offset < rbd_dev->parent_overlap)
1644 rbd_img_parent_read(obj_request);
1645 else if (img_request)
1646 rbd_img_obj_request_read_callback(obj_request);
1647 else
1648 obj_request_done_set(obj_request);
1649 }
1650
1651 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1652 {
1653 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1654 obj_request->result, obj_request->length);
1655 /*
1656 * There is no such thing as a successful short write. Set
1657 * it to our originally-requested length.
1658 */
1659 obj_request->xferred = obj_request->length;
1660 obj_request_done_set(obj_request);
1661 }
1662
1663 /*
1664 * For a simple stat call there's nothing to do. We'll do more if
1665 * this is part of a write sequence for a layered image.
1666 */
1667 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1668 {
1669 dout("%s: obj %p\n", __func__, obj_request);
1670 obj_request_done_set(obj_request);
1671 }
1672
1673 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1674 struct ceph_msg *msg)
1675 {
1676 struct rbd_obj_request *obj_request = osd_req->r_priv;
1677 u16 opcode;
1678
1679 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1680 rbd_assert(osd_req == obj_request->osd_req);
1681 if (obj_request_img_data_test(obj_request)) {
1682 rbd_assert(obj_request->img_request);
1683 rbd_assert(obj_request->which != BAD_WHICH);
1684 } else {
1685 rbd_assert(obj_request->which == BAD_WHICH);
1686 }
1687
1688 if (osd_req->r_result < 0)
1689 obj_request->result = osd_req->r_result;
1690
1691 BUG_ON(osd_req->r_num_ops > 2);
1692
1693 /*
1694 * We support a 64-bit length, but ultimately it has to be
1695 * passed to blk_end_request(), which takes an unsigned int.
1696 */
1697 obj_request->xferred = osd_req->r_reply_op_len[0];
1698 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1699 opcode = osd_req->r_ops[0].op;
1700 switch (opcode) {
1701 case CEPH_OSD_OP_READ:
1702 rbd_osd_read_callback(obj_request);
1703 break;
1704 case CEPH_OSD_OP_WRITE:
1705 rbd_osd_write_callback(obj_request);
1706 break;
1707 case CEPH_OSD_OP_STAT:
1708 rbd_osd_stat_callback(obj_request);
1709 break;
1710 case CEPH_OSD_OP_CALL:
1711 case CEPH_OSD_OP_NOTIFY_ACK:
1712 case CEPH_OSD_OP_WATCH:
1713 rbd_osd_trivial_callback(obj_request);
1714 break;
1715 default:
1716 rbd_warn(NULL, "%s: unsupported op %hu\n",
1717 obj_request->object_name, (unsigned short) opcode);
1718 break;
1719 }
1720
1721 if (obj_request_done_test(obj_request))
1722 rbd_obj_request_complete(obj_request);
1723 }
1724
1725 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1726 {
1727 struct rbd_img_request *img_request = obj_request->img_request;
1728 struct ceph_osd_request *osd_req = obj_request->osd_req;
1729 u64 snap_id;
1730
1731 rbd_assert(osd_req != NULL);
1732
1733 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1734 ceph_osdc_build_request(osd_req, obj_request->offset,
1735 NULL, snap_id, NULL);
1736 }
1737
1738 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1739 {
1740 struct rbd_img_request *img_request = obj_request->img_request;
1741 struct ceph_osd_request *osd_req = obj_request->osd_req;
1742 struct ceph_snap_context *snapc;
1743 struct timespec mtime = CURRENT_TIME;
1744
1745 rbd_assert(osd_req != NULL);
1746
1747 snapc = img_request ? img_request->snapc : NULL;
1748 ceph_osdc_build_request(osd_req, obj_request->offset,
1749 snapc, CEPH_NOSNAP, &mtime);
1750 }
1751
1752 static struct ceph_osd_request *rbd_osd_req_create(
1753 struct rbd_device *rbd_dev,
1754 bool write_request,
1755 struct rbd_obj_request *obj_request)
1756 {
1757 struct ceph_snap_context *snapc = NULL;
1758 struct ceph_osd_client *osdc;
1759 struct ceph_osd_request *osd_req;
1760
1761 if (obj_request_img_data_test(obj_request)) {
1762 struct rbd_img_request *img_request = obj_request->img_request;
1763
1764 rbd_assert(write_request ==
1765 img_request_write_test(img_request));
1766 if (write_request)
1767 snapc = img_request->snapc;
1768 }
1769
1770 /* Allocate and initialize the request, for the single op */
1771
1772 osdc = &rbd_dev->rbd_client->client->osdc;
1773 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1774 if (!osd_req)
1775 return NULL; /* ENOMEM */
1776
1777 if (write_request)
1778 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1779 else
1780 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1781
1782 osd_req->r_callback = rbd_osd_req_callback;
1783 osd_req->r_priv = obj_request;
1784
1785 osd_req->r_oid_len = strlen(obj_request->object_name);
1786 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1787 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1788
1789 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1790
1791 return osd_req;
1792 }
1793
1794 /*
1795 * Create a copyup osd request based on the information in the
1796 * object request supplied. A copyup request has two osd ops,
1797 * a copyup method call, and a "normal" write request.
1798 */
1799 static struct ceph_osd_request *
1800 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1801 {
1802 struct rbd_img_request *img_request;
1803 struct ceph_snap_context *snapc;
1804 struct rbd_device *rbd_dev;
1805 struct ceph_osd_client *osdc;
1806 struct ceph_osd_request *osd_req;
1807
1808 rbd_assert(obj_request_img_data_test(obj_request));
1809 img_request = obj_request->img_request;
1810 rbd_assert(img_request);
1811 rbd_assert(img_request_write_test(img_request));
1812
1813 /* Allocate and initialize the request, for the two ops */
1814
1815 snapc = img_request->snapc;
1816 rbd_dev = img_request->rbd_dev;
1817 osdc = &rbd_dev->rbd_client->client->osdc;
1818 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1819 if (!osd_req)
1820 return NULL; /* ENOMEM */
1821
1822 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1823 osd_req->r_callback = rbd_osd_req_callback;
1824 osd_req->r_priv = obj_request;
1825
1826 osd_req->r_oid_len = strlen(obj_request->object_name);
1827 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1828 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1829
1830 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1831
1832 return osd_req;
1833 }
1834
1835
1836 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1837 {
1838 ceph_osdc_put_request(osd_req);
1839 }
1840
1841 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1842
1843 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1844 u64 offset, u64 length,
1845 enum obj_request_type type)
1846 {
1847 struct rbd_obj_request *obj_request;
1848 size_t size;
1849 char *name;
1850
1851 rbd_assert(obj_request_type_valid(type));
1852
1853 size = strlen(object_name) + 1;
1854 name = kmalloc(size, GFP_NOIO);
1855 if (!name)
1856 return NULL;
1857
1858 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1859 if (!obj_request) {
1860 kfree(name);
1861 return NULL;
1862 }
1863
1864 obj_request->object_name = memcpy(name, object_name, size);
1865 obj_request->offset = offset;
1866 obj_request->length = length;
1867 obj_request->flags = 0;
1868 obj_request->which = BAD_WHICH;
1869 obj_request->type = type;
1870 INIT_LIST_HEAD(&obj_request->links);
1871 init_completion(&obj_request->completion);
1872 kref_init(&obj_request->kref);
1873
1874 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1875 offset, length, (int)type, obj_request);
1876
1877 return obj_request;
1878 }
1879
1880 static void rbd_obj_request_destroy(struct kref *kref)
1881 {
1882 struct rbd_obj_request *obj_request;
1883
1884 obj_request = container_of(kref, struct rbd_obj_request, kref);
1885
1886 dout("%s: obj %p\n", __func__, obj_request);
1887
1888 rbd_assert(obj_request->img_request == NULL);
1889 rbd_assert(obj_request->which == BAD_WHICH);
1890
1891 if (obj_request->osd_req)
1892 rbd_osd_req_destroy(obj_request->osd_req);
1893
1894 rbd_assert(obj_request_type_valid(obj_request->type));
1895 switch (obj_request->type) {
1896 case OBJ_REQUEST_NODATA:
1897 break; /* Nothing to do */
1898 case OBJ_REQUEST_BIO:
1899 if (obj_request->bio_list)
1900 bio_chain_put(obj_request->bio_list);
1901 break;
1902 case OBJ_REQUEST_PAGES:
1903 if (obj_request->pages)
1904 ceph_release_page_vector(obj_request->pages,
1905 obj_request->page_count);
1906 break;
1907 }
1908
1909 kfree(obj_request->object_name);
1910 obj_request->object_name = NULL;
1911 kmem_cache_free(rbd_obj_request_cache, obj_request);
1912 }
1913
1914 /* It's OK to call this for a device with no parent */
1915
1916 static void rbd_spec_put(struct rbd_spec *spec);
1917 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1918 {
1919 rbd_dev_remove_parent(rbd_dev);
1920 rbd_spec_put(rbd_dev->parent_spec);
1921 rbd_dev->parent_spec = NULL;
1922 rbd_dev->parent_overlap = 0;
1923 }
1924
1925 /*
1926 * Parent image reference counting is used to determine when an
1927 * image's parent fields can be safely torn down--after there are no
1928 * more in-flight requests to the parent image. When the last
1929 * reference is dropped, cleaning them up is safe.
1930 */
1931 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1932 {
1933 int counter;
1934
1935 if (!rbd_dev->parent_spec)
1936 return;
1937
1938 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1939 if (counter > 0)
1940 return;
1941
1942 /* Last reference; clean up parent data structures */
1943
1944 if (!counter)
1945 rbd_dev_unparent(rbd_dev);
1946 else
1947 rbd_warn(rbd_dev, "parent reference underflow\n");
1948 }
1949
1950 /*
1951 * If an image has a non-zero parent overlap, get a reference to its
1952 * parent.
1953 *
1954 * We must get the reference before checking for the overlap to
1955 * coordinate properly with zeroing the parent overlap in
1956 * rbd_dev_v2_parent_info() when an image gets flattened. We
1957 * drop it again if there is no overlap.
1958 *
1959 * Returns true if the rbd device has a parent with a non-zero
1960 * overlap and a reference for it was successfully taken, or
1961 * false otherwise.
1962 */
1963 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1964 {
1965 int counter;
1966
1967 if (!rbd_dev->parent_spec)
1968 return false;
1969
1970 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1971 if (counter > 0 && rbd_dev->parent_overlap)
1972 return true;
1973
1974 /* Image was flattened, but parent is not yet torn down */
1975
1976 if (counter < 0)
1977 rbd_warn(rbd_dev, "parent reference overflow\n");
1978
1979 return false;
1980 }
1981
1982 /*
1983 * Caller is responsible for filling in the list of object requests
1984 * that comprises the image request, and the Linux request pointer
1985 * (if there is one).
1986 */
1987 static struct rbd_img_request *rbd_img_request_create(
1988 struct rbd_device *rbd_dev,
1989 u64 offset, u64 length,
1990 bool write_request)
1991 {
1992 struct rbd_img_request *img_request;
1993
1994 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1995 if (!img_request)
1996 return NULL;
1997
1998 if (write_request) {
1999 down_read(&rbd_dev->header_rwsem);
2000 ceph_get_snap_context(rbd_dev->header.snapc);
2001 up_read(&rbd_dev->header_rwsem);
2002 }
2003
2004 img_request->rq = NULL;
2005 img_request->rbd_dev = rbd_dev;
2006 img_request->offset = offset;
2007 img_request->length = length;
2008 img_request->flags = 0;
2009 if (write_request) {
2010 img_request_write_set(img_request);
2011 img_request->snapc = rbd_dev->header.snapc;
2012 } else {
2013 img_request->snap_id = rbd_dev->spec->snap_id;
2014 }
2015 if (rbd_dev_parent_get(rbd_dev))
2016 img_request_layered_set(img_request);
2017 spin_lock_init(&img_request->completion_lock);
2018 img_request->next_completion = 0;
2019 img_request->callback = NULL;
2020 img_request->result = 0;
2021 img_request->obj_request_count = 0;
2022 INIT_LIST_HEAD(&img_request->obj_requests);
2023 kref_init(&img_request->kref);
2024
2025 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2026 write_request ? "write" : "read", offset, length,
2027 img_request);
2028
2029 return img_request;
2030 }
2031
2032 static void rbd_img_request_destroy(struct kref *kref)
2033 {
2034 struct rbd_img_request *img_request;
2035 struct rbd_obj_request *obj_request;
2036 struct rbd_obj_request *next_obj_request;
2037
2038 img_request = container_of(kref, struct rbd_img_request, kref);
2039
2040 dout("%s: img %p\n", __func__, img_request);
2041
2042 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2043 rbd_img_obj_request_del(img_request, obj_request);
2044 rbd_assert(img_request->obj_request_count == 0);
2045
2046 if (img_request_layered_test(img_request)) {
2047 img_request_layered_clear(img_request);
2048 rbd_dev_parent_put(img_request->rbd_dev);
2049 }
2050
2051 if (img_request_write_test(img_request))
2052 ceph_put_snap_context(img_request->snapc);
2053
2054 kmem_cache_free(rbd_img_request_cache, img_request);
2055 }
2056
2057 static struct rbd_img_request *rbd_parent_request_create(
2058 struct rbd_obj_request *obj_request,
2059 u64 img_offset, u64 length)
2060 {
2061 struct rbd_img_request *parent_request;
2062 struct rbd_device *rbd_dev;
2063
2064 rbd_assert(obj_request->img_request);
2065 rbd_dev = obj_request->img_request->rbd_dev;
2066
2067 parent_request = rbd_img_request_create(rbd_dev->parent,
2068 img_offset, length, false);
2069 if (!parent_request)
2070 return NULL;
2071
2072 img_request_child_set(parent_request);
2073 rbd_obj_request_get(obj_request);
2074 parent_request->obj_request = obj_request;
2075
2076 return parent_request;
2077 }
2078
2079 static void rbd_parent_request_destroy(struct kref *kref)
2080 {
2081 struct rbd_img_request *parent_request;
2082 struct rbd_obj_request *orig_request;
2083
2084 parent_request = container_of(kref, struct rbd_img_request, kref);
2085 orig_request = parent_request->obj_request;
2086
2087 parent_request->obj_request = NULL;
2088 rbd_obj_request_put(orig_request);
2089 img_request_child_clear(parent_request);
2090
2091 rbd_img_request_destroy(kref);
2092 }
2093
2094 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2095 {
2096 struct rbd_img_request *img_request;
2097 unsigned int xferred;
2098 int result;
2099 bool more;
2100
2101 rbd_assert(obj_request_img_data_test(obj_request));
2102 img_request = obj_request->img_request;
2103
2104 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2105 xferred = (unsigned int)obj_request->xferred;
2106 result = obj_request->result;
2107 if (result) {
2108 struct rbd_device *rbd_dev = img_request->rbd_dev;
2109
2110 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2111 img_request_write_test(img_request) ? "write" : "read",
2112 obj_request->length, obj_request->img_offset,
2113 obj_request->offset);
2114 rbd_warn(rbd_dev, " result %d xferred %x\n",
2115 result, xferred);
2116 if (!img_request->result)
2117 img_request->result = result;
2118 /*
2119 * Need to end I/O on the entire obj_request worth of
2120 * bytes in case of error.
