drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / atm / he.c
1 /*
2
3 he.c
4
5 ForeRunnerHE ATM Adapter driver for ATM on Linux
6 Copyright (C) 1999-2001 Naval Research Laboratory
7
8 This library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with this library; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
22 */
23
24 /*
25
26 he.c
27
28 ForeRunnerHE ATM Adapter driver for ATM on Linux
29 Copyright (C) 1999-2001 Naval Research Laboratory
30
31 Permission to use, copy, modify and distribute this software and its
32 documentation is hereby granted, provided that both the copyright
33 notice and this permission notice appear in all copies of the software,
34 derivative works or modified versions, and any portions thereof, and
35 that both notices appear in supporting documentation.
36
37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39 RESULTING FROM THE USE OF THIS SOFTWARE.
40
41 This driver was written using the "Programmer's Reference Manual for
42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43
44 AUTHORS:
45 chas williams <chas@cmf.nrl.navy.mil>
46 eric kinzie <ekinzie@cmf.nrl.navy.mil>
47
48 NOTES:
49 4096 supported 'connections'
50 group 0 is used for all traffic
51 interrupt queue 0 is used for all interrupts
52 aal0 support (based on work from ulrich.u.muller@nokia.com)
53
54 */
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <asm/uaccess.h>
75
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW /* still confused about this */
82 /* #undef HE_DEBUG */
83
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87
88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...) do { } while (0)
94 #endif /* HE_DEBUG */
95
96 /* declarations */
97
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111
112 /* globals */
113
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = 1;
120 static bool sdh = 0;
121
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124 CS_HIGH | CLK_HIGH,
125 CS_LOW | CLK_LOW,
126 CLK_HIGH, /* 0 */
127 CLK_LOW,
128 CLK_HIGH, /* 0 */
129 CLK_LOW,
130 CLK_HIGH, /* 0 */
131 CLK_LOW,
132 CLK_HIGH, /* 0 */
133 CLK_LOW,
134 CLK_HIGH, /* 0 */
135 CLK_LOW,
136 CLK_HIGH, /* 0 */
137 CLK_LOW | SI_HIGH,
138 CLK_HIGH | SI_HIGH, /* 1 */
139 CLK_LOW | SI_HIGH,
140 CLK_HIGH | SI_HIGH /* 1 */
141 };
142
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145 CLK_LOW,
146 CLK_HIGH,
147 CLK_LOW,
148 CLK_HIGH,
149 CLK_LOW,
150 CLK_HIGH,
151 CLK_LOW,
152 CLK_HIGH,
153 CLK_LOW,
154 CLK_HIGH,
155 CLK_LOW,
156 CLK_HIGH,
157 CLK_LOW,
158 CLK_HIGH,
159 CLK_LOW,
160 CLK_HIGH,
161 CLK_LOW
162 };
163
164 static struct atmdev_ops he_ops =
165 {
166 .open = he_open,
167 .close = he_close,
168 .ioctl = he_ioctl,
169 .send = he_send,
170 .phy_put = he_phy_put,
171 .phy_get = he_phy_get,
172 .proc_read = he_proc_read,
173 .owner = THIS_MODULE
174 };
175
176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg) readl((dev)->membase + (reg))
178
179 /* section 2.12 connection memory access */
180
181 static __inline__ void
182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183 unsigned flags)
184 {
185 he_writel(he_dev, val, CON_DAT);
186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */
187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190
191 #define he_writel_rcm(dev, val, reg) \
192 he_writel_internal(dev, val, reg, CON_CTL_RCM)
193
194 #define he_writel_tcm(dev, val, reg) \
195 he_writel_internal(dev, val, reg, CON_CTL_TCM)
196
197 #define he_writel_mbox(dev, val, reg) \
198 he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199
200 static unsigned
201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205 return he_readl(he_dev, CON_DAT);
206 }
207
208 #define he_readl_rcm(dev, reg) \
209 he_readl_internal(dev, reg, CON_CTL_RCM)
210
211 #define he_readl_tcm(dev, reg) \
212 he_readl_internal(dev, reg, CON_CTL_TCM)
213
214 #define he_readl_mbox(dev, reg) \
215 he_readl_internal(dev, reg, CON_CTL_MBOX)
216
217
218 /* figure 2.2 connection id */
219
220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff)
221
222 /* 2.5.1 per connection transmit state registers */
223
224 #define he_writel_tsr0(dev, val, cid) \
225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228
229 #define he_writel_tsr1(dev, val, cid) \
230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231
232 #define he_writel_tsr2(dev, val, cid) \
233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234
235 #define he_writel_tsr3(dev, val, cid) \
236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237
238 #define he_writel_tsr4(dev, val, cid) \
239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240
241 /* from page 2-20
242 *
243 * NOTE While the transmit connection is active, bits 23 through 0
244 * of this register must not be written by the host. Byte
245 * enables should be used during normal operation when writing
246 * the most significant byte.
247 */
248
249 #define he_writel_tsr4_upper(dev, val, cid) \
250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251 CON_CTL_TCM \
252 | CON_BYTE_DISABLE_2 \
253 | CON_BYTE_DISABLE_1 \
254 | CON_BYTE_DISABLE_0)
255
256 #define he_readl_tsr4(dev, cid) \
257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258
259 #define he_writel_tsr5(dev, val, cid) \
260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261
262 #define he_writel_tsr6(dev, val, cid) \
263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264
265 #define he_writel_tsr7(dev, val, cid) \
266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267
268
269 #define he_writel_tsr8(dev, val, cid) \
270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271
272 #define he_writel_tsr9(dev, val, cid) \
273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274
275 #define he_writel_tsr10(dev, val, cid) \
276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277
278 #define he_writel_tsr11(dev, val, cid) \
279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280
281
282 #define he_writel_tsr12(dev, val, cid) \
283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284
285 #define he_writel_tsr13(dev, val, cid) \
286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287
288
289 #define he_writel_tsr14(dev, val, cid) \
290 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291
292 #define he_writel_tsr14_upper(dev, val, cid) \
293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294 CON_CTL_TCM \
295 | CON_BYTE_DISABLE_2 \
296 | CON_BYTE_DISABLE_1 \
297 | CON_BYTE_DISABLE_0)
298
299 /* 2.7.1 per connection receive state registers */
300
301 #define he_writel_rsr0(dev, val, cid) \
302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305
306 #define he_writel_rsr1(dev, val, cid) \
307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308
309 #define he_writel_rsr2(dev, val, cid) \
310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311
312 #define he_writel_rsr3(dev, val, cid) \
313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314
315 #define he_writel_rsr4(dev, val, cid) \
316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317
318 #define he_writel_rsr5(dev, val, cid) \
319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320
321 #define he_writel_rsr6(dev, val, cid) \
322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323
324 #define he_writel_rsr7(dev, val, cid) \
325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326
327 static __inline__ struct atm_vcc*
328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330 struct hlist_head *head;
331 struct atm_vcc *vcc;
332 struct sock *s;
333 short vpi;
334 int vci;
335
336 vpi = cid >> he_dev->vcibits;
337 vci = cid & ((1 << he_dev->vcibits) - 1);
338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339
340 sk_for_each(s, head) {
341 vcc = atm_sk(s);
342 if (vcc->dev == he_dev->atm_dev &&
343 vcc->vci == vci && vcc->vpi == vpi &&
344 vcc->qos.rxtp.traffic_class != ATM_NONE) {
345 return vcc;
346 }
347 }
348 return NULL;
349 }
350
351 static int he_init_one(struct pci_dev *pci_dev,
352 const struct pci_device_id *pci_ent)
353 {
354 struct atm_dev *atm_dev = NULL;
355 struct he_dev *he_dev = NULL;
356 int err = 0;
357
358 printk(KERN_INFO "ATM he driver\n");
359
360 if (pci_enable_device(pci_dev))
361 return -EIO;
362 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)) != 0) {
363 printk(KERN_WARNING "he: no suitable dma available\n");
364 err = -EIO;
365 goto init_one_failure;
366 }
367
368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369 if (!atm_dev) {
370 err = -ENODEV;
371 goto init_one_failure;
372 }
373 pci_set_drvdata(pci_dev, atm_dev);
374
375 he_dev = kzalloc(sizeof(struct he_dev),
376 GFP_KERNEL);
377 if (!he_dev) {
378 err = -ENOMEM;
379 goto init_one_failure;
380 }
381 he_dev->pci_dev = pci_dev;
382 he_dev->atm_dev = atm_dev;
383 he_dev->atm_dev->dev_data = he_dev;
384 atm_dev->dev_data = he_dev;
385 he_dev->number = atm_dev->number;
386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387 spin_lock_init(&he_dev->global_lock);
388
389 if (he_start(atm_dev)) {
390 he_stop(he_dev);
391 err = -ENODEV;
392 goto init_one_failure;
393 }
394 he_dev->next = NULL;
395 if (he_devs)
396 he_dev->next = he_devs;
397 he_devs = he_dev;
398 return 0;
399
400 init_one_failure:
401 if (atm_dev)
402 atm_dev_deregister(atm_dev);
403 kfree(he_dev);
404 pci_disable_device(pci_dev);
405 return err;
406 }
407
408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410 struct atm_dev *atm_dev;
411 struct he_dev *he_dev;
412
413 atm_dev = pci_get_drvdata(pci_dev);
414 he_dev = HE_DEV(atm_dev);
415
416 /* need to remove from he_devs */
417
418 he_stop(he_dev);
419 atm_dev_deregister(atm_dev);
420 kfree(he_dev);
421
422 pci_set_drvdata(pci_dev, NULL);
423 pci_disable_device(pci_dev);
424 }
425
426
427 static unsigned
428 rate_to_atmf(unsigned rate) /* cps to atm forum format */
429 {
430 #define NONZERO (1 << 14)
431
432 unsigned exp = 0;
433
434 if (rate == 0)
435 return 0;
436
437 rate <<= 9;
438 while (rate > 0x3ff) {
439 ++exp;
440 rate >>= 1;
441 }
442
443 return (NONZERO | (exp << 9) | (rate & 0x1ff));
444 }
445
446 static void he_init_rx_lbfp0(struct he_dev *he_dev)
447 {
448 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
449 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
450 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
451 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
452
453 lbufd_index = 0;
454 lbm_offset = he_readl(he_dev, RCMLBM_BA);
455
456 he_writel(he_dev, lbufd_index, RLBF0_H);
457
458 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
459 lbufd_index += 2;
460 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
461
462 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
463 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
464
465 if (++lbuf_count == lbufs_per_row) {
466 lbuf_count = 0;
467 row_offset += he_dev->bytes_per_row;
468 }
469 lbm_offset += 4;
470 }
471
472 he_writel(he_dev, lbufd_index - 2, RLBF0_T);
473 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
474 }
475
476 static void he_init_rx_lbfp1(struct he_dev *he_dev)
477 {
478 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
479 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
480 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
481 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
482
483 lbufd_index = 1;
484 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
485
486 he_writel(he_dev, lbufd_index, RLBF1_H);
487
488 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
489 lbufd_index += 2;
490 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
491
492 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
493 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
494
495 if (++lbuf_count == lbufs_per_row) {
496 lbuf_count = 0;
497 row_offset += he_dev->bytes_per_row;
498 }
499 lbm_offset += 4;
500 }
501
502 he_writel(he_dev, lbufd_index - 2, RLBF1_T);
503 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
504 }
505
506 static void he_init_tx_lbfp(struct he_dev *he_dev)
507 {
508 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
509 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
510 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
511 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
512
513 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
514 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
515
516 he_writel(he_dev, lbufd_index, TLBF_H);
517
518 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
519 lbufd_index += 1;
520 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
521
522 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
523 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
524
525 if (++lbuf_count == lbufs_per_row) {
526 lbuf_count = 0;
527 row_offset += he_dev->bytes_per_row;
528 }
529 lbm_offset += 2;
530 }
531
532 he_writel(he_dev, lbufd_index - 1, TLBF_T);
533 }
534
535 static int he_init_tpdrq(struct he_dev *he_dev)
536 {
537 he_dev->tpdrq_base = pci_alloc_consistent(he_dev->pci_dev,
538 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq), &he_dev->tpdrq_phys);
539 if (he_dev->tpdrq_base == NULL) {
540 hprintk("failed to alloc tpdrq\n");
541 return -ENOMEM;
542 }
543 memset(he_dev->tpdrq_base, 0,
544 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq));
545
546 he_dev->tpdrq_tail = he_dev->tpdrq_base;
547 he_dev->tpdrq_head = he_dev->tpdrq_base;
548
549 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
550 he_writel(he_dev, 0, TPDRQ_T);
551 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
552
553 return 0;
554 }
555
556 static void he_init_cs_block(struct he_dev *he_dev)
557 {
558 unsigned clock, rate, delta;
559 int reg;
560
561 /* 5.1.7 cs block initialization */
562
563 for (reg = 0; reg < 0x20; ++reg)
564 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
565
566 /* rate grid timer reload values */
567
568 clock = he_is622(he_dev) ? 66667000 : 50000000;
569 rate = he_dev->atm_dev->link_rate;
570 delta = rate / 16 / 2;
571
572 for (reg = 0; reg < 0x10; ++reg) {
573 /* 2.4 internal transmit function
574 *
575 * we initialize the first row in the rate grid.
