Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
542 goto out_mutex;
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545 ret = ceph_open_session(rbdc->client);
546 if (ret < 0)
547 goto out_err;
548
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
552
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
555
556 return rbdc;
557
558 out_err:
559 ceph_destroy_client(rbdc->client);
560 out_mutex:
561 mutex_unlock(&ctl_mutex);
562 kfree(rbdc);
563 out_opt:
564 if (ceph_opts)
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
567
568 return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 kref_get(&rbdc->kref);
574
575 return rbdc;
576 }
577
578 /*
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
581 */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 struct rbd_client *client_node;
585 bool found = false;
586
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 return NULL;
589
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
594
595 found = true;
596 break;
597 }
598 }
599 spin_unlock(&rbd_client_list_lock);
600
601 return found ? client_node : NULL;
602 }
603
604 /*
605 * mount options
606 */
607 enum {
608 Opt_last_int,
609 /* int args above */
610 Opt_last_string,
611 /* string args above */
612 Opt_read_only,
613 Opt_read_write,
614 /* Boolean args above */
615 Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619 /* int args above */
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
626 {-1, NULL}
627 };
628
629 struct rbd_options {
630 bool read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
640
641 token = match_token(c, rbd_opts_tokens, argstr);
642 if (token < 0)
643 return -EINVAL;
644
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
647 if (ret < 0) {
648 pr_err("bad mount option arg (not int) "
649 "at '%s'\n", c);
650 return ret;
651 }
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
655 argstr[0].from);
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
658 } else {
659 dout("got token %d\n", token);
660 }
661
662 switch (token) {
663 case Opt_read_only:
664 rbd_opts->read_only = true;
665 break;
666 case Opt_read_write:
667 rbd_opts->read_only = false;
668 break;
669 default:
670 rbd_assert(false);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it. Either way, ceph_opts is consumed by this
679 * function.
680 */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683 struct rbd_client *rbdc;
684
685 rbdc = rbd_client_find(ceph_opts);
686 if (rbdc) /* using an existing client */
687 ceph_destroy_options(ceph_opts);
688 else
689 rbdc = rbd_client_create(ceph_opts);
690
691 return rbdc;
692 }
693
694 /*
695 * Destroy ceph client
696 *
697 * Caller must hold rbd_client_list_lock.
698 */
699 static void rbd_client_release(struct kref *kref)
700 {
701 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703 dout("%s: rbdc %p\n", __func__, rbdc);
704 spin_lock(&rbd_client_list_lock);
705 list_del(&rbdc->node);
706 spin_unlock(&rbd_client_list_lock);
707
708 ceph_destroy_client(rbdc->client);
709 kfree(rbdc);
710 }
711
712 /*
713 * Drop reference to ceph client node. If it's not referenced anymore, release
714 * it.
715 */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718 if (rbdc)
719 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724 return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729 size_t size;
730 u32 snap_count;
731
732 /* The header has to start with the magic rbd header text */
733 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734 return false;
735
736 /* The bio layer requires at least sector-sized I/O */
737
738 if (ondisk->options.order < SECTOR_SHIFT)
739 return false;
740
741 /* If we use u64 in a few spots we may be able to loosen this */
742
743 if (ondisk->options.order > 8 * sizeof (int) - 1)
744 return false;
745
746 /*
747 * The size of a snapshot header has to fit in a size_t, and
748 * that limits the number of snapshots.
749 */
750 snap_count = le32_to_cpu(ondisk->snap_count);
751 size = SIZE_MAX - sizeof (struct ceph_snap_context);
752 if (snap_count > size / sizeof (__le64))
753 return false;
754
755 /*
756 * Not only that, but the size of the entire the snapshot
757 * header must also be representable in a size_t.
758 */
759 size -= snap_count * sizeof (__le64);
760 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761 return false;
762
763 return true;
764 }
765
766 /*
767 * Fill an rbd image header with information from the given format 1
768 * on-disk header.
769 */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771 struct rbd_image_header_ondisk *ondisk)
772 {
773 struct rbd_image_header *header = &rbd_dev->header;
774 bool first_time = header->object_prefix == NULL;
775 struct ceph_snap_context *snapc;
776 char *object_prefix = NULL;
777 char *snap_names = NULL;
778 u64 *snap_sizes = NULL;
779 u32 snap_count;
780 size_t size;
781 int ret = -ENOMEM;
782 u32 i;
783
784 /* Allocate this now to avoid having to handle failure below */
785
786 if (first_time) {
787 size_t len;
788
789 len = strnlen(ondisk->object_prefix,
790 sizeof (ondisk->object_prefix));
791 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792 if (!object_prefix)
793 return -ENOMEM;
794 memcpy(object_prefix, ondisk->object_prefix, len);
795 object_prefix[len] = '\0';
796 }
797
798 /* Allocate the snapshot context and fill it in */
799
800 snap_count = le32_to_cpu(ondisk->snap_count);
801 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802 if (!snapc)
803 goto out_err;
804 snapc->seq = le64_to_cpu(ondisk->snap_seq);
805 if (snap_count) {
806 struct rbd_image_snap_ondisk *snaps;
807 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809 /* We'll keep a copy of the snapshot names... */
810
811 if (snap_names_len > (u64)SIZE_MAX)
812 goto out_2big;
813 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814 if (!snap_names)
815 goto out_err;
816
817 /* ...as well as the array of their sizes. */
818
819 size = snap_count * sizeof (*header->snap_sizes);
820 snap_sizes = kmalloc(size, GFP_KERNEL);
821 if (!snap_sizes)
822 goto out_err;
823
824 /*
825 * Copy the names, and fill in each snapshot's id
826 * and size.
827 *
828 * Note that rbd_dev_v1_header_info() guarantees the
829 * ondisk buffer we're working with has
830 * snap_names_len bytes beyond the end of the
831 * snapshot id array, this memcpy() is safe.
832 */
833 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834 snaps = ondisk->snaps;
835 for (i = 0; i < snap_count; i++) {
836 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838 }
839 }
840
841 /* We won't fail any more, fill in the header */
842
843 down_write(&rbd_dev->header_rwsem);
844 if (first_time) {
845 header->object_prefix = object_prefix;
846 header->obj_order = ondisk->options.order;
847 header->crypt_type = ondisk->options.crypt_type;
848 header->comp_type = ondisk->options.comp_type;
849 /* The rest aren't used for format 1 images */
850 header->stripe_unit = 0;
851 header->stripe_count = 0;
852 header->features = 0;
853 } else {
854 ceph_put_snap_context(header->snapc);
855 kfree(header->snap_names);
856 kfree(header->snap_sizes);
857 }
858
859 /* The remaining fields always get updated (when we refresh) */
860
861 header->image_size = le64_to_cpu(ondisk->image_size);
862 header->snapc = snapc;
863 header->snap_names = snap_names;
864 header->snap_sizes = snap_sizes;
865
866 /* Make sure mapping size is consistent with header info */
867
868 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869 if (rbd_dev->mapping.size != header->image_size)
870 rbd_dev->mapping.size = header->image_size;
871
872 up_write(&rbd_dev->header_rwsem);
873
874 return 0;
875 out_2big:
876 ret = -EIO;
877 out_err:
878 kfree(snap_sizes);
879 kfree(snap_names);
880 ceph_put_snap_context(snapc);
881 kfree(object_prefix);
882
883 return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888 const char *snap_name;
889
890 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892 /* Skip over names until we find the one we are looking for */
893
894 snap_name = rbd_dev->header.snap_names;
895 while (which--)
896 snap_name += strlen(snap_name) + 1;
897
898 return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902 * Snapshot id comparison function for use with qsort()/bsearch().
903 * Note that result is for snapshots in *descending* order.
904 */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907 u64 snap_id1 = *(u64 *)s1;
908 u64 snap_id2 = *(u64 *)s2;
909
910 if (snap_id1 < snap_id2)
911 return 1;
912 return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916 * Search a snapshot context to see if the given snapshot id is
917 * present.
918 *
919 * Returns the position of the snapshot id in the array if it's found,
920 * or BAD_SNAP_INDEX otherwise.
921 *
922 * Note: The snapshot array is in kept sorted (by the osd) in
923 * reverse order, highest snapshot id first.
924 */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928 u64 *found;
929
930 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931 sizeof (snap_id), snapid_compare_reverse);
932
933 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937 u64 snap_id)
938 {
939 u32 which;
940
941 which = rbd_dev_snap_index(rbd_dev, snap_id);
942 if (which == BAD_SNAP_INDEX)
943 return NULL;
944
945 return _rbd_dev_v1_snap_name(rbd_dev, which);
946 }
947
948 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
949 {
950 if (snap_id == CEPH_NOSNAP)
951 return RBD_SNAP_HEAD_NAME;
952
953 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954 if (rbd_dev->image_format == 1)
955 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
956
957 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
958 }
959
960 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
961 u64 *snap_size)
962 {
963 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
964 if (snap_id == CEPH_NOSNAP) {
965 *snap_size = rbd_dev->header.image_size;
966 } else if (rbd_dev->image_format == 1) {
967 u32 which;
968
969 which = rbd_dev_snap_index(rbd_dev, snap_id);
970 if (which == BAD_SNAP_INDEX)
971 return -ENOENT;
972
973 *snap_size = rbd_dev->header.snap_sizes[which];
974 } else {
975 u64 size = 0;
976 int ret;
977
978 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
979 if (ret)
980 return ret;
981
982 *snap_size = size;
983 }
984 return 0;
985 }
986
987 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
988 u64 *snap_features)
989 {
990 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
991 if (snap_id == CEPH_NOSNAP) {
992 *snap_features = rbd_dev->header.features;
993 } else if (rbd_dev->image_format == 1) {
994 *snap_features = 0; /* No features for format 1 */
995 } else {
996 u64 features = 0;
997 int ret;
998
999 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1000 if (ret)
1001 return ret;
1002
1003 *snap_features = features;
1004 }
1005 return 0;
1006 }
1007
1008 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1009 {
1010 u64 snap_id = rbd_dev->spec->snap_id;
1011 u64 size = 0;
1012 u64 features = 0;
1013 int ret;
1014
1015 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1016 if (ret)
1017 return ret;
1018 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1019 if (ret)
1020 return ret;
1021
1022 rbd_dev->mapping.size = size;
1023 rbd_dev->mapping.features = features;
1024
1025 return 0;
1026 }
1027
1028 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1029 {
1030 rbd_dev->mapping.size = 0;
1031 rbd_dev->mapping.features = 0;
1032 }
1033
1034 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1035 {
1036 char *name;
1037 u64 segment;
1038 int ret;
1039 char *name_format;
1040
1041 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042 if (!name)
1043 return NULL;
1044 segment = offset >> rbd_dev->header.obj_order;
1045 name_format = "%s.%012llx";
1046 if (rbd_dev->image_format == 2)
1047 name_format = "%s.%016llx";
1048 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1049 rbd_dev->header.object_prefix, segment);
1050 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1051 pr_err("error formatting segment name for #%llu (%d)\n",
1052 segment, ret);
1053 kfree(name);
1054 name = NULL;
1055 }
1056
1057 return name;
1058 }
1059
1060 static void rbd_segment_name_free(const char *name)
1061 {
1062 /* The explicit cast here is needed to drop the const qualifier */
1063
1064 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1065 }
1066
1067 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1068 {
1069 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1070
1071 return offset & (segment_size - 1);
1072 }
1073
1074 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1075 u64 offset, u64 length)
1076 {
1077 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1078
1079 offset &= segment_size - 1;
1080
1081 rbd_assert(length <= U64_MAX - offset);
1082 if (offset + length > segment_size)
1083 length = segment_size - offset;
1084
1085 return length;
1086 }
1087
1088 /*
1089 * returns the size of an object in the image
1090 */
1091 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1092 {
1093 return 1 << header->obj_order;
1094 }
1095
1096 /*
1097 * bio helpers
1098 */
1099
1100 static void bio_chain_put(struct bio *chain)
1101 {
1102 struct bio *tmp;
1103
1104 while (chain) {
1105 tmp = chain;
1106 chain = chain->bi_next;
1107 bio_put(tmp);
1108 }
1109 }
1110
1111 /*
1112 * zeros a bio chain, starting at specific offset
1113 */
1114 static void zero_bio_chain(struct bio *chain, int start_ofs)
1115 {
1116 struct bio_vec *bv;
1117 unsigned long flags;
1118 void *buf;
1119 int i;
1120 int pos = 0;
1121
1122 while (chain) {
1123 bio_for_each_segment(bv, chain, i) {
1124 if (pos + bv->bv_len > start_ofs) {
1125 int remainder = max(start_ofs - pos, 0);
1126 buf = bvec_kmap_irq(bv, &flags);
1127 memset(buf + remainder, 0,
1128 bv->bv_len - remainder);
1129 bvec_kunmap_irq(buf, &flags);
1130 }
1131 pos += bv->bv_len;
1132 }
1133
1134 chain = chain->bi_next;
1135 }
1136 }
1137
1138 /*
1139 * similar to zero_bio_chain(), zeros data defined by a page array,
1140 * starting at the given byte offset from the start of the array and
1141 * continuing up to the given end offset. The pages array is
1142 * assumed to be big enough to hold all bytes up to the end.
1143 */
1144 static void zero_pages(struct page **pages, u64 offset, u64 end)
1145 {
1146 struct page **page = &pages[offset >> PAGE_SHIFT];
1147
1148 rbd_assert(end > offset);
1149 rbd_assert(end - offset <= (u64)SIZE_MAX);
1150 while (offset < end) {
1151 size_t page_offset;
1152 size_t length;
1153 unsigned long flags;
1154 void *kaddr;
1155
1156 page_offset = (size_t)(offset & ~PAGE_MASK);
1157 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1158 local_irq_save(flags);
1159 kaddr = kmap_atomic(*page);
1160 memset(kaddr + page_offset, 0, length);
1161 kunmap_atomic(kaddr);
1162 local_irq_restore(flags);
1163
1164 offset += length;
1165 page++;
1166 }
1167 }
1168
1169 /*
1170 * Clone a portion of a bio, starting at the given byte offset
1171 * and continuing for the number of bytes indicated.
1172 */
1173 static struct bio *bio_clone_range(struct bio *bio_src,
1174 unsigned int offset,
1175 unsigned int len,
1176 gfp_t gfpmask)
1177 {
1178 struct bio_vec *bv;
1179 unsigned int resid;
1180 unsigned short idx;
1181 unsigned int voff;
1182 unsigned short end_idx;
1183 unsigned short vcnt;
1184 struct bio *bio;
1185
1186 /* Handle the easy case for the caller */
1187
1188 if (!offset && len == bio_src->bi_size)
1189 return bio_clone(bio_src, gfpmask);
1190
1191 if (WARN_ON_ONCE(!len))
1192 return NULL;
1193 if (WARN_ON_ONCE(len > bio_src->bi_size))
1194 return NULL;
1195 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1196 return NULL;
1197
1198 /* Find first affected segment... */
1199
1200 resid = offset;
1201 bio_for_each_segment(bv, bio_src, idx) {
1202 if (resid < bv->bv_len)
1203 break;
1204 resid -= bv->bv_len;
1205 }
1206 voff = resid;
1207
1208 /* ...and the last affected segment */
1209
1210 resid += len;
1211 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1212 if (resid <= bv->bv_len)
1213 break;
1214 resid -= bv->bv_len;
1215 }
1216 vcnt = end_idx - idx + 1;
1217
1218 /* Build the clone */
1219
1220 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1221 if (!bio)
1222 return NULL; /* ENOMEM */
1223
1224 bio->bi_bdev = bio_src->bi_bdev;
1225 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1226 bio->bi_rw = bio_src->bi_rw;
1227 bio->bi_flags |= 1 << BIO_CLONED;
1228
1229 /*
1230 * Copy over our part of the bio_vec, then update the first
1231 * and last (or only) entries.
1232 */
1233 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1234 vcnt * sizeof (struct bio_vec));
1235 bio->bi_io_vec[0].bv_offset += voff;
1236 if (vcnt > 1) {
1237 bio->bi_io_vec[0].bv_len -= voff;
1238 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1239 } else {
1240 bio->bi_io_vec[0].bv_len = len;
1241 }
1242
1243 bio->bi_vcnt = vcnt;
1244 bio->bi_size = len;
1245 bio->bi_idx = 0;
1246
1247 return bio;
1248 }
1249
1250 /*
1251 * Clone a portion of a bio chain, starting at the given byte offset
1252 * into the first bio in the source chain and continuing for the
1253 * number of bytes indicated. The result is another bio chain of
1254 * exactly the given length, or a null pointer on error.
1255 *
1256 * The bio_src and offset parameters are both in-out. On entry they
1257 * refer to the first source bio and the offset into that bio where
1258 * the start of data to be cloned is located.
1259 *
1260 * On return, bio_src is updated to refer to the bio in the source
1261 * chain that contains first un-cloned byte, and *offset will
1262 * contain the offset of that byte within that bio.
