drbd: Broadcast sync progress no more often than once per second
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static int drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 int disable_sendpage;
109 int allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr minors;
122 struct list_head drbd_tconns; /* list of struct drbd_tconn */
123
124 struct kmem_cache *drbd_request_cache;
125 struct kmem_cache *drbd_ee_cache; /* peer requests */
126 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
127 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
128 mempool_t *drbd_request_mempool;
129 mempool_t *drbd_ee_mempool;
130 mempool_t *drbd_md_io_page_pool;
131 struct bio_set *drbd_md_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 static void bio_destructor_drbd(struct bio *bio)
153 {
154 bio_free(bio, drbd_md_io_bio_set);
155 }
156
157 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
158 {
159 struct bio *bio;
160
161 if (!drbd_md_io_bio_set)
162 return bio_alloc(gfp_mask, 1);
163
164 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
165 if (!bio)
166 return NULL;
167 bio->bi_destructor = bio_destructor_drbd;
168 return bio;
169 }
170
171 #ifdef __CHECKER__
172 /* When checking with sparse, and this is an inline function, sparse will
173 give tons of false positives. When this is a real functions sparse works.
174 */
175 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
176 {
177 int io_allowed;
178
179 atomic_inc(&mdev->local_cnt);
180 io_allowed = (mdev->state.disk >= mins);
181 if (!io_allowed) {
182 if (atomic_dec_and_test(&mdev->local_cnt))
183 wake_up(&mdev->misc_wait);
184 }
185 return io_allowed;
186 }
187
188 #endif
189
190 /**
191 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
192 * @tconn: DRBD connection.
193 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
194 * @set_size: Expected number of requests before that barrier.
195 *
196 * In case the passed barrier_nr or set_size does not match the oldest
197 * epoch of not yet barrier-acked requests, this function will cause a
198 * termination of the connection.
199 */
200 void tl_release(struct drbd_tconn *tconn, unsigned int barrier_nr,
201 unsigned int set_size)
202 {
203 struct drbd_request *r;
204 struct drbd_request *req = NULL;
205 int expect_epoch = 0;
206 int expect_size = 0;
207
208 spin_lock_irq(&tconn->req_lock);
209
210 /* find latest not yet barrier-acked write request,
211 * count writes in its epoch. */
212 list_for_each_entry(r, &tconn->transfer_log, tl_requests) {
213 const unsigned s = r->rq_state;
214 if (!req) {
215 if (!(s & RQ_WRITE))
216 continue;
217 if (!(s & RQ_NET_MASK))
218 continue;
219 if (s & RQ_NET_DONE)
220 continue;
221 req = r;
222 expect_epoch = req->epoch;
223 expect_size ++;
224 } else {
225 if (r->epoch != expect_epoch)
226 break;
227 if (!(s & RQ_WRITE))
228 continue;
229 /* if (s & RQ_DONE): not expected */
230 /* if (!(s & RQ_NET_MASK)): not expected */
231 expect_size++;
232 }
233 }
234
235 /* first some paranoia code */
236 if (req == NULL) {
237 conn_err(tconn, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
238 barrier_nr);
239 goto bail;
240 }
241 if (expect_epoch != barrier_nr) {
242 conn_err(tconn, "BAD! BarrierAck #%u received, expected #%u!\n",
243 barrier_nr, expect_epoch);
244 goto bail;
245 }
246
247 if (expect_size != set_size) {
248 conn_err(tconn, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
249 barrier_nr, set_size, expect_size);
250 goto bail;
251 }
252
253 /* Clean up list of requests processed during current epoch */
254 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests) {
255 if (req->epoch != expect_epoch)
256 break;
257 _req_mod(req, BARRIER_ACKED);
258 }
259 spin_unlock_irq(&tconn->req_lock);
260
261 return;
262
263 bail:
264 spin_unlock_irq(&tconn->req_lock);
265 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
266 }
267
268
269 /**
270 * _tl_restart() - Walks the transfer log, and applies an action to all requests
271 * @mdev: DRBD device.
272 * @what: The action/event to perform with all request objects
273 *
274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
275 * RESTART_FROZEN_DISK_IO.
276 */
277 /* must hold resource->req_lock */
278 void _tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
279 {
280 struct drbd_request *req, *r;
281
282 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests)
283 _req_mod(req, what);
284 }
285
286 void tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
287 {
288 spin_lock_irq(&tconn->req_lock);
289 _tl_restart(tconn, what);
290 spin_unlock_irq(&tconn->req_lock);
291 }
292
293 /**
294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
295 * @mdev: DRBD device.
296 *
297 * This is called after the connection to the peer was lost. The storage covered
298 * by the requests on the transfer gets marked as our of sync. Called from the
299 * receiver thread and the worker thread.
300 */
301 void tl_clear(struct drbd_tconn *tconn)
302 {
303 tl_restart(tconn, CONNECTION_LOST_WHILE_PENDING);
304 }
305
306 /**
307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain mdev in the TL
308 * @mdev: DRBD device.
309 */
310 void tl_abort_disk_io(struct drbd_conf *mdev)
311 {
312 struct drbd_tconn *tconn = mdev->tconn;
313 struct drbd_request *req, *r;
314
315 spin_lock_irq(&tconn->req_lock);
316 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests) {
317 if (!(req->rq_state & RQ_LOCAL_PENDING))
318 continue;
319 if (req->w.mdev != mdev)
320 continue;
321 _req_mod(req, ABORT_DISK_IO);
322 }
323 spin_unlock_irq(&tconn->req_lock);
324 }
325
326 static int drbd_thread_setup(void *arg)
327 {
328 struct drbd_thread *thi = (struct drbd_thread *) arg;
329 struct drbd_tconn *tconn = thi->tconn;
330 unsigned long flags;
331 int retval;
332
333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
334 thi->name[0], thi->tconn->name);
335
336 restart:
337 retval = thi->function(thi);
338
339 spin_lock_irqsave(&thi->t_lock, flags);
340
341 /* if the receiver has been "EXITING", the last thing it did
342 * was set the conn state to "StandAlone",
343 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344 * and receiver thread will be "started".
345 * drbd_thread_start needs to set "RESTARTING" in that case.
346 * t_state check and assignment needs to be within the same spinlock,
347 * so either thread_start sees EXITING, and can remap to RESTARTING,
348 * or thread_start see NONE, and can proceed as normal.
349 */
350
351 if (thi->t_state == RESTARTING) {
352 conn_info(tconn, "Restarting %s thread\n", thi->name);
353 thi->t_state = RUNNING;
354 spin_unlock_irqrestore(&thi->t_lock, flags);
355 goto restart;
356 }
357
358 thi->task = NULL;
359 thi->t_state = NONE;
360 smp_mb();
361 complete_all(&thi->stop);
362 spin_unlock_irqrestore(&thi->t_lock, flags);
363
364 conn_info(tconn, "Terminating %s\n", current->comm);
365
366 /* Release mod reference taken when thread was started */
367
368 kref_put(&tconn->kref, &conn_destroy);
369 module_put(THIS_MODULE);
370 return retval;
371 }
372
373 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
374 int (*func) (struct drbd_thread *), char *name)
375 {
376 spin_lock_init(&thi->t_lock);
377 thi->task = NULL;
378 thi->t_state = NONE;
379 thi->function = func;
380 thi->tconn = tconn;
381 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
382 }
383
384 int drbd_thread_start(struct drbd_thread *thi)
385 {
386 struct drbd_tconn *tconn = thi->tconn;
387 struct task_struct *nt;
388 unsigned long flags;
389
390 /* is used from state engine doing drbd_thread_stop_nowait,
391 * while holding the req lock irqsave */
392 spin_lock_irqsave(&thi->t_lock, flags);
393
394 switch (thi->t_state) {
395 case NONE:
396 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
397 thi->name, current->comm, current->pid);
398
399 /* Get ref on module for thread - this is released when thread exits */
400 if (!try_module_get(THIS_MODULE)) {
401 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
402 spin_unlock_irqrestore(&thi->t_lock, flags);
403 return false;
404 }
405
406 kref_get(&thi->tconn->kref);
407
408 init_completion(&thi->stop);
409 thi->reset_cpu_mask = 1;
410 thi->t_state = RUNNING;
411 spin_unlock_irqrestore(&thi->t_lock, flags);
412 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
413
414 nt = kthread_create(drbd_thread_setup, (void *) thi,
415 "drbd_%c_%s", thi->name[0], thi->tconn->name);
416
417 if (IS_ERR(nt)) {
418 conn_err(tconn, "Couldn't start thread\n");
419
420 kref_put(&tconn->kref, &conn_destroy);
421 module_put(THIS_MODULE);
422 return false;
423 }
424 spin_lock_irqsave(&thi->t_lock, flags);
425 thi->task = nt;
426 thi->t_state = RUNNING;
427 spin_unlock_irqrestore(&thi->t_lock, flags);
428 wake_up_process(nt);
429 break;
430 case EXITING:
431 thi->t_state = RESTARTING;
432 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
433 thi->name, current->comm, current->pid);
434 /* fall through */
435 case RUNNING:
436 case RESTARTING:
437 default:
438 spin_unlock_irqrestore(&thi->t_lock, flags);
439 break;
440 }
441
442 return true;
443 }
444
445
446 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
447 {
448 unsigned long flags;
449
450 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
451
452 /* may be called from state engine, holding the req lock irqsave */
453 spin_lock_irqsave(&thi->t_lock, flags);
454
455 if (thi->t_state == NONE) {
456 spin_unlock_irqrestore(&thi->t_lock, flags);
457 if (restart)
458 drbd_thread_start(thi);
459 return;
460 }
461
462 if (thi->t_state != ns) {
463 if (thi->task == NULL) {
464 spin_unlock_irqrestore(&thi->t_lock, flags);
465 return;
466 }
467
468 thi->t_state = ns;
469 smp_mb();
470 init_completion(&thi->stop);
471 if (thi->task != current)
472 force_sig(DRBD_SIGKILL, thi->task);
473 }
474
475 spin_unlock_irqrestore(&thi->t_lock, flags);
476
477 if (wait)
478 wait_for_completion(&thi->stop);
479 }
480
481 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
482 {
483 struct drbd_thread *thi =
484 task == tconn->receiver.task ? &tconn->receiver :
485 task == tconn->asender.task ? &tconn->asender :
486 task == tconn->worker.task ? &tconn->worker : NULL;
487
488 return thi;
489 }
490
491 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
492 {
493 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
494 return thi ? thi->name : task->comm;
495 }
496
497 int conn_lowest_minor(struct drbd_tconn *tconn)
498 {
499 struct drbd_conf *mdev;
500 int vnr = 0, m;
501
502 rcu_read_lock();
503 mdev = idr_get_next(&tconn->volumes, &vnr);
504 m = mdev ? mdev_to_minor(mdev) : -1;
505 rcu_read_unlock();
506
507 return m;
508 }
509
510 #ifdef CONFIG_SMP
511 /**
512 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
513 * @mdev: DRBD device.
514 *
515 * Forces all threads of a device onto the same CPU. This is beneficial for
516 * DRBD's performance. May be overwritten by user's configuration.
517 */
518 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
519 {
520 int ord, cpu;
521
522 /* user override. */
523 if (cpumask_weight(tconn->cpu_mask))
524 return;
525
526 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
527 for_each_online_cpu(cpu) {
528 if (ord-- == 0) {
529 cpumask_set_cpu(cpu, tconn->cpu_mask);
530 return;
531 }
532 }
533 /* should not be reached */
534 cpumask_setall(tconn->cpu_mask);
535 }
536
537 /**
538 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
539 * @mdev: DRBD device.
540 * @thi: drbd_thread object
541 *
542 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
543 * prematurely.
544 */
545 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
546 {
547 struct task_struct *p = current;
548
549 if (!thi->reset_cpu_mask)
550 return;
551 thi->reset_cpu_mask = 0;
552 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
553 }
554 #endif
555
556 /**
557 * drbd_header_size - size of a packet header
558 *
559 * The header size is a multiple of 8, so any payload following the header is
560 * word aligned on 64-bit architectures. (The bitmap send and receive code
561 * relies on this.)
562 */
563 unsigned int drbd_header_size(struct drbd_tconn *tconn)
564 {
565 if (tconn->agreed_pro_version >= 100) {
566 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
567 return sizeof(struct p_header100);
568 } else {
569 BUILD_BUG_ON(sizeof(struct p_header80) !=
570 sizeof(struct p_header95));
571 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
572 return sizeof(struct p_header80);
573 }
574 }
575
576 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
577 {
578 h->magic = cpu_to_be32(DRBD_MAGIC);
579 h->command = cpu_to_be16(cmd);
580 h->length = cpu_to_be16(size);
581 return sizeof(struct p_header80);
582 }
583
584 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
585 {
586 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
587 h->command = cpu_to_be16(cmd);
588 h->length = cpu_to_be32(size);
589 return sizeof(struct p_header95);
590 }
591
592 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
593 int size, int vnr)
594 {
595 h->magic = cpu_to_be32(DRBD_MAGIC_100);
596 h->volume = cpu_to_be16(vnr);
597 h->command = cpu_to_be16(cmd);
598 h->length = cpu_to_be32(size);
599 h->pad = 0;
600 return sizeof(struct p_header100);
601 }
602
603 static unsigned int prepare_header(struct drbd_tconn *tconn, int vnr,
604 void *buffer, enum drbd_packet cmd, int size)
605 {
606 if (tconn->agreed_pro_version >= 100)
607 return prepare_header100(buffer, cmd, size, vnr);
608 else if (tconn->agreed_pro_version >= 95 &&
609 size > DRBD_MAX_SIZE_H80_PACKET)
610 return prepare_header95(buffer, cmd, size);
611 else
612 return prepare_header80(buffer, cmd, size);
613 }
614
615 static void *__conn_prepare_command(struct drbd_tconn *tconn,
616 struct drbd_socket *sock)
617 {
618 if (!sock->socket)
619 return NULL;
620 return sock->sbuf + drbd_header_size(tconn);
621 }
622
623 void *conn_prepare_command(struct drbd_tconn *tconn, struct drbd_socket *sock)
624 {
625 void *p;
626
627 mutex_lock(&sock->mutex);
628 p = __conn_prepare_command(tconn, sock);
629 if (!p)
630 mutex_unlock(&sock->mutex);
631
632 return p;
633 }
634
635 void *drbd_prepare_command(struct drbd_conf *mdev, struct drbd_socket *sock)
636 {
637 return conn_prepare_command(mdev->tconn, sock);
638 }
639
640 static int __send_command(struct drbd_tconn *tconn, int vnr,
641 struct drbd_socket *sock, enum drbd_packet cmd,
642 unsigned int header_size, void *data,
643 unsigned int size)
644 {
645 int msg_flags;
646 int err;
647
648 /*
649 * Called with @data == NULL and the size of the data blocks in @size
650 * for commands that send data blocks. For those commands, omit the
651 * MSG_MORE flag: this will increase the likelihood that data blocks
652 * which are page aligned on the sender will end up page aligned on the
653 * receiver.