576 * values are period (in clock cycles) of timer
577 */
578 unsigned period = clock / rate;
579
580 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
581 rate -= delta;
582 }
583
584 if (he_is622(he_dev)) {
585 /* table 5.2 (4 cells per lbuf) */
586 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
587 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
588 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
589 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
590 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
591
592 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
593 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
594 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
595 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
596 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
597 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
598 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
599
600 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
601
602 /* table 5.8 */
603 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
604 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
605 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
606 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
607 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
608 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
609
610 /* table 5.9 */
611 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
612 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
613 } else {
614 /* table 5.1 (4 cells per lbuf) */
615 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
616 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
617 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
618 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
619 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
620
621 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
622 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
623 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
624 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
625 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
626 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
627 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
628
629 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
630
631 /* table 5.8 */
632 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
633 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
634 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
635 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
636 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
637 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
638
639 /* table 5.9 */
640 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
641 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
642 }
643
644 he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
645
646 for (reg = 0; reg < 0x8; ++reg)
647 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
648
649 }
650
651 static int he_init_cs_block_rcm(struct he_dev *he_dev)
652 {
653 unsigned (*rategrid)[16][16];
654 unsigned rate, delta;
655 int i, j, reg;
656
657 unsigned rate_atmf, exp, man;
658 unsigned long long rate_cps;
659 int mult, buf, buf_limit = 4;
660
661 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
662 if (!rategrid)
663 return -ENOMEM;
664
665 /* initialize rate grid group table */
666
667 for (reg = 0x0; reg < 0xff; ++reg)
668 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
669
670 /* initialize rate controller groups */
671
672 for (reg = 0x100; reg < 0x1ff; ++reg)
673 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
674
675 /* initialize tNrm lookup table */
676
677 /* the manual makes reference to a routine in a sample driver
678 for proper configuration; fortunately, we only need this
679 in order to support abr connection */
680
681 /* initialize rate to group table */
682
683 rate = he_dev->atm_dev->link_rate;
684 delta = rate / 32;
685
686 /*
687 * 2.4 transmit internal functions
688 *
689 * we construct a copy of the rate grid used by the scheduler
690 * in order to construct the rate to group table below
691 */
692
693 for (j = 0; j < 16; j++) {
694 (*rategrid)[0][j] = rate;
695 rate -= delta;
696 }
697
698 for (i = 1; i < 16; i++)
699 for (j = 0; j < 16; j++)
700 if (i > 14)
701 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
702 else
703 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
704
705 /*
706 * 2.4 transmit internal function
707 *
708 * this table maps the upper 5 bits of exponent and mantissa
709 * of the atm forum representation of the rate into an index
710 * on rate grid
711 */
712
713 rate_atmf = 0;
714 while (rate_atmf < 0x400) {
715 man = (rate_atmf & 0x1f) << 4;
716 exp = rate_atmf >> 5;
717
718 /*
719 instead of '/ 512', use '>> 9' to prevent a call
720 to divdu3 on x86 platforms
721 */
722 rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9;
723
724 if (rate_cps < 10)
725 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */
726
727 for (i = 255; i > 0; i--)
728 if ((*rategrid)[i/16][i%16] >= rate_cps)
729 break; /* pick nearest rate instead? */
730
731 /*
732 * each table entry is 16 bits: (rate grid index (8 bits)
733 * and a buffer limit (8 bits)
734 * there are two table entries in each 32-bit register
735 */
736
737 #ifdef notdef
738 buf = rate_cps * he_dev->tx_numbuffs /
739 (he_dev->atm_dev->link_rate * 2);
740 #else
741 /* this is pretty, but avoids _divdu3 and is mostly correct */
742 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
743 if (rate_cps > (272 * mult))
744 buf = 4;
745 else if (rate_cps > (204 * mult))
746 buf = 3;
747 else if (rate_cps > (136 * mult))
748 buf = 2;
749 else if (rate_cps > (68 * mult))
750 buf = 1;
751 else
752 buf = 0;
753 #endif
754 if (buf > buf_limit)
755 buf = buf_limit;
756 reg = (reg << 16) | ((i << 8) | buf);
757
758 #define RTGTBL_OFFSET 0x400
759
760 if (rate_atmf & 0x1)
761 he_writel_rcm(he_dev, reg,
762 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
763
764 ++rate_atmf;
765 }
766
767 kfree(rategrid);
768 return 0;
769 }
770
771 static int he_init_group(struct he_dev *he_dev, int group)
772 {
773 struct he_buff *heb, *next;
774 dma_addr_t mapping;
775 int i;
776
777 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
778 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
779 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
780 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
781 G0_RBPS_BS + (group * 32));
782
783 /* bitmap table */
784 he_dev->rbpl_table = kmalloc(BITS_TO_LONGS(RBPL_TABLE_SIZE)
785 * sizeof(unsigned long), GFP_KERNEL);
786 if (!he_dev->rbpl_table) {
787 hprintk("unable to allocate rbpl bitmap table\n");
788 return -ENOMEM;
789 }
790 bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
791
792 /* rbpl_virt 64-bit pointers */
793 he_dev->rbpl_virt = kmalloc(RBPL_TABLE_SIZE
794 * sizeof(struct he_buff *), GFP_KERNEL);
795 if (!he_dev->rbpl_virt) {
796 hprintk("unable to allocate rbpl virt table\n");
797 goto out_free_rbpl_table;
798 }
799
800 /* large buffer pool */
801 he_dev->rbpl_pool = pci_pool_create("rbpl", he_dev->pci_dev,
802 CONFIG_RBPL_BUFSIZE, 64, 0);
803 if (he_dev->rbpl_pool == NULL) {
804 hprintk("unable to create rbpl pool\n");
805 goto out_free_rbpl_virt;
806 }
807
808 he_dev->rbpl_base = pci_alloc_consistent(he_dev->pci_dev,
809 CONFIG_RBPL_SIZE * sizeof(struct he_rbp), &he_dev->rbpl_phys);
810 if (he_dev->rbpl_base == NULL) {
811 hprintk("failed to alloc rbpl_base\n");
812 goto out_destroy_rbpl_pool;
813 }
814 memset(he_dev->rbpl_base, 0, CONFIG_RBPL_SIZE * sizeof(struct he_rbp));
815
816 INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
817
818 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
819
820 heb = pci_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL|GFP_DMA, &mapping);
821 if (!heb)
822 goto out_free_rbpl;
823 heb->mapping = mapping;
824 list_add(&heb->entry, &he_dev->rbpl_outstanding);
825
826 set_bit(i, he_dev->rbpl_table);
827 he_dev->rbpl_virt[i] = heb;
828 he_dev->rbpl_hint = i + 1;
829 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET;
830 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
831 }
832 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
833
834 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
835 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
836 G0_RBPL_T + (group * 32));
837 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
838 G0_RBPL_BS + (group * 32));
839 he_writel(he_dev,
840 RBP_THRESH(CONFIG_RBPL_THRESH) |
841 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
842 RBP_INT_ENB,
843 G0_RBPL_QI + (group * 32));
844
845 /* rx buffer ready queue */
846
847 he_dev->rbrq_base = pci_alloc_consistent(he_dev->pci_dev,
848 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), &he_dev->rbrq_phys);
849 if (he_dev->rbrq_base == NULL) {
850 hprintk("failed to allocate rbrq\n");
851 goto out_free_rbpl;
852 }
853 memset(he_dev->rbrq_base, 0, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq));
854
855 he_dev->rbrq_head = he_dev->rbrq_base;
856 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
857 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
858 he_writel(he_dev,
859 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
860 G0_RBRQ_Q + (group * 16));
861 if (irq_coalesce) {
862 hprintk("coalescing interrupts\n");
863 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
864 G0_RBRQ_I + (group * 16));
865 } else
866 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
867 G0_RBRQ_I + (group * 16));
868
869 /* tx buffer ready queue */
870
871 he_dev->tbrq_base = pci_alloc_consistent(he_dev->pci_dev,
