Merge remote-tracking branch 'spi/fix/grant' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / atm / lanai.c
1 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version
6 * 2 of the License, or (at your option) any later version.
7 *
8 * This driver supports ATM cards based on the Efficient "Lanai"
9 * chipset such as the Speedstream 3010 and the ENI-25p. The
10 * Speedstream 3060 is currently not supported since we don't
11 * have the code to drive the on-board Alcatel DSL chipset (yet).
12 *
13 * Thanks to Efficient for supporting this project with hardware,
14 * documentation, and by answering my questions.
15 *
16 * Things not working yet:
17 *
18 * o We don't support the Speedstream 3060 yet - this card has
19 * an on-board DSL modem chip by Alcatel and the driver will
20 * need some extra code added to handle it
21 *
22 * o Note that due to limitations of the Lanai only one VCC can be
23 * in CBR at once
24 *
25 * o We don't currently parse the EEPROM at all. The code is all
26 * there as per the spec, but it doesn't actually work. I think
27 * there may be some issues with the docs. Anyway, do NOT
28 * enable it yet - bugs in that code may actually damage your
29 * hardware! Because of this you should hardware an ESI before
30 * trying to use this in a LANE or MPOA environment.
31 *
32 * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33 * vcc_tx_aal0() needs to send or queue a SKB
34 * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35 * vcc_rx_aal0() needs to handle AAL0 interrupts
36 * This isn't too much work - I just wanted to get other things
37 * done first.
38 *
39 * o lanai_change_qos() isn't written yet
40 *
41 * o There aren't any ioctl's yet -- I'd like to eventually support
42 * setting loopback and LED modes that way.
43 *
44 * o If the segmentation engine or DMA gets shut down we should restart
45 * card as per section 17.0i. (see lanai_reset)
46 *
47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48 * API says it isn't exactly commonly implemented)
49 */
50
51 /* Version history:
52 * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53 * v.0.02 -- 11-JAN-2000 -- Endian fixes
54 * v.0.01 -- 30-NOV-1999 -- Initial release
55 */
56
57 #include <linux/module.h>
58 #include <linux/slab.h>
59 #include <linux/mm.h>
60 #include <linux/atmdev.h>
61 #include <asm/io.h>
62 #include <asm/byteorder.h>
63 #include <linux/spinlock.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/interrupt.h>
69
70 /* -------------------- TUNABLE PARAMATERS: */
71
72 /*
73 * Maximum number of VCIs per card. Setting it lower could theoretically
74 * save some memory, but since we allocate our vcc list with get_free_pages,
75 * it's not really likely for most architectures
76 */
77 #define NUM_VCI (1024)
78
79 /*
80 * Enable extra debugging
81 */
82 #define DEBUG
83 /*
84 * Debug _all_ register operations with card, except the memory test.
85 * Also disables the timed poll to prevent extra chattiness. This
86 * isn't for normal use
87 */
88 #undef DEBUG_RW
89
90 /*
91 * The programming guide specifies a full test of the on-board SRAM
92 * at initialization time. Undefine to remove this
93 */
94 #define FULL_MEMORY_TEST
95
96 /*
97 * This is the number of (4 byte) service entries that we will
98 * try to allocate at startup. Note that we will end up with
99 * one PAGE_SIZE's worth regardless of what this is set to
100 */
101 #define SERVICE_ENTRIES (1024)
102 /* TODO: make above a module load-time option */
103
104 /*
105 * We normally read the onboard EEPROM in order to discover our MAC
106 * address. Undefine to _not_ do this
107 */
108 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109 /* TODO: make above a module load-time option (also) */
110
111 /*
112 * Depth of TX fifo (in 128 byte units; range 2-31)
113 * Smaller numbers are better for network latency
114 * Larger numbers are better for PCI latency
115 * I'm really sure where the best tradeoff is, but the BSD driver uses
116 * 7 and it seems to work ok.
117 */
118 #define TX_FIFO_DEPTH (7)
119 /* TODO: make above a module load-time option */
120
121 /*
122 * How often (in jiffies) we will try to unstick stuck connections -
123 * shouldn't need to happen much
124 */
125 #define LANAI_POLL_PERIOD (10*HZ)
126 /* TODO: make above a module load-time option */
127
128 /*
129 * When allocating an AAL5 receiving buffer, try to make it at least
130 * large enough to hold this many max_sdu sized PDUs
131 */
132 #define AAL5_RX_MULTIPLIER (3)
133 /* TODO: make above a module load-time option */
134
135 /*
136 * Same for transmitting buffer
137 */
138 #define AAL5_TX_MULTIPLIER (3)
139 /* TODO: make above a module load-time option */
140
141 /*
142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144 * really critical
145 */
146 #define AAL0_TX_MULTIPLIER (40)
147 /* TODO: make above a module load-time option */
148
149 /*
150 * How large should we make the AAL0 receiving buffer. Remember that this
151 * is shared between all AAL0 VC's
152 */
153 #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
154 /* TODO: make above a module load-time option */
155
156 /*
157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158 */
159 /* #define USE_POWERDOWN */
160 /* TODO: make above a module load-time option (also) */
161
162 /* -------------------- DEBUGGING AIDS: */
163
164 #define DEV_LABEL "lanai"
165
166 #ifdef DEBUG
167
168 #define DPRINTK(format, args...) \
169 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170 #define APRINTK(truth, format, args...) \
171 do { \
172 if (unlikely(!(truth))) \
173 printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174 } while (0)
175
176 #else /* !DEBUG */
177
178 #define DPRINTK(format, args...)
179 #define APRINTK(truth, format, args...)
180
181 #endif /* DEBUG */
182
183 #ifdef DEBUG_RW
184 #define RWDEBUG(format, args...) \
185 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186 #else /* !DEBUG_RW */
187 #define RWDEBUG(format, args...)
188 #endif
189
190 /* -------------------- DATA DEFINITIONS: */
191
192 #define LANAI_MAPPING_SIZE (0x40000)
193 #define LANAI_EEPROM_SIZE (128)
194
195 typedef int vci_t;
196 typedef void __iomem *bus_addr_t;
197
198 /* DMA buffer in host memory for TX, RX, or service list. */
199 struct lanai_buffer {
200 u32 *start; /* From get_free_pages */
201 u32 *end; /* One past last byte */
202 u32 *ptr; /* Pointer to current host location */
203 dma_addr_t dmaaddr;
204 };
205
206 struct lanai_vcc_stats {
207 unsigned rx_nomem;
208 union {
209 struct {
210 unsigned rx_badlen;
211 unsigned service_trash;
212 unsigned service_stream;
213 unsigned service_rxcrc;
214 } aal5;
215 struct {
216 } aal0;
217 } x;
218 };
219
220 struct lanai_dev; /* Forward declaration */
221
222 /*
223 * This is the card-specific per-vcc data. Note that unlike some other
224 * drivers there is NOT a 1-to-1 correspondance between these and
225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227 * direction. To make it weirder, there can even be 0-way vccs
228 * bound to us, waiting to do a change_qos
229 */
230 struct lanai_vcc {
231 bus_addr_t vbase; /* Base of VCC's registers */
232 struct lanai_vcc_stats stats;
233 int nref; /* # of atm_vcc's who reference us */
234 vci_t vci;
235 struct {
236 struct lanai_buffer buf;
237 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
238 } rx;
239 struct {
240 struct lanai_buffer buf;
241 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
242 int endptr; /* last endptr from service entry */
243 struct sk_buff_head backlog;
244 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245 } tx;
246 };
247
248 enum lanai_type {
249 lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
250 lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
251 };
252
253 struct lanai_dev_stats {
254 unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
255 unsigned vci_trash; /* # of cells dropped - closed vci */
256 unsigned hec_err; /* # of cells dropped - bad HEC */
257 unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
258 unsigned pcierr_parity_detect;
259 unsigned pcierr_serr_set;
260 unsigned pcierr_master_abort;
261 unsigned pcierr_m_target_abort;
262 unsigned pcierr_s_target_abort;
263 unsigned pcierr_master_parity;
264 unsigned service_notx;
265 unsigned service_norx;
266 unsigned service_rxnotaal5;
267 unsigned dma_reenable;
268 unsigned card_reset;
269 };
270
271 struct lanai_dev {
272 bus_addr_t base;
273 struct lanai_dev_stats stats;
274 struct lanai_buffer service;
275 struct lanai_vcc **vccs;
276 #ifdef USE_POWERDOWN
277 int nbound; /* number of bound vccs */
278 #endif
279 enum lanai_type type;
280 vci_t num_vci; /* Currently just NUM_VCI */
281 u8 eeprom[LANAI_EEPROM_SIZE];
282 u32 serialno, magicno;
283 struct pci_dev *pci;
284 DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
285 DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286 struct timer_list timer;
287 int naal0;
288 struct lanai_buffer aal0buf; /* AAL0 RX buffers */
289 u32 conf1, conf2; /* CONFIG[12] registers */
290 u32 status; /* STATUS register */
291 spinlock_t endtxlock;
292 spinlock_t servicelock;
293 struct atm_vcc *cbrvcc;
294 int number;
295 int board_rev;
296 /* TODO - look at race conditions with maintence of conf1/conf2 */
297 /* TODO - transmit locking: should we use _irq not _irqsave? */
298 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299 };
300
301 /*
302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303 * This function iterates one of these, calling a given function for each
304 * vci with their bit set
305 */
306 static void vci_bitfield_iterate(struct lanai_dev *lanai,
307 const unsigned long *lp,
308 void (*func)(struct lanai_dev *,vci_t vci))
309 {
310 vci_t vci;
311
312 for_each_set_bit(vci, lp, NUM_VCI)
313 func(lanai, vci);
314 }
315
316 /* -------------------- BUFFER UTILITIES: */
317
318 /*
319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320 * usually any page allocation will do. Just to be safe in case
321 * PAGE_SIZE is insanely tiny, though...
322 */
323 #define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324
325 /*
326 * Allocate a buffer in host RAM for service list, RX, or TX
327 * Returns buf->start==NULL if no memory
328 * Note that the size will be rounded up 2^n bytes, and
329 * if we can't allocate that we'll settle for something smaller
330 * until minbytes
331 */
332 static void lanai_buf_allocate(struct lanai_buffer *buf,
333 size_t bytes, size_t minbytes, struct pci_dev *pci)
334 {
335 int size;
336
337 if (bytes > (128 * 1024)) /* max lanai buffer size */
338 bytes = 128 * 1024;
339 for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340 ;
341 if (minbytes < LANAI_PAGE_SIZE)
342 minbytes = LANAI_PAGE_SIZE;
343 do {
344 /*
345 * Technically we could use non-consistent mappings for
346 * everything, but the way the lanai uses DMA memory would
347 * make that a terrific pain. This is much simpler.