654 */
655 msg_flags = data ? MSG_MORE : 0;
656
657 header_size += prepare_header(tconn, vnr, sock->sbuf, cmd,
658 header_size + size);
659 err = drbd_send_all(tconn, sock->socket, sock->sbuf, header_size,
660 msg_flags);
661 if (data && !err)
662 err = drbd_send_all(tconn, sock->socket, data, size, 0);
663 return err;
664 }
665
666 static int __conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
667 enum drbd_packet cmd, unsigned int header_size,
668 void *data, unsigned int size)
669 {
670 return __send_command(tconn, 0, sock, cmd, header_size, data, size);
671 }
672
673 int conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
674 enum drbd_packet cmd, unsigned int header_size,
675 void *data, unsigned int size)
676 {
677 int err;
678
679 err = __conn_send_command(tconn, sock, cmd, header_size, data, size);
680 mutex_unlock(&sock->mutex);
681 return err;
682 }
683
684 int drbd_send_command(struct drbd_conf *mdev, struct drbd_socket *sock,
685 enum drbd_packet cmd, unsigned int header_size,
686 void *data, unsigned int size)
687 {
688 int err;
689
690 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, header_size,
691 data, size);
692 mutex_unlock(&sock->mutex);
693 return err;
694 }
695
696 int drbd_send_ping(struct drbd_tconn *tconn)
697 {
698 struct drbd_socket *sock;
699
700 sock = &tconn->meta;
701 if (!conn_prepare_command(tconn, sock))
702 return -EIO;
703 return conn_send_command(tconn, sock, P_PING, 0, NULL, 0);
704 }
705
706 int drbd_send_ping_ack(struct drbd_tconn *tconn)
707 {
708 struct drbd_socket *sock;
709
710 sock = &tconn->meta;
711 if (!conn_prepare_command(tconn, sock))
712 return -EIO;
713 return conn_send_command(tconn, sock, P_PING_ACK, 0, NULL, 0);
714 }
715
716 int drbd_send_sync_param(struct drbd_conf *mdev)
717 {
718 struct drbd_socket *sock;
719 struct p_rs_param_95 *p;
720 int size;
721 const int apv = mdev->tconn->agreed_pro_version;
722 enum drbd_packet cmd;
723 struct net_conf *nc;
724 struct disk_conf *dc;
725
726 sock = &mdev->tconn->data;
727 p = drbd_prepare_command(mdev, sock);
728 if (!p)
729 return -EIO;
730
731 rcu_read_lock();
732 nc = rcu_dereference(mdev->tconn->net_conf);
733
734 size = apv <= 87 ? sizeof(struct p_rs_param)
735 : apv == 88 ? sizeof(struct p_rs_param)
736 + strlen(nc->verify_alg) + 1
737 : apv <= 94 ? sizeof(struct p_rs_param_89)
738 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
739
740 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
741
742 /* initialize verify_alg and csums_alg */
743 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
744
745 if (get_ldev(mdev)) {
746 dc = rcu_dereference(mdev->ldev->disk_conf);
747 p->resync_rate = cpu_to_be32(dc->resync_rate);
748 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
749 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
750 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
751 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
752 put_ldev(mdev);
753 } else {
754 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
755 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
756 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
757 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
758 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
759 }
760
761 if (apv >= 88)
762 strcpy(p->verify_alg, nc->verify_alg);
763 if (apv >= 89)
764 strcpy(p->csums_alg, nc->csums_alg);
765 rcu_read_unlock();
766
767 return drbd_send_command(mdev, sock, cmd, size, NULL, 0);
768 }
769
770 int __drbd_send_protocol(struct drbd_tconn *tconn, enum drbd_packet cmd)
771 {
772 struct drbd_socket *sock;
773 struct p_protocol *p;
774 struct net_conf *nc;
775 int size, cf;
776
777 sock = &tconn->data;
778 p = __conn_prepare_command(tconn, sock);
779 if (!p)
780 return -EIO;
781
782 rcu_read_lock();
783 nc = rcu_dereference(tconn->net_conf);
784
785 if (nc->tentative && tconn->agreed_pro_version < 92) {
786 rcu_read_unlock();
787 mutex_unlock(&sock->mutex);
788 conn_err(tconn, "--dry-run is not supported by peer");
789 return -EOPNOTSUPP;
790 }
791
792 size = sizeof(*p);
793 if (tconn->agreed_pro_version >= 87)
794 size += strlen(nc->integrity_alg) + 1;
795
796 p->protocol = cpu_to_be32(nc->wire_protocol);
797 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
798 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
799 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
800 p->two_primaries = cpu_to_be32(nc->two_primaries);
801 cf = 0;
802 if (nc->discard_my_data)
803 cf |= CF_DISCARD_MY_DATA;
804 if (nc->tentative)
805 cf |= CF_DRY_RUN;
806 p->conn_flags = cpu_to_be32(cf);
807
808 if (tconn->agreed_pro_version >= 87)
809 strcpy(p->integrity_alg, nc->integrity_alg);
810 rcu_read_unlock();
811
812 return __conn_send_command(tconn, sock, cmd, size, NULL, 0);
813 }
814
815 int drbd_send_protocol(struct drbd_tconn *tconn)
816 {
817 int err;
818
819 mutex_lock(&tconn->data.mutex);
820 err = __drbd_send_protocol(tconn, P_PROTOCOL);
821 mutex_unlock(&tconn->data.mutex);
822
823 return err;
824 }
825
826 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
827 {
828 struct drbd_socket *sock;
829 struct p_uuids *p;
830 int i;
831
832 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
833 return 0;
834
835 sock = &mdev->tconn->data;
836 p = drbd_prepare_command(mdev, sock);
837 if (!p) {
838 put_ldev(mdev);
839 return -EIO;
840 }
841 spin_lock_irq(&mdev->ldev->md.uuid_lock);
842 for (i = UI_CURRENT; i < UI_SIZE; i++)
843 p->uuid[i] = mdev->ldev ? cpu_to_be64(mdev->ldev->md.uuid[i]) : 0;
844 spin_unlock_irq(&mdev->ldev->md.uuid_lock);
845
846 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
847 p->uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
848 rcu_read_lock();
849 uuid_flags |= rcu_dereference(mdev->tconn->net_conf)->discard_my_data ? 1 : 0;
850 rcu_read_unlock();
851 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
852 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
853 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
854
855 put_ldev(mdev);
856 return drbd_send_command(mdev, sock, P_UUIDS, sizeof(*p), NULL, 0);
857 }
858
859 int drbd_send_uuids(struct drbd_conf *mdev)
860 {
861 return _drbd_send_uuids(mdev, 0);
862 }
863
864 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
865 {
866 return _drbd_send_uuids(mdev, 8);
867 }
868
869 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
870 {
871 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
872 u64 *uuid = mdev->ldev->md.uuid;
873 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
874 text,
875 (unsigned long long)uuid[UI_CURRENT],
876 (unsigned long long)uuid[UI_BITMAP],
877 (unsigned long long)uuid[UI_HISTORY_START],
878 (unsigned long long)uuid[UI_HISTORY_END]);
879 put_ldev(mdev);
880 } else {
881 dev_info(DEV, "%s effective data uuid: %016llX\n",
882 text,
883 (unsigned long long)mdev->ed_uuid);
884 }
885 }
886
887 void drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
888 {
889 struct drbd_socket *sock;
890 struct p_rs_uuid *p;
891 u64 uuid;
892
893 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
894
895 uuid = mdev->ldev->md.uuid[UI_BITMAP];
896 if (uuid && uuid != UUID_JUST_CREATED)
897 uuid = uuid + UUID_NEW_BM_OFFSET;
898 else
899 get_random_bytes(&uuid, sizeof(u64));
900 drbd_uuid_set(mdev, UI_BITMAP, uuid);
901 drbd_print_uuids(mdev, "updated sync UUID");
902 drbd_md_sync(mdev);
903
904 sock = &mdev->tconn->data;
905 p = drbd_prepare_command(mdev, sock);
906 if (p) {
907 p->uuid = cpu_to_be64(uuid);
908 drbd_send_command(mdev, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
909 }
910 }
911
912 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
913 {
914 struct drbd_socket *sock;
915 struct p_sizes *p;
916 sector_t d_size, u_size;
917 int q_order_type, max_bio_size;
918
919 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
920 D_ASSERT(mdev->ldev->backing_bdev);
921 d_size = drbd_get_max_capacity(mdev->ldev);
922 rcu_read_lock();
923 u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
924 rcu_read_unlock();
925 q_order_type = drbd_queue_order_type(mdev);
926 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
927 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE);
928 put_ldev(mdev);
929 } else {
930 d_size = 0;
931 u_size = 0;
932 q_order_type = QUEUE_ORDERED_NONE;
933 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
934 }
935
936 sock = &mdev->tconn->data;
937 p = drbd_prepare_command(mdev, sock);
938 if (!p)
939 return -EIO;
940
941 if (mdev->tconn->agreed_pro_version <= 94)
942 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
943 else if (mdev->tconn->agreed_pro_version < 100)
944 max_bio_size = min_t(int, max_bio_size, DRBD_MAX_BIO_SIZE_P95);
945
946 p->d_size = cpu_to_be64(d_size);
947 p->u_size = cpu_to_be64(u_size);
948 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
949 p->max_bio_size = cpu_to_be32(max_bio_size);
950 p->queue_order_type = cpu_to_be16(q_order_type);
951 p->dds_flags = cpu_to_be16(flags);
952 return drbd_send_command(mdev, sock, P_SIZES, sizeof(*p), NULL, 0);
953 }
954
955 /**
956 * drbd_send_current_state() - Sends the drbd state to the peer
957 * @mdev: DRBD device.
958 */
959 int drbd_send_current_state(struct drbd_conf *mdev)
960 {
961 struct drbd_socket *sock;
962 struct p_state *p;
963
964 sock = &mdev->tconn->data;
965 p = drbd_prepare_command(mdev, sock);
966 if (!p)
967 return -EIO;
968 p->state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
969 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
970 }
971
972 /**
973 * drbd_send_state() - After a state change, sends the new state to the peer
974 * @mdev: DRBD device.
975 * @state: the state to send, not necessarily the current state.
976 *
977 * Each state change queues an "after_state_ch" work, which will eventually
978 * send the resulting new state to the peer. If more state changes happen
979 * between queuing and processing of the after_state_ch work, we still
980 * want to send each intermediary state in the order it occurred.
981 */
982 int drbd_send_state(struct drbd_conf *mdev, union drbd_state state)
983 {
984 struct drbd_socket *sock;
985 struct p_state *p;
986
987 sock = &mdev->tconn->data;
988 p = drbd_prepare_command(mdev, sock);
989 if (!p)
990 return -EIO;
991 p->state = cpu_to_be32(state.i); /* Within the send mutex */
992 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
993 }
994
995 int drbd_send_state_req(struct drbd_conf *mdev, union drbd_state mask, union drbd_state val)
996 {
997 struct drbd_socket *sock;
998 struct p_req_state *p;
999
1000 sock = &mdev->tconn->data;
1001 p = drbd_prepare_command(mdev, sock);
1002 if (!p)
1003 return -EIO;
1004 p->mask = cpu_to_be32(mask.i);
1005 p->val = cpu_to_be32(val.i);
1006 return drbd_send_command(mdev, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1007 }
1008
1009 int conn_send_state_req(struct drbd_tconn *tconn, union drbd_state mask, union drbd_state val)
1010 {
1011 enum drbd_packet cmd;
1012 struct drbd_socket *sock;
1013 struct p_req_state *p;
1014
1015 cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1016 sock = &tconn->data;
1017 p = conn_prepare_command(tconn, sock);
1018 if (!p)
1019 return -EIO;
1020 p->mask = cpu_to_be32(mask.i);
1021 p->val = cpu_to_be32(val.i);
1022 return conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1023 }
1024
1025 void drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
1026 {
1027 struct drbd_socket *sock;
1028 struct p_req_state_reply *p;
1029
1030 sock = &mdev->tconn->meta;
1031 p = drbd_prepare_command(mdev, sock);
1032 if (p) {
1033 p->retcode = cpu_to_be32(retcode);
1034 drbd_send_command(mdev, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1035 }
1036 }
1037
1038 void conn_send_sr_reply(struct drbd_tconn *tconn, enum drbd_state_rv retcode)
1039 {
1040 struct drbd_socket *sock;
1041 struct p_req_state_reply *p;
1042 enum drbd_packet cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1043
1044 sock = &tconn->meta;
1045 p = conn_prepare_command(tconn, sock);
1046 if (p) {
1047 p->retcode = cpu_to_be32(retcode);
1048 conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1049 }
1050 }
1051
1052 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1053 {
1054 BUG_ON(code & ~0xf);
1055 p->encoding = (p->encoding & ~0xf) | code;
1056 }
1057
1058 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1059 {
1060 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1061 }
1062
1063 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1064 {
1065 BUG_ON(n & ~0x7);
1066 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1067 }
1068
1069 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
1070 struct p_compressed_bm *p,
1071 unsigned int size,
1072 struct bm_xfer_ctx *c)
1073 {
1074 struct bitstream bs;
1075 unsigned long plain_bits;
1076 unsigned long tmp;
1077 unsigned long rl;
1078 unsigned len;
1079 unsigned toggle;
1080 int bits, use_rle;
1081
1082 /* may we use this feature? */
1083 rcu_read_lock();
1084 use_rle = rcu_dereference(mdev->tconn->net_conf)->use_rle;
1085 rcu_read_unlock();
1086 if (!use_rle || mdev->tconn->agreed_pro_version < 90)
1087 return 0;
1088
1089 if (c->bit_offset >= c->bm_bits)
1090 return 0; /* nothing to do. */
1091
1092 /* use at most thus many bytes */
1093 bitstream_init(&bs, p->code, size, 0);
1094 memset(p->code, 0, size);
1095 /* plain bits covered in this code string */
1096 plain_bits = 0;
1097
1098 /* p->encoding & 0x80 stores whether the first run length is set.