872 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), &he_dev->tbrq_phys);
873 if (he_dev->tbrq_base == NULL) {
874 hprintk("failed to allocate tbrq\n");
875 goto out_free_rbpq_base;
876 }
877 memset(he_dev->tbrq_base, 0, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq));
878
879 he_dev->tbrq_head = he_dev->tbrq_base;
880
881 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
882 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
883 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
884 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
885
886 return 0;
887
888 out_free_rbpq_base:
889 pci_free_consistent(he_dev->pci_dev, CONFIG_RBRQ_SIZE *
890 sizeof(struct he_rbrq), he_dev->rbrq_base,
891 he_dev->rbrq_phys);
892 out_free_rbpl:
893 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
894 pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
895
896 pci_free_consistent(he_dev->pci_dev, CONFIG_RBPL_SIZE *
897 sizeof(struct he_rbp), he_dev->rbpl_base,
898 he_dev->rbpl_phys);
899 out_destroy_rbpl_pool:
900 pci_pool_destroy(he_dev->rbpl_pool);
901 out_free_rbpl_virt:
902 kfree(he_dev->rbpl_virt);
903 out_free_rbpl_table:
904 kfree(he_dev->rbpl_table);
905
906 return -ENOMEM;
907 }
908
909 static int he_init_irq(struct he_dev *he_dev)
910 {
911 int i;
912
913 /* 2.9.3.5 tail offset for each interrupt queue is located after the
914 end of the interrupt queue */
915
916 he_dev->irq_base = pci_alloc_consistent(he_dev->pci_dev,
917 (CONFIG_IRQ_SIZE+1) * sizeof(struct he_irq), &he_dev->irq_phys);
918 if (he_dev->irq_base == NULL) {
919 hprintk("failed to allocate irq\n");
920 return -ENOMEM;
921 }
922 he_dev->irq_tailoffset = (unsigned *)
923 &he_dev->irq_base[CONFIG_IRQ_SIZE];
924 *he_dev->irq_tailoffset = 0;
925 he_dev->irq_head = he_dev->irq_base;
926 he_dev->irq_tail = he_dev->irq_base;
927
928 for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
929 he_dev->irq_base[i].isw = ITYPE_INVALID;
930
931 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
932 he_writel(he_dev,
933 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
934 IRQ0_HEAD);
935 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
936 he_writel(he_dev, 0x0, IRQ0_DATA);
937
938 he_writel(he_dev, 0x0, IRQ1_BASE);
939 he_writel(he_dev, 0x0, IRQ1_HEAD);
940 he_writel(he_dev, 0x0, IRQ1_CNTL);
941 he_writel(he_dev, 0x0, IRQ1_DATA);
942
943 he_writel(he_dev, 0x0, IRQ2_BASE);
944 he_writel(he_dev, 0x0, IRQ2_HEAD);
945 he_writel(he_dev, 0x0, IRQ2_CNTL);
946 he_writel(he_dev, 0x0, IRQ2_DATA);
947
948 he_writel(he_dev, 0x0, IRQ3_BASE);
949 he_writel(he_dev, 0x0, IRQ3_HEAD);
950 he_writel(he_dev, 0x0, IRQ3_CNTL);
951 he_writel(he_dev, 0x0, IRQ3_DATA);
952
953 /* 2.9.3.2 interrupt queue mapping registers */
954
955 he_writel(he_dev, 0x0, GRP_10_MAP);
956 he_writel(he_dev, 0x0, GRP_32_MAP);
957 he_writel(he_dev, 0x0, GRP_54_MAP);
958 he_writel(he_dev, 0x0, GRP_76_MAP);
959
960 if (request_irq(he_dev->pci_dev->irq,
961 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
962 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
963 return -EINVAL;
964 }
965
966 he_dev->irq = he_dev->pci_dev->irq;
967
968 return 0;
969 }
970
971 static int he_start(struct atm_dev *dev)
972 {
973 struct he_dev *he_dev;
974 struct pci_dev *pci_dev;
975 unsigned long membase;
976
977 u16 command;
978 u32 gen_cntl_0, host_cntl, lb_swap;
979 u8 cache_size, timer;
980
981 unsigned err;
982 unsigned int status, reg;
983 int i, group;
984
985 he_dev = HE_DEV(dev);
986 pci_dev = he_dev->pci_dev;
987
988 membase = pci_resource_start(pci_dev, 0);
989 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq);
990
991 /*
992 * pci bus controller initialization
993 */
994
995 /* 4.3 pci bus controller-specific initialization */
996 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
997 hprintk("can't read GEN_CNTL_0\n");
998 return -EINVAL;
999 }
1000 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1001 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1002 hprintk("can't write GEN_CNTL_0.\n");
1003 return -EINVAL;
1004 }
1005
1006 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1007 hprintk("can't read PCI_COMMAND.\n");
1008 return -EINVAL;
1009 }
1010
1011 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1012 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1013 hprintk("can't enable memory.\n");
1014 return -EINVAL;
1015 }
1016
1017 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1018 hprintk("can't read cache line size?\n");
1019 return -EINVAL;
1020 }
1021
1022 if (cache_size < 16) {
1023 cache_size = 16;
1024 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1025 hprintk("can't set cache line size to %d\n", cache_size);
1026 }
1027
1028 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1029 hprintk("can't read latency timer?\n");
1030 return -EINVAL;
1031 }
1032
1033 /* from table 3.9
1034 *
1035 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1036 *
1037 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1038 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1039 *
1040 */
1041 #define LAT_TIMER 209
1042 if (timer < LAT_TIMER) {
1043 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1044 timer = LAT_TIMER;
1045 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1046 hprintk("can't set latency timer to %d\n", timer);
1047 }
1048
1049 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1050 hprintk("can't set up page mapping\n");
1051 return -EINVAL;
1052 }
1053
1054 /* 4.4 card reset */
1055 he_writel(he_dev, 0x0, RESET_CNTL);
1056 he_writel(he_dev, 0xff, RESET_CNTL);
1057
1058 msleep(16); /* 16 ms */
1059 status = he_readl(he_dev, RESET_CNTL);
1060 if ((status & BOARD_RST_STATUS) == 0) {
1061 hprintk("reset failed\n");
1062 return -EINVAL;
1063 }
1064
1065 /* 4.5 set bus width */
1066 host_cntl = he_readl(he_dev, HOST_CNTL);
1067 if (host_cntl & PCI_BUS_SIZE64)
1068 gen_cntl_0 |= ENBL_64;
1069 else
1070 gen_cntl_0 &= ~ENBL_64;
1071
1072 if (disable64 == 1) {
1073 hprintk("disabling 64-bit pci bus transfers\n");
1074 gen_cntl_0 &= ~ENBL_64;
1075 }
1076
1077 if (gen_cntl_0 & ENBL_64)
1078 hprintk("64-bit transfers enabled\n");
1079
1080 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1081
1082 /* 4.7 read prom contents */
1083 for (i = 0; i < PROD_ID_LEN; ++i)
1084 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1085
1086 he_dev->media = read_prom_byte(he_dev, MEDIA);
1087
1088 for (i = 0; i < 6; ++i)
1089 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1090
1091 hprintk("%s%s, %x:%x:%x:%x:%x:%x\n",
1092 he_dev->prod_id,
1093 he_dev->media & 0x40 ? "SM" : "MM",
1094 dev->esi[0],
1095 dev->esi[1],
1096 dev->esi[2],
1097 dev->esi[3],
1098 dev->esi[4],
1099 dev->esi[5]);
1100 he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1101 ATM_OC12_PCR : ATM_OC3_PCR;
1102
1103 /* 4.6 set host endianess */
1104 lb_swap = he_readl(he_dev, LB_SWAP);
1105 if (he_is622(he_dev))
1106 lb_swap &= ~XFER_SIZE; /* 4 cells */
1107 else
1108 lb_swap |= XFER_SIZE; /* 8 cells */
1109 #ifdef __BIG_ENDIAN
1110 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1111 #else
1112 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1113 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1114 #endif /* __BIG_ENDIAN */
1115 he_writel(he_dev, lb_swap, LB_SWAP);
1116
1117 /* 4.8 sdram controller initialization */
1118 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1119
1120 /* 4.9 initialize rnum value */
1121 lb_swap |= SWAP_RNUM_MAX(0xf);
1122 he_writel(he_dev, lb_swap, LB_SWAP);
1123
1124 /* 4.10 initialize the interrupt queues */
1125 if ((err = he_init_irq(he_dev)) != 0)
1126 return err;
1127
1128 /* 4.11 enable pci bus controller state machines */
1129 host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1130 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1131 he_writel(he_dev, host_cntl, HOST_CNTL);
1132
1133 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1134 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1135
1136 /*
1137 * atm network controller initialization
1138 */
1139
1140 /* 5.1.1 generic configuration state */
1141
1142 /*
1143 * local (cell) buffer memory map
1144 *
1145 * HE155 HE622
1146 *
1147 * 0 ____________1023 bytes 0 _______________________2047 bytes
1148 * | | | | |
1149 * | utility | | rx0 | |
1150 * 5|____________| 255|___________________| u |
1151 * 6| | 256| | t |
1152 * | | | | i |
1153 * | rx0 | row | tx | l |
1154 * | | | | i |
1155 * | | 767|___________________| t |
1156 * 517|____________| 768| | y |
1157 * row 518| | | rx1 | |
1158 * | | 1023|___________________|___|
1159 * | |
1160 * | tx |
1161 * | |
1162 * | |
1163 * 1535|____________|
1164 * 1536| |
1165 * | rx1 |
1166 * 2047|____________|
1167 *
1168 */
1169
1170 /* total 4096 connections */
1171 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1172 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1173
1174 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1175 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1176 return -ENODEV;
1177 }
1178
1179 if (nvpibits != -1) {
1180 he_dev->vpibits = nvpibits;
1181 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1182 }
1183
1184 if (nvcibits != -1) {
1185 he_dev->vcibits = nvcibits;
1186 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1187 }
1188
1189
1190 if (he_is622(he_dev)) {
1191 he_dev->cells_per_row = 40;
1192 he_dev->bytes_per_row = 2048;
1193 he_dev->r0_numrows = 256;
1194 he_dev->tx_numrows = 512;
1195 he_dev->r1_numrows = 256;
1196 he_dev->r0_startrow = 0;
1197 he_dev->tx_startrow = 256;
1198 he_dev->r1_startrow = 768;
1199 } else {
1200 he_dev->cells_per_row = 20;
1201 he_dev->bytes_per_row = 1024;
1202 he_dev->r0_numrows = 512;
1203 he_dev->tx_numrows = 1018;