1263 */
1264 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1265 unsigned int *offset,
1266 unsigned int len,
1267 gfp_t gfpmask)
1268 {
1269 struct bio *bi = *bio_src;
1270 unsigned int off = *offset;
1271 struct bio *chain = NULL;
1272 struct bio **end;
1273
1274 /* Build up a chain of clone bios up to the limit */
1275
1276 if (!bi || off >= bi->bi_size || !len)
1277 return NULL; /* Nothing to clone */
1278
1279 end = &chain;
1280 while (len) {
1281 unsigned int bi_size;
1282 struct bio *bio;
1283
1284 if (!bi) {
1285 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1286 goto out_err; /* EINVAL; ran out of bio's */
1287 }
1288 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1289 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1290 if (!bio)
1291 goto out_err; /* ENOMEM */
1292
1293 *end = bio;
1294 end = &bio->bi_next;
1295
1296 off += bi_size;
1297 if (off == bi->bi_size) {
1298 bi = bi->bi_next;
1299 off = 0;
1300 }
1301 len -= bi_size;
1302 }
1303 *bio_src = bi;
1304 *offset = off;
1305
1306 return chain;
1307 out_err:
1308 bio_chain_put(chain);
1309
1310 return NULL;
1311 }
1312
1313 /*
1314 * The default/initial value for all object request flags is 0. For
1315 * each flag, once its value is set to 1 it is never reset to 0
1316 * again.
1317 */
1318 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1319 {
1320 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1321 struct rbd_device *rbd_dev;
1322
1323 rbd_dev = obj_request->img_request->rbd_dev;
1324 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1325 obj_request);
1326 }
1327 }
1328
1329 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1330 {
1331 smp_mb();
1332 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1333 }
1334
1335 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1336 {
1337 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1338 struct rbd_device *rbd_dev = NULL;
1339
1340 if (obj_request_img_data_test(obj_request))
1341 rbd_dev = obj_request->img_request->rbd_dev;
1342 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1343 obj_request);
1344 }
1345 }
1346
1347 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1348 {
1349 smp_mb();
1350 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1351 }
1352
1353 /*
1354 * This sets the KNOWN flag after (possibly) setting the EXISTS
1355 * flag. The latter is set based on the "exists" value provided.
1356 *
1357 * Note that for our purposes once an object exists it never goes
1358 * away again. It's possible that the response from two existence
1359 * checks are separated by the creation of the target object, and
1360 * the first ("doesn't exist") response arrives *after* the second
1361 * ("does exist"). In that case we ignore the second one.
1362 */
1363 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1364 bool exists)
1365 {
1366 if (exists)
1367 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1368 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1369 smp_mb();
1370 }
1371
1372 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1373 {
1374 smp_mb();
1375 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1376 }
1377
1378 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1379 {
1380 smp_mb();
1381 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1382 }
1383
1384 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1385 {
1386 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1387 atomic_read(&obj_request->kref.refcount));
1388 kref_get(&obj_request->kref);
1389 }
1390
1391 static void rbd_obj_request_destroy(struct kref *kref);
1392 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1393 {
1394 rbd_assert(obj_request != NULL);
1395 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1396 atomic_read(&obj_request->kref.refcount));
1397 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1398 }
1399
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1404 {
1405 rbd_assert(img_request != NULL);
1406 dout("%s: img %p (was %d)\n", __func__, img_request,
1407 atomic_read(&img_request->kref.refcount));
1408 if (img_request_child_test(img_request))
1409 kref_put(&img_request->kref, rbd_parent_request_destroy);
1410 else
1411 kref_put(&img_request->kref, rbd_img_request_destroy);
1412 }
1413
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415 struct rbd_obj_request *obj_request)
1416 {
1417 rbd_assert(obj_request->img_request == NULL);
1418
1419 /* Image request now owns object's original reference */
1420 obj_request->img_request = img_request;
1421 obj_request->which = img_request->obj_request_count;
1422 rbd_assert(!obj_request_img_data_test(obj_request));
1423 obj_request_img_data_set(obj_request);
1424 rbd_assert(obj_request->which != BAD_WHICH);
1425 img_request->obj_request_count++;
1426 list_add_tail(&obj_request->links, &img_request->obj_requests);
1427 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428 obj_request->which);
1429 }
1430
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432 struct rbd_obj_request *obj_request)
1433 {
1434 rbd_assert(obj_request->which != BAD_WHICH);
1435
1436 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437 obj_request->which);
1438 list_del(&obj_request->links);
1439 rbd_assert(img_request->obj_request_count > 0);
1440 img_request->obj_request_count--;
1441 rbd_assert(obj_request->which == img_request->obj_request_count);
1442 obj_request->which = BAD_WHICH;
1443 rbd_assert(obj_request_img_data_test(obj_request));
1444 rbd_assert(obj_request->img_request == img_request);
1445 obj_request->img_request = NULL;
1446 obj_request->callback = NULL;
1447 rbd_obj_request_put(obj_request);
1448 }
1449
1450 static bool obj_request_type_valid(enum obj_request_type type)
1451 {
1452 switch (type) {
1453 case OBJ_REQUEST_NODATA:
1454 case OBJ_REQUEST_BIO:
1455 case OBJ_REQUEST_PAGES:
1456 return true;
1457 default:
1458 return false;
1459 }
1460 }
1461
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463 struct rbd_obj_request *obj_request)
1464 {
1465 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1466
1467 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1468 }
1469
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1471 {
1472
1473 dout("%s: img %p\n", __func__, img_request);
1474
1475 /*
1476 * If no error occurred, compute the aggregate transfer
1477 * count for the image request. We could instead use
1478 * atomic64_cmpxchg() to update it as each object request
1479 * completes; not clear which way is better off hand.
1480 */
1481 if (!img_request->result) {
1482 struct rbd_obj_request *obj_request;
1483 u64 xferred = 0;
1484
1485 for_each_obj_request(img_request, obj_request)
1486 xferred += obj_request->xferred;
1487 img_request->xferred = xferred;
1488 }
1489
1490 if (img_request->callback)
1491 img_request->callback(img_request);
1492 else
1493 rbd_img_request_put(img_request);
1494 }
1495
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1497
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1499 {
1500 dout("%s: obj %p\n", __func__, obj_request);
1501
1502 return wait_for_completion_interruptible(&obj_request->completion);
1503 }
1504
1505 /*
1506 * The default/initial value for all image request flags is 0. Each
1507 * is conditionally set to 1 at image request initialization time
1508 * and currently never change thereafter.
1509 */
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1511 {
1512 set_bit(IMG_REQ_WRITE, &img_request->flags);
1513 smp_mb();
1514 }
1515
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1517 {
1518 smp_mb();
1519 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1520 }
1521
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1523 {
1524 set_bit(IMG_REQ_CHILD, &img_request->flags);
1525 smp_mb();
1526 }
1527
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1529 {
1530 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1531 smp_mb();
1532 }
1533
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1535 {
1536 smp_mb();
1537 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1538 }
1539
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1541 {
1542 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1543 smp_mb();
1544 }
1545
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1547 {
1548 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1549 smp_mb();
1550 }
1551
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1553 {
1554 smp_mb();
1555 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1556 }
1557
1558 static void
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1560 {
1561 u64 xferred = obj_request->xferred;
1562 u64 length = obj_request->length;
1563
1564 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565 obj_request, obj_request->img_request, obj_request->result,
1566 xferred, length);
1567 /*
1568 * ENOENT means a hole in the image. We zero-fill the
1569 * entire length of the request. A short read also implies
1570 * zero-fill to the end of the request. Either way we
1571 * update the xferred count to indicate the whole request
1572 * was satisfied.
1573 */
1574 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1575 if (obj_request->result == -ENOENT) {
1576 if (obj_request->type == OBJ_REQUEST_BIO)
1577 zero_bio_chain(obj_request->bio_list, 0);
1578 else
1579 zero_pages(obj_request->pages, 0, length);
1580 obj_request->result = 0;
1581 obj_request->xferred = length;
1582 } else if (xferred < length && !obj_request->result) {
1583 if (obj_request->type == OBJ_REQUEST_BIO)
1584 zero_bio_chain(obj_request->bio_list, xferred);
1585 else
1586 zero_pages(obj_request->pages, xferred, length);
1587 obj_request->xferred = length;
1588 }
1589 obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1593 {
1594 dout("%s: obj %p cb %p\n", __func__, obj_request,
1595 obj_request->callback);
1596 if (obj_request->callback)
1597 obj_request->callback(obj_request);
1598 else
1599 complete_all(&obj_request->completion);
1600 }
1601
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1603 {
1604 dout("%s: obj %p\n", __func__, obj_request);
1605 obj_request_done_set(obj_request);
1606 }
1607
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1609 {
1610 struct rbd_img_request *img_request = NULL;
1611 struct rbd_device *rbd_dev = NULL;
1612 bool layered = false;
1613
1614 if (obj_request_img_data_test(obj_request)) {
1615 img_request = obj_request->img_request;
1616 layered = img_request && img_request_layered_test(img_request);
1617 rbd_dev = img_request->rbd_dev;
1618 }
1619
1620 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621 obj_request, img_request, obj_request->result,
1622 obj_request->xferred, obj_request->length);
1623 if (layered && obj_request->result == -ENOENT &&
1624 obj_request->img_offset < rbd_dev->parent_overlap)
1625 rbd_img_parent_read(obj_request);
1626 else if (img_request)
1627 rbd_img_obj_request_read_callback(obj_request);
1628 else
1629 obj_request_done_set(obj_request);
1630 }
1631
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1633 {
1634 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635 obj_request->result, obj_request->length);
1636 /*
1637 * There is no such thing as a successful short write. Set
1638 * it to our originally-requested length.
1639 */
1640 obj_request->xferred = obj_request->length;
1641 obj_request_done_set(obj_request);
1642 }
1643
1644 /*
1645 * For a simple stat call there's nothing to do. We'll do more if
1646 * this is part of a write sequence for a layered image.
1647 */
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1649 {
1650 dout("%s: obj %p\n", __func__, obj_request);
1651 obj_request_done_set(obj_request);
1652 }
1653
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655 struct ceph_msg *msg)
1656 {
1657 struct rbd_obj_request *obj_request = osd_req->r_priv;
1658 u16 opcode;
1659
1660 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661 rbd_assert(osd_req == obj_request->osd_req);
1662 if (obj_request_img_data_test(obj_request)) {
1663 rbd_assert(obj_request->img_request);
1664 rbd_assert(obj_request->which != BAD_WHICH);
1665 } else {
1666 rbd_assert(obj_request->which == BAD_WHICH);
1667 }
1668
1669 if (osd_req->r_result < 0)
1670 obj_request->result = osd_req->r_result;
1671
1672 BUG_ON(osd_req->r_num_ops > 2);
1673
1674 /*
1675 * We support a 64-bit length, but ultimately it has to be
1676 * passed to blk_end_request(), which takes an unsigned int.
1677 */
1678 obj_request->xferred = osd_req->r_reply_op_len[0];
1679 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680 opcode = osd_req->r_ops[0].op;
1681 switch (opcode) {
1682 case CEPH_OSD_OP_READ:
1683 rbd_osd_read_callback(obj_request);
1684 break;
1685 case CEPH_OSD_OP_WRITE:
1686 rbd_osd_write_callback(obj_request);
1687 break;
1688 case CEPH_OSD_OP_STAT:
1689 rbd_osd_stat_callback(obj_request);
1690 break;
1691 case CEPH_OSD_OP_CALL:
1692 case CEPH_OSD_OP_NOTIFY_ACK:
1693 case CEPH_OSD_OP_WATCH:
1694 rbd_osd_trivial_callback(obj_request);
1695 break;
1696 default:
1697 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698 obj_request->object_name, (unsigned short) opcode);
1699 break;
1700 }
1701
1702 if (obj_request_done_test(obj_request))
1703 rbd_obj_request_complete(obj_request);
1704 }
1705
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1707 {
1708 struct rbd_img_request *img_request = obj_request->img_request;
1709 struct ceph_osd_request *osd_req = obj_request->osd_req;
1710 u64 snap_id;
1711
1712 rbd_assert(osd_req != NULL);
1713
1714 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715 ceph_osdc_build_request(osd_req, obj_request->offset,
1716 NULL, snap_id, NULL);
1717 }
1718
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1720 {
1721 struct rbd_img_request *img_request = obj_request->img_request;
1722 struct ceph_osd_request *osd_req = obj_request->osd_req;
1723 struct ceph_snap_context *snapc;
1724 struct timespec mtime = CURRENT_TIME;
1725
1726 rbd_assert(osd_req != NULL);
1727
1728 snapc = img_request ? img_request->snapc : NULL;
1729 ceph_osdc_build_request(osd_req, obj_request->offset,
1730 snapc, CEPH_NOSNAP, &mtime);
1731 }
1732
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734 struct rbd_device *rbd_dev,
1735 bool write_request,
1736 struct rbd_obj_request *obj_request)
1737 {
1738 struct ceph_snap_context *snapc = NULL;
1739 struct ceph_osd_client *osdc;
1740 struct ceph_osd_request *osd_req;
1741
1742 if (obj_request_img_data_test(obj_request)) {
1743 struct rbd_img_request *img_request = obj_request->img_request;
1744
1745 rbd_assert(write_request ==
1746 img_request_write_test(img_request));
1747 if (write_request)
1748 snapc = img_request->snapc;
1749 }
1750
1751 /* Allocate and initialize the request, for the single op */
1752
1753 osdc = &rbd_dev->rbd_client->client->osdc;
1754 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1755 if (!osd_req)
1756 return NULL; /* ENOMEM */
1757
1758 if (write_request)
1759 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1760 else
1761 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1762
1763 osd_req->r_callback = rbd_osd_req_callback;
1764 osd_req->r_priv = obj_request;
1765
1766 osd_req->r_oid_len = strlen(obj_request->object_name);
1767 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1768 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1769
1770 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1771
1772 return osd_req;
1773 }
1774
1775 /*
1776 * Create a copyup osd request based on the information in the
1777 * object request supplied. A copyup request has two osd ops,
1778 * a copyup method call, and a "normal" write request.
1779 */
1780 static struct ceph_osd_request *
1781 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1782 {
1783 struct rbd_img_request *img_request;
1784 struct ceph_snap_context *snapc;
1785 struct rbd_device *rbd_dev;
1786 struct ceph_osd_client *osdc;
1787 struct ceph_osd_request *osd_req;
1788
1789 rbd_assert(obj_request_img_data_test(obj_request));
1790 img_request = obj_request->img_request;
1791 rbd_assert(img_request);
1792 rbd_assert(img_request_write_test(img_request));
1793
1794 /* Allocate and initialize the request, for the two ops */
1795
1796 snapc = img_request->snapc;
1797 rbd_dev = img_request->rbd_dev;
1798 osdc = &rbd_dev->rbd_client->client->osdc;
1799 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1800 if (!osd_req)
1801 return NULL; /* ENOMEM */
1802
1803 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1804 osd_req->r_callback = rbd_osd_req_callback;
1805 osd_req->r_priv = obj_request;
1806
1807 osd_req->r_oid_len = strlen(obj_request->object_name);
1808 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1809 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1810
1811 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1812
1813 return osd_req;
1814 }
1815
1816
1817 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1818 {
1819 ceph_osdc_put_request(osd_req);
1820 }
1821
1822 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1823
1824 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1825 u64 offset, u64 length,
1826 enum obj_request_type type)
1827 {
1828 struct rbd_obj_request *obj_request;
1829 size_t size;
1830 char *name;
1831
1832 rbd_assert(obj_request_type_valid(type));
1833
1834 size = strlen(object_name) + 1;
1835 name = kmalloc(size, GFP_KERNEL);
1836 if (!name)
1837 return NULL;
1838
1839 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1840 if (!obj_request) {
1841 kfree(name);
1842 return NULL;
1843 }
1844
1845 obj_request->object_name = memcpy(name, object_name, size);
1846 obj_request->offset = offset;
1847 obj_request->length = length;
1848 obj_request->flags = 0;
1849 obj_request->which = BAD_WHICH;
1850 obj_request->type = type;
1851 INIT_LIST_HEAD(&obj_request->links);
1852 init_completion(&obj_request->completion);
1853 kref_init(&obj_request->kref);
1854
1855 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1856 offset, length, (int)type, obj_request);
1857
1858 return obj_request;
1859 }
1860
1861 static void rbd_obj_request_destroy(struct kref *kref)
1862 {
1863 struct rbd_obj_request *obj_request;
1864
1865 obj_request = container_of(kref, struct rbd_obj_request, kref);
1866
1867 dout("%s: obj %p\n", __func__, obj_request);
1868
1869 rbd_assert(obj_request->img_request == NULL);
1870 rbd_assert(obj_request->which == BAD_WHICH);
1871
1872 if (obj_request->osd_req)
1873 rbd_osd_req_destroy(obj_request->osd_req);
1874
1875 rbd_assert(obj_request_type_valid(obj_request->type));
1876 switch (obj_request->type) {
1877 case OBJ_REQUEST_NODATA:
1878 break; /* Nothing to do */
1879 case OBJ_REQUEST_BIO:
1880 if (obj_request->bio_list)
1881 bio_chain_put(obj_request->bio_list);
1882 break;
1883 case OBJ_REQUEST_PAGES:
1884 if (obj_request->pages)
1885 ceph_release_page_vector(obj_request->pages,
1886 obj_request->page_count);
1887 break;
1888 }
1889
1890 kfree(obj_request->object_name);
1891 obj_request->object_name = NULL;
1892 kmem_cache_free(rbd_obj_request_cache, obj_request);
1893 }
1894
1895 /* It's OK to call this for a device with no parent */
1896
1897 static void rbd_spec_put(struct rbd_spec *spec);
1898 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1899 {
1900 rbd_dev_remove_parent(rbd_dev);
1901 rbd_spec_put(rbd_dev->parent_spec);
1902 rbd_dev->parent_spec = NULL;
1903 rbd_dev->parent_overlap = 0;
1904 }
1905
1906 /*
1907 * Parent image reference counting is used to determine when an
1908 * image's parent fields can be safely torn down--after there are no
1909 * more in-flight requests to the parent image. When the last
1910 * reference is dropped, cleaning them up is safe.