1099 * bit offset is implicit.
1100 * start with toggle == 2 to be able to tell the first iteration */
1101 toggle = 2;
1102
1103 /* see how much plain bits we can stuff into one packet
1104 * using RLE and VLI. */
1105 do {
1106 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1107 : _drbd_bm_find_next(mdev, c->bit_offset);
1108 if (tmp == -1UL)
1109 tmp = c->bm_bits;
1110 rl = tmp - c->bit_offset;
1111
1112 if (toggle == 2) { /* first iteration */
1113 if (rl == 0) {
1114 /* the first checked bit was set,
1115 * store start value, */
1116 dcbp_set_start(p, 1);
1117 /* but skip encoding of zero run length */
1118 toggle = !toggle;
1119 continue;
1120 }
1121 dcbp_set_start(p, 0);
1122 }
1123
1124 /* paranoia: catch zero runlength.
1125 * can only happen if bitmap is modified while we scan it. */
1126 if (rl == 0) {
1127 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1128 "t:%u bo:%lu\n", toggle, c->bit_offset);
1129 return -1;
1130 }
1131
1132 bits = vli_encode_bits(&bs, rl);
1133 if (bits == -ENOBUFS) /* buffer full */
1134 break;
1135 if (bits <= 0) {
1136 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1137 return 0;
1138 }
1139
1140 toggle = !toggle;
1141 plain_bits += rl;
1142 c->bit_offset = tmp;
1143 } while (c->bit_offset < c->bm_bits);
1144
1145 len = bs.cur.b - p->code + !!bs.cur.bit;
1146
1147 if (plain_bits < (len << 3)) {
1148 /* incompressible with this method.
1149 * we need to rewind both word and bit position. */
1150 c->bit_offset -= plain_bits;
1151 bm_xfer_ctx_bit_to_word_offset(c);
1152 c->bit_offset = c->word_offset * BITS_PER_LONG;
1153 return 0;
1154 }
1155
1156 /* RLE + VLI was able to compress it just fine.
1157 * update c->word_offset. */
1158 bm_xfer_ctx_bit_to_word_offset(c);
1159
1160 /* store pad_bits */
1161 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1162
1163 return len;
1164 }
1165
1166 /**
1167 * send_bitmap_rle_or_plain
1168 *
1169 * Return 0 when done, 1 when another iteration is needed, and a negative error
1170 * code upon failure.
1171 */
1172 static int
1173 send_bitmap_rle_or_plain(struct drbd_conf *mdev, struct bm_xfer_ctx *c)
1174 {
1175 struct drbd_socket *sock = &mdev->tconn->data;
1176 unsigned int header_size = drbd_header_size(mdev->tconn);
1177 struct p_compressed_bm *p = sock->sbuf + header_size;
1178 int len, err;
1179
1180 len = fill_bitmap_rle_bits(mdev, p,
1181 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1182 if (len < 0)
1183 return -EIO;
1184
1185 if (len) {
1186 dcbp_set_code(p, RLE_VLI_Bits);
1187 err = __send_command(mdev->tconn, mdev->vnr, sock,
1188 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1189 NULL, 0);
1190 c->packets[0]++;
1191 c->bytes[0] += header_size + sizeof(*p) + len;
1192
1193 if (c->bit_offset >= c->bm_bits)
1194 len = 0; /* DONE */
1195 } else {
1196 /* was not compressible.
1197 * send a buffer full of plain text bits instead. */
1198 unsigned int data_size;
1199 unsigned long num_words;
1200 unsigned long *p = sock->sbuf + header_size;
1201
1202 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1203 num_words = min_t(size_t, data_size / sizeof(*p),
1204 c->bm_words - c->word_offset);
1205 len = num_words * sizeof(*p);
1206 if (len)
1207 drbd_bm_get_lel(mdev, c->word_offset, num_words, p);
1208 err = __send_command(mdev->tconn, mdev->vnr, sock, P_BITMAP, len, NULL, 0);
1209 c->word_offset += num_words;
1210 c->bit_offset = c->word_offset * BITS_PER_LONG;
1211
1212 c->packets[1]++;
1213 c->bytes[1] += header_size + len;
1214
1215 if (c->bit_offset > c->bm_bits)
1216 c->bit_offset = c->bm_bits;
1217 }
1218 if (!err) {
1219 if (len == 0) {
1220 INFO_bm_xfer_stats(mdev, "send", c);
1221 return 0;
1222 } else
1223 return 1;
1224 }
1225 return -EIO;
1226 }
1227
1228 /* See the comment at receive_bitmap() */
1229 static int _drbd_send_bitmap(struct drbd_conf *mdev)
1230 {
1231 struct bm_xfer_ctx c;
1232 int err;
1233
1234 if (!expect(mdev->bitmap))
1235 return false;
1236
1237 if (get_ldev(mdev)) {
1238 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1239 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1240 drbd_bm_set_all(mdev);
1241 if (drbd_bm_write(mdev)) {
1242 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1243 * but otherwise process as per normal - need to tell other
1244 * side that a full resync is required! */
1245 dev_err(DEV, "Failed to write bitmap to disk!\n");
1246 } else {
1247 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1248 drbd_md_sync(mdev);
1249 }
1250 }
1251 put_ldev(mdev);
1252 }
1253
1254 c = (struct bm_xfer_ctx) {
1255 .bm_bits = drbd_bm_bits(mdev),
1256 .bm_words = drbd_bm_words(mdev),
1257 };
1258
1259 do {
1260 err = send_bitmap_rle_or_plain(mdev, &c);
1261 } while (err > 0);
1262
1263 return err == 0;
1264 }
1265
1266 int drbd_send_bitmap(struct drbd_conf *mdev)
1267 {
1268 struct drbd_socket *sock = &mdev->tconn->data;
1269 int err = -1;
1270
1271 mutex_lock(&sock->mutex);
1272 if (sock->socket)
1273 err = !_drbd_send_bitmap(mdev);
1274 mutex_unlock(&sock->mutex);
1275 return err;
1276 }
1277
1278 void drbd_send_b_ack(struct drbd_tconn *tconn, u32 barrier_nr, u32 set_size)
1279 {
1280 struct drbd_socket *sock;
1281 struct p_barrier_ack *p;
1282
1283 if (tconn->cstate < C_WF_REPORT_PARAMS)
1284 return;
1285
1286 sock = &tconn->meta;
1287 p = conn_prepare_command(tconn, sock);
1288 if (!p)
1289 return;
1290 p->barrier = barrier_nr;
1291 p->set_size = cpu_to_be32(set_size);
1292 conn_send_command(tconn, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1293 }
1294
1295 /**
1296 * _drbd_send_ack() - Sends an ack packet
1297 * @mdev: DRBD device.
1298 * @cmd: Packet command code.
1299 * @sector: sector, needs to be in big endian byte order
1300 * @blksize: size in byte, needs to be in big endian byte order
1301 * @block_id: Id, big endian byte order
1302 */
1303 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1304 u64 sector, u32 blksize, u64 block_id)
1305 {
1306 struct drbd_socket *sock;
1307 struct p_block_ack *p;
1308
1309 if (mdev->state.conn < C_CONNECTED)
1310 return -EIO;
1311
1312 sock = &mdev->tconn->meta;
1313 p = drbd_prepare_command(mdev, sock);
1314 if (!p)
1315 return -EIO;
1316 p->sector = sector;
1317 p->block_id = block_id;
1318 p->blksize = blksize;
1319 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1320 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1321 }
1322
1323 /* dp->sector and dp->block_id already/still in network byte order,
1324 * data_size is payload size according to dp->head,
1325 * and may need to be corrected for digest size. */
1326 void drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1327 struct p_data *dp, int data_size)
1328 {
1329 if (mdev->tconn->peer_integrity_tfm)
1330 data_size -= crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1331 _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1332 dp->block_id);
1333 }
1334
1335 void drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1336 struct p_block_req *rp)
1337 {
1338 _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1339 }
1340
1341 /**
1342 * drbd_send_ack() - Sends an ack packet
1343 * @mdev: DRBD device
1344 * @cmd: packet command code
1345 * @peer_req: peer request
1346 */
1347 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1348 struct drbd_peer_request *peer_req)
1349 {
1350 return _drbd_send_ack(mdev, cmd,
1351 cpu_to_be64(peer_req->i.sector),
1352 cpu_to_be32(peer_req->i.size),
1353 peer_req->block_id);
1354 }
1355
1356 /* This function misuses the block_id field to signal if the blocks
1357 * are is sync or not. */
1358 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1359 sector_t sector, int blksize, u64 block_id)
1360 {
1361 return _drbd_send_ack(mdev, cmd,
1362 cpu_to_be64(sector),
1363 cpu_to_be32(blksize),
1364 cpu_to_be64(block_id));
1365 }
1366
1367 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1368 sector_t sector, int size, u64 block_id)
1369 {
1370 struct drbd_socket *sock;
1371 struct p_block_req *p;
1372
1373 sock = &mdev->tconn->data;
1374 p = drbd_prepare_command(mdev, sock);
1375 if (!p)
1376 return -EIO;
1377 p->sector = cpu_to_be64(sector);
1378 p->block_id = block_id;
1379 p->blksize = cpu_to_be32(size);
1380 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1381 }
1382
1383 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1384 void *digest, int digest_size, enum drbd_packet cmd)
1385 {
1386 struct drbd_socket *sock;
1387 struct p_block_req *p;
1388
1389 /* FIXME: Put the digest into the preallocated socket buffer. */
1390
1391 sock = &mdev->tconn->data;
1392 p = drbd_prepare_command(mdev, sock);
1393 if (!p)
1394 return -EIO;
1395 p->sector = cpu_to_be64(sector);
1396 p->block_id = ID_SYNCER /* unused */;
1397 p->blksize = cpu_to_be32(size);
1398 return drbd_send_command(mdev, sock, cmd, sizeof(*p),
1399 digest, digest_size);
1400 }
1401
1402 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1403 {
1404 struct drbd_socket *sock;
1405 struct p_block_req *p;
1406
1407 sock = &mdev->tconn->data;
1408 p = drbd_prepare_command(mdev, sock);
1409 if (!p)
1410 return -EIO;
1411 p->sector = cpu_to_be64(sector);
1412 p->block_id = ID_SYNCER /* unused */;
1413 p->blksize = cpu_to_be32(size);
1414 return drbd_send_command(mdev, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1415 }
1416
1417 /* called on sndtimeo
1418 * returns false if we should retry,
1419 * true if we think connection is dead
1420 */
1421 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1422 {
1423 int drop_it;
1424 /* long elapsed = (long)(jiffies - mdev->last_received); */
1425
1426 drop_it = tconn->meta.socket == sock
1427 || !tconn->asender.task
1428 || get_t_state(&tconn->asender) != RUNNING
1429 || tconn->cstate < C_WF_REPORT_PARAMS;
1430
1431 if (drop_it)
1432 return true;
1433
1434 drop_it = !--tconn->ko_count;
1435 if (!drop_it) {
1436 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1437 current->comm, current->pid, tconn->ko_count);
1438 request_ping(tconn);
1439 }
1440
1441 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1442 }
1443
1444 static void drbd_update_congested(struct drbd_tconn *tconn)
1445 {
1446 struct sock *sk = tconn->data.socket->sk;
1447 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1448 set_bit(NET_CONGESTED, &tconn->flags);
1449 }
1450
1451 /* The idea of sendpage seems to be to put some kind of reference
1452 * to the page into the skb, and to hand it over to the NIC. In
1453 * this process get_page() gets called.
1454 *
1455 * As soon as the page was really sent over the network put_page()
1456 * gets called by some part of the network layer. [ NIC driver? ]
1457 *
1458 * [ get_page() / put_page() increment/decrement the count. If count
1459 * reaches 0 the page will be freed. ]
1460 *
1461 * This works nicely with pages from FSs.
1462 * But this means that in protocol A we might signal IO completion too early!
1463 *
1464 * In order not to corrupt data during a resync we must make sure
1465 * that we do not reuse our own buffer pages (EEs) to early, therefore
1466 * we have the net_ee list.
1467 *
1468 * XFS seems to have problems, still, it submits pages with page_count == 0!
1469 * As a workaround, we disable sendpage on pages
1470 * with page_count == 0 or PageSlab.
1471 */
1472 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1473 int offset, size_t size, unsigned msg_flags)
1474 {
1475 struct socket *socket;
1476 void *addr;
1477 int err;
1478
1479 socket = mdev->tconn->data.socket;
1480 addr = kmap(page) + offset;
1481 err = drbd_send_all(mdev->tconn, socket, addr, size, msg_flags);
1482 kunmap(page);
1483 if (!err)
1484 mdev->send_cnt += size >> 9;
1485 return err;
1486 }
1487
1488 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1489 int offset, size_t size, unsigned msg_flags)
1490 {
1491 struct socket *socket = mdev->tconn->data.socket;
1492 mm_segment_t oldfs = get_fs();
1493 int len = size;
1494 int err = -EIO;
1495
1496 /* e.g. XFS meta- & log-data is in slab pages, which have a
1497 * page_count of 0 and/or have PageSlab() set.