1204 he_dev->r1_numrows = 512;
1205 he_dev->r0_startrow = 6;
1206 he_dev->tx_startrow = 518;
1207 he_dev->r1_startrow = 1536;
1208 }
1209
1210 he_dev->cells_per_lbuf = 4;
1211 he_dev->buffer_limit = 4;
1212 he_dev->r0_numbuffs = he_dev->r0_numrows *
1213 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1214 if (he_dev->r0_numbuffs > 2560)
1215 he_dev->r0_numbuffs = 2560;
1216
1217 he_dev->r1_numbuffs = he_dev->r1_numrows *
1218 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1219 if (he_dev->r1_numbuffs > 2560)
1220 he_dev->r1_numbuffs = 2560;
1221
1222 he_dev->tx_numbuffs = he_dev->tx_numrows *
1223 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1224 if (he_dev->tx_numbuffs > 5120)
1225 he_dev->tx_numbuffs = 5120;
1226
1227 /* 5.1.2 configure hardware dependent registers */
1228
1229 he_writel(he_dev,
1230 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1231 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1232 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1233 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1234 LBARB);
1235
1236 he_writel(he_dev, BANK_ON |
1237 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1238 SDRAMCON);
1239
1240 he_writel(he_dev,
1241 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1242 RM_RW_WAIT(1), RCMCONFIG);
1243 he_writel(he_dev,
1244 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1245 TM_RW_WAIT(1), TCMCONFIG);
1246
1247 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1248
1249 he_writel(he_dev,
1250 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1251 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1252 RX_VALVP(he_dev->vpibits) |
1253 RX_VALVC(he_dev->vcibits), RC_CONFIG);
1254
1255 he_writel(he_dev, DRF_THRESH(0x20) |
1256 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1257 TX_VCI_MASK(he_dev->vcibits) |
1258 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG);
1259
1260 he_writel(he_dev, 0x0, TXAAL5_PROTO);
1261
1262 he_writel(he_dev, PHY_INT_ENB |
1263 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1264 RH_CONFIG);
1265
1266 /* 5.1.3 initialize connection memory */
1267
1268 for (i = 0; i < TCM_MEM_SIZE; ++i)
1269 he_writel_tcm(he_dev, 0, i);
1270
1271 for (i = 0; i < RCM_MEM_SIZE; ++i)
1272 he_writel_rcm(he_dev, 0, i);
1273
1274 /*
1275 * transmit connection memory map
1276 *
1277 * tx memory
1278 * 0x0 ___________________
1279 * | |
1280 * | |
1281 * | TSRa |
1282 * | |
1283 * | |
1284 * 0x8000|___________________|
1285 * | |
1286 * | TSRb |
1287 * 0xc000|___________________|
1288 * | |
1289 * | TSRc |
1290 * 0xe000|___________________|
1291 * | TSRd |
1292 * 0xf000|___________________|
1293 * | tmABR |
1294 * 0x10000|___________________|
1295 * | |
1296 * | tmTPD |
1297 * |___________________|
1298 * | |
1299 * ....
1300 * 0x1ffff|___________________|
1301 *
1302 *
1303 */
1304
1305 he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1306 he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1307 he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1308 he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1309 he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1310
1311
1312 /*
1313 * receive connection memory map
1314 *
1315 * 0x0 ___________________
1316 * | |
1317 * | |
1318 * | RSRa |
1319 * | |
1320 * | |
1321 * 0x8000|___________________|
1322 * | |
1323 * | rx0/1 |
1324 * | LBM | link lists of local
1325 * | tx | buffer memory
1326 * | |
1327 * 0xd000|___________________|
1328 * | |
1329 * | rmABR |
1330 * 0xe000|___________________|
1331 * | |
1332 * | RSRb |
1333 * |___________________|
1334 * | |
1335 * ....
1336 * 0xffff|___________________|
1337 */
1338
1339 he_writel(he_dev, 0x08000, RCMLBM_BA);
1340 he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1341 he_writel(he_dev, 0x0d800, RCMABR_BA);
1342
1343 /* 5.1.4 initialize local buffer free pools linked lists */
1344
1345 he_init_rx_lbfp0(he_dev);
1346 he_init_rx_lbfp1(he_dev);
1347
1348 he_writel(he_dev, 0x0, RLBC_H);
1349 he_writel(he_dev, 0x0, RLBC_T);
1350 he_writel(he_dev, 0x0, RLBC_H2);
1351
1352 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */
1353 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */
1354
1355 he_init_tx_lbfp(he_dev);
1356
1357 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1358
1359 /* 5.1.5 initialize intermediate receive queues */
1360
1361 if (he_is622(he_dev)) {
1362 he_writel(he_dev, 0x000f, G0_INMQ_S);
1363 he_writel(he_dev, 0x200f, G0_INMQ_L);
1364
1365 he_writel(he_dev, 0x001f, G1_INMQ_S);
1366 he_writel(he_dev, 0x201f, G1_INMQ_L);
1367
1368 he_writel(he_dev, 0x002f, G2_INMQ_S);
1369 he_writel(he_dev, 0x202f, G2_INMQ_L);
1370
1371 he_writel(he_dev, 0x003f, G3_INMQ_S);
1372 he_writel(he_dev, 0x203f, G3_INMQ_L);
1373
1374 he_writel(he_dev, 0x004f, G4_INMQ_S);
1375 he_writel(he_dev, 0x204f, G4_INMQ_L);
1376
1377 he_writel(he_dev, 0x005f, G5_INMQ_S);
1378 he_writel(he_dev, 0x205f, G5_INMQ_L);
1379
1380 he_writel(he_dev, 0x006f, G6_INMQ_S);
1381 he_writel(he_dev, 0x206f, G6_INMQ_L);
1382
1383 he_writel(he_dev, 0x007f, G7_INMQ_S);
1384 he_writel(he_dev, 0x207f, G7_INMQ_L);
1385 } else {
1386 he_writel(he_dev, 0x0000, G0_INMQ_S);
1387 he_writel(he_dev, 0x0008, G0_INMQ_L);
1388
1389 he_writel(he_dev, 0x0001, G1_INMQ_S);
1390 he_writel(he_dev, 0x0009, G1_INMQ_L);
1391
1392 he_writel(he_dev, 0x0002, G2_INMQ_S);
1393 he_writel(he_dev, 0x000a, G2_INMQ_L);
1394
1395 he_writel(he_dev, 0x0003, G3_INMQ_S);
1396 he_writel(he_dev, 0x000b, G3_INMQ_L);
1397
1398 he_writel(he_dev, 0x0004, G4_INMQ_S);
1399 he_writel(he_dev, 0x000c, G4_INMQ_L);
1400
1401 he_writel(he_dev, 0x0005, G5_INMQ_S);
1402 he_writel(he_dev, 0x000d, G5_INMQ_L);
1403
1404 he_writel(he_dev, 0x0006, G6_INMQ_S);
1405 he_writel(he_dev, 0x000e, G6_INMQ_L);
1406
1407 he_writel(he_dev, 0x0007, G7_INMQ_S);
1408 he_writel(he_dev, 0x000f, G7_INMQ_L);
1409 }
1410
1411 /* 5.1.6 application tunable parameters */
1412
1413 he_writel(he_dev, 0x0, MCC);
1414 he_writel(he_dev, 0x0, OEC);
1415 he_writel(he_dev, 0x0, DCC);
1416 he_writel(he_dev, 0x0, CEC);
1417
1418 /* 5.1.7 cs block initialization */
1419
1420 he_init_cs_block(he_dev);
1421
1422 /* 5.1.8 cs block connection memory initialization */
1423
1424 if (he_init_cs_block_rcm(he_dev) < 0)
1425 return -ENOMEM;
1426
1427 /* 5.1.10 initialize host structures */
1428
1429 he_init_tpdrq(he_dev);
1430
1431 he_dev->tpd_pool = pci_pool_create("tpd", he_dev->pci_dev,
1432 sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1433 if (he_dev->tpd_pool == NULL) {
1434 hprintk("unable to create tpd pci_pool\n");
1435 return -ENOMEM;
1436 }
1437
1438 INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1439
1440 if (he_init_group(he_dev, 0) != 0)
1441 return -ENOMEM;
1442
1443 for (group = 1; group < HE_NUM_GROUPS; ++group) {
1444 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1445 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1446 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1447 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1448 G0_RBPS_BS + (group * 32));
1449
1450 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1451 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1452 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1453 G0_RBPL_QI + (group * 32));
1454 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1455
1456 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1457 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1458 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1459 G0_RBRQ_Q + (group * 16));
1460 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1461
1462 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1463 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1464 he_writel(he_dev, TBRQ_THRESH(0x1),
1465 G0_TBRQ_THRESH + (group * 16));
1466 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1467 }
1468
1469 /* host status page */
1470
1471 he_dev->hsp = pci_alloc_consistent(he_dev->pci_dev,
1472 sizeof(struct he_hsp), &he_dev->hsp_phys);
1473 if (he_dev->hsp == NULL) {
1474 hprintk("failed to allocate host status page\n");
1475 return -ENOMEM;
1476 }
1477 memset(he_dev->hsp, 0, sizeof(struct he_hsp));
1478 he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1479
1480 /* initialize framer */
1481
1482 #ifdef CONFIG_ATM_HE_USE_SUNI
1483 if (he_isMM(he_dev))
1484 suni_init(he_dev->atm_dev);
1485 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1486 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1487 #endif /* CONFIG_ATM_HE_USE_SUNI */
1488
1489 if (sdh) {
1490 /* this really should be in suni.c but for now... */
1491 int val;
1492
1493 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1494 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1495 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1496 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1497 }
1498
1499 /* 5.1.12 enable transmit and receive */
1500
1501 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1502 reg |= TX_ENABLE|ER_ENABLE;
1503 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1504
1505 reg = he_readl(he_dev, RC_CONFIG);
1506 reg |= RX_ENABLE;
1507 he_writel(he_dev, reg, RC_CONFIG);
1508
1509 for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1510 he_dev->cs_stper[i].inuse = 0;
1511 he_dev->cs_stper[i].pcr = -1;
1512 }
1513 he_dev->total_bw = 0;
1514
1515
1516 /* atm linux initialization */
1517
1518 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1519 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1520
1521 he_dev->irq_peak = 0;
1522 he_dev->rbrq_peak = 0;
1523 he_dev->rbpl_peak = 0;
1524 he_dev->tbrq_peak = 0;
1525
1526 HPRINTK("hell bent for leather!\n");
1527
1528 return 0;
1529 }
1530
1531 static void