1911 */
1912 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1913 {
1914 int counter;
1915
1916 if (!rbd_dev->parent_spec)
1917 return;
1918
1919 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1920 if (counter > 0)
1921 return;
1922
1923 /* Last reference; clean up parent data structures */
1924
1925 if (!counter)
1926 rbd_dev_unparent(rbd_dev);
1927 else
1928 rbd_warn(rbd_dev, "parent reference underflow\n");
1929 }
1930
1931 /*
1932 * If an image has a non-zero parent overlap, get a reference to its
1933 * parent.
1934 *
1935 * We must get the reference before checking for the overlap to
1936 * coordinate properly with zeroing the parent overlap in
1937 * rbd_dev_v2_parent_info() when an image gets flattened. We
1938 * drop it again if there is no overlap.
1939 *
1940 * Returns true if the rbd device has a parent with a non-zero
1941 * overlap and a reference for it was successfully taken, or
1942 * false otherwise.
1943 */
1944 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1945 {
1946 int counter;
1947
1948 if (!rbd_dev->parent_spec)
1949 return false;
1950
1951 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1952 if (counter > 0 && rbd_dev->parent_overlap)
1953 return true;
1954
1955 /* Image was flattened, but parent is not yet torn down */
1956
1957 if (counter < 0)
1958 rbd_warn(rbd_dev, "parent reference overflow\n");
1959
1960 return false;
1961 }
1962
1963 /*
1964 * Caller is responsible for filling in the list of object requests
1965 * that comprises the image request, and the Linux request pointer
1966 * (if there is one).
1967 */
1968 static struct rbd_img_request *rbd_img_request_create(
1969 struct rbd_device *rbd_dev,
1970 u64 offset, u64 length,
1971 bool write_request)
1972 {
1973 struct rbd_img_request *img_request;
1974
1975 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1976 if (!img_request)
1977 return NULL;
1978
1979 if (write_request) {
1980 down_read(&rbd_dev->header_rwsem);
1981 ceph_get_snap_context(rbd_dev->header.snapc);
1982 up_read(&rbd_dev->header_rwsem);
1983 }
1984
1985 img_request->rq = NULL;
1986 img_request->rbd_dev = rbd_dev;
1987 img_request->offset = offset;
1988 img_request->length = length;
1989 img_request->flags = 0;
1990 if (write_request) {
1991 img_request_write_set(img_request);
1992 img_request->snapc = rbd_dev->header.snapc;
1993 } else {
1994 img_request->snap_id = rbd_dev->spec->snap_id;
1995 }
1996 if (rbd_dev_parent_get(rbd_dev))
1997 img_request_layered_set(img_request);
1998 spin_lock_init(&img_request->completion_lock);
1999 img_request->next_completion = 0;
2000 img_request->callback = NULL;
2001 img_request->result = 0;
2002 img_request->obj_request_count = 0;
2003 INIT_LIST_HEAD(&img_request->obj_requests);
2004 kref_init(&img_request->kref);
2005
2006 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2007 write_request ? "write" : "read", offset, length,
2008 img_request);
2009
2010 return img_request;
2011 }
2012
2013 static void rbd_img_request_destroy(struct kref *kref)
2014 {
2015 struct rbd_img_request *img_request;
2016 struct rbd_obj_request *obj_request;
2017 struct rbd_obj_request *next_obj_request;
2018
2019 img_request = container_of(kref, struct rbd_img_request, kref);
2020
2021 dout("%s: img %p\n", __func__, img_request);
2022
2023 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2024 rbd_img_obj_request_del(img_request, obj_request);
2025 rbd_assert(img_request->obj_request_count == 0);
2026
2027 if (img_request_layered_test(img_request)) {
2028 img_request_layered_clear(img_request);
2029 rbd_dev_parent_put(img_request->rbd_dev);
2030 }
2031
2032 if (img_request_write_test(img_request))
2033 ceph_put_snap_context(img_request->snapc);
2034
2035 kmem_cache_free(rbd_img_request_cache, img_request);
2036 }
2037
2038 static struct rbd_img_request *rbd_parent_request_create(
2039 struct rbd_obj_request *obj_request,
2040 u64 img_offset, u64 length)
2041 {
2042 struct rbd_img_request *parent_request;
2043 struct rbd_device *rbd_dev;
2044
2045 rbd_assert(obj_request->img_request);
2046 rbd_dev = obj_request->img_request->rbd_dev;
2047
2048 parent_request = rbd_img_request_create(rbd_dev->parent,
2049 img_offset, length, false);
2050 if (!parent_request)
2051 return NULL;
2052
2053 img_request_child_set(parent_request);
2054 rbd_obj_request_get(obj_request);
2055 parent_request->obj_request = obj_request;
2056
2057 return parent_request;
2058 }
2059
2060 static void rbd_parent_request_destroy(struct kref *kref)
2061 {
2062 struct rbd_img_request *parent_request;
2063 struct rbd_obj_request *orig_request;
2064
2065 parent_request = container_of(kref, struct rbd_img_request, kref);
2066 orig_request = parent_request->obj_request;
2067
2068 parent_request->obj_request = NULL;
2069 rbd_obj_request_put(orig_request);
2070 img_request_child_clear(parent_request);
2071
2072 rbd_img_request_destroy(kref);
2073 }
2074
2075 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2076 {
2077 struct rbd_img_request *img_request;
2078 unsigned int xferred;
2079 int result;
2080 bool more;
2081
2082 rbd_assert(obj_request_img_data_test(obj_request));
2083 img_request = obj_request->img_request;
2084
2085 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2086 xferred = (unsigned int)obj_request->xferred;
2087 result = obj_request->result;
2088 if (result) {
2089 struct rbd_device *rbd_dev = img_request->rbd_dev;
2090
2091 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2092 img_request_write_test(img_request) ? "write" : "read",
2093 obj_request->length, obj_request->img_offset,
2094 obj_request->offset);
2095 rbd_warn(rbd_dev, " result %d xferred %x\n",
2096 result, xferred);
2097 if (!img_request->result)
2098 img_request->result = result;
2099 }
2100
2101 /* Image object requests don't own their page array */
2102
2103 if (obj_request->type == OBJ_REQUEST_PAGES) {
2104 obj_request->pages = NULL;
2105 obj_request->page_count = 0;
2106 }
2107
2108 if (img_request_child_test(img_request)) {
2109 rbd_assert(img_request->obj_request != NULL);
2110 more = obj_request->which < img_request->obj_request_count - 1;
2111 } else {
2112 rbd_assert(img_request->rq != NULL);
2113 more = blk_end_request(img_request->rq, result, xferred);
2114 }
2115
2116 return more;
2117 }
2118
2119 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2120 {
2121 struct rbd_img_request *img_request;
2122 u32 which = obj_request->which;
2123 bool more = true;
2124
2125 rbd_assert(obj_request_img_data_test(obj_request));
2126 img_request = obj_request->img_request;
2127
2128 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2129 rbd_assert(img_request != NULL);
2130 rbd_assert(img_request->obj_request_count > 0);
2131 rbd_assert(which != BAD_WHICH);
2132 rbd_assert(which < img_request->obj_request_count);
2133 rbd_assert(which >= img_request->next_completion);
2134
2135 spin_lock_irq(&img_request->completion_lock);
2136 if (which != img_request->next_completion)
2137 goto out;
2138
2139 for_each_obj_request_from(img_request, obj_request) {
2140 rbd_assert(more);
2141 rbd_assert(which < img_request->obj_request_count);
2142
2143 if (!obj_request_done_test(obj_request))
2144 break;
2145 more = rbd_img_obj_end_request(obj_request);
2146 which++;
2147 }
2148
2149 rbd_assert(more ^ (which == img_request->obj_request_count));
2150 img_request->next_completion = which;
2151 out:
2152 spin_unlock_irq(&img_request->completion_lock);
2153
2154 if (!more)
2155 rbd_img_request_complete(img_request);
2156 }
2157
2158 /*
2159 * Split up an image request into one or more object requests, each
2160 * to a different object. The "type" parameter indicates whether
2161 * "data_desc" is the pointer to the head of a list of bio
2162 * structures, or the base of a page array. In either case this
2163 * function assumes data_desc describes memory sufficient to hold
2164 * all data described by the image request.
2165 */
2166 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2167 enum obj_request_type type,
2168 void *data_desc)
2169 {
2170 struct rbd_device *rbd_dev = img_request->rbd_dev;
2171 struct rbd_obj_request *obj_request = NULL;
2172 struct rbd_obj_request *next_obj_request;
2173 bool write_request = img_request_write_test(img_request);
2174 struct bio *bio_list;
2175 unsigned int bio_offset = 0;
2176 struct page **pages;
2177 u64 img_offset;
2178 u64 resid;
2179 u16 opcode;
2180
2181 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2182 (int)type, data_desc);
2183
2184 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2185 img_offset = img_request->offset;
2186 resid = img_request->length;
2187 rbd_assert(resid > 0);
2188
2189 if (type == OBJ_REQUEST_BIO) {
2190 bio_list = data_desc;
2191 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2192 } else {
2193 rbd_assert(type == OBJ_REQUEST_PAGES);
2194 pages = data_desc;
2195 }
2196
2197 while (resid) {
2198 struct ceph_osd_request *osd_req;
2199 const char *object_name;
2200 u64 offset;
2201 u64 length;
2202
2203 object_name = rbd_segment_name(rbd_dev, img_offset);
2204 if (!object_name)
2205 goto out_unwind;
2206 offset = rbd_segment_offset(rbd_dev, img_offset);
2207 length = rbd_segment_length(rbd_dev, img_offset, resid);
2208 obj_request = rbd_obj_request_create(object_name,
2209 offset, length, type);
2210 /* object request has its own copy of the object name */
2211 rbd_segment_name_free(object_name);
2212 if (!obj_request)
2213 goto out_unwind;
2214
2215 if (type == OBJ_REQUEST_BIO) {
2216 unsigned int clone_size;
2217
2218 rbd_assert(length <= (u64)UINT_MAX);
2219 clone_size = (unsigned int)length;
2220 obj_request->bio_list =
2221 bio_chain_clone_range(&bio_list,
2222 &bio_offset,
2223 clone_size,
2224 GFP_ATOMIC);
2225 if (!obj_request->bio_list)
2226 goto out_partial;
2227 } else {
2228 unsigned int page_count;
2229
2230 obj_request->pages = pages;
2231 page_count = (u32)calc_pages_for(offset, length);
2232 obj_request->page_count = page_count;
2233 if ((offset + length) & ~PAGE_MASK)
2234 page_count--; /* more on last page */
2235 pages += page_count;
2236 }
2237
2238 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239 obj_request);
2240 if (!osd_req)
2241 goto out_partial;
2242 obj_request->osd_req = osd_req;
2243 obj_request->callback = rbd_img_obj_callback;
2244
2245 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2246 0, 0);
2247 if (type == OBJ_REQUEST_BIO)
2248 osd_req_op_extent_osd_data_bio(osd_req, 0,
2249 obj_request->bio_list, length);
2250 else
2251 osd_req_op_extent_osd_data_pages(osd_req, 0,
2252 obj_request->pages, length,
2253 offset & ~PAGE_MASK, false, false);
2254
2255 if (write_request)
2256 rbd_osd_req_format_write(obj_request);
2257 else
2258 rbd_osd_req_format_read(obj_request);
2259
2260 obj_request->img_offset = img_offset;
2261 rbd_img_obj_request_add(img_request, obj_request);
2262
2263 img_offset += length;
2264 resid -= length;
2265 }
2266
2267 return 0;
2268
2269 out_partial:
2270 rbd_obj_request_put(obj_request);
2271 out_unwind:
2272 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273 rbd_obj_request_put(obj_request);
2274
2275 return -ENOMEM;
2276 }
2277
2278 static void
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2280 {
2281 struct rbd_img_request *img_request;
2282 struct rbd_device *rbd_dev;
2283 struct page **pages;
2284 u32 page_count;
2285
2286 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287 rbd_assert(obj_request_img_data_test(obj_request));
2288 img_request = obj_request->img_request;
2289 rbd_assert(img_request);
2290
2291 rbd_dev = img_request->rbd_dev;
2292 rbd_assert(rbd_dev);
2293
2294 pages = obj_request->copyup_pages;
2295 rbd_assert(pages != NULL);
2296 obj_request->copyup_pages = NULL;
2297 page_count = obj_request->copyup_page_count;
2298 rbd_assert(page_count);
2299 obj_request->copyup_page_count = 0;
2300 ceph_release_page_vector(pages, page_count);
2301
2302 /*
2303 * We want the transfer count to reflect the size of the
2304 * original write request. There is no such thing as a
2305 * successful short write, so if the request was successful
2306 * we can just set it to the originally-requested length.
2307 */
2308 if (!obj_request->result)
2309 obj_request->xferred = obj_request->length;
2310
2311 /* Finish up with the normal image object callback */
2312
2313 rbd_img_obj_callback(obj_request);
2314 }
2315
2316 static void
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2318 {
2319 struct rbd_obj_request *orig_request;
2320 struct ceph_osd_request *osd_req;
2321 struct ceph_osd_client *osdc;
2322 struct rbd_device *rbd_dev;
2323 struct page **pages;
2324 u32 page_count;
2325 int img_result;
2326 u64 parent_length;
2327 u64 offset;
2328 u64 length;
2329
2330 rbd_assert(img_request_child_test(img_request));
2331
2332 /* First get what we need from the image request */
2333
2334 pages = img_request->copyup_pages;
2335 rbd_assert(pages != NULL);
2336 img_request->copyup_pages = NULL;
2337 page_count = img_request->copyup_page_count;
2338 rbd_assert(page_count);
2339 img_request->copyup_page_count = 0;
2340
2341 orig_request = img_request->obj_request;
2342 rbd_assert(orig_request != NULL);
2343 rbd_assert(obj_request_type_valid(orig_request->type));
2344 img_result = img_request->result;
2345 parent_length = img_request->length;
2346 rbd_assert(parent_length == img_request->xferred);
2347 rbd_img_request_put(img_request);
2348
2349 rbd_assert(orig_request->img_request);
2350 rbd_dev = orig_request->img_request->rbd_dev;
2351 rbd_assert(rbd_dev);
2352
2353 /*
2354 * If the overlap has become 0 (most likely because the
2355 * image has been flattened) we need to free the pages
2356 * and re-submit the original write request.
2357 */
2358 if (!rbd_dev->parent_overlap) {
2359 struct ceph_osd_client *osdc;
2360
2361 ceph_release_page_vector(pages, page_count);
2362 osdc = &rbd_dev->rbd_client->client->osdc;
2363 img_result = rbd_obj_request_submit(osdc, orig_request);
2364 if (!img_result)
2365 return;
2366 }
2367
2368 if (img_result)
2369 goto out_err;
2370
2371 /*
2372 * The original osd request is of no use to use any more.
2373 * We need a new one that can hold the two ops in a copyup
2374 * request. Allocate the new copyup osd request for the
2375 * original request, and release the old one.