1498 * we cannot use send_page for those, as that does get_page();
1499 * put_page(); and would cause either a VM_BUG directly, or
1500 * __page_cache_release a page that would actually still be referenced
1501 * by someone, leading to some obscure delayed Oops somewhere else. */
1502 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1503 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1504
1505 msg_flags |= MSG_NOSIGNAL;
1506 drbd_update_congested(mdev->tconn);
1507 set_fs(KERNEL_DS);
1508 do {
1509 int sent;
1510
1511 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1512 if (sent <= 0) {
1513 if (sent == -EAGAIN) {
1514 if (we_should_drop_the_connection(mdev->tconn, socket))
1515 break;
1516 continue;
1517 }
1518 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1519 __func__, (int)size, len, sent);
1520 if (sent < 0)
1521 err = sent;
1522 break;
1523 }
1524 len -= sent;
1525 offset += sent;
1526 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1527 set_fs(oldfs);
1528 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1529
1530 if (len == 0) {
1531 err = 0;
1532 mdev->send_cnt += size >> 9;
1533 }
1534 return err;
1535 }
1536
1537 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1538 {
1539 struct bio_vec *bvec;
1540 int i;
1541 /* hint all but last page with MSG_MORE */
1542 bio_for_each_segment(bvec, bio, i) {
1543 int err;
1544
1545 err = _drbd_no_send_page(mdev, bvec->bv_page,
1546 bvec->bv_offset, bvec->bv_len,
1547 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1548 if (err)
1549 return err;
1550 }
1551 return 0;
1552 }
1553
1554 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1555 {
1556 struct bio_vec *bvec;
1557 int i;
1558 /* hint all but last page with MSG_MORE */
1559 bio_for_each_segment(bvec, bio, i) {
1560 int err;
1561
1562 err = _drbd_send_page(mdev, bvec->bv_page,
1563 bvec->bv_offset, bvec->bv_len,
1564 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1565 if (err)
1566 return err;
1567 }
1568 return 0;
1569 }
1570
1571 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1572 struct drbd_peer_request *peer_req)
1573 {
1574 struct page *page = peer_req->pages;
1575 unsigned len = peer_req->i.size;
1576 int err;
1577
1578 /* hint all but last page with MSG_MORE */
1579 page_chain_for_each(page) {
1580 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1581
1582 err = _drbd_send_page(mdev, page, 0, l,
1583 page_chain_next(page) ? MSG_MORE : 0);
1584 if (err)
1585 return err;
1586 len -= l;
1587 }
1588 return 0;
1589 }
1590
1591 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1592 {
1593 if (mdev->tconn->agreed_pro_version >= 95)
1594 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1595 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1596 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1597 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1598 else
1599 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1600 }
1601
1602 /* Used to send write requests
1603 * R_PRIMARY -> Peer (P_DATA)
1604 */
1605 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1606 {
1607 struct drbd_socket *sock;
1608 struct p_data *p;
1609 unsigned int dp_flags = 0;
1610 int dgs;
1611 int err;
1612
1613 sock = &mdev->tconn->data;
1614 p = drbd_prepare_command(mdev, sock);
1615 dgs = mdev->tconn->integrity_tfm ? crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1616
1617 if (!p)
1618 return -EIO;
1619 p->sector = cpu_to_be64(req->i.sector);
1620 p->block_id = (unsigned long)req;
1621 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1622 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1623 if (mdev->state.conn >= C_SYNC_SOURCE &&
1624 mdev->state.conn <= C_PAUSED_SYNC_T)
1625 dp_flags |= DP_MAY_SET_IN_SYNC;
1626 if (mdev->tconn->agreed_pro_version >= 100) {
1627 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1628 dp_flags |= DP_SEND_RECEIVE_ACK;
1629 if (req->rq_state & RQ_EXP_WRITE_ACK)
1630 dp_flags |= DP_SEND_WRITE_ACK;
1631 }
1632 p->dp_flags = cpu_to_be32(dp_flags);
1633 if (dgs)
1634 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, p + 1);
1635 err = __send_command(mdev->tconn, mdev->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1636 if (!err) {
1637 /* For protocol A, we have to memcpy the payload into
1638 * socket buffers, as we may complete right away
1639 * as soon as we handed it over to tcp, at which point the data
1640 * pages may become invalid.
1641 *
1642 * For data-integrity enabled, we copy it as well, so we can be
1643 * sure that even if the bio pages may still be modified, it
1644 * won't change the data on the wire, thus if the digest checks
1645 * out ok after sending on this side, but does not fit on the
1646 * receiving side, we sure have detected corruption elsewhere.
1647 */
1648 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1649 err = _drbd_send_bio(mdev, req->master_bio);
1650 else
1651 err = _drbd_send_zc_bio(mdev, req->master_bio);
1652
1653 /* double check digest, sometimes buffers have been modified in flight. */
1654 if (dgs > 0 && dgs <= 64) {
1655 /* 64 byte, 512 bit, is the largest digest size
1656 * currently supported in kernel crypto. */
1657 unsigned char digest[64];
1658 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, digest);
1659 if (memcmp(p + 1, digest, dgs)) {
1660 dev_warn(DEV,
1661 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1662 (unsigned long long)req->i.sector, req->i.size);
1663 }
1664 } /* else if (dgs > 64) {
1665 ... Be noisy about digest too large ...
1666 } */
1667 }
1668 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1669
1670 return err;
1671 }
1672
1673 /* answer packet, used to send data back for read requests:
1674 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1675 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1676 */
1677 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1678 struct drbd_peer_request *peer_req)
1679 {
1680 struct drbd_socket *sock;
1681 struct p_data *p;
1682 int err;
1683 int dgs;
1684
1685 sock = &mdev->tconn->data;
1686 p = drbd_prepare_command(mdev, sock);
1687
1688 dgs = mdev->tconn->integrity_tfm ? crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1689
1690 if (!p)
1691 return -EIO;
1692 p->sector = cpu_to_be64(peer_req->i.sector);
1693 p->block_id = peer_req->block_id;
1694 p->seq_num = 0; /* unused */
1695 p->dp_flags = 0;
1696 if (dgs)
1697 drbd_csum_ee(mdev, mdev->tconn->integrity_tfm, peer_req, p + 1);
1698 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1699 if (!err)
1700 err = _drbd_send_zc_ee(mdev, peer_req);
1701 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1702
1703 return err;
1704 }
1705
1706 int drbd_send_out_of_sync(struct drbd_conf *mdev, struct drbd_request *req)
1707 {
1708 struct drbd_socket *sock;
1709 struct p_block_desc *p;
1710
1711 sock = &mdev->tconn->data;
1712 p = drbd_prepare_command(mdev, sock);
1713 if (!p)
1714 return -EIO;
1715 p->sector = cpu_to_be64(req->i.sector);
1716 p->blksize = cpu_to_be32(req->i.size);
1717 return drbd_send_command(mdev, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1718 }
1719
1720 /*
1721 drbd_send distinguishes two cases:
1722
1723 Packets sent via the data socket "sock"
1724 and packets sent via the meta data socket "msock"
1725
1726 sock msock
1727 -----------------+-------------------------+------------------------------
1728 timeout conf.timeout / 2 conf.timeout / 2
1729 timeout action send a ping via msock Abort communication
1730 and close all sockets
1731 */
1732
1733 /*
1734 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1735 */
1736 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1737 void *buf, size_t size, unsigned msg_flags)
1738 {
1739 struct kvec iov;
1740 struct msghdr msg;
1741 int rv, sent = 0;
1742
1743 if (!sock)
1744 return -EBADR;
1745
1746 /* THINK if (signal_pending) return ... ? */
1747
1748 iov.iov_base = buf;
1749 iov.iov_len = size;
1750
1751 msg.msg_name = NULL;
1752 msg.msg_namelen = 0;
1753 msg.msg_control = NULL;
1754 msg.msg_controllen = 0;
1755 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1756
1757 if (sock == tconn->data.socket) {
1758 rcu_read_lock();
1759 tconn->ko_count = rcu_dereference(tconn->net_conf)->ko_count;
1760 rcu_read_unlock();
1761 drbd_update_congested(tconn);
1762 }
1763 do {
1764 /* STRANGE
1765 * tcp_sendmsg does _not_ use its size parameter at all ?
1766 *
1767 * -EAGAIN on timeout, -EINTR on signal.
1768 */
1769 /* THINK
1770 * do we need to block DRBD_SIG if sock == &meta.socket ??
1771 * otherwise wake_asender() might interrupt some send_*Ack !
1772 */
1773 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1774 if (rv == -EAGAIN) {
1775 if (we_should_drop_the_connection(tconn, sock))
1776 break;
1777 else
1778 continue;
1779 }
1780 if (rv == -EINTR) {
1781 flush_signals(current);
1782 rv = 0;
1783 }
1784 if (rv < 0)
1785 break;
1786 sent += rv;
1787 iov.iov_base += rv;
1788 iov.iov_len -= rv;
1789 } while (sent < size);
1790
1791 if (sock == tconn->data.socket)
1792 clear_bit(NET_CONGESTED, &tconn->flags);
1793
1794 if (rv <= 0) {
1795 if (rv != -EAGAIN) {
1796 conn_err(tconn, "%s_sendmsg returned %d\n",
1797 sock == tconn->meta.socket ? "msock" : "sock",
1798 rv);
1799 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1800 } else
1801 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1802 }
1803
1804 return sent;
1805 }
1806
1807 /**
1808 * drbd_send_all - Send an entire buffer
1809 *
1810 * Returns 0 upon success and a negative error value otherwise.
1811 */
1812 int drbd_send_all(struct drbd_tconn *tconn, struct socket *sock, void *buffer,
1813 size_t size, unsigned msg_flags)
1814 {
1815 int err;
1816
1817 err = drbd_send(tconn, sock, buffer, size, msg_flags);
1818 if (err < 0)
1819 return err;
1820 if (err != size)
1821 return -EIO;
1822 return 0;
1823 }
1824
1825 static int drbd_open(struct block_device *bdev, fmode_t mode)
1826 {
1827 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1828 unsigned long flags;
1829 int rv = 0;
1830
1831 mutex_lock(&drbd_main_mutex);
1832 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1833 /* to have a stable mdev->state.role
1834 * and no race with updating open_cnt */
1835
1836 if (mdev->state.role != R_PRIMARY) {
1837 if (mode & FMODE_WRITE)
1838 rv = -EROFS;
1839 else if (!allow_oos)
1840 rv = -EMEDIUMTYPE;
1841 }
1842
1843 if (!rv)
1844 mdev->open_cnt++;
1845 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1846 mutex_unlock(&drbd_main_mutex);
1847
1848 return rv;
1849 }
1850
1851 static int drbd_release(struct gendisk *gd, fmode_t mode)
1852 {
1853 struct drbd_conf *mdev = gd->private_data;
1854 mutex_lock(&drbd_main_mutex);
1855 mdev->open_cnt--;
1856 mutex_unlock(&drbd_main_mutex);
1857 return 0;
1858 }
1859
1860 static void drbd_set_defaults(struct drbd_conf *mdev)
1861 {
1862 /* Beware! The actual layout differs
1863 * between big endian and little endian */
1864 mdev->state = (union drbd_dev_state) {
1865 { .role = R_SECONDARY,
1866 .peer = R_UNKNOWN,
1867 .conn = C_STANDALONE,
1868 .disk = D_DISKLESS,
1869 .pdsk = D_UNKNOWN,
1870 } };
1871 }
1872
1873 void drbd_init_set_defaults(struct drbd_conf *mdev)
1874 {
1875 /* the memset(,0,) did most of this.