348 */
349 buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
350 if (buf->start != NULL) { /* Success */
351 /* Lanai requires 256-byte alignment of DMA bufs */
352 APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
353 "bad dmaaddr: 0x%lx\n",
354 (unsigned long) buf->dmaaddr);
355 buf->ptr = buf->start;
356 buf->end = (u32 *)
357 (&((unsigned char *) buf->start)[size]);
358 memset(buf->start, 0, size);
359 break;
360 }
361 size /= 2;
362 } while (size >= minbytes);
363 }
364
365 /* size of buffer in bytes */
366 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
367 {
368 return ((unsigned long) buf->end) - ((unsigned long) buf->start);
369 }
370
371 static void lanai_buf_deallocate(struct lanai_buffer *buf,
372 struct pci_dev *pci)
373 {
374 if (buf->start != NULL) {
375 pci_free_consistent(pci, lanai_buf_size(buf),
376 buf->start, buf->dmaaddr);
377 buf->start = buf->end = buf->ptr = NULL;
378 }
379 }
380
381 /* size of buffer as "card order" (0=1k .. 7=128k) */
382 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
383 {
384 int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
385
386 /* This can only happen if PAGE_SIZE is gigantic, but just in case */
387 if (order > 7)
388 order = 7;
389 return order;
390 }
391
392 /* -------------------- PORT I/O UTILITIES: */
393
394 /* Registers (and their bit-fields) */
395 enum lanai_register {
396 Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
397 #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
398 #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
399 #define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
400 Endian_Reg = 0x04, /* Endian setting */
401 IntStatus_Reg = 0x08, /* Interrupt status */
402 IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
403 IntAck_Reg = 0x10, /* Interrupt acknowledge */
404 IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
405 IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
406 IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
407 IntControlEna_Reg = 0x20, /* Interrupt control enable */
408 IntControlDis_Reg = 0x24, /* Interrupt control disable */
409 Status_Reg = 0x28, /* Status */
410 #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
411 #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
412 #define STATUS_SOOL (0x00000004) /* SOOL alarm */
413 #define STATUS_LOCD (0x00000008) /* LOCD alarm */
414 #define STATUS_LED (0x00000010) /* LED (HAPPI) output */
415 #define STATUS_GPIN (0x00000020) /* GPIN pin */
416 #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
417 Config1_Reg = 0x2C, /* Config word 1; bits: */
418 #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
419 #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
420 #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
421 #define READMODE_PLAIN (0) /* Plain memory read */
422 #define READMODE_LINE (2) /* Memory read line */
423 #define READMODE_MULTIPLE (3) /* Memory read multiple */
424 #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
425 #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
426 #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
427 #define LOOPMODE_NORMAL (0) /* Normal - no loop */
428 #define LOOPMODE_TIME (1)
429 #define LOOPMODE_DIAG (2)
430 #define LOOPMODE_LINE (3)
431 #define CONFIG1_MASK_LOOPMODE (0x00000180)
432 #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
433 #define LEDMODE_NOT_SOOL (0) /* !SOOL */
434 #define LEDMODE_OFF (1) /* 0 */
435 #define LEDMODE_ON (2) /* 1 */
436 #define LEDMODE_NOT_LOCD (3) /* !LOCD */
437 #define LEDMORE_GPIN (4) /* GPIN */
438 #define LEDMODE_NOT_GPIN (7) /* !GPIN */
439 #define CONFIG1_MASK_LEDMODE (0x00000E00)
440 #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
441 #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
442 #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
443 Config2_Reg = 0x30, /* Config word 2; bits: */
444 #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
445 #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
446 #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
447 #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
448 #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
449 #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
450 #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
451 #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
452 #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
453 Statistics_Reg = 0x34, /* Statistics; bits: */
454 #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
455 #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
456 #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
457 #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
458 ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
459 #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
460 #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
461 ServWrite_Reg = 0x3C, /* ServWrite Pointer */
462 ServRead_Reg = 0x40, /* ServRead Pointer */
463 TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
464 Butt_Reg = 0x48, /* Butt register */
465 CBR_ICG_Reg = 0x50,
466 CBR_PTR_Reg = 0x54,
467 PingCount_Reg = 0x58, /* Ping count */
468 DMA_Addr_Reg = 0x5C /* DMA address */
469 };
470
471 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
472 enum lanai_register reg)
473 {
474 return lanai->base + reg;
475 }
476
477 static inline u32 reg_read(const struct lanai_dev *lanai,
478 enum lanai_register reg)
479 {
480 u32 t;
481 t = readl(reg_addr(lanai, reg));
482 RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
483 (int) reg, t);
484 return t;
485 }
486
487 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
488 enum lanai_register reg)
489 {
490 RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
491 (int) reg, val);
492 writel(val, reg_addr(lanai, reg));
493 }
494
495 static inline void conf1_write(const struct lanai_dev *lanai)
496 {
497 reg_write(lanai, lanai->conf1, Config1_Reg);
498 }
499
500 static inline void conf2_write(const struct lanai_dev *lanai)
501 {
502 reg_write(lanai, lanai->conf2, Config2_Reg);
503 }
504
505 /* Same as conf2_write(), but defers I/O if we're powered down */
506 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
507 {
508 #ifdef USE_POWERDOWN
509 if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
510 return;
511 #endif /* USE_POWERDOWN */
512 conf2_write(lanai);
513 }
514
515 static inline void reset_board(const struct lanai_dev *lanai)
516 {
517 DPRINTK("about to reset board\n");
518 reg_write(lanai, 0, Reset_Reg);
519 /*
520 * If we don't delay a little while here then we can end up
521 * leaving the card in a VERY weird state and lock up the
522 * PCI bus. This isn't documented anywhere but I've convinced
523 * myself after a lot of painful experimentation
524 */
525 udelay(5);
526 }
527
528 /* -------------------- CARD SRAM UTILITIES: */
529
530 /* The SRAM is mapped into normal PCI memory space - the only catch is
531 * that it is only 16-bits wide but must be accessed as 32-bit. The
532 * 16 high bits will be zero. We don't hide this, since they get
533 * programmed mostly like discrete registers anyway
534 */
535 #define SRAM_START (0x20000)
536 #define SRAM_BYTES (0x20000) /* Again, half don't really exist */
537
538 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
539 {
540 return lanai->base + SRAM_START + offset;
541 }
542
543 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
544 {
545 return readl(sram_addr(lanai, offset));
546 }
547
548 static inline void sram_write(const struct lanai_dev *lanai,
549 u32 val, int offset)
550 {
551 writel(val, sram_addr(lanai, offset));
552 }
553
554 static int sram_test_word(const struct lanai_dev *lanai, int offset,
555 u32 pattern)
556 {
557 u32 readback;
558 sram_write(lanai, pattern, offset);
559 readback = sram_read(lanai, offset);
560 if (likely(readback == pattern))
561 return 0;
562 printk(KERN_ERR DEV_LABEL
563 "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
564 lanai->number, offset,
565 (unsigned int) pattern, (unsigned int) readback);
566 return -EIO;
567 }
568
569 static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
570 {
571 int offset, result = 0;
572 for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
573 result = sram_test_word(lanai, offset, pattern);
574 return result;
575 }
576
577 static int sram_test_and_clear(const struct lanai_dev *lanai)
578 {
579 #ifdef FULL_MEMORY_TEST
580 int result;
581 DPRINTK("testing SRAM\n");
582 if ((result = sram_test_pass(lanai, 0x5555)) != 0)
583 return result;
584 if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
585 return result;
586 #endif
587 DPRINTK("clearing SRAM\n");
588 return sram_test_pass(lanai, 0x0000);
589 }
590
591 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
592
593 /* vcc table */
594 enum lanai_vcc_offset {
595 vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
596 #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
597 #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
598 #define RMMODE_TRASH (0) /* discard */
599 #define RMMODE_PRESERVE (1) /* input as AAL0 */
600 #define RMMODE_PIPE (2) /* pipe to coscheduler */
601 #define RMMODE_PIPEALL (3) /* pipe non-RM too */
602 #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
603 #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
604 #define RXMODE_TRASH (0) /* discard */
605 #define RXMODE_AAL0 (1) /* non-AAL5 mode */
606 #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
607 #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
608 vcc_rxaddr2 = 0x04, /* Location2 */
609 vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
610 vcc_rxcrc2 = 0x0C,
611 vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
612 #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
613 #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
614 #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
615 vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
616 #define RXBUFSTART_CLP (0x00004000)
617 #define RXBUFSTART_CI (0x00008000)
618 vcc_rxreadptr = 0x18, /* RX readptr */
619 vcc_txicg = 0x1C, /* TX ICG */
620 vcc_txaddr1 = 0x20, /* Location1, plus bits: */
621 #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
622 #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
623 vcc_txaddr2 = 0x24, /* Location2 */
624 vcc_txcrc1 = 0x28, /* TX CRC claculation space */
625 vcc_txcrc2 = 0x2C,
626 vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
627 #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
628 #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
629 vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
630 #define TXENDPTR_CLP (0x00002000)
631 #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
632 #define PDUMODE_AAL0 (0*0x04000)
633 #define PDUMODE_AAL5 (2*0x04000)
634 #define PDUMODE_AAL5STREAM (3*0x04000)
635 vcc_txwriteptr = 0x38, /* TX Writeptr */
636 #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
637 vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
638 #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
639 };
640
641 #define CARDVCC_SIZE (0x40)
642
643 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
644 vci_t vci)
645 {
646 return sram_addr(lanai, vci * CARDVCC_SIZE);
647 }
648
649 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
650 enum lanai_vcc_offset offset)
651 {
652 u32 val;
653 APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
654 val= readl(lvcc->vbase + offset);
655 RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
656 lvcc->vci, (int) offset, val);
657 return val;
658 }
659
660 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
661 u32 val, enum lanai_vcc_offset offset)
662 {
663 APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
664 APRINTK((val & ~0xFFFF) == 0,
665 "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
666 (unsigned int) val, lvcc->vci, (unsigned int) offset);
667 RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
668 lvcc->vci, (unsigned int) offset, (unsigned int) val);
669 writel(val, lvcc->vbase + offset);
670 }
671
672 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
673
674 /* How many bytes will an AAL5 PDU take to transmit - remember that:
675 * o we need to add 8 bytes for length, CPI, UU, and CRC
676 * o we need to round up to 48 bytes for cells
677 */
678 static inline int aal5_size(int size)
679 {
680 int cells = (size + 8 + 47) / 48;
681 return cells * 48;
682 }
683
684 /* How many bytes can we send if we have "space" space, assuming we have
685 * to send full cells
686 */
687 static inline int aal5_spacefor(int space)
688 {
689 int cells = space / 48;
690 return cells * 48;
691 }
692
693 /* -------------------- FREE AN ATM SKB: */
694
695 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
696 {
697 if (atmvcc->pop != NULL)
698 atmvcc->pop(atmvcc, skb);
699 else
700 dev_kfree_skb_any(skb);
701 }
702
703 /* -------------------- TURN VCCS ON AND OFF: */
704
705 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
706 {
707 u32 addr1;
708 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
709 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
710 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
711 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
712 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
713 cardvcc_write(lvcc, 0, vcc_rxbufstart);
714 cardvcc_write(lvcc, 0, vcc_rxreadptr);
715 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
716 addr1 = ((dmaaddr >> 8) & 0xFF) |
717 RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
718 RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
719 /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
720 RXADDR1_SET_MODE(RXMODE_AAL5);
721 } else
722 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
723 RXADDR1_OAM_PRESERVE | /* ??? */
724 RXADDR1_SET_MODE(RXMODE_AAL0);
725 /* This one must be last! */
726 cardvcc_write(lvcc, addr1, vcc_rxaddr1);
727 }
728
729 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
730 {
731 dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
732 cardvcc_write(lvcc, 0, vcc_txicg);
733 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
734 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
735 cardvcc_write(lvcc, 0, vcc_txreadptr);
736 cardvcc_write(lvcc, 0, vcc_txendptr);
737 cardvcc_write(lvcc, 0, vcc_txwriteptr);
738 cardvcc_write(lvcc,
739 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
740 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
741 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
742 cardvcc_write(lvcc,
743 ((dmaaddr >> 8) & 0xFF) |
744 TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
745 vcc_txaddr1);
746 }
747
748 /* Shutdown receiving on card */
749 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
750 {
751 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
752 return;
753 /* 15.1.1 - set to trashing, wait one cell time (15us) */
754 cardvcc_write(lvcc,
755 RXADDR1_SET_RMMODE(RMMODE_TRASH) |
756 RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
757 udelay(15);
758 /* 15.1.2 - clear rest of entries */
759 cardvcc_write(lvcc, 0, vcc_rxaddr2);
760 cardvcc_write(lvcc, 0, vcc_rxcrc1);
761 cardvcc_write(lvcc, 0, vcc_rxcrc2);
762 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
763 cardvcc_write(lvcc, 0, vcc_rxbufstart);
764 cardvcc_write(lvcc, 0, vcc_rxreadptr);
765 }
766
767 /* Shutdown transmitting on card.