2121 */
2122 xferred = obj_request->length;
2123 }
2124
2125 /* Image object requests don't own their page array */
2126
2127 if (obj_request->type == OBJ_REQUEST_PAGES) {
2128 obj_request->pages = NULL;
2129 obj_request->page_count = 0;
2130 }
2131
2132 if (img_request_child_test(img_request)) {
2133 rbd_assert(img_request->obj_request != NULL);
2134 more = obj_request->which < img_request->obj_request_count - 1;
2135 } else {
2136 rbd_assert(img_request->rq != NULL);
2137 more = blk_end_request(img_request->rq, result, xferred);
2138 }
2139
2140 return more;
2141 }
2142
2143 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2144 {
2145 struct rbd_img_request *img_request;
2146 u32 which = obj_request->which;
2147 bool more = true;
2148
2149 rbd_assert(obj_request_img_data_test(obj_request));
2150 img_request = obj_request->img_request;
2151
2152 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2153 rbd_assert(img_request != NULL);
2154 rbd_assert(img_request->obj_request_count > 0);
2155 rbd_assert(which != BAD_WHICH);
2156 rbd_assert(which < img_request->obj_request_count);
2157
2158 spin_lock_irq(&img_request->completion_lock);
2159 if (which != img_request->next_completion)
2160 goto out;
2161
2162 for_each_obj_request_from(img_request, obj_request) {
2163 rbd_assert(more);
2164 rbd_assert(which < img_request->obj_request_count);
2165
2166 if (!obj_request_done_test(obj_request))
2167 break;
2168 more = rbd_img_obj_end_request(obj_request);
2169 which++;
2170 }
2171
2172 rbd_assert(more ^ (which == img_request->obj_request_count));
2173 img_request->next_completion = which;
2174 out:
2175 spin_unlock_irq(&img_request->completion_lock);
2176 rbd_img_request_put(img_request);
2177
2178 if (!more)
2179 rbd_img_request_complete(img_request);
2180 }
2181
2182 /*
2183 * Split up an image request into one or more object requests, each
2184 * to a different object. The "type" parameter indicates whether
2185 * "data_desc" is the pointer to the head of a list of bio
2186 * structures, or the base of a page array. In either case this
2187 * function assumes data_desc describes memory sufficient to hold
2188 * all data described by the image request.
2189 */
2190 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2191 enum obj_request_type type,
2192 void *data_desc)
2193 {
2194 struct rbd_device *rbd_dev = img_request->rbd_dev;
2195 struct rbd_obj_request *obj_request = NULL;
2196 struct rbd_obj_request *next_obj_request;
2197 bool write_request = img_request_write_test(img_request);
2198 struct bio *bio_list = 0;
2199 unsigned int bio_offset = 0;
2200 struct page **pages = 0;
2201 u64 img_offset;
2202 u64 resid;
2203 u16 opcode;
2204
2205 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2206 (int)type, data_desc);
2207
2208 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2209 img_offset = img_request->offset;
2210 resid = img_request->length;
2211 rbd_assert(resid > 0);
2212
2213 if (type == OBJ_REQUEST_BIO) {
2214 bio_list = data_desc;
2215 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2216 } else {
2217 rbd_assert(type == OBJ_REQUEST_PAGES);
2218 pages = data_desc;
2219 }
2220
2221 while (resid) {
2222 struct ceph_osd_request *osd_req;
2223 const char *object_name;
2224 u64 offset;
2225 u64 length;
2226
2227 object_name = rbd_segment_name(rbd_dev, img_offset);
2228 if (!object_name)
2229 goto out_unwind;
2230 offset = rbd_segment_offset(rbd_dev, img_offset);
2231 length = rbd_segment_length(rbd_dev, img_offset, resid);
2232 obj_request = rbd_obj_request_create(object_name,
2233 offset, length, type);
2234 /* object request has its own copy of the object name */
2235 rbd_segment_name_free(object_name);
2236 if (!obj_request)
2237 goto out_unwind;
2238 /*
2239 * set obj_request->img_request before creating the
2240 * osd_request so that it gets the right snapc
2241 */
2242 rbd_img_obj_request_add(img_request, obj_request);
2243
2244 if (type == OBJ_REQUEST_BIO) {
2245 unsigned int clone_size;
2246
2247 rbd_assert(length <= (u64)UINT_MAX);
2248 clone_size = (unsigned int)length;
2249 obj_request->bio_list =
2250 bio_chain_clone_range(&bio_list,
2251 &bio_offset,
2252 clone_size,
2253 GFP_ATOMIC);
2254 if (!obj_request->bio_list)
2255 goto out_partial;
2256 } else {
2257 unsigned int page_count;
2258
2259 obj_request->pages = pages;
2260 page_count = (u32)calc_pages_for(offset, length);
2261 obj_request->page_count = page_count;
2262 if ((offset + length) & ~PAGE_MASK)
2263 page_count--; /* more on last page */
2264 pages += page_count;
2265 }
2266
2267 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2268 obj_request);
2269 if (!osd_req)
2270 goto out_partial;
2271 obj_request->osd_req = osd_req;
2272 obj_request->callback = rbd_img_obj_callback;
2273 rbd_img_request_get(img_request);
2274
2275 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2276 0, 0);
2277 if (type == OBJ_REQUEST_BIO)
2278 osd_req_op_extent_osd_data_bio(osd_req, 0,
2279 obj_request->bio_list, length);
2280 else
2281 osd_req_op_extent_osd_data_pages(osd_req, 0,
2282 obj_request->pages, length,
2283 offset & ~PAGE_MASK, false, false);
2284
2285 if (write_request)
2286 rbd_osd_req_format_write(obj_request);
2287 else
2288 rbd_osd_req_format_read(obj_request);
2289
2290 obj_request->img_offset = img_offset;
2291
2292 img_offset += length;
2293 resid -= length;
2294 }
2295
2296 return 0;
2297
2298 out_partial:
2299 rbd_obj_request_put(obj_request);
2300 out_unwind:
2301 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2302 rbd_img_obj_request_del(img_request, obj_request);
2303
2304 return -ENOMEM;
2305 }
2306
2307 static void
2308 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2309 {
2310 struct rbd_img_request *img_request;
2311 struct rbd_device *rbd_dev;
2312 struct page **pages;
2313 u32 page_count;
2314
2315 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2316 rbd_assert(obj_request_img_data_test(obj_request));
2317 img_request = obj_request->img_request;
2318 rbd_assert(img_request);
2319
2320 rbd_dev = img_request->rbd_dev;
2321 rbd_assert(rbd_dev);
2322
2323 pages = obj_request->copyup_pages;
2324 rbd_assert(pages != NULL);
2325 obj_request->copyup_pages = NULL;
2326 page_count = obj_request->copyup_page_count;
2327 rbd_assert(page_count);
2328 obj_request->copyup_page_count = 0;
2329 ceph_release_page_vector(pages, page_count);
2330
2331 /*
2332 * We want the transfer count to reflect the size of the
2333 * original write request. There is no such thing as a
2334 * successful short write, so if the request was successful
2335 * we can just set it to the originally-requested length.
2336 */
2337 if (!obj_request->result)
2338 obj_request->xferred = obj_request->length;
2339
2340 /* Finish up with the normal image object callback */
2341
2342 rbd_img_obj_callback(obj_request);
2343 }
2344
2345 static void
2346 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2347 {
2348 struct rbd_obj_request *orig_request;
2349 struct ceph_osd_request *osd_req;
2350 struct ceph_osd_client *osdc;
2351 struct rbd_device *rbd_dev;
2352 struct page **pages;
2353 u32 page_count;
2354 int img_result;
2355 u64 parent_length;
2356 u64 offset;
2357 u64 length;
2358
2359 rbd_assert(img_request_child_test(img_request));
2360
2361 /* First get what we need from the image request */
2362
2363 pages = img_request->copyup_pages;
2364 rbd_assert(pages != NULL);
2365 img_request->copyup_pages = NULL;
2366 page_count = img_request->copyup_page_count;
2367 rbd_assert(page_count);
2368 img_request->copyup_page_count = 0;
2369
2370 orig_request = img_request->obj_request;
2371 rbd_assert(orig_request != NULL);
2372 rbd_assert(obj_request_type_valid(orig_request->type));
2373 img_result = img_request->result;
2374 parent_length = img_request->length;
2375 rbd_assert(parent_length == img_request->xferred);
2376 rbd_img_request_put(img_request);
2377
2378 rbd_assert(orig_request->img_request);
2379 rbd_dev = orig_request->img_request->rbd_dev;
2380 rbd_assert(rbd_dev);
2381
2382 /*
2383 * If the overlap has become 0 (most likely because the
2384 * image has been flattened) we need to free the pages
2385 * and re-submit the original write request.
2386 */
2387 if (!rbd_dev->parent_overlap) {
2388 struct ceph_osd_client *osdc;
2389
2390 ceph_release_page_vector(pages, page_count);
2391 osdc = &rbd_dev->rbd_client->client->osdc;
2392 img_result = rbd_obj_request_submit(osdc, orig_request);
2393 if (!img_result)
2394 return;
2395 }
2396
2397 if (img_result)
2398 goto out_err;
2399
2400 /*
2401 * The original osd request is of no use to use any more.
2402 * We need a new one that can hold the two ops in a copyup
2403 * request. Allocate the new copyup osd request for the
2404 * original request, and release the old one.
2405 */
2406 img_result = -ENOMEM;
2407 osd_req = rbd_osd_req_create_copyup(orig_request);
2408 if (!osd_req)
2409 goto out_err;
2410 rbd_osd_req_destroy(orig_request->osd_req);
2411 orig_request->osd_req = osd_req;
2412 orig_request->copyup_pages = pages;
2413 orig_request->copyup_page_count = page_count;
2414
2415 /* Initialize the copyup op */
2416
2417 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2418 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2419 false, false);
2420
2421 /* Then the original write request op */
2422
2423 offset = orig_request->offset;
2424 length = orig_request->length;
2425 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2426 offset, length, 0, 0);
2427 if (orig_request->type == OBJ_REQUEST_BIO)
2428 osd_req_op_extent_osd_data_bio(osd_req, 1,
2429 orig_request->bio_list, length);
2430 else
2431 osd_req_op_extent_osd_data_pages(osd_req, 1,
2432 orig_request->pages, length,
2433 offset & ~PAGE_MASK, false, false);
2434
2435 rbd_osd_req_format_write(orig_request);
2436
2437 /* All set, send it off. */
2438
2439 orig_request->callback = rbd_img_obj_copyup_callback;
2440 osdc = &rbd_dev->rbd_client->client->osdc;
2441 img_result = rbd_obj_request_submit(osdc, orig_request);
2442 if (!img_result)
2443 return;
2444 out_err:
2445 /* Record the error code and complete the request */
2446
2447 orig_request->result = img_result;
2448 orig_request->xferred = 0;
2449 obj_request_done_set(orig_request);
2450 rbd_obj_request_complete(orig_request);
2451 }
2452
2453 /*
2454 * Read from the parent image the range of data that covers the
2455 * entire target of the given object request. This is used for
2456 * satisfying a layered image write request when the target of an
2457 * object request from the image request does not exist.
2458 *
2459 * A page array big enough to hold the returned data is allocated
2460 * and supplied to rbd_img_request_fill() as the "data descriptor."
2461 * When the read completes, this page array will be transferred to
2462 * the original object request for the copyup operation.
2463 *
2464 * If an error occurs, record it as the result of the original
2465 * object request and mark it done so it gets completed.
2466 */
2467 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2468 {
2469 struct rbd_img_request *img_request = NULL;
2470 struct rbd_img_request *parent_request = NULL;
2471 struct rbd_device *rbd_dev;
2472 u64 img_offset;
2473 u64 length;
2474 struct page **pages = NULL;
2475 u32 page_count;
2476 int result;
2477
2478 rbd_assert(obj_request_img_data_test(obj_request));
2479 rbd_assert(obj_request_type_valid(obj_request->type));
2480
2481 img_request = obj_request->img_request;
2482 rbd_assert(img_request != NULL);
2483 rbd_dev = img_request->rbd_dev;
2484 rbd_assert(rbd_dev->parent != NULL);
2485
2486 /*
2487 * Determine the byte range covered by the object in the
2488 * child image to which the original request was to be sent.
2489 */
2490 img_offset = obj_request->img_offset - obj_request->offset;
2491 length = (u64)1 << rbd_dev->header.obj_order;
2492
2493 /*
2494 * There is no defined parent data beyond the parent
2495 * overlap, so limit what we read at that boundary if
2496 * necessary.