1876 * note: only assignments, no allocation in here */
1877
1878 drbd_set_defaults(mdev);
1879
1880 atomic_set(&mdev->ap_bio_cnt, 0);
1881 atomic_set(&mdev->ap_pending_cnt, 0);
1882 atomic_set(&mdev->rs_pending_cnt, 0);
1883 atomic_set(&mdev->unacked_cnt, 0);
1884 atomic_set(&mdev->local_cnt, 0);
1885 atomic_set(&mdev->pp_in_use_by_net, 0);
1886 atomic_set(&mdev->rs_sect_in, 0);
1887 atomic_set(&mdev->rs_sect_ev, 0);
1888 atomic_set(&mdev->ap_in_flight, 0);
1889 atomic_set(&mdev->md_io_in_use, 0);
1890
1891 mutex_init(&mdev->own_state_mutex);
1892 mdev->state_mutex = &mdev->own_state_mutex;
1893
1894 spin_lock_init(&mdev->al_lock);
1895 spin_lock_init(&mdev->peer_seq_lock);
1896
1897 INIT_LIST_HEAD(&mdev->active_ee);
1898 INIT_LIST_HEAD(&mdev->sync_ee);
1899 INIT_LIST_HEAD(&mdev->done_ee);
1900 INIT_LIST_HEAD(&mdev->read_ee);
1901 INIT_LIST_HEAD(&mdev->net_ee);
1902 INIT_LIST_HEAD(&mdev->resync_reads);
1903 INIT_LIST_HEAD(&mdev->resync_work.list);
1904 INIT_LIST_HEAD(&mdev->unplug_work.list);
1905 INIT_LIST_HEAD(&mdev->go_diskless.list);
1906 INIT_LIST_HEAD(&mdev->md_sync_work.list);
1907 INIT_LIST_HEAD(&mdev->start_resync_work.list);
1908 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
1909
1910 mdev->resync_work.cb = w_resync_timer;
1911 mdev->unplug_work.cb = w_send_write_hint;
1912 mdev->go_diskless.cb = w_go_diskless;
1913 mdev->md_sync_work.cb = w_md_sync;
1914 mdev->bm_io_work.w.cb = w_bitmap_io;
1915 mdev->start_resync_work.cb = w_start_resync;
1916
1917 mdev->resync_work.mdev = mdev;
1918 mdev->unplug_work.mdev = mdev;
1919 mdev->go_diskless.mdev = mdev;
1920 mdev->md_sync_work.mdev = mdev;
1921 mdev->bm_io_work.w.mdev = mdev;
1922 mdev->start_resync_work.mdev = mdev;
1923
1924 init_timer(&mdev->resync_timer);
1925 init_timer(&mdev->md_sync_timer);
1926 init_timer(&mdev->start_resync_timer);
1927 init_timer(&mdev->request_timer);
1928 mdev->resync_timer.function = resync_timer_fn;
1929 mdev->resync_timer.data = (unsigned long) mdev;
1930 mdev->md_sync_timer.function = md_sync_timer_fn;
1931 mdev->md_sync_timer.data = (unsigned long) mdev;
1932 mdev->start_resync_timer.function = start_resync_timer_fn;
1933 mdev->start_resync_timer.data = (unsigned long) mdev;
1934 mdev->request_timer.function = request_timer_fn;
1935 mdev->request_timer.data = (unsigned long) mdev;
1936
1937 init_waitqueue_head(&mdev->misc_wait);
1938 init_waitqueue_head(&mdev->state_wait);
1939 init_waitqueue_head(&mdev->ee_wait);
1940 init_waitqueue_head(&mdev->al_wait);
1941 init_waitqueue_head(&mdev->seq_wait);
1942
1943 mdev->resync_wenr = LC_FREE;
1944 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1945 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1946 }
1947
1948 void drbd_mdev_cleanup(struct drbd_conf *mdev)
1949 {
1950 int i;
1951 if (mdev->tconn->receiver.t_state != NONE)
1952 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1953 mdev->tconn->receiver.t_state);
1954
1955 mdev->al_writ_cnt =
1956 mdev->bm_writ_cnt =
1957 mdev->read_cnt =
1958 mdev->recv_cnt =
1959 mdev->send_cnt =
1960 mdev->writ_cnt =
1961 mdev->p_size =
1962 mdev->rs_start =
1963 mdev->rs_total =
1964 mdev->rs_failed = 0;
1965 mdev->rs_last_events = 0;
1966 mdev->rs_last_sect_ev = 0;
1967 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1968 mdev->rs_mark_left[i] = 0;
1969 mdev->rs_mark_time[i] = 0;
1970 }
1971 D_ASSERT(mdev->tconn->net_conf == NULL);
1972
1973 drbd_set_my_capacity(mdev, 0);
1974 if (mdev->bitmap) {
1975 /* maybe never allocated. */
1976 drbd_bm_resize(mdev, 0, 1);
1977 drbd_bm_cleanup(mdev);
1978 }
1979
1980 drbd_free_bc(mdev->ldev);
1981 mdev->ldev = NULL;
1982
1983 clear_bit(AL_SUSPENDED, &mdev->flags);
1984
1985 D_ASSERT(list_empty(&mdev->active_ee));
1986 D_ASSERT(list_empty(&mdev->sync_ee));
1987 D_ASSERT(list_empty(&mdev->done_ee));
1988 D_ASSERT(list_empty(&mdev->read_ee));
1989 D_ASSERT(list_empty(&mdev->net_ee));
1990 D_ASSERT(list_empty(&mdev->resync_reads));
1991 D_ASSERT(list_empty(&mdev->tconn->sender_work.q));
1992 D_ASSERT(list_empty(&mdev->resync_work.list));
1993 D_ASSERT(list_empty(&mdev->unplug_work.list));
1994 D_ASSERT(list_empty(&mdev->go_diskless.list));
1995
1996 drbd_set_defaults(mdev);
1997 }
1998
1999
2000 static void drbd_destroy_mempools(void)
2001 {
2002 struct page *page;
2003
2004 while (drbd_pp_pool) {
2005 page = drbd_pp_pool;
2006 drbd_pp_pool = (struct page *)page_private(page);
2007 __free_page(page);
2008 drbd_pp_vacant--;
2009 }
2010
2011 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
2012
2013 if (drbd_md_io_bio_set)
2014 bioset_free(drbd_md_io_bio_set);
2015 if (drbd_md_io_page_pool)
2016 mempool_destroy(drbd_md_io_page_pool);
2017 if (drbd_ee_mempool)
2018 mempool_destroy(drbd_ee_mempool);
2019 if (drbd_request_mempool)
2020 mempool_destroy(drbd_request_mempool);
2021 if (drbd_ee_cache)
2022 kmem_cache_destroy(drbd_ee_cache);
2023 if (drbd_request_cache)
2024 kmem_cache_destroy(drbd_request_cache);
2025 if (drbd_bm_ext_cache)
2026 kmem_cache_destroy(drbd_bm_ext_cache);
2027 if (drbd_al_ext_cache)
2028 kmem_cache_destroy(drbd_al_ext_cache);
2029
2030 drbd_md_io_bio_set = NULL;
2031 drbd_md_io_page_pool = NULL;
2032 drbd_ee_mempool = NULL;
2033 drbd_request_mempool = NULL;
2034 drbd_ee_cache = NULL;
2035 drbd_request_cache = NULL;
2036 drbd_bm_ext_cache = NULL;
2037 drbd_al_ext_cache = NULL;
2038
2039 return;
2040 }
2041
2042 static int drbd_create_mempools(void)
2043 {
2044 struct page *page;
2045 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2046 int i;
2047
2048 /* prepare our caches and mempools */
2049 drbd_request_mempool = NULL;
2050 drbd_ee_cache = NULL;
2051 drbd_request_cache = NULL;
2052 drbd_bm_ext_cache = NULL;
2053 drbd_al_ext_cache = NULL;
2054 drbd_pp_pool = NULL;
2055 drbd_md_io_page_pool = NULL;
2056 drbd_md_io_bio_set = NULL;
2057
2058 /* caches */
2059 drbd_request_cache = kmem_cache_create(
2060 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2061 if (drbd_request_cache == NULL)
2062 goto Enomem;
2063
2064 drbd_ee_cache = kmem_cache_create(
2065 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2066 if (drbd_ee_cache == NULL)
2067 goto Enomem;
2068
2069 drbd_bm_ext_cache = kmem_cache_create(
2070 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2071 if (drbd_bm_ext_cache == NULL)
2072 goto Enomem;
2073
2074 drbd_al_ext_cache = kmem_cache_create(
2075 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2076 if (drbd_al_ext_cache == NULL)
2077 goto Enomem;
2078
2079 /* mempools */
2080 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2081 if (drbd_md_io_bio_set == NULL)
2082 goto Enomem;
2083
2084 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2085 if (drbd_md_io_page_pool == NULL)
2086 goto Enomem;
2087
2088 drbd_request_mempool = mempool_create(number,
2089 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2090 if (drbd_request_mempool == NULL)
2091 goto Enomem;
2092
2093 drbd_ee_mempool = mempool_create(number,
2094 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2095 if (drbd_ee_mempool == NULL)
2096 goto Enomem;
2097
2098 /* drbd's page pool */
2099 spin_lock_init(&drbd_pp_lock);
2100
2101 for (i = 0; i < number; i++) {
2102 page = alloc_page(GFP_HIGHUSER);
2103 if (!page)
2104 goto Enomem;
2105 set_page_private(page, (unsigned long)drbd_pp_pool);
2106 drbd_pp_pool = page;
2107 }
2108 drbd_pp_vacant = number;
2109
2110 return 0;
2111
2112 Enomem:
2113 drbd_destroy_mempools(); /* in case we allocated some */
2114 return -ENOMEM;
2115 }
2116
2117 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2118 void *unused)
2119 {
2120 /* just so we have it. you never know what interesting things we
2121 * might want to do here some day...
2122 */
2123
2124 return NOTIFY_DONE;
2125 }
2126
2127 static struct notifier_block drbd_notifier = {
2128 .notifier_call = drbd_notify_sys,
2129 };
2130
2131 static void drbd_release_all_peer_reqs(struct drbd_conf *mdev)
2132 {
2133 int rr;
2134
2135 rr = drbd_free_peer_reqs(mdev, &mdev->active_ee);
2136 if (rr)
2137 dev_err(DEV, "%d EEs in active list found!\n", rr);
2138
2139 rr = drbd_free_peer_reqs(mdev, &mdev->sync_ee);
2140 if (rr)
2141 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2142
2143 rr = drbd_free_peer_reqs(mdev, &mdev->read_ee);
2144 if (rr)
2145 dev_err(DEV, "%d EEs in read list found!\n", rr);
2146
2147 rr = drbd_free_peer_reqs(mdev, &mdev->done_ee);
2148 if (rr)
2149 dev_err(DEV, "%d EEs in done list found!\n", rr);
2150
2151 rr = drbd_free_peer_reqs(mdev, &mdev->net_ee);
2152 if (rr)
2153 dev_err(DEV, "%d EEs in net list found!\n", rr);
2154 }
2155
2156 /* caution. no locking. */
2157 void drbd_minor_destroy(struct kref *kref)
2158 {
2159 struct drbd_conf *mdev = container_of(kref, struct drbd_conf, kref);
2160 struct drbd_tconn *tconn = mdev->tconn;
2161
2162 del_timer_sync(&mdev->request_timer);
2163
2164 /* paranoia asserts */
2165 D_ASSERT(mdev->open_cnt == 0);
2166 /* end paranoia asserts */
2167
2168 /* cleanup stuff that may have been allocated during
2169 * device (re-)configuration or state changes */
2170
2171 if (mdev->this_bdev)
2172 bdput(mdev->this_bdev);
2173
2174 drbd_free_bc(mdev->ldev);
2175 mdev->ldev = NULL;
2176
2177 drbd_release_all_peer_reqs(mdev);
2178
2179 lc_destroy(mdev->act_log);
2180 lc_destroy(mdev->resync);
2181
2182 kfree(mdev->p_uuid);
2183 /* mdev->p_uuid = NULL; */
2184
2185 if (mdev->bitmap) /* should no longer be there. */
2186 drbd_bm_cleanup(mdev);
2187 __free_page(mdev->md_io_page);
2188 put_disk(mdev->vdisk);
2189 blk_cleanup_queue(mdev->rq_queue);
2190 kfree(mdev->rs_plan_s);
2191 kfree(mdev);
2192
2193 kref_put(&tconn->kref, &conn_destroy);
2194 }
2195
2196 /* One global retry thread, if we need to push back some bio and have it
2197 * reinserted through our make request function.
2198 */
2199 static struct retry_worker {
2200 struct workqueue_struct *wq;
2201 struct work_struct worker;
2202
2203 spinlock_t lock;
2204 struct list_head writes;
2205 } retry;
2206
2207 static void do_retry(struct work_struct *ws)
2208 {
2209 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2210 LIST_HEAD(writes);
2211 struct drbd_request *req, *tmp;
2212
2213 spin_lock_irq(&retry->lock);
2214 list_splice_init(&retry->writes, &writes);
2215 spin_unlock_irq(&retry->lock);
2216
2217 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2218 struct drbd_conf *mdev = req->w.mdev;
2219 struct bio *bio = req->master_bio;
2220 unsigned long start_time = req->start_time;
2221 bool expected;
2222
2223 expected =
2224 expect(atomic_read(&req->completion_ref) == 0) &&
2225 expect(req->rq_state & RQ_POSTPONED) &&
2226 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2227 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2228
2229 if (!expected)
2230 dev_err(DEV, "req=%p completion_ref=%d rq_state=%x\n",
2231 req, atomic_read(&req->completion_ref),
2232 req->rq_state);
2233
2234 /* We still need to put one kref associated with the
2235 * "completion_ref" going zero in the code path that queued it
2236 * here. The request object may still be referenced by a
2237 * frozen local req->private_bio, in case we force-detached.
2238 */
2239 kref_put(&req->kref, drbd_req_destroy);
2240
2241 /* A single suspended or otherwise blocking device may stall
2242 * all others as well. Fortunately, this code path is to
2243 * recover from a situation that "should not happen":
2244 * concurrent writes in multi-primary setup.
2245 * In a "normal" lifecycle, this workqueue is supposed to be
2246 * destroyed without ever doing anything.
2247 * If it turns out to be an issue anyways, we can do per
2248 * resource (replication group) or per device (minor) retry
2249 * workqueues instead.
2250 */
2251
2252 /* We are not just doing generic_make_request(),
2253 * as we want to keep the start_time information. */
2254 inc_ap_bio(mdev);
2255 __drbd_make_request(mdev, bio, start_time);
2256 }
2257 }
2258
2259 void drbd_restart_request(struct drbd_request *req)
2260 {
2261 unsigned long flags;
2262 spin_lock_irqsave(&retry.lock, flags);
2263 list_move_tail(&req->tl_requests, &retry.writes);
2264 spin_unlock_irqrestore(&retry.lock, flags);
2265
2266 /* Drop the extra reference that would otherwise
2267 * have been dropped by complete_master_bio.
2268 * do_retry() needs to grab a new one. */
2269 dec_ap_bio(req->w.mdev);
2270
2271 queue_work(retry.wq, &retry.worker);
2272 }
2273
2274
2275 static void drbd_cleanup(void)
2276 {
2277 unsigned int i;
2278 struct drbd_conf *mdev;
2279 struct drbd_tconn *tconn, *tmp;
2280
2281 unregister_reboot_notifier(&drbd_notifier);
2282
2283 /* first remove proc,
2284 * drbdsetup uses it's presence to detect
2285 * whether DRBD is loaded.
2286 * If we would get stuck in proc removal,
2287 * but have netlink already deregistered,
2288 * some drbdsetup commands may wait forever
2289 * for an answer.