768 * Unfortunately the lanai needs us to wait until all the data
769 * drains out of the buffer before we can dealloc it, so this
770 * can take awhile -- up to 370ms for a full 128KB buffer
771 * assuming everone else is quiet. In theory the time is
772 * boundless if there's a CBR VCC holding things up.
773 */
774 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
775 struct lanai_vcc *lvcc)
776 {
777 struct sk_buff *skb;
778 unsigned long flags, timeout;
779 int read, write, lastread = -1;
780 APRINTK(!in_interrupt(),
781 "lanai_shutdown_tx_vci called w/o process context!\n");
782 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
783 return;
784 /* 15.2.1 - wait for queue to drain */
785 while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
786 lanai_free_skb(lvcc->tx.atmvcc, skb);
787 read_lock_irqsave(&vcc_sklist_lock, flags);
788 __clear_bit(lvcc->vci, lanai->backlog_vccs);
789 read_unlock_irqrestore(&vcc_sklist_lock, flags);
790 /*
791 * We need to wait for the VCC to drain but don't wait forever. We
792 * give each 1K of buffer size 1/128th of a second to clear out.
793 * TODO: maybe disable CBR if we're about to timeout?
794 */
795 timeout = jiffies +
796 (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
797 write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
798 for (;;) {
799 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
800 if (read == write && /* Is TX buffer empty? */
801 (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
802 (cardvcc_read(lvcc, vcc_txcbr_next) &
803 TXCBR_NEXT_BOZO) == 0))
804 break;
805 if (read != lastread) { /* Has there been any progress? */
806 lastread = read;
807 timeout += HZ / 10;
808 }
809 if (unlikely(time_after(jiffies, timeout))) {
810 printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
811 "backlog closing vci %d\n",
812 lvcc->tx.atmvcc->dev->number, lvcc->vci);
813 DPRINTK("read, write = %d, %d\n", read, write);
814 break;
815 }
816 msleep(40);
817 }
818 /* 15.2.2 - clear out all tx registers */
819 cardvcc_write(lvcc, 0, vcc_txreadptr);
820 cardvcc_write(lvcc, 0, vcc_txwriteptr);
821 cardvcc_write(lvcc, 0, vcc_txendptr);
822 cardvcc_write(lvcc, 0, vcc_txcrc1);
823 cardvcc_write(lvcc, 0, vcc_txcrc2);
824 cardvcc_write(lvcc, 0, vcc_txaddr2);
825 cardvcc_write(lvcc, 0, vcc_txaddr1);
826 }
827
828 /* -------------------- MANAGING AAL0 RX BUFFER: */
829
830 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
831 {
832 DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
833 lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
834 lanai->pci);
835 return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
836 }
837
838 static inline void aal0_buffer_free(struct lanai_dev *lanai)
839 {
840 DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
841 lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
842 }
843
844 /* -------------------- EEPROM UTILITIES: */
845
846 /* Offsets of data in the EEPROM */
847 #define EEPROM_COPYRIGHT (0)
848 #define EEPROM_COPYRIGHT_LEN (44)
849 #define EEPROM_CHECKSUM (62)
850 #define EEPROM_CHECKSUM_REV (63)
851 #define EEPROM_MAC (64)
852 #define EEPROM_MAC_REV (70)
853 #define EEPROM_SERIAL (112)
854 #define EEPROM_SERIAL_REV (116)
855 #define EEPROM_MAGIC (120)
856 #define EEPROM_MAGIC_REV (124)
857
858 #define EEPROM_MAGIC_VALUE (0x5AB478D2)
859
860 #ifndef READ_EEPROM
861
862 /* Stub functions to use if EEPROM reading is disabled */
863 static int eeprom_read(struct lanai_dev *lanai)
864 {
865 printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
866 lanai->number);
867 memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
868 return 0;
869 }
870
871 static int eeprom_validate(struct lanai_dev *lanai)
872 {
873 lanai->serialno = 0;
874 lanai->magicno = EEPROM_MAGIC_VALUE;
875 return 0;
876 }
877
878 #else /* READ_EEPROM */
879
880 static int eeprom_read(struct lanai_dev *lanai)
881 {
882 int i, address;
883 u8 data;
884 u32 tmp;
885 #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
886 } while (0)
887 #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
888 #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
889 #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
890 #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
891 #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
892 #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
893 #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
894 data_h(); udelay(5); } while (0)
895 /* start with both clock and data high */
896 data_h(); clock_h(); udelay(5);
897 for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
898 data = (address << 1) | 1; /* Command=read + address */
899 /* send start bit */
900 data_l(); udelay(5);
901 clock_l(); udelay(5);
902 for (i = 128; i != 0; i >>= 1) { /* write command out */
903 tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
904 ((data & i) ? CONFIG1_PROMDATA : 0);
905 if (lanai->conf1 != tmp) {
906 set_config1(tmp);
907 udelay(5); /* Let new data settle */
908 }
909 clock_h(); udelay(5); clock_l(); udelay(5);
910 }
911 /* look for ack */
912 data_h(); clock_h(); udelay(5);
913 if (read_pin() != 0)
914 goto error; /* No ack seen */
915 clock_l(); udelay(5);
916 /* read back result */
917 for (data = 0, i = 7; i >= 0; i--) {
918 data_h(); clock_h(); udelay(5);
919 data = (data << 1) | !!read_pin();
920 clock_l(); udelay(5);
921 }
922 /* look again for ack */
923 data_h(); clock_h(); udelay(5);
924 if (read_pin() == 0)
925 goto error; /* Spurious ack */
926 clock_l(); udelay(5);
927 send_stop();
928 lanai->eeprom[address] = data;
929 DPRINTK("EEPROM 0x%04X %02X\n",
930 (unsigned int) address, (unsigned int) data);
931 }
932 return 0;
933 error:
934 clock_l(); udelay(5); /* finish read */
935 send_stop();
936 printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
937 lanai->number, address);
938 return -EIO;
939 #undef set_config1
940 #undef clock_h
941 #undef clock_l
942 #undef data_h
943 #undef data_l
944 #undef pre_read
945 #undef read_pin
946 #undef send_stop
947 }
948
949 /* read a big-endian 4-byte value out of eeprom */
950 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
951 {
952 return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
953 }
954
955 /* Checksum/validate EEPROM contents */
956 static int eeprom_validate(struct lanai_dev *lanai)
957 {
958 int i, s;
959 u32 v;
960 const u8 *e = lanai->eeprom;
961 #ifdef DEBUG
962 /* First, see if we can get an ASCIIZ string out of the copyright */
963 for (i = EEPROM_COPYRIGHT;
964 i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
965 if (e[i] < 0x20 || e[i] > 0x7E)
966 break;
967 if ( i != EEPROM_COPYRIGHT &&
968 i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
969 DPRINTK("eeprom: copyright = \"%s\"\n",
970 (char *) &e[EEPROM_COPYRIGHT]);
971 else
972 DPRINTK("eeprom: copyright not found\n");
973 #endif
974 /* Validate checksum */
975 for (i = s = 0; i < EEPROM_CHECKSUM; i++)
976 s += e[i];
977 s &= 0xFF;
978 if (s != e[EEPROM_CHECKSUM]) {
979 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
980 "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
981 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
982 return -EIO;
983 }
984 s ^= 0xFF;
985 if (s != e[EEPROM_CHECKSUM_REV]) {
986 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
987 "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
988 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
989 return -EIO;
990 }
991 /* Verify MAC address */
992 for (i = 0; i < 6; i++)
993 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
994 printk(KERN_ERR DEV_LABEL
995 "(itf %d) : EEPROM MAC addresses don't match "
996 "(0x%02X, inverse 0x%02X)\n", lanai->number,
997 (unsigned int) e[EEPROM_MAC + i],
998 (unsigned int) e[EEPROM_MAC_REV + i]);
999 return -EIO;
1000 }
1001 DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
1002 /* Verify serial number */
1003 lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1004 v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1005 if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1006 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1007 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1008 (unsigned int) lanai->serialno, (unsigned int) v);
1009 return -EIO;
1010 }
1011 DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1012 /* Verify magic number */
1013 lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1014 v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1015 if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1016 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1017 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1018 lanai->magicno, v);
1019 return -EIO;
1020 }
1021 DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1022 if (lanai->magicno != EEPROM_MAGIC_VALUE)
1023 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1024 "magic not what expected (got 0x%08X, not 0x%08X)\n",
1025 lanai->number, (unsigned int) lanai->magicno,
1026 (unsigned int) EEPROM_MAGIC_VALUE);
1027 return 0;
1028 }
1029
1030 #endif /* READ_EEPROM */
1031
1032 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1033 {
1034 return &lanai->eeprom[EEPROM_MAC];
1035 }
1036
1037 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1038
1039 /* Interrupt types */
1040 #define INT_STATS (0x00000002) /* Statistics counter overflow */
1041 #define INT_SOOL (0x00000004) /* SOOL changed state */
1042 #define INT_LOCD (0x00000008) /* LOCD changed state */
1043 #define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1044 #define INT_GPIN (0x00000020) /* GPIN changed state */
1045 #define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1046 #define INT_WAKE (0x00000080) /* Lanai wants bus */
1047 #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1048 #define INT_LOCK (0x00000200) /* Service list overflow */
1049 #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1050 #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1051 #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1052 #define INT_SERVICE (0x00002000) /* Service list entries available */
1053 #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1054 #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1055 #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1056 #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1057
1058 /* Sets of the above */
1059 #define INT_ALL (0x0003FFFE) /* All interrupts */
1060 #define INT_STATUS (0x0000003C) /* Some status pin changed */
1061 #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1062 #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1063
1064 static inline u32 intr_pending(const struct lanai_dev *lanai)
1065 {
1066 return reg_read(lanai, IntStatusMasked_Reg);
1067 }
1068
1069 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1070 {
1071 reg_write(lanai, i, IntControlEna_Reg);
1072 }
1073
1074 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1075 {
1076 reg_write(lanai, i, IntControlDis_Reg);
1077 }
1078
1079 /* -------------------- CARD/PCI STATUS: */
1080