2497 */
2498 if (img_offset + length > rbd_dev->parent_overlap) {
2499 rbd_assert(img_offset < rbd_dev->parent_overlap);
2500 length = rbd_dev->parent_overlap - img_offset;
2501 }
2502
2503 /*
2504 * Allocate a page array big enough to receive the data read
2505 * from the parent.
2506 */
2507 page_count = (u32)calc_pages_for(0, length);
2508 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2509 if (IS_ERR(pages)) {
2510 result = PTR_ERR(pages);
2511 pages = NULL;
2512 goto out_err;
2513 }
2514
2515 result = -ENOMEM;
2516 parent_request = rbd_parent_request_create(obj_request,
2517 img_offset, length);
2518 if (!parent_request)
2519 goto out_err;
2520
2521 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2522 if (result)
2523 goto out_err;
2524 parent_request->copyup_pages = pages;
2525 parent_request->copyup_page_count = page_count;
2526
2527 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2528 result = rbd_img_request_submit(parent_request);
2529 if (!result)
2530 return 0;
2531
2532 parent_request->copyup_pages = NULL;
2533 parent_request->copyup_page_count = 0;
2534 parent_request->obj_request = NULL;
2535 rbd_obj_request_put(obj_request);
2536 out_err:
2537 if (pages)
2538 ceph_release_page_vector(pages, page_count);
2539 if (parent_request)
2540 rbd_img_request_put(parent_request);
2541 obj_request->result = result;
2542 obj_request->xferred = 0;
2543 obj_request_done_set(obj_request);
2544
2545 return result;
2546 }
2547
2548 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2549 {
2550 struct rbd_obj_request *orig_request;
2551 struct rbd_device *rbd_dev;
2552 int result;
2553
2554 rbd_assert(!obj_request_img_data_test(obj_request));
2555
2556 /*
2557 * All we need from the object request is the original
2558 * request and the result of the STAT op. Grab those, then
2559 * we're done with the request.
2560 */
2561 orig_request = obj_request->obj_request;
2562 obj_request->obj_request = NULL;
2563 rbd_assert(orig_request);
2564 rbd_assert(orig_request->img_request);
2565
2566 result = obj_request->result;
2567 obj_request->result = 0;
2568
2569 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2570 obj_request, orig_request, result,
2571 obj_request->xferred, obj_request->length);
2572 rbd_obj_request_put(obj_request);
2573
2574 /*
2575 * If the overlap has become 0 (most likely because the
2576 * image has been flattened) we need to free the pages
2577 * and re-submit the original write request.
2578 */
2579 rbd_dev = orig_request->img_request->rbd_dev;
2580 if (!rbd_dev->parent_overlap) {
2581 struct ceph_osd_client *osdc;
2582
2583 rbd_obj_request_put(orig_request);
2584 osdc = &rbd_dev->rbd_client->client->osdc;
2585 result = rbd_obj_request_submit(osdc, orig_request);
2586 if (!result)
2587 return;
2588 }
2589
2590 /*
2591 * Our only purpose here is to determine whether the object
2592 * exists, and we don't want to treat the non-existence as
2593 * an error. If something else comes back, transfer the
2594 * error to the original request and complete it now.
2595 */
2596 if (!result) {
2597 obj_request_existence_set(orig_request, true);
2598 } else if (result == -ENOENT) {
2599 obj_request_existence_set(orig_request, false);
2600 } else if (result) {
2601 orig_request->result = result;
2602 goto out;
2603 }
2604
2605 /*
2606 * Resubmit the original request now that we have recorded
2607 * whether the target object exists.
2608 */
2609 orig_request->result = rbd_img_obj_request_submit(orig_request);
2610 out:
2611 if (orig_request->result)
2612 rbd_obj_request_complete(orig_request);
2613 rbd_obj_request_put(orig_request);
2614 }
2615
2616 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2617 {
2618 struct rbd_obj_request *stat_request;
2619 struct rbd_device *rbd_dev;
2620 struct ceph_osd_client *osdc;
2621 struct page **pages = NULL;
2622 u32 page_count;
2623 size_t size;
2624 int ret;
2625
2626 /*
2627 * The response data for a STAT call consists of:
2628 * le64 length;
2629 * struct {
2630 * le32 tv_sec;
2631 * le32 tv_nsec;
2632 * } mtime;
2633 */
2634 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2635 page_count = (u32)calc_pages_for(0, size);
2636 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2637 if (IS_ERR(pages))
2638 return PTR_ERR(pages);
2639
2640 ret = -ENOMEM;
2641 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2642 OBJ_REQUEST_PAGES);
2643 if (!stat_request)
2644 goto out;
2645
2646 rbd_obj_request_get(obj_request);
2647 stat_request->obj_request = obj_request;
2648 stat_request->pages = pages;
2649 stat_request->page_count = page_count;
2650
2651 rbd_assert(obj_request->img_request);
2652 rbd_dev = obj_request->img_request->rbd_dev;
2653 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2654 stat_request);
2655 if (!stat_request->osd_req)
2656 goto out;
2657 stat_request->callback = rbd_img_obj_exists_callback;
2658
2659 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2660 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2661 false, false);
2662 rbd_osd_req_format_read(stat_request);
2663
2664 osdc = &rbd_dev->rbd_client->client->osdc;
2665 ret = rbd_obj_request_submit(osdc, stat_request);
2666 out:
2667 if (ret)
2668 rbd_obj_request_put(obj_request);
2669
2670 return ret;
2671 }
2672
2673 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2674 {
2675 struct rbd_img_request *img_request;
2676 struct rbd_device *rbd_dev;
2677 bool known;
2678
2679 rbd_assert(obj_request_img_data_test(obj_request));
2680
2681 img_request = obj_request->img_request;
2682 rbd_assert(img_request);
2683 rbd_dev = img_request->rbd_dev;
2684
2685 /*
2686 * Only writes to layered images need special handling.
2687 * Reads and non-layered writes are simple object requests.
2688 * Layered writes that start beyond the end of the overlap
2689 * with the parent have no parent data, so they too are
2690 * simple object requests. Finally, if the target object is
2691 * known to already exist, its parent data has already been
2692 * copied, so a write to the object can also be handled as a
2693 * simple object request.
2694 */
2695 if (!img_request_write_test(img_request) ||
2696 !img_request_layered_test(img_request) ||
2697 !obj_request_overlaps_parent(obj_request) ||
2698 ((known = obj_request_known_test(obj_request)) &&
2699 obj_request_exists_test(obj_request))) {
2700
2701 struct rbd_device *rbd_dev;
2702 struct ceph_osd_client *osdc;
2703
2704 rbd_dev = obj_request->img_request->rbd_dev;
2705 osdc = &rbd_dev->rbd_client->client->osdc;
2706
2707 return rbd_obj_request_submit(osdc, obj_request);
2708 }
2709
2710 /*
2711 * It's a layered write. The target object might exist but
2712 * we may not know that yet. If we know it doesn't exist,
2713 * start by reading the data for the full target object from
2714 * the parent so we can use it for a copyup to the target.
2715 */
2716 if (known)
2717 return rbd_img_obj_parent_read_full(obj_request);
2718
2719 /* We don't know whether the target exists. Go find out. */
2720
2721 return rbd_img_obj_exists_submit(obj_request);
2722 }
2723
2724 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2725 {
2726 struct rbd_obj_request *obj_request;
2727 struct rbd_obj_request *next_obj_request;
2728
2729 dout("%s: img %p\n", __func__, img_request);
2730 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2731 int ret;
2732
2733 ret = rbd_img_obj_request_submit(obj_request);
2734 if (ret)
2735 return ret;
2736 }
2737
2738 return 0;
2739 }
2740
2741 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2742 {
2743 struct rbd_obj_request *obj_request;
2744 struct rbd_device *rbd_dev;
2745 u64 obj_end;
2746 u64 img_xferred;
2747 int img_result;
2748
2749 rbd_assert(img_request_child_test(img_request));
2750
2751 /* First get what we need from the image request and release it */
2752
2753 obj_request = img_request->obj_request;
2754 img_xferred = img_request->xferred;
2755 img_result = img_request->result;
2756 rbd_img_request_put(img_request);
2757
2758 /*
2759 * If the overlap has become 0 (most likely because the
2760 * image has been flattened) we need to re-submit the
2761 * original request.
2762 */
2763 rbd_assert(obj_request);
2764 rbd_assert(obj_request->img_request);
2765 rbd_dev = obj_request->img_request->rbd_dev;
2766 if (!rbd_dev->parent_overlap) {
2767 struct ceph_osd_client *osdc;
2768
2769 osdc = &rbd_dev->rbd_client->client->osdc;
2770 img_result = rbd_obj_request_submit(osdc, obj_request);
2771 if (!img_result)
2772 return;
2773 }
2774
2775 obj_request->result = img_result;
2776 if (obj_request->result)
2777 goto out;
2778
2779 /*
2780 * We need to zero anything beyond the parent overlap
2781 * boundary. Since rbd_img_obj_request_read_callback()
2782 * will zero anything beyond the end of a short read, an
2783 * easy way to do this is to pretend the data from the
2784 * parent came up short--ending at the overlap boundary.
2785 */
2786 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2787 obj_end = obj_request->img_offset + obj_request->length;
2788 if (obj_end > rbd_dev->parent_overlap) {
2789 u64 xferred = 0;
2790
2791 if (obj_request->img_offset < rbd_dev->parent_overlap)
2792 xferred = rbd_dev->parent_overlap -
2793 obj_request->img_offset;
2794
2795 obj_request->xferred = min(img_xferred, xferred);
2796 } else {
2797 obj_request->xferred = img_xferred;
2798 }
2799 out:
2800 rbd_img_obj_request_read_callback(obj_request);
2801 rbd_obj_request_complete(obj_request);
2802 }
2803
2804 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2805 {
2806 struct rbd_img_request *img_request;
2807 int result;
2808
2809 rbd_assert(obj_request_img_data_test(obj_request));
2810 rbd_assert(obj_request->img_request != NULL);
2811 rbd_assert(obj_request->result == (s32) -ENOENT);
2812 rbd_assert(obj_request_type_valid(obj_request->type));
2813
2814 /* rbd_read_finish(obj_request, obj_request->length); */
2815 img_request = rbd_parent_request_create(obj_request,
2816 obj_request->img_offset,
2817 obj_request->length);
2818 result = -ENOMEM;
2819 if (!img_request)
2820 goto out_err;
2821
2822 if (obj_request->type == OBJ_REQUEST_BIO)
2823 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2824 obj_request->bio_list);
2825 else
2826 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2827 obj_request->pages);
2828 if (result)
2829 goto out_err;
2830
2831 img_request->callback = rbd_img_parent_read_callback;
2832 result = rbd_img_request_submit(img_request);
2833 if (result)
2834 goto out_err;
2835
2836 return;
2837 out_err:
2838 if (img_request)
2839 rbd_img_request_put(img_request);
2840 obj_request->result = result;
2841 obj_request->xferred = 0;
2842 obj_request_done_set(obj_request);
2843 }
2844
2845 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2846 {
2847 struct rbd_obj_request *obj_request;
2848 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2849 int ret;
2850
2851 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2852 OBJ_REQUEST_NODATA);
2853 if (!obj_request)
2854 return -ENOMEM;
2855
2856 ret = -ENOMEM;
2857 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2858 if (!obj_request->osd_req)
2859 goto out;
2860
2861 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2862 notify_id, 0, 0);
2863 rbd_osd_req_format_read(obj_request);
2864
2865 ret = rbd_obj_request_submit(osdc, obj_request);
2866 if (ret)
2867 goto out;
2868 ret = rbd_obj_request_wait(obj_request);
2869 out:
2870 rbd_obj_request_put(obj_request);
2871
2872 return ret;
2873 }
2874
2875 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2876 {
2877 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2878 int ret;
2879
2880 if (!rbd_dev)
2881 return;
2882
2883 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2884 rbd_dev->header_name, (unsigned long long)notify_id,
2885 (unsigned int)opcode);
2886 ret = rbd_dev_refresh(rbd_dev);
2887 if (ret)
2888 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2889
2890 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2891 }
2892
2893 /*
2894 * Request sync osd watch/unwatch. The value of "start" determines
2895 * whether a watch request is being initiated or torn down.
2896 */
2897 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2898 {
2899 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2900 struct rbd_obj_request *obj_request;
2901 int ret;
2902
2903 rbd_assert(start ^ !!rbd_dev->watch_event);
2904 rbd_assert(start ^ !!rbd_dev->watch_request);
2905
2906 if (start) {
2907 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2908 &rbd_dev->watch_event);
2909 if (ret < 0)
2910 return ret;
2911 rbd_assert(rbd_dev->watch_event != NULL);
2912 }
2913
2914 ret = -ENOMEM;
2915 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2916 OBJ_REQUEST_NODATA);
2917 if (!obj_request)
2918 goto out_cancel;
2919
2920 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2921 if (!obj_request->osd_req)
2922 goto out_cancel;
2923
2924 if (start)
2925 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2926 else
2927 ceph_osdc_unregister_linger_request(osdc,
2928 rbd_dev->watch_request->osd_req);
2929
2930 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2931 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2932 rbd_osd_req_format_write(obj_request);
2933
2934 ret = rbd_obj_request_submit(osdc, obj_request);
2935 if (ret)
2936 goto out_cancel;
2937 ret = rbd_obj_request_wait(obj_request);
2938 if (ret)
2939 goto out_cancel;
2940 ret = obj_request->result;
2941 if (ret)
2942 goto out_cancel;
2943
2944 /*
2945 * A watch request is set to linger, so the underlying osd
2946 * request won't go away until we unregister it. We retain
2947 * a pointer to the object request during that time (in
2948 * rbd_dev->watch_request), so we'll keep a reference to
2949 * it. We'll drop that reference (below) after we've
2950 * unregistered it.