2290 */
2291 if (drbd_proc)
2292 remove_proc_entry("drbd", NULL);
2293
2294 if (retry.wq)
2295 destroy_workqueue(retry.wq);
2296
2297 drbd_genl_unregister();
2298
2299 idr_for_each_entry(&minors, mdev, i) {
2300 idr_remove(&minors, mdev_to_minor(mdev));
2301 idr_remove(&mdev->tconn->volumes, mdev->vnr);
2302 del_gendisk(mdev->vdisk);
2303 /* synchronize_rcu(); No other threads running at this point */
2304 kref_put(&mdev->kref, &drbd_minor_destroy);
2305 }
2306
2307 /* not _rcu since, no other updater anymore. Genl already unregistered */
2308 list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) {
2309 list_del(&tconn->all_tconn); /* not _rcu no proc, not other threads */
2310 /* synchronize_rcu(); */
2311 kref_put(&tconn->kref, &conn_destroy);
2312 }
2313
2314 drbd_destroy_mempools();
2315 unregister_blkdev(DRBD_MAJOR, "drbd");
2316
2317 idr_destroy(&minors);
2318
2319 printk(KERN_INFO "drbd: module cleanup done.\n");
2320 }
2321
2322 /**
2323 * drbd_congested() - Callback for pdflush
2324 * @congested_data: User data
2325 * @bdi_bits: Bits pdflush is currently interested in
2326 *
2327 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2328 */
2329 static int drbd_congested(void *congested_data, int bdi_bits)
2330 {
2331 struct drbd_conf *mdev = congested_data;
2332 struct request_queue *q;
2333 char reason = '-';
2334 int r = 0;
2335
2336 if (!may_inc_ap_bio(mdev)) {
2337 /* DRBD has frozen IO */
2338 r = bdi_bits;
2339 reason = 'd';
2340 goto out;
2341 }
2342
2343 if (test_bit(CALLBACK_PENDING, &mdev->tconn->flags)) {
2344 r |= (1 << BDI_async_congested);
2345 /* Without good local data, we would need to read from remote,
2346 * and that would need the worker thread as well, which is
2347 * currently blocked waiting for that usermode helper to
2348 * finish.
2349 */
2350 if (!get_ldev_if_state(mdev, D_UP_TO_DATE))
2351 r |= (1 << BDI_sync_congested);
2352 else
2353 put_ldev(mdev);
2354 r &= bdi_bits;
2355 reason = 'c';
2356 goto out;
2357 }
2358
2359 if (get_ldev(mdev)) {
2360 q = bdev_get_queue(mdev->ldev->backing_bdev);
2361 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2362 put_ldev(mdev);
2363 if (r)
2364 reason = 'b';
2365 }
2366
2367 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2368 r |= (1 << BDI_async_congested);
2369 reason = reason == 'b' ? 'a' : 'n';
2370 }
2371
2372 out:
2373 mdev->congestion_reason = reason;
2374 return r;
2375 }
2376
2377 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2378 {
2379 spin_lock_init(&wq->q_lock);
2380 INIT_LIST_HEAD(&wq->q);
2381 init_waitqueue_head(&wq->q_wait);
2382 }
2383
2384 struct drbd_tconn *conn_get_by_name(const char *name)
2385 {
2386 struct drbd_tconn *tconn;
2387
2388 if (!name || !name[0])
2389 return NULL;
2390
2391 rcu_read_lock();
2392 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2393 if (!strcmp(tconn->name, name)) {
2394 kref_get(&tconn->kref);
2395 goto found;
2396 }
2397 }
2398 tconn = NULL;
2399 found:
2400 rcu_read_unlock();
2401 return tconn;
2402 }
2403
2404 struct drbd_tconn *conn_get_by_addrs(void *my_addr, int my_addr_len,
2405 void *peer_addr, int peer_addr_len)
2406 {
2407 struct drbd_tconn *tconn;
2408
2409 rcu_read_lock();
2410 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2411 if (tconn->my_addr_len == my_addr_len &&
2412 tconn->peer_addr_len == peer_addr_len &&
2413 !memcmp(&tconn->my_addr, my_addr, my_addr_len) &&
2414 !memcmp(&tconn->peer_addr, peer_addr, peer_addr_len)) {
2415 kref_get(&tconn->kref);
2416 goto found;
2417 }
2418 }
2419 tconn = NULL;
2420 found:
2421 rcu_read_unlock();
2422 return tconn;
2423 }
2424
2425 static int drbd_alloc_socket(struct drbd_socket *socket)
2426 {
2427 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2428 if (!socket->rbuf)
2429 return -ENOMEM;
2430 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2431 if (!socket->sbuf)
2432 return -ENOMEM;
2433 return 0;
2434 }
2435
2436 static void drbd_free_socket(struct drbd_socket *socket)
2437 {
2438 free_page((unsigned long) socket->sbuf);
2439 free_page((unsigned long) socket->rbuf);
2440 }
2441
2442 void conn_free_crypto(struct drbd_tconn *tconn)
2443 {
2444 drbd_free_sock(tconn);
2445
2446 crypto_free_hash(tconn->csums_tfm);
2447 crypto_free_hash(tconn->verify_tfm);
2448 crypto_free_hash(tconn->cram_hmac_tfm);
2449 crypto_free_hash(tconn->integrity_tfm);
2450 crypto_free_hash(tconn->peer_integrity_tfm);
2451 kfree(tconn->int_dig_in);
2452 kfree(tconn->int_dig_vv);
2453
2454 tconn->csums_tfm = NULL;
2455 tconn->verify_tfm = NULL;
2456 tconn->cram_hmac_tfm = NULL;
2457 tconn->integrity_tfm = NULL;
2458 tconn->peer_integrity_tfm = NULL;
2459 tconn->int_dig_in = NULL;
2460 tconn->int_dig_vv = NULL;
2461 }
2462
2463 int set_resource_options(struct drbd_tconn *tconn, struct res_opts *res_opts)
2464 {
2465 cpumask_var_t new_cpu_mask;
2466 int err;
2467
2468 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2469 return -ENOMEM;
2470 /*
2471 retcode = ERR_NOMEM;
2472 drbd_msg_put_info("unable to allocate cpumask");
2473 */
2474
2475 /* silently ignore cpu mask on UP kernel */
2476 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2477 /* FIXME: Get rid of constant 32 here */
2478 err = bitmap_parse(res_opts->cpu_mask, 32,
2479 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2480 if (err) {
2481 conn_warn(tconn, "bitmap_parse() failed with %d\n", err);
2482 /* retcode = ERR_CPU_MASK_PARSE; */
2483 goto fail;
2484 }
2485 }
2486 tconn->res_opts = *res_opts;
2487 if (!cpumask_equal(tconn->cpu_mask, new_cpu_mask)) {
2488 cpumask_copy(tconn->cpu_mask, new_cpu_mask);
2489 drbd_calc_cpu_mask(tconn);
2490 tconn->receiver.reset_cpu_mask = 1;
2491 tconn->asender.reset_cpu_mask = 1;
2492 tconn->worker.reset_cpu_mask = 1;
2493 }
2494 err = 0;
2495
2496 fail:
2497 free_cpumask_var(new_cpu_mask);
2498 return err;
2499
2500 }
2501
2502 /* caller must be under genl_lock() */
2503 struct drbd_tconn *conn_create(const char *name, struct res_opts *res_opts)
2504 {
2505 struct drbd_tconn *tconn;
2506
2507 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2508 if (!tconn)
2509 return NULL;
2510
2511 tconn->name = kstrdup(name, GFP_KERNEL);
2512 if (!tconn->name)
2513 goto fail;
2514
2515 if (drbd_alloc_socket(&tconn->data))
2516 goto fail;
2517 if (drbd_alloc_socket(&tconn->meta))
2518 goto fail;
2519
2520 if (!zalloc_cpumask_var(&tconn->cpu_mask, GFP_KERNEL))
2521 goto fail;
2522
2523 if (set_resource_options(tconn, res_opts))
2524 goto fail;
2525
2526 tconn->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2527 if (!tconn->current_epoch)
2528 goto fail;
2529
2530 INIT_LIST_HEAD(&tconn->transfer_log);
2531
2532 INIT_LIST_HEAD(&tconn->current_epoch->list);
2533 tconn->epochs = 1;
2534 spin_lock_init(&tconn->epoch_lock);
2535 tconn->write_ordering = WO_bdev_flush;
2536
2537 tconn->send.seen_any_write_yet = false;
2538 tconn->send.current_epoch_nr = 0;
2539 tconn->send.current_epoch_writes = 0;
2540
2541 tconn->cstate = C_STANDALONE;
2542 mutex_init(&tconn->cstate_mutex);
2543 spin_lock_init(&tconn->req_lock);
2544 mutex_init(&tconn->conf_update);
2545 init_waitqueue_head(&tconn->ping_wait);
2546 idr_init(&tconn->volumes);
2547
2548 drbd_init_workqueue(&tconn->sender_work);
2549 mutex_init(&tconn->data.mutex);
2550 mutex_init(&tconn->meta.mutex);
2551
2552 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2553 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2554 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2555
2556 kref_init(&tconn->kref);
2557 list_add_tail_rcu(&tconn->all_tconn, &drbd_tconns);
2558
2559 return tconn;
2560
2561 fail:
2562 kfree(tconn->current_epoch);
2563 free_cpumask_var(tconn->cpu_mask);
2564 drbd_free_socket(&tconn->meta);
2565 drbd_free_socket(&tconn->data);
2566 kfree(tconn->name);
2567 kfree(tconn);
2568
2569 return NULL;
2570 }
2571
2572 void conn_destroy(struct kref *kref)
2573 {
2574 struct drbd_tconn *tconn = container_of(kref, struct drbd_tconn, kref);
2575
2576 if (atomic_read(&tconn->current_epoch->epoch_size) != 0)
2577 conn_err(tconn, "epoch_size:%d\n", atomic_read(&tconn->current_epoch->epoch_size));
2578 kfree(tconn->current_epoch);
2579
2580 idr_destroy(&tconn->volumes);
2581
2582 free_cpumask_var(tconn->cpu_mask);
2583 drbd_free_socket(&tconn->meta);
2584 drbd_free_socket(&tconn->data);
2585 kfree(tconn->name);
2586 kfree(tconn->int_dig_in);
2587 kfree(tconn->int_dig_vv);
2588 kfree(tconn);
2589 }
2590
2591 enum drbd_ret_code conn_new_minor(struct drbd_tconn *tconn, unsigned int minor, int vnr)
2592 {
2593 struct drbd_conf *mdev;
2594 struct gendisk *disk;
2595 struct request_queue *q;
2596 int vnr_got = vnr;
2597 int minor_got = minor;
2598 enum drbd_ret_code err = ERR_NOMEM;
2599
2600 mdev = minor_to_mdev(minor);
2601 if (mdev)
2602 return ERR_MINOR_EXISTS;
2603
2604 /* GFP_KERNEL, we are outside of all write-out paths */
2605 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2606 if (!mdev)
2607 return ERR_NOMEM;
2608
2609 kref_get(&tconn->kref);
2610 mdev->tconn = tconn;
2611
2612 mdev->minor = minor;
2613 mdev->vnr = vnr;
2614
2615 drbd_init_set_defaults(mdev);
2616
2617 q = blk_alloc_queue(GFP_KERNEL);
2618 if (!q)
2619 goto out_no_q;
2620 mdev->rq_queue = q;
2621 q->queuedata = mdev;
2622
2623 disk = alloc_disk(1);
2624 if (!disk)
2625 goto out_no_disk;
2626 mdev->vdisk = disk;
2627
2628 set_disk_ro(disk, true);
2629
2630 disk->queue = q;
2631 disk->major = DRBD_MAJOR;
2632 disk->first_minor = minor;
2633 disk->fops = &drbd_ops;
2634 sprintf(disk->disk_name, "drbd%d", minor);
2635 disk->private_data = mdev;
2636
2637 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2638 /* we have no partitions. we contain only ourselves. */
2639 mdev->this_bdev->bd_contains = mdev->this_bdev;
2640
2641 q->backing_dev_info.congested_fn = drbd_congested;
2642 q->backing_dev_info.congested_data = mdev;
2643
2644 blk_queue_make_request(q, drbd_make_request);
2645 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2646 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2647 This triggers a max_bio_size message upon first attach or connect */
2648 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2649 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2650 blk_queue_merge_bvec(q, drbd_merge_bvec);
2651 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2652
2653 mdev->md_io_page = alloc_page(GFP_KERNEL);
2654 if (!mdev->md_io_page)
2655 goto out_no_io_page;
2656
2657 if (drbd_bm_init(mdev))
2658 goto out_no_bitmap;
2659 mdev->read_requests = RB_ROOT;
2660 mdev->write_requests = RB_ROOT;
2661
2662 if (!idr_pre_get(&minors, GFP_KERNEL))
2663 goto out_no_minor_idr;
2664 if (idr_get_new_above(&minors, mdev, minor, &minor_got))
2665 goto out_no_minor_idr;
2666 if (minor_got != minor) {
2667 err = ERR_MINOR_EXISTS;
2668 drbd_msg_put_info("requested minor exists already");
2669 goto out_idr_remove_minor;
2670 }
2671
2672 if (!idr_pre_get(&tconn->volumes, GFP_KERNEL))
2673 goto out_idr_remove_minor;
2674 if (idr_get_new_above(&tconn->volumes, mdev, vnr, &vnr_got))
2675 goto out_idr_remove_minor;
2676 if (vnr_got != vnr) {
2677 err = ERR_INVALID_REQUEST;
2678 drbd_msg_put_info("requested volume exists already");
2679 goto out_idr_remove_vol;
2680 }
2681 add_disk(disk);
2682 kref_init(&mdev->kref); /* one ref for both idrs and the the add_disk */
2683
2684 /* inherit the connection state */
2685 mdev->state.conn = tconn->cstate;
2686 if (mdev->state.conn == C_WF_REPORT_PARAMS)
2687 drbd_connected(mdev);
2688
2689 return NO_ERROR;
2690
2691 out_idr_remove_vol:
2692 idr_remove(&tconn->volumes, vnr_got);
2693 out_idr_remove_minor:
2694 idr_remove(&minors, minor_got);
2695 synchronize_rcu();
2696 out_no_minor_idr:
2697 drbd_bm_cleanup(mdev);
2698 out_no_bitmap:
2699 __free_page(mdev->md_io_page);
2700 out_no_io_page:
2701 put_disk(disk);
2702 out_no_disk:
2703 blk_cleanup_queue(q);
2704 out_no_q:
2705 kfree(mdev);
2706 kref_put(&tconn->kref, &conn_destroy);
2707 return err;
2708 }
2709
2710 int __init drbd_init(void)
2711 {
2712 int err;
2713
2714 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2715 printk(KERN_ERR
2716 "drbd: invalid minor_count (%d)\n", minor_count);
2717 #ifdef MODULE
2718 return -EINVAL;
2719 #else
2720 minor_count = DRBD_MINOR_COUNT_DEF;
2721 #endif
2722 }
2723
2724 err = register_blkdev(DRBD_MAJOR, "drbd");
2725 if (err) {
2726 printk(KERN_ERR
2727 "drbd: unable to register block device major %d\n",
2728 DRBD_MAJOR);
2729 return err;
2730 }
2731
2732 err = drbd_genl_register();
2733 if (err) {
2734 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2735 goto fail;
2736 }
2737
2738
2739 register_reboot_notifier(&drbd_notifier);
2740
2741 /*
2742 * allocate all necessary structs
2743 */