1532 he_stop(struct he_dev *he_dev)
1533 {
1534 struct he_buff *heb, *next;
1535 struct pci_dev *pci_dev;
1536 u32 gen_cntl_0, reg;
1537 u16 command;
1538
1539 pci_dev = he_dev->pci_dev;
1540
1541 /* disable interrupts */
1542
1543 if (he_dev->membase) {
1544 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1545 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1546 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1547
1548 tasklet_disable(&he_dev->tasklet);
1549
1550 /* disable recv and transmit */
1551
1552 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1553 reg &= ~(TX_ENABLE|ER_ENABLE);
1554 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1555
1556 reg = he_readl(he_dev, RC_CONFIG);
1557 reg &= ~(RX_ENABLE);
1558 he_writel(he_dev, reg, RC_CONFIG);
1559 }
1560
1561 #ifdef CONFIG_ATM_HE_USE_SUNI
1562 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1563 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1564 #endif /* CONFIG_ATM_HE_USE_SUNI */
1565
1566 if (he_dev->irq)
1567 free_irq(he_dev->irq, he_dev);
1568
1569 if (he_dev->irq_base)
1570 pci_free_consistent(he_dev->pci_dev, (CONFIG_IRQ_SIZE+1)
1571 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1572
1573 if (he_dev->hsp)
1574 pci_free_consistent(he_dev->pci_dev, sizeof(struct he_hsp),
1575 he_dev->hsp, he_dev->hsp_phys);
1576
1577 if (he_dev->rbpl_base) {
1578 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1579 pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1580
1581 pci_free_consistent(he_dev->pci_dev, CONFIG_RBPL_SIZE
1582 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1583 }
1584
1585 kfree(he_dev->rbpl_virt);
1586 kfree(he_dev->rbpl_table);
1587
1588 if (he_dev->rbpl_pool)
1589 pci_pool_destroy(he_dev->rbpl_pool);
1590
1591 if (he_dev->rbrq_base)
1592 pci_free_consistent(he_dev->pci_dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1593 he_dev->rbrq_base, he_dev->rbrq_phys);
1594
1595 if (he_dev->tbrq_base)
1596 pci_free_consistent(he_dev->pci_dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1597 he_dev->tbrq_base, he_dev->tbrq_phys);
1598
1599 if (he_dev->tpdrq_base)
1600 pci_free_consistent(he_dev->pci_dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1601 he_dev->tpdrq_base, he_dev->tpdrq_phys);
1602
1603 if (he_dev->tpd_pool)
1604 pci_pool_destroy(he_dev->tpd_pool);
1605
1606 if (he_dev->pci_dev) {
1607 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1608 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1609 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1610 }
1611
1612 if (he_dev->membase)
1613 iounmap(he_dev->membase);
1614 }
1615
1616 static struct he_tpd *
1617 __alloc_tpd(struct he_dev *he_dev)
1618 {
1619 struct he_tpd *tpd;
1620 dma_addr_t mapping;
1621
1622 tpd = pci_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC|GFP_DMA, &mapping);
1623 if (tpd == NULL)
1624 return NULL;
1625
1626 tpd->status = TPD_ADDR(mapping);
1627 tpd->reserved = 0;
1628 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1629 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1630 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1631
1632 return tpd;
1633 }
1634
1635 #define AAL5_LEN(buf,len) \
1636 ((((unsigned char *)(buf))[(len)-6] << 8) | \
1637 (((unsigned char *)(buf))[(len)-5]))
1638
1639 /* 2.10.1.2 receive
1640 *
1641 * aal5 packets can optionally return the tcp checksum in the lower
1642 * 16 bits of the crc (RSR0_TCP_CKSUM)
1643 */
1644
1645 #define TCP_CKSUM(buf,len) \
1646 ((((unsigned char *)(buf))[(len)-2] << 8) | \
1647 (((unsigned char *)(buf))[(len-1)]))
1648
1649 static int
1650 he_service_rbrq(struct he_dev *he_dev, int group)
1651 {
1652 struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1653 ((unsigned long)he_dev->rbrq_base |
1654 he_dev->hsp->group[group].rbrq_tail);
1655 unsigned cid, lastcid = -1;
1656 struct sk_buff *skb;
1657 struct atm_vcc *vcc = NULL;
1658 struct he_vcc *he_vcc;
1659 struct he_buff *heb, *next;
1660 int i;
1661 int pdus_assembled = 0;
1662 int updated = 0;
1663
1664 read_lock(&vcc_sklist_lock);
1665 while (he_dev->rbrq_head != rbrq_tail) {
1666 ++updated;
1667
1668 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1669 he_dev->rbrq_head, group,
1670 RBRQ_ADDR(he_dev->rbrq_head),
1671 RBRQ_BUFLEN(he_dev->rbrq_head),
1672 RBRQ_CID(he_dev->rbrq_head),
1673 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1674 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1675 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1676 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1677 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1678 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1679
1680 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1681 heb = he_dev->rbpl_virt[i];
1682
1683 cid = RBRQ_CID(he_dev->rbrq_head);
1684 if (cid != lastcid)
1685 vcc = __find_vcc(he_dev, cid);
1686 lastcid = cid;
1687
1688 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1689 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid);
1690 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1691 clear_bit(i, he_dev->rbpl_table);
1692 list_del(&heb->entry);
1693 pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1694 }
1695
1696 goto next_rbrq_entry;
1697 }
1698
1699 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1700 hprintk("HBUF_ERR! (cid 0x%x)\n", cid);
1701 atomic_inc(&vcc->stats->rx_drop);
1702 goto return_host_buffers;
1703 }
1704
1705 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1706 clear_bit(i, he_dev->rbpl_table);
1707 list_move_tail(&heb->entry, &he_vcc->buffers);
1708 he_vcc->pdu_len += heb->len;
1709
1710 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1711 lastcid = -1;
1712 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid);
1713 wake_up(&he_vcc->rx_waitq);
1714 goto return_host_buffers;
1715 }
1716
1717 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1718 goto next_rbrq_entry;
1719
1720 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1721 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1722 HPRINTK("%s%s (%d.%d)\n",
1723 RBRQ_CRC_ERR(he_dev->rbrq_head)
1724 ? "CRC_ERR " : "",
1725 RBRQ_LEN_ERR(he_dev->rbrq_head)
1726 ? "LEN_ERR" : "",
1727 vcc->vpi, vcc->vci);
1728 atomic_inc(&vcc->stats->rx_err);
1729 goto return_host_buffers;
1730 }
1731
1732 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1733 GFP_ATOMIC);
1734 if (!skb) {
1735 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1736 goto return_host_buffers;
1737 }
1738
1739 if (rx_skb_reserve > 0)
1740 skb_reserve(skb, rx_skb_reserve);
1741
1742 __net_timestamp(skb);
1743
1744 list_for_each_entry(heb, &he_vcc->buffers, entry)
1745 memcpy(skb_put(skb, heb->len), &heb->data, heb->len);
1746
1747 switch (vcc->qos.aal) {
1748 case ATM_AAL0:
1749 /* 2.10.1.5 raw cell receive */
1750 skb->len = ATM_AAL0_SDU;
1751 skb_set_tail_pointer(skb, skb->len);
1752 break;
1753 case ATM_AAL5:
1754 /* 2.10.1.2 aal5 receive */
1755
1756 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1757 skb_set_tail_pointer(skb, skb->len);
1758 #ifdef USE_CHECKSUM_HW
1759 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1760 skb->ip_summed = CHECKSUM_COMPLETE;
1761 skb->csum = TCP_CKSUM(skb->data,
1762 he_vcc->pdu_len);
1763 }
1764 #endif
1765 break;
1766 }
1767
1768 #ifdef should_never_happen
1769 if (skb->len > vcc->qos.rxtp.max_sdu)
1770 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1771 #endif
1772
1773 #ifdef notdef
1774 ATM_SKB(skb)->vcc = vcc;
1775 #endif
1776 spin_unlock(&he_dev->global_lock);
1777 vcc->push(vcc, skb);
1778 spin_lock(&he_dev->global_lock);
1779
1780 atomic_inc(&vcc->stats->rx);
1781
1782 return_host_buffers:
1783 ++pdus_assembled;
1784
1785 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1786 pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1787 INIT_LIST_HEAD(&he_vcc->buffers);
1788 he_vcc->pdu_len = 0;
1789
1790 next_rbrq_entry:
1791 he_dev->rbrq_head = (struct he_rbrq *)
1792 ((unsigned long) he_dev->rbrq_base |
1793 RBRQ_MASK(he_dev->rbrq_head + 1));
1794
1795 }
1796 read_unlock(&vcc_sklist_lock);
1797
1798 if (updated) {
1799 if (updated > he_dev->rbrq_peak)
1800 he_dev->rbrq_peak = updated;
1801
1802 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1803 G0_RBRQ_H + (group * 16));
1804 }
1805
1806 return pdus_assembled;
1807 }
1808
1809 static void
1810 he_service_tbrq(struct he_dev *he_dev, int group)
1811 {
1812 struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1813 ((unsigned long)he_dev->tbrq_base |
1814 he_dev->hsp->group[group].tbrq_tail);
1815 struct he_tpd *tpd;
1816 int slot, updated = 0;
1817 struct he_tpd *__tpd;
1818
1819 /* 2.1.6 transmit buffer return queue */
1820
1821 while (he_dev->tbrq_head != tbrq_tail) {
1822 ++updated;
1823
1824 HPRINTK("tbrq%d 0x%x%s%s\n",
1825 group,
1826 TBRQ_TPD(he_dev->tbrq_head),
1827 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1828 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1829 tpd = NULL;
1830 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1831 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1832 tpd = __tpd;
1833 list_del(&__tpd->entry);
1834 break;
1835 }
1836 }
1837
1838 if (tpd == NULL) {
1839 hprintk("unable to locate tpd for dma buffer %x\n",
1840 TBRQ_TPD(he_dev->tbrq_head));
1841 goto next_tbrq_entry;
1842 }
1843
1844 if (TBRQ_EOS(he_dev->tbrq_head)) {
1845 HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1846 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1847 if (tpd->vcc)
1848 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1849
1850 goto next_tbrq_entry;
1851 }
1852
1853 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1854 if (tpd->iovec[slot].addr)
1855 pci_unmap_single(he_dev->pci_dev,