2951 */
2952 if (start) {
2953 rbd_dev->watch_request = obj_request;
2954
2955 return 0;
2956 }
2957
2958 /* We have successfully torn down the watch request */
2959
2960 rbd_obj_request_put(rbd_dev->watch_request);
2961 rbd_dev->watch_request = NULL;
2962 out_cancel:
2963 /* Cancel the event if we're tearing down, or on error */
2964 ceph_osdc_cancel_event(rbd_dev->watch_event);
2965 rbd_dev->watch_event = NULL;
2966 if (obj_request)
2967 rbd_obj_request_put(obj_request);
2968
2969 return ret;
2970 }
2971
2972 /*
2973 * Synchronous osd object method call. Returns the number of bytes
2974 * returned in the outbound buffer, or a negative error code.
2975 */
2976 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2977 const char *object_name,
2978 const char *class_name,
2979 const char *method_name,
2980 const void *outbound,
2981 size_t outbound_size,
2982 void *inbound,
2983 size_t inbound_size)
2984 {
2985 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2986 struct rbd_obj_request *obj_request;
2987 struct page **pages;
2988 u32 page_count;
2989 int ret;
2990
2991 /*
2992 * Method calls are ultimately read operations. The result
2993 * should placed into the inbound buffer provided. They
2994 * also supply outbound data--parameters for the object
2995 * method. Currently if this is present it will be a
2996 * snapshot id.
2997 */
2998 page_count = (u32)calc_pages_for(0, inbound_size);
2999 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3000 if (IS_ERR(pages))
3001 return PTR_ERR(pages);
3002
3003 ret = -ENOMEM;
3004 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3005 OBJ_REQUEST_PAGES);
3006 if (!obj_request)
3007 goto out;
3008
3009 obj_request->pages = pages;
3010 obj_request->page_count = page_count;
3011
3012 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3013 if (!obj_request->osd_req)
3014 goto out;
3015
3016 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3017 class_name, method_name);
3018 if (outbound_size) {
3019 struct ceph_pagelist *pagelist;
3020
3021 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3022 if (!pagelist)
3023 goto out;
3024
3025 ceph_pagelist_init(pagelist);
3026 ceph_pagelist_append(pagelist, outbound, outbound_size);
3027 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3028 pagelist);
3029 }
3030 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3031 obj_request->pages, inbound_size,
3032 0, false, false);
3033 rbd_osd_req_format_read(obj_request);
3034
3035 ret = rbd_obj_request_submit(osdc, obj_request);
3036 if (ret)
3037 goto out;
3038 ret = rbd_obj_request_wait(obj_request);
3039 if (ret)
3040 goto out;
3041
3042 ret = obj_request->result;
3043 if (ret < 0)
3044 goto out;
3045
3046 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3047 ret = (int)obj_request->xferred;
3048 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3049 out:
3050 if (obj_request)
3051 rbd_obj_request_put(obj_request);
3052 else
3053 ceph_release_page_vector(pages, page_count);
3054
3055 return ret;
3056 }
3057
3058 static void rbd_request_fn(struct request_queue *q)
3059 __releases(q->queue_lock) __acquires(q->queue_lock)
3060 {
3061 struct rbd_device *rbd_dev = q->queuedata;
3062 bool read_only = rbd_dev->mapping.read_only;
3063 struct request *rq;
3064 int result;
3065
3066 while ((rq = blk_fetch_request(q))) {
3067 bool write_request = rq_data_dir(rq) == WRITE;
3068 struct rbd_img_request *img_request;
3069 u64 offset;
3070 u64 length;
3071
3072 /* Ignore any non-FS requests that filter through. */
3073
3074 if (rq->cmd_type != REQ_TYPE_FS) {
3075 dout("%s: non-fs request type %d\n", __func__,
3076 (int) rq->cmd_type);
3077 __blk_end_request_all(rq, 0);
3078 continue;
3079 }
3080
3081 /* Ignore/skip any zero-length requests */
3082
3083 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3084 length = (u64) blk_rq_bytes(rq);
3085
3086 if (!length) {
3087 dout("%s: zero-length request\n", __func__);
3088 __blk_end_request_all(rq, 0);
3089 continue;
3090 }
3091
3092 spin_unlock_irq(q->queue_lock);
3093
3094 /* Disallow writes to a read-only device */
3095
3096 if (write_request) {
3097 result = -EROFS;
3098 if (read_only)
3099 goto end_request;
3100 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3101 }
3102
3103 /*
3104 * Quit early if the mapped snapshot no longer
3105 * exists. It's still possible the snapshot will
3106 * have disappeared by the time our request arrives
3107 * at the osd, but there's no sense in sending it if
3108 * we already know.
3109 */
3110 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3111 dout("request for non-existent snapshot");
3112 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3113 result = -ENXIO;
3114 goto end_request;
3115 }
3116
3117 result = -EINVAL;
3118 if (offset && length > U64_MAX - offset + 1) {
3119 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3120 offset, length);
3121 goto end_request; /* Shouldn't happen */
3122 }
3123
3124 result = -EIO;
3125 if (offset + length > rbd_dev->mapping.size) {
3126 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3127 offset, length, rbd_dev->mapping.size);
3128 goto end_request;
3129 }
3130
3131 result = -ENOMEM;
3132 img_request = rbd_img_request_create(rbd_dev, offset, length,
3133 write_request);
3134 if (!img_request)
3135 goto end_request;
3136
3137 img_request->rq = rq;
3138
3139 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3140 rq->bio);
3141 if (!result)
3142 result = rbd_img_request_submit(img_request);
3143 if (result)
3144 rbd_img_request_put(img_request);
3145 end_request:
3146 spin_lock_irq(q->queue_lock);
3147 if (result < 0) {
3148 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3149 write_request ? "write" : "read",
3150 length, offset, result);
3151
3152 __blk_end_request_all(rq, result);
3153 }
3154 }
3155 }
3156
3157 /*
3158 * a queue callback. Makes sure that we don't create a bio that spans across
3159 * multiple osd objects. One exception would be with a single page bios,
3160 * which we handle later at bio_chain_clone_range()
3161 */
3162 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3163 struct bio_vec *bvec)
3164 {
3165 struct rbd_device *rbd_dev = q->queuedata;
3166 sector_t sector_offset;
3167 sector_t sectors_per_obj;
3168 sector_t obj_sector_offset;
3169 int ret;
3170
3171 /*
3172 * Find how far into its rbd object the partition-relative
3173 * bio start sector is to offset relative to the enclosing
3174 * device.
3175 */
3176 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3177 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3178 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3179
3180 /*
3181 * Compute the number of bytes from that offset to the end
3182 * of the object. Account for what's already used by the bio.
3183 */
3184 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3185 if (ret > bmd->bi_size)
3186 ret -= bmd->bi_size;
3187 else
3188 ret = 0;
3189
3190 /*
3191 * Don't send back more than was asked for. And if the bio
3192 * was empty, let the whole thing through because: "Note
3193 * that a block device *must* allow a single page to be
3194 * added to an empty bio."
3195 */
3196 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3197 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3198 ret = (int) bvec->bv_len;
3199
3200 return ret;
3201 }
3202
3203 static void rbd_free_disk(struct rbd_device *rbd_dev)
3204 {
3205 struct gendisk *disk = rbd_dev->disk;
3206
3207 if (!disk)
3208 return;
3209
3210 rbd_dev->disk = NULL;
3211 if (disk->flags & GENHD_FL_UP) {
3212 del_gendisk(disk);
3213 if (disk->queue)
3214 blk_cleanup_queue(disk->queue);
3215 }
3216 put_disk(disk);
3217 }
3218
3219 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3220 const char *object_name,
3221 u64 offset, u64 length, void *buf)
3222
3223 {
3224 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3225 struct rbd_obj_request *obj_request;
3226 struct page **pages = NULL;
3227 u32 page_count;
3228 size_t size;
3229 int ret;
3230
3231 page_count = (u32) calc_pages_for(offset, length);
3232 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3233 if (IS_ERR(pages))
3234 return PTR_ERR(pages);
3235
3236 ret = -ENOMEM;
3237 obj_request = rbd_obj_request_create(object_name, offset, length,
3238 OBJ_REQUEST_PAGES);
3239 if (!obj_request)
3240 goto out;
3241
3242 obj_request->pages = pages;
3243 obj_request->page_count = page_count;
3244
3245 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3246 if (!obj_request->osd_req)
3247 goto out;
3248
3249 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3250 offset, length, 0, 0);
3251 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3252 obj_request->pages,
3253 obj_request->length,
3254 obj_request->offset & ~PAGE_MASK,
3255 false, false);
3256 rbd_osd_req_format_read(obj_request);
3257
3258 ret = rbd_obj_request_submit(osdc, obj_request);
3259 if (ret)
3260 goto out;
3261 ret = rbd_obj_request_wait(obj_request);
3262 if (ret)
3263 goto out;
3264
3265 ret = obj_request->result;
3266 if (ret < 0)
3267 goto out;
3268
3269 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3270 size = (size_t) obj_request->xferred;
3271 ceph_copy_from_page_vector(pages, buf, 0, size);
3272 rbd_assert(size <= (size_t)INT_MAX);
3273 ret = (int)size;
3274 out:
3275 if (obj_request)
3276 rbd_obj_request_put(obj_request);
3277 else
3278 ceph_release_page_vector(pages, page_count);
3279
3280 return ret;
3281 }
3282
3283 /*
3284 * Read the complete header for the given rbd device. On successful
3285 * return, the rbd_dev->header field will contain up-to-date
3286 * information about the image.
3287 */
3288 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3289 {
3290 struct rbd_image_header_ondisk *ondisk = NULL;
3291 u32 snap_count = 0;
3292 u64 names_size = 0;
3293 u32 want_count;
3294 int ret;
3295
3296 /*
3297 * The complete header will include an array of its 64-bit
3298 * snapshot ids, followed by the names of those snapshots as
3299 * a contiguous block of NUL-terminated strings. Note that
3300 * the number of snapshots could change by the time we read
3301 * it in, in which case we re-read it.
3302 */
3303 do {
3304 size_t size;
3305
3306 kfree(ondisk);
3307
3308 size = sizeof (*ondisk);
3309 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3310 size += names_size;
3311 ondisk = kmalloc(size, GFP_KERNEL);
3312 if (!ondisk)
3313 return -ENOMEM;
3314
3315 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3316 0, size, ondisk);
3317 if (ret < 0)
3318 goto out;
3319 if ((size_t)ret < size) {
3320 ret = -ENXIO;
3321 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3322 size, ret);
3323 goto out;
3324 }
3325 if (!rbd_dev_ondisk_valid(ondisk)) {
3326 ret = -ENXIO;
3327 rbd_warn(rbd_dev, "invalid header");
3328 goto out;
3329 }
3330
3331 names_size = le64_to_cpu(ondisk->snap_names_len);
3332 want_count = snap_count;
3333 snap_count = le32_to_cpu(ondisk->snap_count);
3334 } while (snap_count != want_count);
3335
3336 ret = rbd_header_from_disk(rbd_dev, ondisk);
3337 out:
3338 kfree(ondisk);
3339
3340 return ret;
3341 }
3342
3343 /*
3344 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3345 * has disappeared from the (just updated) snapshot context.
3346 */
3347 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3348 {
3349 u64 snap_id;
3350
3351 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3352 return;
3353
3354 snap_id = rbd_dev->spec->snap_id;
3355 if (snap_id == CEPH_NOSNAP)
3356 return;
3357
3358 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3360 }
3361
3362 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3363 {
3364 sector_t size;
3365 bool removing;
3366
3367 /*
3368 * Don't hold the lock while doing disk operations,
3369 * or lock ordering will conflict with the bdev mutex via:
3370 * rbd_add() -> blkdev_get() -> rbd_open()
3371 */
3372 spin_lock_irq(&rbd_dev->lock);
3373 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3374 spin_unlock_irq(&rbd_dev->lock);
3375 /*
3376 * If the device is being removed, rbd_dev->disk has
3377 * been destroyed, so don't try to update its size
3378 */
3379 if (!removing) {
3380 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3381 dout("setting size to %llu sectors", (unsigned long long)size);
3382 set_capacity(rbd_dev->disk, size);
3383 revalidate_disk(rbd_dev->disk);
3384 }
3385 }
3386
3387 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3388 {
3389 u64 mapping_size;
3390 int ret;
3391
3392 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3393 mapping_size = rbd_dev->mapping.size;
3394 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3395 if (rbd_dev->image_format == 1)
3396 ret = rbd_dev_v1_header_info(rbd_dev);
3397 else
3398 ret = rbd_dev_v2_header_info(rbd_dev);
3399
3400 /* If it's a mapped snapshot, validate its EXISTS flag */
3401
3402 rbd_exists_validate(rbd_dev);
3403 mutex_unlock(&ctl_mutex);
3404 if (mapping_size != rbd_dev->mapping.size) {
3405 rbd_dev_update_size(rbd_dev);
3406 }
3407
3408 return ret;
3409 }
3410
3411 static int rbd_init_disk(struct rbd_device *rbd_dev)
3412 {
3413 struct gendisk *disk;
3414 struct request_queue *q;
3415 u64 segment_size;
3416
3417 /* create gendisk info */
3418 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3419 if (!disk)
3420 return -ENOMEM;
3421
3422 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3423 rbd_dev->dev_id);
3424 disk->major = rbd_dev->major;
3425 disk->first_minor = 0;
3426 disk->fops = &rbd_bd_ops;
3427 disk->private_data = rbd_dev;
3428
3429 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3430 if (!q)
3431 goto out_disk;
3432
3433 /* We use the default size, but let's be explicit about it. */
3434 blk_queue_physical_block_size(q, SECTOR_SIZE);
3435
3436 /* set io sizes to object size */
3437 segment_size = rbd_obj_bytes(&rbd_dev->header);
3438 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3439 blk_queue_max_segment_size(q, segment_size);
3440 blk_queue_io_min(q, segment_size);
3441 blk_queue_io_opt(q, segment_size);
3442
3443 blk_queue_merge_bvec(q, rbd_merge_bvec);
3444 disk->queue = q;
3445
3446 q->queuedata = rbd_dev;
3447
3448 rbd_dev->disk = disk;
3449
3450 return 0;
3451 out_disk:
3452 put_disk(disk);
3453
3454 return -ENOMEM;
3455 }
3456
3457 /*
3458 sysfs
3459 */
3460
3461 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3462 {
3463 return container_of(dev, struct rbd_device, dev);
3464 }
3465
3466 static ssize_t rbd_size_show(struct device *dev,
3467 struct device_attribute *attr, char *buf)
3468 {
3469 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3470
3471 return sprintf(buf, "%llu\n",
3472 (unsigned long long)rbd_dev->mapping.size);
3473 }
3474
3475 /*
3476 * Note this shows the features for whatever's mapped, which is not
3477 * necessarily the base image.