2744 err = -ENOMEM;
2745
2746 init_waitqueue_head(&drbd_pp_wait);
2747
2748 drbd_proc = NULL; /* play safe for drbd_cleanup */
2749 idr_init(&minors);
2750
2751 err = drbd_create_mempools();
2752 if (err)
2753 goto fail;
2754
2755 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2756 if (!drbd_proc) {
2757 printk(KERN_ERR "drbd: unable to register proc file\n");
2758 goto fail;
2759 }
2760
2761 rwlock_init(&global_state_lock);
2762 INIT_LIST_HEAD(&drbd_tconns);
2763
2764 retry.wq = create_singlethread_workqueue("drbd-reissue");
2765 if (!retry.wq) {
2766 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2767 goto fail;
2768 }
2769 INIT_WORK(&retry.worker, do_retry);
2770 spin_lock_init(&retry.lock);
2771 INIT_LIST_HEAD(&retry.writes);
2772
2773 printk(KERN_INFO "drbd: initialized. "
2774 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2775 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2776 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2777 printk(KERN_INFO "drbd: registered as block device major %d\n",
2778 DRBD_MAJOR);
2779
2780 return 0; /* Success! */
2781
2782 fail:
2783 drbd_cleanup();
2784 if (err == -ENOMEM)
2785 /* currently always the case */
2786 printk(KERN_ERR "drbd: ran out of memory\n");
2787 else
2788 printk(KERN_ERR "drbd: initialization failure\n");
2789 return err;
2790 }
2791
2792 void drbd_free_bc(struct drbd_backing_dev *ldev)
2793 {
2794 if (ldev == NULL)
2795 return;
2796
2797 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2798 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2799
2800 kfree(ldev);
2801 }
2802
2803 void drbd_free_sock(struct drbd_tconn *tconn)
2804 {
2805 if (tconn->data.socket) {
2806 mutex_lock(&tconn->data.mutex);
2807 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2808 sock_release(tconn->data.socket);
2809 tconn->data.socket = NULL;
2810 mutex_unlock(&tconn->data.mutex);
2811 }
2812 if (tconn->meta.socket) {
2813 mutex_lock(&tconn->meta.mutex);
2814 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2815 sock_release(tconn->meta.socket);
2816 tconn->meta.socket = NULL;
2817 mutex_unlock(&tconn->meta.mutex);
2818 }
2819 }
2820
2821 /* meta data management */
2822
2823 void conn_md_sync(struct drbd_tconn *tconn)
2824 {
2825 struct drbd_conf *mdev;
2826 int vnr;
2827
2828 rcu_read_lock();
2829 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
2830 kref_get(&mdev->kref);
2831 rcu_read_unlock();
2832 drbd_md_sync(mdev);
2833 kref_put(&mdev->kref, &drbd_minor_destroy);
2834 rcu_read_lock();
2835 }
2836 rcu_read_unlock();
2837 }
2838
2839 struct meta_data_on_disk {
2840 u64 la_size; /* last agreed size. */
2841 u64 uuid[UI_SIZE]; /* UUIDs. */
2842 u64 device_uuid;
2843 u64 reserved_u64_1;
2844 u32 flags; /* MDF */
2845 u32 magic;
2846 u32 md_size_sect;
2847 u32 al_offset; /* offset to this block */
2848 u32 al_nr_extents; /* important for restoring the AL */
2849 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2850 u32 bm_offset; /* offset to the bitmap, from here */
2851 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2852 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2853 u32 reserved_u32[3];
2854
2855 } __packed;
2856
2857 /**
2858 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2859 * @mdev: DRBD device.
2860 */
2861 void drbd_md_sync(struct drbd_conf *mdev)
2862 {
2863 struct meta_data_on_disk *buffer;
2864 sector_t sector;
2865 int i;
2866
2867 del_timer(&mdev->md_sync_timer);
2868 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2869 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2870 return;
2871
2872 /* We use here D_FAILED and not D_ATTACHING because we try to write
2873 * metadata even if we detach due to a disk failure! */
2874 if (!get_ldev_if_state(mdev, D_FAILED))
2875 return;
2876
2877 buffer = drbd_md_get_buffer(mdev);
2878 if (!buffer)
2879 goto out;
2880
2881 memset(buffer, 0, 512);
2882
2883 buffer->la_size = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2884 for (i = UI_CURRENT; i < UI_SIZE; i++)
2885 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2886 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2887 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2888
2889 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2890 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2891 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2892 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2893 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2894
2895 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2896 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2897
2898 D_ASSERT(drbd_md_ss__(mdev, mdev->ldev) == mdev->ldev->md.md_offset);
2899 sector = mdev->ldev->md.md_offset;
2900
2901 if (drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2902 /* this was a try anyways ... */
2903 dev_err(DEV, "meta data update failed!\n");
2904 drbd_chk_io_error(mdev, 1, DRBD_META_IO_ERROR);
2905 }
2906
2907 /* Update mdev->ldev->md.la_size_sect,
2908 * since we updated it on metadata. */
2909 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2910
2911 drbd_md_put_buffer(mdev);
2912 out:
2913 put_ldev(mdev);
2914 }
2915
2916 /**
2917 * drbd_md_read() - Reads in the meta data super block
2918 * @mdev: DRBD device.
2919 * @bdev: Device from which the meta data should be read in.
2920 *
2921 * Return 0 (NO_ERROR) on success, and an enum drbd_ret_code in case
2922 * something goes wrong.
2923 */
2924 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2925 {
2926 struct meta_data_on_disk *buffer;
2927 u32 magic, flags;
2928 int i, rv = NO_ERROR;
2929
2930 if (!get_ldev_if_state(mdev, D_ATTACHING))
2931 return ERR_IO_MD_DISK;
2932
2933 buffer = drbd_md_get_buffer(mdev);
2934 if (!buffer)
2935 goto out;
2936
2937 if (drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
2938 /* NOTE: can't do normal error processing here as this is
2939 called BEFORE disk is attached */
2940 dev_err(DEV, "Error while reading metadata.\n");
2941 rv = ERR_IO_MD_DISK;
2942 goto err;
2943 }
2944
2945 magic = be32_to_cpu(buffer->magic);
2946 flags = be32_to_cpu(buffer->flags);
2947 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
2948 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
2949 /* btw: that's Activity Log clean, not "all" clean. */
2950 dev_err(DEV, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
2951 rv = ERR_MD_UNCLEAN;
2952 goto err;
2953 }
2954 if (magic != DRBD_MD_MAGIC_08) {
2955 if (magic == DRBD_MD_MAGIC_07)
2956 dev_err(DEV, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
2957 else
2958 dev_err(DEV, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
2959 rv = ERR_MD_INVALID;
2960 goto err;
2961 }
2962 if (be32_to_cpu(buffer->al_offset) != bdev->md.al_offset) {
2963 dev_err(DEV, "unexpected al_offset: %d (expected %d)\n",
2964 be32_to_cpu(buffer->al_offset), bdev->md.al_offset);
2965 rv = ERR_MD_INVALID;
2966 goto err;
2967 }
2968 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
2969 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
2970 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
2971 rv = ERR_MD_INVALID;
2972 goto err;
2973 }
2974 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
2975 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
2976 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
2977 rv = ERR_MD_INVALID;
2978 goto err;
2979 }
2980
2981 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
2982 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
2983 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
2984 rv = ERR_MD_INVALID;
2985 goto err;
2986 }
2987
2988 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size);
2989 for (i = UI_CURRENT; i < UI_SIZE; i++)
2990 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
2991 bdev->md.flags = be32_to_cpu(buffer->flags);
2992 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
2993
2994 spin_lock_irq(&mdev->tconn->req_lock);
2995 if (mdev->state.conn < C_CONNECTED) {
2996 int peer;
2997 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
2998 peer = max_t(int, peer, DRBD_MAX_BIO_SIZE_SAFE);
2999 mdev->peer_max_bio_size = peer;
3000 }
3001 spin_unlock_irq(&mdev->tconn->req_lock);
3002
3003 err:
3004 drbd_md_put_buffer(mdev);
3005 out:
3006 put_ldev(mdev);
3007
3008 return rv;
3009 }
3010
3011 /**
3012 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3013 * @mdev: DRBD device.
3014 *
3015 * Call this function if you change anything that should be written to
3016 * the meta-data super block. This function sets MD_DIRTY, and starts a
3017 * timer that ensures that within five seconds you have to call drbd_md_sync().
3018 */
3019 #ifdef DEBUG
3020 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
3021 {
3022 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
3023 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
3024 mdev->last_md_mark_dirty.line = line;
3025 mdev->last_md_mark_dirty.func = func;
3026 }
3027 }
3028 #else
3029 void drbd_md_mark_dirty(struct drbd_conf *mdev)
3030 {
3031 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
3032 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
3033 }
3034 #endif
3035
3036 void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
3037 {
3038 int i;
3039
3040 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3041 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
3042 }
3043
3044 void __drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3045 {
3046 if (idx == UI_CURRENT) {
3047 if (mdev->state.role == R_PRIMARY)
3048 val |= 1;
3049 else
3050 val &= ~((u64)1);
3051
3052 drbd_set_ed_uuid(mdev, val);
3053 }
3054
3055 mdev->ldev->md.uuid[idx] = val;
3056 drbd_md_mark_dirty(mdev);
3057 }
3058
3059 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3060 {
3061 unsigned long flags;
3062 spin_lock_irqsave(&mdev->ldev->md.uuid_lock, flags);
3063 __drbd_uuid_set(mdev, idx, val);
3064 spin_unlock_irqrestore(&mdev->ldev->md.uuid_lock, flags);
3065 }
3066
3067 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3068 {
3069 unsigned long flags;
3070 spin_lock_irqsave(&mdev->ldev->md.uuid_lock, flags);
3071 if (mdev->ldev->md.uuid[idx]) {
3072 drbd_uuid_move_history(mdev);
3073 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
3074 }
3075 __drbd_uuid_set(mdev, idx, val);
3076 spin_unlock_irqrestore(&mdev->ldev->md.uuid_lock, flags);
3077 }
3078
3079 /**
3080 * drbd_uuid_new_current() - Creates a new current UUID
3081 * @mdev: DRBD device.
3082 *
3083 * Creates a new current UUID, and rotates the old current UUID into
3084 * the bitmap slot. Causes an incremental resync upon next connect.
3085 */
3086 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
3087 {
3088 u64 val;
3089 unsigned long long bm_uuid;
3090
3091 get_random_bytes(&val, sizeof(u64));
3092
3093 spin_lock_irq(&mdev->ldev->md.uuid_lock);
3094 bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3095
3096 if (bm_uuid)
3097 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3098
3099 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
3100 __drbd_uuid_set(mdev, UI_CURRENT, val);
3101 spin_unlock_irq(&mdev->ldev->md.uuid_lock);
3102
3103 drbd_print_uuids(mdev, "new current UUID");
3104 /* get it to stable storage _now_ */
3105 drbd_md_sync(mdev);
3106 }
3107
3108 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
3109 {
3110 unsigned long flags;
3111 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3112 return;
3113
3114 spin_lock_irqsave(&mdev->ldev->md.uuid_lock, flags);
3115 if (val == 0) {
3116 drbd_uuid_move_history(mdev);
3117 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
3118 mdev->ldev->md.uuid[UI_BITMAP] = 0;
3119 } else {
3120 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3121 if (bm_uuid)
3122 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3123
3124 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3125 }
3126 spin_unlock_irqrestore(&mdev->ldev->md.uuid_lock, flags);
3127
3128 drbd_md_mark_dirty(mdev);
3129 }
3130
3131 /**
3132 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3133 * @mdev: DRBD device.
3134 *
3135 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3136 */
3137 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
3138 {
3139 int rv = -EIO;
3140
3141 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3142 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3143 drbd_md_sync(mdev);
3144 drbd_bm_set_all(mdev);
3145
3146 rv = drbd_bm_write(mdev);
3147
3148 if (!rv) {
3149 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
3150 drbd_md_sync(mdev);
3151 }
3152
3153 put_ldev(mdev);
3154 }
3155
3156 return rv;
3157 }
3158
3159 /**
3160 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3161 * @mdev: DRBD device.