2376 */
2377 img_result = -ENOMEM;
2378 osd_req = rbd_osd_req_create_copyup(orig_request);
2379 if (!osd_req)
2380 goto out_err;
2381 rbd_osd_req_destroy(orig_request->osd_req);
2382 orig_request->osd_req = osd_req;
2383 orig_request->copyup_pages = pages;
2384 orig_request->copyup_page_count = page_count;
2385
2386 /* Initialize the copyup op */
2387
2388 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2390 false, false);
2391
2392 /* Then the original write request op */
2393
2394 offset = orig_request->offset;
2395 length = orig_request->length;
2396 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397 offset, length, 0, 0);
2398 if (orig_request->type == OBJ_REQUEST_BIO)
2399 osd_req_op_extent_osd_data_bio(osd_req, 1,
2400 orig_request->bio_list, length);
2401 else
2402 osd_req_op_extent_osd_data_pages(osd_req, 1,
2403 orig_request->pages, length,
2404 offset & ~PAGE_MASK, false, false);
2405
2406 rbd_osd_req_format_write(orig_request);
2407
2408 /* All set, send it off. */
2409
2410 orig_request->callback = rbd_img_obj_copyup_callback;
2411 osdc = &rbd_dev->rbd_client->client->osdc;
2412 img_result = rbd_obj_request_submit(osdc, orig_request);
2413 if (!img_result)
2414 return;
2415 out_err:
2416 /* Record the error code and complete the request */
2417
2418 orig_request->result = img_result;
2419 orig_request->xferred = 0;
2420 obj_request_done_set(orig_request);
2421 rbd_obj_request_complete(orig_request);
2422 }
2423
2424 /*
2425 * Read from the parent image the range of data that covers the
2426 * entire target of the given object request. This is used for
2427 * satisfying a layered image write request when the target of an
2428 * object request from the image request does not exist.
2429 *
2430 * A page array big enough to hold the returned data is allocated
2431 * and supplied to rbd_img_request_fill() as the "data descriptor."
2432 * When the read completes, this page array will be transferred to
2433 * the original object request for the copyup operation.
2434 *
2435 * If an error occurs, record it as the result of the original
2436 * object request and mark it done so it gets completed.
2437 */
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2439 {
2440 struct rbd_img_request *img_request = NULL;
2441 struct rbd_img_request *parent_request = NULL;
2442 struct rbd_device *rbd_dev;
2443 u64 img_offset;
2444 u64 length;
2445 struct page **pages = NULL;
2446 u32 page_count;
2447 int result;
2448
2449 rbd_assert(obj_request_img_data_test(obj_request));
2450 rbd_assert(obj_request_type_valid(obj_request->type));
2451
2452 img_request = obj_request->img_request;
2453 rbd_assert(img_request != NULL);
2454 rbd_dev = img_request->rbd_dev;
2455 rbd_assert(rbd_dev->parent != NULL);
2456
2457 /*
2458 * Determine the byte range covered by the object in the
2459 * child image to which the original request was to be sent.
2460 */
2461 img_offset = obj_request->img_offset - obj_request->offset;
2462 length = (u64)1 << rbd_dev->header.obj_order;
2463
2464 /*
2465 * There is no defined parent data beyond the parent
2466 * overlap, so limit what we read at that boundary if
2467 * necessary.
2468 */
2469 if (img_offset + length > rbd_dev->parent_overlap) {
2470 rbd_assert(img_offset < rbd_dev->parent_overlap);
2471 length = rbd_dev->parent_overlap - img_offset;
2472 }
2473
2474 /*
2475 * Allocate a page array big enough to receive the data read
2476 * from the parent.
2477 */
2478 page_count = (u32)calc_pages_for(0, length);
2479 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480 if (IS_ERR(pages)) {
2481 result = PTR_ERR(pages);
2482 pages = NULL;
2483 goto out_err;
2484 }
2485
2486 result = -ENOMEM;
2487 parent_request = rbd_parent_request_create(obj_request,
2488 img_offset, length);
2489 if (!parent_request)
2490 goto out_err;
2491
2492 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2493 if (result)
2494 goto out_err;
2495 parent_request->copyup_pages = pages;
2496 parent_request->copyup_page_count = page_count;
2497
2498 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499 result = rbd_img_request_submit(parent_request);
2500 if (!result)
2501 return 0;
2502
2503 parent_request->copyup_pages = NULL;
2504 parent_request->copyup_page_count = 0;
2505 parent_request->obj_request = NULL;
2506 rbd_obj_request_put(obj_request);
2507 out_err:
2508 if (pages)
2509 ceph_release_page_vector(pages, page_count);
2510 if (parent_request)
2511 rbd_img_request_put(parent_request);
2512 obj_request->result = result;
2513 obj_request->xferred = 0;
2514 obj_request_done_set(obj_request);
2515
2516 return result;
2517 }
2518
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2520 {
2521 struct rbd_obj_request *orig_request;
2522 struct rbd_device *rbd_dev;
2523 int result;
2524
2525 rbd_assert(!obj_request_img_data_test(obj_request));
2526
2527 /*
2528 * All we need from the object request is the original
2529 * request and the result of the STAT op. Grab those, then
2530 * we're done with the request.
2531 */
2532 orig_request = obj_request->obj_request;
2533 obj_request->obj_request = NULL;
2534 rbd_assert(orig_request);
2535 rbd_assert(orig_request->img_request);
2536
2537 result = obj_request->result;
2538 obj_request->result = 0;
2539
2540 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2541 obj_request, orig_request, result,
2542 obj_request->xferred, obj_request->length);
2543 rbd_obj_request_put(obj_request);
2544
2545 /*
2546 * If the overlap has become 0 (most likely because the
2547 * image has been flattened) we need to free the pages
2548 * and re-submit the original write request.
2549 */
2550 rbd_dev = orig_request->img_request->rbd_dev;
2551 if (!rbd_dev->parent_overlap) {
2552 struct ceph_osd_client *osdc;
2553
2554 rbd_obj_request_put(orig_request);
2555 osdc = &rbd_dev->rbd_client->client->osdc;
2556 result = rbd_obj_request_submit(osdc, orig_request);
2557 if (!result)
2558 return;
2559 }
2560
2561 /*
2562 * Our only purpose here is to determine whether the object
2563 * exists, and we don't want to treat the non-existence as
2564 * an error. If something else comes back, transfer the
2565 * error to the original request and complete it now.
2566 */
2567 if (!result) {
2568 obj_request_existence_set(orig_request, true);
2569 } else if (result == -ENOENT) {
2570 obj_request_existence_set(orig_request, false);
2571 } else if (result) {
2572 orig_request->result = result;
2573 goto out;
2574 }
2575
2576 /*
2577 * Resubmit the original request now that we have recorded
2578 * whether the target object exists.
2579 */
2580 orig_request->result = rbd_img_obj_request_submit(orig_request);
2581 out:
2582 if (orig_request->result)
2583 rbd_obj_request_complete(orig_request);
2584 rbd_obj_request_put(orig_request);
2585 }
2586
2587 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2588 {
2589 struct rbd_obj_request *stat_request;
2590 struct rbd_device *rbd_dev;
2591 struct ceph_osd_client *osdc;
2592 struct page **pages = NULL;
2593 u32 page_count;
2594 size_t size;
2595 int ret;
2596
2597 /*
2598 * The response data for a STAT call consists of:
2599 * le64 length;
2600 * struct {
2601 * le32 tv_sec;
2602 * le32 tv_nsec;
2603 * } mtime;
2604 */
2605 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2606 page_count = (u32)calc_pages_for(0, size);
2607 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2608 if (IS_ERR(pages))
2609 return PTR_ERR(pages);
2610
2611 ret = -ENOMEM;
2612 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2613 OBJ_REQUEST_PAGES);
2614 if (!stat_request)
2615 goto out;
2616
2617 rbd_obj_request_get(obj_request);
2618 stat_request->obj_request = obj_request;
2619 stat_request->pages = pages;
2620 stat_request->page_count = page_count;
2621
2622 rbd_assert(obj_request->img_request);
2623 rbd_dev = obj_request->img_request->rbd_dev;
2624 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2625 stat_request);
2626 if (!stat_request->osd_req)
2627 goto out;
2628 stat_request->callback = rbd_img_obj_exists_callback;
2629
2630 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2631 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2632 false, false);
2633 rbd_osd_req_format_read(stat_request);
2634
2635 osdc = &rbd_dev->rbd_client->client->osdc;
2636 ret = rbd_obj_request_submit(osdc, stat_request);
2637 out:
2638 if (ret)
2639 rbd_obj_request_put(obj_request);
2640
2641 return ret;
2642 }
2643
2644 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2645 {
2646 struct rbd_img_request *img_request;
2647 struct rbd_device *rbd_dev;
2648 bool known;
2649
2650 rbd_assert(obj_request_img_data_test(obj_request));
2651
2652 img_request = obj_request->img_request;
2653 rbd_assert(img_request);
2654 rbd_dev = img_request->rbd_dev;
2655
2656 /*
2657 * Only writes to layered images need special handling.
2658 * Reads and non-layered writes are simple object requests.
2659 * Layered writes that start beyond the end of the overlap
2660 * with the parent have no parent data, so they too are
2661 * simple object requests. Finally, if the target object is
2662 * known to already exist, its parent data has already been
2663 * copied, so a write to the object can also be handled as a
2664 * simple object request.
2665 */
2666 if (!img_request_write_test(img_request) ||
2667 !img_request_layered_test(img_request) ||
2668 rbd_dev->parent_overlap <= obj_request->img_offset ||
2669 ((known = obj_request_known_test(obj_request)) &&
2670 obj_request_exists_test(obj_request))) {
2671
2672 struct rbd_device *rbd_dev;
2673 struct ceph_osd_client *osdc;
2674
2675 rbd_dev = obj_request->img_request->rbd_dev;
2676 osdc = &rbd_dev->rbd_client->client->osdc;
2677
2678 return rbd_obj_request_submit(osdc, obj_request);
2679 }
2680
2681 /*
2682 * It's a layered write. The target object might exist but
2683 * we may not know that yet. If we know it doesn't exist,
2684 * start by reading the data for the full target object from
2685 * the parent so we can use it for a copyup to the target.
2686 */
2687 if (known)
2688 return rbd_img_obj_parent_read_full(obj_request);
2689
2690 /* We don't know whether the target exists. Go find out. */
2691
2692 return rbd_img_obj_exists_submit(obj_request);
2693 }
2694
2695 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2696 {
2697 struct rbd_obj_request *obj_request;
2698 struct rbd_obj_request *next_obj_request;
2699
2700 dout("%s: img %p\n", __func__, img_request);
2701 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2702 int ret;
2703
2704 ret = rbd_img_obj_request_submit(obj_request);
2705 if (ret)
2706 return ret;
2707 }
2708
2709 return 0;
2710 }
2711
2712 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2713 {
2714 struct rbd_obj_request *obj_request;
2715 struct rbd_device *rbd_dev;
2716 u64 obj_end;
2717 u64 img_xferred;
2718 int img_result;
2719
2720 rbd_assert(img_request_child_test(img_request));
2721
2722 /* First get what we need from the image request and release it */
2723
2724 obj_request = img_request->obj_request;
2725 img_xferred = img_request->xferred;
2726 img_result = img_request->result;
2727 rbd_img_request_put(img_request);
2728
2729 /*
2730 * If the overlap has become 0 (most likely because the
2731 * image has been flattened) we need to re-submit the
2732 * original request.
2733 */
2734 rbd_assert(obj_request);
2735 rbd_assert(obj_request->img_request);
2736 rbd_dev = obj_request->img_request->rbd_dev;
2737 if (!rbd_dev->parent_overlap) {
2738 struct ceph_osd_client *osdc;
2739
2740 osdc = &rbd_dev->rbd_client->client->osdc;
2741 img_result = rbd_obj_request_submit(osdc, obj_request);
2742 if (!img_result)
2743 return;
2744 }
2745
2746 obj_request->result = img_result;
2747 if (obj_request->result)
2748 goto out;
2749
2750 /*
2751 * We need to zero anything beyond the parent overlap
2752 * boundary. Since rbd_img_obj_request_read_callback()
2753 * will zero anything beyond the end of a short read, an
2754 * easy way to do this is to pretend the data from the
2755 * parent came up short--ending at the overlap boundary.
2756 */
2757 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2758 obj_end = obj_request->img_offset + obj_request->length;
2759 if (obj_end > rbd_dev->parent_overlap) {
2760 u64 xferred = 0;
2761
2762 if (obj_request->img_offset < rbd_dev->parent_overlap)
2763 xferred = rbd_dev->parent_overlap -
2764 obj_request->img_offset;
2765
2766 obj_request->xferred = min(img_xferred, xferred);
2767 } else {
2768 obj_request->xferred = img_xferred;
2769 }
2770 out:
2771 rbd_img_obj_request_read_callback(obj_request);
2772 rbd_obj_request_complete(obj_request);
2773 }
2774
2775 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2776 {
2777 struct rbd_img_request *img_request;
2778 int result;
2779
2780 rbd_assert(obj_request_img_data_test(obj_request));
2781 rbd_assert(obj_request->img_request != NULL);
2782 rbd_assert(obj_request->result == (s32) -ENOENT);
2783 rbd_assert(obj_request_type_valid(obj_request->type));
2784
2785 /* rbd_read_finish(obj_request, obj_request->length); */
2786 img_request = rbd_parent_request_create(obj_request,
2787 obj_request->img_offset,
2788 obj_request->length);
2789 result = -ENOMEM;
2790 if (!img_request)
2791 goto out_err;
2792
2793 if (obj_request->type == OBJ_REQUEST_BIO)
2794 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2795 obj_request->bio_list);
2796 else
2797 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2798 obj_request->pages);
2799 if (result)
2800 goto out_err;
2801
2802 img_request->callback = rbd_img_parent_read_callback;
2803 result = rbd_img_request_submit(img_request);
2804 if (result)
2805 goto out_err;
2806
2807 return;
2808 out_err:
2809 if (img_request)
2810 rbd_img_request_put(img_request);
2811 obj_request->result = result;
2812 obj_request->xferred = 0;
2813 obj_request_done_set(obj_request);
2814 }
2815
2816 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2817 {
2818 struct rbd_obj_request *obj_request;
2819 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2820 int ret;
2821
2822 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2823 OBJ_REQUEST_NODATA);
2824 if (!obj_request)
2825 return -ENOMEM;
2826
2827 ret = -ENOMEM;
2828 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2829 if (!obj_request->osd_req)
2830 goto out;
2831 obj_request->callback = rbd_obj_request_put;
2832
2833 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2834 notify_id, 0, 0);
2835 rbd_osd_req_format_read(obj_request);
2836
2837 ret = rbd_obj_request_submit(osdc, obj_request);
2838 out:
2839 if (ret)
2840 rbd_obj_request_put(obj_request);
2841
2842 return ret;
2843 }
2844
2845 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2846 {
2847 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2848 int ret;
2849
2850 if (!rbd_dev)
2851 return;
2852
2853 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2854 rbd_dev->header_name, (unsigned long long)notify_id,
2855 (unsigned int)opcode);
2856 ret = rbd_dev_refresh(rbd_dev);
2857 if (ret)
2858 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2859
2860 rbd_obj_notify_ack(rbd_dev, notify_id);
2861 }
2862
2863 /*
2864 * Request sync osd watch/unwatch. The value of "start" determines
2865 * whether a watch request is being initiated or torn down.
2866 */
2867 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2868 {
2869 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2870 struct rbd_obj_request *obj_request;
2871 int ret;
2872
2873 rbd_assert(start ^ !!rbd_dev->watch_event);
2874 rbd_assert(start ^ !!rbd_dev->watch_request);
2875
2876 if (start) {
2877 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2878 &rbd_dev->watch_event);
2879 if (ret < 0)
2880 return ret;
2881 rbd_assert(rbd_dev->watch_event != NULL);
2882 }
2883
2884 ret = -ENOMEM;
2885 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2886 OBJ_REQUEST_NODATA);
2887 if (!obj_request)
2888 goto out_cancel;
2889
2890 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2891 if (!obj_request->osd_req)
2892 goto out_cancel;
2893
2894 if (start)
2895 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2896 else
2897 ceph_osdc_unregister_linger_request(osdc,
2898 rbd_dev->watch_request->osd_req);
2899
2900 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2901 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2902 rbd_osd_req_format_write(obj_request);
2903
2904 ret = rbd_obj_request_submit(osdc, obj_request);
2905 if (ret)
2906 goto out_cancel;
2907 ret = rbd_obj_request_wait(obj_request);
2908 if (ret)
2909 goto out_cancel;
2910 ret = obj_request->result;
2911 if (ret)
2912 goto out_cancel;
2913
2914 /*
2915 * A watch request is set to linger, so the underlying osd
2916 * request won't go away until we unregister it. We retain
2917 * a pointer to the object request during that time (in
2918 * rbd_dev->watch_request), so we'll keep a reference to
2919 * it. We'll drop that reference (below) after we've
2920 * unregistered it.