3478 */
3479 static ssize_t rbd_features_show(struct device *dev,
3480 struct device_attribute *attr, char *buf)
3481 {
3482 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3483
3484 return sprintf(buf, "0x%016llx\n",
3485 (unsigned long long)rbd_dev->mapping.features);
3486 }
3487
3488 static ssize_t rbd_major_show(struct device *dev,
3489 struct device_attribute *attr, char *buf)
3490 {
3491 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3492
3493 if (rbd_dev->major)
3494 return sprintf(buf, "%d\n", rbd_dev->major);
3495
3496 return sprintf(buf, "(none)\n");
3497
3498 }
3499
3500 static ssize_t rbd_client_id_show(struct device *dev,
3501 struct device_attribute *attr, char *buf)
3502 {
3503 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505 return sprintf(buf, "client%lld\n",
3506 ceph_client_id(rbd_dev->rbd_client->client));
3507 }
3508
3509 static ssize_t rbd_pool_show(struct device *dev,
3510 struct device_attribute *attr, char *buf)
3511 {
3512 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3513
3514 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3515 }
3516
3517 static ssize_t rbd_pool_id_show(struct device *dev,
3518 struct device_attribute *attr, char *buf)
3519 {
3520 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3521
3522 return sprintf(buf, "%llu\n",
3523 (unsigned long long) rbd_dev->spec->pool_id);
3524 }
3525
3526 static ssize_t rbd_name_show(struct device *dev,
3527 struct device_attribute *attr, char *buf)
3528 {
3529 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3530
3531 if (rbd_dev->spec->image_name)
3532 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3533
3534 return sprintf(buf, "(unknown)\n");
3535 }
3536
3537 static ssize_t rbd_image_id_show(struct device *dev,
3538 struct device_attribute *attr, char *buf)
3539 {
3540 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3541
3542 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3543 }
3544
3545 /*
3546 * Shows the name of the currently-mapped snapshot (or
3547 * RBD_SNAP_HEAD_NAME for the base image).
3548 */
3549 static ssize_t rbd_snap_show(struct device *dev,
3550 struct device_attribute *attr,
3551 char *buf)
3552 {
3553 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3554
3555 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3556 }
3557
3558 /*
3559 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3560 * for the parent image. If there is no parent, simply shows
3561 * "(no parent image)".
3562 */
3563 static ssize_t rbd_parent_show(struct device *dev,
3564 struct device_attribute *attr,
3565 char *buf)
3566 {
3567 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3568 struct rbd_spec *spec = rbd_dev->parent_spec;
3569 int count;
3570 char *bufp = buf;
3571
3572 if (!spec)
3573 return sprintf(buf, "(no parent image)\n");
3574
3575 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3576 (unsigned long long) spec->pool_id, spec->pool_name);
3577 if (count < 0)
3578 return count;
3579 bufp += count;
3580
3581 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3582 spec->image_name ? spec->image_name : "(unknown)");
3583 if (count < 0)
3584 return count;
3585 bufp += count;
3586
3587 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3588 (unsigned long long) spec->snap_id, spec->snap_name);
3589 if (count < 0)
3590 return count;
3591 bufp += count;
3592
3593 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3594 if (count < 0)
3595 return count;
3596 bufp += count;
3597
3598 return (ssize_t) (bufp - buf);
3599 }
3600
3601 static ssize_t rbd_image_refresh(struct device *dev,
3602 struct device_attribute *attr,
3603 const char *buf,
3604 size_t size)
3605 {
3606 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3607 int ret;
3608
3609 ret = rbd_dev_refresh(rbd_dev);
3610 if (ret)
3611 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3612
3613 return ret < 0 ? ret : size;
3614 }
3615
3616 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3617 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3618 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3619 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3620 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3621 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3622 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3623 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3624 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3625 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3626 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3627
3628 static struct attribute *rbd_attrs[] = {
3629 &dev_attr_size.attr,
3630 &dev_attr_features.attr,
3631 &dev_attr_major.attr,
3632 &dev_attr_client_id.attr,
3633 &dev_attr_pool.attr,
3634 &dev_attr_pool_id.attr,
3635 &dev_attr_name.attr,
3636 &dev_attr_image_id.attr,
3637 &dev_attr_current_snap.attr,
3638 &dev_attr_parent.attr,
3639 &dev_attr_refresh.attr,
3640 NULL
3641 };
3642
3643 static struct attribute_group rbd_attr_group = {
3644 .attrs = rbd_attrs,
3645 };
3646
3647 static const struct attribute_group *rbd_attr_groups[] = {
3648 &rbd_attr_group,
3649 NULL
3650 };
3651
3652 static void rbd_sysfs_dev_release(struct device *dev)
3653 {
3654 }
3655
3656 static struct device_type rbd_device_type = {
3657 .name = "rbd",
3658 .groups = rbd_attr_groups,
3659 .release = rbd_sysfs_dev_release,
3660 };
3661
3662 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3663 {
3664 kref_get(&spec->kref);
3665
3666 return spec;
3667 }
3668
3669 static void rbd_spec_free(struct kref *kref);
3670 static void rbd_spec_put(struct rbd_spec *spec)
3671 {
3672 if (spec)
3673 kref_put(&spec->kref, rbd_spec_free);
3674 }
3675
3676 static struct rbd_spec *rbd_spec_alloc(void)
3677 {
3678 struct rbd_spec *spec;
3679
3680 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3681 if (!spec)
3682 return NULL;
3683 kref_init(&spec->kref);
3684
3685 return spec;
3686 }
3687
3688 static void rbd_spec_free(struct kref *kref)
3689 {
3690 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3691
3692 kfree(spec->pool_name);
3693 kfree(spec->image_id);
3694 kfree(spec->image_name);
3695 kfree(spec->snap_name);
3696 kfree(spec);
3697 }
3698
3699 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3700 struct rbd_spec *spec)
3701 {
3702 struct rbd_device *rbd_dev;
3703
3704 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3705 if (!rbd_dev)
3706 return NULL;
3707
3708 spin_lock_init(&rbd_dev->lock);
3709 rbd_dev->flags = 0;
3710 atomic_set(&rbd_dev->parent_ref, 0);
3711 INIT_LIST_HEAD(&rbd_dev->node);
3712 init_rwsem(&rbd_dev->header_rwsem);
3713
3714 rbd_dev->spec = spec;
3715 rbd_dev->rbd_client = rbdc;
3716
3717 /* Initialize the layout used for all rbd requests */
3718
3719 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3720 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3721 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3722 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3723
3724 return rbd_dev;
3725 }
3726
3727 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3728 {
3729 rbd_put_client(rbd_dev->rbd_client);
3730 rbd_spec_put(rbd_dev->spec);
3731 kfree(rbd_dev);
3732 }
3733
3734 /*
3735 * Get the size and object order for an image snapshot, or if
3736 * snap_id is CEPH_NOSNAP, gets this information for the base
3737 * image.
3738 */
3739 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3740 u8 *order, u64 *snap_size)
3741 {
3742 __le64 snapid = cpu_to_le64(snap_id);
3743 int ret;
3744 struct {
3745 u8 order;
3746 __le64 size;
3747 } __attribute__ ((packed)) size_buf = { 0 };
3748
3749 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3750 "rbd", "get_size",
3751 &snapid, sizeof (snapid),
3752 &size_buf, sizeof (size_buf));
3753 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3754 if (ret < 0)
3755 return ret;
3756 if (ret < sizeof (size_buf))
3757 return -ERANGE;
3758
3759 if (order) {
3760 *order = size_buf.order;
3761 dout(" order %u", (unsigned int)*order);
3762 }
3763 *snap_size = le64_to_cpu(size_buf.size);
3764
3765 dout(" snap_id 0x%016llx snap_size = %llu\n",
3766 (unsigned long long)snap_id,
3767 (unsigned long long)*snap_size);
3768
3769 return 0;
3770 }
3771
3772 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3773 {
3774 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3775 &rbd_dev->header.obj_order,
3776 &rbd_dev->header.image_size);
3777 }
3778
3779 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3780 {
3781 void *reply_buf;
3782 int ret;
3783 void *p;
3784
3785 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3786 if (!reply_buf)
3787 return -ENOMEM;
3788
3789 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3790 "rbd", "get_object_prefix", NULL, 0,
3791 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3792 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3793 if (ret < 0)
3794 goto out;
3795
3796 p = reply_buf;
3797 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3798 p + ret, NULL, GFP_NOIO);
3799 ret = 0;
3800
3801 if (IS_ERR(rbd_dev->header.object_prefix)) {
3802 ret = PTR_ERR(rbd_dev->header.object_prefix);
3803 rbd_dev->header.object_prefix = NULL;
3804 } else {
3805 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3806 }
3807 out:
3808 kfree(reply_buf);
3809
3810 return ret;
3811 }
3812
3813 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3814 u64 *snap_features)
3815 {
3816 __le64 snapid = cpu_to_le64(snap_id);
3817 struct {
3818 __le64 features;
3819 __le64 incompat;
3820 } __attribute__ ((packed)) features_buf = { 0 };
3821 u64 incompat;
3822 int ret;
3823
3824 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3825 "rbd", "get_features",
3826 &snapid, sizeof (snapid),
3827 &features_buf, sizeof (features_buf));
3828 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3829 if (ret < 0)
3830 return ret;
3831 if (ret < sizeof (features_buf))
3832 return -ERANGE;
3833
3834 incompat = le64_to_cpu(features_buf.incompat);
3835 if (incompat & ~RBD_FEATURES_SUPPORTED)
3836 return -ENXIO;
3837
3838 *snap_features = le64_to_cpu(features_buf.features);
3839
3840 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3841 (unsigned long long)snap_id,
3842 (unsigned long long)*snap_features,
3843 (unsigned long long)le64_to_cpu(features_buf.incompat));
3844
3845 return 0;
3846 }
3847
3848 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3849 {
3850 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3851 &rbd_dev->header.features);
3852 }
3853
3854 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3855 {
3856 struct rbd_spec *parent_spec;
3857 size_t size;
3858 void *reply_buf = NULL;
3859 __le64 snapid;
3860 void *p;
3861 void *end;
3862 u64 pool_id;
3863 char *image_id;
3864 u64 overlap;
3865 int ret;
3866
3867 parent_spec = rbd_spec_alloc();
3868 if (!parent_spec)
3869 return -ENOMEM;
3870
3871 size = sizeof (__le64) + /* pool_id */
3872 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3873 sizeof (__le64) + /* snap_id */
3874 sizeof (__le64); /* overlap */
3875 reply_buf = kmalloc(size, GFP_KERNEL);
3876 if (!reply_buf) {
3877 ret = -ENOMEM;
3878 goto out_err;
3879 }
3880
3881 snapid = cpu_to_le64(CEPH_NOSNAP);
3882 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3883 "rbd", "get_parent",
3884 &snapid, sizeof (snapid),
3885 reply_buf, size);
3886 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3887 if (ret < 0)
3888 goto out_err;
3889
3890 p = reply_buf;
3891 end = reply_buf + ret;
3892 ret = -ERANGE;
3893 ceph_decode_64_safe(&p, end, pool_id, out_err);
3894 if (pool_id == CEPH_NOPOOL) {
3895 /*
3896 * Either the parent never existed, or we have
3897 * record of it but the image got flattened so it no
3898 * longer has a parent. When the parent of a
3899 * layered image disappears we immediately set the
3900 * overlap to 0. The effect of this is that all new
3901 * requests will be treated as if the image had no
3902 * parent.
3903 */
3904 if (rbd_dev->parent_overlap) {
3905 rbd_dev->parent_overlap = 0;
3906 smp_mb();
3907 rbd_dev_parent_put(rbd_dev);
3908 pr_info("%s: clone image has been flattened\n",
3909 rbd_dev->disk->disk_name);
3910 }
3911
3912 goto out; /* No parent? No problem. */
3913 }
3914
3915 /* The ceph file layout needs to fit pool id in 32 bits */
3916
3917 ret = -EIO;
3918 if (pool_id > (u64)U32_MAX) {
3919 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3920 (unsigned long long)pool_id, U32_MAX);
3921 goto out_err;
3922 }
3923 parent_spec->pool_id = pool_id;
3924
3925 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3926 if (IS_ERR(image_id)) {
3927 ret = PTR_ERR(image_id);
3928 goto out_err;
3929 }
3930 parent_spec->image_id = image_id;
3931 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3932 ceph_decode_64_safe(&p, end, overlap, out_err);
3933
3934 if (overlap) {
3935 rbd_spec_put(rbd_dev->parent_spec);
3936 rbd_dev->parent_spec = parent_spec;
3937 parent_spec = NULL; /* rbd_dev now owns this */
3938 rbd_dev->parent_overlap = overlap;
3939 } else {
3940 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3941 }
3942 out:
3943 ret = 0;
3944 out_err:
3945 kfree(reply_buf);
3946 rbd_spec_put(parent_spec);
3947
3948 return ret;
3949 }
3950
3951 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3952 {
3953 struct {
3954 __le64 stripe_unit;
3955 __le64 stripe_count;
3956 } __attribute__ ((packed)) striping_info_buf = { 0 };
3957 size_t size = sizeof (striping_info_buf);
3958 void *p;
3959 u64 obj_size;
3960 u64 stripe_unit;
3961 u64 stripe_count;
3962 int ret;
3963
3964 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3965 "rbd", "get_stripe_unit_count", NULL, 0,
3966 (char *)&striping_info_buf, size);
3967 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3968 if (ret < 0)
3969 return ret;
3970 if (ret < size)
3971 return -ERANGE;
3972
3973 /*
3974 * We don't actually support the "fancy striping" feature
3975 * (STRIPINGV2) yet, but if the striping sizes are the
3976 * defaults the behavior is the same as before. So find
3977 * out, and only fail if the image has non-default values.