3162 *
3163 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3164 */
3165 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
3166 {
3167 int rv = -EIO;
3168
3169 drbd_resume_al(mdev);
3170 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3171 drbd_bm_clear_all(mdev);
3172 rv = drbd_bm_write(mdev);
3173 put_ldev(mdev);
3174 }
3175
3176 return rv;
3177 }
3178
3179 static int w_bitmap_io(struct drbd_work *w, int unused)
3180 {
3181 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3182 struct drbd_conf *mdev = w->mdev;
3183 int rv = -EIO;
3184
3185 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
3186
3187 if (get_ldev(mdev)) {
3188 drbd_bm_lock(mdev, work->why, work->flags);
3189 rv = work->io_fn(mdev);
3190 drbd_bm_unlock(mdev);
3191 put_ldev(mdev);
3192 }
3193
3194 clear_bit_unlock(BITMAP_IO, &mdev->flags);
3195 wake_up(&mdev->misc_wait);
3196
3197 if (work->done)
3198 work->done(mdev, rv);
3199
3200 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
3201 work->why = NULL;
3202 work->flags = 0;
3203
3204 return 0;
3205 }
3206
3207 void drbd_ldev_destroy(struct drbd_conf *mdev)
3208 {
3209 lc_destroy(mdev->resync);
3210 mdev->resync = NULL;
3211 lc_destroy(mdev->act_log);
3212 mdev->act_log = NULL;
3213 __no_warn(local,
3214 drbd_free_bc(mdev->ldev);
3215 mdev->ldev = NULL;);
3216
3217 clear_bit(GO_DISKLESS, &mdev->flags);
3218 }
3219
3220 static int w_go_diskless(struct drbd_work *w, int unused)
3221 {
3222 struct drbd_conf *mdev = w->mdev;
3223
3224 D_ASSERT(mdev->state.disk == D_FAILED);
3225 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3226 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3227 * the protected members anymore, though, so once put_ldev reaches zero
3228 * again, it will be safe to free them. */
3229
3230 /* Try to write changed bitmap pages, read errors may have just
3231 * set some bits outside the area covered by the activity log.
3232 *
3233 * If we have an IO error during the bitmap writeout,
3234 * we will want a full sync next time, just in case.
3235 * (Do we want a specific meta data flag for this?)
3236 *
3237 * If that does not make it to stable storage either,
3238 * we cannot do anything about that anymore.
3239 *
3240 * We still need to check if both bitmap and ldev are present, we may
3241 * end up here after a failed attach, before ldev was even assigned.
3242 */
3243 if (mdev->bitmap && mdev->ldev) {
3244 if (drbd_bitmap_io_from_worker(mdev, drbd_bm_write,
3245 "detach", BM_LOCKED_MASK)) {
3246 if (test_bit(WAS_READ_ERROR, &mdev->flags)) {
3247 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3248 drbd_md_sync(mdev);
3249 }
3250 }
3251 }
3252
3253 drbd_force_state(mdev, NS(disk, D_DISKLESS));
3254 return 0;
3255 }
3256
3257 void drbd_go_diskless(struct drbd_conf *mdev)
3258 {
3259 D_ASSERT(mdev->state.disk == D_FAILED);
3260 if (!test_and_set_bit(GO_DISKLESS, &mdev->flags))
3261 drbd_queue_work(&mdev->tconn->sender_work, &mdev->go_diskless);
3262 }
3263
3264 /**
3265 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3266 * @mdev: DRBD device.
3267 * @io_fn: IO callback to be called when bitmap IO is possible
3268 * @done: callback to be called after the bitmap IO was performed
3269 * @why: Descriptive text of the reason for doing the IO
3270 *
3271 * While IO on the bitmap happens we freeze application IO thus we ensure
3272 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3273 * called from worker context. It MUST NOT be used while a previous such
3274 * work is still pending!
3275 */
3276 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
3277 int (*io_fn)(struct drbd_conf *),
3278 void (*done)(struct drbd_conf *, int),
3279 char *why, enum bm_flag flags)
3280 {
3281 D_ASSERT(current == mdev->tconn->worker.task);
3282
3283 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
3284 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
3285 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
3286 if (mdev->bm_io_work.why)
3287 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
3288 why, mdev->bm_io_work.why);
3289
3290 mdev->bm_io_work.io_fn = io_fn;
3291 mdev->bm_io_work.done = done;
3292 mdev->bm_io_work.why = why;
3293 mdev->bm_io_work.flags = flags;
3294
3295 spin_lock_irq(&mdev->tconn->req_lock);
3296 set_bit(BITMAP_IO, &mdev->flags);
3297 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
3298 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
3299 drbd_queue_work(&mdev->tconn->sender_work, &mdev->bm_io_work.w);
3300 }
3301 spin_unlock_irq(&mdev->tconn->req_lock);
3302 }
3303
3304 /**
3305 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3306 * @mdev: DRBD device.
3307 * @io_fn: IO callback to be called when bitmap IO is possible
3308 * @why: Descriptive text of the reason for doing the IO
3309 *
3310 * freezes application IO while that the actual IO operations runs. This
3311 * functions MAY NOT be called from worker context.
3312 */
3313 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
3314 char *why, enum bm_flag flags)
3315 {
3316 int rv;
3317
3318 D_ASSERT(current != mdev->tconn->worker.task);
3319
3320 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3321 drbd_suspend_io(mdev);
3322
3323 drbd_bm_lock(mdev, why, flags);
3324 rv = io_fn(mdev);
3325 drbd_bm_unlock(mdev);
3326
3327 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3328 drbd_resume_io(mdev);
3329
3330 return rv;
3331 }
3332
3333 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3334 {
3335 if ((mdev->ldev->md.flags & flag) != flag) {
3336 drbd_md_mark_dirty(mdev);
3337 mdev->ldev->md.flags |= flag;
3338 }
3339 }
3340
3341 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3342 {
3343 if ((mdev->ldev->md.flags & flag) != 0) {
3344 drbd_md_mark_dirty(mdev);
3345 mdev->ldev->md.flags &= ~flag;
3346 }
3347 }
3348 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3349 {
3350 return (bdev->md.flags & flag) != 0;
3351 }
3352
3353 static void md_sync_timer_fn(unsigned long data)
3354 {
3355 struct drbd_conf *mdev = (struct drbd_conf *) data;
3356
3357 /* must not double-queue! */
3358 if (list_empty(&mdev->md_sync_work.list))
3359 drbd_queue_work_front(&mdev->tconn->sender_work, &mdev->md_sync_work);
3360 }
3361
3362 static int w_md_sync(struct drbd_work *w, int unused)
3363 {
3364 struct drbd_conf *mdev = w->mdev;
3365
3366 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3367 #ifdef DEBUG
3368 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3369 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
3370 #endif
3371 drbd_md_sync(mdev);
3372 return 0;
3373 }
3374
3375 const char *cmdname(enum drbd_packet cmd)
3376 {
3377 /* THINK may need to become several global tables
3378 * when we want to support more than
3379 * one PRO_VERSION */
3380 static const char *cmdnames[] = {
3381 [P_DATA] = "Data",
3382 [P_DATA_REPLY] = "DataReply",
3383 [P_RS_DATA_REPLY] = "RSDataReply",
3384 [P_BARRIER] = "Barrier",
3385 [P_BITMAP] = "ReportBitMap",
3386 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3387 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3388 [P_UNPLUG_REMOTE] = "UnplugRemote",
3389 [P_DATA_REQUEST] = "DataRequest",
3390 [P_RS_DATA_REQUEST] = "RSDataRequest",
3391 [P_SYNC_PARAM] = "SyncParam",
3392 [P_SYNC_PARAM89] = "SyncParam89",
3393 [P_PROTOCOL] = "ReportProtocol",
3394 [P_UUIDS] = "ReportUUIDs",
3395 [P_SIZES] = "ReportSizes",
3396 [P_STATE] = "ReportState",
3397 [P_SYNC_UUID] = "ReportSyncUUID",
3398 [P_AUTH_CHALLENGE] = "AuthChallenge",
3399 [P_AUTH_RESPONSE] = "AuthResponse",
3400 [P_PING] = "Ping",
3401 [P_PING_ACK] = "PingAck",
3402 [P_RECV_ACK] = "RecvAck",
3403 [P_WRITE_ACK] = "WriteAck",
3404 [P_RS_WRITE_ACK] = "RSWriteAck",
3405 [P_SUPERSEDED] = "Superseded",
3406 [P_NEG_ACK] = "NegAck",
3407 [P_NEG_DREPLY] = "NegDReply",
3408 [P_NEG_RS_DREPLY] = "NegRSDReply",
3409 [P_BARRIER_ACK] = "BarrierAck",
3410 [P_STATE_CHG_REQ] = "StateChgRequest",
3411 [P_STATE_CHG_REPLY] = "StateChgReply",
3412 [P_OV_REQUEST] = "OVRequest",
3413 [P_OV_REPLY] = "OVReply",
3414 [P_OV_RESULT] = "OVResult",
3415 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3416 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3417 [P_COMPRESSED_BITMAP] = "CBitmap",
3418 [P_DELAY_PROBE] = "DelayProbe",
3419 [P_OUT_OF_SYNC] = "OutOfSync",
3420 [P_RETRY_WRITE] = "RetryWrite",
3421 [P_RS_CANCEL] = "RSCancel",
3422 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3423 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3424 [P_RETRY_WRITE] = "retry_write",
3425 [P_PROTOCOL_UPDATE] = "protocol_update",
3426
3427 /* enum drbd_packet, but not commands - obsoleted flags:
3428 * P_MAY_IGNORE
3429 * P_MAX_OPT_CMD
3430 */
3431 };
3432
3433 /* too big for the array: 0xfffX */
3434 if (cmd == P_INITIAL_META)
3435 return "InitialMeta";
3436 if (cmd == P_INITIAL_DATA)
3437 return "InitialData";
3438 if (cmd == P_CONNECTION_FEATURES)
3439 return "ConnectionFeatures";
3440 if (cmd >= ARRAY_SIZE(cmdnames))
3441 return "Unknown";
3442 return cmdnames[cmd];
3443 }
3444
3445 /**
3446 * drbd_wait_misc - wait for a request to make progress
3447 * @mdev: device associated with the request
3448 * @i: the struct drbd_interval embedded in struct drbd_request or
3449 * struct drbd_peer_request
3450 */
3451 int drbd_wait_misc(struct drbd_conf *mdev, struct drbd_interval *i)
3452 {
3453 struct net_conf *nc;
3454 DEFINE_WAIT(wait);
3455 long timeout;
3456
3457 rcu_read_lock();
3458 nc = rcu_dereference(mdev->tconn->net_conf);
3459 if (!nc) {
3460 rcu_read_unlock();
3461 return -ETIMEDOUT;
3462 }
3463 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3464 rcu_read_unlock();
3465
3466 /* Indicate to wake up mdev->misc_wait on progress. */
3467 i->waiting = true;
3468 prepare_to_wait(&mdev->misc_wait, &wait, TASK_INTERRUPTIBLE);
3469 spin_unlock_irq(&mdev->tconn->req_lock);
3470 timeout = schedule_timeout(timeout);
3471 finish_wait(&mdev->misc_wait, &wait);
3472 spin_lock_irq(&mdev->tconn->req_lock);
3473 if (!timeout || mdev->state.conn < C_CONNECTED)
3474 return -ETIMEDOUT;
3475 if (signal_pending(current))
3476 return -ERESTARTSYS;
3477 return 0;
3478 }
3479
3480 #ifdef CONFIG_DRBD_FAULT_INJECTION
3481 /* Fault insertion support including random number generator shamelessly
3482 * stolen from kernel/rcutorture.c */
3483 struct fault_random_state {
3484 unsigned long state;
3485 unsigned long count;
3486 };
3487
3488 #define FAULT_RANDOM_MULT 39916801 /* prime */
3489 #define FAULT_RANDOM_ADD 479001701 /* prime */
3490 #define FAULT_RANDOM_REFRESH 10000
3491
3492 /*
3493 * Crude but fast random-number generator. Uses a linear congruential
3494 * generator, with occasional help from get_random_bytes().
3495 */
3496 static unsigned long
3497 _drbd_fault_random(struct fault_random_state *rsp)
3498 {
3499 long refresh;
3500
3501 if (!rsp->count--) {
3502 get_random_bytes(&refresh, sizeof(refresh));
3503 rsp->state += refresh;
3504 rsp->count = FAULT_RANDOM_REFRESH;
3505 }
3506 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3507 return swahw32(rsp->state);
3508 }
3509
3510 static char *
3511 _drbd_fault_str(unsigned int type) {
3512 static char *_faults[] = {
3513 [DRBD_FAULT_MD_WR] = "Meta-data write",
3514 [DRBD_FAULT_MD_RD] = "Meta-data read",
3515 [DRBD_FAULT_RS_WR] = "Resync write",
3516 [DRBD_FAULT_RS_RD] = "Resync read",
3517 [DRBD_FAULT_DT_WR] = "Data write",
3518 [DRBD_FAULT_DT_RD] = "Data read",
3519 [DRBD_FAULT_DT_RA] = "Data read ahead",
3520 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3521 [DRBD_FAULT_AL_EE] = "EE allocation",
3522 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3523 };
3524
3525 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3526 }
3527
3528 unsigned int
3529 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3530 {
3531 static struct fault_random_state rrs = {0, 0};
3532
3533 unsigned int ret = (
3534 (fault_devs == 0 ||
3535 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3536 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3537
3538 if (ret) {
3539 fault_count++;
3540
3541 if (__ratelimit(&drbd_ratelimit_state))
3542 dev_warn(DEV, "***Simulating %s failure\n",
3543 _drbd_fault_str(type));
3544 }
3545
3546 return ret;
3547 }
3548 #endif
3549
3550 const char *drbd_buildtag(void)
3551 {
3552 /* DRBD built from external sources has here a reference to the
3553 git hash of the source code. */
3554
3555 static char buildtag[38] = "\0uilt-in";
3556
3557 if (buildtag[0] == 0) {
3558 #ifdef CONFIG_MODULES
3559 if (THIS_MODULE != NULL)
3560 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3561 else
3562 #endif
3563 buildtag[0] = 'b';
3564 }
3565
3566 return buildtag;
3567 }
3568
3569 module_init(drbd_init)
3570 module_exit(drbd_cleanup)
3571
3572 EXPORT_SYMBOL(drbd_conn_str);
3573 EXPORT_SYMBOL(drbd_role_str);
3574 EXPORT_SYMBOL(drbd_disk_str);
3575 EXPORT_SYMBOL(drbd_set_st_err_str);