2921 */
2922 if (start) {
2923 rbd_dev->watch_request = obj_request;
2924
2925 return 0;
2926 }
2927
2928 /* We have successfully torn down the watch request */
2929
2930 rbd_obj_request_put(rbd_dev->watch_request);
2931 rbd_dev->watch_request = NULL;
2932 out_cancel:
2933 /* Cancel the event if we're tearing down, or on error */
2934 ceph_osdc_cancel_event(rbd_dev->watch_event);
2935 rbd_dev->watch_event = NULL;
2936 if (obj_request)
2937 rbd_obj_request_put(obj_request);
2938
2939 return ret;
2940 }
2941
2942 /*
2943 * Synchronous osd object method call. Returns the number of bytes
2944 * returned in the outbound buffer, or a negative error code.
2945 */
2946 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2947 const char *object_name,
2948 const char *class_name,
2949 const char *method_name,
2950 const void *outbound,
2951 size_t outbound_size,
2952 void *inbound,
2953 size_t inbound_size)
2954 {
2955 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2956 struct rbd_obj_request *obj_request;
2957 struct page **pages;
2958 u32 page_count;
2959 int ret;
2960
2961 /*
2962 * Method calls are ultimately read operations. The result
2963 * should placed into the inbound buffer provided. They
2964 * also supply outbound data--parameters for the object
2965 * method. Currently if this is present it will be a
2966 * snapshot id.
2967 */
2968 page_count = (u32)calc_pages_for(0, inbound_size);
2969 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2970 if (IS_ERR(pages))
2971 return PTR_ERR(pages);
2972
2973 ret = -ENOMEM;
2974 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2975 OBJ_REQUEST_PAGES);
2976 if (!obj_request)
2977 goto out;
2978
2979 obj_request->pages = pages;
2980 obj_request->page_count = page_count;
2981
2982 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2983 if (!obj_request->osd_req)
2984 goto out;
2985
2986 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2987 class_name, method_name);
2988 if (outbound_size) {
2989 struct ceph_pagelist *pagelist;
2990
2991 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2992 if (!pagelist)
2993 goto out;
2994
2995 ceph_pagelist_init(pagelist);
2996 ceph_pagelist_append(pagelist, outbound, outbound_size);
2997 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2998 pagelist);
2999 }
3000 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3001 obj_request->pages, inbound_size,
3002 0, false, false);
3003 rbd_osd_req_format_read(obj_request);
3004
3005 ret = rbd_obj_request_submit(osdc, obj_request);
3006 if (ret)
3007 goto out;
3008 ret = rbd_obj_request_wait(obj_request);
3009 if (ret)
3010 goto out;
3011
3012 ret = obj_request->result;
3013 if (ret < 0)
3014 goto out;
3015
3016 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3017 ret = (int)obj_request->xferred;
3018 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3019 out:
3020 if (obj_request)
3021 rbd_obj_request_put(obj_request);
3022 else
3023 ceph_release_page_vector(pages, page_count);
3024
3025 return ret;
3026 }
3027
3028 static void rbd_request_fn(struct request_queue *q)
3029 __releases(q->queue_lock) __acquires(q->queue_lock)
3030 {
3031 struct rbd_device *rbd_dev = q->queuedata;
3032 bool read_only = rbd_dev->mapping.read_only;
3033 struct request *rq;
3034 int result;
3035
3036 while ((rq = blk_fetch_request(q))) {
3037 bool write_request = rq_data_dir(rq) == WRITE;
3038 struct rbd_img_request *img_request;
3039 u64 offset;
3040 u64 length;
3041
3042 /* Ignore any non-FS requests that filter through. */
3043
3044 if (rq->cmd_type != REQ_TYPE_FS) {
3045 dout("%s: non-fs request type %d\n", __func__,
3046 (int) rq->cmd_type);
3047 __blk_end_request_all(rq, 0);
3048 continue;
3049 }
3050
3051 /* Ignore/skip any zero-length requests */
3052
3053 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3054 length = (u64) blk_rq_bytes(rq);
3055
3056 if (!length) {
3057 dout("%s: zero-length request\n", __func__);
3058 __blk_end_request_all(rq, 0);
3059 continue;
3060 }
3061
3062 spin_unlock_irq(q->queue_lock);
3063
3064 /* Disallow writes to a read-only device */
3065
3066 if (write_request) {
3067 result = -EROFS;
3068 if (read_only)
3069 goto end_request;
3070 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3071 }
3072
3073 /*
3074 * Quit early if the mapped snapshot no longer
3075 * exists. It's still possible the snapshot will
3076 * have disappeared by the time our request arrives
3077 * at the osd, but there's no sense in sending it if
3078 * we already know.
3079 */
3080 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3081 dout("request for non-existent snapshot");
3082 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3083 result = -ENXIO;
3084 goto end_request;
3085 }
3086
3087 result = -EINVAL;
3088 if (offset && length > U64_MAX - offset + 1) {
3089 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3090 offset, length);
3091 goto end_request; /* Shouldn't happen */
3092 }
3093
3094 result = -EIO;
3095 if (offset + length > rbd_dev->mapping.size) {
3096 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3097 offset, length, rbd_dev->mapping.size);
3098 goto end_request;
3099 }
3100
3101 result = -ENOMEM;
3102 img_request = rbd_img_request_create(rbd_dev, offset, length,
3103 write_request);
3104 if (!img_request)
3105 goto end_request;
3106
3107 img_request->rq = rq;
3108
3109 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3110 rq->bio);
3111 if (!result)
3112 result = rbd_img_request_submit(img_request);
3113 if (result)
3114 rbd_img_request_put(img_request);
3115 end_request:
3116 spin_lock_irq(q->queue_lock);
3117 if (result < 0) {
3118 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3119 write_request ? "write" : "read",
3120 length, offset, result);
3121
3122 __blk_end_request_all(rq, result);
3123 }
3124 }
3125 }
3126
3127 /*
3128 * a queue callback. Makes sure that we don't create a bio that spans across
3129 * multiple osd objects. One exception would be with a single page bios,
3130 * which we handle later at bio_chain_clone_range()
3131 */
3132 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3133 struct bio_vec *bvec)
3134 {
3135 struct rbd_device *rbd_dev = q->queuedata;
3136 sector_t sector_offset;
3137 sector_t sectors_per_obj;
3138 sector_t obj_sector_offset;
3139 int ret;
3140
3141 /*
3142 * Find how far into its rbd object the partition-relative
3143 * bio start sector is to offset relative to the enclosing
3144 * device.
3145 */
3146 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3147 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3148 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3149
3150 /*
3151 * Compute the number of bytes from that offset to the end
3152 * of the object. Account for what's already used by the bio.
3153 */
3154 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3155 if (ret > bmd->bi_size)
3156 ret -= bmd->bi_size;
3157 else
3158 ret = 0;
3159
3160 /*
3161 * Don't send back more than was asked for. And if the bio
3162 * was empty, let the whole thing through because: "Note
3163 * that a block device *must* allow a single page to be
3164 * added to an empty bio."
3165 */
3166 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3167 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3168 ret = (int) bvec->bv_len;
3169
3170 return ret;
3171 }
3172
3173 static void rbd_free_disk(struct rbd_device *rbd_dev)
3174 {
3175 struct gendisk *disk = rbd_dev->disk;
3176
3177 if (!disk)
3178 return;
3179
3180 rbd_dev->disk = NULL;
3181 if (disk->flags & GENHD_FL_UP) {
3182 del_gendisk(disk);
3183 if (disk->queue)
3184 blk_cleanup_queue(disk->queue);
3185 }
3186 put_disk(disk);
3187 }
3188
3189 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3190 const char *object_name,
3191 u64 offset, u64 length, void *buf)
3192
3193 {
3194 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3195 struct rbd_obj_request *obj_request;
3196 struct page **pages = NULL;
3197 u32 page_count;
3198 size_t size;
3199 int ret;
3200
3201 page_count = (u32) calc_pages_for(offset, length);
3202 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3203 if (IS_ERR(pages))
3204 ret = PTR_ERR(pages);
3205
3206 ret = -ENOMEM;
3207 obj_request = rbd_obj_request_create(object_name, offset, length,
3208 OBJ_REQUEST_PAGES);
3209 if (!obj_request)
3210 goto out;
3211
3212 obj_request->pages = pages;
3213 obj_request->page_count = page_count;
3214
3215 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3216 if (!obj_request->osd_req)
3217 goto out;
3218
3219 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3220 offset, length, 0, 0);
3221 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3222 obj_request->pages,
3223 obj_request->length,
3224 obj_request->offset & ~PAGE_MASK,
3225 false, false);
3226 rbd_osd_req_format_read(obj_request);
3227
3228 ret = rbd_obj_request_submit(osdc, obj_request);
3229 if (ret)
3230 goto out;
3231 ret = rbd_obj_request_wait(obj_request);
3232 if (ret)
3233 goto out;
3234
3235 ret = obj_request->result;
3236 if (ret < 0)
3237 goto out;
3238
3239 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3240 size = (size_t) obj_request->xferred;
3241 ceph_copy_from_page_vector(pages, buf, 0, size);
3242 rbd_assert(size <= (size_t)INT_MAX);
3243 ret = (int)size;
3244 out:
3245 if (obj_request)
3246 rbd_obj_request_put(obj_request);
3247 else
3248 ceph_release_page_vector(pages, page_count);
3249
3250 return ret;
3251 }
3252
3253 /*
3254 * Read the complete header for the given rbd device. On successful
3255 * return, the rbd_dev->header field will contain up-to-date
3256 * information about the image.
3257 */
3258 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3259 {
3260 struct rbd_image_header_ondisk *ondisk = NULL;
3261 u32 snap_count = 0;
3262 u64 names_size = 0;
3263 u32 want_count;
3264 int ret;
3265
3266 /*
3267 * The complete header will include an array of its 64-bit
3268 * snapshot ids, followed by the names of those snapshots as
3269 * a contiguous block of NUL-terminated strings. Note that
3270 * the number of snapshots could change by the time we read
3271 * it in, in which case we re-read it.
3272 */
3273 do {
3274 size_t size;
3275
3276 kfree(ondisk);
3277
3278 size = sizeof (*ondisk);
3279 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3280 size += names_size;
3281 ondisk = kmalloc(size, GFP_KERNEL);
3282 if (!ondisk)
3283 return -ENOMEM;
3284
3285 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3286 0, size, ondisk);
3287 if (ret < 0)
3288 goto out;
3289 if ((size_t)ret < size) {
3290 ret = -ENXIO;
3291 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3292 size, ret);
3293 goto out;
3294 }
3295 if (!rbd_dev_ondisk_valid(ondisk)) {
3296 ret = -ENXIO;
3297 rbd_warn(rbd_dev, "invalid header");
3298 goto out;
3299 }
3300
3301 names_size = le64_to_cpu(ondisk->snap_names_len);
3302 want_count = snap_count;
3303 snap_count = le32_to_cpu(ondisk->snap_count);
3304 } while (snap_count != want_count);
3305
3306 ret = rbd_header_from_disk(rbd_dev, ondisk);
3307 out:
3308 kfree(ondisk);
3309
3310 return ret;
3311 }
3312
3313 /*
3314 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3315 * has disappeared from the (just updated) snapshot context.
3316 */
3317 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3318 {
3319 u64 snap_id;
3320
3321 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3322 return;
3323
3324 snap_id = rbd_dev->spec->snap_id;
3325 if (snap_id == CEPH_NOSNAP)
3326 return;
3327
3328 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3329 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3330 }
3331
3332 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3333 {
3334 u64 mapping_size;
3335 int ret;
3336
3337 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3338 mapping_size = rbd_dev->mapping.size;
3339 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3340 if (rbd_dev->image_format == 1)
3341 ret = rbd_dev_v1_header_info(rbd_dev);
3342 else
3343 ret = rbd_dev_v2_header_info(rbd_dev);
3344
3345 /* If it's a mapped snapshot, validate its EXISTS flag */
3346
3347 rbd_exists_validate(rbd_dev);
3348 mutex_unlock(&ctl_mutex);
3349 if (mapping_size != rbd_dev->mapping.size) {
3350 sector_t size;
3351
3352 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353 dout("setting size to %llu sectors", (unsigned long long)size);
3354 set_capacity(rbd_dev->disk, size);
3355 revalidate_disk(rbd_dev->disk);
3356 }
3357
3358 return ret;
3359 }
3360
3361 static int rbd_init_disk(struct rbd_device *rbd_dev)
3362 {
3363 struct gendisk *disk;
3364 struct request_queue *q;
3365 u64 segment_size;
3366
3367 /* create gendisk info */
3368 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3369 if (!disk)
3370 return -ENOMEM;
3371
3372 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3373 rbd_dev->dev_id);
3374 disk->major = rbd_dev->major;
3375 disk->first_minor = 0;
3376 disk->fops = &rbd_bd_ops;
3377 disk->private_data = rbd_dev;
3378
3379 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3380 if (!q)
3381 goto out_disk;
3382
3383 /* We use the default size, but let's be explicit about it. */
3384 blk_queue_physical_block_size(q, SECTOR_SIZE);
3385
3386 /* set io sizes to object size */
3387 segment_size = rbd_obj_bytes(&rbd_dev->header);
3388 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3389 blk_queue_max_segment_size(q, segment_size);
3390 blk_queue_io_min(q, segment_size);
3391 blk_queue_io_opt(q, segment_size);
3392
3393 blk_queue_merge_bvec(q, rbd_merge_bvec);
3394 disk->queue = q;
3395
3396 q->queuedata = rbd_dev;
3397
3398 rbd_dev->disk = disk;
3399
3400 return 0;
3401 out_disk:
3402 put_disk(disk);
3403
3404 return -ENOMEM;
3405 }
3406
3407 /*
3408 sysfs
3409 */
3410
3411 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3412 {
3413 return container_of(dev, struct rbd_device, dev);
3414 }
3415
3416 static ssize_t rbd_size_show(struct device *dev,
3417 struct device_attribute *attr, char *buf)
3418 {
3419 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3420
3421 return sprintf(buf, "%llu\n",
3422 (unsigned long long)rbd_dev->mapping.size);
3423 }
3424
3425 /*
3426 * Note this shows the features for whatever's mapped, which is not
3427 * necessarily the base image.
3428 */
3429 static ssize_t rbd_features_show(struct device *dev,
3430 struct device_attribute *attr, char *buf)
3431 {
3432 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3433
3434 return sprintf(buf, "0x%016llx\n",
3435 (unsigned long long)rbd_dev->mapping.features);
3436 }
3437
3438 static ssize_t rbd_major_show(struct device *dev,
3439 struct device_attribute *attr, char *buf)
3440 {
3441 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3442
3443 if (rbd_dev->major)
3444 return sprintf(buf, "%d\n", rbd_dev->major);
3445
3446 return sprintf(buf, "(none)\n");
3447
3448 }
3449
3450 static ssize_t rbd_client_id_show(struct device *dev,
3451 struct device_attribute *attr, char *buf)
3452 {
3453 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3454
3455 return sprintf(buf, "client%lld\n",
3456 ceph_client_id(rbd_dev->rbd_client->client));
3457 }
3458
3459 static ssize_t rbd_pool_show(struct device *dev,
3460 struct device_attribute *attr, char *buf)
3461 {
3462 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3463
3464 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3465 }
3466
3467 static ssize_t rbd_pool_id_show(struct device *dev,
3468 struct device_attribute *attr, char *buf)
3469 {
3470 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472 return sprintf(buf, "%llu\n",
3473 (unsigned long long) rbd_dev->spec->pool_id);
3474 }
3475
3476 static ssize_t rbd_name_show(struct device *dev,
3477 struct device_attribute *attr, char *buf)
3478 {
3479 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480
3481 if (rbd_dev->spec->image_name)
3482 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3483
3484 return sprintf(buf, "(unknown)\n");
3485 }
3486
3487 static ssize_t rbd_image_id_show(struct device *dev,
3488 struct device_attribute *attr, char *buf)
3489 {
3490 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3491
3492 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3493 }
3494
3495 /*
3496 * Shows the name of the currently-mapped snapshot (or
3497 * RBD_SNAP_HEAD_NAME for the base image).
3498 */
3499 static ssize_t rbd_snap_show(struct device *dev,
3500 struct device_attribute *attr,
3501 char *buf)
3502 {
3503 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3506 }
3507
3508 /*
3509 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3510 * for the parent image. If there is no parent, simply shows
3511 * "(no parent image)".