3978 */
3979 ret = -EINVAL;
3980 obj_size = (u64)1 << rbd_dev->header.obj_order;
3981 p = &striping_info_buf;
3982 stripe_unit = ceph_decode_64(&p);
3983 if (stripe_unit != obj_size) {
3984 rbd_warn(rbd_dev, "unsupported stripe unit "
3985 "(got %llu want %llu)",
3986 stripe_unit, obj_size);
3987 return -EINVAL;
3988 }
3989 stripe_count = ceph_decode_64(&p);
3990 if (stripe_count != 1) {
3991 rbd_warn(rbd_dev, "unsupported stripe count "
3992 "(got %llu want 1)", stripe_count);
3993 return -EINVAL;
3994 }
3995 rbd_dev->header.stripe_unit = stripe_unit;
3996 rbd_dev->header.stripe_count = stripe_count;
3997
3998 return 0;
3999 }
4000
4001 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4002 {
4003 size_t image_id_size;
4004 char *image_id;
4005 void *p;
4006 void *end;
4007 size_t size;
4008 void *reply_buf = NULL;
4009 size_t len = 0;
4010 char *image_name = NULL;
4011 int ret;
4012
4013 rbd_assert(!rbd_dev->spec->image_name);
4014
4015 len = strlen(rbd_dev->spec->image_id);
4016 image_id_size = sizeof (__le32) + len;
4017 image_id = kmalloc(image_id_size, GFP_KERNEL);
4018 if (!image_id)
4019 return NULL;
4020
4021 p = image_id;
4022 end = image_id + image_id_size;
4023 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4024
4025 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4026 reply_buf = kmalloc(size, GFP_KERNEL);
4027 if (!reply_buf)
4028 goto out;
4029
4030 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4031 "rbd", "dir_get_name",
4032 image_id, image_id_size,
4033 reply_buf, size);
4034 if (ret < 0)
4035 goto out;
4036 p = reply_buf;
4037 end = reply_buf + ret;
4038
4039 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4040 if (IS_ERR(image_name))
4041 image_name = NULL;
4042 else
4043 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4044 out:
4045 kfree(reply_buf);
4046 kfree(image_id);
4047
4048 return image_name;
4049 }
4050
4051 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4052 {
4053 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4054 const char *snap_name;
4055 u32 which = 0;
4056
4057 /* Skip over names until we find the one we are looking for */
4058
4059 snap_name = rbd_dev->header.snap_names;
4060 while (which < snapc->num_snaps) {
4061 if (!strcmp(name, snap_name))
4062 return snapc->snaps[which];
4063 snap_name += strlen(snap_name) + 1;
4064 which++;
4065 }
4066 return CEPH_NOSNAP;
4067 }
4068
4069 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4070 {
4071 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4072 u32 which;
4073 bool found = false;
4074 u64 snap_id;
4075
4076 for (which = 0; !found && which < snapc->num_snaps; which++) {
4077 const char *snap_name;
4078
4079 snap_id = snapc->snaps[which];
4080 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4081 if (IS_ERR(snap_name)) {
4082 /* ignore no-longer existing snapshots */
4083 if (PTR_ERR(snap_name) == -ENOENT)
4084 continue;
4085 else
4086 break;
4087 }
4088 found = !strcmp(name, snap_name);
4089 kfree(snap_name);
4090 }
4091 return found ? snap_id : CEPH_NOSNAP;
4092 }
4093
4094 /*
4095 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4096 * no snapshot by that name is found, or if an error occurs.
4097 */
4098 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4099 {
4100 if (rbd_dev->image_format == 1)
4101 return rbd_v1_snap_id_by_name(rbd_dev, name);
4102
4103 return rbd_v2_snap_id_by_name(rbd_dev, name);
4104 }
4105
4106 /*
4107 * When an rbd image has a parent image, it is identified by the
4108 * pool, image, and snapshot ids (not names). This function fills
4109 * in the names for those ids. (It's OK if we can't figure out the
4110 * name for an image id, but the pool and snapshot ids should always
4111 * exist and have names.) All names in an rbd spec are dynamically
4112 * allocated.
4113 *
4114 * When an image being mapped (not a parent) is probed, we have the
4115 * pool name and pool id, image name and image id, and the snapshot
4116 * name. The only thing we're missing is the snapshot id.
4117 */
4118 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4119 {
4120 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4121 struct rbd_spec *spec = rbd_dev->spec;
4122 const char *pool_name;
4123 const char *image_name;
4124 const char *snap_name;
4125 int ret;
4126
4127 /*
4128 * An image being mapped will have the pool name (etc.), but
4129 * we need to look up the snapshot id.
4130 */
4131 if (spec->pool_name) {
4132 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4133 u64 snap_id;
4134
4135 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4136 if (snap_id == CEPH_NOSNAP)
4137 return -ENOENT;
4138 spec->snap_id = snap_id;
4139 } else {
4140 spec->snap_id = CEPH_NOSNAP;
4141 }
4142
4143 return 0;
4144 }
4145
4146 /* Get the pool name; we have to make our own copy of this */
4147
4148 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4149 if (!pool_name) {
4150 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4151 return -EIO;
4152 }
4153 pool_name = kstrdup(pool_name, GFP_KERNEL);
4154 if (!pool_name)
4155 return -ENOMEM;
4156
4157 /* Fetch the image name; tolerate failure here */
4158
4159 image_name = rbd_dev_image_name(rbd_dev);
4160 if (!image_name)
4161 rbd_warn(rbd_dev, "unable to get image name");
4162
4163 /* Look up the snapshot name, and make a copy */
4164
4165 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4166 if (IS_ERR(snap_name)) {
4167 ret = PTR_ERR(snap_name);
4168 goto out_err;
4169 }
4170
4171 spec->pool_name = pool_name;
4172 spec->image_name = image_name;
4173 spec->snap_name = snap_name;
4174
4175 return 0;
4176 out_err:
4177 kfree(image_name);
4178 kfree(pool_name);
4179
4180 return ret;
4181 }
4182
4183 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4184 {
4185 size_t size;
4186 int ret;
4187 void *reply_buf;
4188 void *p;
4189 void *end;
4190 u64 seq;
4191 u32 snap_count;
4192 struct ceph_snap_context *snapc;
4193 u32 i;
4194
4195 /*
4196 * We'll need room for the seq value (maximum snapshot id),
4197 * snapshot count, and array of that many snapshot ids.
4198 * For now we have a fixed upper limit on the number we're
4199 * prepared to receive.
4200 */
4201 size = sizeof (__le64) + sizeof (__le32) +
4202 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4203 reply_buf = kzalloc(size, GFP_KERNEL);
4204 if (!reply_buf)
4205 return -ENOMEM;
4206
4207 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4208 "rbd", "get_snapcontext", NULL, 0,
4209 reply_buf, size);
4210 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4211 if (ret < 0)
4212 goto out;
4213
4214 p = reply_buf;
4215 end = reply_buf + ret;
4216 ret = -ERANGE;
4217 ceph_decode_64_safe(&p, end, seq, out);
4218 ceph_decode_32_safe(&p, end, snap_count, out);
4219
4220 /*
4221 * Make sure the reported number of snapshot ids wouldn't go
4222 * beyond the end of our buffer. But before checking that,
4223 * make sure the computed size of the snapshot context we
4224 * allocate is representable in a size_t.
4225 */
4226 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4227 / sizeof (u64)) {
4228 ret = -EINVAL;
4229 goto out;
4230 }
4231 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4232 goto out;
4233 ret = 0;
4234
4235 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4236 if (!snapc) {
4237 ret = -ENOMEM;
4238 goto out;
4239 }
4240 snapc->seq = seq;
4241 for (i = 0; i < snap_count; i++)
4242 snapc->snaps[i] = ceph_decode_64(&p);
4243
4244 ceph_put_snap_context(rbd_dev->header.snapc);
4245 rbd_dev->header.snapc = snapc;
4246
4247 dout(" snap context seq = %llu, snap_count = %u\n",
4248 (unsigned long long)seq, (unsigned int)snap_count);
4249 out:
4250 kfree(reply_buf);
4251
4252 return ret;
4253 }
4254
4255 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4256 u64 snap_id)
4257 {
4258 size_t size;
4259 void *reply_buf;
4260 __le64 snapid;
4261 int ret;
4262 void *p;
4263 void *end;
4264 char *snap_name;
4265
4266 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4267 reply_buf = kmalloc(size, GFP_KERNEL);
4268 if (!reply_buf)
4269 return ERR_PTR(-ENOMEM);
4270
4271 snapid = cpu_to_le64(snap_id);
4272 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4273 "rbd", "get_snapshot_name",
4274 &snapid, sizeof (snapid),
4275 reply_buf, size);
4276 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4277 if (ret < 0) {
4278 snap_name = ERR_PTR(ret);
4279 goto out;
4280 }
4281
4282 p = reply_buf;
4283 end = reply_buf + ret;
4284 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4285 if (IS_ERR(snap_name))
4286 goto out;
4287
4288 dout(" snap_id 0x%016llx snap_name = %s\n",
4289 (unsigned long long)snap_id, snap_name);
4290 out:
4291 kfree(reply_buf);
4292
4293 return snap_name;
4294 }
4295
4296 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4297 {
4298 bool first_time = rbd_dev->header.object_prefix == NULL;
4299 int ret;
4300
4301 down_write(&rbd_dev->header_rwsem);
4302
4303 ret = rbd_dev_v2_image_size(rbd_dev);
4304 if (ret)
4305 goto out;
4306
4307 if (first_time) {
4308 ret = rbd_dev_v2_header_onetime(rbd_dev);
4309 if (ret)
4310 goto out;
4311 }
4312
4313 /*
4314 * If the image supports layering, get the parent info. We
4315 * need to probe the first time regardless. Thereafter we
4316 * only need to if there's a parent, to see if it has
4317 * disappeared due to the mapped image getting flattened.
4318 */
4319 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4320 (first_time || rbd_dev->parent_spec)) {
4321 bool warn;
4322
4323 ret = rbd_dev_v2_parent_info(rbd_dev);
4324 if (ret)
4325 goto out;
4326
4327 /*
4328 * Print a warning if this is the initial probe and
4329 * the image has a parent. Don't print it if the
4330 * image now being probed is itself a parent. We
4331 * can tell at this point because we won't know its
4332 * pool name yet (just its pool id).
4333 */
4334 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4335 if (first_time && warn)
4336 rbd_warn(rbd_dev, "WARNING: kernel layering "
4337 "is EXPERIMENTAL!");
4338 }
4339
4340 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4341 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4342 rbd_dev->mapping.size = rbd_dev->header.image_size;
4343
4344 ret = rbd_dev_v2_snap_context(rbd_dev);
4345 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4346 out:
4347 up_write(&rbd_dev->header_rwsem);
4348
4349 return ret;
4350 }
4351
4352 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4353 {
4354 struct device *dev;
4355 int ret;
4356
4357 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4358
4359 dev = &rbd_dev->dev;
4360 dev->bus = &rbd_bus_type;
4361 dev->type = &rbd_device_type;
4362 dev->parent = &rbd_root_dev;
4363 dev->release = rbd_dev_device_release;
4364 dev_set_name(dev, "%d", rbd_dev->dev_id);
4365 ret = device_register(dev);
4366
4367 mutex_unlock(&ctl_mutex);
4368
4369 return ret;
4370 }
4371
4372 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4373 {
4374 device_unregister(&rbd_dev->dev);
4375 }
4376
4377 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4378
4379 /*
4380 * Get a unique rbd identifier for the given new rbd_dev, and add
4381 * the rbd_dev to the global list. The minimum rbd id is 1.
4382 */
4383 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4384 {
4385 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4386
4387 spin_lock(&rbd_dev_list_lock);
4388 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4389 spin_unlock(&rbd_dev_list_lock);
4390 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4391 (unsigned long long) rbd_dev->dev_id);
4392 }
4393
4394 /*
4395 * Remove an rbd_dev from the global list, and record that its
4396 * identifier is no longer in use.
4397 */
4398 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4399 {
4400 struct list_head *tmp;
4401 int rbd_id = rbd_dev->dev_id;
4402 int max_id;
4403
4404 rbd_assert(rbd_id > 0);
4405
4406 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4407 (unsigned long long) rbd_dev->dev_id);
4408 spin_lock(&rbd_dev_list_lock);
4409 list_del_init(&rbd_dev->node);
4410
4411 /*
4412 * If the id being "put" is not the current maximum, there
4413 * is nothing special we need to do.
4414 */
4415 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4416 spin_unlock(&rbd_dev_list_lock);
4417 return;
4418 }
4419
4420 /*
4421 * We need to update the current maximum id. Search the
4422 * list to find out what it is. We're more likely to find
4423 * the maximum at the end, so search the list backward.