1856 tpd->iovec[slot].addr,
1857 tpd->iovec[slot].len & TPD_LEN_MASK,
1858 PCI_DMA_TODEVICE);
1859 if (tpd->iovec[slot].len & TPD_LST)
1860 break;
1861
1862 }
1863
1864 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1865 if (tpd->vcc && tpd->vcc->pop)
1866 tpd->vcc->pop(tpd->vcc, tpd->skb);
1867 else
1868 dev_kfree_skb_any(tpd->skb);
1869 }
1870
1871 next_tbrq_entry:
1872 if (tpd)
1873 pci_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1874 he_dev->tbrq_head = (struct he_tbrq *)
1875 ((unsigned long) he_dev->tbrq_base |
1876 TBRQ_MASK(he_dev->tbrq_head + 1));
1877 }
1878
1879 if (updated) {
1880 if (updated > he_dev->tbrq_peak)
1881 he_dev->tbrq_peak = updated;
1882
1883 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1884 G0_TBRQ_H + (group * 16));
1885 }
1886 }
1887
1888 static void
1889 he_service_rbpl(struct he_dev *he_dev, int group)
1890 {
1891 struct he_rbp *new_tail;
1892 struct he_rbp *rbpl_head;
1893 struct he_buff *heb;
1894 dma_addr_t mapping;
1895 int i;
1896 int moved = 0;
1897
1898 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1899 RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1900
1901 for (;;) {
1902 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1903 RBPL_MASK(he_dev->rbpl_tail+1));
1904
1905 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1906 if (new_tail == rbpl_head)
1907 break;
1908
1909 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1910 if (i > (RBPL_TABLE_SIZE - 1)) {
1911 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1912 if (i > (RBPL_TABLE_SIZE - 1))
1913 break;
1914 }
1915 he_dev->rbpl_hint = i + 1;
1916
1917 heb = pci_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC|GFP_DMA, &mapping);
1918 if (!heb)
1919 break;
1920 heb->mapping = mapping;
1921 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1922 he_dev->rbpl_virt[i] = heb;
1923 set_bit(i, he_dev->rbpl_table);
1924 new_tail->idx = i << RBP_IDX_OFFSET;
1925 new_tail->phys = mapping + offsetof(struct he_buff, data);
1926
1927 he_dev->rbpl_tail = new_tail;
1928 ++moved;
1929 }
1930
1931 if (moved)
1932 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1933 }
1934
1935 static void
1936 he_tasklet(unsigned long data)
1937 {
1938 unsigned long flags;
1939 struct he_dev *he_dev = (struct he_dev *) data;
1940 int group, type;
1941 int updated = 0;
1942
1943 HPRINTK("tasklet (0x%lx)\n", data);
1944 spin_lock_irqsave(&he_dev->global_lock, flags);
1945
1946 while (he_dev->irq_head != he_dev->irq_tail) {
1947 ++updated;
1948
1949 type = ITYPE_TYPE(he_dev->irq_head->isw);
1950 group = ITYPE_GROUP(he_dev->irq_head->isw);
1951
1952 switch (type) {
1953 case ITYPE_RBRQ_THRESH:
1954 HPRINTK("rbrq%d threshold\n", group);
1955 /* fall through */
1956 case ITYPE_RBRQ_TIMER:
1957 if (he_service_rbrq(he_dev, group))
1958 he_service_rbpl(he_dev, group);
1959 break;
1960 case ITYPE_TBRQ_THRESH:
1961 HPRINTK("tbrq%d threshold\n", group);
1962 /* fall through */
1963 case ITYPE_TPD_COMPLETE:
1964 he_service_tbrq(he_dev, group);
1965 break;
1966 case ITYPE_RBPL_THRESH:
1967 he_service_rbpl(he_dev, group);
1968 break;
1969 case ITYPE_RBPS_THRESH:
1970 /* shouldn't happen unless small buffers enabled */
1971 break;
1972 case ITYPE_PHY:
1973 HPRINTK("phy interrupt\n");
1974 #ifdef CONFIG_ATM_HE_USE_SUNI
1975 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1976 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1977 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1978 spin_lock_irqsave(&he_dev->global_lock, flags);
1979 #endif
1980 break;
1981 case ITYPE_OTHER:
1982 switch (type|group) {
1983 case ITYPE_PARITY:
1984 hprintk("parity error\n");
1985 break;
1986 case ITYPE_ABORT:
1987 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1988 break;
1989 }
1990 break;
1991 case ITYPE_TYPE(ITYPE_INVALID):
1992 /* see 8.1.1 -- check all queues */
1993
1994 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1995
1996 he_service_rbrq(he_dev, 0);
1997 he_service_rbpl(he_dev, 0);
1998 he_service_tbrq(he_dev, 0);
1999 break;
2000 default:
2001 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
2002 }
2003
2004 he_dev->irq_head->isw = ITYPE_INVALID;
2005
2006 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
2007 }
2008
2009 if (updated) {
2010 if (updated > he_dev->irq_peak)
2011 he_dev->irq_peak = updated;
2012
2013 he_writel(he_dev,
2014 IRQ_SIZE(CONFIG_IRQ_SIZE) |
2015 IRQ_THRESH(CONFIG_IRQ_THRESH) |
2016 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2017 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2018 }
2019 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2020 }
2021
2022 static irqreturn_t
2023 he_irq_handler(int irq, void *dev_id)
2024 {
2025 unsigned long flags;
2026 struct he_dev *he_dev = (struct he_dev * )dev_id;
2027 int handled = 0;
2028
2029 if (he_dev == NULL)
2030 return IRQ_NONE;
2031
2032 spin_lock_irqsave(&he_dev->global_lock, flags);
2033
2034 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2035 (*he_dev->irq_tailoffset << 2));
2036
2037 if (he_dev->irq_tail == he_dev->irq_head) {
2038 HPRINTK("tailoffset not updated?\n");
2039 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2040 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2041 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */
2042 }
2043
2044 #ifdef DEBUG
2045 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2046 hprintk("spurious (or shared) interrupt?\n");
2047 #endif
2048
2049 if (he_dev->irq_head != he_dev->irq_tail) {
2050 handled = 1;
2051 tasklet_schedule(&he_dev->tasklet);
2052 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */
2053 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */
2054 }
2055 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2056 return IRQ_RETVAL(handled);
2057
2058 }
2059
2060 static __inline__ void
2061 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2062 {
2063 struct he_tpdrq *new_tail;
2064
2065 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2066 tpd, cid, he_dev->tpdrq_tail);
2067
2068 /* new_tail = he_dev->tpdrq_tail; */
2069 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2070 TPDRQ_MASK(he_dev->tpdrq_tail+1));
2071
2072 /*
2073 * check to see if we are about to set the tail == head
2074 * if true, update the head pointer from the adapter
2075 * to see if this is really the case (reading the queue
2076 * head for every enqueue would be unnecessarily slow)
2077 */
2078
2079 if (new_tail == he_dev->tpdrq_head) {
2080 he_dev->tpdrq_head = (struct he_tpdrq *)
2081 (((unsigned long)he_dev->tpdrq_base) |
2082 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2083
2084 if (new_tail == he_dev->tpdrq_head) {
2085 int slot;
2086
2087 hprintk("tpdrq full (cid 0x%x)\n", cid);
2088 /*
2089 * FIXME
2090 * push tpd onto a transmit backlog queue
2091 * after service_tbrq, service the backlog
2092 * for now, we just drop the pdu
2093 */
2094 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2095 if (tpd->iovec[slot].addr)
2096 pci_unmap_single(he_dev->pci_dev,
2097 tpd->iovec[slot].addr,
2098 tpd->iovec[slot].len & TPD_LEN_MASK,
2099 PCI_DMA_TODEVICE);
2100 }
2101 if (tpd->skb) {
2102 if (tpd->vcc->pop)
2103 tpd->vcc->pop(tpd->vcc, tpd->skb);
2104 else
2105 dev_kfree_skb_any(tpd->skb);
2106 atomic_inc(&tpd->vcc->stats->tx_err);
2107 }
2108 pci_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2109 return;
2110 }
2111 }
2112
2113 /* 2.1.5 transmit packet descriptor ready queue */
2114 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2115 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2116 he_dev->tpdrq_tail->cid = cid;
2117 wmb();
2118
2119 he_dev->tpdrq_tail = new_tail;
2120
2121 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2122 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */
2123 }
2124
2125 static int
2126 he_open(struct atm_vcc *vcc)
2127 {
2128 unsigned long flags;
2129 struct he_dev *he_dev = HE_DEV(vcc->dev);
2130 struct he_vcc *he_vcc;
2131 int err = 0;
2132 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2133 short vpi = vcc->vpi;
2134 int vci = vcc->vci;
2135
2136 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2137 return 0;
2138
2139 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2140
2141 set_bit(ATM_VF_ADDR, &vcc->flags);
2142
2143 cid = he_mkcid(he_dev, vpi, vci);
2144
2145 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2146 if (he_vcc == NULL) {
2147 hprintk("unable to allocate he_vcc during open\n");
2148 return -ENOMEM;
2149 }
2150
2151 INIT_LIST_HEAD(&he_vcc->buffers);
2152 he_vcc->pdu_len = 0;
2153 he_vcc->rc_index = -1;
2154
2155 init_waitqueue_head(&he_vcc->rx_waitq);
2156 init_waitqueue_head(&he_vcc->tx_waitq);
2157
2158 vcc->dev_data = he_vcc;
2159
2160 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2161 int pcr_goal;
2162
2163 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2164 if (pcr_goal == 0)
2165 pcr_goal = he_dev->atm_dev->link_rate;
2166 if (pcr_goal < 0) /* means round down, technically */
2167 pcr_goal = -pcr_goal;
2168
2169 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2170
2171 switch (vcc->qos.aal) {
2172 case ATM_AAL5:
2173 tsr0_aal = TSR0_AAL5;
2174 tsr4 = TSR4_AAL5;
2175 break;
2176 case ATM_AAL0:
2177 tsr0_aal = TSR0_AAL0_SDU;
2178 tsr4 = TSR4_AAL0_SDU;
2179 break;
2180 default:
2181 err = -EINVAL;
2182 goto open_failed;
2183 }
2184
2185 spin_lock_irqsave(&he_dev->global_lock, flags);
2186 tsr0 = he_readl_tsr0(he_dev, cid);
2187 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2188
2189 if (TSR0_CONN_STATE(tsr0) != 0) {
2190 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2191 err = -EBUSY;
2192 goto open_failed;
2193 }
2194
2195 switch (vcc->qos.txtp.traffic_class) {
2196 case ATM_UBR:
2197 /* 2.3.3.1 open connection ubr */