3512 */
3513 static ssize_t rbd_parent_show(struct device *dev,
3514 struct device_attribute *attr,
3515 char *buf)
3516 {
3517 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518 struct rbd_spec *spec = rbd_dev->parent_spec;
3519 int count;
3520 char *bufp = buf;
3521
3522 if (!spec)
3523 return sprintf(buf, "(no parent image)\n");
3524
3525 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3526 (unsigned long long) spec->pool_id, spec->pool_name);
3527 if (count < 0)
3528 return count;
3529 bufp += count;
3530
3531 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3532 spec->image_name ? spec->image_name : "(unknown)");
3533 if (count < 0)
3534 return count;
3535 bufp += count;
3536
3537 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3538 (unsigned long long) spec->snap_id, spec->snap_name);
3539 if (count < 0)
3540 return count;
3541 bufp += count;
3542
3543 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3544 if (count < 0)
3545 return count;
3546 bufp += count;
3547
3548 return (ssize_t) (bufp - buf);
3549 }
3550
3551 static ssize_t rbd_image_refresh(struct device *dev,
3552 struct device_attribute *attr,
3553 const char *buf,
3554 size_t size)
3555 {
3556 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3557 int ret;
3558
3559 ret = rbd_dev_refresh(rbd_dev);
3560 if (ret)
3561 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3562
3563 return ret < 0 ? ret : size;
3564 }
3565
3566 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3567 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3568 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3569 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3570 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3571 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3572 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3573 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3574 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3575 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3576 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3577
3578 static struct attribute *rbd_attrs[] = {
3579 &dev_attr_size.attr,
3580 &dev_attr_features.attr,
3581 &dev_attr_major.attr,
3582 &dev_attr_client_id.attr,
3583 &dev_attr_pool.attr,
3584 &dev_attr_pool_id.attr,
3585 &dev_attr_name.attr,
3586 &dev_attr_image_id.attr,
3587 &dev_attr_current_snap.attr,
3588 &dev_attr_parent.attr,
3589 &dev_attr_refresh.attr,
3590 NULL
3591 };
3592
3593 static struct attribute_group rbd_attr_group = {
3594 .attrs = rbd_attrs,
3595 };
3596
3597 static const struct attribute_group *rbd_attr_groups[] = {
3598 &rbd_attr_group,
3599 NULL
3600 };
3601
3602 static void rbd_sysfs_dev_release(struct device *dev)
3603 {
3604 }
3605
3606 static struct device_type rbd_device_type = {
3607 .name = "rbd",
3608 .groups = rbd_attr_groups,
3609 .release = rbd_sysfs_dev_release,
3610 };
3611
3612 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3613 {
3614 kref_get(&spec->kref);
3615
3616 return spec;
3617 }
3618
3619 static void rbd_spec_free(struct kref *kref);
3620 static void rbd_spec_put(struct rbd_spec *spec)
3621 {
3622 if (spec)
3623 kref_put(&spec->kref, rbd_spec_free);
3624 }
3625
3626 static struct rbd_spec *rbd_spec_alloc(void)
3627 {
3628 struct rbd_spec *spec;
3629
3630 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3631 if (!spec)
3632 return NULL;
3633 kref_init(&spec->kref);
3634
3635 return spec;
3636 }
3637
3638 static void rbd_spec_free(struct kref *kref)
3639 {
3640 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3641
3642 kfree(spec->pool_name);
3643 kfree(spec->image_id);
3644 kfree(spec->image_name);
3645 kfree(spec->snap_name);
3646 kfree(spec);
3647 }
3648
3649 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3650 struct rbd_spec *spec)
3651 {
3652 struct rbd_device *rbd_dev;
3653
3654 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3655 if (!rbd_dev)
3656 return NULL;
3657
3658 spin_lock_init(&rbd_dev->lock);
3659 rbd_dev->flags = 0;
3660 atomic_set(&rbd_dev->parent_ref, 0);
3661 INIT_LIST_HEAD(&rbd_dev->node);
3662 init_rwsem(&rbd_dev->header_rwsem);
3663
3664 rbd_dev->spec = spec;
3665 rbd_dev->rbd_client = rbdc;
3666
3667 /* Initialize the layout used for all rbd requests */
3668
3669 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3671 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3672 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3673
3674 return rbd_dev;
3675 }
3676
3677 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3678 {
3679 rbd_put_client(rbd_dev->rbd_client);
3680 rbd_spec_put(rbd_dev->spec);
3681 kfree(rbd_dev);
3682 }
3683
3684 /*
3685 * Get the size and object order for an image snapshot, or if
3686 * snap_id is CEPH_NOSNAP, gets this information for the base
3687 * image.
3688 */
3689 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3690 u8 *order, u64 *snap_size)
3691 {
3692 __le64 snapid = cpu_to_le64(snap_id);
3693 int ret;
3694 struct {
3695 u8 order;
3696 __le64 size;
3697 } __attribute__ ((packed)) size_buf = { 0 };
3698
3699 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3700 "rbd", "get_size",
3701 &snapid, sizeof (snapid),
3702 &size_buf, sizeof (size_buf));
3703 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3704 if (ret < 0)
3705 return ret;
3706 if (ret < sizeof (size_buf))
3707 return -ERANGE;
3708
3709 if (order)
3710 *order = size_buf.order;
3711 *snap_size = le64_to_cpu(size_buf.size);
3712
3713 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3714 (unsigned long long)snap_id, (unsigned int)*order,
3715 (unsigned long long)*snap_size);
3716
3717 return 0;
3718 }
3719
3720 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3721 {
3722 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3723 &rbd_dev->header.obj_order,
3724 &rbd_dev->header.image_size);
3725 }
3726
3727 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3728 {
3729 void *reply_buf;
3730 int ret;
3731 void *p;
3732
3733 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3734 if (!reply_buf)
3735 return -ENOMEM;
3736
3737 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3738 "rbd", "get_object_prefix", NULL, 0,
3739 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3740 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3741 if (ret < 0)
3742 goto out;
3743
3744 p = reply_buf;
3745 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3746 p + ret, NULL, GFP_NOIO);
3747 ret = 0;
3748
3749 if (IS_ERR(rbd_dev->header.object_prefix)) {
3750 ret = PTR_ERR(rbd_dev->header.object_prefix);
3751 rbd_dev->header.object_prefix = NULL;
3752 } else {
3753 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3754 }
3755 out:
3756 kfree(reply_buf);
3757
3758 return ret;
3759 }
3760
3761 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3762 u64 *snap_features)
3763 {
3764 __le64 snapid = cpu_to_le64(snap_id);
3765 struct {
3766 __le64 features;
3767 __le64 incompat;
3768 } __attribute__ ((packed)) features_buf = { 0 };
3769 u64 incompat;
3770 int ret;
3771
3772 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3773 "rbd", "get_features",
3774 &snapid, sizeof (snapid),
3775 &features_buf, sizeof (features_buf));
3776 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3777 if (ret < 0)
3778 return ret;
3779 if (ret < sizeof (features_buf))
3780 return -ERANGE;
3781
3782 incompat = le64_to_cpu(features_buf.incompat);
3783 if (incompat & ~RBD_FEATURES_SUPPORTED)
3784 return -ENXIO;
3785
3786 *snap_features = le64_to_cpu(features_buf.features);
3787
3788 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3789 (unsigned long long)snap_id,
3790 (unsigned long long)*snap_features,
3791 (unsigned long long)le64_to_cpu(features_buf.incompat));
3792
3793 return 0;
3794 }
3795
3796 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3797 {
3798 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3799 &rbd_dev->header.features);
3800 }
3801
3802 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3803 {
3804 struct rbd_spec *parent_spec;
3805 size_t size;
3806 void *reply_buf = NULL;
3807 __le64 snapid;
3808 void *p;
3809 void *end;
3810 u64 pool_id;
3811 char *image_id;
3812 u64 overlap;
3813 int ret;
3814
3815 parent_spec = rbd_spec_alloc();
3816 if (!parent_spec)
3817 return -ENOMEM;
3818
3819 size = sizeof (__le64) + /* pool_id */
3820 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3821 sizeof (__le64) + /* snap_id */
3822 sizeof (__le64); /* overlap */
3823 reply_buf = kmalloc(size, GFP_KERNEL);
3824 if (!reply_buf) {
3825 ret = -ENOMEM;
3826 goto out_err;
3827 }
3828
3829 snapid = cpu_to_le64(CEPH_NOSNAP);
3830 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3831 "rbd", "get_parent",
3832 &snapid, sizeof (snapid),
3833 reply_buf, size);
3834 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3835 if (ret < 0)
3836 goto out_err;
3837
3838 p = reply_buf;
3839 end = reply_buf + ret;
3840 ret = -ERANGE;
3841 ceph_decode_64_safe(&p, end, pool_id, out_err);
3842 if (pool_id == CEPH_NOPOOL) {
3843 /*
3844 * Either the parent never existed, or we have
3845 * record of it but the image got flattened so it no
3846 * longer has a parent. When the parent of a
3847 * layered image disappears we immediately set the
3848 * overlap to 0. The effect of this is that all new
3849 * requests will be treated as if the image had no
3850 * parent.
3851 */
3852 if (rbd_dev->parent_overlap) {
3853 rbd_dev->parent_overlap = 0;
3854 smp_mb();
3855 rbd_dev_parent_put(rbd_dev);
3856 pr_info("%s: clone image has been flattened\n",
3857 rbd_dev->disk->disk_name);
3858 }
3859
3860 goto out; /* No parent? No problem. */
3861 }
3862
3863 /* The ceph file layout needs to fit pool id in 32 bits */
3864
3865 ret = -EIO;
3866 if (pool_id > (u64)U32_MAX) {
3867 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3868 (unsigned long long)pool_id, U32_MAX);
3869 goto out_err;
3870 }
3871 parent_spec->pool_id = pool_id;
3872
3873 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3874 if (IS_ERR(image_id)) {
3875 ret = PTR_ERR(image_id);
3876 goto out_err;
3877 }
3878 parent_spec->image_id = image_id;
3879 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3880 ceph_decode_64_safe(&p, end, overlap, out_err);
3881
3882 if (overlap) {
3883 rbd_spec_put(rbd_dev->parent_spec);
3884 rbd_dev->parent_spec = parent_spec;
3885 parent_spec = NULL; /* rbd_dev now owns this */
3886 rbd_dev->parent_overlap = overlap;
3887 } else {
3888 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3889 }
3890 out:
3891 ret = 0;
3892 out_err:
3893 kfree(reply_buf);
3894 rbd_spec_put(parent_spec);
3895
3896 return ret;
3897 }
3898
3899 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3900 {
3901 struct {
3902 __le64 stripe_unit;
3903 __le64 stripe_count;
3904 } __attribute__ ((packed)) striping_info_buf = { 0 };
3905 size_t size = sizeof (striping_info_buf);
3906 void *p;
3907 u64 obj_size;
3908 u64 stripe_unit;
3909 u64 stripe_count;
3910 int ret;
3911
3912 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3913 "rbd", "get_stripe_unit_count", NULL, 0,
3914 (char *)&striping_info_buf, size);
3915 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3916 if (ret < 0)
3917 return ret;
3918 if (ret < size)
3919 return -ERANGE;
3920
3921 /*
3922 * We don't actually support the "fancy striping" feature
3923 * (STRIPINGV2) yet, but if the striping sizes are the
3924 * defaults the behavior is the same as before. So find
3925 * out, and only fail if the image has non-default values.
3926 */
3927 ret = -EINVAL;
3928 obj_size = (u64)1 << rbd_dev->header.obj_order;
3929 p = &striping_info_buf;
3930 stripe_unit = ceph_decode_64(&p);
3931 if (stripe_unit != obj_size) {
3932 rbd_warn(rbd_dev, "unsupported stripe unit "
3933 "(got %llu want %llu)",
3934 stripe_unit, obj_size);
3935 return -EINVAL;
3936 }
3937 stripe_count = ceph_decode_64(&p);
3938 if (stripe_count != 1) {
3939 rbd_warn(rbd_dev, "unsupported stripe count "
3940 "(got %llu want 1)", stripe_count);
3941 return -EINVAL;
3942 }
3943 rbd_dev->header.stripe_unit = stripe_unit;
3944 rbd_dev->header.stripe_count = stripe_count;
3945
3946 return 0;
3947 }
3948
3949 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3950 {
3951 size_t image_id_size;
3952 char *image_id;
3953 void *p;
3954 void *end;
3955 size_t size;
3956 void *reply_buf = NULL;
3957 size_t len = 0;
3958 char *image_name = NULL;
3959 int ret;
3960
3961 rbd_assert(!rbd_dev->spec->image_name);
3962
3963 len = strlen(rbd_dev->spec->image_id);
3964 image_id_size = sizeof (__le32) + len;
3965 image_id = kmalloc(image_id_size, GFP_KERNEL);
3966 if (!image_id)
3967 return NULL;
3968
3969 p = image_id;
3970 end = image_id + image_id_size;
3971 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3972
3973 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3974 reply_buf = kmalloc(size, GFP_KERNEL);
3975 if (!reply_buf)
3976 goto out;
3977
3978 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3979 "rbd", "dir_get_name",
3980 image_id, image_id_size,
3981 reply_buf, size);
3982 if (ret < 0)
3983 goto out;
3984 p = reply_buf;
3985 end = reply_buf + ret;
3986
3987 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3988 if (IS_ERR(image_name))
3989 image_name = NULL;
3990 else
3991 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3992 out:
3993 kfree(reply_buf);
3994 kfree(image_id);
3995
3996 return image_name;
3997 }
3998
3999 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4000 {
4001 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4002 const char *snap_name;
4003 u32 which = 0;
4004
4005 /* Skip over names until we find the one we are looking for */
4006
4007 snap_name = rbd_dev->header.snap_names;
4008 while (which < snapc->num_snaps) {
4009 if (!strcmp(name, snap_name))
4010 return snapc->snaps[which];
4011 snap_name += strlen(snap_name) + 1;
4012 which++;
4013 }
4014 return CEPH_NOSNAP;
4015 }
4016
4017 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4018 {
4019 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4020 u32 which;
4021 bool found = false;
4022 u64 snap_id;
4023
4024 for (which = 0; !found && which < snapc->num_snaps; which++) {
4025 const char *snap_name;
4026
4027 snap_id = snapc->snaps[which];
4028 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4029 if (IS_ERR(snap_name))
4030 break;
4031 found = !strcmp(name, snap_name);
4032 kfree(snap_name);
4033 }
4034 return found ? snap_id : CEPH_NOSNAP;
4035 }
4036
4037 /*
4038 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4039 * no snapshot by that name is found, or if an error occurs.
4040 */
4041 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4042 {
4043 if (rbd_dev->image_format == 1)
4044 return rbd_v1_snap_id_by_name(rbd_dev, name);
4045
4046 return rbd_v2_snap_id_by_name(rbd_dev, name);
4047 }
4048
4049 /*
4050 * When an rbd image has a parent image, it is identified by the
4051 * pool, image, and snapshot ids (not names). This function fills
4052 * in the names for those ids. (It's OK if we can't figure out the
4053 * name for an image id, but the pool and snapshot ids should always
4054 * exist and have names.) All names in an rbd spec are dynamically
4055 * allocated.
4056 *
4057 * When an image being mapped (not a parent) is probed, we have the
4058 * pool name and pool id, image name and image id, and the snapshot
4059 * name. The only thing we're missing is the snapshot id.
4060 */
4061 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4062 {
4063 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4064 struct rbd_spec *spec = rbd_dev->spec;
4065 const char *pool_name;
4066 const char *image_name;
4067 const char *snap_name;
4068 int ret;
4069
4070 /*
4071 * An image being mapped will have the pool name (etc.), but
4072 * we need to look up the snapshot id.
4073 */
4074 if (spec->pool_name) {
4075 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4076 u64 snap_id;
4077
4078 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4079 if (snap_id == CEPH_NOSNAP)
4080 return -ENOENT;
4081 spec->snap_id = snap_id;
4082 } else {
4083 spec->snap_id = CEPH_NOSNAP;
4084 }
4085
4086 return 0;
4087 }
4088
4089 /* Get the pool name; we have to make our own copy of this */
4090
4091 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4092 if (!pool_name) {
4093 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4094 return -EIO;
4095 }
4096 pool_name = kstrdup(pool_name, GFP_KERNEL);
4097 if (!pool_name)
4098 return -ENOMEM;
4099
4100 /* Fetch the image name; tolerate failure here */
4101
4102 image_name = rbd_dev_image_name(rbd_dev);
4103 if (!image_name)
4104 rbd_warn(rbd_dev, "unable to get image name");
4105
4106 /* Look up the snapshot name, and make a copy */
4107
4108 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4109 if (!snap_name) {
4110 ret = -ENOMEM;
4111 goto out_err;
4112 }
4113
4114 spec->pool_name = pool_name;
4115 spec->image_name = image_name;
4116 spec->snap_name = snap_name;
4117
4118 return 0;
4119 out_err:
4120 kfree(image_name);
4121 kfree(pool_name);
4122
4123 return ret;
4124 }
4125
4126 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4127 {
4128 size_t size;
4129 int ret;
4130 void *reply_buf;
4131 void *p;
4132 void *end;
4133 u64 seq;
4134 u32 snap_count;
4135 struct ceph_snap_context *snapc;
4136 u32 i;
4137
4138 /*
4139 * We'll need room for the seq value (maximum snapshot id),
4140 * snapshot count, and array of that many snapshot ids.
4141 * For now we have a fixed upper limit on the number we're
4142 * prepared to receive.