4424 */
4425 max_id = 0;
4426 list_for_each_prev(tmp, &rbd_dev_list) {
4427 struct rbd_device *rbd_dev;
4428
4429 rbd_dev = list_entry(tmp, struct rbd_device, node);
4430 if (rbd_dev->dev_id > max_id)
4431 max_id = rbd_dev->dev_id;
4432 }
4433 spin_unlock(&rbd_dev_list_lock);
4434
4435 /*
4436 * The max id could have been updated by rbd_dev_id_get(), in
4437 * which case it now accurately reflects the new maximum.
4438 * Be careful not to overwrite the maximum value in that
4439 * case.
4440 */
4441 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4442 dout(" max dev id has been reset\n");
4443 }
4444
4445 /*
4446 * Skips over white space at *buf, and updates *buf to point to the
4447 * first found non-space character (if any). Returns the length of
4448 * the token (string of non-white space characters) found. Note
4449 * that *buf must be terminated with '\0'.
4450 */
4451 static inline size_t next_token(const char **buf)
4452 {
4453 /*
4454 * These are the characters that produce nonzero for
4455 * isspace() in the "C" and "POSIX" locales.
4456 */
4457 const char *spaces = " \f\n\r\t\v";
4458
4459 *buf += strspn(*buf, spaces); /* Find start of token */
4460
4461 return strcspn(*buf, spaces); /* Return token length */
4462 }
4463
4464 /*
4465 * Finds the next token in *buf, and if the provided token buffer is
4466 * big enough, copies the found token into it. The result, if
4467 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4468 * must be terminated with '\0' on entry.
4469 *
4470 * Returns the length of the token found (not including the '\0').
4471 * Return value will be 0 if no token is found, and it will be >=
4472 * token_size if the token would not fit.
4473 *
4474 * The *buf pointer will be updated to point beyond the end of the
4475 * found token. Note that this occurs even if the token buffer is
4476 * too small to hold it.
4477 */
4478 static inline size_t copy_token(const char **buf,
4479 char *token,
4480 size_t token_size)
4481 {
4482 size_t len;
4483
4484 len = next_token(buf);
4485 if (len < token_size) {
4486 memcpy(token, *buf, len);
4487 *(token + len) = '\0';
4488 }
4489 *buf += len;
4490
4491 return len;
4492 }
4493
4494 /*
4495 * Finds the next token in *buf, dynamically allocates a buffer big
4496 * enough to hold a copy of it, and copies the token into the new
4497 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4498 * that a duplicate buffer is created even for a zero-length token.
4499 *
4500 * Returns a pointer to the newly-allocated duplicate, or a null
4501 * pointer if memory for the duplicate was not available. If
4502 * the lenp argument is a non-null pointer, the length of the token
4503 * (not including the '\0') is returned in *lenp.
4504 *
4505 * If successful, the *buf pointer will be updated to point beyond
4506 * the end of the found token.
4507 *
4508 * Note: uses GFP_KERNEL for allocation.
4509 */
4510 static inline char *dup_token(const char **buf, size_t *lenp)
4511 {
4512 char *dup;
4513 size_t len;
4514
4515 len = next_token(buf);
4516 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4517 if (!dup)
4518 return NULL;
4519 *(dup + len) = '\0';
4520 *buf += len;
4521
4522 if (lenp)
4523 *lenp = len;
4524
4525 return dup;
4526 }
4527
4528 /*
4529 * Parse the options provided for an "rbd add" (i.e., rbd image
4530 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4531 * and the data written is passed here via a NUL-terminated buffer.
4532 * Returns 0 if successful or an error code otherwise.
4533 *
4534 * The information extracted from these options is recorded in
4535 * the other parameters which return dynamically-allocated
4536 * structures:
4537 * ceph_opts
4538 * The address of a pointer that will refer to a ceph options
4539 * structure. Caller must release the returned pointer using
4540 * ceph_destroy_options() when it is no longer needed.
4541 * rbd_opts
4542 * Address of an rbd options pointer. Fully initialized by
4543 * this function; caller must release with kfree().
4544 * spec
4545 * Address of an rbd image specification pointer. Fully
4546 * initialized by this function based on parsed options.
4547 * Caller must release with rbd_spec_put().
4548 *
4549 * The options passed take this form:
4550 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4551 * where:
4552 * <mon_addrs>
4553 * A comma-separated list of one or more monitor addresses.
4554 * A monitor address is an ip address, optionally followed
4555 * by a port number (separated by a colon).
4556 * I.e.: ip1[:port1][,ip2[:port2]...]
4557 * <options>
4558 * A comma-separated list of ceph and/or rbd options.
4559 * <pool_name>
4560 * The name of the rados pool containing the rbd image.
4561 * <image_name>
4562 * The name of the image in that pool to map.
4563 * <snap_id>
4564 * An optional snapshot id. If provided, the mapping will
4565 * present data from the image at the time that snapshot was
4566 * created. The image head is used if no snapshot id is
4567 * provided. Snapshot mappings are always read-only.
4568 */
4569 static int rbd_add_parse_args(const char *buf,
4570 struct ceph_options **ceph_opts,
4571 struct rbd_options **opts,
4572 struct rbd_spec **rbd_spec)
4573 {
4574 size_t len;
4575 char *options;
4576 const char *mon_addrs;
4577 char *snap_name;
4578 size_t mon_addrs_size;
4579 struct rbd_spec *spec = NULL;
4580 struct rbd_options *rbd_opts = NULL;
4581 struct ceph_options *copts;
4582 int ret;
4583
4584 /* The first four tokens are required */
4585
4586 len = next_token(&buf);
4587 if (!len) {
4588 rbd_warn(NULL, "no monitor address(es) provided");
4589 return -EINVAL;
4590 }
4591 mon_addrs = buf;
4592 mon_addrs_size = len + 1;
4593 buf += len;
4594
4595 ret = -EINVAL;
4596 options = dup_token(&buf, NULL);
4597 if (!options)
4598 return -ENOMEM;
4599 if (!*options) {
4600 rbd_warn(NULL, "no options provided");
4601 goto out_err;
4602 }
4603
4604 spec = rbd_spec_alloc();
4605 if (!spec)
4606 goto out_mem;
4607
4608 spec->pool_name = dup_token(&buf, NULL);
4609 if (!spec->pool_name)
4610 goto out_mem;
4611 if (!*spec->pool_name) {
4612 rbd_warn(NULL, "no pool name provided");
4613 goto out_err;
4614 }
4615
4616 spec->image_name = dup_token(&buf, NULL);
4617 if (!spec->image_name)
4618 goto out_mem;
4619 if (!*spec->image_name) {
4620 rbd_warn(NULL, "no image name provided");
4621 goto out_err;
4622 }
4623
4624 /*
4625 * Snapshot name is optional; default is to use "-"
4626 * (indicating the head/no snapshot).
4627 */
4628 len = next_token(&buf);
4629 if (!len) {
4630 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4631 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4632 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4633 ret = -ENAMETOOLONG;
4634 goto out_err;
4635 }
4636 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4637 if (!snap_name)
4638 goto out_mem;
4639 *(snap_name + len) = '\0';
4640 spec->snap_name = snap_name;
4641
4642 /* Initialize all rbd options to the defaults */
4643
4644 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4645 if (!rbd_opts)
4646 goto out_mem;
4647
4648 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4649
4650 copts = ceph_parse_options(options, mon_addrs,
4651 mon_addrs + mon_addrs_size - 1,
4652 parse_rbd_opts_token, rbd_opts);
4653 if (IS_ERR(copts)) {
4654 ret = PTR_ERR(copts);
4655 goto out_err;
4656 }
4657 kfree(options);
4658
4659 *ceph_opts = copts;
4660 *opts = rbd_opts;
4661 *rbd_spec = spec;
4662
4663 return 0;
4664 out_mem:
4665 ret = -ENOMEM;
4666 out_err:
4667 kfree(rbd_opts);
4668 rbd_spec_put(spec);
4669 kfree(options);
4670
4671 return ret;
4672 }
4673
4674 /*
4675 * An rbd format 2 image has a unique identifier, distinct from the
4676 * name given to it by the user. Internally, that identifier is
4677 * what's used to specify the names of objects related to the image.
4678 *
4679 * A special "rbd id" object is used to map an rbd image name to its
4680 * id. If that object doesn't exist, then there is no v2 rbd image
4681 * with the supplied name.
4682 *
4683 * This function will record the given rbd_dev's image_id field if
4684 * it can be determined, and in that case will return 0. If any
4685 * errors occur a negative errno will be returned and the rbd_dev's
4686 * image_id field will be unchanged (and should be NULL).
4687 */
4688 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4689 {
4690 int ret;
4691 size_t size;
4692 char *object_name;
4693 void *response;
4694 char *image_id;
4695
4696 /*
4697 * When probing a parent image, the image id is already
4698 * known (and the image name likely is not). There's no
4699 * need to fetch the image id again in this case. We
4700 * do still need to set the image format though.
4701 */
4702 if (rbd_dev->spec->image_id) {
4703 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4704
4705 return 0;
4706 }
4707
4708 /*
4709 * First, see if the format 2 image id file exists, and if
4710 * so, get the image's persistent id from it.
4711 */
4712 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4713 object_name = kmalloc(size, GFP_NOIO);
4714 if (!object_name)
4715 return -ENOMEM;
4716 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4717 dout("rbd id object name is %s\n", object_name);
4718
4719 /* Response will be an encoded string, which includes a length */
4720
4721 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4722 response = kzalloc(size, GFP_NOIO);
4723 if (!response) {
4724 ret = -ENOMEM;
4725 goto out;
4726 }
4727
4728 /* If it doesn't exist we'll assume it's a format 1 image */
4729
4730 ret = rbd_obj_method_sync(rbd_dev, object_name,
4731 "rbd", "get_id", NULL, 0,
4732 response, RBD_IMAGE_ID_LEN_MAX);
4733 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4734 if (ret == -ENOENT) {
4735 image_id = kstrdup("", GFP_KERNEL);
4736 ret = image_id ? 0 : -ENOMEM;
4737 if (!ret)
4738 rbd_dev->image_format = 1;
4739 } else if (ret > sizeof (__le32)) {
4740 void *p = response;
4741
4742 image_id = ceph_extract_encoded_string(&p, p + ret,
4743 NULL, GFP_NOIO);
4744 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4745 if (!ret)
4746 rbd_dev->image_format = 2;
4747 } else {
4748 ret = -EINVAL;
4749 }
4750
4751 if (!ret) {
4752 rbd_dev->spec->image_id = image_id;
4753 dout("image_id is %s\n", image_id);
4754 }
4755 out:
4756 kfree(response);
4757 kfree(object_name);
4758
4759 return ret;
4760 }
4761
4762 /*
4763 * Undo whatever state changes are made by v1 or v2 header info
4764 * call.
4765 */
4766 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4767 {
4768 struct rbd_image_header *header;
4769
4770 /* Drop parent reference unless it's already been done (or none) */
4771
4772 if (rbd_dev->parent_overlap)
4773 rbd_dev_parent_put(rbd_dev);
4774
4775 /* Free dynamic fields from the header, then zero it out */
4776
4777 header = &rbd_dev->header;
4778 ceph_put_snap_context(header->snapc);
4779 kfree(header->snap_sizes);
4780 kfree(header->snap_names);
4781 kfree(header->object_prefix);
4782 memset(header, 0, sizeof (*header));
4783 }
4784
4785 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4786 {
4787 int ret;
4788
4789 ret = rbd_dev_v2_object_prefix(rbd_dev);
4790 if (ret)
4791 goto out_err;
4792
4793 /*
4794 * Get the and check features for the image. Currently the
4795 * features are assumed to never change.
4796 */
4797 ret = rbd_dev_v2_features(rbd_dev);
4798 if (ret)
4799 goto out_err;
4800
4801 /* If the image supports fancy striping, get its parameters */
4802
4803 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4804 ret = rbd_dev_v2_striping_info(rbd_dev);
4805 if (ret < 0)
4806 goto out_err;
4807 }
4808 /* No support for crypto and compression type format 2 images */
4809
4810 return 0;
4811 out_err:
4812 rbd_dev->header.features = 0;
4813 kfree(rbd_dev->header.object_prefix);
4814 rbd_dev->header.object_prefix = NULL;
4815
4816 return ret;
4817 }
4818
4819 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4820 {
4821 struct rbd_device *parent = NULL;
4822 struct rbd_spec *parent_spec;
4823 struct rbd_client *rbdc;
4824 int ret;
4825
4826 if (!rbd_dev->parent_spec)
4827 return 0;
4828 /*
4829 * We need to pass a reference to the client and the parent
4830 * spec when creating the parent rbd_dev. Images related by
4831 * parent/child relationships always share both.