1081 static void status_message(int itf, const char *name, int status)
1082 {
1083 static const char *onoff[2] = { "off to on", "on to off" };
1084 printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1085 itf, name, onoff[!status]);
1086 }
1087
1088 static void lanai_check_status(struct lanai_dev *lanai)
1089 {
1090 u32 new = reg_read(lanai, Status_Reg);
1091 u32 changes = new ^ lanai->status;
1092 lanai->status = new;
1093 #define e(flag, name) \
1094 if (changes & flag) \
1095 status_message(lanai->number, name, new & flag)
1096 e(STATUS_SOOL, "SOOL");
1097 e(STATUS_LOCD, "LOCD");
1098 e(STATUS_LED, "LED");
1099 e(STATUS_GPIN, "GPIN");
1100 #undef e
1101 }
1102
1103 static void pcistatus_got(int itf, const char *name)
1104 {
1105 printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1106 }
1107
1108 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1109 {
1110 u16 s;
1111 int result;
1112 result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1113 if (result != PCIBIOS_SUCCESSFUL) {
1114 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1115 "%d\n", lanai->number, result);
1116 return;
1117 }
1118 s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1119 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1120 PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1121 if (s == 0)
1122 return;
1123 result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1124 if (result != PCIBIOS_SUCCESSFUL)
1125 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1126 "%d\n", lanai->number, result);
1127 if (clearonly)
1128 return;
1129 #define e(flag, name, stat) \
1130 if (s & flag) { \
1131 pcistatus_got(lanai->number, name); \
1132 ++lanai->stats.pcierr_##stat; \
1133 }
1134 e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1135 e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1136 e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1137 e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1138 e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1139 e(PCI_STATUS_PARITY, "master parity", master_parity);
1140 #undef e
1141 }
1142
1143 /* -------------------- VCC TX BUFFER UTILITIES: */
1144
1145 /* space left in tx buffer in bytes */
1146 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1147 {
1148 int r;
1149 r = endptr * 16;
1150 r -= ((unsigned long) lvcc->tx.buf.ptr) -
1151 ((unsigned long) lvcc->tx.buf.start);
1152 r -= 16; /* Leave "bubble" - if start==end it looks empty */
1153 if (r < 0)
1154 r += lanai_buf_size(&lvcc->tx.buf);
1155 return r;
1156 }
1157
1158 /* test if VCC is currently backlogged */
1159 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1160 {
1161 return !skb_queue_empty(&lvcc->tx.backlog);
1162 }
1163
1164 /* Bit fields in the segmentation buffer descriptor */
1165 #define DESCRIPTOR_MAGIC (0xD0000000)
1166 #define DESCRIPTOR_AAL5 (0x00008000)
1167 #define DESCRIPTOR_AAL5_STREAM (0x00004000)
1168 #define DESCRIPTOR_CLP (0x00002000)
1169
1170 /* Add 32-bit descriptor with its padding */
1171 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1172 u32 flags, int len)
1173 {
1174 int pos;
1175 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1176 "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1177 lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1178 pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1179 (unsigned char *) lvcc->tx.buf.start;
1180 APRINTK((pos & ~0x0001FFF0) == 0,
1181 "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1182 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1183 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1184 pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1185 APRINTK((pos & ~0x0001FFF0) == 0,
1186 "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1187 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1188 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1189 lvcc->tx.buf.ptr[-1] =
1190 cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1191 ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1192 DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1193 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195 }
1196
1197 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1198 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1199 int len, int cpi, int uu)
1200 {
1201 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1202 "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1203 lvcc->tx.buf.ptr += 2;
1204 lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1205 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1206 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1207 }
1208
1209 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1210 const unsigned char *src, int n)
1211 {
1212 unsigned char *e;
1213 int m;
1214 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1215 m = e - (unsigned char *) lvcc->tx.buf.end;
1216 if (m < 0)
1217 m = 0;
1218 memcpy(lvcc->tx.buf.ptr, src, n - m);
1219 if (m != 0) {
1220 memcpy(lvcc->tx.buf.start, src + n - m, m);
1221 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1222 }
1223 lvcc->tx.buf.ptr = (u32 *) e;
1224 }
1225
1226 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1227 {
1228 unsigned char *e;
1229 int m;
1230 if (n == 0)
1231 return;
1232 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1233 m = e - (unsigned char *) lvcc->tx.buf.end;
1234 if (m < 0)
1235 m = 0;
1236 memset(lvcc->tx.buf.ptr, 0, n - m);
1237 if (m != 0) {
1238 memset(lvcc->tx.buf.start, 0, m);
1239 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1240 }
1241 lvcc->tx.buf.ptr = (u32 *) e;
1242 }
1243
1244 /* Update "butt" register to specify new WritePtr */
1245 static inline void lanai_endtx(struct lanai_dev *lanai,
1246 const struct lanai_vcc *lvcc)
1247 {
1248 int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1249 (unsigned char *) lvcc->tx.buf.start;
1250 APRINTK((ptr & ~0x0001FFF0) == 0,
1251 "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1252 ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1253 lvcc->tx.buf.end);
1254
1255 /*
1256 * Since the "butt register" is a shared resounce on the card we
1257 * serialize all accesses to it through this spinlock. This is
1258 * mostly just paranoia since the register is rarely "busy" anyway
1259 * but is needed for correctness.
1260 */
1261 spin_lock(&lanai->endtxlock);
1262 /*
1263 * We need to check if the "butt busy" bit is set before
1264 * updating the butt register. In theory this should
1265 * never happen because the ATM card is plenty fast at
1266 * updating the register. Still, we should make sure
1267 */
1268 for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1269 if (unlikely(i > 50)) {
1270 printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1271 "always busy!\n", lanai->number);
1272 break;
1273 }
1274 udelay(5);
1275 }
1276 /*
1277 * Before we tall the card to start work we need to be sure 100% of
1278 * the info in the service buffer has been written before we tell
1279 * the card about it
1280 */
1281 wmb();
1282 reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1283 spin_unlock(&lanai->endtxlock);
1284 }
1285
1286 /*
1287 * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1288 * space available. "pdusize" is the number of bytes the PDU will take
1289 */
1290 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1291 struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1292 {
1293 int pad;
1294 APRINTK(pdusize == aal5_size(skb->len),
1295 "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1296 pdusize, aal5_size(skb->len));
1297 vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1298 pad = pdusize - skb->len - 8;
1299 APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1300 APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1301 vcc_tx_memcpy(lvcc, skb->data, skb->len);
1302 vcc_tx_memzero(lvcc, pad);
1303 vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1304 lanai_endtx(lanai, lvcc);
1305 lanai_free_skb(lvcc->tx.atmvcc, skb);
1306 atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1307 }
1308
1309 /* Try to fill the buffer - don't call unless there is backlog */
1310 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1311 struct lanai_vcc *lvcc, int endptr)
1312 {
1313 int n;
1314 struct sk_buff *skb;
1315 int space = vcc_tx_space(lvcc, endptr);
1316 APRINTK(vcc_is_backlogged(lvcc),
1317 "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1318 lvcc->vci);
1319 while (space >= 64) {
1320 skb = skb_dequeue(&lvcc->tx.backlog);
1321 if (skb == NULL)
1322 goto no_backlog;
1323 n = aal5_size(skb->len);
1324 if (n + 16 > space) {
1325 /* No room for this packet - put it back on queue */
1326 skb_queue_head(&lvcc->tx.backlog, skb);
1327 return;
1328 }
1329 lanai_send_one_aal5(lanai, lvcc, skb, n);
1330 space -= n + 16;
1331 }
1332 if (!vcc_is_backlogged(lvcc)) {
1333 no_backlog:
1334 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1335 }
1336 }
1337
1338 /* Given an skb that we want to transmit either send it now or queue */
1339 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1340 struct sk_buff *skb)
1341 {
1342 int space, n;
1343 if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1344 goto queue_it;
1345 space = vcc_tx_space(lvcc,
1346 TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1347 n = aal5_size(skb->len);
1348 APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1349 if (space < n + 16) { /* No space for this PDU */
1350 __set_bit(lvcc->vci, lanai->backlog_vccs);
1351 queue_it:
1352 skb_queue_tail(&lvcc->tx.backlog, skb);
1353 return;
1354 }
1355 lanai_send_one_aal5(lanai, lvcc, skb, n);
1356 }
1357
1358 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1359 struct lanai_vcc *lvcc, int endptr)
1360 {
1361 printk(KERN_INFO DEV_LABEL
1362 ": vcc_tx_unqueue_aal0: not implemented\n");
1363 }
1364
1365 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1366 struct sk_buff *skb)
1367 {
1368 printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1369 /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1370 lanai_free_skb(lvcc->tx.atmvcc, skb);
1371 }
1372
1373 /* -------------------- VCC RX BUFFER UTILITIES: */
1374
1375 /* unlike the _tx_ cousins, this doesn't update ptr */
1376 static inline void vcc_rx_memcpy(unsigned char *dest,
1377 const struct lanai_vcc *lvcc, int n)
1378 {
1379 int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1380 ((const unsigned char *) (lvcc->rx.buf.end));
1381 if (m < 0)
1382 m = 0;
1383 memcpy(dest, lvcc->rx.buf.ptr, n - m);
1384 memcpy(dest + n - m, lvcc->rx.buf.start, m);
1385 /* Make sure that these copies don't get reordered */
1386 barrier();
1387 }
1388
1389 /* Receive AAL5 data on a VCC with a particular endptr */
1390 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1391 {
1392 int size;
1393 struct sk_buff *skb;
1394 const u32 *x;
1395 u32 *end = &lvcc->rx.buf.start[endptr * 4];
1396 int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1397 if (n < 0)
1398 n += lanai_buf_size(&lvcc->rx.buf);