4143 */
4144 size = sizeof (__le64) + sizeof (__le32) +
4145 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4146 reply_buf = kzalloc(size, GFP_KERNEL);
4147 if (!reply_buf)
4148 return -ENOMEM;
4149
4150 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4151 "rbd", "get_snapcontext", NULL, 0,
4152 reply_buf, size);
4153 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4154 if (ret < 0)
4155 goto out;
4156
4157 p = reply_buf;
4158 end = reply_buf + ret;
4159 ret = -ERANGE;
4160 ceph_decode_64_safe(&p, end, seq, out);
4161 ceph_decode_32_safe(&p, end, snap_count, out);
4162
4163 /*
4164 * Make sure the reported number of snapshot ids wouldn't go
4165 * beyond the end of our buffer. But before checking that,
4166 * make sure the computed size of the snapshot context we
4167 * allocate is representable in a size_t.
4168 */
4169 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4170 / sizeof (u64)) {
4171 ret = -EINVAL;
4172 goto out;
4173 }
4174 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4175 goto out;
4176 ret = 0;
4177
4178 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4179 if (!snapc) {
4180 ret = -ENOMEM;
4181 goto out;
4182 }
4183 snapc->seq = seq;
4184 for (i = 0; i < snap_count; i++)
4185 snapc->snaps[i] = ceph_decode_64(&p);
4186
4187 ceph_put_snap_context(rbd_dev->header.snapc);
4188 rbd_dev->header.snapc = snapc;
4189
4190 dout(" snap context seq = %llu, snap_count = %u\n",
4191 (unsigned long long)seq, (unsigned int)snap_count);
4192 out:
4193 kfree(reply_buf);
4194
4195 return ret;
4196 }
4197
4198 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4199 u64 snap_id)
4200 {
4201 size_t size;
4202 void *reply_buf;
4203 __le64 snapid;
4204 int ret;
4205 void *p;
4206 void *end;
4207 char *snap_name;
4208
4209 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4210 reply_buf = kmalloc(size, GFP_KERNEL);
4211 if (!reply_buf)
4212 return ERR_PTR(-ENOMEM);
4213
4214 snapid = cpu_to_le64(snap_id);
4215 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4216 "rbd", "get_snapshot_name",
4217 &snapid, sizeof (snapid),
4218 reply_buf, size);
4219 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4220 if (ret < 0) {
4221 snap_name = ERR_PTR(ret);
4222 goto out;
4223 }
4224
4225 p = reply_buf;
4226 end = reply_buf + ret;
4227 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4228 if (IS_ERR(snap_name))
4229 goto out;
4230
4231 dout(" snap_id 0x%016llx snap_name = %s\n",
4232 (unsigned long long)snap_id, snap_name);
4233 out:
4234 kfree(reply_buf);
4235
4236 return snap_name;
4237 }
4238
4239 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4240 {
4241 bool first_time = rbd_dev->header.object_prefix == NULL;
4242 int ret;
4243
4244 down_write(&rbd_dev->header_rwsem);
4245
4246 ret = rbd_dev_v2_image_size(rbd_dev);
4247 if (ret)
4248 goto out;
4249
4250 if (first_time) {
4251 ret = rbd_dev_v2_header_onetime(rbd_dev);
4252 if (ret)
4253 goto out;
4254 }
4255
4256 /*
4257 * If the image supports layering, get the parent info. We
4258 * need to probe the first time regardless. Thereafter we
4259 * only need to if there's a parent, to see if it has
4260 * disappeared due to the mapped image getting flattened.
4261 */
4262 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4263 (first_time || rbd_dev->parent_spec)) {
4264 bool warn;
4265
4266 ret = rbd_dev_v2_parent_info(rbd_dev);
4267 if (ret)
4268 goto out;
4269
4270 /*
4271 * Print a warning if this is the initial probe and
4272 * the image has a parent. Don't print it if the
4273 * image now being probed is itself a parent. We
4274 * can tell at this point because we won't know its
4275 * pool name yet (just its pool id).
4276 */
4277 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4278 if (first_time && warn)
4279 rbd_warn(rbd_dev, "WARNING: kernel layering "
4280 "is EXPERIMENTAL!");
4281 }
4282
4283 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4284 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4285 rbd_dev->mapping.size = rbd_dev->header.image_size;
4286
4287 ret = rbd_dev_v2_snap_context(rbd_dev);
4288 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4289 out:
4290 up_write(&rbd_dev->header_rwsem);
4291
4292 return ret;
4293 }
4294
4295 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4296 {
4297 struct device *dev;
4298 int ret;
4299
4300 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4301
4302 dev = &rbd_dev->dev;
4303 dev->bus = &rbd_bus_type;
4304 dev->type = &rbd_device_type;
4305 dev->parent = &rbd_root_dev;
4306 dev->release = rbd_dev_device_release;
4307 dev_set_name(dev, "%d", rbd_dev->dev_id);
4308 ret = device_register(dev);
4309
4310 mutex_unlock(&ctl_mutex);
4311
4312 return ret;
4313 }
4314
4315 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4316 {
4317 device_unregister(&rbd_dev->dev);
4318 }
4319
4320 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4321
4322 /*
4323 * Get a unique rbd identifier for the given new rbd_dev, and add
4324 * the rbd_dev to the global list. The minimum rbd id is 1.
4325 */
4326 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4327 {
4328 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4329
4330 spin_lock(&rbd_dev_list_lock);
4331 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4332 spin_unlock(&rbd_dev_list_lock);
4333 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4334 (unsigned long long) rbd_dev->dev_id);
4335 }
4336
4337 /*
4338 * Remove an rbd_dev from the global list, and record that its
4339 * identifier is no longer in use.
4340 */
4341 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4342 {
4343 struct list_head *tmp;
4344 int rbd_id = rbd_dev->dev_id;
4345 int max_id;
4346
4347 rbd_assert(rbd_id > 0);
4348
4349 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4350 (unsigned long long) rbd_dev->dev_id);
4351 spin_lock(&rbd_dev_list_lock);
4352 list_del_init(&rbd_dev->node);
4353
4354 /*
4355 * If the id being "put" is not the current maximum, there
4356 * is nothing special we need to do.
4357 */
4358 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4359 spin_unlock(&rbd_dev_list_lock);
4360 return;
4361 }
4362
4363 /*
4364 * We need to update the current maximum id. Search the
4365 * list to find out what it is. We're more likely to find
4366 * the maximum at the end, so search the list backward.
4367 */
4368 max_id = 0;
4369 list_for_each_prev(tmp, &rbd_dev_list) {
4370 struct rbd_device *rbd_dev;
4371
4372 rbd_dev = list_entry(tmp, struct rbd_device, node);
4373 if (rbd_dev->dev_id > max_id)
4374 max_id = rbd_dev->dev_id;
4375 }
4376 spin_unlock(&rbd_dev_list_lock);
4377
4378 /*
4379 * The max id could have been updated by rbd_dev_id_get(), in
4380 * which case it now accurately reflects the new maximum.
4381 * Be careful not to overwrite the maximum value in that
4382 * case.
4383 */
4384 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4385 dout(" max dev id has been reset\n");
4386 }
4387
4388 /*
4389 * Skips over white space at *buf, and updates *buf to point to the
4390 * first found non-space character (if any). Returns the length of
4391 * the token (string of non-white space characters) found. Note
4392 * that *buf must be terminated with '\0'.
4393 */
4394 static inline size_t next_token(const char **buf)
4395 {
4396 /*
4397 * These are the characters that produce nonzero for
4398 * isspace() in the "C" and "POSIX" locales.
4399 */
4400 const char *spaces = " \f\n\r\t\v";
4401
4402 *buf += strspn(*buf, spaces); /* Find start of token */
4403
4404 return strcspn(*buf, spaces); /* Return token length */
4405 }
4406
4407 /*
4408 * Finds the next token in *buf, and if the provided token buffer is
4409 * big enough, copies the found token into it. The result, if
4410 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4411 * must be terminated with '\0' on entry.
4412 *
4413 * Returns the length of the token found (not including the '\0').
4414 * Return value will be 0 if no token is found, and it will be >=
4415 * token_size if the token would not fit.
4416 *
4417 * The *buf pointer will be updated to point beyond the end of the
4418 * found token. Note that this occurs even if the token buffer is
4419 * too small to hold it.
4420 */
4421 static inline size_t copy_token(const char **buf,
4422 char *token,
4423 size_t token_size)
4424 {
4425 size_t len;
4426
4427 len = next_token(buf);
4428 if (len < token_size) {
4429 memcpy(token, *buf, len);
4430 *(token + len) = '\0';
4431 }
4432 *buf += len;
4433
4434 return len;
4435 }
4436
4437 /*
4438 * Finds the next token in *buf, dynamically allocates a buffer big
4439 * enough to hold a copy of it, and copies the token into the new
4440 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4441 * that a duplicate buffer is created even for a zero-length token.
4442 *
4443 * Returns a pointer to the newly-allocated duplicate, or a null
4444 * pointer if memory for the duplicate was not available. If
4445 * the lenp argument is a non-null pointer, the length of the token
4446 * (not including the '\0') is returned in *lenp.
4447 *
4448 * If successful, the *buf pointer will be updated to point beyond
4449 * the end of the found token.
4450 *
4451 * Note: uses GFP_KERNEL for allocation.
4452 */
4453 static inline char *dup_token(const char **buf, size_t *lenp)
4454 {
4455 char *dup;
4456 size_t len;
4457
4458 len = next_token(buf);
4459 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4460 if (!dup)
4461 return NULL;
4462 *(dup + len) = '\0';
4463 *buf += len;
4464
4465 if (lenp)
4466 *lenp = len;
4467
4468 return dup;
4469 }
4470
4471 /*
4472 * Parse the options provided for an "rbd add" (i.e., rbd image
4473 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4474 * and the data written is passed here via a NUL-terminated buffer.
4475 * Returns 0 if successful or an error code otherwise.
4476 *
4477 * The information extracted from these options is recorded in
4478 * the other parameters which return dynamically-allocated
4479 * structures:
4480 * ceph_opts
4481 * The address of a pointer that will refer to a ceph options
4482 * structure. Caller must release the returned pointer using
4483 * ceph_destroy_options() when it is no longer needed.
4484 * rbd_opts
4485 * Address of an rbd options pointer. Fully initialized by
4486 * this function; caller must release with kfree().
4487 * spec
4488 * Address of an rbd image specification pointer. Fully
4489 * initialized by this function based on parsed options.
4490 * Caller must release with rbd_spec_put().
4491 *
4492 * The options passed take this form:
4493 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4494 * where:
4495 * <mon_addrs>
4496 * A comma-separated list of one or more monitor addresses.
4497 * A monitor address is an ip address, optionally followed
4498 * by a port number (separated by a colon).
4499 * I.e.: ip1[:port1][,ip2[:port2]...]
4500 * <options>
4501 * A comma-separated list of ceph and/or rbd options.
4502 * <pool_name>
4503 * The name of the rados pool containing the rbd image.
4504 * <image_name>
4505 * The name of the image in that pool to map.
4506 * <snap_id>
4507 * An optional snapshot id. If provided, the mapping will
4508 * present data from the image at the time that snapshot was
4509 * created. The image head is used if no snapshot id is
4510 * provided. Snapshot mappings are always read-only.
4511 */
4512 static int rbd_add_parse_args(const char *buf,
4513 struct ceph_options **ceph_opts,
4514 struct rbd_options **opts,
4515 struct rbd_spec **rbd_spec)
4516 {
4517 size_t len;
4518 char *options;
4519 const char *mon_addrs;
4520 char *snap_name;
4521 size_t mon_addrs_size;
4522 struct rbd_spec *spec = NULL;
4523 struct rbd_options *rbd_opts = NULL;
4524 struct ceph_options *copts;
4525 int ret;
4526
4527 /* The first four tokens are required */
4528
4529 len = next_token(&buf);
4530 if (!len) {
4531 rbd_warn(NULL, "no monitor address(es) provided");
4532 return -EINVAL;
4533 }
4534 mon_addrs = buf;
4535 mon_addrs_size = len + 1;
4536 buf += len;
4537
4538 ret = -EINVAL;
4539 options = dup_token(&buf, NULL);
4540 if (!options)
4541 return -ENOMEM;
4542 if (!*options) {
4543 rbd_warn(NULL, "no options provided");
4544 goto out_err;
4545 }
4546
4547 spec = rbd_spec_alloc();
4548 if (!spec)
4549 goto out_mem;
4550
4551 spec->pool_name = dup_token(&buf, NULL);
4552 if (!spec->pool_name)
4553 goto out_mem;
4554 if (!*spec->pool_name) {
4555 rbd_warn(NULL, "no pool name provided");
4556 goto out_err;
4557 }
4558
4559 spec->image_name = dup_token(&buf, NULL);
4560 if (!spec->image_name)
4561 goto out_mem;
4562 if (!*spec->image_name) {
4563 rbd_warn(NULL, "no image name provided");
4564 goto out_err;
4565 }
4566
4567 /*
4568 * Snapshot name is optional; default is to use "-"
4569 * (indicating the head/no snapshot).
4570 */
4571 len = next_token(&buf);
4572 if (!len) {
4573 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4574 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4575 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4576 ret = -ENAMETOOLONG;
4577 goto out_err;
4578 }
4579 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4580 if (!snap_name)
4581 goto out_mem;
4582 *(snap_name + len) = '\0';
4583 spec->snap_name = snap_name;
4584
4585 /* Initialize all rbd options to the defaults */
4586
4587 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4588 if (!rbd_opts)
4589 goto out_mem;
4590
4591 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4592
4593 copts = ceph_parse_options(options, mon_addrs,
4594 mon_addrs + mon_addrs_size - 1,
4595 parse_rbd_opts_token, rbd_opts);
4596 if (IS_ERR(copts)) {
4597 ret = PTR_ERR(copts);
4598 goto out_err;
4599 }
4600 kfree(options);
4601
4602 *ceph_opts = copts;
4603 *opts = rbd_opts;
4604 *rbd_spec = spec;
4605
4606 return 0;
4607 out_mem:
4608 ret = -ENOMEM;
4609 out_err:
4610 kfree(rbd_opts);
4611 rbd_spec_put(spec);
4612 kfree(options);
4613
4614 return ret;
4615 }
4616
4617 /*
4618 * An rbd format 2 image has a unique identifier, distinct from the
4619 * name given to it by the user. Internally, that identifier is
4620 * what's used to specify the names of objects related to the image.
4621 *
4622 * A special "rbd id" object is used to map an rbd image name to its
4623 * id. If that object doesn't exist, then there is no v2 rbd image
4624 * with the supplied name.
4625 *
4626 * This function will record the given rbd_dev's image_id field if
4627 * it can be determined, and in that case will return 0. If any
4628 * errors occur a negative errno will be returned and the rbd_dev's
4629 * image_id field will be unchanged (and should be NULL).
4630 */
4631 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4632 {
4633 int ret;
4634 size_t size;
4635 char *object_name;
4636 void *response;
4637 char *image_id;
4638
4639 /*
4640 * When probing a parent image, the image id is already
4641 * known (and the image name likely is not). There's no
4642 * need to fetch the image id again in this case. We
4643 * do still need to set the image format though.
4644 */
4645 if (rbd_dev->spec->image_id) {
4646 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4647
4648 return 0;
4649 }
4650
4651 /*
4652 * First, see if the format 2 image id file exists, and if
4653 * so, get the image's persistent id from it.
4654 */
4655 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4656 object_name = kmalloc(size, GFP_NOIO);
4657 if (!object_name)
4658 return -ENOMEM;
4659 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4660 dout("rbd id object name is %s\n", object_name);
4661
4662 /* Response will be an encoded string, which includes a length */
4663
4664 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4665 response = kzalloc(size, GFP_NOIO);
4666 if (!response) {
4667 ret = -ENOMEM;
4668 goto out;
4669 }
4670
4671 /* If it doesn't exist we'll assume it's a format 1 image */
4672
4673 ret = rbd_obj_method_sync(rbd_dev, object_name,
4674 "rbd", "get_id", NULL, 0,
4675 response, RBD_IMAGE_ID_LEN_MAX);
4676 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4677 if (ret == -ENOENT) {
4678 image_id = kstrdup("", GFP_KERNEL);
4679 ret = image_id ? 0 : -ENOMEM;
4680 if (!ret)
4681 rbd_dev->image_format = 1;
4682 } else if (ret > sizeof (__le32)) {
4683 void *p = response;
4684
4685 image_id = ceph_extract_encoded_string(&p, p + ret,
4686 NULL, GFP_NOIO);
4687 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4688 if (!ret)
4689 rbd_dev->image_format = 2;
4690 } else {
4691 ret = -EINVAL;
4692 }
4693
4694 if (!ret) {
4695 rbd_dev->spec->image_id = image_id;
4696 dout("image_id is %s\n", image_id);
4697 }
4698 out:
4699 kfree(response);
4700 kfree(object_name);
4701
4702 return ret;
4703 }
4704
4705 /*
4706 * Undo whatever state changes are made by v1 or v2 header info
4707 * call.