4832 */
4833 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4834 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4835
4836 ret = -ENOMEM;
4837 parent = rbd_dev_create(rbdc, parent_spec);
4838 if (!parent)
4839 goto out_err;
4840
4841 ret = rbd_dev_image_probe(parent, false);
4842 if (ret < 0)
4843 goto out_err;
4844 rbd_dev->parent = parent;
4845 atomic_set(&rbd_dev->parent_ref, 1);
4846
4847 return 0;
4848 out_err:
4849 if (parent) {
4850 rbd_dev_unparent(rbd_dev);
4851 kfree(rbd_dev->header_name);
4852 rbd_dev_destroy(parent);
4853 } else {
4854 rbd_put_client(rbdc);
4855 rbd_spec_put(parent_spec);
4856 }
4857
4858 return ret;
4859 }
4860
4861 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4862 {
4863 int ret;
4864
4865 /* generate unique id: find highest unique id, add one */
4866 rbd_dev_id_get(rbd_dev);
4867
4868 /* Fill in the device name, now that we have its id. */
4869 BUILD_BUG_ON(DEV_NAME_LEN
4870 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4871 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4872
4873 /* Get our block major device number. */
4874
4875 ret = register_blkdev(0, rbd_dev->name);
4876 if (ret < 0)
4877 goto err_out_id;
4878 rbd_dev->major = ret;
4879
4880 /* Set up the blkdev mapping. */
4881
4882 ret = rbd_init_disk(rbd_dev);
4883 if (ret)
4884 goto err_out_blkdev;
4885
4886 ret = rbd_dev_mapping_set(rbd_dev);
4887 if (ret)
4888 goto err_out_disk;
4889 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4890
4891 ret = rbd_bus_add_dev(rbd_dev);
4892 if (ret)
4893 goto err_out_mapping;
4894
4895 /* Everything's ready. Announce the disk to the world. */
4896
4897 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4898 add_disk(rbd_dev->disk);
4899
4900 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4901 (unsigned long long) rbd_dev->mapping.size);
4902
4903 return ret;
4904
4905 err_out_mapping:
4906 rbd_dev_mapping_clear(rbd_dev);
4907 err_out_disk:
4908 rbd_free_disk(rbd_dev);
4909 err_out_blkdev:
4910 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4911 err_out_id:
4912 rbd_dev_id_put(rbd_dev);
4913 rbd_dev_mapping_clear(rbd_dev);
4914
4915 return ret;
4916 }
4917
4918 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4919 {
4920 struct rbd_spec *spec = rbd_dev->spec;
4921 size_t size;
4922
4923 /* Record the header object name for this rbd image. */
4924
4925 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4926
4927 if (rbd_dev->image_format == 1)
4928 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4929 else
4930 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4931
4932 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4933 if (!rbd_dev->header_name)
4934 return -ENOMEM;
4935
4936 if (rbd_dev->image_format == 1)
4937 sprintf(rbd_dev->header_name, "%s%s",
4938 spec->image_name, RBD_SUFFIX);
4939 else
4940 sprintf(rbd_dev->header_name, "%s%s",
4941 RBD_HEADER_PREFIX, spec->image_id);
4942 return 0;
4943 }
4944
4945 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4946 {
4947 rbd_dev_unprobe(rbd_dev);
4948 kfree(rbd_dev->header_name);
4949 rbd_dev->header_name = NULL;
4950 rbd_dev->image_format = 0;
4951 kfree(rbd_dev->spec->image_id);
4952 rbd_dev->spec->image_id = NULL;
4953
4954 rbd_dev_destroy(rbd_dev);
4955 }
4956
4957 /*
4958 * Probe for the existence of the header object for the given rbd
4959 * device. If this image is the one being mapped (i.e., not a
4960 * parent), initiate a watch on its header object before using that
4961 * object to get detailed information about the rbd image.
4962 */
4963 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4964 {
4965 int ret;
4966 int tmp;
4967
4968 /*
4969 * Get the id from the image id object. Unless there's an
4970 * error, rbd_dev->spec->image_id will be filled in with
4971 * a dynamically-allocated string, and rbd_dev->image_format
4972 * will be set to either 1 or 2.
4973 */
4974 ret = rbd_dev_image_id(rbd_dev);
4975 if (ret)
4976 return ret;
4977 rbd_assert(rbd_dev->spec->image_id);
4978 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4979
4980 ret = rbd_dev_header_name(rbd_dev);
4981 if (ret)
4982 goto err_out_format;
4983
4984 if (mapping) {
4985 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4986 if (ret)
4987 goto out_header_name;
4988 }
4989
4990 if (rbd_dev->image_format == 1)
4991 ret = rbd_dev_v1_header_info(rbd_dev);
4992 else
4993 ret = rbd_dev_v2_header_info(rbd_dev);
4994 if (ret)
4995 goto err_out_watch;
4996
4997 ret = rbd_dev_spec_update(rbd_dev);
4998 if (ret)
4999 goto err_out_probe;
5000
5001 ret = rbd_dev_probe_parent(rbd_dev);
5002 if (ret)
5003 goto err_out_probe;
5004
5005 dout("discovered format %u image, header name is %s\n",
5006 rbd_dev->image_format, rbd_dev->header_name);
5007
5008 return 0;
5009 err_out_probe:
5010 rbd_dev_unprobe(rbd_dev);
5011 err_out_watch:
5012 if (mapping) {
5013 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5014 if (tmp)
5015 rbd_warn(rbd_dev, "unable to tear down "
5016 "watch request (%d)\n", tmp);
5017 }
5018 out_header_name:
5019 kfree(rbd_dev->header_name);
5020 rbd_dev->header_name = NULL;
5021 err_out_format:
5022 rbd_dev->image_format = 0;
5023 kfree(rbd_dev->spec->image_id);
5024 rbd_dev->spec->image_id = NULL;
5025
5026 dout("probe failed, returning %d\n", ret);
5027
5028 return ret;
5029 }
5030
5031 static ssize_t rbd_add(struct bus_type *bus,
5032 const char *buf,
5033 size_t count)
5034 {
5035 struct rbd_device *rbd_dev = NULL;
5036 struct ceph_options *ceph_opts = NULL;
5037 struct rbd_options *rbd_opts = NULL;
5038 struct rbd_spec *spec = NULL;
5039 struct rbd_client *rbdc;
5040 struct ceph_osd_client *osdc;
5041 bool read_only;
5042 int rc = -ENOMEM;
5043
5044 if (!try_module_get(THIS_MODULE))
5045 return -ENODEV;
5046
5047 /* parse add command */
5048 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5049 if (rc < 0)
5050 goto err_out_module;
5051 read_only = rbd_opts->read_only;
5052 kfree(rbd_opts);
5053 rbd_opts = NULL; /* done with this */
5054
5055 rbdc = rbd_get_client(ceph_opts);
5056 if (IS_ERR(rbdc)) {
5057 rc = PTR_ERR(rbdc);
5058 goto err_out_args;
5059 }
5060
5061 /* pick the pool */
5062 osdc = &rbdc->client->osdc;
5063 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5064 if (rc < 0)
5065 goto err_out_client;
5066 spec->pool_id = (u64)rc;
5067
5068 /* The ceph file layout needs to fit pool id in 32 bits */
5069
5070 if (spec->pool_id > (u64)U32_MAX) {
5071 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5072 (unsigned long long)spec->pool_id, U32_MAX);
5073 rc = -EIO;
5074 goto err_out_client;
5075 }
5076
5077 rbd_dev = rbd_dev_create(rbdc, spec);
5078 if (!rbd_dev)
5079 goto err_out_client;
5080 rbdc = NULL; /* rbd_dev now owns this */
5081 spec = NULL; /* rbd_dev now owns this */
5082
5083 rc = rbd_dev_image_probe(rbd_dev, true);
5084 if (rc < 0)
5085 goto err_out_rbd_dev;
5086
5087 /* If we are mapping a snapshot it must be marked read-only */
5088
5089 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5090 read_only = true;
5091 rbd_dev->mapping.read_only = read_only;
5092
5093 rc = rbd_dev_device_setup(rbd_dev);
5094 if (rc) {
5095 rbd_dev_image_release(rbd_dev);
5096 goto err_out_module;
5097 }
5098
5099 return count;
5100
5101 err_out_rbd_dev:
5102 rbd_dev_destroy(rbd_dev);
5103 err_out_client:
5104 rbd_put_client(rbdc);
5105 err_out_args:
5106 rbd_spec_put(spec);
5107 err_out_module:
5108 module_put(THIS_MODULE);
5109
5110 dout("Error adding device %s\n", buf);
5111
5112 return (ssize_t)rc;
5113 }
5114
5115 static void rbd_dev_device_release(struct device *dev)
5116 {
5117 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5118
5119 rbd_free_disk(rbd_dev);
5120 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5121 rbd_dev_mapping_clear(rbd_dev);
5122 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5123 rbd_dev->major = 0;
5124 rbd_dev_id_put(rbd_dev);
5125 rbd_dev_mapping_clear(rbd_dev);
5126 }
5127
5128 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5129 {
5130 while (rbd_dev->parent) {
5131 struct rbd_device *first = rbd_dev;
5132 struct rbd_device *second = first->parent;
5133 struct rbd_device *third;
5134
5135 /*
5136 * Follow to the parent with no grandparent and
5137 * remove it.
5138 */
5139 while (second && (third = second->parent)) {
5140 first = second;
5141 second = third;
5142 }
5143 rbd_assert(second);
5144 rbd_dev_image_release(second);
5145 first->parent = NULL;
5146 first->parent_overlap = 0;
5147
5148 rbd_assert(first->parent_spec);
5149 rbd_spec_put(first->parent_spec);
5150 first->parent_spec = NULL;
5151 }
5152 }
5153
5154 static ssize_t rbd_remove(struct bus_type *bus,
5155 const char *buf,
5156 size_t count)
5157 {
5158 struct rbd_device *rbd_dev = NULL;
5159 struct list_head *tmp;
5160 int dev_id;
5161 unsigned long ul;
5162 bool already = false;
5163 int ret;
5164
5165 ret = strict_strtoul(buf, 10, &ul);
5166 if (ret)
5167 return ret;
5168
5169 /* convert to int; abort if we lost anything in the conversion */
5170 dev_id = (int)ul;
5171 if (dev_id != ul)
5172 return -EINVAL;
5173
5174 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5175
5176 ret = -ENOENT;
5177 spin_lock(&rbd_dev_list_lock);
5178 list_for_each(tmp, &rbd_dev_list) {
5179 rbd_dev = list_entry(tmp, struct rbd_device, node);
5180 if (rbd_dev->dev_id == dev_id) {
5181 ret = 0;
5182 break;
5183 }
5184 }
5185 if (!ret) {
5186 spin_lock_irq(&rbd_dev->lock);
5187 if (rbd_dev->open_count)
5188 ret = -EBUSY;
5189 else
5190 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5191 &rbd_dev->flags);
5192 spin_unlock_irq(&rbd_dev->lock);
5193 }
5194 spin_unlock(&rbd_dev_list_lock);
5195 if (ret < 0 || already)
5196 goto done;
5197
5198 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5199 if (ret)
5200 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5201
5202 /*
5203 * flush remaining watch callbacks - these must be complete
5204 * before the osd_client is shutdown
5205 */
5206 dout("%s: flushing notifies", __func__);
5207 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5208 /*
5209 * Don't free anything from rbd_dev->disk until after all
5210 * notifies are completely processed. Otherwise
5211 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5212 * in a potential use after free of rbd_dev->disk or rbd_dev.
5213 */
5214 rbd_bus_del_dev(rbd_dev);
5215 rbd_dev_image_release(rbd_dev);
5216 module_put(THIS_MODULE);
5217 ret = count;
5218 done:
5219 mutex_unlock(&ctl_mutex);
5220
5221 return ret;
5222 }
5223
5224 /*
5225 * create control files in sysfs
5226 * /sys/bus/rbd/...
5227 */
5228 static int rbd_sysfs_init(void)
5229 {
5230 int ret;
5231
5232 ret = device_register(&rbd_root_dev);
5233 if (ret < 0)
5234 return ret;
5235
5236 ret = bus_register(&rbd_bus_type);
5237 if (ret < 0)
5238 device_unregister(&rbd_root_dev);
5239
5240 return ret;
5241 }
5242
5243 static void rbd_sysfs_cleanup(void)
5244 {
5245 bus_unregister(&rbd_bus_type);
5246 device_unregister(&rbd_root_dev);
5247 }
5248
5249 static int rbd_slab_init(void)
5250 {
5251 rbd_assert(!rbd_img_request_cache);
5252 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5253 sizeof (struct rbd_img_request),
5254 __alignof__(struct rbd_img_request),
5255 0, NULL);
5256 if (!rbd_img_request_cache)
5257 return -ENOMEM;
5258
5259 rbd_assert(!rbd_obj_request_cache);
5260 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5261 sizeof (struct rbd_obj_request),
5262 __alignof__(struct rbd_obj_request),
5263 0, NULL);
5264 if (!rbd_obj_request_cache)
5265 goto out_err;
5266
5267 rbd_assert(!rbd_segment_name_cache);
5268 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5269 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5270 if (rbd_segment_name_cache)
5271 return 0;
5272 out_err:
5273 if (rbd_obj_request_cache) {
5274 kmem_cache_destroy(rbd_obj_request_cache);
5275 rbd_obj_request_cache = NULL;
5276 }
5277
5278 kmem_cache_destroy(rbd_img_request_cache);
5279 rbd_img_request_cache = NULL;
5280
5281 return -ENOMEM;
5282 }
5283
5284 static void rbd_slab_exit(void)
5285 {
5286 rbd_assert(rbd_segment_name_cache);
5287 kmem_cache_destroy(rbd_segment_name_cache);
5288 rbd_segment_name_cache = NULL;
5289
5290 rbd_assert(rbd_obj_request_cache);
5291 kmem_cache_destroy(rbd_obj_request_cache);
5292 rbd_obj_request_cache = NULL;
5293
5294 rbd_assert(rbd_img_request_cache);
5295 kmem_cache_destroy(rbd_img_request_cache);
5296 rbd_img_request_cache = NULL;
5297 }
5298
5299 static int __init rbd_init(void)
5300 {
5301 int rc;
5302
5303 if (!libceph_compatible(NULL)) {
5304 rbd_warn(NULL, "libceph incompatibility (quitting)");
5305
5306 return -EINVAL;
5307 }
5308 rc = rbd_slab_init();
5309 if (rc)
5310 return rc;
5311 rc = rbd_sysfs_init();
5312 if (rc)
5313 rbd_slab_exit();
5314 else
5315 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5316
5317 return rc;
5318 }
5319
5320 static void __exit rbd_exit(void)
5321 {
5322 rbd_sysfs_cleanup();
5323 rbd_slab_exit();
5324 }
5325
5326 module_init(rbd_init);
5327 module_exit(rbd_exit);
5328
5329 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5330 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5331 MODULE_DESCRIPTION("rados block device");
5332
5333 /* following authorship retained from original osdblk.c */
5334 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5335
5336 MODULE_LICENSE("GPL");