1399 APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1400 "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1401 n, lanai_buf_size(&lvcc->rx.buf));
1402 /* Recover the second-to-last word to get true pdu length */
1403 if ((x = &end[-2]) < lvcc->rx.buf.start)
1404 x = &lvcc->rx.buf.end[-2];
1405 /*
1406 * Before we actually read from the buffer, make sure the memory
1407 * changes have arrived
1408 */
1409 rmb();
1410 size = be32_to_cpup(x) & 0xffff;
1411 if (unlikely(n != aal5_size(size))) {
1412 /* Make sure size matches padding */
1413 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1414 "on vci=%d - size=%d n=%d\n",
1415 lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1416 lvcc->stats.x.aal5.rx_badlen++;
1417 goto out;
1418 }
1419 skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1420 if (unlikely(skb == NULL)) {
1421 lvcc->stats.rx_nomem++;
1422 goto out;
1423 }
1424 skb_put(skb, size);
1425 vcc_rx_memcpy(skb->data, lvcc, size);
1426 ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1427 __net_timestamp(skb);
1428 lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1429 atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1430 out:
1431 lvcc->rx.buf.ptr = end;
1432 cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1433 }
1434
1435 static void vcc_rx_aal0(struct lanai_dev *lanai)
1436 {
1437 printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1438 /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1439 /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1440 }
1441
1442 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1443
1444 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1445 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1446 #define VCCTABLE_GETFREEPAGE
1447 #else
1448 #include <linux/vmalloc.h>
1449 #endif
1450
1451 static int vcc_table_allocate(struct lanai_dev *lanai)
1452 {
1453 #ifdef VCCTABLE_GETFREEPAGE
1454 APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1455 "vcc table > PAGE_SIZE!");
1456 lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1457 return (lanai->vccs == NULL) ? -ENOMEM : 0;
1458 #else
1459 int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1460 lanai->vccs = vzalloc(bytes);
1461 if (unlikely(lanai->vccs == NULL))
1462 return -ENOMEM;
1463 return 0;
1464 #endif
1465 }
1466
1467 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1468 {
1469 #ifdef VCCTABLE_GETFREEPAGE
1470 free_page((unsigned long) lanai->vccs);
1471 #else
1472 vfree(lanai->vccs);
1473 #endif
1474 }
1475
1476 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1477 static inline struct lanai_vcc *new_lanai_vcc(void)
1478 {
1479 struct lanai_vcc *lvcc;
1480 lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1481 if (likely(lvcc != NULL)) {
1482 skb_queue_head_init(&lvcc->tx.backlog);
1483 #ifdef DEBUG
1484 lvcc->vci = -1;
1485 #endif
1486 }
1487 return lvcc;
1488 }
1489
1490 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1491 struct lanai_buffer *buf, int max_sdu, int multiplier,
1492 const char *name)
1493 {
1494 int size;
1495 if (unlikely(max_sdu < 1))
1496 max_sdu = 1;
1497 max_sdu = aal5_size(max_sdu);
1498 size = (max_sdu + 16) * multiplier + 16;
1499 lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1500 if (unlikely(buf->start == NULL))
1501 return -ENOMEM;
1502 if (unlikely(lanai_buf_size(buf) < size))
1503 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1504 "for %s buffer, got only %Zu\n", lanai->number, size,
1505 name, lanai_buf_size(buf));
1506 DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1507 return 0;
1508 }
1509
1510 /* Setup a RX buffer for a currently unbound AAL5 vci */
1511 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1512 struct lanai_vcc *lvcc, const struct atm_qos *qos)
1513 {
1514 return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1515 qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1516 }
1517
1518 /* Setup a TX buffer for a currently unbound AAL5 vci */
1519 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1520 const struct atm_qos *qos)
1521 {
1522 int max_sdu, multiplier;
1523 if (qos->aal == ATM_AAL0) {
1524 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1525 max_sdu = ATM_CELL_SIZE - 1;
1526 multiplier = AAL0_TX_MULTIPLIER;
1527 } else {
1528 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1529 max_sdu = qos->txtp.max_sdu;
1530 multiplier = AAL5_TX_MULTIPLIER;
1531 }
1532 return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1533 multiplier, "TX");
1534 }
1535
1536 static inline void host_vcc_bind(struct lanai_dev *lanai,
1537 struct lanai_vcc *lvcc, vci_t vci)
1538 {
1539 if (lvcc->vbase != NULL)
1540 return; /* We already were bound in the other direction */
1541 DPRINTK("Binding vci %d\n", vci);
1542 #ifdef USE_POWERDOWN
1543 if (lanai->nbound++ == 0) {
1544 DPRINTK("Coming out of powerdown\n");
1545 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1546 conf1_write(lanai);
1547 conf2_write(lanai);
1548 }
1549 #endif
1550 lvcc->vbase = cardvcc_addr(lanai, vci);
1551 lanai->vccs[lvcc->vci = vci] = lvcc;
1552 }
1553
1554 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1555 struct lanai_vcc *lvcc)
1556 {
1557 if (lvcc->vbase == NULL)
1558 return; /* This vcc was never bound */
1559 DPRINTK("Unbinding vci %d\n", lvcc->vci);
1560 lvcc->vbase = NULL;
1561 lanai->vccs[lvcc->vci] = NULL;
1562 #ifdef USE_POWERDOWN
1563 if (--lanai->nbound == 0) {
1564 DPRINTK("Going into powerdown\n");
1565 lanai->conf1 |= CONFIG1_POWERDOWN;
1566 conf1_write(lanai);
1567 }
1568 #endif
1569 }
1570
1571 /* -------------------- RESET CARD: */
1572
1573 static void lanai_reset(struct lanai_dev *lanai)
1574 {
1575 printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1576 "implemented\n", lanai->number);
1577 /* TODO */
1578 /* The following is just a hack until we write the real
1579 * resetter - at least ack whatever interrupt sent us
1580 * here
1581 */
1582 reg_write(lanai, INT_ALL, IntAck_Reg);
1583 lanai->stats.card_reset++;
1584 }
1585
1586 /* -------------------- SERVICE LIST UTILITIES: */
1587
1588 /*
1589 * Allocate service buffer and tell card about it
1590 */
1591 static int service_buffer_allocate(struct lanai_dev *lanai)
1592 {
1593 lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1594 lanai->pci);
1595 if (unlikely(lanai->service.start == NULL))
1596 return -ENOMEM;
1597 DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1598 (unsigned long) lanai->service.start,
1599 lanai_buf_size(&lanai->service),
1600 lanai_buf_size_cardorder(&lanai->service));
1601 /* Clear ServWrite register to be safe */
1602 reg_write(lanai, 0, ServWrite_Reg);
1603 /* ServiceStuff register contains size and address of buffer */
1604 reg_write(lanai,
1605 SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1606 SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1607 ServiceStuff_Reg);
1608 return 0;
1609 }
1610
1611 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1612 {
1613 lanai_buf_deallocate(&lanai->service, lanai->pci);
1614 }
1615
1616 /* Bitfields in service list */
1617 #define SERVICE_TX (0x80000000) /* Was from transmission */
1618 #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1619 #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1620 #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1621 #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1622 #define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1623 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1624 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1625
1626 /* Handle one thing from the service list - returns true if it marked a
1627 * VCC ready for xmit
1628 */
1629 static int handle_service(struct lanai_dev *lanai, u32 s)
1630 {
1631 vci_t vci = SERVICE_GET_VCI(s);
1632 struct lanai_vcc *lvcc;
1633 read_lock(&vcc_sklist_lock);
1634 lvcc = lanai->vccs[vci];
1635 if (unlikely(lvcc == NULL)) {
1636 read_unlock(&vcc_sklist_lock);
1637 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1638 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1639 if (s & SERVICE_TX)
1640 lanai->stats.service_notx++;
1641 else
1642 lanai->stats.service_norx++;
1643 return 0;
1644 }
1645 if (s & SERVICE_TX) { /* segmentation interrupt */
1646 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1647 read_unlock(&vcc_sklist_lock);
1648 DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1649 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1650 lanai->stats.service_notx++;
1651 return 0;
1652 }
1653 __set_bit(vci, lanai->transmit_ready);
1654 lvcc->tx.endptr = SERVICE_GET_END(s);
1655 read_unlock(&vcc_sklist_lock);
1656 return 1;
1657 }
1658 if (unlikely(lvcc->rx.atmvcc == NULL)) {
1659 read_unlock(&vcc_sklist_lock);
1660 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1661 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1662 lanai->stats.service_norx++;
1663 return 0;
1664 }
1665 if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1666 read_unlock(&vcc_sklist_lock);
1667 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1668 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1669 lanai->stats.service_rxnotaal5++;
1670 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1671 return 0;
1672 }
1673 if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1674 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1675 read_unlock(&vcc_sklist_lock);
1676 return 0;
1677 }
1678 if (s & SERVICE_TRASH) {
1679 int bytes;
1680 read_unlock(&vcc_sklist_lock);
1681 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1682 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1683 lvcc->stats.x.aal5.service_trash++;
1684 bytes = (SERVICE_GET_END(s) * 16) -
1685 (((unsigned long) lvcc->rx.buf.ptr) -
1686 ((unsigned long) lvcc->rx.buf.start)) + 47;
1687 if (bytes < 0)
1688 bytes += lanai_buf_size(&lvcc->rx.buf);
1689 lanai->stats.ovfl_trash += (bytes / 48);
1690 return 0;
1691 }
1692 if (s & SERVICE_STREAM) {
1693 read_unlock(&vcc_sklist_lock);
1694 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695 lvcc->stats.x.aal5.service_stream++;
1696 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1697 "PDU on VCI %d!\n", lanai->number, vci);
1698 lanai_reset(lanai);
1699 return 0;
1700 }
1701 DPRINTK("got rx crc error on vci %d\n", vci);
1702 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1703 lvcc->stats.x.aal5.service_rxcrc++;
1704 lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1705 cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1706 read_unlock(&vcc_sklist_lock);
1707 return 0;
1708 }
1709
1710 /* Try transmitting on all VCIs that we marked ready to serve */
1711 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1712 {
1713 struct lanai_vcc *lvcc = lanai->vccs[vci];
1714 if (vcc_is_backlogged(lvcc))
1715 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1716 }
1717
1718 /* Run service queue -- called from interrupt context or with
1719 * interrupts otherwise disabled and with the lanai->servicelock
1720 * lock held
1721 */
1722 static void run_service(struct lanai_dev *lanai)
1723 {
1724 int ntx = 0;
1725 u32 wreg = reg_read(lanai, ServWrite_Reg);