4708 */
4709 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4710 {
4711 struct rbd_image_header *header;
4712
4713 /* Drop parent reference unless it's already been done (or none) */
4714
4715 if (rbd_dev->parent_overlap)
4716 rbd_dev_parent_put(rbd_dev);
4717
4718 /* Free dynamic fields from the header, then zero it out */
4719
4720 header = &rbd_dev->header;
4721 ceph_put_snap_context(header->snapc);
4722 kfree(header->snap_sizes);
4723 kfree(header->snap_names);
4724 kfree(header->object_prefix);
4725 memset(header, 0, sizeof (*header));
4726 }
4727
4728 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4729 {
4730 int ret;
4731
4732 ret = rbd_dev_v2_object_prefix(rbd_dev);
4733 if (ret)
4734 goto out_err;
4735
4736 /*
4737 * Get the and check features for the image. Currently the
4738 * features are assumed to never change.
4739 */
4740 ret = rbd_dev_v2_features(rbd_dev);
4741 if (ret)
4742 goto out_err;
4743
4744 /* If the image supports fancy striping, get its parameters */
4745
4746 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4747 ret = rbd_dev_v2_striping_info(rbd_dev);
4748 if (ret < 0)
4749 goto out_err;
4750 }
4751 /* No support for crypto and compression type format 2 images */
4752
4753 return 0;
4754 out_err:
4755 rbd_dev->header.features = 0;
4756 kfree(rbd_dev->header.object_prefix);
4757 rbd_dev->header.object_prefix = NULL;
4758
4759 return ret;
4760 }
4761
4762 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4763 {
4764 struct rbd_device *parent = NULL;
4765 struct rbd_spec *parent_spec;
4766 struct rbd_client *rbdc;
4767 int ret;
4768
4769 if (!rbd_dev->parent_spec)
4770 return 0;
4771 /*
4772 * We need to pass a reference to the client and the parent
4773 * spec when creating the parent rbd_dev. Images related by
4774 * parent/child relationships always share both.
4775 */
4776 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4777 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4778
4779 ret = -ENOMEM;
4780 parent = rbd_dev_create(rbdc, parent_spec);
4781 if (!parent)
4782 goto out_err;
4783
4784 ret = rbd_dev_image_probe(parent, false);
4785 if (ret < 0)
4786 goto out_err;
4787 rbd_dev->parent = parent;
4788 atomic_set(&rbd_dev->parent_ref, 1);
4789
4790 return 0;
4791 out_err:
4792 if (parent) {
4793 rbd_dev_unparent(rbd_dev);
4794 kfree(rbd_dev->header_name);
4795 rbd_dev_destroy(parent);
4796 } else {
4797 rbd_put_client(rbdc);
4798 rbd_spec_put(parent_spec);
4799 }
4800
4801 return ret;
4802 }
4803
4804 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4805 {
4806 int ret;
4807
4808 /* generate unique id: find highest unique id, add one */
4809 rbd_dev_id_get(rbd_dev);
4810
4811 /* Fill in the device name, now that we have its id. */
4812 BUILD_BUG_ON(DEV_NAME_LEN
4813 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4814 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4815
4816 /* Get our block major device number. */
4817
4818 ret = register_blkdev(0, rbd_dev->name);
4819 if (ret < 0)
4820 goto err_out_id;
4821 rbd_dev->major = ret;
4822
4823 /* Set up the blkdev mapping. */
4824
4825 ret = rbd_init_disk(rbd_dev);
4826 if (ret)
4827 goto err_out_blkdev;
4828
4829 ret = rbd_dev_mapping_set(rbd_dev);
4830 if (ret)
4831 goto err_out_disk;
4832 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4833
4834 ret = rbd_bus_add_dev(rbd_dev);
4835 if (ret)
4836 goto err_out_mapping;
4837
4838 /* Everything's ready. Announce the disk to the world. */
4839
4840 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4841 add_disk(rbd_dev->disk);
4842
4843 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4844 (unsigned long long) rbd_dev->mapping.size);
4845
4846 return ret;
4847
4848 err_out_mapping:
4849 rbd_dev_mapping_clear(rbd_dev);
4850 err_out_disk:
4851 rbd_free_disk(rbd_dev);
4852 err_out_blkdev:
4853 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4854 err_out_id:
4855 rbd_dev_id_put(rbd_dev);
4856 rbd_dev_mapping_clear(rbd_dev);
4857
4858 return ret;
4859 }
4860
4861 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4862 {
4863 struct rbd_spec *spec = rbd_dev->spec;
4864 size_t size;
4865
4866 /* Record the header object name for this rbd image. */
4867
4868 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4869
4870 if (rbd_dev->image_format == 1)
4871 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4872 else
4873 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4874
4875 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4876 if (!rbd_dev->header_name)
4877 return -ENOMEM;
4878
4879 if (rbd_dev->image_format == 1)
4880 sprintf(rbd_dev->header_name, "%s%s",
4881 spec->image_name, RBD_SUFFIX);
4882 else
4883 sprintf(rbd_dev->header_name, "%s%s",
4884 RBD_HEADER_PREFIX, spec->image_id);
4885 return 0;
4886 }
4887
4888 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4889 {
4890 rbd_dev_unprobe(rbd_dev);
4891 kfree(rbd_dev->header_name);
4892 rbd_dev->header_name = NULL;
4893 rbd_dev->image_format = 0;
4894 kfree(rbd_dev->spec->image_id);
4895 rbd_dev->spec->image_id = NULL;
4896
4897 rbd_dev_destroy(rbd_dev);
4898 }
4899
4900 /*
4901 * Probe for the existence of the header object for the given rbd
4902 * device. If this image is the one being mapped (i.e., not a
4903 * parent), initiate a watch on its header object before using that
4904 * object to get detailed information about the rbd image.
4905 */
4906 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4907 {
4908 int ret;
4909 int tmp;
4910
4911 /*
4912 * Get the id from the image id object. Unless there's an
4913 * error, rbd_dev->spec->image_id will be filled in with
4914 * a dynamically-allocated string, and rbd_dev->image_format
4915 * will be set to either 1 or 2.
4916 */
4917 ret = rbd_dev_image_id(rbd_dev);
4918 if (ret)
4919 return ret;
4920 rbd_assert(rbd_dev->spec->image_id);
4921 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4922
4923 ret = rbd_dev_header_name(rbd_dev);
4924 if (ret)
4925 goto err_out_format;
4926
4927 if (mapping) {
4928 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4929 if (ret)
4930 goto out_header_name;
4931 }
4932
4933 if (rbd_dev->image_format == 1)
4934 ret = rbd_dev_v1_header_info(rbd_dev);
4935 else
4936 ret = rbd_dev_v2_header_info(rbd_dev);
4937 if (ret)
4938 goto err_out_watch;
4939
4940 ret = rbd_dev_spec_update(rbd_dev);
4941 if (ret)
4942 goto err_out_probe;
4943
4944 ret = rbd_dev_probe_parent(rbd_dev);
4945 if (ret)
4946 goto err_out_probe;
4947
4948 dout("discovered format %u image, header name is %s\n",
4949 rbd_dev->image_format, rbd_dev->header_name);
4950
4951 return 0;
4952 err_out_probe:
4953 rbd_dev_unprobe(rbd_dev);
4954 err_out_watch:
4955 if (mapping) {
4956 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4957 if (tmp)
4958 rbd_warn(rbd_dev, "unable to tear down "
4959 "watch request (%d)\n", tmp);
4960 }
4961 out_header_name:
4962 kfree(rbd_dev->header_name);
4963 rbd_dev->header_name = NULL;
4964 err_out_format:
4965 rbd_dev->image_format = 0;
4966 kfree(rbd_dev->spec->image_id);
4967 rbd_dev->spec->image_id = NULL;
4968
4969 dout("probe failed, returning %d\n", ret);
4970
4971 return ret;
4972 }
4973
4974 static ssize_t rbd_add(struct bus_type *bus,
4975 const char *buf,
4976 size_t count)
4977 {
4978 struct rbd_device *rbd_dev = NULL;
4979 struct ceph_options *ceph_opts = NULL;
4980 struct rbd_options *rbd_opts = NULL;
4981 struct rbd_spec *spec = NULL;
4982 struct rbd_client *rbdc;
4983 struct ceph_osd_client *osdc;
4984 bool read_only;
4985 int rc = -ENOMEM;
4986
4987 if (!try_module_get(THIS_MODULE))
4988 return -ENODEV;
4989
4990 /* parse add command */
4991 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4992 if (rc < 0)
4993 goto err_out_module;
4994 read_only = rbd_opts->read_only;
4995 kfree(rbd_opts);
4996 rbd_opts = NULL; /* done with this */
4997
4998 rbdc = rbd_get_client(ceph_opts);
4999 if (IS_ERR(rbdc)) {
5000 rc = PTR_ERR(rbdc);
5001 goto err_out_args;
5002 }
5003
5004 /* pick the pool */
5005 osdc = &rbdc->client->osdc;
5006 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5007 if (rc < 0)
5008 goto err_out_client;
5009 spec->pool_id = (u64)rc;
5010
5011 /* The ceph file layout needs to fit pool id in 32 bits */
5012
5013 if (spec->pool_id > (u64)U32_MAX) {
5014 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5015 (unsigned long long)spec->pool_id, U32_MAX);
5016 rc = -EIO;
5017 goto err_out_client;
5018 }
5019
5020 rbd_dev = rbd_dev_create(rbdc, spec);
5021 if (!rbd_dev)
5022 goto err_out_client;
5023 rbdc = NULL; /* rbd_dev now owns this */
5024 spec = NULL; /* rbd_dev now owns this */
5025
5026 rc = rbd_dev_image_probe(rbd_dev, true);
5027 if (rc < 0)
5028 goto err_out_rbd_dev;
5029
5030 /* If we are mapping a snapshot it must be marked read-only */
5031
5032 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5033 read_only = true;
5034 rbd_dev->mapping.read_only = read_only;
5035
5036 rc = rbd_dev_device_setup(rbd_dev);
5037 if (rc) {
5038 rbd_dev_image_release(rbd_dev);
5039 goto err_out_module;
5040 }
5041
5042 return count;
5043
5044 err_out_rbd_dev:
5045 rbd_dev_destroy(rbd_dev);
5046 err_out_client:
5047 rbd_put_client(rbdc);
5048 err_out_args:
5049 rbd_spec_put(spec);
5050 err_out_module:
5051 module_put(THIS_MODULE);
5052
5053 dout("Error adding device %s\n", buf);
5054
5055 return (ssize_t)rc;
5056 }
5057
5058 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5059 {
5060 struct list_head *tmp;
5061 struct rbd_device *rbd_dev;
5062
5063 spin_lock(&rbd_dev_list_lock);
5064 list_for_each(tmp, &rbd_dev_list) {
5065 rbd_dev = list_entry(tmp, struct rbd_device, node);
5066 if (rbd_dev->dev_id == dev_id) {
5067 spin_unlock(&rbd_dev_list_lock);
5068 return rbd_dev;
5069 }
5070 }
5071 spin_unlock(&rbd_dev_list_lock);
5072 return NULL;
5073 }
5074
5075 static void rbd_dev_device_release(struct device *dev)
5076 {
5077 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5078
5079 rbd_free_disk(rbd_dev);
5080 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5081 rbd_dev_mapping_clear(rbd_dev);
5082 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5083 rbd_dev->major = 0;
5084 rbd_dev_id_put(rbd_dev);
5085 rbd_dev_mapping_clear(rbd_dev);
5086 }
5087
5088 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5089 {
5090 while (rbd_dev->parent) {
5091 struct rbd_device *first = rbd_dev;
5092 struct rbd_device *second = first->parent;
5093 struct rbd_device *third;
5094
5095 /*
5096 * Follow to the parent with no grandparent and
5097 * remove it.
5098 */
5099 while (second && (third = second->parent)) {
5100 first = second;
5101 second = third;
5102 }
5103 rbd_assert(second);
5104 rbd_dev_image_release(second);
5105 first->parent = NULL;
5106 first->parent_overlap = 0;
5107
5108 rbd_assert(first->parent_spec);
5109 rbd_spec_put(first->parent_spec);
5110 first->parent_spec = NULL;
5111 }
5112 }
5113
5114 static ssize_t rbd_remove(struct bus_type *bus,
5115 const char *buf,
5116 size_t count)
5117 {
5118 struct rbd_device *rbd_dev = NULL;
5119 int target_id;
5120 unsigned long ul;
5121 int ret;
5122
5123 ret = strict_strtoul(buf, 10, &ul);
5124 if (ret)
5125 return ret;
5126
5127 /* convert to int; abort if we lost anything in the conversion */
5128 target_id = (int) ul;
5129 if (target_id != ul)
5130 return -EINVAL;
5131
5132 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5133
5134 rbd_dev = __rbd_get_dev(target_id);
5135 if (!rbd_dev) {
5136 ret = -ENOENT;
5137 goto done;
5138 }
5139
5140 spin_lock_irq(&rbd_dev->lock);
5141 if (rbd_dev->open_count)
5142 ret = -EBUSY;
5143 else
5144 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5145 spin_unlock_irq(&rbd_dev->lock);
5146 if (ret < 0)
5147 goto done;
5148 rbd_bus_del_dev(rbd_dev);
5149 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5150 if (ret)
5151 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5152 rbd_dev_image_release(rbd_dev);
5153 module_put(THIS_MODULE);
5154 ret = count;
5155 done:
5156 mutex_unlock(&ctl_mutex);
5157
5158 return ret;
5159 }
5160
5161 /*
5162 * create control files in sysfs
5163 * /sys/bus/rbd/...
5164 */
5165 static int rbd_sysfs_init(void)
5166 {
5167 int ret;
5168
5169 ret = device_register(&rbd_root_dev);
5170 if (ret < 0)
5171 return ret;
5172
5173 ret = bus_register(&rbd_bus_type);
5174 if (ret < 0)
5175 device_unregister(&rbd_root_dev);
5176
5177 return ret;
5178 }
5179
5180 static void rbd_sysfs_cleanup(void)
5181 {
5182 bus_unregister(&rbd_bus_type);
5183 device_unregister(&rbd_root_dev);
5184 }
5185
5186 static int rbd_slab_init(void)
5187 {
5188 rbd_assert(!rbd_img_request_cache);
5189 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5190 sizeof (struct rbd_img_request),
5191 __alignof__(struct rbd_img_request),
5192 0, NULL);
5193 if (!rbd_img_request_cache)
5194 return -ENOMEM;
5195
5196 rbd_assert(!rbd_obj_request_cache);
5197 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5198 sizeof (struct rbd_obj_request),
5199 __alignof__(struct rbd_obj_request),
5200 0, NULL);
5201 if (!rbd_obj_request_cache)
5202 goto out_err;
5203
5204 rbd_assert(!rbd_segment_name_cache);
5205 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5206 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5207 if (rbd_segment_name_cache)
5208 return 0;
5209 out_err:
5210 if (rbd_obj_request_cache) {
5211 kmem_cache_destroy(rbd_obj_request_cache);
5212 rbd_obj_request_cache = NULL;
5213 }
5214
5215 kmem_cache_destroy(rbd_img_request_cache);
5216 rbd_img_request_cache = NULL;
5217
5218 return -ENOMEM;
5219 }
5220
5221 static void rbd_slab_exit(void)
5222 {
5223 rbd_assert(rbd_segment_name_cache);
5224 kmem_cache_destroy(rbd_segment_name_cache);
5225 rbd_segment_name_cache = NULL;
5226
5227 rbd_assert(rbd_obj_request_cache);
5228 kmem_cache_destroy(rbd_obj_request_cache);
5229 rbd_obj_request_cache = NULL;
5230
5231 rbd_assert(rbd_img_request_cache);
5232 kmem_cache_destroy(rbd_img_request_cache);
5233 rbd_img_request_cache = NULL;
5234 }
5235
5236 static int __init rbd_init(void)
5237 {
5238 int rc;
5239
5240 if (!libceph_compatible(NULL)) {
5241 rbd_warn(NULL, "libceph incompatibility (quitting)");
5242
5243 return -EINVAL;
5244 }
5245 rc = rbd_slab_init();
5246 if (rc)
5247 return rc;
5248 rc = rbd_sysfs_init();
5249 if (rc)
5250 rbd_slab_exit();
5251 else
5252 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5253
5254 return rc;
5255 }
5256
5257 static void __exit rbd_exit(void)
5258 {
5259 rbd_sysfs_cleanup();
5260 rbd_slab_exit();
5261 }
5262
5263 module_init(rbd_init);
5264 module_exit(rbd_exit);
5265
5266 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5267 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5268 MODULE_DESCRIPTION("rados block device");
5269
5270 /* following authorship retained from original osdblk.c */
5271 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5272
5273 MODULE_LICENSE("GPL");