2198
2199 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2200 TSR0_USE_WMIN | TSR0_UPDATE_GER;
2201 break;
2202
2203 case ATM_CBR:
2204 /* 2.3.3.2 open connection cbr */
2205
2206 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2207 if ((he_dev->total_bw + pcr_goal)
2208 > (he_dev->atm_dev->link_rate * 9 / 10))
2209 {
2210 err = -EBUSY;
2211 goto open_failed;
2212 }
2213
2214 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */
2215
2216 /* find an unused cs_stper register */
2217 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2218 if (he_dev->cs_stper[reg].inuse == 0 ||
2219 he_dev->cs_stper[reg].pcr == pcr_goal)
2220 break;
2221
2222 if (reg == HE_NUM_CS_STPER) {
2223 err = -EBUSY;
2224 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2225 goto open_failed;
2226 }
2227
2228 he_dev->total_bw += pcr_goal;
2229
2230 he_vcc->rc_index = reg;
2231 ++he_dev->cs_stper[reg].inuse;
2232 he_dev->cs_stper[reg].pcr = pcr_goal;
2233
2234 clock = he_is622(he_dev) ? 66667000 : 50000000;
2235 period = clock / pcr_goal;
2236
2237 HPRINTK("rc_index = %d period = %d\n",
2238 reg, period);
2239
2240 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2241 CS_STPER0 + reg);
2242 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2243
2244 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2245 TSR0_RC_INDEX(reg);
2246
2247 break;
2248 default:
2249 err = -EINVAL;
2250 goto open_failed;
2251 }
2252
2253 spin_lock_irqsave(&he_dev->global_lock, flags);
2254
2255 he_writel_tsr0(he_dev, tsr0, cid);
2256 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2257 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2258 TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2259 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2260 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2261
2262 he_writel_tsr3(he_dev, 0x0, cid);
2263 he_writel_tsr5(he_dev, 0x0, cid);
2264 he_writel_tsr6(he_dev, 0x0, cid);
2265 he_writel_tsr7(he_dev, 0x0, cid);
2266 he_writel_tsr8(he_dev, 0x0, cid);
2267 he_writel_tsr10(he_dev, 0x0, cid);
2268 he_writel_tsr11(he_dev, 0x0, cid);
2269 he_writel_tsr12(he_dev, 0x0, cid);
2270 he_writel_tsr13(he_dev, 0x0, cid);
2271 he_writel_tsr14(he_dev, 0x0, cid);
2272 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */
2273 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2274 }
2275
2276 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2277 unsigned aal;
2278
2279 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2280 &HE_VCC(vcc)->rx_waitq);
2281
2282 switch (vcc->qos.aal) {
2283 case ATM_AAL5:
2284 aal = RSR0_AAL5;
2285 break;
2286 case ATM_AAL0:
2287 aal = RSR0_RAWCELL;
2288 break;
2289 default:
2290 err = -EINVAL;
2291 goto open_failed;
2292 }
2293
2294 spin_lock_irqsave(&he_dev->global_lock, flags);
2295
2296 rsr0 = he_readl_rsr0(he_dev, cid);
2297 if (rsr0 & RSR0_OPEN_CONN) {
2298 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2299
2300 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2301 err = -EBUSY;
2302 goto open_failed;
2303 }
2304
2305 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2306 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2307 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
2308 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2309
2310 #ifdef USE_CHECKSUM_HW
2311 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2312 rsr0 |= RSR0_TCP_CKSUM;
2313 #endif
2314
2315 he_writel_rsr4(he_dev, rsr4, cid);
2316 he_writel_rsr1(he_dev, rsr1, cid);
2317 /* 5.1.11 last parameter initialized should be
2318 the open/closed indication in rsr0 */
2319 he_writel_rsr0(he_dev,
2320 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2321 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2322
2323 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2324 }
2325
2326 open_failed:
2327
2328 if (err) {
2329 kfree(he_vcc);
2330 clear_bit(ATM_VF_ADDR, &vcc->flags);
2331 }
2332 else
2333 set_bit(ATM_VF_READY, &vcc->flags);
2334
2335 return err;
2336 }
2337
2338 static void
2339 he_close(struct atm_vcc *vcc)
2340 {
2341 unsigned long flags;
2342 DECLARE_WAITQUEUE(wait, current);
2343 struct he_dev *he_dev = HE_DEV(vcc->dev);
2344 struct he_tpd *tpd;
2345 unsigned cid;
2346 struct he_vcc *he_vcc = HE_VCC(vcc);
2347 #define MAX_RETRY 30
2348 int retry = 0, sleep = 1, tx_inuse;
2349
2350 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2351
2352 clear_bit(ATM_VF_READY, &vcc->flags);
2353 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2354
2355 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2356 int timeout;
2357
2358 HPRINTK("close rx cid 0x%x\n", cid);
2359
2360 /* 2.7.2.2 close receive operation */
2361
2362 /* wait for previous close (if any) to finish */
2363
2364 spin_lock_irqsave(&he_dev->global_lock, flags);
2365 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2366 HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2367 udelay(250);
2368 }
2369
2370 set_current_state(TASK_UNINTERRUPTIBLE);
2371 add_wait_queue(&he_vcc->rx_waitq, &wait);
2372
2373 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2374 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2375 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2376 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2377
2378 timeout = schedule_timeout(30*HZ);
2379
2380 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2381 set_current_state(TASK_RUNNING);
2382
2383 if (timeout == 0)
2384 hprintk("close rx timeout cid 0x%x\n", cid);
2385
2386 HPRINTK("close rx cid 0x%x complete\n", cid);
2387
2388 }
2389
2390 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2391 volatile unsigned tsr4, tsr0;
2392 int timeout;
2393
2394 HPRINTK("close tx cid 0x%x\n", cid);
2395
2396 /* 2.1.2
2397 *
2398 * ... the host must first stop queueing packets to the TPDRQ
2399 * on the connection to be closed, then wait for all outstanding
2400 * packets to be transmitted and their buffers returned to the
2401 * TBRQ. When the last packet on the connection arrives in the
2402 * TBRQ, the host issues the close command to the adapter.
2403 */
2404
2405 while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2406 (retry < MAX_RETRY)) {
2407 msleep(sleep);
2408 if (sleep < 250)
2409 sleep = sleep * 2;
2410
2411 ++retry;
2412 }
2413
2414 if (tx_inuse > 1)
2415 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2416
2417 /* 2.3.1.1 generic close operations with flush */
2418
2419 spin_lock_irqsave(&he_dev->global_lock, flags);
2420 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2421 /* also clears TSR4_SESSION_ENDED */
2422
2423 switch (vcc->qos.txtp.traffic_class) {
2424 case ATM_UBR:
2425 he_writel_tsr1(he_dev,
2426 TSR1_MCR(rate_to_atmf(200000))
2427 | TSR1_PCR(0), cid);
2428 break;
2429 case ATM_CBR:
2430 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2431 break;
2432 }
2433 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */
2434
2435 tpd = __alloc_tpd(he_dev);
2436 if (tpd == NULL) {
2437 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2438 goto close_tx_incomplete;
2439 }
2440 tpd->status |= TPD_EOS | TPD_INT;
2441 tpd->skb = NULL;
2442 tpd->vcc = vcc;
2443 wmb();
2444
2445 set_current_state(TASK_UNINTERRUPTIBLE);
2446 add_wait_queue(&he_vcc->tx_waitq, &wait);
2447 __enqueue_tpd(he_dev, tpd, cid);
2448 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2449
2450 timeout = schedule_timeout(30*HZ);
2451
2452 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2453 set_current_state(TASK_RUNNING);
2454
2455 spin_lock_irqsave(&he_dev->global_lock, flags);
2456
2457 if (timeout == 0) {
2458 hprintk("close tx timeout cid 0x%x\n", cid);
2459 goto close_tx_incomplete;
2460 }
2461
2462 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2463 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2464 udelay(250);
2465 }
2466
2467 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2468 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2469 udelay(250);
2470 }
2471
2472 close_tx_incomplete:
2473
2474 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2475 int reg = he_vcc->rc_index;
2476
2477 HPRINTK("cs_stper reg = %d\n", reg);
2478
2479 if (he_dev->cs_stper[reg].inuse == 0)
2480 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2481 else
2482 --he_dev->cs_stper[reg].inuse;
2483
2484 he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2485 }
2486 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2487
2488 HPRINTK("close tx cid 0x%x complete\n", cid);
2489 }
2490
2491 kfree(he_vcc);
2492
2493 clear_bit(ATM_VF_ADDR, &vcc->flags);
2494 }
2495
2496 static int
2497 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2498 {
2499 unsigned long flags;
2500 struct he_dev *he_dev = HE_DEV(vcc->dev);
2501 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2502 struct he_tpd *tpd;
2503 #ifdef USE_SCATTERGATHER
2504 int i, slot = 0;
2505 #endif
2506
2507 #define HE_TPD_BUFSIZE 0xffff
2508
2509 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2510
2511 if ((skb->len > HE_TPD_BUFSIZE) ||
2512 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2513 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2514 if (vcc->pop)
2515 vcc->pop(vcc, skb);
2516 else
2517 dev_kfree_skb_any(skb);
2518 atomic_inc(&vcc->stats->tx_err);
2519 return -EINVAL;
2520 }
2521
2522 #ifndef USE_SCATTERGATHER
2523 if (skb_shinfo(skb)->nr_frags) {
2524 hprintk("no scatter/gather support\n");
2525 if (vcc->pop)
2526 vcc->pop(vcc, skb);
2527 else
2528 dev_kfree_skb_any(skb);
2529 atomic_inc(&vcc->stats->tx_err);
2530 return -EINVAL;
2531 }
2532 #endif
2533 spin_lock_irqsave(&he_dev->global_lock, flags);
2534
2535 tpd = __alloc_tpd(he_dev);
2536 if (tpd == NULL) {
2537 if (vcc->pop)
2538 vcc->pop(vcc, skb);