1726 const u32 *end = lanai->service.start + wreg;
1727 while (lanai->service.ptr != end) {
1728 ntx += handle_service(lanai,
1729 le32_to_cpup(lanai->service.ptr++));
1730 if (lanai->service.ptr >= lanai->service.end)
1731 lanai->service.ptr = lanai->service.start;
1732 }
1733 reg_write(lanai, wreg, ServRead_Reg);
1734 if (ntx != 0) {
1735 read_lock(&vcc_sklist_lock);
1736 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1737 iter_transmit);
1738 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1739 read_unlock(&vcc_sklist_lock);
1740 }
1741 }
1742
1743 /* -------------------- GATHER STATISTICS: */
1744
1745 static void get_statistics(struct lanai_dev *lanai)
1746 {
1747 u32 statreg = reg_read(lanai, Statistics_Reg);
1748 lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1749 lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1750 lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1751 lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1752 }
1753
1754 /* -------------------- POLLING TIMER: */
1755
1756 #ifndef DEBUG_RW
1757 /* Try to undequeue 1 backlogged vcc */
1758 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1759 {
1760 struct lanai_vcc *lvcc = lanai->vccs[vci];
1761 int endptr;
1762 if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1763 !vcc_is_backlogged(lvcc)) {
1764 __clear_bit(vci, lanai->backlog_vccs);
1765 return;
1766 }
1767 endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1768 lvcc->tx.unqueue(lanai, lvcc, endptr);
1769 }
1770 #endif /* !DEBUG_RW */
1771
1772 static void lanai_timed_poll(unsigned long arg)
1773 {
1774 struct lanai_dev *lanai = (struct lanai_dev *) arg;
1775 #ifndef DEBUG_RW
1776 unsigned long flags;
1777 #ifdef USE_POWERDOWN
1778 if (lanai->conf1 & CONFIG1_POWERDOWN)
1779 return;
1780 #endif /* USE_POWERDOWN */
1781 local_irq_save(flags);
1782 /* If we can grab the spinlock, check if any services need to be run */
1783 if (spin_trylock(&lanai->servicelock)) {
1784 run_service(lanai);
1785 spin_unlock(&lanai->servicelock);
1786 }
1787 /* ...and see if any backlogged VCs can make progress */
1788 /* unfortunately linux has no read_trylock() currently */
1789 read_lock(&vcc_sklist_lock);
1790 vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1791 read_unlock(&vcc_sklist_lock);
1792 local_irq_restore(flags);
1793
1794 get_statistics(lanai);
1795 #endif /* !DEBUG_RW */
1796 mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1797 }
1798
1799 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1800 {
1801 init_timer(&lanai->timer);
1802 lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1803 lanai->timer.data = (unsigned long) lanai;
1804 lanai->timer.function = lanai_timed_poll;
1805 add_timer(&lanai->timer);
1806 }
1807
1808 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1809 {
1810 del_timer_sync(&lanai->timer);
1811 }
1812
1813 /* -------------------- INTERRUPT SERVICE: */
1814
1815 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1816 {
1817 u32 ack = 0;
1818 if (reason & INT_SERVICE) {
1819 ack = INT_SERVICE;
1820 spin_lock(&lanai->servicelock);
1821 run_service(lanai);
1822 spin_unlock(&lanai->servicelock);
1823 }
1824 if (reason & (INT_AAL0_STR | INT_AAL0)) {
1825 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1826 vcc_rx_aal0(lanai);
1827 }
1828 /* The rest of the interrupts are pretty rare */
1829 if (ack == reason)
1830 goto done;
1831 if (reason & INT_STATS) {
1832 reason &= ~INT_STATS; /* No need to ack */
1833 get_statistics(lanai);
1834 }
1835 if (reason & INT_STATUS) {
1836 ack |= reason & INT_STATUS;
1837 lanai_check_status(lanai);
1838 }
1839 if (unlikely(reason & INT_DMASHUT)) {
1840 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1841 "shutdown, reason=0x%08X, address=0x%08X\n",
1842 lanai->number, (unsigned int) (reason & INT_DMASHUT),
1843 (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1844 if (reason & INT_TABORTBM) {
1845 lanai_reset(lanai);
1846 return;
1847 }
1848 ack |= (reason & INT_DMASHUT);
1849 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1850 lanai->number);
1851 conf1_write(lanai);
1852 lanai->stats.dma_reenable++;
1853 pcistatus_check(lanai, 0);
1854 }
1855 if (unlikely(reason & INT_TABORTSENT)) {
1856 ack |= (reason & INT_TABORTSENT);
1857 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1858 lanai->number);
1859 pcistatus_check(lanai, 0);
1860 }
1861 if (unlikely(reason & INT_SEGSHUT)) {
1862 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1863 "segmentation shutdown, reason=0x%08X\n", lanai->number,
1864 (unsigned int) (reason & INT_SEGSHUT));
1865 lanai_reset(lanai);
1866 return;
1867 }
1868 if (unlikely(reason & (INT_PING | INT_WAKE))) {
1869 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1870 "unexpected interrupt 0x%08X, resetting\n",
1871 lanai->number,
1872 (unsigned int) (reason & (INT_PING | INT_WAKE)));
1873 lanai_reset(lanai);
1874 return;
1875 }
1876 #ifdef DEBUG
1877 if (unlikely(ack != reason)) {
1878 DPRINTK("unacked ints: 0x%08X\n",
1879 (unsigned int) (reason & ~ack));
1880 ack = reason;
1881 }
1882 #endif
1883 done:
1884 if (ack != 0)
1885 reg_write(lanai, ack, IntAck_Reg);
1886 }
1887
1888 static irqreturn_t lanai_int(int irq, void *devid)
1889 {
1890 struct lanai_dev *lanai = devid;
1891 u32 reason;
1892
1893 #ifdef USE_POWERDOWN
1894 /*
1895 * If we're powered down we shouldn't be generating any interrupts -
1896 * so assume that this is a shared interrupt line and it's for someone
1897 * else
1898 */
1899 if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1900 return IRQ_NONE;
1901 #endif
1902
1903 reason = intr_pending(lanai);
1904 if (reason == 0)
1905 return IRQ_NONE; /* Must be for someone else */
1906
1907 do {
1908 if (unlikely(reason == 0xFFFFFFFF))
1909 break; /* Maybe we've been unplugged? */
1910 lanai_int_1(lanai, reason);
1911 reason = intr_pending(lanai);
1912 } while (reason != 0);
1913
1914 return IRQ_HANDLED;
1915 }
1916
1917 /* TODO - it would be nice if we could use the "delayed interrupt" system
1918 * to some advantage
1919 */
1920
1921 /* -------------------- CHECK BOARD ID/REV: */
1922
1923 /*
1924 * The board id and revision are stored both in the reset register and
1925 * in the PCI configuration space - the documentation says to check
1926 * each of them. If revp!=NULL we store the revision there
1927 */
1928 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1929 {
1930 DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1931 (int) RESET_GET_BOARD_ID(val),
1932 (int) RESET_GET_BOARD_REV(val));
1933 if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1934 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1935 "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1936 return -ENODEV;
1937 }
1938 if (revp != NULL)
1939 *revp = RESET_GET_BOARD_REV(val);
1940 return 0;
1941 }
1942
1943 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1944
1945 static int lanai_pci_start(struct lanai_dev *lanai)
1946 {
1947 struct pci_dev *pci = lanai->pci;
1948 int result;
1949
1950 if (pci_enable_device(pci) != 0) {
1951 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1952 "PCI device", lanai->number);
1953 return -ENXIO;
1954 }
1955 pci_set_master(pci);
1956 if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1957 printk(KERN_WARNING DEV_LABEL
1958 "(itf %d): No suitable DMA available.\n", lanai->number);
1959 return -EBUSY;
1960 }
1961 if (pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1962 printk(KERN_WARNING DEV_LABEL
1963 "(itf %d): No suitable DMA available.\n", lanai->number);
1964 return -EBUSY;
1965 }
1966 result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1967 if (result != 0)
1968 return result;
1969 /* Set latency timer to zero as per lanai docs */
1970 result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1971 if (result != PCIBIOS_SUCCESSFUL) {
1972 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1973 "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1974 return -EINVAL;
1975 }
1976 pcistatus_check(lanai, 1);
1977 pcistatus_check(lanai, 0);
1978 return 0;
1979 }
1980
1981 /* -------------------- VPI/VCI ALLOCATION: */
1982
1983 /*
1984 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1985 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1986 * AAL0 traffic (since they will use the same queue) - according to the
1987 * docs we shouldn't even use it for AAL0 traffic
1988 */
1989 static inline int vci0_is_ok(struct lanai_dev *lanai,
1990 const struct atm_qos *qos)
1991 {
1992 if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1993 return 0;
1994 if (qos->rxtp.traffic_class != ATM_NONE) {
1995 if (lanai->naal0 != 0)
1996 return 0;
1997 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1998 conf2_write_if_powerup(lanai);
1999 }
2000 return 1;
2001 }
2002
2003 /* return true if vci is currently unused, or if requested qos is
2004 * compatible
2005 */
2006 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2007 const struct atm_vcc *atmvcc)
2008 {
2009 const struct atm_qos *qos = &atmvcc->qos;
2010 const struct lanai_vcc *lvcc = lanai->vccs[vci];
2011 if (vci == 0 && !vci0_is_ok(lanai, qos))
2012 return 0;
2013 if (unlikely(lvcc != NULL)) {
2014 if (qos->rxtp.traffic_class != ATM_NONE &&
2015 lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2016 return 0;
2017 if (qos->txtp.traffic_class != ATM_NONE &&
2018 lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2019 return 0;
2020 if (qos->txtp.traffic_class == ATM_CBR &&
2021 lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2022 return 0;
2023 }
2024 if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2025 qos->rxtp.traffic_class != ATM_NONE) {
2026 const struct lanai_vcc *vci0 = lanai->vccs[0];
2027 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2028 return 0;
2029 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2030 conf2_write_if_powerup(lanai);
2031 }
2032 return 1;
2033 }
2034
2035 static int lanai_normalize_ci(struct lanai_dev *lanai,
2036 const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2037 {
2038 switch (*vpip) {
2039 case ATM_VPI_ANY:
2040 *vpip = 0;
2041 /* FALLTHROUGH */
2042 case 0:
2043 break;
2044 default:
2045 return -EADDRINUSE;
2046 }
2047 switch (*vcip) {
2048 case ATM_VCI_ANY:
2049 for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2050 (*vcip)++)
2051 if (vci_is_ok(lanai, *vcip, atmvcc))
2052 return 0;
2053 return -EADDRINUSE;
2054 default:
2055 if (*vcip >= lanai->num_vci || *vcip < 0 ||
2056 !vci_is_ok(lanai, *vcip, atmvcc))
2057 return -EADDRINUSE;
2058 }
2059 return 0;
2060 }
2061
2062 /* -------------------- MANAGE CBR: */
2063
2064 /*
2065 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2066 * Note that storing a number greater than 2046.0 will result in
2067 * incorrect shaping
2068 */
2069 #define CBRICG_FRAC_BITS (4)
2070 #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2071
2072 /*
2073 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2074 * where MAXPCR is (according to the docs) 25600000/(54*8),
2075 * which is equal to (3125<<9)/27.
2076 *
2077 * Solving for ICG, we get:
2078 * ICG = MAXPCR/PCR - 1
2079 * ICG = (3125<<9)/(27*PCR) - 1
2080 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2081 *
2082 * The end result is supposed to be a fixed-point number with FRAC_BITS
2083 * bits of a fractional part, so we keep everything in the numerator
2084 * shifted by that much as we compute
2085 *
2086 */
2087 static int pcr_to_cbricg(const struct atm_qos *qos)
2088 {
2089 int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2090 int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2091 if (pcr == 0) /* Use maximum bandwidth */
2092 return 0;
2093 if (pcr < 0) {
2094 rounddown = 1;
2095 pcr = -pcr;
2096 }
2097 x = pcr * 27;
2098 icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2099 if (rounddown)
2100 icg += x - 1;
2101 icg /= x;
2102 if (icg > CBRICG_MAX)
2103 icg = CBRICG_MAX;
2104 DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2105 pcr, rounddown ? 'Y' : 'N', icg);
2106 return icg;
2107 }
2108
2109 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2110 {
2111 reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2112 reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2113 lanai->conf2 |= CONFIG2_CBR_ENABLE;
2114 conf2_write(lanai);
2115 }
2116
2117 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2118 {
2119 lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2120 conf2_write(lanai);
2121 }
2122
2123 /* -------------------- OPERATIONS: */
2124
2125 /* setup a newly detected device */
2126 static int lanai_dev_open(struct atm_dev *atmdev)
2127 {
2128 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2129 unsigned long raw_base;
2130 int result;
2131
2132 DPRINTK("In lanai_dev_open()\n");
2133 /* Basic device fields */
2134 lanai->number = atmdev->number;
2135 lanai->num_vci = NUM_VCI;
2136 bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2137 bitmap_zero(lanai->transmit_ready, NUM_VCI);
2138 lanai->naal0 = 0;
2139 #ifdef USE_POWERDOWN
2140 lanai->nbound = 0;
2141 #endif
2142 lanai->cbrvcc = NULL;
2143 memset(&lanai->stats, 0, sizeof lanai->stats);
2144 spin_lock_init(&lanai->endtxlock);
2145 spin_lock_init(&lanai->servicelock);
2146 atmdev->ci_range.vpi_bits = 0;
2147 atmdev->ci_range.vci_bits = 0;
2148 while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2149 atmdev->ci_range.vci_bits++;
2150 atmdev->link_rate = ATM_25_PCR;
2151
2152 /* 3.2: PCI initialization */
2153 if ((result = lanai_pci_start(lanai)) != 0)
2154 goto error;
2155 raw_base = lanai->pci->resource[0].start;
2156 lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2157 if (lanai->base == NULL) {
2158 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2159 goto error_pci;
2160 }
2161 /* 3.3: Reset lanai and PHY */
2162 reset_board(lanai);
2163 lanai->conf1 = reg_read(lanai, Config1_Reg);
2164 lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2165 CONFIG1_MASK_LEDMODE);
2166 lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2167 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2168 udelay(1000);
2169 conf1_write(lanai);
2170
2171 /*
2172 * 3.4: Turn on endian mode for big-endian hardware
2173 * We don't actually want to do this - the actual bit fields
2174 * in the endian register are not documented anywhere.
2175 * Instead we do the bit-flipping ourselves on big-endian
2176 * hardware.
2177 *
2178 * 3.5: get the board ID/rev by reading the reset register
2179 */
2180 result = check_board_id_and_rev("register",
2181 reg_read(lanai, Reset_Reg), &lanai->board_rev);
2182 if (result != 0)
2183 goto error_unmap;
2184
2185 /* 3.6: read EEPROM */
2186 if ((result = eeprom_read(lanai)) != 0)
2187 goto error_unmap;
2188 if ((result = eeprom_validate(lanai)) != 0)
2189 goto error_unmap;
2190
2191 /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2192 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2193 udelay(1000);
2194 conf1_write(lanai);
2195 /* TODO - loopback tests */
2196 lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2197 conf1_write(lanai);
2198
2199 /* 3.8/3.9: test and initialize card SRAM */
2200 if ((result = sram_test_and_clear(lanai)) != 0)
2201 goto error_unmap;
2202
2203 /* 3.10: initialize lanai registers */
2204 lanai->conf1 |= CONFIG1_DMA_ENABLE;
2205 conf1_write(lanai);
2206 if ((result = service_buffer_allocate(lanai)) != 0)
2207 goto error_unmap;
2208 if ((result = vcc_table_allocate(lanai)) != 0)
2209 goto error_service;
2210 lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2211 CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2212 conf2_write(lanai);
2213 reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2214 reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2215 if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2216 DEV_LABEL, lanai)) != 0) {
2217 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2218 goto error_vcctable;
2219 }
2220 mb(); /* Make sure that all that made it */
2221 intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2222 /* 3.11: initialize loop mode (i.e. turn looping off) */
2223 lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2224 CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2225 CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2226 conf1_write(lanai);
2227 lanai->status = reg_read(lanai, Status_Reg);
2228 /* We're now done initializing this card */
2229 #ifdef USE_POWERDOWN
2230 lanai->conf1 |= CONFIG1_POWERDOWN;
2231 conf1_write(lanai);
2232 #endif
2233 memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2234 lanai_timed_poll_start(lanai);
2235 printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2236 "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2237 (unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2238 printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2239 "board_rev=%d\n", lanai->number,
2240 lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2241 (unsigned int) lanai->serialno, lanai->board_rev);
2242 return 0;
2243
2244 error_vcctable:
2245 vcc_table_deallocate(lanai);
2246 error_service:
2247 service_buffer_deallocate(lanai);
2248 error_unmap:
2249 reset_board(lanai);
2250 #ifdef USE_POWERDOWN
2251 lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2252 conf1_write(lanai);
2253 #endif
2254 iounmap(lanai->base);
2255 error_pci:
2256 pci_disable_device(lanai->pci);
2257 error:
2258 return result;
2259 }
2260
2261 /* called when device is being shutdown, and all vcc's are gone - higher
2262 * levels will deallocate the atm device for us
2263 */
2264 static void lanai_dev_close(struct atm_dev *atmdev)
2265 {
2266 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2267 printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2268 lanai->number);
2269 lanai_timed_poll_stop(lanai);
2270 #ifdef USE_POWERDOWN
2271 lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2272 conf1_write(lanai);
2273 #endif
2274 intr_disable(lanai, INT_ALL);
2275 free_irq(lanai->pci->irq, lanai);
2276 reset_board(lanai);
2277 #ifdef USE_POWERDOWN
2278 lanai->conf1 |= CONFIG1_POWERDOWN;
2279 conf1_write(lanai);
2280 #endif
2281 pci_disable_device(lanai->pci);
2282 vcc_table_deallocate(lanai);
2283 service_buffer_deallocate(lanai);
2284 iounmap(lanai->base);
2285 kfree(lanai);
2286 }
2287
2288 /* close a vcc */
2289 static void lanai_close(struct atm_vcc *atmvcc)
2290 {
2291 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2292 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2293 if (lvcc == NULL)
2294 return;
2295 clear_bit(ATM_VF_READY, &atmvcc->flags);
2296 clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2297 if (lvcc->rx.atmvcc == atmvcc) {
2298 lanai_shutdown_rx_vci(lvcc);
2299 if (atmvcc->qos.aal == ATM_AAL0) {
2300 if (--lanai->naal0 <= 0)
2301 aal0_buffer_free(lanai);
2302 } else
2303 lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2304 lvcc->rx.atmvcc = NULL;
2305 }
2306 if (lvcc->tx.atmvcc == atmvcc) {
2307 if (atmvcc == lanai->cbrvcc) {
2308 if (lvcc->vbase != NULL)
2309 lanai_cbr_shutdown(lanai);
2310 lanai->cbrvcc = NULL;
2311 }
2312 lanai_shutdown_tx_vci(lanai, lvcc);
2313 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2314 lvcc->tx.atmvcc = NULL;
2315 }
2316 if (--lvcc->nref == 0) {
2317 host_vcc_unbind(lanai, lvcc);
2318 kfree(lvcc);
2319 }
2320 atmvcc->dev_data = NULL;
2321 clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2322 }
2323
2324 /* open a vcc on the card to vpi/vci */
2325 static int lanai_open(struct atm_vcc *atmvcc)
2326 {
2327 struct lanai_dev *lanai;
2328 struct lanai_vcc *lvcc;
2329 int result = 0;
2330 int vci = atmvcc->vci;
2331 short vpi = atmvcc->vpi;
2332 /* we don't support partial open - it's not really useful anyway */
2333 if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2334 (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2335 return -EINVAL;
2336 lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2337 result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2338 if (unlikely(result != 0))
2339 goto out;
2340 set_bit(ATM_VF_ADDR, &atmvcc->flags);
2341 if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2342 return -EINVAL;
2343 DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2344 (int) vpi, vci);
2345 lvcc = lanai->vccs[vci];
2346 if (lvcc == NULL) {
2347 lvcc = new_lanai_vcc();
2348 if (unlikely(lvcc == NULL))
2349 return -ENOMEM;
2350 atmvcc->dev_data = lvcc;
2351 }
2352 lvcc->nref++;