2539 else
2540 dev_kfree_skb_any(skb);
2541 atomic_inc(&vcc->stats->tx_err);
2542 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2543 return -ENOMEM;
2544 }
2545
2546 if (vcc->qos.aal == ATM_AAL5)
2547 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2548 else {
2549 char *pti_clp = (void *) (skb->data + 3);
2550 int clp, pti;
2551
2552 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
2553 clp = (*pti_clp & ATM_HDR_CLP);
2554 tpd->status |= TPD_CELLTYPE(pti);
2555 if (clp)
2556 tpd->status |= TPD_CLP;
2557
2558 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2559 }
2560
2561 #ifdef USE_SCATTERGATHER
2562 tpd->iovec[slot].addr = pci_map_single(he_dev->pci_dev, skb->data,
2563 skb_headlen(skb), PCI_DMA_TODEVICE);
2564 tpd->iovec[slot].len = skb_headlen(skb);
2565 ++slot;
2566
2567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2569
2570 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */
2571 tpd->vcc = vcc;
2572 tpd->skb = NULL; /* not the last fragment
2573 so dont ->push() yet */
2574 wmb();
2575
2576 __enqueue_tpd(he_dev, tpd, cid);
2577 tpd = __alloc_tpd(he_dev);
2578 if (tpd == NULL) {
2579 if (vcc->pop)
2580 vcc->pop(vcc, skb);
2581 else
2582 dev_kfree_skb_any(skb);
2583 atomic_inc(&vcc->stats->tx_err);
2584 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2585 return -ENOMEM;
2586 }
2587 tpd->status |= TPD_USERCELL;
2588 slot = 0;
2589 }
2590
2591 tpd->iovec[slot].addr = pci_map_single(he_dev->pci_dev,
2592 (void *) page_address(frag->page) + frag->page_offset,
2593 frag->size, PCI_DMA_TODEVICE);
2594 tpd->iovec[slot].len = frag->size;
2595 ++slot;
2596
2597 }
2598
2599 tpd->iovec[slot - 1].len |= TPD_LST;
2600 #else
2601 tpd->address0 = pci_map_single(he_dev->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
2602 tpd->length0 = skb->len | TPD_LST;
2603 #endif
2604 tpd->status |= TPD_INT;
2605
2606 tpd->vcc = vcc;
2607 tpd->skb = skb;
2608 wmb();
2609 ATM_SKB(skb)->vcc = vcc;
2610
2611 __enqueue_tpd(he_dev, tpd, cid);
2612 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2613
2614 atomic_inc(&vcc->stats->tx);
2615
2616 return 0;
2617 }
2618
2619 static int
2620 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2621 {
2622 unsigned long flags;
2623 struct he_dev *he_dev = HE_DEV(atm_dev);
2624 struct he_ioctl_reg reg;
2625 int err = 0;
2626
2627 switch (cmd) {
2628 case HE_GET_REG:
2629 if (!capable(CAP_NET_ADMIN))
2630 return -EPERM;
2631
2632 if (copy_from_user(&reg, arg,
2633 sizeof(struct he_ioctl_reg)))
2634 return -EFAULT;
2635
2636 spin_lock_irqsave(&he_dev->global_lock, flags);
2637 switch (reg.type) {
2638 case HE_REGTYPE_PCI:
2639 if (reg.addr >= HE_REGMAP_SIZE) {
2640 err = -EINVAL;
2641 break;
2642 }
2643
2644 reg.val = he_readl(he_dev, reg.addr);
2645 break;
2646 case HE_REGTYPE_RCM:
2647 reg.val =
2648 he_readl_rcm(he_dev, reg.addr);
2649 break;
2650 case HE_REGTYPE_TCM:
2651 reg.val =
2652 he_readl_tcm(he_dev, reg.addr);
2653 break;
2654 case HE_REGTYPE_MBOX:
2655 reg.val =
2656 he_readl_mbox(he_dev, reg.addr);
2657 break;
2658 default:
2659 err = -EINVAL;
2660 break;
2661 }
2662 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2663 if (err == 0)
2664 if (copy_to_user(arg, &reg,
2665 sizeof(struct he_ioctl_reg)))
2666 return -EFAULT;
2667 break;
2668 default:
2669 #ifdef CONFIG_ATM_HE_USE_SUNI
2670 if (atm_dev->phy && atm_dev->phy->ioctl)
2671 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2672 #else /* CONFIG_ATM_HE_USE_SUNI */
2673 err = -EINVAL;
2674 #endif /* CONFIG_ATM_HE_USE_SUNI */
2675 break;
2676 }
2677
2678 return err;
2679 }
2680
2681 static void
2682 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2683 {
2684 unsigned long flags;
2685 struct he_dev *he_dev = HE_DEV(atm_dev);
2686
2687 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2688
2689 spin_lock_irqsave(&he_dev->global_lock, flags);
2690 he_writel(he_dev, val, FRAMER + (addr*4));
2691 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */
2692 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2693 }
2694
2695
2696 static unsigned char
2697 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2698 {
2699 unsigned long flags;
2700 struct he_dev *he_dev = HE_DEV(atm_dev);
2701 unsigned reg;
2702
2703 spin_lock_irqsave(&he_dev->global_lock, flags);
2704 reg = he_readl(he_dev, FRAMER + (addr*4));
2705 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2706
2707 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2708 return reg;
2709 }
2710
2711 static int
2712 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2713 {
2714 unsigned long flags;
2715 struct he_dev *he_dev = HE_DEV(dev);
2716 int left, i;
2717 #ifdef notdef
2718 struct he_rbrq *rbrq_tail;
2719 struct he_tpdrq *tpdrq_head;
2720 int rbpl_head, rbpl_tail;
2721 #endif
2722 static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2723
2724
2725 left = *pos;
2726 if (!left--)
2727 return sprintf(page, "ATM he driver\n");
2728
2729 if (!left--)
2730 return sprintf(page, "%s%s\n\n",
2731 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2732
2733 if (!left--)
2734 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n");
2735
2736 spin_lock_irqsave(&he_dev->global_lock, flags);
2737 mcc += he_readl(he_dev, MCC);
2738 oec += he_readl(he_dev, OEC);
2739 dcc += he_readl(he_dev, DCC);
2740 cec += he_readl(he_dev, CEC);
2741 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2742
2743 if (!left--)
2744 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n",
2745 mcc, oec, dcc, cec);
2746
2747 if (!left--)
2748 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n",
2749 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2750
2751 if (!left--)
2752 return sprintf(page, "tpdrq_size = %d inuse = ?\n",
2753 CONFIG_TPDRQ_SIZE);
2754
2755 if (!left--)
2756 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n",
2757 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2758
2759 if (!left--)
2760 return sprintf(page, "tbrq_size = %d peak = %d\n",
2761 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2762
2763
2764 #ifdef notdef
2765 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2766 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2767
2768 inuse = rbpl_head - rbpl_tail;
2769 if (inuse < 0)
2770 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2771 inuse /= sizeof(struct he_rbp);
2772
2773 if (!left--)
2774 return sprintf(page, "rbpl_size = %d inuse = %d\n\n",
2775 CONFIG_RBPL_SIZE, inuse);
2776 #endif
2777
2778 if (!left--)
2779 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n");
2780
2781 for (i = 0; i < HE_NUM_CS_STPER; ++i)
2782 if (!left--)
2783 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i,
2784 he_dev->cs_stper[i].pcr,
2785 he_dev->cs_stper[i].inuse);
2786
2787 if (!left--)
2788 return sprintf(page, "total bw (cbr): %d (limit %d)\n",
2789 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2790
2791 return 0;
2792 }
2793
2794 /* eeprom routines -- see 4.7 */
2795
2796 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2797 {
2798 u32 val = 0, tmp_read = 0;
2799 int i, j = 0;
2800 u8 byte_read = 0;
2801
2802 val = readl(he_dev->membase + HOST_CNTL);
2803 val &= 0xFFFFE0FF;
2804
2805 /* Turn on write enable */
2806 val |= 0x800;
2807 he_writel(he_dev, val, HOST_CNTL);
2808
2809 /* Send READ instruction */
2810 for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2811 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2812 udelay(EEPROM_DELAY);
2813 }
2814
2815 /* Next, we need to send the byte address to read from */
2816 for (i = 7; i >= 0; i--) {
2817 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2818 udelay(EEPROM_DELAY);
2819 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2820 udelay(EEPROM_DELAY);
2821 }
2822
2823 j = 0;
2824
2825 val &= 0xFFFFF7FF; /* Turn off write enable */
2826 he_writel(he_dev, val, HOST_CNTL);
2827
2828 /* Now, we can read data from the EEPROM by clocking it in */
2829 for (i = 7; i >= 0; i--) {
2830 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2831 udelay(EEPROM_DELAY);
2832 tmp_read = he_readl(he_dev, HOST_CNTL);
2833 byte_read |= (unsigned char)
2834 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2835 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2836 udelay(EEPROM_DELAY);
2837 }
2838
2839 he_writel(he_dev, val | ID_CS, HOST_CNTL);
2840 udelay(EEPROM_DELAY);
2841
2842 return byte_read;
2843 }
2844
2845 MODULE_LICENSE("GPL");
2846 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2847 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2848 module_param(disable64, bool, 0);
2849 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2850 module_param(nvpibits, short, 0);
2851 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2852 module_param(nvcibits, short, 0);
2853 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2854 module_param(rx_skb_reserve, short, 0);
2855 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2856 module_param(irq_coalesce, bool, 0);
2857 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2858 module_param(sdh, bool, 0);
2859 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2860
2861 static struct pci_device_id he_pci_tbl[] = {
2862 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2863 { 0, }
2864 };
2865
2866 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2867
2868 static struct pci_driver he_driver = {
2869 .name = "he",
2870 .probe = he_init_one,
2871 .remove = he_remove_one,
2872 .id_table = he_pci_tbl,
2873 };
2874
2875 static int __init he_init(void)
2876 {
2877 return pci_register_driver(&he_driver);
2878 }
2879
2880 static void __exit he_cleanup(void)
2881 {
2882 pci_unregister_driver(&he_driver);
2883 }
2884
2885 module_init(he_init);
2886 module_exit(he_cleanup);