2353 if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2354 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2355 vci);
2356 if (atmvcc->qos.aal == ATM_AAL0) {
2357 if (lanai->naal0 == 0)
2358 result = aal0_buffer_allocate(lanai);
2359 } else
2360 result = lanai_setup_rx_vci_aal5(
2361 lanai, lvcc, &atmvcc->qos);
2362 if (unlikely(result != 0))
2363 goto out_free;
2364 lvcc->rx.atmvcc = atmvcc;
2365 lvcc->stats.rx_nomem = 0;
2366 lvcc->stats.x.aal5.rx_badlen = 0;
2367 lvcc->stats.x.aal5.service_trash = 0;
2368 lvcc->stats.x.aal5.service_stream = 0;
2369 lvcc->stats.x.aal5.service_rxcrc = 0;
2370 if (atmvcc->qos.aal == ATM_AAL0)
2371 lanai->naal0++;
2372 }
2373 if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2374 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2375 vci);
2376 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2377 if (unlikely(result != 0))
2378 goto out_free;
2379 lvcc->tx.atmvcc = atmvcc;
2380 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2381 APRINTK(lanai->cbrvcc == NULL,
2382 "cbrvcc!=NULL, vci=%d\n", vci);
2383 lanai->cbrvcc = atmvcc;
2384 }
2385 }
2386 host_vcc_bind(lanai, lvcc, vci);
2387 /*
2388 * Make sure everything made it to RAM before we tell the card about
2389 * the VCC
2390 */
2391 wmb();
2392 if (atmvcc == lvcc->rx.atmvcc)
2393 host_vcc_start_rx(lvcc);
2394 if (atmvcc == lvcc->tx.atmvcc) {
2395 host_vcc_start_tx(lvcc);
2396 if (lanai->cbrvcc == atmvcc)
2397 lanai_cbr_setup(lanai);
2398 }
2399 set_bit(ATM_VF_READY, &atmvcc->flags);
2400 return 0;
2401 out_free:
2402 lanai_close(atmvcc);
2403 out:
2404 return result;
2405 }
2406
2407 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2408 {
2409 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2410 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2411 unsigned long flags;
2412 if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2413 lvcc->tx.atmvcc != atmvcc))
2414 goto einval;
2415 #ifdef DEBUG
2416 if (unlikely(skb == NULL)) {
2417 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2418 goto einval;
2419 }
2420 if (unlikely(lanai == NULL)) {
2421 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2422 goto einval;
2423 }
2424 #endif
2425 ATM_SKB(skb)->vcc = atmvcc;
2426 switch (atmvcc->qos.aal) {
2427 case ATM_AAL5:
2428 read_lock_irqsave(&vcc_sklist_lock, flags);
2429 vcc_tx_aal5(lanai, lvcc, skb);
2430 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2431 return 0;
2432 case ATM_AAL0:
2433 if (unlikely(skb->len != ATM_CELL_SIZE-1))
2434 goto einval;
2435 /* NOTE - this next line is technically invalid - we haven't unshared skb */
2436 cpu_to_be32s((u32 *) skb->data);
2437 read_lock_irqsave(&vcc_sklist_lock, flags);
2438 vcc_tx_aal0(lanai, lvcc, skb);
2439 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2440 return 0;
2441 }
2442 DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2443 atmvcc->vci);
2444 einval:
2445 lanai_free_skb(atmvcc, skb);
2446 return -EINVAL;
2447 }
2448
2449 static int lanai_change_qos(struct atm_vcc *atmvcc,
2450 /*const*/ struct atm_qos *qos, int flags)
2451 {
2452 return -EBUSY; /* TODO: need to write this */
2453 }
2454
2455 #ifndef CONFIG_PROC_FS
2456 #define lanai_proc_read NULL
2457 #else
2458 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2459 {
2460 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2461 loff_t left = *pos;
2462 struct lanai_vcc *lvcc;
2463 if (left-- == 0)
2464 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2465 "serial=%u, magic=0x%08X, num_vci=%d\n",
2466 atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2467 (unsigned int) lanai->serialno,
2468 (unsigned int) lanai->magicno, lanai->num_vci);
2469 if (left-- == 0)
2470 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2471 lanai->board_rev, (int) lanai->pci->revision);
2472 if (left-- == 0)
2473 return sprintf(page, "EEPROM ESI: %pM\n",
2474 &lanai->eeprom[EEPROM_MAC]);
2475 if (left-- == 0)
2476 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2477 "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2478 (lanai->status & STATUS_LOCD) ? 1 : 0,
2479 (lanai->status & STATUS_LED) ? 1 : 0,
2480 (lanai->status & STATUS_GPIN) ? 1 : 0);
2481 if (left-- == 0)
2482 return sprintf(page, "global buffer sizes: service=%Zu, "
2483 "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2484 lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2485 if (left-- == 0) {
2486 get_statistics(lanai);
2487 return sprintf(page, "cells in error: overflow=%u, "
2488 "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2489 lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2490 lanai->stats.hec_err, lanai->stats.atm_ovfl);
2491 }
2492 if (left-- == 0)
2493 return sprintf(page, "PCI errors: parity_detect=%u, "
2494 "master_abort=%u, master_target_abort=%u,\n",
2495 lanai->stats.pcierr_parity_detect,
2496 lanai->stats.pcierr_serr_set,
2497 lanai->stats.pcierr_m_target_abort);
2498 if (left-- == 0)
2499 return sprintf(page, " slave_target_abort=%u, "
2500 "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2501 lanai->stats.pcierr_master_parity);
2502 if (left-- == 0)
2503 return sprintf(page, " no_tx=%u, "
2504 "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2505 lanai->stats.service_notx,
2506 lanai->stats.service_rxnotaal5);
2507 if (left-- == 0)
2508 return sprintf(page, "resets: dma=%u, card=%u\n",
2509 lanai->stats.dma_reenable, lanai->stats.card_reset);
2510 /* At this point, "left" should be the VCI we're looking for */
2511 read_lock(&vcc_sklist_lock);
2512 for (; ; left++) {
2513 if (left >= NUM_VCI) {
2514 left = 0;
2515 goto out;
2516 }
2517 if ((lvcc = lanai->vccs[left]) != NULL)
2518 break;
2519 (*pos)++;
2520 }
2521 /* Note that we re-use "left" here since we're done with it */
2522 left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2523 lvcc->nref, lvcc->stats.rx_nomem);
2524 if (lvcc->rx.atmvcc != NULL) {
2525 left += sprintf(&page[left], ",\n rx_AAL=%d",
2526 lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2527 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2528 left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2529 "rx_bad_len=%u,\n rx_service_trash=%u, "
2530 "rx_service_stream=%u, rx_bad_crc=%u",
2531 lanai_buf_size(&lvcc->rx.buf),
2532 lvcc->stats.x.aal5.rx_badlen,
2533 lvcc->stats.x.aal5.service_trash,
2534 lvcc->stats.x.aal5.service_stream,
2535 lvcc->stats.x.aal5.service_rxcrc);
2536 }
2537 if (lvcc->tx.atmvcc != NULL)
2538 left += sprintf(&page[left], ",\n tx_AAL=%d, "
2539 "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2540 lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2541 lanai_buf_size(&lvcc->tx.buf),
2542 lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2543 vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2544 page[left++] = '\n';
2545 page[left] = '\0';
2546 out:
2547 read_unlock(&vcc_sklist_lock);
2548 return left;
2549 }
2550 #endif /* CONFIG_PROC_FS */
2551
2552 /* -------------------- HOOKS: */
2553
2554 static const struct atmdev_ops ops = {
2555 .dev_close = lanai_dev_close,
2556 .open = lanai_open,
2557 .close = lanai_close,
2558 .getsockopt = NULL,
2559 .setsockopt = NULL,
2560 .send = lanai_send,
2561 .phy_put = NULL,
2562 .phy_get = NULL,
2563 .change_qos = lanai_change_qos,
2564 .proc_read = lanai_proc_read,
2565 .owner = THIS_MODULE
2566 };
2567
2568 /* initialize one probed card */
2569 static int lanai_init_one(struct pci_dev *pci,
2570 const struct pci_device_id *ident)
2571 {
2572 struct lanai_dev *lanai;
2573 struct atm_dev *atmdev;
2574 int result;
2575
2576 lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2577 if (lanai == NULL) {
2578 printk(KERN_ERR DEV_LABEL
2579 ": couldn't allocate dev_data structure!\n");
2580 return -ENOMEM;
2581 }
2582
2583 atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2584 if (atmdev == NULL) {
2585 printk(KERN_ERR DEV_LABEL
2586 ": couldn't register atm device!\n");
2587 kfree(lanai);
2588 return -EBUSY;
2589 }
2590
2591 atmdev->dev_data = lanai;
2592 lanai->pci = pci;
2593 lanai->type = (enum lanai_type) ident->device;
2594
2595 result = lanai_dev_open(atmdev);
2596 if (result != 0) {
2597 DPRINTK("lanai_start() failed, err=%d\n", -result);
2598 atm_dev_deregister(atmdev);
2599 kfree(lanai);
2600 }
2601 return result;
2602 }
2603
2604 static struct pci_device_id lanai_pci_tbl[] = {
2605 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2606 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2607 { 0, } /* terminal entry */
2608 };
2609 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2610
2611 static struct pci_driver lanai_driver = {
2612 .name = DEV_LABEL,
2613 .id_table = lanai_pci_tbl,
2614 .probe = lanai_init_one,
2615 };
2616
2617 static int __init lanai_module_init(void)
2618 {
2619 int x;
2620
2621 x = pci_register_driver(&lanai_driver);
2622 if (x != 0)
2623 printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2624 return x;
2625 }
2626
2627 static void __exit lanai_module_exit(void)
2628 {
2629 /* We'll only get called when all the interfaces are already
2630 * gone, so there isn't much to do
2631 */
2632 DPRINTK("cleanup_module()\n");
2633 pci_unregister_driver(&lanai_driver);
2634 }
2635
2636 module_init(lanai_module_init);
2637 module_exit(lanai_module_exit);
2638
2639 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2640 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2641 MODULE_LICENSE("GPL");